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Chapter 1

Introduction to Differential Equations

1.1 Definitions and Terminology

1. Second order; linear

2. Third order; nonlinear because of (dy/dx)4

3. Fourth order; linear

4. Second order; nonlinear because of cos(r + u)

5. Second order; nonlinear because of (dy/dx)2 or
√

1 + (dy/dx)2

6. Second order; nonlinear because of R2

7. Third order; linear

8. Second order; nonlinear because of ẋ2

9. Writing the differential equation in the form x(dy/dx) + y2 = 1, we see that it is nonlinear
in y because of y2. However, writing it in the form (y2 − 1)(dx/dy) + x = 0, we see that it is
linear in x.

10. Writing the differential equation in the form u(dv/du)+(1+u)v = ueu we see that it is linear
in v. However, writing it in the form (v+uv−ueu)(du/dv)+u = 0, we see that it is nonlinear
in u.

11. From y = e−x/2 we obtain y′ = −1
2e−x/2. Then 2y′ + y = −e−x/2 + e−x/2 = 0.

12. From y = 6
5 − 6

5e−20t we obtain dy/dt = 24e−20t, so that

dy

dt
+ 20y = 24e−20t + 20

(
6
5
− 6

5
e−20t

)
= 24.

13. From y = e3x cos 2x we obtain y′ = 3e3x cos 2x−2e3x sin 2x and y′′ = 5e3x cos 2x−12e3x sin 2x,
so that y′′ − 6y′ + 13y = 0.

1



2 CHAPTER 1 INTRODUCTION TO DIFFERENTIAL EQUATIONS

14. From y = − cos x ln(sec x + tan x) we obtain y′ = −1 + sinx ln(sec x + tan x) and

y′′ = tan x + cos x ln(sec x + tan x). Then y′′ + y = tan x.

15. The domain of the function, found by solving x+2 ≥ 0, is [−2,∞). From y′ = 1+2(x+2)−1/2

we have

(y − x)y′ = (y − x)[1 + (2(x + 2)−1/2]

= y − x + 2(y − x)(x + 2)−1/2

= y − x + 2[x + 4(x + 2)1/2 − x](x + 2)−1/2

= y − x + 8(x + 2)1/2(x + 2)−1/2 = y − x + 8.

An interval of definition for the solution of the differential equation is (−2,∞) because y′ is
not defined at x = −2.

16. Since tan x is not defined for x = π/2 + nπ, n an integer, the domain of y = 5 tan 5x is
{x

∣∣ 5x �= π/2 + nπ}
or {x

∣∣ x �= π/10 + nπ/5}. From y′ = 25 sec2 5x we have

y′ = 25(1 + tan2 5x) = 25 + 25 tan2 5x = 25 + y2.

An interval of definition for the solution of the differential equation is (−π/10, π/10). Another
interval is (π/10, 3π/10), and so on.

17. The domain of the function is {x
∣∣ 4 − x2 �= 0} or {x

∣∣ x �= −2 and x �= 2}. From
y′ = 2x/(4 − x2)2 we have

y′ = 2x

(
1

4 − x2

)2

= 2xy2.

An interval of definition for the solution of the differential equation is (−2, 2). Other intervals
are (−∞,−2) and (2,∞).

18. The function is y = 1/
√

1 − sinx , whose domain is obtained from 1 − sinx �= 0 or sinx �= 1.
Thus, the domain is {x

∣∣ x �= π/2 + 2nπ}. From y′ = −1
2(1 − sinx)−3/2(− cos x) we have

2y′ = (1 − sinx)−3/2 cos x = [(1 − sin x)−1/2]3 cos x = y3 cos x.

An interval of definition for the solution of the differential equation is (π/2, 5π/2). Another
one is (5π/2, 9π/2), and so on.
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19. Writing ln(2X − 1) − ln(X − 1) = t and differentiating

implicitly we obtain

2
2X − 1

dX

dt
− 1

X − 1
dX

dt
= 1

(
2

2X − 1
− 1

X − 1

)
dX

dt
= 1

2X − 2 − 2X + 1
(2X − 1) (X − 1)

dX

dt
= 1

dX

dt
= −(2X − 1)(X − 1) = (X − 1)(1 − 2X).

– 4 –2 2 4
t

– 4

–2

2

4

x

Exponentiating both sides of the implicit solution we obtain

2X − 1
X − 1

= et

2X − 1 = Xet − et

(et − 1) = (et − 2)X

X =
et − 1
et − 2

.

Solving et − 2 = 0 we get t = ln 2. Thus, the solution is defined on (−∞, ln 2) or on (ln 2,∞).
The graph of the solution defined on (−∞, ln 2) is dashed, and the graph of the solution
defined on (ln 2,∞) is solid.

20. Implicitly differentiating the solution, we obtain

−2x2 dy

dx
− 4xy + 2y

dy

dx
= 0

−x2 dy − 2xy dx + y dy = 0

2xy dx + (x2 − y)dy = 0.

Using the quadratic formula to solve y2 − 2x2y − 1 = 0

for y, we get y =
(
2x2 ±

√
4x4 + 4

)
/2 = x2 ±

√
x4 + 1 .

Thus, two explicit solutions are y1 = x2 +
√

x4 + 1 and

y2 = x2 −
√

x4 + 1 . Both solutions are defined on (−∞,∞).

The graph of y1(x) is solid and the graph of y2 is dashed.

– 4 –2 2 4
x

– 4

–2

2

4

y
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21. Differentiating P = c1e
t/
(
1 + c1e

t
)

we obtain

dP

dt
=

(
1 + c1e

t
)
c1e

t − c1e
t · c1e

t

(1 + c1et)2
=

c1e
t

1 + c1et

[(
1 + c1e

t
)
− c1e

t
]

1 + c1et

=
c1e

t

1 + c1et

[
1 − c1e

t

1 + c1et

]
= P (1 − P ).

22. Differentiating y = 2x2 − 1 + c1e
−2x2

we obtain
dy

dx
= 4x − 4xc1e

−2x2
, so that

dy

dx
+ 4xy = 4x − 4xc1e

−2x2
+ 8x3 − 4x + 4c1xe−x2

= 8x3

23. From y = c1e
2x + c2xe2x we obtain

dy

dx
= (2c1 + c2)e2x +2c2xe2x and

d2y

dx2
= (4c1 +4c2)e2x +

4c2xe2x, so that

d2y

dx2
− 4

dy

dx
+ 4y = (4c1 + 4c2 − 8c1 − 4c2 + 4c1)e2x + (4c2 − 8c2 + 4c2)xe2x = 0.

24. From y = c1x
−1 + c2x + c3x lnx + 4x2 we obtain

dy

dx
= −c1x

−2 + c2 + c3 + c3 lnx + 8x,

d2y

dx2
= 2c1x

−3 + c3x
−1 + 8,

and
d3y

dx3
= −6c1x

−4 − c3x
−2,

so that

x3 d3y

dx3
+ 2x2 d2y

dx2
− x

dy

dx
+ y = (−6c1 + 4c1 + c1 + c1)x−1 + (−c3 + 2c3 − c2 − c3 + c2)x

+ (−c3 + c3)x ln x + (16 − 8 + 4)x2

= 12x2

In Problems 25–28, we use the Product Rule and the derivative of an integral ((12) of this section):
d

dx

ˆ x

a
g(t) dt = g(x).

25. Differentiating y = e3x

ˆ x

1

e−3t

t
dt we obtain

dy

dx
= 3e3x

ˆ x

1

e−3t

t
dt +

e−3x

x
· e3x or

dy

dx
= 3e3x

ˆ x

1

e−3t

t
dt +

1
x

, so that

x
dy

dx
− 3xy = x

(
3e3x

ˆ x

1

e−3t

t
dt +

1
x

)
− 3x

(
e3x

ˆ x

1

e−3t

t
dt

)

= 3xe3x

ˆ x

1

e−3t

t
dt + 1 − 3xe3x

ˆ x

1

e−3t

t
dt = 1
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26. Differentiating y =
√

x

ˆ x

4

cos t√
t

dt we obtain
dy

dx
=

1
2
√

x

ˆ x

4

cos t√
t

dt +
cos x√

x
·
√

x or

dy

dx
=

1
2
√

x

ˆ x

4

cos t√
t

dt + cos x, so that

2x
dy

dx
− y = 2x

(
1

2
√

x

ˆ x

4

cos t√
t

dt + cos x

)
−

√
x

ˆ x

4

cos t√
t

dt

=
√

x

ˆ x

4

cos t√
t

dt + 2x cos x −
√

x

ˆ x

4

cos t√
t

dt = 2x cos x

27. Differentiating y =
5
x

+
10
x

ˆ x

1

sin t

t
dt we obtain

dy

dx
= − 5

x2
− 10

x2

ˆ x

1

sin t

t
dt +

sinx

x
· 10

x
or

dy

dx
= − 5

x2
− 10

x2

ˆ x

1

sin t

t
dt +

10 sin x

x2
, so that

x2 dy

dx
+ xy = x2

(
− 5

x2
− 10

x2

ˆ x

1

sin t

t
dt +

10 sinx

x2

)
+ x

(
5
x

+
10
x

ˆ x

1

sin t

t
dt

)

= −5 − 10
ˆ x

1

sin t

t
dt + 10 sinx + 5 + 10

ˆ x

1

sin t

t
dt = 10 sinx

28. Differentiating y = e−x2
+e−x2

ˆ x

0
et2 dt we obtain

dy

dx
= −2xe−x2−2xe−x2

ˆ x

0
et2 dt+ex2 ·e−x2

or
dy

dx
= −2xe−x2 − 2xe−x2

ˆ x

0
et2 dt + 1, so that

dy

dx
+ 2xy =

(
−2xe−x2 − 2xe−x2

ˆ x

0
et2 dt + 1

)
+ 2x

(
e−x2

+ e−x2

ˆ x

0
et2 dt

)

= −2xe−x2 − 2xe−x2

ˆ x

0
et2 dt + 1 + 2xe−x2

+ 2xe−x2

ˆ x

0
et2 dt = 1

29. From

y =

{
−x2, x < 0
x2, x ≥ 0

we obtain

y′ =

{
−2x, x < 0
2x, x ≥ 0

so that xy′ − 2y = 0.

30. The function y(x) is not continuous at x = 0 since lim
x→0−

y(x) = 5 and lim
x→0+

y(x) = −5. Thus,

y′(x) does not exist at x = 0.

31. Substitute the function y = emx into the equation y′ + 2y = 0 to get

(emx)′ + 2(emx) = 0

memx + 2emx = 0

emx(m + 2) = 0

Now since emx > 0 for all values of x, we must have m = −2 and so y = e−2x is a solution.
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32. Substitute the function y = emx into the equation 5y′ − 2y = 0 to get

5(emx)′ − 2(emx) = 0

5memx − 2emx = 0

emx(5m − 2) = 0

Now since emx > 0 for all values of x, we must have m = 2/5 and so y = e2x/5 is a solution.

33. Substitute the function y = emx into the equation y′′ − 5y′ + 6y = 0 to get

(emx)′′ − 5(emx)′ + 6(emx) = 0

m2emx − 5memx + 6emx = 0

emx(m2 − 5m + 6) = 0

emx(m − 2)(m − 3) = 0

Now since emx > 0 for all values of x, we must have m = 2 or m = 3 therefore y = e2x and
y = e3x are solutions.

34. Substitute the function y = emx into the equation 2y′′ + 7y′ − 4y = 0 to get

2(emx)′′ + 7(emx)′ − 4(emx) = 0

2m2emx + 7memx − 4emx = 0

emx(2m2 + 7m − 4) = 0

emx(m + 4)(2m − 1) = 0

Now since emx > 0 for all values of x , we must have m = −4 or m = 1/2 therefore y = e−4x

and y = ex/2 are solutions.

35. Substitute the function y = xm into the equation xy′′ + 2y′ = 0 to get

x · (xm)′′ + 2(xm)′ = 0

x · m(m − 1)xm−2 + 2mxm−1 = 0

(m2 − m)xm−1 + 2mxm−1 = 0

xm−1[m2 + m] = 0

xm−1[m(m + 1)] = 0

The last line implies that m = 0 or m = −1 therefore y = x0 = 1 and y = x−1 are solutions.
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36. Substitute the function y = xm into the equation x2y′′ − 7xy′ + 15y = 0 to get

x2 · (xm)′′ − 7x · (xm)′ + 15(xm) = 0

x2 · m(m − 1)xm−2 − 7x · mxm−1 + 15xm = 0

(m2 − m)xm − 7mxm + 15xm = 0

xm[m2 − 8m + 15] = 0

xm[(m − 3)(m − 5)] = 0

The last line implies that m = 3 or m = 5 therefore y = x3 and y = x5 are solutions.

In Problems 37–40, we substitute y = c into the differential equations and use y′ = 0 and y′′ = 0

37. Solving 5c = 10 we see that y = 2 is a constant solution.

38. Solving c2 + 2c− 3 = (c + 3)(c− 1) = 0 we see that y = −3 and y = 1 are constant solutions.

39. Since 1/(c − 1) = 0 has no solutions, the differential equation has no constant solutions.

40. Solving 6c = 10 we see that y = 5/3 is a constant solution.

41. From x = e−2t + 3e6t and y = −e−2t + 5e6t we obtain

dx

dt
= −2e−2t + 18e6t and

dy

dt
= 2e−2t + 30e6t.

Then
x + 3y = (e−2t + 3e6t) + 3(−e−2t + 5e6t) = −2e−2t + 18e6t =

dx

dt

and
5x + 3y = 5(e−2t + 3e6t) + 3(−e−2t + 5e6t) = 2e−2t + 30e6t =

dy

dt
.

42. From x = cos 2t + sin 2t + 1
5et and y = − cos 2t − sin 2t − 1

5et we obtain

dx

dt
= −2 sin 2t + 2 cos 2t +

1
5
et and

dy

dt
= 2 sin 2t − 2 cos 2t − 1

5
et

and
d2x

dt2
= −4 cos 2t − 4 sin 2t +

1
5
et and

d2y

dt2
= 4 cos 2t + 4 sin 2t − 1

5
et.

Then

4y + et = 4(− cos 2t − sin 2t − 1
5
et) + et = −4 cos 2t − 4 sin 2t +

1
5
et =

d2x

dt2

and

4x − et = 4(cos 2t + sin 2t +
1
5
et) − et = 4 cos 2t + 4 sin 2t − 1

5
et =

d2y

dt2
.
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43. (y′)2 + 1 = 0 has no real solutions because (y′)2 + 1 is positive for all differentiable functions
y = φ(x).

44. The only solution of (y′)2 + y2 = 0 is y = 0, since if y �= 0, y2 > 0 and (y′)2 + y2 ≥ y2 > 0.

45. The first derivative of f(x) = ex is ex. The first derivative of f(x) = ekx is kekx. The
differential equations are y′ = y and y′ = ky, respectively.

46. Any function of the form y = cex or y = ce−x is its own second derivative. The corresponding
differential equation is y′′−y = 0. Functions of the form y = c sinx or y = c cos x have second
derivatives that are the negatives of themselves. The differential equation is y′′ + y = 0.

47. We first note that
√

1 − y2 =
√

1 − sin2 x =
√

cos2 x = | cos x|. This prompts us to consider
values of x for which cos x < 0, such as x = π. In this case

dy

dx

∣∣∣∣∣
x=π

=
d

dx
(sinx)

∣∣∣∣∣
x=π

= cos x
∣∣
x=π

= cos π = −1,

but √
1 − y2|x=π =

√
1 − sin2 π =

√
1 = 1.

Thus, y = sinx will only be a solution of y′ =
√

1 − y2 when cos x > 0. An interval of
definition is then (−π/2, π/2). Other intervals are (3π/2, 5π/2), (7π/2, 9π/2), and so on.

48. Since the first and second derivatives of sin t and cos t involve sin t and cos t, it is plausible that
a linear combination of these functions, A sin t+B cos t, could be a solution of the differential
equation. Using y′ = A cos t − B sin t and y′′ = −A sin t − B cos t and substituting into the
differential equation we get

y′′ + 2y′ + 4y = −A sin t − B cos t + 2A cos t − 2B sin t + 4A sin t + 4B cos t

= (3A − 2B) sin t + (2A + 3B) cos t = 5 sin t

Thus 3A − 2B = 5 and 2A + 3B = 0. Solving these simultaneous equations we find A = 15
13

and B = −10
13 . A particular solution is y = 15

13 sin t − 10
13 cos t.

49. One solution is given by the upper portion of the graph with domain approximately (0, 2.6).
The other solution is given by the lower portion of the graph, also with domain approximately
(0, 2.6).

50. One solution, with domain approximately (−∞, 1.6) is the portion of the graph in the second
quadrant together with the lower part of the graph in the first quadrant. A second solution,
with domain approximately (0, 1.6) is the upper part of the graph in the first quadrant. The
third solution, with domain (0,∞), is the part of the graph in the fourth quadrant.
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51. Differentiating (x3 + y3)/xy = 3c we obtain

xy(3x2 + 3y2y′) − (x3 + y3)(xy′ + y)
x2y2

= 0

3x3y + 3xy3y′ − x4y′ − x3y − xy3y′ − y4 = 0

(3xy3 − x4 − xy3)y′ = −3x3y + x3y + y4

y′ =
y4 − 2x3y

2xy3 − x4
=

y(y3 − 2x3)
x(2y3 − x3)

.

52. A tangent line will be vertical where y′ is undefined, or in this case, where x(2y3 − x3) = 0.
This gives x = 0 or 2y3 = x3. Substituting y3 = x3/2 into x3 + y3 = 3xy we get

x3 +
1
2
x3 = 3x

(
1

21/3
x

)
3
2
x3 =

3
21/3

x2

x3 = 22/3x2

x2(x − 22/3) = 0.

Thus, there are vertical tangent lines at x = 0 and x = 22/3, or at (0, 0) and (22/3, 21/3).
Since 22/3 ≈ 1.59, the estimates of the domains in Problem 50 were close.

53. The derivatives of the functions are φ′
1(x) = −x/

√
25 − x2 and φ′

2(x) = x/
√

25 − x2, neither
of which is defined at x = ±5.

54. To determine if a solution curve passes through (0, 3) we let t = 0 and P = 3 in the equation
P = c1e

t/(1 + c1e
t). This gives 3 = c1/(1 + c1) or c1 = −3

2 . Thus, the solution curve

P =
(−3/2)et

1 − (3/2)et
=

−3et

2 − 3et

passes through the point (0, 3). Similarly, letting t = 0 and P = 1 in the equation for the
one-parameter family of solutions gives 1 = c1/(1 + c1) or c1 = 1 + c1. Since this equation
has no solution, no solution curve passes through (0, 1).

55. For the first-order differential equation integrate f(x). For the second-order differential equa-
tion integrate twice. In the latter case we get y =

´
(
´

f(x)dx) dx + c1x + c2.

56. Solving for y′ using the quadratic formula we obtain the two differential equations

y′ =
1
x

(
2 + 2

√
1 + 3x6

)
and y′ =

1
x

(
2 − 2

√
1 + 3x6

)
,

so the differential equation cannot be put in the form dy/dx = f(x, y).



10 CHAPTER 1 INTRODUCTION TO DIFFERENTIAL EQUATIONS

57. The differential equation yy′ − xy = 0 has normal form dy/dx = x. These are not equivalent
because y = 0 is a solution of the first differential equation but not a solution of the second.

58. Differentiating we get y′ = c1 + 2c2x and y′′ = 2c2. Then c2 = y′′/2 and c1 = y′ − xy′′, so

y =
(
y′ − xy′′

)
x +

(
y′′

2

)
x2 = xy′ − 1

2
x2y′′

and the differential equation is x2y′′ − 2xy′ + 2y = 0.

59. (a) Since e−x2
is positive for all values of x, dy/dx > 0 for all x, and a solution, y(x), of the

differential equation must be increasing on any interval.

(b) lim
x→−∞

dy

dx
= lim

x→−∞
e−x2

= 0 and lim
x→∞

dy

dx
= lim

x→∞
e−x2

= 0. Since dy/dx approaches 0 as

x approaches −∞ and ∞, the solution curve has horizontal asymptotes to the left and
to the right.

(c) To test concavity we consider the second derivative

d2y

dx2
=

d

dx

(
dy

dx

)
=

d

dx

(
e−x2

)
= −2xe−x2

.

Since the second derivative is positive for x < 0 and negative for x > 0, the solution
curve is concave up on (−∞, 0) and concave down on (0,∞).

(d)

x

y

60. (a) The derivative of a constant solution y = c is 0, so solving 5 − c = 0 we see that c = 5
and so y = 5 is a constant solution.

(b) A solution is increasing where dy/dx = 5 − y > 0 or y < 5. A solution is decreasing
where dy/dx = 5 − y < 0 or y > 5.

61. (a) The derivative of a constant solution is 0, so solving y(a− by) = 0 we see that y = 0 and
y = a/b are constant solutions.

(b) A solution is increasing where dy/dx = y(a − by) = by(a/b − y) > 0 or 0 < y < a/b. A
solution is decreasing where dy/dx = by(a/b − y) < 0 or y < 0 or y > a/b.
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(c) Using implicit differentiation we compute

d2y

dx2
= y(−by′) + y′(a − by) = y′(a − 2by).

Thus d2y/dx2 = 0 when y = a/2b. Since d2y/dx2 > 0 for 0 < y < a/2b and d2y/dx2 < 0
for a/2b < y < a/b, the graph of y = φ(x) has a point of inflection at y = a/2b.

(d)

y = a/b

y = 0
x

y

62. (a) If y = c is a constant solution then y′ = 0, but c2 + 4 is never 0 for any real value of c.

(b) Since y′ = y2 + 4 > 0 for all x where a solution y = φ(x) is defined, any solution must
be increasing on any interval on which it is defined. Thus it cannot have any relative
extrema.

(c) Using implicit differentiation we compute d2y/dx2 = 2yy′ = 2y(y2 + 4). Setting
d2y/dx2 = 0 we see that y = 0 corresponds to the only possible point of inflection.
Since d2y/dx2 < 0 for y < 0 and d2y/dx2 > 0 for y > 0, there is a point of inflection
where y = 0.

(d)

x

y
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63. In Mathematica use

Clear[y]

y[x ]:= x Exp[5x] Cos[2x]

y[x]

y''''[x] − 20y'''[x] + 158y''[x] − 580y'[x] + 841y[x]//Simplify

The output will show y(x) = e5xx cos 2x, which verifies that the correct function was entered,
and 0, which verifies that this function is a solution of the differential equation.

64. In Mathematica use

Clear[y]

y[x ]:= 20Cos[5Log[x]]/x − 3Sin[5Log[x]]/x

y[x]

xˆ3 y'''[x] + 2xˆ2 y''[x] + 20x y'[x] − 78y[x]//Simplify

The output will show y(x) = 20 cos(5 ln x)/x − 3 sin(5 lnx)/x, which verifies that the correct
function was entered, and 0, which verifies that this function is a solution of the differential
equation.

1.2 Initial-Value Problems

1. Solving −1/3 = 1/(1 + c1) we get c1 = −4. The solution is y = 1/(1 − 4e−x).

2. Solving 2 = 1/(1 + c1e) we get c1 = −(1/2)e−1. The solution is y = 2/(2 − e−(x+1)) .

3. Letting x = 2 and solving 1/3 = 1/(4 + c) we get c = −1. The solution is y = 1/(x2 − 1).
This solution is defined on the interval (1,∞).

4. Letting x = −2 and solving 1/2 = 1/(4 + c) we get c = −2. The solution is y = 1/(x2 − 2).
This solution is defined on the interval (−∞,−

√
2 ).

5. Letting x = 0 and solving 1 = 1/c we get c = 1. The solution is y = 1/(x2 +1). This solution
is defined on the interval (−∞,∞).

6. Letting x = 1/2 and solving −4 = 1/(1/4 + c) we get c = −1/2. The solution is y =
1/(x2 − 1/2) = 2/(2x2 − 1). This solution is defined on the interval (−1/

√
2 , 1/

√
2 ).

In Problems 7–10, we use x = c1 cos t + c2 sin t and x′ = −c1 sin t + c2 cos t to obtain a system of
two equations in the two unknowns c1 and c2.
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7. From the initial conditions we obtain the system

c1 = −1c2 = 8

The solution of the initial-value problem is x = − cos t + 8 sin t.

8. From the initial conditions we obtain the system

c2 = 0 − c1 = 1

The solution of the initial-value problem is x = − cos t.

9. From the initial conditions we obtain
√

3
2

c1 +
1
2
c2 =

1
2
− 1

2
c2 +

√
3

2
= 0

Solving, we find c1 =
√

3/4 and c2 = 1/4. The solution of the initial-value problem is

x = (
√

3/4) cos t + (1/4) sin t.

10. From the initial conditions we obtain
√

2
2

c1 +
√

2
2

c2 =
√

2

[6pt] −
√

2
2

c1 +
√

2
2

c2 = 2
√

2.

Solving, we find c1 = −1 and c2 = 3. The solution of the initial-value problem is x =
− cos t + 3 sin t.

In Problems 11–14, we use y = c1e
x + c2e

−x and y′ = c1e
x − c2e

−x to obtain a system of two
equations in the two unknowns c1 and c2.

11. From the initial conditions we obtain

c1 + c2 = 1

c1 − c2 = 2.

Solving, we find c1 = 3
2 and c2 = −1

2 . The solution of the initial-value problem is y =
3
2ex − 1

2e−x.

12. From the initial conditions we obtain

ec1 + e−1c2 = 0

ec1 − e−1c2 = e.

Solving, we find c1 = 1
2 and c2 = −1

2e2. The solution of the initial-value problem is

y =
1
2
ex − 1

2
e2e−x =

1
2
ex − 1

2
e2−x.
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13. From the initial conditions we obtain

e−1c1 + ec2 = 5

e−1c1 − ec2 = −5.

Solving, we find c1 = 0 and c2 = 5e−1. The solution of the initial-value problem is y =
5e−1e−x = 5e−1−x.

14. From the initial conditions we obtain

c1 + c2 = 0

c1 − c2 = 0.

Solving, we find c1 = c2 = 0. The solution of the initial-value problem is y = 0.

15. Two solutions are y = 0 and y = x3.

16. Two solutions are y = 0 and y = x2. (Also, any constant multiple of x2 is a solution.)

17. For f(x, y) = y2/3 we have
∂f

∂y
=

2
3
y−1/3. Thus, the differential equation will have a unique

solution in any rectangular region of the plane where y �= 0.

18. For f(x, y) =
√

xy we have ∂f/∂y = 1
2

√
x/y . Thus, the differential equation will have a

unique solution in any region where x > 0 and y > 0 or where x < 0 and y < 0.

19. For f(x, y) =
y

x
we have

∂f

∂y
=

1
x

. Thus, the differential equation will have a unique solution

in any region where x �= 0.

20. For f(x, y) = x + y we have
∂f

∂y
= 1. Thus, the differential equation will have a unique

solution in the entire plane.

21. For f(x, y) = x2/(4 − y2) we have ∂f/∂y = 2x2y/(4 − y2)2. Thus the differential equation

will have a unique solution in any region where y < −2, −2 < y < 2, or y > 2.

22. For f(x, y) =
x2

1 + y3
we have

∂f

∂y
=

−3x2y2

(1 + y3)2
. Thus, the differential equation will have a

unique solution in any region where y �= −1.

23. For f(x, y) =
y2

x2 + y2
we have

∂f

∂y
=

2x2y

(x2 + y2)2
. Thus, the differential equation will have a

unique solution in any region not containing (0, 0).
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24. For f(x, y) = (y + x)/(y − x) we have ∂f/∂y = −2x/(y − x)2. Thus the differential equation

will have a unique solution in any region where y < x or where y > x.

In Problems 25–28, we identify f(x, y) =
√

y2 − 9 and ∂f/∂y = y/
√

y2 − 9. We see that f and
∂f/∂y are both continuous in the regions of the plane determined by y < −3 and y > 3 with no
restrictions on x.

25. Since 4 > 3, (1, 4) is in the region defined by y > 3 and the differential equation has a unique
solution through (1, 4).

26. Since (5, 3) is not in either of the regions defined by y < −3 or y > 3, there is no guarantee
of a unique solution through (5, 3).

27. Since (2,−3) is not in either of the regions defined by y < −3 or y > 3, there is no guarantee
of a unique solution through (2,−3).

28. Since (−1, 1) is not in either of the regions defined by y < −3 or y > 3, there is no guarantee
of a unique solution through (−1, 1).

29. (a) A one-parameter family of solutions is y = cx. Since y′ = c, xy′ = xc = y and y(0) =
c · 0 = 0.

(b) Writing the equation in the form y′ = y/x, we see that R cannot contain any point on the
y-axis. Thus, any rectangular region disjoint from the y-axis and containing (x0, y0) will
determine an interval around x0 and a unique solution through (x0, y0). Since x0 = 0 in
part (a), we are not guaranteed a unique solution through (0, 0).

(c) The piecewise-defined function which satisfies y(0) = 0 is not a solution since it is not
differentiable at x = 0.

30. (a) Since
d

dx
tan (x + c) = sec2 (x + c) = 1+tan2 (x + c), we see that y = tan (x + c) satisfies

the differential equation.

(b) Solving y(0) = tan c = 0 we obtain c = 0 and y = tan x. Since tanx is discontinuous at
x = ±π/2, the solution is not defined on (−2, 2) because it contains ±π/2.

(c) The largest interval on which the solution can exist is (−π/2, π/2).

31. (a) Since
d

dx

(
− 1

x + c

)
=

1
(x + c)2

= y2, we see that y = − 1
x + c

is a solution of the differ-

ential equation.

(b) Solving y(0) = −1/c = 1 we obtain c = −1 and y = 1/(1−x). Solving y(0) = −1/c = −1
we obtain c = 1 and y = −1/(1+x). Being sure to include x = 0, we see that the interval
of existence of y = 1/(1−x) is (−∞, 1), while the interval of existence of y = −1/(1+x)
is (−1,∞).
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(c) By inspection we see that y = 0 is a solution on (−∞,∞).

32. (a) Applying y(1) = 1 to y = −1/ (x + c) gives

1 = − 1
1 + c

or 1 + c = −1

Thus c = −2 and

y = − 1
x − 2

=
1

2 − x
.

(b) Applying y(3) = −1 to y = −1/ (x + c) gives

−1 = − 1
3 + c

or 3 + c = 1.

Thus c = −2 and

y = − 1
x − 2

=
1

2 − x
.

(c) No, they are not the same solution. The interval I of definition for the solution in part
(a) is (−∞, 2); whereas the interval I of definition for the solution in part (b) is (2,∞).
See the figure.

33. (a) Differentiating 3x2 − y2 = c we get 6x − 2yy′ = 0 or yy′ = 3x.

(b) Solving 3x2 − y2 = 3 for y we get

y = φ1(x) =
√

3(x2 − 1) , 1 < x < ∞,

y = φ2(x) = −
√

3(x2 − 1) , 1 < x < ∞,

y = φ3(x) =
√

3(x2 − 1) , −∞ < x < −1,

y = φ4(x) = −
√

3(x2 − 1) , −∞ < x < −1.

–4 –2 2 4
x

–4

–2

2

4

y

(c) Only y = φ3(x) satisfies y(−2) = 3.

34. (a) Setting x = 2 and y = −4 in 3x2 − y2 = c we get

12 − 16 = −4 = c, so the explicit solution is

y = −
√

3x2 + 4 , −∞ < x < ∞.

–4 –2 2 4
x

–4

–2

2

4

y
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(b) Setting c = 0 we have y =
√

3x and y = −
√

3x, both defined on (−∞,∞).

In Problems 35–38, we consider the points on the graphs with x-coordinates x0 = −1, x0 = 0,
and x0 = 1. The slopes of the tangent lines at these points are compared with the slopes given by
y′(x0) in (a) through (f).

35. The graph satisfies the conditions in (b) and (f).

36. The graph satisfies the conditions in (e).

37. The graph satisfies the conditions in (c) and (d).

38. The graph satisfies the conditions in (a).

In Problems 39–44 y = c1 cos 2x + c2 sin 2x is a two parameter family of solutions of the second-
order differential equation y′′ + 4y = 0. In some of the problems we will use the fact that
y′ = −2c1 sin 2x + 2c2 cos 2x.

39. From the boundary conditions y(0) = 0 and y
(π

4

)
= 3 we obtain

y(0) = c1 = 0

y
(π

4

)
= c1 cos

(π

2

)
+ c2 sin

(π

2

)
= c2 = 3.

Thus, c1 = 0, c2 = 3, and the solution of the boundary-value problem is y = 3 sin 2x.

40. From the boundary conditions y(0) = 0 and y(π) = 0 we obtain

y(0) = c1 = 0

y(π) = c1 = 0.

Thus, c1 = 0, c2 is unrestricted, and the solution of the boundary-value problem is y =
c2 sin 2x, where c2 is any real number.

41. From the boundary conditions y′(0) = 0 and y′
(

π
6

)
= 0 we obtain

y′(0) = 2c2 = 0

y′
(π

6

)
= −2c1 sin

(π

3

)
= −

√
3 c1 = 0.

Thus, c2 = 0, c1 = 0, and the solution of the boundary-value problem is y = 0.

42. From the boundary conditions y(0) = 1 and y′(π) = 5 we obtain

y(0) = c1 = 1

y′(π) = 2c2 = 5.

Thus, c1 = 1, c2 =
5
2
, and the solution of the boundary-value problem is y = cos 2x+

5
2

sin 2x.
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43. From the boundary conditions y(0) = 0 and y(π) = 2 we obtain

y(0) = c1 = 0

y(π) = c1 = 2.

Since 0 �= 2, this is not possible and there is no solution.

44. From the boundary conditions y′
(

π
2

)
= 1 and y′(π) = 0 we obtain

y′
(π

2

)
= 2c2 = −1

y′(π) = 2c2 = 0.

Since 0 �= −1, this is not possible and there is no solution.

45. Integrating y′ = 8e2x + 6x we obtain

y =
ˆ

(8e2x + 6x) dx = 4e2x + 3x2 + c.

Setting x = 0 and y = 9 we have 9 = 4 + c so c = 5 and y = 4e2x + 3x2 + 5.

46. Integrating y′′ = 12x − 2 we obtain

y′ =
ˆ

(12x − 2) dx = 6x2 − 2x + c1.

Then, integrating y′ we obtain

y =
ˆ

(6x2 − 2x + c1) dx = 2x3 − x2 + c1x + c2.

At x = 1 the y-coordinate of the point of tangency is y = −1 + 5 = 4. This gives the initial
condition y(1) = 4. The slope of the tangent line at x = 1 is y′(1) = −1. From the initial
conditions we obtain

2 − 1 + c1 + c2 = 4 or c1 + c2 = 3

and
6 − 2 + c1 = −1 or c1 = −5.

Thus, c1 = −5 and c2 = 8, so y = 2x3 − x2 − 5x + 8.

47. When x = 0 and y = 1
2 , y′ = −1, so the only plausible solution curve is the one with negative

slope at (0, 1
2 ), or the red curve.
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48. We note that the initial condition y(0) = 0,

0 =
ˆ y

0

1√
t3 + 1

dt

is satisfied only when y = 0. For any y > 0, necessarily
ˆ y

0

1√
t3 + 1

dt > 0

because the integrand is positive on the interval of integration. Then from (12) of Section 1.1
and the Chain Rule we have:

d

dx
x =

d

dx

ˆ y

0

1√
t3 + 1

dt

1 =
1√

y3 + 1

dy

dx

and

dy

dx
=
√

y3 + 1

y′(0) =
dy

dx

∣∣∣
x=0

=
√

(y(0))3 + 1 =
√

0 + 1 = 1.

Computing the second derivative, we see that:

d2y

dx2
=

d

dx

√
y3 + 1 =

3y2

2
√

y3 + 1

dy

dx
=

3y2

2
√

y3 + 1
·
√

y3 + 1 =
3
2
y2

d2y

dx2
=

3
2
y2.

This is equivalent to 2
d2y

dx2
− 3y2 = 0.

49. If the solution is tangent to the x-axis at (x0, 0), then y′ = 0 when x = x0 and y = 0.
Substituting these values into y′ + 2y = 3x − 6 we get 0 + 0 = 3x0 − 6 or x0 = 2.

50. The theorem guarantees a unique (meaning single) solution through any point. Thus, there
cannot be two distinct solutions through any point.

51. When y = 1
16x4, y′ = 1

4x3 = x(1
4x2) = xy1/2, and y(2) = 1

16(16) = 1. When

y =

⎧⎪⎨
⎪⎩

0, x < 0

1
16

x4, x ≥ 0

we have

y′ =

⎧⎨
⎩0, x < 0

1
4x3, x ≥ 0

= x

⎧⎨
⎩0, x < 0

1
4x2, x ≥ 0

= xy1/2 ,

and y(2) = 1
16(16) = 1. The two different solutions are the same on the interval (0,∞), which

is all that is required by Theorem 1.2.1.
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1.3 Differential Equations as Mathematical Models

1.
dP

dt
= kP + r;

dP

dt
= kP − r

2. Let b be the rate of births and d the rate of deaths. Then b = k1P and d = k2P . Since
dP/dt = b − d, the differential equation is dP/dt = k1P − k2P .

3. Let b be the rate of births and d the rate of deaths. Then b = k1P and d = k2P
2. Since

dP/dt = b − d, the differential equation is dP/dt = k1P − k2P
2.

4.
dP

dt
= k1P − k2P

2 − h, h > 0

5. From the graph in the text we estimate T0 = 180◦ and Tm = 75◦. We observe that when
T = 85, dT/dt ≈ −1. From the differential equation we then have

k =
dT/dt

T − Tm
=

−1
85 − 75

= −0.1.

6. By inspecting the graph in the text we take Tm to be Tm(t) = 80 − 30 cos (πt/12). Then the
temperature of the body at time t is determined by the differential equation

dT

dt
= k

[
T −

(
80 − 30 cos

( π

12
t
))]

, t > 0.

7. The number of students with the flu is x and the number not infected is 1000−x, so dx/dt =
kx(1000 − x).

8. By analogy, with the differential equation modeling the spread of a disease, we assume that
the rate at which the technological innovation is adopted is proportional to the number of
people who have adopted the innovation and also to the number of people, y(t), who have
not yet adopted it. If one person who has adopted the innovation is introduced into the
population, then x + y = n + 1 and

dx

dt
= kx(n + 1 − x), x(0) = 1.

9. The rate at which salt is leaving the tank is

Rout (10 L/min) ·
(

A

1000
kg/L

)
=

A

100
kg/min.

Thus dA/dt = A/100. The initial amount is A(0) = 25.

10. The rate at which salt is entering the tank is

Rin = (10 L/min) · (0.25 kg/L) = 2.5 kg/min.
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Since the solution is pumped out at a slower rate, it is accumulating at the rate of (10 −
7.5)L/min = 2.5 L/min. After t minutes there are 1000 + 2.5t gallons of brine in the tank.
The rate at which salt is leaving is

Rout = (7.5 L/min) ·
(

A

1000 + 2.5t
kg/L

)
=

7.5A

1000 + 2.5t
kg/min.

The differential equation is
dA

dt
= 2.5 − 7.5A

1000 + 2.5t
.

11. The rate at which salt is entering the tank is

Rin = (10 L/min) · (0.25 kg/L) = 2.5 kg/min.

Since the tank loses liquid at the net rate of

10 L/min − 12 L/min = −2 L/min,

after t minutes the number of liters of brine in the tank is 1000 − 2t liters. Thus the rate at
which salt is leaving is

Rout =
(

A

1000 − 2t
kg/L

)
· (12 L/min) =

12A

1000 − 2t
kg/min =

6A

500 − t
kg/min.

The differential equation is

dA

dt
= 2.5 − 6A

500 − t
or

dA

dt
+

6
500 − t

A = 2.5.

12. The rate at which salt is entering the tank is

Rin = (cin kg/L) · (rin L/min) = cinrin kg/min.

Now let A(t) denote the number of kilograms of salt and N(t) the number of liters of brine
in the tank at time t. The concentration of salt in the tank as well as in the outflow is
c(t) = x(t)/N(t). But the number of liters of brine in the tank remains steady, is increased,
or is decreased depending on whether rin = rout, rin > rout, or rin < rout. In any case, the
number of liters of brine in the tank at time t is N(t) = N0 + (rin − rout)t. The output rate
of salt is then

Rout =
(

A

N0 + (rin − rout)t
kg/L

)
· (rout L/min) = rout

A

N0 + (rin − rout)t
kg/min.

The differential equation for the amount of salt, dA/dt = Rin − Rout, is

dA

dt
= cinrin − rout

A

N0 + (rin − rout)t
or

dA

dt
+

rout

N0 + (rin − rout)t
A = cinrin.
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13. The volume of water in the tank at time t is V = Awh. The differential equation is then

dh

dt
=

1
Aw

dV

dt
=

1
Aw

(
−cAh

√
2gh

)
= −cAh

Aw

√
2gh .

Using Ah = π

(
50

1000

)2

= 0.0025 π , Aw = 42 = 16, and g = 9.8, this becomes

dh

dt
= −0.00217 c

√
h .

14. The volume of water in the tank at time t is V = 1
3πr2h where r is the radius of the tank

at height h. From the figure in the text we see that r/h = 3/6 so that r = 0.5h and
V = 1

3π (0.5h)2 h = 1
12πh3. Differentiating with respect to t we have dV/dt = 1

4πh2 dh/dt or

dh

dt
=

4
πh2

dV

dt
.

From Problem 13 we have dV/dt = −cAh

√
2gh where c = 0.6, Ah = π

(
50

1000

)2, and g = 9.8.
Thus dV/dt = −0.00664π

√
h and

dh

dt
=

4
πh2

(
−0.00664

√
h
)

= −0.0266
h3/2

.

15. Since i = dq/dt and L d2q/dt2 + R dq/dt = E(t), we obtain L di/dt + Ri = E(t).

16. By Kirchhoff’s second law we obtain R
dq

dt
+

1
C

q = E(t).

17. From Newton’s second law we obtain m
dv

dt
= −kv2 + mg.

18. Since the barrel in Figure 1.3.17(b) in the text is submerged an additional y feet below
its equilibrium position the number of cubic feet in the additional submerged portion is
the volume of the circular cylinder: π×(radius)2×height or π(s/2)2y. Then we have from
Archimedes’ principle

upward force of water on barrel = weight of water displaced

= (9810) × (volume of water displaced)

= (9810)π(s/2)2y = 2452.5πs2y.

It then follows from Newton’s second law that

w

g

d2y

dt2
= −2452.5πs2y or

d2y

dt2
+

2452.5πs2g

w
y = 0,

where g = 9.8 and w is the weight of the barrel in pounds.
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19. The net force acting on the mass is

F = ma = m
d2x

dt2
= −k(s + x) + mg = −kx + mg − ks.

Since the condition of equilibrium is mg = ks, the differential equation is

m
d2x

dt2
= −kx.

20. From Problem 19, without a damping force, the differential equation is md2x/dt2 = −kx.
With a damping force proportional to velocity, the differential equation becomes

m
d2x

dt2
= −kx − β

dx

dt
or m

d2x

dt2
+ β

dx

dt
+ kx = 0.

21. As the rocket climbs (in the positive direction), it spends its amount of fuel and therefore the
mass of the fuel changes with time. The air resistance acts in the opposite direction of the
motion and the upward thrust R works in the same direction. Using Newton’s second law we
get

d

dt
(mv) = −mg − kv + R

Now because the mass is variable, we must use the product rule to expand the left side of the
equation. Doing so gives us the following:

d

dt
(mv) = −mg − kv + R

v × dm

dt
+ m × dv

dt
= −mg − kv + R

The last line is the differential equation we wanted to find.

22. (a) Since the mass of the rocket is m(t) = mp + mv + mf (t), take the time rate-of-change
and get, by straight-forward calculation,

d

dt
m(t) =

d

dt
(mp + mv + mf (t)) = 0 + 0 + m′

f (t) =
d

dt
mf (t)

Therefore the rate of change of the mass of the rocket is the same as the rate of change
of the mass of the fuel which is what we wanted to show.

(b) The fuel is decreasing at the constant rate of λ and so from part (a) we have

d

dt
m(t) =

d

dt
mf (t) = −λ

m(t) = −λt + c
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Using the given condition to solve for c, m(0) = 0 + c = m0 and so m(t) = −λt + m0.
The differential equation in Problem 21 now becomes

v
dm

dt
+ m

dv

dt
+ kv = −mg + R

−λv + (−λt + m0)
dv

dt
+ kv = −mg + R

(−λt + m0)
dv

dt
+ (k − λ)v = −mg + R

dv

dt
+

k − λ

−λt + m0
v =

−mg

−λt + m0
+

R

−λt + m0

dv

dt
+

k − λ

−λt + m0
v = −g +

R

−λt + m0

(c) From part (b) we have that d
dtmf (t) = −λ and so by integrating this result we get

mf (t) = −λt+ c. Now at time t = 0, mf (0) = 0+ c = c therefore mf (t) = −λt+mf (0) .
At some later time tb we then have mf (tb) = −λtb +mf (0) = 0 and solving this equation
for that time we get tb = mf (0)/λ which is what we wanted to show.

23. From g = k/R2 we find k = gR2. Using a = d2r/dt2 and the fact that the positive direction
is upward we get

d2r

dt2
= −a = − k

r2
= −gR2

r2
or

d2r

dt2
+

gR2

r2
= 0.

24. The gravitational force on m is F = −kMrm/r2. Since Mr = 4πδr3/3 and M = 4πδR3/3 we
have Mr = r3M/R3 and

F = −k
Mrm

r2
= −k

r3Mm/R3

r2
= −k

mM

R3
r.

Now from F = ma = d2r/dt2 we have

m
d2r

dt2
= −k

mM

R3
r or

d2r

dt2
= −kM

R3
r.

25. The differential equation is
dA

dt
= k(M − A).

26. The differential equation is
dA

dt
= k1(M − A) − k2A.

27. The differential equation is x′(t) = r − kx(t) where k > 0.
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28. Consider the right triangle fromed by the waterskier (P ),
the boat (B), and the point on the x-axis directly below
the waterskier. Using Pythagorean Theorem we have that
the base of the triangle on the x-axis has length

√
a2 − y2.

Therefore the slope of the line tangent to curve C is

y′ = − y

a2 − y2

Notice that the sign of the derivative is negative because as the boat proceeds along the
positive x-axis, the y-coordinate decreases.

29. We see from the figure that 2θ + α = π. Thus

y

−x
= tan α = tan(π − 2θ) = − tan 2θ = − 2 tan θ

1 − tan2 θ
.

Since the slope of the tangent line is y′ = tan θ we have

y/x = 2y′[1−(y′)2] or y−y(y′)2 = 2xy′, which is the quadratic

equation y(y′)2 + 2xy′ − y = 0 in y′. Using the quadratic

formula, we get

y′ =
−2x ±

√
4x2 + 4y2

2y
=

−x ±
√

x2 + y2

y
.

(x, y)

x

y

α

α

θ

θ

θ
φ

x

y

Since dy/dx > 0, the differential equation is

dy

dx
=

−x +
√

x2 + y2

y
or y

dy

dx
−
√

x2 + y2 + x = 0.

30. The differential equation is dP/dt = kP , so from Problem 41 in Exercises 1.1, a one-parameter
family of solutions is P = cekt.

31. The differential equation in (3) is dT/dt = k(T − Tm). When the body is cooling, T > Tm,
so T − Tm > 0. Since T is decreasing, dT/dt < 0 and k < 0. When the body is warming,
T < Tm, so T − Tm < 0. Since T is increasing, dT/dt > 0 and k < 0.

32. The differential equation in (8) is dA/dt = 2.5 − A/100. If A(t) attains a maximum, then
dA/dt = 0 at this time and A = 250. If A(t) continues to increase without reaching a
maximum, then A′(t) > 0 for t > 0 and A cannot exceed 250. In this case, if A′(t) approaches
0 as t increases to infinity, we see that A(t) approaches 250 as t increases to infinity.

33. This differential equation could describe a population that undergoes periodic fluctuations.
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34. (a) As shown in Figure 1.3.23(a) in the text, the resultant of the reaction force of magnitude
F and the weight of magnitude mg of the particle is the centripetal force of magnitude
mω2x. The centripetal force points to the center of the circle of radius x on which the
particle rotates about the y-axis. Comparing parts of similar triangles gives

F cos θ = mg and F sin θ = mω2x.

(b) Using the equations in part (a) we find

tan θ =
F sin θ

F cos θ
=

mω2x

mg
=

ω2x

g
or

dy

dx
=

ω2x

g
.

35. From Problem 23, d2r/dt2 = −gR2/r2. Since R is a constant, if r = R + s, then d2r/dt2 =
d2s/dt2 and, using a Taylor series, we get

d2s

dt2
= −g

R2

(R + s)2
= −gR2(R + s)−2 ≈ −gR2[R−2 − 2sR−3 + · · · ] = −g +

2gs

R
+ · · · .

Thus, for R much larger than s, the differential equation is approximated by d2s/dt2 = −g.

36. (a) If ρ is the mass density of the raindrop, then m = ρV and

dm

dt
= ρ

dV

dt
= ρ

d

dt

[4
3
πr3

]
= ρ

(
4πr2 dr

dt

)
= ρS

dr

dt
.

If dr/dt is a constant, then dm/dt = kS where ρ dr/dt = k or dr/dt = k/ρ. Since the
radius is decreasing, k < 0. Solving dr/dt = k/ρ we get r = (k/ρ)t+ c0. Since r(0) = r0,
c0 = r0 and r = kt/ρ + r0.

(b) From Newton’s second law,
d

dt
[mv] = mg, where v is the velocity of the raindrop. Then

m
dv

dt
+ v

dm

dt
= mg or ρ

(4
3
πr3

)dv

dt
+ v(k4πr2) = ρ

(4
3
πr3

)
g.

Dividing by 4ρπr3/3 we get

dv

dt
+

3k

ρr
v = g or

dv

dt
+

3k/ρ

kt/ρ + r0
v = g, k < 0.

37. We assume that the plow clears snow at a constant rate of k cubic kilometers per hour. Let
t be the time in hours after noon, x(t) the depth in miles of the snow at time t, and y(t)
the distance the plow has moved in t hours. Then dy/dt is the velocity of the plow and the
assumption gives

wx
dy

dt
= k,

where w is the width of the plow. Each side of this equation simply represents the volume
of snow plowed in one hour. Now let t0 be the number of hours before noon when it started
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snowing and let s be the constant rate in kilometers per hour at which x increases. Then for
t > −t0, x = s(t + t0). The differential equation then becomes

dy

dt
=

k

ws

1
t + t0

.

Integrating, we obtain

y =
k

ws
[ ln(t + t0) + c ]

where c is a constant. Now when t = 0, y = 0 so c = − ln t0 and

y =
k

ws
ln
(

1 +
t

t0

)
.

Finally, from the fact that when t = 1, y = 2 and when t = 2, y = 3, we obtain(
1 +

2
t0

)2

=
(

1 +
1
t0

)3

.

Expanding and simplifying gives t20 + t0 − 1 = 0. Since t0 > 0, we find t0 ≈ 0.618 hours ≈ 37
minutes. Thus it started snowing at about 11:23 in the morning.

38. At time t, when the population is 2 million cells, the differential equation P ′(t) = 0.15P (t)
gives the rate of increase at time t. Thus, when P (t) = 2 (million cells), the rate of increase
is P ′(t) = 0.15(2) = 0.3 million cells per hour or 300,000 cells per hour.

39. Setting A′(t) = −0.002 and solving A′(t) = −0.0004332A(t) for A(t), we obtain

A(t) =
A′(t)

−0.0004332
=

−0.002
−0.0004332

≈ 4.6 grams.

40. (1) :
dP

dt
= kP is linear (2) :

dA

dt
= kA is linear

(3) :
dT

dt
= k (T − Tm) is linear (5) :

dx

dt
= kx (n + 1 − x) is nonlinear

(6) :
dX

dt
= k (α − X) (β − X) is nonlinear (8) :

dA

dt
= 6 − A

100
is linear

(10) :
dh

dt
= −Ah

Aw

√
2gh is nonlinear (11) : L

d2q

dt2
+ R

dq

dt
+

1
C

q = E(t) is linear

(12) :
d2s

dt2
= −g is linear (14) : m

dv

dt
= mg − kv is linear

(15) : m
d2s

dt2
+ k

ds

dt
= mg is linear (16) :

d2x

dt2
− 64

L
x = 0 is linear

(17) : linearity or nonlinearity is determined by the manner in which W and T1 involve x.
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Chapter 1 in Review

1.
d

dx
c1e

10x = 10

y︷ ︸︸ ︷
c1e

10x;
dy

dx
= 10y

2.
d

dx
(5 + c1e

−2x) = −2c1e
−2x = −2(

y︷ ︸︸ ︷
5 + c1e

−2x −5);
dy

dx
= −2(y − 5) or

dy

dx
= −2y + 10

3.
d

dx
(c1 cos kx + c2 sin kx) = −kc1 sin kx + kc2 cos kx;

d2

dx2
(c1 cos kx + c2 sin kx) = −k2c1 cos kx − k2c2 sin kx = −k2(

y︷ ︸︸ ︷
c1 cos kx + c2 sin kx);

d2y

dx2
= −k2y or

d2y

dx2
+ k2y = 0

4.
d

dx
(c1 cosh kx + c2 sinh kx) = kc1 sinh kx + kc2 cosh kx;

d2

dx2
(c1 cosh kx + c2 sinh kx) = k2c1 cosh kx + k2c2 sinh kx = k2(

y︷ ︸︸ ︷
c1 cosh kx + c2 sinh kx);

d2y

dx2
= k2y or

d2y

dx2
− k2y = 0

5. y = c1e
x + c2xex; y′ = c1e

x + c2xex + c2e
x; y′′ = c1e

x + c2xex + 2c2e
x;

y′′ + y = 2(c1e
x + c2xex) + 2c2e

x = 2(c1e
x + c2xex + c2e

x) = 2y′; y′′ − 2y′ + y = 0

6. y′ = −c1e
x sin x + c1e

x cos x + c2e
x cos x + c2e

x sin x;

y′′ = −c1e
x cos x − c1e

x sinx − c1e
x sinx + c1e

x cos x − c2e
x sinx + c2e

x cos x + c2e
x cos x +

c2e
x sinx

= −2c1e
x sinx + 2c2e

x cos x;

y′′ − 2y′ = −2c1e
x cos x − 2c2e

x sin x = −2y; y′′ − 2y′ + 2y = 0

7. a, d 8. c 9. b 10. a, c 11. b 12. a, b, d

13. A few solutions are y = 0, y = c, and y = ex.

14. Easy solutions to see are y = 0 and y = 3.

15. The slope of the tangent line at (x, y) is y′, so the differential equation is y′ = x2 + y2.

16. The rate at which the slope changes is dy′/dx = y′′, so the differential equation is y′′ = −y′

or y′′ + y′ = 0.

17. (a) The domain is all real numbers.
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(b) Since y′ = 2/3x1/3, the solution y = x2/3 is undefined at x = 0. This function is a
solution of the differential equation on (−∞, 0) and also on (0,∞).

18. (a) Differentiating y2 − 2y = x2 − x + c we obtain 2yy′ − 2y′ = 2x− 1 or (2y − 2)y′ = 2x− 1.

(b) Setting x = 0 and y = 1 in the solution we have 1 − 2 = 0 − 0 + c or c = −1. Thus, a
solution of the initial-value problem is y2 − 2y = x2 − x − 1.

(c) Solving the equation y2 − 2y − (x2 − x − 1) = 0 by the quadratic formula we get
y = (2 ±

√
4 + 4(x2 − x − 1) )/2 = 1 ±

√
x2 − x = 1 ±

√
x(x − 1) . Since x(x − 1) ≥ 0

for x ≤ 0 or x ≥ 1, we see that neither y = 1 +
√

x(x − 1) nor y = 1 −
√

x(x − 1) is
differentiable at x = 0. Thus, both functions are solutions of the differential equation,
but neither is a solution of the initial-value problem.

19. Setting x = x0 and y = 1 in y = −2/x + x, we get

1 = − 2
x0

+ x0 or x2
0 − x0 − 2 = (x0 − 2)(x0 + 1) = 0.

Thus, x0 = 2 or x0 = −1. Since x �= 0 in y = −2/x + x, we see that y = −2/x + x is a
solution of the initial-value problem xy′ +y = 2x, y(−1) = 1, on the interval (−∞, 0) because
−1 < 0, and y = −2/x + x is a solution of the initial-value problem xy′ + y = 2x, y(2) = 1,
on the interval (0,∞) because 2 > 0.

20. From the differential equation, y′(1) = 12+[y(1)]2 = 1+(−1)2 = 2 > 0, so y(x) is increasing in
some neighborhood of x = 1. From y′′ = 2x+2yy′ we have y′′(1) = 2(1)+2(−1)(2) = −2 < 0,
so y(x) is concave down in some neighborhood of x = 1.

21. (a)

–3 –2 1 2 3
x

–3
–2

1

2

3
y

–1
–1 –3 –2 1 2 3

x

–3

–2

1

y = x2 + c1 y = –x2 + c2

2
3

y

–1–1

(b) When y = x2 + c1, y′ = 2x and (y′)2 = 4x2. When y = −x2 + c2, y′ = −2x and
(y′)2 = 4x2.

(c) Pasting together x2, x ≥ 0, and −x2, x ≤ 0, we get y =

⎧⎨
⎩−x2, x ≤ 0

x2, x > 0 .

22. The slope of the tangent line is y′
∣∣
(−1,4)

= 6
√

4 + 5(−1)3 = 7.
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23. Differentiating y = x sinx + x cos x we get

y′ = x cos x + sinx − x sinx + cos x

and

y′′ = −x sinx + cos x + cos x − x cos x − sin x − sinx

= −x sinx − x cos x + 2 cos x − 2 sin x.

Thus

y′′ + y = −x sinx − x cos x + 2 cos x − 2 sin x + x sinx + x cos x = 2 cos x − 2 sinx.

An interval of definition for the solution is (−∞,∞).

24. Differentiating y = x sinx + (cos x) ln(cos x) we get

y′ = x cos x + sin x + cos x

(
− sinx

cos x

)
− (sin x) ln (cos x)

= x cos x + sin x − sinx − (sin x) ln (cos x)

= x cos x − (sin x) ln (cos x)

and

y′′ = −x sinx + cos x − sinx

(
− sinx

cos x

)
− (cos x) ln (cos x)

= −x sinx + cos x +
sin2 x

cos x
− (cos x) ln (cos x)

= −x sinx + cos x +
1 − cos2 x

cos x
− (cos x) ln (cos x)

= −x sinx + cos x + sec x − cos x − (cos x) ln (cos x)

= −x sinx + sec x − (cos x) ln (cos x).

Thus

y′′ + y = −x sinx + sec x − (cos x) ln(cos x) + x sinx + (cos x) ln (cos x) = sec x.

To obtain an interval of definition we note that the domain of lnx is (0,∞), so we must have
cos x > 0. Thus, an interval of definition is (−π/2, π/2).

25. Differentiating y = sin (lnx) we obtain y′ = cos (ln x)/x and y′′ = −[sin (lnx)+cos (ln x)]/x2.
Then

x2y′′ + xy′ + y = x2

(
−sin (lnx) + cos (ln x)

x2

)
+ x

cos (ln x)
x

+ sin (lnx) = 0.

An interval of definition for the solution is (0,∞).
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26. Differentiating y = cos (ln x) ln (cos (lnx)) + (lnx) sin (lnx) we obtain

y′ = cos (ln x)
1

cos (ln x)

(
−sin (lnx)

x

)
+ ln (cos (ln x))

(
−sin (lnx)

x

)
+ lnx

cos (ln x)
x

+
sin (lnx)

x

= − ln (cos (lnx)) sin (lnx)
x

+
(lnx) cos (ln x)

x

and

y′′ = −x

[
ln (cos (lnx))

cos (ln x)
x

+ sin (lnx)
1

cos (ln x)

(
−sin (lnx)

x

)]
1
x2

+ ln (cos (lnx)) sin (lnx)
1
x2

+ x

[
(ln x)

(
−sin (lnx)

x

)
+

cos (ln x)
x

]
1
x2

− (lnx) cos (ln x)
1
x2

=
1
x2

[
− ln (cos (ln x)) cos (ln x) +

sin2 (ln x)
cos (ln x)

+ ln (cos (ln x)) sin (lnx)

− (lnx) sin (lnx) + cos (ln x) − (lnx) cos (ln x)
]
.

Then

x2y′′ + xy′ + y = − ln (cos (lnx)) cos (ln x) +
sin2 (ln x)
cos (ln x)

+ ln (cos (lnx)) sin (lnx) − (ln x) sin (lnx)

+ cos (ln x) − (lnx) cos (ln x) − ln (cos (ln x)) sin (lnx)

+ (lnx) cos (ln x) + cos (lnx) ln (cos (lnx)) + (lnx) sin (lnx)

=
sin2 (ln x)
cos (ln x)

+ cos (ln x) =
sin2 (lnx) + cos2 (lnx)

cos (ln x)
=

1
cos (ln x)

= sec (ln x).

To obtain an interval of definition, we note that the domain of lnx is (0,∞), so we must
have cos (ln x) > 0. Since cos x > 0 when −π/2 < x < π/2, we require −π/2 < ln x < π/2.
Since ex is an increasing function, this is equivalent to e−π/2 < x < eπ/2. Thus, an interval
of definition is (e−π/2, eπ/2). (Much of this problem is more easily done using a computer
algebra system such as Mathematica or Maple.)

In Problems 27 - 30 we use (12) of Section 1.1 and the Product Rule.

27.

y = ecos x

ˆ x

0
te− cos t dt

dy

dx
= ecos x

(
xe− cos x

)
− sinxecos x

ˆ x

0
te− cos t dt

dy

dx
+ (sinx) y = ecos xxe− cos x − sinxecos x

ˆ x

0
te− cos t dt + sin x

(
ecos x

ˆ x

0
te− cos t dt

)

= x − sinxecos x

ˆ x

0
te− cos t dt + sinxecos x

ˆ x

0
te− cos t dt = x
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28.

y = ex2

ˆ x

0
et−t2 dt

dy

dx
= ex2

ex−x2
+ 2xex2

ˆ x

0
et−t2 dt

dy

dx
− 2xy = ex2

ex−x2
+ 2xex2

ˆ x

0
et−t2 dt − 2x

(
ex2

ˆ x

0
et−t2 dt

)
= ex

29.

y = x

ˆ x

1

e−t

t
dt

y′ = x
e−x

x
+
ˆ x

1

e−t

t
dt = e−x +

ˆ x

1

e−t

t
dt

y′′ = −e−x +
e−x

x

x2y′′ +
(
x2 − x

)
y′ + (1 − x) y =

(
−x2e−x + xe−x

)
+
(

x2e−x + x2

ˆ x

1

e−t

t
dt − xe−x − x

ˆ x

1

e−t

t
dt

)

+
(

x

ˆ x

1

e−t

t
dt − x2

ˆ x

1

e−t

t
dt

)
= 0

30.

y = sin x

ˆ x

0
et2 cos t dt − cos x

ˆ x

0
et2 sin t dt

y′ = sin x
(
ex2

cos x
)

+ cos x

ˆ x

0
et2 cos t dt − cos x

(
ex2

sinx
)

+ sinx

ˆ x

0
et2 sin t dt

= cos x

ˆ x

0
et2 cos t dt + sinx

ˆ x

0
et2 sin t dt

y′′ = cos x
(
ex2

cos x
)
− sinx

ˆ x

0
et2 cos t dt + sin x

(
ex2

sinx
)

+ cos x

ˆ x

0
et2 sin t dt

= ex2 (
cos2 x + sin2 x

)
−

⎛
⎜⎜⎝

y︷ ︸︸ ︷
sinx

ˆ x

0
et2 cos t dt − cos x

ˆ x

0
et2 sin t dt

⎞
⎟⎟⎠

= ex2 − y

y′′ + y = ex2 − y + y = ex2
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31. Using implicit differentiation we get

x3y3 = x3 + 1

3x2 · y3 + x3 · 3y2 dy

dx
= 3x2

3x2y3

3x2y2
+

x33y2

3x2y2

dy

dx
=

3x2

3x2y2

y + x
dy

dx
=

1
y2

32. Using implicit differentiation we get

(x − 5)2 + y2 = 1

2(x − 5) + 2y
dy

dx
= 0

2y
dy

dx
= −2(x − 5)

y
dy

dx
= −(x − 5)

(
y
dy

dx

)2

= (x − 5)2

(
dy

dx

)2

=
(x − 5)2

y2

Now from the original equation, isolating the first term leads to (x−5)2 = 1−y2. Continuing
from the last line of our proof we now have(

dy

dx

)2

=
(x − 5)2

y2
=

1 − y2

y2
=

1
y2

− 1

Adding 1 to both sides leads to the desired result.

33. Using implicit differentiation we get

y3 + 3y = 1 − 3x

3y2y′ + 3y′ = −3

y2y′ + y′ = −1

(y2 + 1)y′ = −1

y′ =
−1

y2 + 1
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Differentiating the last line and remembering to use the quotient rule on the right side leads
to

y′′ =
2yy′

(y2 + 1)2

Now since y′ = −1
/(

y2 + 1
)

we can write the last equation as

y′′ =
2y

(y2 + 1)2
y′ =

2y

(y2 + 1)2
−1

(y2 + 1)
= 2y

(
−1

y2 + 1

)3

= 2y(y′)3

which is what we wanted to show.

34. Using implicit differentiation we get

y = exy

y′ = exy(y + xy′)

y′ = yexy + xexyy′

(1 − xexy)y′ = yexy

Now since y = exy, substitute this into the last line to get

(1 − xy)y′ = yy

or (1 − xy)y′ = y2 which is what we wanted to show.

In Problem 35–38, y = c1e
3x + c2e

−x − 2x is given as a two-parameter family of solutions of the
second-order differential equation y′′ − 2y′ − 3y = 6x + 4.

35. If y(0) = 0 and y′(0) = 0, then

c1 + c2 = 0

3c1 − c2 − 2 = 0

so c1 = 1
2 and c2 = −1

2 . Thus y = 1
2 e3x − half e−x − 2x.

36. If y(0) = 1 and y′(0) = −3, then

c1 + c2 = 1

3c1 − c2 − 2 = −3

so c1 = 0 and c2 = 1. Thus y = e−x − 2x.

37. If y(1) = 4 and y′(1) = −2, then

c1e
3 + c2e

−1 − 2 = 4

3c1e
3 − c2e

−1 − 2 = −2

so c1 = 3
2 e−3 and c2 = 9

2 e. Thus y = 3
2 e3x−3 + 9

2 e−x+1 − 2x.
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38. If y(−1) = 0 and y′(−1) = 1, then

c1e
−3 + c2e + 2 = 0

3c1e
−3 − c2e − 2 = 1

so c1 = 1
4 e3 and c2 = −9

4 , e−1. Thus y = 1
4 e3x+3 − 9

4 e−x−1 − 2x.

39. From the graph we see that estimates for y0 and y1 are y0 = −3 and y1 = 0.

40. The differential equation is
dh

dt
= −cA0

Aw

√
2gh .

Using A0 = π(0.6/0.0125)2 = 4.906−4, Aw = π(0.6)2 = 1.134, and g = 9.8, this becomes

dh

dt
= −c4.906−4

1.134

√
19.6h = − c

522

√
h .
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