10 D PARAMETRIC EQUATIONS AND POLAR COORDINATES

10.1 Curves Defined by Parametric Equations

1. a	$v = t^2$	+t,	$y = 3^{t_{-}}$	+1,	t =	-2, -	-1, 0,	1,	2
-------------	-----------	-----	-----------------	-----	-----	-------	--------	----	----------

t	-2	-1	0	1	2
x	2	0	0	2	6
y	$\frac{1}{3}$	1	3	9	27

Therefore, the coordinates are $(2, \frac{1}{3})$, (0, 1), (0, 3), (2, 9), and (6, 27).

2. $x = \ln(t^2 + 1)$, y = t/(t + 4), t = -2, -1, 0, 1, 2

t	-2	-1	0	1	2
x	$\ln 5$	$\ln 2$	0	$\ln 2$	$\ln 5$
y	-1	$-\frac{1}{3}$	0	$\frac{1}{5}$	$\frac{1}{3}$

Therefore, the coordinates are $(\ln 5, -1)$, $(\ln 2, -\frac{1}{3})$, (0, 0), $(\ln 2, \frac{1}{5})$, and $(\ln 5, \frac{1}{3})$.

4.
$$x = t^3 + t$$
, $y = t^2 + 2$, $-2 \le t \le 2$

t	-2	-1	0	1	2
x	-10	-2	0	2	10
y	6	3	2	3	6

5.
$$x = 2^t - t$$
, $y = 2^{-t} + t$, $-3 \le t \le 3$

t	-3	-2	-1	0	1	2	3
x	3.125	2.25	1.5	1	1	2	5
y	5	2	1	1	1.5	2.25	3.125

6.	x =	\cos^2	t, y = 1	$1 + \cos \theta$	$t, 0 \leq$	$t \leq \tau$	τ
	t	0	$\pi/4$	$\pi/2$	$3\pi/4$	π	
	x	1	0.5	0	0.5	1	
	y	2	1.707	1	0.293	0	

7. $x = 2t - 1$, $y = \frac{1}{2}t + 1$	7.	x =	2t -	1,	y =	$\frac{1}{2}t + 1$	
--	----	-----	------	----	-----	--------------------	--

(a)

(a)

t	-4	-2	0	2	4
x	-9	-5	-1	3	7
y	-1	0	1	2	3

(b) $x = 2t - 1 \Rightarrow 2t = x + 1 \Rightarrow t = \frac{1}{2}x + \frac{1}{2}$, so $y = \frac{1}{2}t + 1 = \frac{1}{2}(\frac{1}{2}x + \frac{1}{2}) + 1 = \frac{1}{4}x + \frac{1}{4} + 1 \Rightarrow y = \frac{1}{4}x + \frac{5}{4}$

8.
$$x = 3t + 2$$
, $y = 2t + 3$

y

-1

	t	-4	-2	0	2	4
[x	-10	-4	2	8	14
	y	-5	-1	3	7	11

(b)
$$x = 3t + 2 \Rightarrow 3t = x - 2 \Rightarrow t = \frac{1}{3}x - \frac{2}{3}$$
, so
 $y = 2t + 3 = 2(\frac{1}{3}x - \frac{2}{3}) + 3 = \frac{2}{3}x - \frac{4}{3} + 3 \Rightarrow y = \frac{2}{3}x + \frac{5}{3}$

9.
$$x = t^2 - 3$$
, $y = t + 2$, $-3 \le t \le 3$
(a)
 $t = -3 - 1 - 1 - 3 - 3$
 $x = 6 - 2 - 2 - 6$

1

(b)
$$y = t + 2 \implies t = y - 2$$
, so
 $x = t^2 - 3 = (y - 2)^2 - 3 = y^2 - 4y + 4 - 3 \implies$
 $x = y^2 - 4y + 1, -1 \le y \le 5$

 $3 \ 5$

10. $x = \sin t$, $y = 1 - \cos t$, $0 \le t \le 2\pi$

(a)						
	t	0	$\pi/2$	π	$3\pi/2$	2π
	x	0	1	0	-1	0
	y	0	1	2	1	0

(b) $x = \sin t, y = 1 - \cos t$ [or $y - 1 = -\cos t$] \Rightarrow $x^2 + (y - 1)^2 = (\sin t)^2 + (-\cos t)^2 \Rightarrow x^2 + (y - 1)^2 = 1.$

As t varies from 0 to 2π , the circle with center (0, 1) and radius 1 is traced out.

11.
$$x = \sqrt{t}, y = 1 - t$$

(a)

t	0	1	2	3	4
x	0	1	1.414	1.732	2
y	1	0	-1	-2	-3

(b) $x = \sqrt{t} \Rightarrow t = x^2 \Rightarrow y = 1 - t = 1 - x^2$. Since $t \ge 0, x \ge 0$. So the curve is the right half of the parabola $y = 1 - x^2$.

12.
$$x = t^2$$
, $y = t^3$

(a)

t	-2	-1	0	1	2
x	4	1	0	1	4
y	-8	-1	0	1	8

(b)
$$y = t^3 \Rightarrow t = \sqrt[3]{y} \Rightarrow x = t^2 = \left(\sqrt[3]{y}\right)^2 = y^{2/3}. \quad t \in \mathbb{R}, y \in \mathbb{R}, x \ge 0.$$

13. (a)
$$x = 3\cos t$$
, $y = 3\sin t$, $0 \le t \le \pi$

 $x^2 + y^2 = 9\cos^2 t + 9\sin^2 t = 9(\cos^2 t + \sin^2 t) = 9$, which is the equation of a circle with radius 3. For $0 \le t \le \pi/2$, we have $3 \ge x \ge 0$ and $0 \le y \le 3$. For $\pi/2 < t \le \pi$, we have $0 > x \ge -3$ and $3 > y \ge 0$. Thus, the curve is the top half of the circle $x^2 + y^2 = 9$ traced counterclockwise.

(b)

14. (a) x = sin 4θ, y = cos 4θ, 0 ≤ θ ≤ π/2
x² + y² = sin² 4θ + cos² 4θ = 1, which is the equation of a circle with radius 1. When θ = 0, we have x = 0 and y = 1. For 0 ≤ θ ≤ π/4, we have x ≥ 0. For π/4 < θ ≤ π/2, we have x ≤ 0. Thus, the curve is the circle x² + y² = 1 traced clockwise starting at (0, 1).

15. (a)
$$x = \cos \theta$$
, $y = \sec^2 \theta$, $0 \le \theta < \pi/2$.
 $y = \sec^2 \theta = \frac{1}{\cos^2 \theta} = \frac{1}{x^2}$. For $0 \le \theta < \pi/2$, we have $1 \ge x > 0$
and $1 \le y$.

16. (a)
$$x = \csc t$$
, $y = \cot t$, $0 < t < \pi$
 $y^2 - x^2 = \cot^2 t - \csc^2 t = 1$. For $0 < t < \pi$, we have $x > 1$.
Thus, the curve is the right branch of the hyperbola $y^2 - x^2 = 1$.

17. (a) $y = e^t = 1/e^{-t} = 1/x$ for x > 0 since $x = e^{-t}$. Thus, the curve is the portion of the hyperbola y = 1/x with x > 0.

УĮ

x

1

(b)

(b)

-1

SECTION 10.1 CURVES DEFINED BY PARAMETRIC EQUATIONS 🛛 939

19. (a)
$$x = \ln t, y = \sqrt{t}, t \ge 1$$
.
 $x = \ln t \Rightarrow t = e^x \Rightarrow y = \sqrt{t} = e^{x/2}, x \ge 0$.

20. (a) x = |t|, y = |1 - |t|| = |1 - x|. For all t, we have $x \ge 0$ and $y \ge 0$. Thus, the curve is the portion of the absolute value function y = |1 - x| with $x \ge 0$.

- 21. (a) $x = \sin^2 t$, $y = \cos^2 t$. $x + y = \sin^2 t + \cos^2 t = 1$. For all t, we have $0 \le x \le 1$ and $0 \le y \le 1$. Thus, the curve is the portion of the line x + y = 1 or y = -x + 1 in the first quadrant.
- 22. (a) $x = \sinh t$, $y = \cosh t \Rightarrow y^2 x^2 = \cosh^2 t \sinh^2 t = 1$. Since $y = \cosh t \ge 1$, we have the upper branch of the hyperbola $y^2 - x^2 = 1$.

- 23. The parametric equations x = 5 cos t and y = -5 sin t both have period 2π. When t = 0, we have x = 5 and y = 0. When t = π/2, we have x = 0 and y = -5. This is one-fourth of a circle. Thus, the object completes one revolution in 4 · π/2 = 2π seconds following a clockwise path.
- 24. The parametric equations $x = 3\sin\left(\frac{\pi}{4}t\right)$ and $y = 3\cos\left(\frac{\pi}{4}t\right)$ both have period $\frac{2\pi}{\pi/4} = 8$. When t = 0, we have x = 0 and y = 3. When t = 2, we have x = 3 and y = 0. This is one-fourth of a circle. Thus, the object completes one revolution in $4 \cdot 2 = 8$ seconds following a clockwise path.

25. $x = 5 + 2\cos \pi t$, $y = 3 + 2\sin \pi t \Rightarrow \cos \pi t = \frac{x-5}{2}$, $\sin \pi t = \frac{y-3}{2}$. $\cos^2(\pi t) + \sin^2(\pi t) = 1 \Rightarrow \left(\frac{x-5}{2}\right)^2 + \left(\frac{y-3}{2}\right)^2 = 1$. The motion of the particle takes place on a circle centered at (5,3) with a radius 2. As t goes from 1 to 2, the particle starts at the point (3,3) and moves counterclockwise along the circle $\left(\frac{x-5}{2}\right)^2 + \left(\frac{y-3}{2}\right)^2 = 1$.

- to (7,3) [one-half of a circle].
- **26.** $x = 2 + \sin t, y = 1 + 3\cos t \Rightarrow \sin t = x 2, \cos t = \frac{y 1}{3}.$ $\sin^2 t + \cos^2 t = 1 \Rightarrow (x 2)^2 + \left(\frac{y 1}{3}\right)^2 = 1.$

The motion of the particle takes place on an ellipse centered at (2, 1). As t goes from $\pi/2$ to 2π , the particle starts at the point (3, 1) and moves counterclockwise three-fourths of the way around the ellipse to (2, 4).

- 27. $x = 5 \sin t, y = 2 \cos t \Rightarrow \sin t = \frac{x}{5}, \cos t = \frac{y}{2}. \sin^2 t + \cos^2 t = 1 \Rightarrow \left(\frac{x}{5}\right)^2 + \left(\frac{y}{2}\right)^2 = 1$. The motion of the particle takes place on an ellipse centered at (0, 0). As t goes from $-\pi$ to 5π , the particle starts at the point (0, -2) and moves clockwise around the ellipse 3 times.
- 28. $y = \cos^2 t = 1 \sin^2 t = 1 x^2$. The motion of the particle takes place on the parabola $y = 1 x^2$. As t goes from -2π to $-\pi$, the particle starts at the point (0, 1), moves to (1, 0), and goes back to (0, 1). As t goes from $-\pi$ to 0, the particle moves to (-1, 0) and goes back to (0, 1). The particle repeats this motion as t goes from 0 to 2π .
- **29.** We must have $1 \le x \le 4$ and $2 \le y \le 3$. So the graph of the curve must be contained in the rectangle [1, 4] by [2, 3].
- (a) From the first graph, we have 1 ≤ x ≤ 2. From the second graph, we have -1 ≤ y ≤ 1. The only choice that satisfies either of those conditions is III.
 - (b) From the first graph, the values of x cycle through the values from -2 to 2 four times. From the second graph, the values of y cycle through the values from -2 to 2 six times. Choice I satisfies these conditions.
 - (c) From the first graph, the values of x cycle through the values from -2 to 2 three times. From the second graph, we have $0 \le y \le 2$. Choice IV satisfies these conditions.
 - (d) From the first graph, the values of x cycle through the values from -2 to 2 two times. From the second graph, the values of y do the same thing. Choice II satisfies these conditions.
- 31. When t = −1, (x, y) = (1, 1). As t increases to 0, x and y both decrease to 0. As t increases from 0 to 1, x increases from 0 to 1 and y decreases from 0 to −1. As t increases beyond 1, x continues to increase and y continues to decrease. For t < −1, x and y are both positive and decreasing. We could achieve greater accuracy by estimating x- and y-values for selected values of t from the given graphs and plotting the corresponding points.
- 32. When t = -1, (x, y) = (0, 0). As t increases to 0, x increases from 0 to 1, while y first decreases to -1 and then increases to 0. As t increases from 0 to 1, x decreases from 1 to 0, while y first increases to 1 and then decreases to 0. We could achieve greater accuracy by estimating x- and y-values for selected values of t from the given graphs and plotting the corresponding points.
- 33. When t = -1, (x, y) = (0, 1). As t increases to 0, x increases from 0 to 1 and y decreases from 1 to 0. As t increases from 0 to 1, the curve is retraced in the opposite direction with x decreasing from 1 to 0 and y increasing from 0 to 1. We could achieve greater accuracy by estimating x- and y-values for selected values of t from the given graphs and plotting the corresponding points.

- **34.** (a) $x = t^4 t + 1 = (t^4 + 1) t > 0$ [think of the graphs of $y = t^4 + 1$ and y = t] and $y = t^2 \ge 0$, so these equations are matched with graph V.
 - (b) $y = \sqrt{t} \ge 0$. $x = t^2 2t = t(t-2)$ is negative for 0 < t < 2, so these equations are matched with graph I.
 - (c) $x = t^3 2t = t(t^2 2) = t(t + \sqrt{2})(t \sqrt{2}), y = t^2 t = t(t 1)$. The equation x = 0 has three solutions and the equation y = 0 has two solutions. Thus, the curve has three y-intercepts and two x-intercepts, which matches graph II. Alternate method: $x = t^3 - 2t, y = t^2 - t = (t^2 - t + \frac{1}{4}) - \frac{1}{4} = (t - \frac{1}{2})^2 - \frac{1}{4}$ so $y \ge -\frac{1}{4}$ on this curve, whereas x is unbounded. These equations are matched with graph II.
 - (d) $x = \cos 5t$ has period $2\pi/5$ and $y = \sin 2t$ has period π , so x will take on the values -1 to 1, and then 1 to -1, before y takes on the values -1 to 1. Note that when t = 0, (x, y) = (1, 0). These equations are matched with graph VI.
 - (e) $x = t + \sin 4t$, $y = t^2 + \cos 3t$. As t becomes large, t and t^2 become the dominant terms in the expressions for x and y, so the graph will look like the graph of $y = x^2$, but with oscillations. These equations are matched with graph IV.
 - (f) $x = t + \sin 2t$, $y = t + \sin 3t$. As t becomes large, t becomes the dominant term in the expressions for both x and y, so the graph will look like the graph of y = x, but with oscillations. These equations are matched with graph III.
- **35.** Use y = t and $x = t 2\sin \pi t$ with a *t*-interval of $[-\pi, \pi]$.

36. Use x₁ = t, y₁ = t³ - 4t and x₂ = t³ - 4t, y₂ = t with a t-interval of [-3,3]. There are 9 points of intersection; (0,0) is fairly obvious. The point in quadrant I is approximately (2.2, 2.2), and by symmetry, the point in quadrant III is approximately (-2.2, -2.2). The other six points are approximately (∓1.9, ±0.5), (∓1.7, ±1.7), and (∓0.5, ±1.9).

37. (a) $x = x_1 + (x_2 - x_1)t$, $y = y_1 + (y_2 - y_1)t$, $0 \le t \le 1$. Clearly the curve passes through $P_1(x_1, y_1)$ when t = 0 and through $P_2(x_2, y_2)$ when t = 1. For 0 < t < 1, x is strictly between x_1 and x_2 and y is strictly between y_1 and y_2 . For every value of t, x and y satisfy the relation $y - y_1 = \frac{y_2 - y_1}{x_2 - x_1} (x - x_1)$, which is the equation of the line through $P_1(x_1, y_1)$ and $P_2(x_2, y_2)$.

Finally, any point (x, y) on that line satisfies $\frac{y - y_1}{y_2 - y_1} = \frac{x - x_1}{x_2 - x_1}$; if we call that common value t, then the given parametric equations yield the point (x, y); and any (x, y) on the line between $P_1(x_1, y_1)$ and $P_2(x_2, y_2)$ yields a value of t in [0, 1]. So the given parametric equations exactly specify the line segment from $P_1(x_1, y_1)$ to $P_2(x_2, y_2)$.

(b)
$$x = -2 + [3 - (-2)]t = -2 + 5t$$
 and $y = 7 + (-1 - 7)t = 7 - 8t$ for $0 \le t \le 1$.

38. For the side of the triangle from A to B, use $(x_1, y_1) = (1, 1)$ and $(x_2, y_2) = (4, 2)$. Hence, the equations are

$$x = x_1 + (x_2 - x_1)t = 1 + (4 - 1)t = 1 + 3t,$$

$$y = y_1 + (y_2 - y_1)t = 1 + (2 - 1)t = 1 + t.$$

Graphing x = 1 + 3t and y = 1 + t with $0 \le t \le 1$ gives us the side of the

triangle from A to B. Similarly, for the side BC we use x = 4 - 3t and y = 2 + 3t, and for the side AC we use x = 1and y = 1 + 4t.

- 39. The result in Example 4 indicates the parametric equations have the form x = h + r sin bt and y = k + r cos bt where (h, k) is the center of the circle with radius r and b = 2π/period. (The use of positive sine in the x-equation and positive cosine in the y-equation results in a clockwise motion.) With h = 0, k = 0 and b = 2π/4π = 1/2, we have x = 5 sin(¹/₂t), y = 5 cos(¹/₂t).
- 40. As in Example 4, we use parametric equations of the form x = h + r cos bt and y = k + r sin bt where (h, k) = (1, 3) is the center of the circle with radius r = 1 and b = 2π/period = 2π/3. (The use of positive cosine in the x-equation and positive sine in the y-equation results in a counterclockwise motion.) Thus, x = 1 + cos(2π/3)t, y = 3 + sin(2π/3)t.
- **41.** The circle $x^2 + (y-1)^2 = 4$ has center (0,1) and radius 2, so by Example 4 it can be represented by $x = 2 \cos t$,
 - $y = 1 + 2 \sin t$, $0 \le t \le 2\pi$. This representation gives us the circle with a counterclockwise orientation starting at (2, 1).
 - (a) To get a clockwise orientation, we could change the equations to $x = 2 \cos t$, $y = 1 2 \sin t$, $0 \le t \le 2\pi$.
 - (b) To get three times around in the counterclockwise direction, we use the original equations $x = 2 \cos t$, $y = 1 + 2 \sin t$ with the domain expanded to $0 \le t \le 6\pi$.
 - (c) To start at (0,3) using the original equations, we must have $x_1 = 0$; that is, $2\cos t = 0$. Hence, $t = \frac{\pi}{2}$. So we use

 $x = 2\cos t, y = 1 + 2\sin t, \frac{\pi}{2} \le t \le \frac{3\pi}{2}.$

Alternatively, if we want t to start at 0, we could change the equations of the curve. For example, we could use

$$x = -2\sin t, y = 1 + 2\cos t, 0 \le t \le \pi.$$

42. (a) Let $x^2/a^2 = \sin^2 t$ and $y^2/b^2 = \cos^2 t$ to obtain $x = a \sin t$ and

 $y = b \cos t$ with $0 \le t \le 2\pi$ as possible parametric equations for the ellipse

$$x^2/a^2 + y^2/b^2 = 1$$

(b) The equations are $x = 3 \sin t$ and $y = b \cos t$ for $b \in \{1, 2, 4, 8\}$.

(c) As b increases, the ellipse stretches vertically.

43. Big circle: It's centered at (2, 2) with a radius of 2, so by Example 4, parametric equations are

$$x = 2 + 2\cos t, \qquad y = 2 + 2\sin t, \qquad 0 \le t \le 2\pi$$

Small circles: They are centered at (1,3) and (3,3) with a radius of 0.1. By Example 4, parametric equations are

Semicircle: It's the lower half of a circle centered at (2, 2) with radius 1. By Example 4, parametric equations are

$$x = 2 + 1\cos t, \qquad y = 2 + 1\sin t, \qquad \pi \le t \le 2\pi$$

To get all four graphs on the same screen with a typical graphing calculator, we need to change the last t-interval to $[0, 2\pi]$ in order to match the others. We can do this by changing t to 0.5t. This change gives us the upper half. There are several ways to get the lower half—one is to change the "+" to a "-" in the y-assignment, giving us

$$x = 2 + 1\cos(0.5t),$$
 $y = 2 - 1\sin(0.5t),$ $0 \le t \le 2\pi$

44. If you are using a calculator or computer that can overlay graphs (using multiple *t*-intervals), the following is appropriate. Left side: x = 1 and y goes from 1.5 to 4, so use

$$x = 1, \quad y = t, \quad 1.5 \le t \le 4$$

Right side: x = 10 and y goes from 1.5 to 4, so use

$$x = 10, \quad y = t, \quad 1.5 \le t \le 4$$

Bottom: x goes from 1 to 10 and y = 1.5, so use

$$x = t, \quad y = 1.5, \quad 1 \le t \le 10$$

Handle: It starts at (10, 4) and ends at (13, 7), so use

$$x = 10 + t, \qquad y = 4 + t, \qquad 0 \le t \le 3$$

Left wheel: It's centered at (3, 1), has a radius of 1, and appears to go about 30° above the horizontal, so use

$$x = 3 + 1\cos t$$
, $y = 1 + 1\sin t$, $\frac{5\pi}{6} \le t \le \frac{13\pi}{6}$

Right wheel: Similar to the left wheel with center (8, 1), so use

$$x = 8 + 1\cos t, \quad y = 1 + 1\sin t, \quad \frac{5\pi}{6} \le t \le \frac{13\pi}{6}$$

If you are using a calculator or computer that cannot overlay graphs (using one t-interval), the following is appropriate.

We'll start by picking the t-interval [0, 2.5] since it easily matches the t-values for the two sides. We now need to find

parametric equations for all graphs with $0 \le t \le 2.5$.

Left side: x = 1 and y goes from 1.5 to 4, so use

$$x = 1, \qquad y = 1.5 + t, \qquad 0 \le t \le 2.5$$

[continued]

Right side: x = 10 and y goes from 1.5 to 4, so use

$$x = 10, \qquad y = 1.5 + t, \qquad 0 \le t \le 2.5$$

Bottom: x goes from 1 to 10 and y = 1.5, so use

$$x = 1 + 3.6t, \quad y = 1.5, \quad 0 \le t \le 2.5$$

To get the x-assignment, think of creating a linear function such that when t = 0, x = 1 and when t = 2.5,

x = 10. We can use the point-slope form of a line with $(t_1, x_1) = (0, 1)$ and $(t_2, x_2) = (2.5, 10)$.

$$x - 1 = \frac{10 - 1}{2.5 - 0}(t - 0) \Rightarrow x = 1 + 3.6t$$

Handle: It starts at (10, 4) and ends at (13, 7), so use

$$x = 10 + 1.2t, \qquad y = 4 + 1.2t, \qquad 0 \le t \le 2.5$$
$$(t_1, x_1) = (0, 10) \text{ and } (t_2, x_2) = (2.5, 13) \text{ gives us } x - 10 = \frac{13 - 10}{2.5 - 0} (t - 0) \implies x = 10 + 1.5$$

$$(t_1, y_1) = (0, 4)$$
 and $(t_2, y_2) = (2.5, 7)$ gives us $y - 4 = \frac{7 - 4}{2.5 - 0}(t - 0) \Rightarrow y = 4 + 1.2t.$

Left wheel: It's centered at (3, 1), has a radius of 1, and appears to go about 30° above the horizontal, so use

$$x = 3 + 1\cos\left(\frac{8\pi}{15}t + \frac{5\pi}{6}\right), \qquad y = 1 + 1\sin\left(\frac{8\pi}{15}t + \frac{5\pi}{6}\right), \qquad 0 \le t \le 2.5$$

2t.

$$(t_1, \theta_1) = (0, \frac{5\pi}{6}) \text{ and } (t_2, \theta_2) = (\frac{5}{2}, \frac{13\pi}{6}) \text{ gives us } \theta - \frac{5\pi}{6} = \frac{\frac{13\pi}{6} - \frac{5\pi}{6}}{\frac{5}{2} - 0}(t - 0) \Rightarrow \theta = \frac{5\pi}{6} + \frac{8\pi}{15}t.$$

Right wheel: Similar to the left wheel with center (8, 1), so use

$$x = 8 + 1\cos\left(\frac{8\pi}{15}t + \frac{5\pi}{6}\right), \qquad y = 1 + 1\sin\left(\frac{8\pi}{15}t + \frac{5\pi}{6}\right), \qquad 0 \le t \le 2.5$$
45. (a) (i) $x = t^2, y = t \implies y^2 = t^2 = x$
(ii) $x = t, y = \sqrt{t} \implies y^2 = t = x$
(iii) $x = \cos^2 t, y = \cos t \implies y^2 = \cos^2 t = x$
(iv) $x = 3^{2t}, y = 3^t \implies y^2 = (3^t)^2 = 3^{2t} = x$

Thus, the points on all four of the given parametric curves satisfy the Cartesian equation $y^2 = x$.

(b) The graph of $y^2 = x$ is a right-opening parabola with vertex at the origin. For curve (i), $x \ge 0$ and y is unbounded so the graph contains the entire parabola. For (ii), $y = \sqrt{t}$ requires that $t \ge 0$, so that both $x \ge 0$ and $y \ge 0$, which captures the upper half of the parabola, including the origin. For (iii), $-1 \le \cos t \le 1$ so the graph is the portion of the parabola contained in the intervals $0 \le x \le 1$ and $-1 \le y \le 1$. For (iv), x > 0 and y > 0, which captures the upper half of the parabola contained in the intervals $0 \le x \le 1$ and $-1 \le y \le 1$. For (iv), x > 0 and y > 0, which captures the upper half of the parabola excluding the origin.

© 2021 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

46. (a) x = t, so $y = t^{-2} = x^{-2}$. We get the entire curve $y = 1/x^2$ traversed in a left-to-right direction.

(b) $x = \cos t$, $y = \sec^2 t = \frac{1}{\cos^2 t} = \frac{1}{x^2}$. Since $\sec t \ge 1$, we only get the parts of the curve $y = 1/x^2$ with $y \ge 1$. We get the first quadrant portion of the curve when x > 0, that is, $\cos t > 0$, and we get the second quadrant portion of the curve when x < 0, that is, $\cos t < 0$.

(c) $x = e^t$, $y = e^{-2t} = (e^t)^{-2} = x^{-2}$. Since e^t and e^{-2t} are both positive, we only get the first quadrant portion of the curve $y = 1/x^2$.

47. (a) $x = t^3 \Rightarrow t = x^{1/3}$, so $y = t^2 = x^{2/3}$.

We get the entire curve $y = x^{2/3}$ traversed in a left to right direction.

(c)
$$x = e^{-3t} = (e^{-t})^3$$
 [so $e^{-t} = x^{1/3}$],
 $y = e^{-2t} = (e^{-t})^2 = (x^{1/3})^2 = x^{2/3}$.
If $t < 0$, then x and y are both larger than 1. If $t > 0$, then x and y

are between 0 and 1. Since x > 0 and y > 0, the curve never quite reaches the origin.

48. The case π/2 < θ < π is illustrated. C has coordinates (rθ, r) as in Example 7, and Q has coordinates (rθ, r + r cos(π − θ)) = (rθ, r(1 − cos θ)) [since cos(π − α) = cos π cos α + sin π sin α = − cos α], so P has coordinates (rθ − r sin(π − θ), r(1 − cos θ)) = (r(θ − sin θ), r(1 − cos θ)) [since sin(π − α) = sin π cos α − cos π sin α = sin α]. Again we have the parametric equations x = r(θ − sin θ), y = r(1 − cos θ).

49. The first two diagrams depict the case π < θ < 3π/2, d < r. As in Example 7, C has coordinates (rθ, r). Now Q (in the second diagram) has coordinates (rθ, r + d cos(θ − π)) = (rθ, r − d cos θ), so a typical point P of the trochoid has coordinates (rθ + d sin(θ − π), r − d cos θ). That is, P has coordinates (x, y), where x = rθ − d sin θ and y = r − d cos θ. When d = r, these equations agree with those of the cycloid.

50. In polar coordinates, an equation for the circle is $r = 2a \sin \theta$. Thus, the coordinates of Q are $x = r \cos \theta = 2a \sin \theta \cos \theta$ and $y = r \sin \theta = 2a \sin^2 \theta$. The coordinates of R are $x = 2a \cot \theta$ and y = 2a. Since P is the midpoint of QR, we use the midpoint formula to get $x = a(\sin \theta \cos \theta + \cot \theta)$ and $y = a(1 + \sin^2 \theta)$.

- **51.** It is apparent that x = |OQ| and y = |QP| = |ST|. From the diagram,
 - $x = |OQ| = a \cos \theta$ and $y = |ST| = b \sin \theta$. Thus, the parametric equations are $x = a \cos \theta$ and $y = b \sin \theta$. To eliminate θ we rearrange: $\sin \theta = y/b \Rightarrow \sin^2 \theta = (y/b)^2$ and $\cos \theta = x/a \Rightarrow \cos^2 \theta = (x/a)^2$. Adding the two equations: $\sin^2 \theta + \cos^2 \theta = 1 = x^2/a^2 + y^2/b^2$. Thus, we have an ellipse.

- 52. A has coordinates $(a \cos \theta, a \sin \theta)$. Since OA is perpendicular to AB, ΔOAB is a right triangle and B has coordinates $(a \sec \theta, 0)$. It follows that P has coordinates $(a \sec \theta, b \sin \theta)$. Thus, the parametric equations are $x = a \sec \theta, y = b \sin \theta$.
- 53. $C = (2a \cot \theta, 2a)$, so the x-coordinate of P is $x = 2a \cot \theta$. Let B = (0, 2a). Then $\angle OAB$ is a right angle and $\angle OBA = \theta$, so $|OA| = 2a \sin \theta$ and $A = ((2a \sin \theta) \cos \theta, (2a \sin \theta) \sin \theta)$. Thus, the y-coordinate of P is $y = 2a \sin^2 \theta$.
- 54. (a) Let θ be the angle of inclination of segment OP. Then $|OB| = \frac{2a}{\cos \theta}$. Let C = (2a, 0). Then by use of right triangle OAC we see that $|OA| = 2a \cos \theta$. Now

$$|OP| = |AB| = |OB| - |OA|$$
$$= 2a\left(\frac{1}{\cos\theta} - \cos\theta\right) = 2a\frac{1 - \cos^2\theta}{\cos\theta} = 2a\frac{\sin^2\theta}{\cos\theta} = 2a\sin\theta\tan\theta$$

So P has coordinates $x = 2a\sin\theta \tan\theta \cdot \cos\theta = 2a\sin^2\theta$ and $y = 2a\sin\theta \tan\theta \cdot \sin\theta = 2a\sin^2\theta \tan\theta$.

55. (a) Red particle: x = t + 5, $y = t^2 + 4t + 6$

Blue particle: x = 2t + 1, y = 2t + 6

Substituting x = 1 and y = 6 into the parametric equations for the red particle gives 1 = t + 5 and $6 = t^2 + 4t + 6$, which are both satisfied when t = -4. Making the same substitution for the blue particle gives 1 = 2t + 1 and 6 = 2t + 6, which are both satisfied when t = 0. Repeating the process for x = 6 and y = 11, the red particle's equations become 6 = t + 5 and $11 = t^2 + 4t + 6$, which are both satisfied when t = 1. Similarly, the blue particle's equations become 6 = 2t + 1 and 11 = 2t + 6, which are both satisfied when t = 2.5. Thus, (1, 6) and (6, 11) are both intersection points, but they are not collision points, since the particles reach each of these points at different times.

(b) Blue particle: $x = 2t + 1 \Rightarrow t = \frac{1}{2}(x - 1)$.

Substituting into the equation for y gives $y = 2t + 6 = 2\left[\frac{1}{2}(x-1)\right] + 6 = x + 5$.

Green particle: $x = 2t + 4 \Rightarrow t = \frac{1}{2}(x - 4).$

Substituting into the equation for y gives $y = 2t + 9 = 2\left[\frac{1}{2}(x-4)\right] + 9 = x + 5$.

Thus, the green and blue particles both move along the line y = x + 5.

Now, the red and green particles will collide if there is a time t when both particles are at the same point. Equating the x parametric equations, we find t + 5 = 2t + 4, which is satisfied when t = 1, and gives x = 1 + 5 = 6. Substituting t = 1 into the red and green particles' y equations gives $y = (1)^2 + 4(1) + 6 = 11$ and y = 2(1) + 9 = 11, respectively. Thus, the red and green particles collide at the point (6, 11) when t = 1.

56. (a) $x = 3 \sin t$, $y = 2 \cos t$, $0 \le t \le 2\pi$;

 $x = -3 + \cos t, \ y = 1 + \sin t, \ 0 \le t \le 2\pi$

There are 2 points of intersection:

(-3, 0) and approximately (-2.1, 1.4).

(b) A collision point occurs when $x_1 = x_2$ and $y_1 = y_2$ for the same t. So solve the equations:

 $3\sin t = -3 + \cos t$ (1) $2\cos t = 1 + \sin t$ (2)

From (2), $\sin t = 2\cos t - 1$. Substituting into (1), we get $3(2\cos t - 1) = -3 + \cos t \Rightarrow 5\cos t = 0$ (*) $\Rightarrow \cos t = 0 \Rightarrow t = \frac{\pi}{2}$ or $\frac{3\pi}{2}$. We check that $t = \frac{3\pi}{2}$ satisfies (1) and (2) but $t = \frac{\pi}{2}$ does not. So the only collision point occurs when $t = \frac{3\pi}{2}$, and this gives the point (-3, 0). [We could check our work by graphing x_1 and x_2 together as functions of t and, on another plot, y_1 and y_2 as functions of t. If we do so, we see that the only value of t for which both pairs of graphs intersect is $t = \frac{3\pi}{2}$.]

(c) The circle is centered at (3, 1) instead of (-3, 1). There are still 2 intersection points: (3, 0) and (2.1, 1.4), but there are no collision points, since (\star) in part (b) becomes $5 \cos t = 6 \Rightarrow \cos t = \frac{6}{5} > 1$.

57. (a) $x = 1 - t^2$, $y = t - t^3$. The curve intersects itself if there are two distinct times t = a and t = b (with a < b) such that x(a) = x(b) and y(a) = y(b). The equation x(a) = x(b) gives $1 - a^2 = 1 - b^2$ so that $a^2 = b^2$. Since $a \neq b$ by assumption, we must have a = -b. Substituting into the equation for y gives $y(-b) = y(b) \Rightarrow -b - (-b)^3 = b - b^3 \Rightarrow 2b^3 - 2b = 0 \Rightarrow 2b(b - 1)(b + 1) = 0 \Rightarrow b = -1, 0, 1$. Since a < b, the only valid solution is b = 1, which corresponds to a = -1 and results in the coordinates x = 0 and y = 0. Thus, the curve intersects itself at (0, 0) when t = -1 and t = 1.

(b) $x = 2t - t^3$, $y = t - t^2$. Similar to part (a), we try to find the times t = a and t = b with a < b such that x(a) = x(b) and y(a) = y(b). The equation y(a) = y(b) gives $a - a^2 = b - b^2 \Rightarrow 0 = a^2 - a + (b - b^2)$. Using the quadratic formula to solve for a, we get

$$a = \frac{1 \pm \sqrt{1 - 4(b - b^2)}}{2} = \frac{1 \pm \sqrt{4b^2 - 4b + 1}}{2} = \frac{1 \pm \sqrt{(2b - 1)^2}}{2} = \frac{1 \pm (2b - 1)}{2} \implies a = b \text{ or } a = 1 - b. \text{ Since } a = 1 - b.$$

a < b by assumption, we reject the first solution and substitute a = 1 - b into $x(a) = x(b) \Rightarrow x(1-b) = x(b) \Rightarrow 2(1-b) - (1-b)^3 = 2b - b^3$. Expanding and simplifying gives $2b^3 - 3b^2 - b + 1 = 0$. By graphing the equation, we see that $b = \frac{1}{2}$ is a zero, so 2b - 1 is a factor, and by long division $b^2 - b - 1$ is another factor. Hence, the solutions are $b = \frac{1}{2}$ and $b = \frac{1}{2} \pm \frac{1}{2}\sqrt{5}$ (found using the quadratic formula). Since a = 1 - b and we require a < b, the only valid solution is $b = \frac{1}{2} + \frac{1}{2}\sqrt{5}$, which corresponds to $a = \frac{1}{2} - \frac{1}{2}\sqrt{5}$ and results in the coordinates $x = 2(\frac{1}{2} - \frac{1}{2}\sqrt{5}) - (\frac{1}{2} - \frac{1}{2}\sqrt{5})^3 = -1$ and $y = \frac{1}{2} - \frac{1}{2}\sqrt{5} - (\frac{1}{2} - \frac{1}{2}\sqrt{5})^2 = -1$. Thus, the curve intersects itself at

$$(-1, -1)$$
 when $t = \frac{1}{2} - \frac{1}{2}\sqrt{5}$ and $t = \frac{1}{2} + \frac{1}{2}\sqrt{5}$

58. (a) If $\alpha = 30^{\circ}$ and $v_0 = 500$ m/s, then the equations become $x = (500 \cos 30^{\circ})t = 250 \sqrt{3}t$ and

 $y = (500 \sin 30^\circ)t - \frac{1}{2}(9.8)t^2 = 250t - 4.9t^2$. y = 0 when t = 0 (when the gun is fired) and again when $t = \frac{250}{4.9} \approx 51$ s. Then $x = (250\sqrt{3})(\frac{250}{4.9}) \approx 22,092$ m, so the bullet hits the ground about 22 km from the gun. The formula for y is quadratic in t. To find the maximum y-value, we will complete the square:

$$y = -4.9\left(t^2 - \frac{250}{4.9}t\right) = -4.9\left[t^2 - \frac{250}{4.9}t + \left(\frac{125}{4.9}\right)^2\right] + \frac{125^2}{4.9} = -4.9\left(t - \frac{125}{4.9}\right)^2 + \frac{125^2}{4.9} \le \frac{125^2}{4.9}$$

with equality when $t = \frac{125}{4.9}$ s, so the maximum height attained is $\frac{125^2}{4.9} \approx 3189$ m.

As α (0° < α < 90°) increases up to 45°, the projectile attains a greater height and a greater range. As α increases past 45°, the projectile attains a greater height, but its range decreases.

(c)
$$x = (v_0 \cos \alpha) t \Rightarrow t = \frac{x}{v_0 \cos \alpha}.$$

$$y = (v_0 \sin \alpha)t - \frac{1}{2}gt^2 \quad \Rightarrow \quad y = (v_0 \sin \alpha)\frac{x}{v_0 \cos \alpha} - \frac{g}{2}\left(\frac{x}{v_0 \cos \alpha}\right)^2 = (\tan \alpha)x - \left(\frac{g}{2v_0^2 \cos^2 \alpha}\right)x^2,$$

which is the equation of a parabola (quadratic in x).

59. $x = t^2$, $y = t^3 - ct$. We use a graphing device to produce the graphs for various values of c with $-\pi \le t \le \pi$. Note that all the members of the family are symmetric about the x-axis. For c < 0, the graph does not cross itself, but for c = 0 it has a cusp at (0,0) and for c > 0 the graph crosses itself at x = c, so the loop grows larger as c increases.

60. $x = 2ct - 4t^3$, $y = -ct^2 + 3t^4$. We use a graphing device to produce the graphs for various values of c with $-\pi \le t \le \pi$. Note that all the members of the family are symmetric about the y-axis. When c < 0, the graph resembles that of a polynomial of even degree, but when c = 0 there is a corner at the origin, and when c > 0, the graph crosses itself at the origin, and has two cusps below the x-axis. The size of the "swallowtail" increases as c increases.

61. $x = t + a \cos t$, $y = t + a \sin t$, a > 0. From the first figure, we see that curves roughly follow the line y = x, and they start having loops when ais between 1.4 and 1.6. The loops increase in size as a increases.

While not required, the following is a solution to determine the *exact* values for which the curve has a loop, that is, we seek the values of a for which there exist parameter values t and u such that t < u and $(t + a \cos t, t + a \sin t) = (u + a \cos u, u + a \sin u)$.

[continued]

Since \overline{TU} = distance $((t, t), (u, u)) = \sqrt{2(u - t)^2} = \sqrt{2}(u - t)$, we see that $\frac{1}{2}\overline{TU} = (u - t)/\sqrt{2}$

$$\cos \alpha = \frac{2^{2} \cdot c}{PT} = \frac{(u-t)/\sqrt{2}}{a}, \text{ so } u - t = \sqrt{2} a \cos \alpha, \text{ that is,}$$

$$u - t = \sqrt{2} a \cos(t - \frac{\pi}{4}) \text{ (2). Now } \cos(t - \frac{\pi}{4}) = \sin\left[\frac{\pi}{2} - (t - \frac{\pi}{4})\right] = \sin\left(\frac{3\pi}{4} - t\right), \text{ T}$$

$$T = \frac{u-t}{\sqrt{2}} \frac{u-t}{\sqrt{2}} \frac{u-t}{\sqrt{2}} U$$
so we can rewrite (2) as $u - t = \sqrt{2} a \sin\left(\frac{3\pi}{4} - t\right)$ (2'). Subtracting (2') from (1) and
dividing by 2, we obtain $t = \frac{3\pi}{4} - \frac{\sqrt{2}}{2} a \sin\left(\frac{3\pi}{4} - t\right), \text{ or } \frac{3\pi}{4} - t = \frac{a}{\sqrt{2}} \sin\left(\frac{3\pi}{4} - t\right)$ (3).
Since $a > 0$ and $t < u$, it follows from (2') that $\sin\left(\frac{3\pi}{4} - t\right) > 0$. Thus from (3) we see that $t < \frac{3\pi}{4}$. [We have
implicitly assumed that $0 < t < \pi$ by the way we drew our diagram, but we lost no generality by doing so since replacing t
by $t + 2\pi$ merely increases x and y by 2π . The curve's basic shape repeats every time we change t by 2π .] Solving for a in

(3), we get
$$a = \frac{\sqrt{2}\left(\frac{3\pi}{4} - t\right)}{\sin\left(\frac{3\pi}{4} - t\right)}$$
. Write $z = \frac{3\pi}{4} - t$. Then $a = \frac{\sqrt{2}z}{\sin z}$, where $z > 0$. Now $\sin z < z$ for $z > 0$, so $a > \sqrt{2}$.
 $\left[\operatorname{As} z \to 0^+$, that is, as $t \to \left(\frac{3\pi}{4}\right)^-$, $a \to \sqrt{2}\right]$.

62. Consider the curves $x = \sin t + \sin nt$, $y = \cos t + \cos nt$, where n is a positive integer. For n = 1, we get a circle of radius 2 centered at the origin. For n > 1, we get a curve lying on or inside that circle that traces out n - 1 loops as t ranges from 0 to 2π .

Note:

te:

$$x^{2} + y^{2} = (\sin t + \sin nt)^{2} + (\cos t + \cos nt)^{2}$$

$$= \sin^{2}t + 2\sin t \sin nt + \sin^{2}nt + \cos^{2}t + 2\cos t \cos nt + \cos^{2}nt$$

$$= (\sin^{2}t + \cos^{2}t) + (\sin^{2}nt + \cos^{2}nt) + 2(\cos t \cos nt + \sin t \sin nt)$$

$$= 1 + 1 + 2\cos(t - nt) = 2 + 2\cos((1 - n)t) \le 4 = 2^{2},$$

with equality for n = 1. This shows that each curve lies on or inside the curve for n = 1, which is a circle of radius 2 centered at the origin.

© 2021 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.