
10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

10.1 Curves Defined by Parametric Equations

1.  = 2 + ,  = 3+1,  = −2, −1, 0, 1, 2

 −2 −1 0 1 2

 2 0 0 2 6

 1
3

1 3 9 27

Therefore, the coordinates are

2 1

3


, (0 1), (0 3), (2 9), and (6 27).

2.  = ln(2 + 1),  = (+ 4),  = −2, −1, 0, 1, 2

 −2 −1 0 1 2

 ln 5 ln 2 0 ln 2 ln 5

 −1 − 1
3

0 1
5

1
3

Therefore, the coordinates are (ln 5−1), ln 2− 1
3


, (0 0),


ln 2 1

5


, and


ln 5 1

3


.

3.  = 1− 2,  = 2− 2, −1 ≤  ≤ 2

 −1 0 1 2

 0 1 0 −3
 −3 0 1 0

4.  = 3 + ,  = 2 + 2, −2 ≤  ≤ 2

 −2 −1 0 1 2

 −10 −2 0 2 10

 6 3 2 3 6

5.  = 2 − ,  = 2− + , −3 ≤  ≤ 3

 −3 −2 −1 0 1 2 3

 3125 225 15 1 1 2 5

 5 2 1 1 15 225 3125
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936 ¤ CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

6.  = cos2,  = 1 + cos , 0 ≤  ≤ 

 0 4 2 34 

 1 05 0 05 1

 2 1707 1 0293 0

7.  = 2− 1,  = 1
2
+ 1

(a)
 −4 −2 0 2 4

 −9 −5 −1 3 7

 −1 0 1 2 3

(b)  = 2− 1 ⇒ 2 = + 1 ⇒  = 1
2
+ 1

2
, so

 = 1
2
+ 1 = 1

2


1
2
+ 1

2


+ 1 = 1

4
+ 1

4
+ 1 ⇒  = 1

4
+ 5

4

8.  = 3+ 2,  = 2+ 3

(a)
 −4 −2 0 2 4

 −10 −4 2 8 14

 −5 −1 3 7 11

(b)  = 3+ 2 ⇒ 3 = − 2 ⇒  = 1
3− 2

3 , so

 = 2+ 3 = 2

1
3
− 2

3


+ 3 = 2

3
− 4

3
+ 3 ⇒  = 2

3
+ 5

3

9.  = 2 − 3,  = + 2, −3 ≤  ≤ 3
(a)

 −3 −1 1 3

 6 −2 −2 6

 −1 1 3 5

(b)  = + 2 ⇒  =  − 2, so
 = 2 − 3 = ( − 2)2 − 3 = 2 − 4 + 4− 3 ⇒
 = 2 − 4 + 1, −1 ≤  ≤ 5
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SECTION 10.1 CURVES DEFINED BY PARAMETRIC EQUATIONS ¤ 937

10.  = sin ,  = 1− cos , 0 ≤  ≤ 2
(a)

 0 2  32 2

 0 1 0 −1 0

 0 1 2 1 0

(b)  = sin ,  = 1− cos  [or  − 1 = − cos ] ⇒
2 + ( − 1)2 = (sin )2 + (− cos )2 ⇒ 2 + ( − 1)2 = 1.

As  varies from 0 to 2, the circle with center (0 1) and radius 1 is traced out.

11.  =
√
,  = 1− 

(a)
 0 1 2 3 4

 0 1 1414 1732 2

 1 0 −1 −2 −3

(b)  =
√
 ⇒  = 2 ⇒  = 1−  = 1− 2. Since  ≥ 0,  ≥ 0.

So the curve is the right half of the parabola  = 1− 2.

12.  = 2,  = 3

(a)
 −2 −1 0 1 2

 4 1 0 1 4

 −8 −1 0 1 8

(b)  = 3 ⇒  = 3

 ⇒  = 2 =


3


2
= 23.  ∈ ,  ∈ ,  ≥ 0.

13. (a)  = 3cos ,  = 3 sin , 0 ≤  ≤ 

2 + 2 = 9 cos2+9 sin2 = 9(cos2+ sin2) = 9, which is the equation

of a circle with radius 3. For 0 ≤  ≤ 2, we have 3 ≥  ≥ 0 and
0 ≤  ≤ 3. For 2   ≤ , we have 0   ≥ −3 and 3   ≥ 0. Thus,

the curve is the top half of the circle 2 + 2 = 9 traced counterclockwise.

(b)
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938 ¤ CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

14. (a)  = sin 4,  = cos 4, 0 ≤  ≤ 2

2 + 2 = sin2 4 + cos2 4 = 1, which is the equation of a circle with

radius 1. When  = 0, we have  = 0 and  = 1. For 0 ≤  ≤ 4, we

have  ≥ 0. For 4   ≤ 2, we have  ≤ 0. Thus, the curve is the

circle 2 + 2 = 1 traced clockwise starting at (0 1).

(b)

15. (a)  = cos ,  = sec2, 0 ≤   2.

 = sec2 =
1

cos2
=
1

2
. For 0 ≤   2, we have 1 ≥   0

and 1 ≤ .

(b)

16. (a)  = csc ,  = cot , 0    

2 − 2 = cot2− csc2 = 1. For 0    , we have   1.

Thus, the curve is the right branch of the hyperbola 2 − 2 = 1.

(b)

17. (a)  =  = 1− = 1 for   0 since  = −. Thus, the curve is the

portion of the hyperbola  = 1 with   0.

(b)

18. (a)  = + 2 ⇒  = − 2.  = 1 = 1(− 2). For   0, we
have   2 and   0. Thus, the curve is the portion of the

hyperbola  = 1(− 2) with   2.

(b)
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SECTION 10.1 CURVES DEFINED BY PARAMETRIC EQUATIONS ¤ 939

19. (a)  = ln ,  =
√
,  ≥ 1.

 = ln  ⇒  =  ⇒  =
√
 = 2,  ≥ 0.

(b)

20. (a)  = ||,  =
1− ||  = |1− |. For all , we have  ≥ 0 and

 ≥ 0. Thus, the curve is the portion of the absolute value function
 = |1− | with  ≥ 0.

(b)

21. (a)  = sin2,  = cos2. +  = sin2+ cos2 = 1. For all , we

have 0 ≤  ≤ 1 and 0 ≤  ≤ 1. Thus, the curve is the portion of the
line +  = 1 or  = −+ 1 in the first quadrant.

(b)

22. (a)  = sinh ,  = cosh  ⇒ 2 − 2 = cosh2 − sinh2  = 1.
Since  = cosh  ≥ 1, we have the upper branch of the hyperbola
2 − 2 = 1.

(b)

23. The parametric equations  = 5cos  and  = −5 sin  both have period 2. When  = 0, we have  = 5 and  = 0. When
 = 2, we have  = 0 and  = −5. This is one­fourth of a circle. Thus, the object completes one revolution in
4 · 

2
= 2 seconds following a clockwise path.

24. The parametric equations  = 3 sin

4


and  = 3 cos


4


both have period 2

4
= 8. When  = 0, we have  = 0 and

 = 3. When  = 2, we have  = 3 and  = 0. This is one­fourth of a circle. Thus, the object completes one revolution in
4 · 2 = 8 seconds following a clockwise path.

25.  = 5 + 2 cos,  = 3 + 2 sin ⇒ cos =
− 5
2
, sin =  − 3

2
. cos2() + sin2() = 1 ⇒

− 5
2

2
+


 − 3
2

2
= 1. The motion of the particle takes place on a circle centered at (5 3) with a radius 2. As  goes

from 1 to 2, the particle starts at the point (3 3) and moves counterclockwise along the circle

− 5
2

2
+


 − 3
2

2
= 1

to (7 3) [one­half of a circle].

26.  = 2 + sin ,  = 1 + 3 cos  ⇒ sin  = − 2, cos  =  − 1
3
. sin2+ cos2 = 1 ⇒ (− 2)2 +


 − 1
3

2
= 1.

The motion of the particle takes place on an ellipse centered at (2 1). As  goes from 2 to 2, the particle starts at the point

(3 1) and moves counterclockwise three­fourths of the way around the ellipse to (2 4).
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940 ¤ CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

27.  = 5 sin ,  = 2cos  ⇒ sin  =


5
, cos  = 

2
. sin2 + cos2  = 1 ⇒


5

2
+

2

2
= 1. The motion of the

particle takes place on an ellipse centered at (0 0). As  goes from− to 5, the particle starts at the point (0−2) and moves
clockwise around the ellipse 3 times.

28.  = cos2  = 1− sin2  = 1− 2. The motion of the particle takes place on the parabola  = 1− 2. As  goes from −2 to
−, the particle starts at the point (0 1), moves to (1 0), and goes back to (0 1). As  goes from − to 0, the particle moves
to (−1 0) and goes back to (0 1). The particle repeats this motion as  goes from 0 to 2.

29. We must have 1 ≤  ≤ 4 and 2 ≤  ≤ 3. So the graph of the curve must be contained in the rectangle [1 4] by [2 3].

30. (a) From the first graph, we have 1 ≤  ≤ 2. From the second graph, we have −1 ≤  ≤ 1 The only choice that satisfies
either of those conditions is III.

(b) From the first graph, the values of  cycle through the values from−2 to 2 four times. From the second graph, the values
of  cycle through the values from−2 to 2 six times. Choice I satisfies these conditions.

(c) From the first graph, the values of  cycle through the values from −2 to 2 three times. From the second graph, we have
0 ≤  ≤ 2. Choice IV satisfies these conditions.

(d) From the first graph, the values of  cycle through the values from−2 to 2 two times. From the second graph, the values of
 do the same thing. Choice II satisfies these conditions.

31. When  = −1, ( ) = (1 1). As  increases to 0,  and  both decrease to 0.
As  increases from 0 to 1,  increases from 0 to 1 and  decreases from 0 to

−1. As  increases beyond 1,  continues to increase and  continues to
decrease. For   −1,  and  are both positive and decreasing. We could
achieve greater accuracy by estimating ­ and ­values for selected values of 

from the given graphs and plotting the corresponding points.

32. When  = −1, ( ) = (0 0). As  increases to 0,  increases from 0 to 1,
while  first decreases to −1 and then increases to 0. As  increases from 0 to 1,
 decreases from 1 to 0, while  first increases to 1 and then decreases to 0. We

could achieve greater accuracy by estimating ­ and ­values for selected values

of  from the given graphs and plotting the corresponding points.

y

0 x1

_1

1

t=_1, 1 
(0, 0)

t=0 
(1, 0)

33. When  = −1, ( ) = (0 1). As  increases to 0,  increases from 0 to 1 and
 decreases from 1 to 0. As  increases from 0 to 1, the curve is retraced in the

opposite direction with  decreasing from 1 to 0 and  increasing from 0 to 1.

We could achieve greater accuracy by estimating ­ and ­values for selected

values of  from the given graphs and plotting the corresponding points.
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SECTION 10.1 CURVES DEFINED BY PARAMETRIC EQUATIONS ¤ 941

34. (a)  = 4 − + 1 = (4 + 1)−   0 [think of the graphs of  = 4 + 1 and  = ] and  = 2 ≥ 0, so these equations
are matched with graph V.

(b)  =
√
 ≥ 0.  = 2 − 2 = (− 2) is negative for 0    2, so these equations are matched with graph I.

(c)  = 3 − 2 = (2 − 2) = 

+

√
2

−√2 ,  = 2 −  = (− 1). The equation  = 0 has three solutions and the

equation  = 0 has two solutions. Thus, the curve has three ­intercepts and two ­intercepts, which matches graph II.

Alternate method:  = 3 − 2,  = 2 −  =

2 − + 1

4

− 1
4
=

− 1

2

2 − 1
4
so  ≥ − 1

4
on this curve, whereas  is

unbounded. These equations are matched with graph II.

(d)  = cos 5 has period 25 and  = sin 2 has period , so  will take on the values −1 to 1, and then 1 to −1, before 
takes on the values−1 to 1. Note that when  = 0, ( ) = (1 0). These equations are matched with graph VI

(e)  = + sin 4,  = 2 + cos 3. As  becomes large,  and 2 become the dominant terms in the expressions for  and

, so the graph will look like the graph of  = 2, but with oscillations. These equations are matched with graph IV.

(f )  = + sin 2,  = + sin 3. As  becomes large,  becomes the dominant term in the expressions for both  and , so

the graph will look like the graph of  = , but with oscillations. These equations are matched with graph III.

35. Use  =  and  = − 2 sin with a ­interval of [− ].

36. Use 1 = , 1 = 3 − 4 and 2 = 3 − 4, 2 =  with a ­interval of

[−3 3]. There are 9 points of intersection; (0 0) is fairly obvious. The point
in quadrant I is approximately (22 22), and by symmetry, the point in

quadrant III is approximately (−22−22). The other six points are
approximately (∓19±05), (∓17±17), and (∓05±19).

37. (a)  = 1 + (2 − 1),  = 1 + (2 − 1), 0 ≤  ≤ 1. Clearly the curve passes through 1(1 1) when  = 0 and
through 2(2 2) when  = 1. For 0    1,  is strictly between 1 and 2 and  is strictly between 1 and 2. For

every value of ,  and  satisfy the relation  − 1 =
2 − 1

2 − 1
(− 1), which is the equation of the line through

1(1 1) and 2(2 2).

Finally, any point ( ) on that line satisfies  − 1

2 − 1
=

− 1

2 − 1
; if we call that common value , then the given

parametric equations yield the point ( ); and any ( ) on the line between 1(1 1) and 2(2 2) yields a value of

 in [0 1]. So the given parametric equations exactly specify the line segment from 1(1 1) to 2(2 2).
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942 ¤ CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

(b)  = −2 + [3− (−2)] = −2 + 5 and  = 7 + (−1− 7) = 7− 8 for 0 ≤  ≤ 1.

38. For the side of the triangle from  to , use (1 1) = (1 1) and (2 2) = (4 2).

Hence, the equations are

= 1 + (2 − 1)  = 1 + (4− 1)  = 1 + 3,
 = 1 + (2 − 1)  = 1 + (2− 1)  = 1 + .

Graphing  = 1 + 3 and  = 1 +  with 0 ≤  ≤ 1 gives us the side of the

triangle from  to . Similarly, for the side  we use  = 4− 3 and  = 2 + 3, and for the side  we use  = 1
and  = 1 + 4.

39. The result in Example 4 indicates the parametric equations have the form  = +  sin  and  =  +  cos  where (, )

is the center of the circle with radius  and  = 2period. (The use of positive sine in the ­equation and positive cosine in

the ­equation results in a clockwise motion.) With  = 0,  = 0 and  = 24 = 12, we have  = 5 sin

1
2


,

 = 5cos

1
2 

.

40. As in Example 4, we use parametric equations of the form  = +  cos  and  =  +  sin  where ( ) = (1 3) is the

center of the circle with radius  = 1 and  = 2period = 23. (The use of positive cosine in the ­equation and positive

sine in the ­equation results in a counterclockwise motion.) Thus,  = 1 + cos

2
3


,  = 3 + sin


2
3


.

41. The circle 2 + ( − 1)2 = 4 has center (0 1) and radius 2, so by Example 4 it can be represented by  = 2cos ,
 = 1 + 2 sin , 0 ≤  ≤ 2. This representation gives us the circle with a counterclockwise orientation starting at (2 1).

(a) To get a clockwise orientation, we could change the equations to  = 2cos ,  = 1− 2 sin , 0 ≤  ≤ 2.
(b) To get three times around in the counterclockwise direction, we use the original equations  = 2 cos ,  = 1+ 2 sin  with

the domain expanded to 0 ≤  ≤ 6.

(c) To start at (0 3) using the original equations, we must have 1 = 0; that is, 2 cos  = 0. Hence,  = 
2 . So we use

 = 2cos ,  = 1 + 2 sin , 
2
≤  ≤ 3

2
.

Alternatively, if we want  to start at 0, we could change the equations of the curve. For example, we could use

 = −2 sin ,  = 1 + 2 cos , 0 ≤  ≤ .

42. (a) Let 22 = sin2  and 22 = cos2  to obtain  =  sin  and

 =  cos  with 0 ≤  ≤ 2 as possible parametric equations for the ellipse
22 + 22 = 1.

(b) The equations are  = 3 sin  and  =  cos  for  ∈ {1 2 4 8}.

(c) As  increases, the ellipse stretches vertically.
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43. Big circle: It’s centered at (2 2) with a radius of 2, so by Example 4, parametric equations are

 = 2 + 2 cos   = 2 + 2 sin  0 ≤  ≤ 2

Small circles: They are centered at (1 3) and (3 3) with a radius of 01. By Example 4, parametric equations are

(left)  = 1+ 01 cos   = 3+ 01 sin  0 ≤  ≤ 2
and (right)  = 3+ 01 cos   = 3+ 01 sin  0 ≤  ≤ 2

Semicircle: It’s the lower half of a circle centered at (2 2) with radius 1. By Example 4, parametric equations are

 = 2 + 1 cos   = 2 + 1 sin   ≤  ≤ 2

To get all four graphs on the same screen with a typical graphing calculator, we need to change the last ­interval to[0 2] in

order to match the others. We can do this by changing  to 05. This change gives us the upper half. There are several ways to

get the lower half—one is to change the “+” to a “−” in the ­assignment, giving us

 = 2 + 1 cos(05)  = 2− 1 sin(05) 0 ≤  ≤ 2

44. If you are using a calculator or computer that can overlay graphs (using multiple ­intervals), the following is appropriate.

Left side:  = 1 and  goes from 15 to 4, so use

 = 1  =  15 ≤  ≤ 4

Right side:  = 10 and  goes from 15 to 4, so use

 = 10  =  15 ≤  ≤ 4

Bottom:  goes from 1 to 10 and  = 15, so use

 =   = 15 1 ≤  ≤ 10

Handle: It starts at (10 4) and ends at (13 7), so use

 = 10 +   = 4 +  0 ≤  ≤ 3

Left wheel: It’s centered at (3 1), has a radius of 1, and appears to go about 30◦ above the horizontal, so use

 = 3 + 1 cos   = 1 + 1 sin  5
6
≤  ≤ 13

6

Right wheel: Similar to the left wheel with center (8 1), so use

 = 8 + 1 cos   = 1 + 1 sin  5
6 ≤  ≤ 13

6

If you are using a calculator or computer that cannot overlay graphs (using one ­interval), the following is appropriate.

We’ll start by picking the ­interval [0 25] since it easily matches the ­values for the two sides. We now need to find

parametric equations for all graphs with 0 ≤  ≤ 25.
Left side:  = 1 and  goes from 15 to 4, so use

 = 1  = 15 +  0 ≤  ≤ 25
[continued]
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Right side:  = 10 and  goes from 15 to 4, so use

 = 10  = 15 +  0 ≤  ≤ 25

Bottom:  goes from 1 to 10 and  = 15, so use

 = 1 + 36  = 15 0 ≤  ≤ 25

To get the x­assignment, think of creating a linear function such that when  = 0,  = 1 and when  = 25,

 = 10. We can use the point­slope form of a line with (1 1) = (0 1) and (2 2) = (25 10).

− 1 = 10− 1
25− 0(− 0) ⇒  = 1 + 36.

Handle: It starts at (10 4) and ends at (13 7), so use

 = 10 + 12  = 4 + 12 0 ≤  ≤ 25

(1 1) = (0 10) and (2 2) = (25 13) gives us − 10 = 13− 10
25− 0 (− 0) ⇒  = 10 + 12.

(1 1) = (0 4) and (2 2) = (25 7) gives us  − 4 = 7− 4
25− 0(− 0) ⇒  = 4 + 12.

Left wheel: It’s centered at (3 1), has a radius of 1, and appears to go about 30◦ above the horizontal, so use

 = 3 + 1 cos

8
15
+ 5

6


  = 1 + 1 sin


8
15
+ 5

6


 0 ≤  ≤ 25

(1 1) =

0 5

6


and (2 2) =


5
2
 13

6


gives us  − 5

6
=

13
6
− 5

6
5
2 − 0

(− 0) ⇒  = 5
6
+ 8

15
.

Right wheel: Similar to the left wheel with center (8 1), so use

 = 8 + 1 cos

8
15 +

5
6


  = 1 + 1 sin


8
15 +

5
6


 0 ≤  ≤ 25

45. (a) (i)  = 2,  =  ⇒ 2 = 2 =  (ii)  = ,  =
√
 ⇒ 2 =  = 

(iii)  = cos2,  = cos  ⇒ 2 = cos2 =  (iv)  = 32,  = 3 ⇒ 2 = (3)2 = 32 = .

Thus, the points on all four of the given parametric curves satisfy the Cartesian equation 2 = .

(b) The graph of 2 =  is a right­opening parabola with vertex at the origin. For curve (i),  ≥ 0 and  is unbounded so the
graph contains the entire parabola. For (ii),  =

√
 requires that  ≥ 0, so that both  ≥ 0 and  ≥ 0, which captures the

upper half of the parabola, including the origin. For (iii), −1 ≤ cos  ≤ 1 so the graph is the portion of the parabola
contained in the intervals 0 ≤  ≤ 1 and −1 ≤  ≤ 1. For (iv),   0 and   0, which captures the upper half of the

parabola excluding the origin.
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46. (a)  = , so  = −2 = −2. We get the entire curve  = 12 traversed in a

left­to­right direction.

(b)  = cos ,  = sec2 = 1

cos2
=
1

2
. Since sec  ≥ 1, we only get the parts

of the curve  = 12 with  ≥ 1. We get the first quadrant portion of the
curve when   0, that is, cos   0, and we get the second quadrant

portion of the curve when   0, that is, cos   0.

(c)  = ,  = −2 = ()−2 = −2. Since  and −2 are both positive,

we only get the first quadrant portion of the curve  = 12.

47. (a)  = 3 ⇒  = 13, so  = 2 = 23.

We get the entire curve  = 23 traversed in a left to

right direction.

(b)  = 6 ⇒  = 16, so  = 4 = 46 = 23.

Since  = 6 ≥ 0, we only get the right half of the
curve  = 23.

(c)  = −3 = (−)3 [so − = 13],

 = −2 = (−)2 = (13)2 = 23.

If   0, then  and  are both larger than 1. If   0, then  and 

are between 0 and 1. Since   0 and   0, the curve never quite

reaches the origin.

48. The case 
2
    is illustrated.  has coordinates ( ) as in Example 7,

and has coordinates (  +  cos( − )) = ( (1− cos ))
[since cos( − ) = cos cos+ sin sin = − cos], so  has
coordinates ( −  sin( − ) (1− cos )) = (( − sin ) (1− cos ))
[since sin( − ) = sin cos− cos sin = sin]. Again we have the
parametric equations  = ( − sin ),  = (1− cos ).
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49. The first two diagrams depict the case     3
2 ,   . As in Example 7,  has coordinates ( ). Now (in the second

diagram) has coordinates (  +  cos( − )) = (  −  cos ), so a typical point  of the trochoid has coordinates

( +  sin( − )  −  cos ). That is,  has coordinates ( ), where  =  −  sin  and  =  −  cos . When

 = , these equations agree with those of the cycloid.

50. In polar coordinates, an equation for the circle is  = 2 sin . Thus, the coordinates of are  =  cos  = 2 sin  cos 

and  =  sin  = 2 sin2 . The coordinates of  are  = 2 cot  and  = 2. Since  is the midpoint of , we use the

midpoint formula to get  = (sin  cos  + cot ) and  = (1 + sin2 ).

51. It is apparent that  = || and  = | | = | |. From the diagram,
 = || =  cos  and  = | | =  sin . Thus, the parametric equations are

 =  cos  and  =  sin . To eliminate  we rearrange: sin  =  ⇒

sin2  = ()2 and cos  =  ⇒ cos2  = ()2. Adding the two

equations: sin2  + cos2  = 1 = 22 + 22. Thus, we have an ellipse.

52.  has coordinates ( cos   sin ). Since  is perpendicular to ,∆ is a right triangle and  has coordinates

( sec  0). It follows that  has coordinates ( sec   sin ). Thus, the parametric equations are  =  sec ,  =  sin .

53.  = (2 cot  2), so the ­coordinate of  is  = 2 cot . Let  = (0 2).

Then ∠ is a right angle and ∠ = , so || = 2 sin  and
 = ((2 sin ) cos  (2 sin ) sin ). Thus, the ­coordinate of 

is  = 2 sin2 .

54. (a) Let  be the angle of inclination of segment  . Then || = 2

cos 
.

Let  = (2 0). Then by use of right triangle  we see that || = 2 cos .
Now

| |= || = ||− ||

= 2


1

cos 
− cos 


= 2

1− cos2
cos 

= 2
sin2

cos 
= 2 sin  tan 

So  has coordinates  = 2 sin  tan  · cos  = 2 sin2 and  = 2 sin  tan  · sin  = 2 sin2 tan .

(b)
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55. (a) Red particle:  = + 5,  = 2 + 4+ 6

Blue particle:  = 2+ 1,  = 2+ 6

Substituting  = 1 and  = 6 into the parametric equations for the red particle gives 1 = +5 and 6 = 2 +4+6, which

are both satisfied when  = −4. Making the same substitution for the blue particle gives 1 = 2+1 and 6 = 2+6, which
are both satisfied when  = 0. Repeating the process for  = 6 and  = 11, the red particle’s equations become 6 = + 5

and 11 = 2 +4+6, which are both satisfied when  = 1. Similarly, the blue particle’s equations become 6 = 2+1 and

11 = 2+ 6, which are both satisfied when  = 25. Thus, (1 6) and (6 11) are both intersection points, but they are not

collision points, since the particles reach each of these points at different times.

(b) Blue particle:  = 2+ 1 ⇒  = 1
2
(− 1).

Substituting into the equation for  gives  = 2+ 6 = 2

1
2 (− 1)


+ 6 = + 5.

Green particle:  = 2+ 4 ⇒  = 1
2
(− 4).

Substituting into the equation for  gives  = 2+ 9 = 2

1
2
(− 4)+ 9 = + 5.

Thus, the green and blue particles both move along the line  = + 5.

Now, the red and green particles will collide if there is a time  when both particles are at the same point. Equating the

 parametric equations, we find + 5 = 2+ 4, which is satisfied when  = 1, and gives  = 1 + 5 = 6. Substituting

 = 1 into the red and green particles’  equations gives  = (1)2 + 4(1) + 6 = 11 and  = 2(1) + 9 = 11, respectively.

Thus, the red and green particles collide at the point (6 11) when  = 1.

56. (a)  = 3 sin ,  = 2cos , 0 ≤  ≤ 2;
 = −3 + cos ,  = 1 + sin , 0 ≤  ≤ 2

There are 2 points of intersection:

(−3 0) and approximately (−21 14).

(b) A collision point occurs when 1 = 2 and 1 = 2 for the same . So solve the equations:

3 sin  = −3 + cos  (1)

2 cos  = 1 + sin  (2)

From (2), sin  = 2cos − 1. Substituting into (1), we get 3(2 cos − 1) = −3 + cos  ⇒ 5 cos  = 0 () ⇒

cos  = 0 ⇒  = 
2
or 3

2
. We check that  = 3

2
satisfies (1) and (2) but  = 

2
does not. So the only collision point

occurs when  = 3
2
, and this gives the point (−3 0). [We could check our work by graphing 1 and 2 together as

functions of  and, on another plot, 1 and 2 as functions of . If we do so, we see that the only value of  for which both

pairs of graphs intersect is  = 3
2
.]

(c) The circle is centered at (3 1) instead of (−3 1). There are still 2 intersection points: (3 0) and (21 14), but there are

no collision points, since () in part (b) becomes 5 cos  = 6 ⇒ cos  = 6
5  1.
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57. (a)  = 1− 2,  = − 3. The curve intersects itself if there are two distinct times  =  and  =  (with   ) such that

() = () and () = (). The equation () = () gives 1− 2 = 1− 2 so that 2 = 2. Since  6=  by

assumption, we must have  = −. Substituting into the equation for  gives (−) = () ⇒

−− (−)3 = − 3 ⇒ 23 − 2 = 0 ⇒ 2(− 1)(+ 1) = 0 ⇒  = −1, 0, 1. Since   , the only valid

solution is  = 1, which corresponds to  = −1 and results in the coordinates  = 0 and  = 0. Thus, the curve intersects
itself at (0 0) when  = −1 and  = 1.

(b)  = 2− 3,  = − 2. Similar to part (a), we try to find the times  =  and  =  with    such that () = () and

() = (). The equation () = () gives − 2 = − 2 ⇒ 0 = 2 − + (− 2). Using the quadratic formula

to solve for , we get

 =
1±1− 4(− 2)

2
=
1±√42 − 4+ 1

2
=
1±(2− 1)2

2
=
1± (2− 1)

2
⇒  =  or  = 1− . Since

   by assumption, we reject the first solution and substitute  = 1−  into () = () ⇒ (1− ) = () ⇒

2(1− )− (1− )3 = 2− 3. Expanding and simplifying gives 23 − 32 − + 1 = 0. By graphing the equation, we

see that  = 1
2
is a zero, so 2− 1 is a factor, and by long division 2 − − 1 is another factor. Hence, the solutions are

 = 1
2 and  =

1
2 ± 1

2

√
5 (found using the quadratic formula). Since  = 1−  and we require   , the only valid

solution is  = 1
2
+ 1

2

√
5, which corresponds to  = 1

2
− 1

2

√
5 and results in the coordinates

 = 2

1
2
− 1

2

√
5
−  1

2
− 1

2

√
5
3
= −1 and  = 1

2
− 1

2

√
5−  1

2
− 1

2

√
5
2
= −1. Thus, the curve intersects itself at

(−1−1) when  = 1
2
− 1

2

√
5 and  = 1

2
+ 1

2

√
5.

58. (a) If  = 30◦ and 0 = 500 ms, then the equations become  = (500 cos 30◦) = 250
√
3 and

 = (500 sin 30◦)− 1
2
(98)2 = 250− 492.  = 0 when  = 0 (when the gun is fired) and again when

 = 250
49
≈ 51 s. Then  = 250√3  250

49

 ≈ 22,092 m, so the bullet hits the ground about 22 km from the gun.
The formula for  is quadratic in . To find the maximum ­value, we will complete the square:

 = −492 − 250
49 


= −49


2 − 250

49 +

125
49

2
+ 1252

49 = −49− 125
49

2
+ 1252

49 ≤ 1252

49

with equality when  = 125
49
s, so the maximum height attained is 125

2

49
≈ 3189m.

(b) As  (0◦    90◦) increases up to 45◦, the projectile attains a

greater height and a greater range. As  increases past 45◦, the

projectile attains a greater height, but its range decreases.
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(c)  = (0 cos) ⇒  =


0 cos
.

 = (0 sin)− 1
2

2 ⇒  = (0 sin)


0 cos
− 

2




0 cos

2
= (tan)−




220 cos
2


2,

which is the equation of a parabola (quadratic in ).

59.  = 2  = 3 − . We use a graphing device to produce the graphs for various values of  with − ≤  ≤ . Note that all

the members of the family are symmetric about the ­axis. For   0, the graph does not cross itself, but for  = 0 it has a

cusp at (0 0) and for   0 the graph crosses itself at  = , so the loop grows larger as  increases.

60.  = 2− 43  = −2 + 34. We use a graphing device to produce the graphs for various values of  with − ≤  ≤ .

Note that all the members of the family are symmetric about the ­axis. When   0, the graph resembles that of a polynomial

of even degree, but when  = 0 there is a corner at the origin, and when   0, the graph crosses itself at the origin, and has

two cusps below the ­axis. The size of the “swallowtail” increases as  increases.

61.  = +  cos   = +  sin    0. From the first figure, we see that

curves roughly follow the line  = , and they start having loops when 

is between 14 and 16. The loops increase in size as  increases.

While not required, the following is a solution to determine the exact values for which the curve has a loop,

that is, we seek the values of  for which there exist parameter values  and  such that    and

(+  cos  +  sin ) = (+  cos +  sin).

[continued]
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950 ¤ CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

In the diagram at the left,  denotes the point ( ),  the point ( ),

and  the point (+  cos  +  sin ) = (+  cos +  sin).

Since  =  = , the triangle  is isosceles. Therefore its base

angles,  = ∠ and  = ∠ are equal. Since  = − 
4
and

 = 2 − 3
4 −  = 5

4 − , the relation  =  implies that

+  = 3
2
(1).

Since  = distance(( ) ( )) =

2(− )2 =

√
2 (− ), we see that

cos =
1
2


=
(− )

√
2


, so −  =

√
2  cos, that is,

−  =
√
2  cos


− 

4


(2). Now cos


− 

4


= sin



2
− − 

4


= sin


3
4
− 

,

so we can rewrite (2) as −  =
√
2  sin


3
4
− 

(20). Subtracting (20) from (1) and

dividing by 2, we obtain  = 3
4
−
√
2
2
 sin


3
4
− 

, or 3

4
−  = √

2
sin

3
4
− 

(3).

Since   0 and   , it follows from (20) that sin

3
4
− 

 0. Thus from (3) we see that   3

4
. [We have

implicitly assumed that 0     by the way we drew our diagram, but we lost no generality by doing so since replacing 

by + 2 merely increases  and  by 2. The curve’s basic shape repeats every time we change  by 2.] Solving for  in

(3), we get  =
√
2

3
4
− 


sin

3
4 − 

 . Write  = 3
4
− . Then  =

√
2 

sin 
, where   0. Now sin    for   0, so  

√
2.

As  → 0+, that is, as → 
3
4

− , →√
2

.

62. Consider the curves  = sin + sin,  = cos + cos, where  is a positive integer. For  = 1, we get a circle of

radius 2 centered at the origin. For   1, we get a curve lying on or inside that circle that traces out − 1 loops as 
ranges from 0 to 2.

Note: 2 + 2 = (sin + sin)2 + (cos + cos)2

= sin2+ 2 sin  sin+ sin2 + cos2+ 2cos  cos+ cos2 

= (sin2 + cos2) + (sin2 + cos2 ) + 2(cos  cos+ sin  sin)

= 1 + 1 + 2 cos(− ) = 2 + 2 cos((1− )) ≤ 4 = 22,
with equality for  = 1. This shows that each curve lies on or inside the curve for  = 1, which is a circle of radius 2 centered

at the origin.

 = 1  = 2  = 3  = 5
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