Exam

Name_____

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Decide whether the limit exists. If it exists, find its value.

x-(-1)+

4) Find $\lim_{x \to \Theta} f(x)$. +f(x) ÷х ł -i

B) -1

B) Does not exist A) -1 D) 0 C) 1 Answer: D

5) Find $\lim_{x \to \Theta} f(x)$.

C) -2 D) Does not exist

6) Find $\lim_{x \to \Theta} f(x)$.

C) $\frac{\pi}{2}$

D) Does not exist

Answer: D

C) Does not exist D) -2 Use the graph to determine whether each statement is true or false.

13) $\lim_{x \to 3} f(x) \text{ exists.}$

A) False Answer: A

B) False

B) False

A) False Answer: A

A) False Answer: B

16) $\lim_{x \to -1} f(x) \text{ exists.}$

A) True Answer: B

B) True

B) False

A) True Answer: B

A) True Answer: A

B) False

B) False

A) False Answer: B B) True

Graph the function and then find the specified limit. When necessary, state that the limit does not exist.

Answer: B

B) $\lim_{x \to 0} f(x) = -2$

Answer: A

B) $\lim_{x \to 4} f(x)$ does not exist

Answer: D

Answer: D

Answer: B

Answer: A

Answer: C

D) $\lim_{x \to 1^{-}} f(x)$ does not exist $x \to 1^{-}$

Answer: B

Answer: D

Solve the problem.

30) Given is a graph of a portion of the postage function, which depicts the cost (in cents) of mailing a letter, p, versus the weight (in ounces) of the letter, x. Find each limit, if it exists:

A) 99; 77; does not existC) 77; 99; 77Answer: D

B) 77; 77; 77D) 77; 99; does not exist

31) Given is a graph of a portion of the postage function, which depicts the cost (in cents) of mailing a letter, p, versus the weight (in ounces) of the letter, x. What is the postage for a letter weighing 1.1 ounces? 2 ounces?2.1 ounces? Is the postage function continuous?

A) 55 cents; 55 cents; 77 cents; yesC) 33 cents; 55 cents; 77 cents; noAnswer: B

B) 55 cents; 55 cents; 77 cents; no D) 55 cents; 77 cents; 77 cents; no

D) Yes; no; yes; no

32) Suppose that the cost, p, of shipping a 3-pound parcel depends on the distance shipped, x, according to the function p(x) depicted in the graph. Is p continuous at x = 50? at x = 50? at x = 1500? at x = 3000?

33) Suppose that the cost, p, of shipping a 3-pound parcel depends on the distance shipped, x, according to the function p(x) depicted in the graph. Find each limit, if it exists:

34) Suppose that the cost, C, of producing x units of a product can be illustrated by the given graph. Find each limit, if it exists:

B) 200; 200; 200D) 200; 300; does not exist

35) Suppose that the cost, C, of producing x units of a product can be illustrated by the given graph. Is C(x) continuous at x = 50? x = 100? x = 150?

36) Suppose that the unit price, p, for x units of a product can be illustrated by the given graph. Find each limit, if it exists:

B) 10; 8; 8; 8D) 10; 8; does not exist; 8

37) Suppose that the unit price, p, for x units of a product can be illustrated by the given graph. Is p continuous at x = 50? x = 100? x = 150?

38) Consider the learning curve defined in the graph. Depicted is the accuracy, p, expressed as a percentage, in performing a series of short tasks versus the accumulated amount of time spent practicing the tasks, t. Is p(t) continuous at t = 25? at t = 40? at t = 45?

C) No; no; no

D) Yes; yes; yes

Answer: B

39) Consider the learning curve defined in the graph. Depicted is the accuracy, p, expressed as a percentage, in performing a series of short tasks versus the accumulated amount of time spent practicing the tasks, t. Find each limit, if it exists:

	lim p(x), lim p(x), x− 4 0⁻ x−40⁺	lim p(x) x– 4 0		
	(100 + P 100 + P 80 + O 100 + P 80 + O 100 + O 100 + P 80 + O 100 +	۰ ۰		
	10 20 30	40 50 t		
	Practice Time A) 40: 100: 100	(hours)	B) 100; 100; 100	
	C) 40; 100; does not ex	ist	D) 40; 40; 40	
	Answer: C			
Find the 40	limit, if it exists.) lim (7x + 5) x- 6			
	A) 47	B) -37	C) 5	D) 12
	Answer: A			
41) lim (x ² + 8x - 2) x- 2			
	A) 18	B) 0	C) Does not exist	D) -18
	Answer: A			
42) lim (x ² - 5) x -0			
	A) -5	B) 0	C) 5	D) Does not exist
	Answer: A			
43) $\lim_{x \to 2} (x^3 + 5x^2 - 7x + 1)$			
	A) 0	B) 15	C) Does not exist	D) 29
	Answer: B			
44) lim (3x ⁵ - 3x ⁴ - 4x ³ + x x→2	² ₊ 5)		
	A) -23	B) 121	C) 25	D) 89
	Answer: C			

45) $\lim_{x \to 7} \frac{x^2 + 49}{x + 7}$			
A) 0	B) Does not exist	C) 14	D) 7
Answer: D			
46) $\lim_{x \to 2} \frac{x^2 - 4}{x - 2}$			
A) 4	B) 0	C) Does not exist	D) 1
Answer: B			

In the exercise below, the initial substitution of x = a yields the form 0/0. Look for ways to simplify the function algebraically, or use a table and/or graph to determine the limit. When necessary, state that the limit does not exist.

47) $\lim_{x \to 6} \frac{x^2 - 36}{x - 6}$ A) 12 Answer: A	B) Does not exist	C) 1	D) 6
48) $\lim_{x \to 10} \frac{x^2 - 100}{x + 10}$ A) 1 Answer: B	B) -20	C) Does not exist	D) -10
49) $\lim_{x \to 3} \frac{x^2 + 3x - 18}{x^2 - 9}$ A) 0 Answer: C	B) Does not exist	C) $\frac{3}{2}$	D) - ¹ / ₂
50) $\lim_{x \to 3} \frac{2x^2 - 3x - 27}{9 - x^2}$ A) $\frac{5}{2}$ Answer: B	B) - ⁵ / ₂	C) ¹ / ₂	D) $-\frac{1}{2}$
51) $\lim_{x \to 4} \frac{1 - x^3}{x - 1}$ A) -3 Answer: A	B) $-\frac{3}{2}$	C) 3	D) $\frac{3}{2}$
52) $\lim_{x \to 2} \frac{x^3 - 8}{2 - x}$ A) 6 Answer: B	B) -12	C) - 6	D) 12

53)	$\lim_{x \to 4} \frac{x - 4}{\sqrt{x} - 2}$			
	A) 8	B) -2	C) 4	D) -4
	Answer: C			
54)	$\lim_{x \to 9} \frac{\sqrt{x} - 3}{x - 9}$			
	A) $\frac{1}{6}$	B) 3	C) $\frac{1}{3}$	D) 0
	Answer: A			
Find the I	imit, if it exists.			
55)	lim √x - 2 x− 0			
	A) 2	B) 0	C) -2	D) Does not exist
	Answer: C			
56)	$\lim_{x \to 3} \sqrt{x^2 + 4x + 4}$			
	A) Does not exist	B) 25	C) ±5	D) 5
	Answer: D			
57)	lim √x - 8 x− 3			
	A) 2.23606798	B) 0	C) Does not exist	D) -2.236068
	Answer: C			
58)	$\lim_{x \to 16} \sqrt{x^2 - 9}$			
	A) $\sqrt{247}$	B) Does not exist	C) ±√247	D) 123.5
	Answer: A			
59)	lim √x ² - 9 x→3 ⁻			
	A) Does not exist	B) 1.5	C) 0	D) 3√6
	Answer: C			- 1

Determine whether the function shown is continuous over the interval (-5, 5).

A) Yes

B) No

A) Yes Answer: B

A) Yes Answer: B

B) No

A) Yes Answer: A

A) Yes Answer: B

B) No

A) Yes Answer: B

A) Yes Answer: A

A) Yes Answer: A

B) No

Use the graph to answer the question. 69) Is f continuous at x = 1?

A) Yes

Answer: B

B) No

A) No Answer: A B) Yes

71) Is f continuous at x = ?

A) No Answer: B B) Yes

A) Yes Answer: A B) No

73) Is f continuous at x = -3?

A) No Answer: B

74) Is f continuous at x = 3?

A) No Answer: B

B) Yes

A) Yes Answer: A B) No

76) Is f continuous at x = -1?

A) Yes Answer: A

A) Yes Answer: A

B) No

Evaluate or determine that the	limit does not exist for each o	of the limits (a) lim f(x), (b) x -e l-	$\lim_{x \to el+} f(x), and (c) \lim_{x \to el} f(x) for$
the given function f and number	er d.		
78) $f(x) = \begin{cases} x^2 + 4, & \text{for } x \\ -5, & \text{for } x \end{cases}$	< 0 ; d = -5 ≥0		
A) (a) -5	B) (a)	C) (a)	D) (a) 29
(b)	(b) -5	(b) -5	(b) 29
(c) Does not exis	st (c) -5	(c) Does not exist	(c) 29
Answer: D			
$\int -3x + 7$, for	or x < 1		
79) $f(x) = \begin{cases} 1, & f(x) \\ f(x) & f(x) \\ f(x$	or $x = 1$; $d = 1$		
[7x − 12, fc	or x > 1		
A) (a) -5	B) (a) -5	C) (a)	D) (a)
(b)	(b)	(b) -5	(b) -5
(c) Does not exis	st (c) -1	(c) -1	(c) Does not exist
Answer: D			
80) $f(x) = \begin{cases} -7x + 5, & f(x) \\ -4x + 2, & f(x)$	or x ≤1; d = 1 > 1		
A) (a) 5	B) (a) 2	C) (a) -2	D) (a) -2
(b) 2	(b) 5	(b) -2	(b) -2
(c) Does not exis	st (c) Does not exis	t (c) Does not exist	(c) -2
Answer: D			
81) $f(x) = \begin{cases} \frac{1}{x-5}, & f(x) \\ \frac{1}{x-5}, & \frac{1}{x-5} \end{cases}$	r x > 5; $d = 5$		
$\begin{bmatrix} x^2 - 5x, & to \\ x - 5x, & to \\ $	$r x \leq 5$		
A) (a) Does not exis	St B) (a) 0	C) (a) 0	D) (a) Does not exist
	(D) Does not exis	t (D) Does not exist	
(c) Does not exis	GL (C) DOES NOT EXIS	(C) U	(C) U
Answer: B			

Determine the continuity of the function at the given points.

82)
$$f(x) = \begin{cases} -1, \text{ for } x = -2\\ 2.5, \text{ for } x \neq -2 \end{cases}$$
 at $x = -2$ and $x = -3$

- A) The function f is continuous at both x = -3 and x = -2.
- B) The function f is continuous at neither x = -3 nor x = -2.
- C) The function f is continuous at x = -3 but not at x = -2.
- D) The function f is continuous at x = -2 but not at x = -3.

Answer: C

A) The function f is continuous at neither x = -3 nor x = -2.

- B) The function f is continuous at both x = -3 and x = -2.
- C) The function f is continuous at x = -3 but not at x = -2.

D) The function f is continuous at x = -2 but not at x = -3.

84)
$$f(x) = \begin{cases} 3, & \text{for } x = 3\\ \sin(3x) + 2, & \text{for } x \neq 3 \end{cases}$$
 at $x = 3$ and $x = 1$

A) The function f is continuous at x = 3 but not at x = 1.

- B) The function f is continuous at x = 1 but not at x = 3.
- C) The function f is continuous at both x = 1 and x = 3.
- D) The function f is continuous at neither x = 1 nor x = 3.

Answer: B

85)
$$f(x) = \begin{cases} 2, & \text{for } x = 1, \\ \frac{1}{3}x^3 - x - 1, & \text{for } x \neq 1 & \text{at } x = 1 \text{ and } x = 1.5 \end{cases}$$

- A) The function f is continuous at x = 1 but not at x = 1.5.
- B) The function f is continuous at x = 1.5 but not at x = 1.
- C) The function f is continuous at both x = 1.5 and x = 1.
- D) The function f is continuous at neither x = 1.5 nor x = 1.

Answer: B

- A) The function f is continuous at x = -1 but not at x = -3.
- B) The function f is continuous at x = -3 but not at x = -1.
- C) The function f is continuous at both x = -3 and x = -1.
- D) The function f is continuous at neither x = -3 nor x = -1.

Answer: B

- A) The function f is continuous at neither x = 2 nor x = -1.
- B) The function f is continuous at x = 2 but not at x = -1.
- C) The function f is continuous at x = -1 but not at x = 2.
- D) The function f is continuous at both x = 2 and x = -1.

Answer: B

- A) The function f is continuous at x = -1 but not at x = 2.
- B) The function f is continuous at both x = 2 and x = -1.
- C) The function f is continuous at neither x = 2 nor x = -1.
- D) The function f is continuous at x = 2 but not at x = -1.

Answer: D

- A) The function f is continuous at neither x = 4 nor x = 2.
- B) The function f is continuous at x = 4 but not at x = 2.
- C) The function f is continuous at both x = 4 and x = 2.
- D) The function f is continuous at x = 2 but not at x = 4.

Answer: B

- A) The function f is continuous at x = 3 but not at x = 2.
 B) The function f is continuous at neither x = 2 nor x = 3.
 C) The function f is continuous at x = 2 but not at x = 3.
- D) The function f is continuous at both x = 2 and x = 3.

Answer: C

91)
$$f(x) = \begin{cases} 2, & \text{for } x = 4\\ \frac{(3-x)}{(x+4)^2} - \frac{1}{4}x + 1, & \text{for } x \neq 4 \text{ at } x = 4 \text{ and } x = 1 \end{cases}$$

- A) The function f is continuous at both x = 1 and x = 4.
- B) The function f is continuous at x = 1 but not at x = 4.
- C) The function f is continuous at x = 4 but not at x = 1.
- D) The function f is continuous at neither x = 1 nor x = 4.

Provide an appropriate response.

92) Is the function given by f(x) = 28x + 5 continuous at x = 4? Why or why not? A) Yes, $\lim_{x \to 4} f(x) = f(4)$ B) No, $\lim_{x \to 4} f(x)$ does not exist

Answer: A

9

3) Is the function given by
$$f(x) = \sqrt{x}$$
 continuous at $x = -8$? Why or why not?
A) No, $f(-8)$ does not exist
B) Yes, $\lim_{x \to 8} f(x) = f(-8)$

Answer: A

94) Is the function given by $f(x) = \frac{x+1}{x^2 - 8x + 15}$ continuous at x = 3? Why or why not? A) No, f(3) does not exist and $\lim_{x \to a} f(x)$ does not exist х⊸З B) Yes, $\lim_{x\to 3} f(x) = f(3)$ Answer: A 95) Is the function given by $f(x) = \sqrt{8x + 1}$ continuous at $x = -\frac{1}{8}$? Why or why not? A) Yes, $\lim_{x \to \frac{1}{9}} f(x) = f\left(-\frac{1}{8}\right)$ B) No, $\lim_{x \to -\frac{1}{2}} f(x)$ does not exist Answer: B 96) Is the function given by $f(x) = \begin{cases} x^2 + 3, & \text{for } x < 0 \\ 4, & \text{for } x \ge 0 \end{cases}$ continuous at x = -5? Why or why not? A) No, $\lim_{x \to -5} f(x) = f(-5)$ does not exist B) Yes, $\lim_{x \to -5} f(x) = f(-5)$ Answer: B 97) Is the function given by $f(x) = \begin{cases} -2x - 1, & \text{ for } x < 1 \\ 1, & \text{ for } x = 1 \\ 5x - 11, & \text{ for } x > 1 \end{cases}$ A) Yes, $\lim_{x \to 1} f(x) = f(1)$ B) No, $\lim_{x \to 1} f(x)$ does not exist Answer: B 98) Is the function given by $f(x) = \begin{cases} -5x + 11, & \text{for } x \le 1 \\ 7x - 1, & \text{for } x > 1 \end{cases}$ continuous at x = 1? Why or why not? A) No, $\lim_{x \to 1} f(x)$ does not exist B) Yes, $\lim_{x \to 1} f(x) = f(1)$ Answer: B 99) Is the function given by $f(x) = \begin{cases} \frac{1}{x-3}, & \text{for } x > 3\\ x^2 + 5x, & \text{for } x \le 3 \end{cases}$ continuous at x = 3? Why or why not? A) No, $\lim_{x \to 3} f(x)$ does not exist B) Yes, $\lim_{x \to 3} f(x) = f(3)$ Answer: A

Find the intervals on which the function is continuous.

100) Is the function given by f(x) = x² - 9x + 20 continuous over the interval (-4, 4)? Why or why not?
A) No, since f(x) is not continuous at x = 4
B) Yes, f(x) is continuous at each point on (-4, 4)
Answer: B
101) Is the function given by $f(x) = \frac{1}{x+4}$ continuous over the interval (*, 0)? Why or why not? A) Yes, f(x) is continuous at each point on (*, 0) B) No, since f(x) is not continuous at x = -4Answer: B 102) Is the function given by $f(x) = \frac{5}{(x+5)^2 + 10}$ continuous on \Re ? Why or why not? A) Yes, f(x) is continuous at each real number B) No, since f(x) is not continuous at x = -5Answer: A 103) Is the function given by $f(x) = \frac{x+4}{x^2 - 15x + 56}$ continuous over the interval [-7, 7]? Why or why not? A) Yes, f(x) is continuous at each point on [-7, 7] B) No, since f(x) is not continuous at x = 7Answer: B 104) Is the function given by $f(x) = \sqrt{10x + 3}$ continuous continuous on \Re ? A) Yes, f(x) is continuous at each real number B) No, since f(x) is not continuous at each real number B) No, since f(x) is not continuous at each real number B) No, since f(x) is not continuous at each real number B) No, since f(x) is not continuous over the interval $\left[*, -\frac{3}{10} \right]$

Answer: B

Solve the problem.

105) A coffee house sells coffee by the pound, charging \$8.50 per pound for quantities up to and including 50 pounds. Above 50 pounds, the coffee house charges \$7.75 per pound for the entire quantity, plus a quantity surcharge, k. If x represents the number of pounds, the price function is

 $p(x) = \begin{cases} 8.5x, & \text{for } x \leq 50, \\ 7.75x + k, & \text{for } x > 50. \end{cases}$

Find k such that the price function p is continuous at x = 50. Then explain why it is preferable to have continuity at x = 50.

A) k = 580; It is preferable so that the coffee house makes a profit.

B) k = 37.5; It is preferable so that the coffee house does not lose revenue.

C) k = 270; It is preferable so that the coffee house makes a profit.

D) k = 812.5; It is preferable so that the coffee house does not lose revenue.

Answer: B

106) A biologist controls the humidity H (as a percentage) inside a terrarium. From an initial humidity level of 0%, she allows the humidity in the terrarium to increase by 7% per hour for the next 8 hours. After the 8th hour, she allows the terrarium to dry out (lose humidity) at the rate of 15% per hour. The humidity function H is defined by

 $H(t) = \begin{cases} 7t, & \text{for } t \leq 8, \\ k - 15t, & \text{for } t > 8. \end{cases}$

Find k such that H is continuous at t = 24. Then explain why H must be continuous at t = 8 hours.

A) k = 176; H must be continuous at t = 8 hours because the humidity level changes continuously.

B) k = 216; H must be continuous at t = 8 hours because time changes continuously.

C) k = 64; H must be continuous at t = 8 hours because the humidity level changes continuously.

D) k = 104; H must be continuous at t = 8 hours because time changes continuously.

Answer: A

Find the limit by using the TABLE and TRACE features of your graphing calculator.

107)	$\lim_{x \to 49} \frac{\sqrt{x} - 7}{x - 49}$			
	A) $\frac{1}{7}$	B) 7	C) $\frac{1}{14}$	D) 0
	Answer: C			
108)	$\lim_{x \to 49} \frac{7 - \sqrt{x}}{49 - x}$			
	A) 14	B) 7	C) 0	D) <u>1</u>
	Answer: D			
109)	$\lim_{x \to \Theta} \frac{\sqrt{25 + x} - \sqrt{25 - x}}{x}$			
	A) $\frac{1}{5}$	B) 0	C) 5	D) <u>1</u>
	Answer: A			
110)	$\lim_{x \to 0} \frac{\sqrt{1-x} - 1}{x}$			
	A) $\frac{1}{2}$	B) 2	C) 1	D) - <u>1</u> 2
	Answer: D			
111)	$\lim_{x \to 0} \frac{\sqrt{9+2x} - 3}{x}$			
	A) $\frac{1}{3}$	B) $\frac{2}{3}$	C) $\frac{1}{6}$	D) 9

Answer: A

112) lim 스 x—9	$\frac{\sqrt{6+6x}-\sqrt{6}}{x}$			
A) 0		B) $\frac{1}{2}$	C) $\sqrt{6}$	D) $\frac{\sqrt{6}}{2}$
Answe	r: D			
113) lim 9 x -0	$\frac{-\sqrt{81-x^2}}{x}$			
A) 18	3	B) 0	C) <u>1</u> 18	D) <u>1</u> 9
Answe	r: B			
114) lim — x− 3 √	$\frac{x^2 - 9}{x^2 + 7} - 4$			
A) 3		B) ¹ / ₄	C) 4	D) 8
Answe	r: D			
115) lim - x→1 ^	$\frac{x^2 - 1}{\sqrt{x^2 + 3} - 2}$			
A) 1		B) <u>1</u>	C) 4	D) 2

Answer: C

Provide an appropriate response.

- 116) Decide whether the function $f(x) = x^2 + 8x 4$ is continuous for all x, and provide a short statement supporting your conclusion.
 - A) No, this polynomial is not defined for all x.
 - B) Yes, polynomial functions are defined for all x.
 - C) No, there is a break in the graph of this function at x = 0.
 - D) Yes, polynomial functions are continuous; there are no breaks in the graph of a polynomial function.

Answer: D

117) Given f(x) = x + 5 and g(x) = x - 8, where is the function f(x)/g(x) continuous?

A) The function f(x)/g(x) is continuous for all x.

- B) The function f(x)/g(x) is continuous for all x except x = -5.
- C) The function f(x)/g(x) is continuous for all x except x = 8.
- D) The function f(x)/g(x) is continuous for all x except x = -5 and x = 8.

Answer: C

118) Given $f(x) = \sqrt[3]{2x}$ and g(x) = x - 4, where is the function f(x)/g(x) continuous?

- A) The function f(x)/g(x) is continuous for all x except x < 0 and x = -4.
- B) The function f(x)/g(x) is continuous for all x except x = 4.
- C) The function f(x)/g(x) is continuous for all x except x = -4.
- D) The function f(x)/g(x) is continuous for all x.

Answer: B

- 119) Why does the general continuity principle regarding the quotient g(x)/f(x) include the phrase "so long as the inputs x do not yield outputs f(x) = 0"?
 - A) Whenever f(x) = 0, the function g(x)/f(x) is so large that it would be difficult to graph it.
 - B) One needs to avoid an infinite g(x).
 - C) The quotient g(x)/f(x) is an invalid function unless there is no x for which f(x) = 0.
 - D) The function g(x)/f(x) is not defined for any x such that f(x) = 0, and a function cannot be continuous at any point at which it is undefined.

Answer: D

120) Write the formal notation for the principle "the limit of a quotient is the quotient of the limits" and include a statement of any restrictions on the principle.

A) If $\lim_{X \to a} g(x) = M$ and $\lim_{X \to a} f(x) = L$, then $\lim_{X \to a} \frac{g(x)}{f(x)} = \frac{\prod_{X \to a} g(x)}{\prod_{X \to a} f(x)} = \frac{M}{L}$, provided that $f(a) \neq 0$. B) $\lim_{X \to a} \frac{g(x)}{f(x)} = \frac{g(a)}{f(a)}$, provided that $f(a) \neq 0$. C) If $\lim_{X \to a} g(x) = M$ and $\lim_{X \to a} f(x) = L$, then $\lim_{X \to a} \frac{g(x)}{f(x)} = \frac{\lim_{X \to a} g(x)}{\lim_{X \to a} f(x)} = \frac{M}{L}$, provided that $L \neq 0$. D) $\lim_{X \to a} \frac{g(x)}{f(x)} = \frac{g(a)}{f(a)}$. Answer: C

- 121) What conditions, when present, are sufficient to conclude that a function f(x) is continuous at x = a?
 - A) The limit of f(x) as x-a from the left exists, the limit of f(x) as x-a from the right exists, and these two limits are the same.
 - B) f(a) exists, and the limit of f(x) as x-a exists.
 - C) f(a) exists, the limit of f(x) as x-a exists, and the limit of f(x) as x-a is f(a).
 - D) f(a) exists, the limit of f(x) as x-a from the left exists, and the limit of f(x) as x-a from the right exists.

Answer: C

- 122) What conditions, when present, are sufficient to conclude that a function f(x) has a limit as x approaches some value of a?
 - A) The limit of f(x) as x-a from the left exists, the limit of f(x) as x-a from the right exists, and these two limits are the same.
 - B) Either the limit of f(x) as x-a from the left exists or the limit of f(x) as x-a from the right exists
 - C) The limit of f(x) as x-a from the left exists, the limit of f(x) as x-a from the right exists, and at least one of these limits is the same as f(a).
 - D) f(a) exists, the limit of f(x) as x-a from the left exists, and the limit of f(x) as x-a from the right exists.

Answer: A

123) Provide a short sentence that summarizes the general limit principle given by the formal notation

 $\lim_{x \to a} [f(x) \pm g(x)] = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x) = L \pm M, \text{ given that } \lim_{x \to a} f(x) = L \text{ and } \lim_{x \to a} g(x) = M.$

A) The sum or the difference of two functions is the sum of two limits.

B) The limit of a sum or a difference is the sum or the difference of the functions.

C) The limit of a sum or a difference is the sum or the difference of the limits.

D) The sum or the difference of two functions is continuous.

Answer: C

- 124) The statement "the limit of a constant times a function is the constant times the limit" follows from a combination of two fundamental limit principles. What are they?
 - A) The limit of a function is a constant times a limit, and the limit of a constant is the constant.
 - B) The limit of a product is the product of the limits, and a constant is continuous.

C) The limit of a constant is the constant, and the limit of a product is the product of the limits.

D) The limit of a product is the product of the limits, and the limit of a quotient is the quotient of the limits.

Answer: C

126) $f(x) = 3x^2$

125) When can direct substitution of a for x be used to find the limit of a function f(x) as x approaches a?

A) When f is continuous for all x, except x = a	B) Only when f is continuous for all x
C) Always	D) When f is continuous at a
Answer: D	

Find a simplified difference quotient for the function.

120/1(N) = 5N			
A) 2x + h	B) 6x	C) 6x + h	D) 6x + 3h
Answer: D			
127) $f(x) = -8x^2$			
A) 16x	B) -16x - 8h	C) -16x	D) -16x + h
Answer: B			
128) $f(x) = 2x^3$			
A) 6x ²	B) 6x ² + 6xh + 2h ²	C) 6x ² + 6xh + 2h	D) 6x ² + h
Answer [.] B	,	,	,
129) $f(x) = -2x^3$			
A) -6x ² - 6xh - 2h ²	B) -6x ² - 6xh - 2h	C) 6x ² - h	D) -6x ²
Answer: A			
130) $f(x) = \frac{8}{x}$			
*	0	0	0
A) $-\frac{8}{2}$	B) - 8	C) $\frac{8}{2}$	D) $\frac{8}{2}$
x² + h	x² + xh	x² + h	x² + xh
Answer: B			
131) $f(x) = 9x + 4$			
A) -9	B) 9h	C) 9	D) 9 + h
Answer: C			

132) $f(x) = x^2 + 10x$		
A) 2(x + h) + 10	B) 2x + h + 10	C) 2xh + h + 10
Answer: B		
133) $f(x) = x^3 + x$		
A) 2x ³ + 3x ² + 3xh + h ² + 1		B) 3x ² + 3xh + h ² + h
C) 2x ³ + 3x ² + 3xh + h ²		D) 3x ² + 3xh + h ² + 1
Answer: D		

Complete the table after finding a simplified form of the difference quotient.

134) For the function $f(x) = -6x^2$, complete the table below:

	х	h	$\frac{f(x + h) - f(x)}{h}$
	3	2	
	3	1	
	3	0.1	
	3	0.01	
A)			
·	х	h	$\frac{f(x + h) - f(x)}{h}$
	3	2	- 48
	3	1	-42
	3	0.1	-36.6
	3	0.01	-36.06
C)			
	v	h	f(x + h) - f(x)
	^		h
	3	2	- 60
	3	1	- 48
	3	0.1	-37.2
	3	0.01	-36.12
Answ	er: /	A	

B)			
	х	h	$\frac{f(x+h) - f(x)}{h}$
	3	2	8
	3	1	7
	3	0.1	6.1
	3	0.01	6.01
D)		•	
	х	h	$\frac{f(x+h) - f(x)}{h}$
	3	2	- 30
	3	1	-24
	3	0.1	- 18.6
	3	0.01	- 18.06

D) 2x + 10h

135) For the function $f(x) = -7x^3$, complete the table below:

	х	h	$\frac{f(x+h) - f(x)}{h}$				
	4	2					
	4	1					
	4	0.1					
	4	0.01					
		1					
A)				B)			
	х	h	$\frac{f(x + h) - f(x)}{h}$		х	h	$\frac{f(x + h) - f(x)}{h}$
	4	2	-518		4	2	-308
	4	1	-427		4	1	-323
	4	0.1	-345.1		4	0.1	-334.79
	4	0.01	-336.91		4	0.01	- 335.8799
C)		I		D)		1	
	х	h	$\frac{f(x + h) - f(x)}{h}$		х	h	$\frac{f(x + h) - f(x)}{h}$
	4	2	-532		4	2	-420
	4	1	-427		4	1	-371
	4	0.1	-344.47		4	0.1	-338.87
	4	0.01	-336.8407		4	0.01	-336.2807
Answ	er: (C					

136) For the function f(x) = x - 3, complete the table below:

х	h	$\frac{f(x+h) - f(x)}{h}$
2	2	
2	1	
2	0.1	
2	0.01	

A)			
	х	h	$\frac{f(x + h) - f(x)}{h}$
	2	2	10
	2	1	10
	2	0.1	10
	2	0.01	10
()			
C)			
C)	х	h	$\frac{f(x + h) - f(x)}{h}$
C)	x 2	h 2	$\frac{f(x + h) - f(x)}{h}$
C)	x 2 2	h 2 1	$\frac{f(x + h) - f(x)}{h}$ 5 5
C)	x 2 2 2	h 2 1 0.1	$\frac{f(x + h) - f(x)}{h}$ 5 5 5 5 5
0,	x 2 2 2 2	h 2 1 0.1 0.01	$ \frac{f(x + h) - f(x)}{h} 5 5 5 5 5 5 5 5 5 5 $

B)

	х	h	$\frac{f(x+h) - f(x)}{h}$
	2	2	10
	2	1	5
	2	0.1	0.5
	2	0.01	0.05
D)		•	
υ,			
0)	х	h	$\frac{f(x + h) - f(x)}{h}$
0)	x 2	h 2	$\frac{f(x + h) - f(x)}{h}$
0)	x 2 2	h 2 1	$\frac{f(x+h) - f(x)}{h}$ 7 6
0)	x 2 2 2	h 2 1 0.1	$\frac{f(x + h) - f(x)}{h}$ 7 6 5.1
U)	x 2 2 2 2	h 2 1 0.1 0.01	$\frac{f(x + h) - f(x)}{h}$ 7 6 5.1 5.01

137) For the function $f(x) = \frac{8}{x}$, complete the table below:

х	h	$\frac{f(x+h) - f(x)}{h}$
3	2	
3	1	
3	0.1	
3	0.01	

Round to four decimal places.

1	١	١
r	1	y

A)			-	B)			
	х	h	$\frac{f(x + h) - f(x)}{h}$		х	h	$\frac{f(x + h) - f(x)}{h}$
	3	2	-1.6		3	2	0.5333
	3	1	-2		3	1	0.6667
	3	0.1	-2.5806		3	0.1	0.8602
	3	0.01	-2.6578		3	0.01	0.8859
C)		•		D)		•	
	х	h	$\frac{f(x + h) - f(x)}{h}$		х	h	$\frac{f(x + h) - f(x)}{h}$
	3	2	-1.0667		3	2	-0.5333
	3	1	-0.5333		3	1	-0.6667
	3	0.1	-0.0533		3	0.1	-0.8602
	3	0.01	-0.0053		3	0.01	-0.8859
Answ	er:	D				-	

Solve the problem.

138) The graph shows the total sales in thousands of dollars from the distribution of x thousand catalogs. Find the average rate of change of sales with respect to the number of catalogs distributed for the change in x.

Answer: C

139) The graph shows the total sales in thousands of dollars from the distribution of x thousand catalogs. Find the average rate of change of sales with respect to the number of catalogs distributed for the change in x.

Answer: B

140) The graph shows the total sales in thousands of dollars from the distribution of x thousand catalogs. Find the average rate of change of sales with respect to the number of catalogs distributed for the change in x.

Answer: D

141) The graph shows the total sales in thousands of dollars from the distribution of x thousand catalogs. Find the average rate of change of sales with respect to the number of catalogs distributed for the change in x.

142) The graph shows the total sales in thousands of dollars from the distribution of x thousand catalogs. Find the average rate of change of sales with respect to the number of catalogs distributed for the change in x.

Answer: C

143) The graph shows the population in millions of bacteria t minutes after a bactericide is introduced into a culture. Find the average rate of change of population with respect to time for the time interval.

Answer: D

144) The graph shows the population in millions of bacteria t minutes after a bactericide is introduced into a culture. Find the average rate of change of population with respect to time for the time interval.

145) The graph shows the population in millions of bacteria t minutes after a bactericide is introduced into a culture. Find the average rate of change of population with respect to time for the time interval.

Answer: D

146) The graph below shows the number of tuberculosis deaths in the United States from 1989 to 1998.

Estimate the average rate of change in tuberculosis deaths from 1993 to 1995.

A) About -1 deaths per year

C) About -80 deaths per year

B) About -300 deaths per yearD) About -150 deaths per year

Answer: D

147) The graph shows the average cost of a barrel of crude oil for the years 1981 to 1990 in constant 1996 dollars. Find the approximate average change in price from 1981 to 1987.

1996 \$/Barrel

B) About -\$12/year

C) About -\$33/year

D) About -\$7/year

Answer: D

A) About -\$6/year

148) The graph shows the median weight of girls between the ages of 0 and 24 months.

Use the graph to find the average growth rate of a typical girl during the first year of her life. Give your answer in pounds per month.

A) 1.8 lb/month B) 1.2 lb/month C) 0.8 lb/month D) 1.1 lb/month Answer: D

149) The graph shows the median weight of girls between the ages of 0 and 24 months.

Use the graph to find the average growth rate of a typical girl during the second year of her life. Give your answer in pounds per month.

A) 0.5 lb/month B) 0.2 lb/month C) 0.8 lb/month D) 1.1 lb/month Answer: A

150) The graph shows the median weight of girls between the ages of 0 and 24 months.

Use the graph to find the average growth rate of a typical girl during the first two years of her life. Give your answer in pounds per month.

A) 0.8 lb/month B) 0.6 lb/month C) 1.6 lb/month D) 1.1 lb/month Answer: A

151) The graph shows the median weight of girls between the ages of 0 and 24 months.

Use the graph to find the average growth rate of a typical girl during the first nine months of her life. Give your answer in pounds per month.

A) 1.4 lb/month B) 2.0 lb/month C) 1.2 lb/month D) 1.0 lb/month Answer: C

152) The graph shows the median weight of girls between the ages of 0 and 24 months.

Use the graph to find the average growth rate of a typical girl during the first six months of her life. Give your answer in pounds per month.

A) 1.0 lb/monthB) 1.3 lb/monthC) 1.6 lb/monthD) 2.6 lb/monthAnswer: B

153) The graph shows the median weight of girls between the ages of 0 and 24 months.

Use the graph to find the average growth rate of a typical girl during the first three months of her life. Give your answer in pounds per month.

A) 1.3 lb/month B) 4.0 lb/month C) 1.2 lb/month D) 2.2 lb/month Answer: A

154) The graph shows the median weight of girls between the ages of 0 and 24 months.

Use the graph to find the average growth rate of a typical girl between ages 12 and 18 months. Give your answer in pounds per month.

A) 1.1 lb/month B) 1.4 lb/month C) 0.8 lb/month D) 0.6 lb/month Answer: D

155) The graph shows the median weight of girls between the ages of 0 and 24 months.

Use the graph to find the average growth rate of a typical girl between ages 12 and 15 months. Give your answer in pounds per month.

A) 1.5 lb/month B) 0.6 lb/month C) 0.5 lb/month D) 1.0 lb/month Answer: B

156) The graph shows the median weight of girls between the ages of 0 and 24 months.

Use the graph to find the average growth rate of a typical girl between ages 12 and 21 months. Give your answer in pounds per month.

A) 0.5 lb/month	B) 0.9 lb/month	C) 0.7 lb/month	D) 1.2 lb/month
Answer: A			

157) The average price of a ticket to a minor league baseball game can be approximated by

 $p(x) = 0.03x^2 + 0.45x + 6.53$ where x is the number of years after 1990 and p(x) is in dollars. (i) Find p(5). (ii) Find p(12). (iii) Find p(12) - p(5). (iv) Find $\frac{p(12) - p(5)}{12 - 5}$, and interpret this result. A) (ii) \$-8.03 (ii) \$-7.61 (iii) \$-0.42 (iv) \$-0.06 is the average annual increase in ticket price from the 5th to the 12th year after 1990 (or from 1995 to 2002). B) (i) \$9.53 (ii) \$16.25 (iii) \$-6.72 (iv) \$-0.96 is the average annual increase in ticket price from the 5th to the 12th year after 1990 (or from 1995 to 2002). C) (i) \$5.03 (ii) \$5.45 (iii) \$-0.42 (iv) \$-0.06 is the average annual increase in ticket price from the 5th to the 12th year after 1990 (or from 1995 to 2002). D) (i) \$12.53 (ii) \$63.77 (iii) \$-51.24

(iv) \$-7.32 is the average ticket price in 1995.

Answer: B

158)) When a balance of \$6000 is o total amount owed after t yes	wed on a credit card and i ars, A(t), is given by	nterest is being charged at a r	rate of 16% per year, the	
	$A(t) = 6000(1.16)^{t}$. A(12) - A(6)				
	Find $\frac{f(12)}{12}$, and inter	pret this result.			
	 A) \$3499.63 is the total am B) \$3499.63 is the average C) \$95,120,040.89 is the av D) \$95,120,040.89 is the to 	nount owed on the debt fro annual increase in the deb verage annual increase in the tal amount owed on the de	m the 6th to the 12th year. of from the 6th to the 12th yea ne debt from the 6th to the 12 bt up to and including the 12	ar. th year. ?th year.	
	Answer: B				
159)) Suppose that the dollar cost producing the first 45 radios.	of producing x radios is c(»	x = 400 + 20x - 0.2x ² . Find the	he average cost per radio of	
	A) \$11.00	B) \$495.00	C) \$895.00	D) -\$2.00	
	Answer: A				
160)) A car's distance s in miles fro s(t) = 9t ²	om its starting point after t	hours is given by		
	Find the average rate of char	nge of distance with respec	t to time (average velocity) a	s t changes from $t_1 = 3$ to	
	t ₂ = 7.				
	A) 51.4 miles/hr	B) 90 miles/hr	C) 45 miles/hr	D) 63 miles/hr	
	Answer: B				
161) At the beginning of a trip, th trip the odometer reads 24,69 gallons. What is the average Assume that the tank was no A) 37.79 miles/gal	e odometer on a car reads 94 and there are 2.2 gallons rate of change of the num ot filled during the trip. B) 22 95 miles/gal	24,437 and the car has a full to remaining in the tank. The ber of miles with respect to the C) 28.56 miles/gal	ank of gas. At the end of the tank can hold a total of 9 he number of gallons? D) 257 miles	
	Answer: A	<i>b) 22.76</i> millios/gai	0) 20.00 millio, gai	<i>D)</i> 207 mmoo	
Find a sir 162	mplified form of the differen) f(x) = b - mx	ce quotient for the function	n.		
	A) -mx + h	B) -mx	C) -m	D) -m + h	
	Answer: C				
163)) $f(x) = ax^3 + bx$				
	A) a(2x ² + 3x ² + 3xh + h ²)	+ h	B) a(3x ² + 3xh + h ²) +	b	
	C) 3ax ² + 3axh + h ² + b		D) a(3x ² + 3xh + h ²) + h		
	Answer: B				
164)) $f(x) = ax^4$				
	A) ah ³ + 4xh ² + 6x ² h + 4x	3	B) a(h ³ + 4xh + 6x ² h) +	+ 4x ³	
	C) a(h ³ + 4xh ² + 6x ² h + 4x	x ³)	D) a(h ³ + 4xh ² + 4x ² h	+ 4x ³)	
	Answer: C				

165)
$$f(x) = \frac{3}{x+7}$$

A) $\frac{-3}{(x+7)(x+7+h)}$
B) $\frac{3h}{(x+7)(x+7+h)}$
C) $\frac{-3}{h(x+7)(x+7+h)}$
D) $\frac{3}{(x+7)(x+7)}$
Answer: A

166)
$$f(x) = \frac{x}{4 - x}$$

A) $\frac{4}{(x - 4)(x + h - 4)}$
B) $\frac{1}{(x - 4)(x + h - 4)}$
C) $-\frac{x}{(x - 4)(x + h - 4)}$
D) $-\frac{4h}{(x - 4)(x + h - 4)}$

Answer: A

167)
$$f(x) = \sqrt{x+2}$$

A) $\frac{h}{\sqrt{x+2+h} - \sqrt{x+2}}$
B) $\frac{1}{\sqrt{x+2+h} + \sqrt{x+2}}$
C) $\frac{1}{\sqrt{x+h} + \sqrt{x}}$
D) $\sqrt{x+2+h} + \sqrt{x+2}$

Answer: B

168)
$$f(x) = \sqrt{9 - 8x}$$

A) $\frac{8}{\sqrt{9 - 8(x + h)} - \sqrt{9 - 8x}}$
C) $\sqrt{9 - 8(x + h)} + \sqrt{9 - 8x}$
B) $\frac{1}{\sqrt{9h - 8(x + h)} + \sqrt{9 - 8x}}$
D) $-\frac{8}{\sqrt{9 - 8(x + h)} + \sqrt{9 - 8x}}$

Answer: D

169)
$$f(x) = \frac{x^3 + 1}{x}$$

A) $\frac{2x + h - 1}{x(x + h)}$
B) $2x + h - \frac{1}{x}$
C) $2x + h - 1$
D) $\frac{x(2x + h)(x + h)}{x(x + h)}$

Answer: D

170) f(x) =
$$\frac{1}{\sqrt{x-9}}$$

A) - $\frac{1}{\sqrt{x-9}\sqrt{x-9+h}(\sqrt{x-9}+\sqrt{x-9+h})}$
C) $\frac{h}{\sqrt{x-9}\sqrt{x-9+h}(\sqrt{x-9}-\sqrt{x-9+h})}$

Answer: A

B)
$$\frac{1}{\sqrt{9h - 8(x + h)} + \sqrt{9 - 8x}}$$

D) $-\frac{8}{\sqrt{9 - 8(x + h)} + \sqrt{9 - 8x}}$

B)
$$2x + h - \frac{1}{x}$$

D) $\frac{x(2x + h)(x + h) - 1}{x(x + h)}$

B)
$$-\frac{1}{\sqrt{x-9}\sqrt{x-9+h}(\sqrt{x-9}-\sqrt{x-9+h})}$$

D) $\frac{1}{\sqrt{x-9}\sqrt{x-9+h}(\sqrt{x-9}+\sqrt{x-9+h})}$

171)
$$f(x) = \frac{3}{x^2}$$

A) $\frac{3(h+x)}{x^2(x+h)^2}$
B) $-\frac{3(h+2x)}{x^2(x+h)^2}$
C) $-\frac{3(h+2x+xh)}{x^2(x+h)^2}$
D) $\frac{(h+2x)}{x^2(x+h)^2}$
Answer: B

Graph the function and the indicated tangent line.

172) Graph $f(x) = -3x^2$ and the tangent line to the graph at the point whose x-coordinate is 1.

Answer: D

Answer: B

174) Graph $f(x) = x^2 + 2x - 8$ and the tangent line to the graph at the point whose x-coordinate is 1.

Answer: D

175) Graph $f(x) = x^2 - 2x - 2$ and the tangent line to the graph at the point whose x-coordinate is -2.

Answer: D

-4 -6 -8

Answer: D

177) Graph f(x) = -3x + 5 and the tangent line to the graph at the point whose x-coordinate is -3.

C) The tangent line is identical to the graph of the original function.

D) The tangent line is identical to the graph of the original function.

Answer: C

Answer: D

Find the derivative of the function and evaluate the derivative at the given x-value.

179) $f(x) = 2x^2$ at x = 1A) f'(x) = 4x; f'(1) = 2B) $f'(x) = 4x^2$; f'(1) = 4C) f'(x) = 2x; f'(1) = 2D) f'(x) = 4x; f'(1) = 4Answer: D

180)
$$f(x) = 5x + 9$$
 at $x = 2$
 B) $f(x) = 5x; f(2) = 10$
 B) $f(x) = 9; f(2) = 9$

 C) $f(x) = 5; f'(2) = 5$
 D) $f(x) = 0; f'(2) = 0$

 Answer: C

 181) $f(x) = x^2 + 5x$ at $x = 4$

 A) $f'(x) = 4x + 5; f'(4) = 21$

 C) $f'(x) = x + 5; f'(4) = 9$

 Answer: D

 182) $f(x) = \frac{1}{3}x - \frac{1}{2}$ at $x = 6$

 A) $f'(x) = -\frac{1}{2}; f'(6) = -\frac{1}{2}$

 B) $f'(x) = -\frac{1}{3}; f'(6) = -\frac{1}{3}$

 C) $f'(x) = \frac{1}{2}; f'(6) = \frac{1}{2}$

 B) $f'(x) = 10x - 1; f'(-4) = -14$

 C) $f'(x) = 10x + 1; f'(-4) = -14$

 D) $f(x) = 2x + x$ at $x = -4$

 A) $f'(x) = x - 10; f'(-4) = -14$

 C) $f'(x) = 10x + 1; f'(-4) = -14$

 D) $f'(x) = 10x - 1; f'(-4) = -41$

 C) $f'(x) = 10x + 1; f'(4) = 17$

 D) $f'(x) = 4x + 10; f'(-4) = -41$

 D) $f'(x) = 4x + 10; f'(4) = 15$

 A) $f'(x) = 2x + 11; f'(1) = 13$

 A) $f'(x) = 2x + 11; f'(1) = 13$

 A) $f'(x) = 3x^2 + 5x - 7$ at $x = -2$

 A) $f(x) = 5x - 5; f'(-2) = -17$

 D) $f'(x) = 11x; f'(1) = 11$

 D) $f'(x) = 3x^2 + 5; f'(-2) = -1$

 Answer: B

 180) $f(x) = 1 - x^3 at x = 1$

 A) $f'(x) = 3x^2 - 1; f'(1) = 2$

188)
$$f(x) = \frac{8}{x}$$
 at $x = -1$
A) $f'(x) = \frac{8}{x^2}$; $f'(-1) = 8$
B) $f'(x) = -\frac{8}{x^2}$; $f'(-1) = -8$
C) $f'(x) = -8x^2$; $f'(-1) = -8$
D) $f'(x) = 8$; $f'(-1) = 8$

Answer: B

Find an equation for the line tangent to the graph of the given function at the indicated point. $\sqrt{2}$

189) $f(x) = \frac{x^2}{4}$ at (-4, 4)			
A) y = -2x - 8 Answer: B	B) y = -2x - 4	C) y = -8 - 4	D) $y = -2x + 4$
190) $f(x) = \frac{x^3}{2}$ at (4, 32)			
A) y = 8x + 64 Answer: B	B) y = 24x - 64	C) y = 8x - 64	D) y = 64x + 24
191) f(x) = $\frac{x^3}{4}$ at (-5, - $\frac{125}{4}$)		
A) $y = \frac{125}{2}x + \frac{25}{4}$	B) $y = \frac{25}{4}x + \frac{125}{2}$	C) $y = \frac{75}{4}x + \frac{125}{2}$	D) $y = \frac{125}{2}x + \frac{75}{4}$
Answer: C 102) $f(x) = \frac{40}{2}$ at (1, 40)			
(192) $f(x) = \frac{1}{x} at(1, 40)$ A) $y = -80x + 120$ Answer: B	B) y = - 40x + 80	C) y = - 40x + 40	D) y = - 40x
193) $f(x) = \frac{36}{x}$ at (1, 36)			
A) y = - 72x + 108 Answer: C	B) y = - 36x	C) y = - 36x + 72	D) y = - 36x + 36
194) f(x) = x ² - 2 at (-4, 14) A) y = -8x - 18 Answer: A	B) y = -8x - 34	C) y = -4x - 18	D) y = -8x - 36
195) f(x) = x ² + 3 at (4, 19) A) y = 8x - 26 Answer: B	B) y = 8x - 13	C) y = 4x - 13	D) y = 8x - 29
196) f(x) = x ² - x at (4, 12) A) y = x + 16 Answer: B	B) y = x - 16	C) y = x + 20	D) y = x - 20

197)
$$f(x) = x^3 - x^2$$
 at (0, 0)
A) $y = -2$
B) $y = 0$
C) $y = 1$
D) $y = 3$
Answer: B
198) $f(x) = x - x^2$ at (-1, -2)
A) $y = -x - 1$
B) $y = -3x + 1$
C) $y = -x + 1$
D) $y = -x + 1$

List the x-values in the graph at which the function is not differentiable.

200)

201)

202)

B) x = 1, x = 2, x = 3 D) x = 1, x = 3

B) Function is differentiable at all points.D) x = 2, x = 5

205)

A) Function is differentiable at all points. C) x = -1, x = 1 B) x = -1, x = 0, x = 1 D) x = 0

206)

Answer: D

A) Function is differentiable at all points. C) x = -2, x = 0, x = 2Answer: C B) x = 0 D) x = -2, x = 2

Solve the problem.

208) Suppose that the cost, p, of shipping a 3-pound parcel depends on the distance shipped, x, according to the function p(x) depicted in the graph. At what values is the function p not differentiable?

209) Suppose that the cost, C, of producing x units of a product can be illustrated by the given graph. At what values is the function C not differentiable?

210) Postal rates are \$0.37 for the first ounce and \$0.23 for each additional ounce (or fraction thereof). If x is the weight of a letter in ounces, then p(x) is the cost of mailing the letter, where

 $\begin{array}{ll} p(x) = \$0.37, & \mbox{if } 0 < x \le 1, \\ p(x) = \$0.60, & \mbox{if } 1 < x \le 2, \\ p(x) = \$0.83, & \mbox{if } 2 < x \le 3, \end{array}$

and so on, up to 13 ounces. The graph of p is shown below.

At what values is the function p not differentiable? A) 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 C) Function is differentiable for all x in the domain Answer: B

B)	1,	2,	3,	4,	5,	6,	7,	8	, 9,	10), 11	1, 12	2	
D)	0,	1,	2,	3,	4,	5,	6,	7,	8,	9,	10,	11,	12,	

211) In one city, taxicabs charge passengers \$2.00 for entering a cab and then \$0.40 for each one-quarter of a mile (or fraction thereof) that the cab travels. (There are additional charges for slow traffic and idle times, but these are not considered here). If x is the distance traveled in miles, then C(x) is the cost of the taxi fare, where

C(x) = \$2.00, if x = 0,

C(x) =\$2.40, if 0 < x < 0.25,

C(x) = \$2.80, if $0.25 \le x < 0.5$,

C(x) = \$3.20, if $0.5 \le x < 0.75$,

and so on. The graph of C is shown below.

At what values is the function C not differentiable? A) 0.25, 0.5, 0.75, 1.0, 1.25, 1.5..... C) 0.25, 0.5, 0.75, 1.0

Answer: A

B) Function is differentiable for all x in the domain D) 0.25, 0.5, 0.75

212) The graph shows the total sales in thousands of dollars from the distribution of x thousand catalogs. At what values is the function not differentiable?

 A) 20, 30
 B) 10, 20, 30, 40, 50

 C) Function is differentiable for all x in the domain
 D) 10, 20, 40

 Answer: C
 C

213) The graph shows the population in millions of bacteria t minutes after a bactericide is introduced into a culture. At what values of t is the function not differentiable?

Find f'(x). 214) $f(x) = \frac{1}{5x^2}$ A) $f'(x) = -\frac{1}{5x^3}$ B) $f'(x) = -\frac{2}{5x^3}$ C) $f'(x) = \frac{2}{5x^3}$ D) $f'(x) = -\frac{2}{5x}$

Answer: B

Answer: A

215)
$$f(x) = \frac{2}{x^3}$$

A) $f'(x) = -\frac{6}{x^4}$ B) $f'(x) = \frac{2}{x^4}$ C) $f'(x) = -\frac{6}{x^2}$ D) $f'(x) = \frac{6}{x^4}$

Answer: A

216)
$$f(x) = \frac{8}{x+2}$$

A) $f'(x) = \frac{8}{(x+2)^2}$ B) $f'(x) = -8(x+2)^2$ C) $f'(x) = -\frac{8}{(x+2)^2}$ D) $f'(x) = 8$

Answer: C

217)
$$f(x) = \sqrt{x+4}$$

A) $f'(x) = -\frac{1}{2\sqrt{x+4}}$ B) $f'(x) = \frac{1}{2\sqrt{x+4}}$ C) $f'(x) = \frac{\sqrt{x+4}}{2}$ D) $f'(x) = \frac{\sqrt{x+4}}{x+4}$

Answer: B

218)
$$f(x) = \frac{x}{x+4}$$

A) $f'(x) = \frac{-4}{(x+4)^2}$ B) $f'(x) = \frac{4}{x+4}$ C) $f'(x) = \frac{4}{x^2}$ D) $f'(x) = \frac{4}{(x+4)^2}$

Answer: D

219)
$$f(x) = \sqrt{5x}$$

A) $f'(x) = 5\sqrt{5x}$
B) $f'(x) = \frac{5}{2\sqrt{5x}}$
C) $f'(x) = \frac{5}{\sqrt{5x}}$
D) $f'(x) = \frac{1}{\sqrt{5x}}$

Answer: B

Find the derivative.

220) y = x⁷

A) $\frac{dy}{dx} = x^7$ B) $\frac{dy}{dx} = x^6$ C) $\frac{dy}{dx} = 7x^6$ D) $\frac{dy}{dx} = 7x^7$

Answer: C

221) $y = 7 - 10x^2$ A) $\frac{dy}{dx} = -20$ B) $\frac{dy}{dx} = 7 - 10x$ C) $\frac{dy}{dx} = -20x$ D) $\frac{dy}{dx} = 7 - 20x$

Answer: C

222)
$$y = 0.95x^{11.8}$$

A) $\frac{dy}{dx} = 11.21x^{11.8}$
B) $\frac{dy}{dx} = 11.21x^{10.8}$
C) $\frac{dy}{dx} = 12.16x^{12.8}$
D) $\frac{dy}{dx} = 0.95x^{10.8}$

Answer: B

223)
$$y = 9 - 5x^3$$

A) $\frac{dy}{dx} = 9 - 15x^2$
B) $\frac{dy}{dx} = -15x$
C) $\frac{dy}{dx} = -10x^2$
D) $\frac{dy}{dx} = -15x^2$

Answer: D

224) $y = 5x^2 - 2.1x$ A) $\frac{dy}{dx} = 10x - 2.1$	B) $\frac{dy}{dx} = 5x - 2.1$	C) $\frac{dy}{dx} = 5x^2 - 2.1$	D) $\frac{dy}{dx} = 10x^2 - 2.1$
Answer: A 225) $y = \frac{1}{2}x^8 - \frac{1}{4}x^4$			
A) $\frac{dy}{dx} = 4x^8 - x^4$ Answer: D	B) $\frac{dy}{dx} = 4x^9 - x^5$	C) $\frac{dy}{dx} = \frac{1}{2}x^7 - \frac{1}{4}x^3$	D) $\frac{dy}{dx} = 4x^7 - x^3$
226) $f(x) = 6x^{130}$ A) $f'(x) = 780x^{130}$	B) f'(x) = 780x ¹³¹	C) f'(x) = 780x ¹²⁹	D) f'(x) = 6x ¹²⁹
Answer: C 227) $f(x) = 7x - 3$ A) $f'(x) = 7$	B) $f'(x) = 7x$	C) $f'(x) = 0$	D) $f'(x) = 4$
Answer: A 228) $f(x) = 4x^2 - 3x + 8$			
A) $f'(x) = 4x - 3$ Answer: D	B) $f'(x) = 4x^2 - 3$	C) $f'(x) = 8x^2 - 3$	D) f'(x) = 8x - 3
229) $f(x) = 2x^4 + 7x^3 - 6$ A) $f'(x) = 4x^3 + 3x^2 - 7$ C) $f'(x) = 4x^3 + 3x^2$ Answer: D		B) $f'(x) = 8x^3 + 21x^2 - 7$ D) $f'(x) = 8x^3 + 21x^2$	
230) $y = 6x^{-2} - 7x^3 - 9x$ A) $\frac{dy}{dx} = -12x^{-1} - 21x^2 - 9$ C) $\frac{dy}{dx} = -12x^{-1} - 21x^2$		B) $\frac{dy}{dx} = -12x^{-3} - 21x^{2}$ D) $\frac{dy}{dx} = -12x^{-3} - 21x^{2} - 9$	
Answer: D 231) $y = -10\sqrt{x}$	du 10	du	du E
A) $\frac{dy}{dx} = \frac{5}{\sqrt{x}}$ Answer: D	B) $\frac{dy}{dx} = -\frac{10}{\sqrt{x}}$	C) $\frac{dy}{dx} = 5\sqrt{x}$	D) $\frac{dy}{dx} = -\frac{3}{\sqrt{x}}$
232) $y = \sqrt[5]{x^4}$	B) dy _ 1	$c) \frac{dy}{dx} = \frac{5\sqrt[4]{x}}{\sqrt{x}}$	$\frac{dy}{dx} = \frac{4\sqrt{5}}{\sqrt{x}}$
A) $\frac{dx}{dx} = \frac{1}{5\sqrt{x}}$	$dx = \frac{5}{\sqrt{x}}$	$C_{j} \frac{dx}{dx} = \frac{1}{4}$	$dx = \frac{1}{5}$

Answer: A

233)
$$y = \frac{9}{x} - \frac{x}{9}$$

A) $\frac{dy}{dx} = -\frac{9}{x^2} + \frac{x}{9}$
B) $\frac{dy}{dx} = \frac{9}{x^2} - \frac{1}{9}$
C) $\frac{dy}{dx} = -9x - \frac{1}{9}$
D) $\frac{dy}{dx} = -\frac{9}{x^2} - \frac{1}{9}$
Answer: D

234)
$$y = \frac{3}{x^3} - \frac{3}{x}$$

A) $\frac{dy}{dx} = \frac{3}{x^4} + \frac{3}{x^2}$
B) $\frac{dy}{dx} = -\frac{9}{x^2} - 3x$
C) $\frac{dy}{dx} = -\frac{9}{x^4} + \frac{3}{x^2}$
D) $\frac{dy}{dx} = -\frac{9}{x^4} - \frac{3}{x^2}$

Answer: C

235)
$$f(x) = 20x^{1/2} - \frac{1}{2}x^{20}$$

A) $f'(x) = 10x^{-1/2} - 10x^{19}$
C) $f'(x) = 10x^{-1/2} - 10x^{10}$
Answer: A
B) $f'(x) = 10x^{1/2} - 10x^{10}$
D) $f'(x) = 10x^{1/2} - 10x^{19}$

236)
$$f(x) = 9x^{7/5} - 5x^2 + 10^4$$

A) $f'(x) = \frac{63}{5}x^{6/5} - 10x + 4000$
B) $f'(x) = \frac{63}{5}x^{2/5} - 10x$
C) $f'(x) = \frac{63}{5}x^{2/5} - 10x + 4000$
D) $f'(x) = \frac{63}{5}x^{6/5} - 10x$

Answer: B

237)
$$f(x) = 5\sqrt{x} + \sqrt[3]{x} - 3\sqrt[4]{x} + 4\sqrt[5]{x}$$

A) $f'(x) = \frac{5}{2}x^{-1/2} + \frac{1}{3}x^{-2/3} - \frac{3}{4}x^{-3/4} + \frac{4}{5}x^{-4/5}$
C) $f'(x) = \frac{5}{2}x^{-1/2} + \frac{1}{3}x^{2/3} - \frac{3}{4}x^{3/4} + \frac{4}{5}x^{-4/5}$

Answer: A

238)
$$f(x) = \sqrt[4]{x}$$

A) $f'(x) = \frac{5}{4}x^{5/4}$ B) $f'(x) = 3(\sqrt[3]{x})$

Answer: C

239)
$$f(x) = \frac{4}{\sqrt{x}} - \frac{3}{x} + \frac{6}{x^4}$$

A) $f'(x) = -\frac{2}{x^{3/2}} + \frac{3}{x^2} - \frac{24}{x^5}$
B) $f'(x) = -\frac{2}{x^{3/2}} - \frac{3}{x^2} - \frac{24}{x^5}$
D) $f'(x) = -2\sqrt{x} + \frac{3}{x^2}$

Answer: A

B)
$$f'(x) = \frac{1}{2}x^{-1/2} + \frac{1}{3}x^{-2/3} + \frac{1}{4}x^{-3/4} + \frac{1}{5}x^{-4/5}$$

D) $f'(x) = \frac{5}{2}x^{1/2} + \frac{1}{3}x^{2/3} - \frac{3}{4}x^{3/4} + \frac{4}{5}x^{4/5}$

C)
$$f'(x) = \frac{1}{4}x^{-3/4}$$
 D) $f'(x) = -\frac{5}{4}x^{-5/4}$

B) f'(x) =
$$-\frac{2}{x^{3/2}} - \frac{3}{x^2} - \frac{24}{x^3}$$

D) f'(x) = $-2\sqrt{x} + \frac{3}{x^2} - \frac{24}{x^3}$
Evaluate	e the derivative at the given valu	ie of x.		
240	0) If $f(x) = -4x^2 + 7x - 5$, find f'(5)			
	A) -38	B) -13	C) -33	D) -5
	Answer: C			
24	1) If $f(x) = \sqrt{x}$, find f'(9).	_		
	A) $\frac{1}{4}$	B) $\frac{1}{10}$	C) $\frac{2}{2}$	D) $\frac{3}{2}$
	0	18	3	Z
	Answer: A			
242	2) If $y = x^4 + 3x^3 - 2x + 2$, find $\frac{dy}{dx}$	$\frac{1}{5} x = -1$		
	A) -8	B) 3	C) 5	D) -10
	Answer: B			
243	3) If y = $4\sqrt{x^3} - 5\sqrt{x}$, find $\frac{dy}{dx} \Big _{x}$	= 16		
	A) <u>187</u>	B) <u>101</u>	C) <u>197</u>	D) <u>91</u>
	, 8 8	· 4	, 8	´ 4
	Answer: A			
244	4) If y = $9\sqrt{x^5} - 7\sqrt{x^3}$, find $\frac{dy}{dx}\Big _x$	= 4		
	A) 159	B) 96	C) 6	D) 8
	Answer: A			
24	5) If y = $-\frac{8}{x} + \frac{5}{x^2}$, find $\frac{dy}{dx} \Big _{x = 2}$			
	$(A) = \frac{3}{2}$	B) - <u>13</u>	C) <u>13</u>	D) <u>3</u>
	4	4	³ , 4	b) 4
	Answer: D			
240	6) If y = $-\frac{1}{x^5} + \frac{1}{x^3}$, find $\frac{dy}{dx}\Big _{x=1}^{x=1}$	I		
	A) 8	B) -8	C) -2	D) 2
	Answer: D			
24-	$\frac{1}{1}$ If $y = 7$, \sqrt{y} find dy			
Ζ4	$\left x - \frac{1}{x} - \sqrt{x} \right $			
	A) <u>11</u>	B) - <u>3</u>	$(1)\frac{3}{3}$	D) - <u>11</u>
	16	-/ 16	-, 16	/ 16

Find the equation of the line tangent to the graph of the function at the indicated point.

248) f(x) = x ² - 2 at (2, 2) A) y = x - 6 Answer: B	B) y = x - 6	C) y = x - 10	D) y = x - 12
249) f(x) = x ² + 1 at (3, 10) A) y = 6x - 8 Answer: A	B) y = 6x - 16	C) y = 6x - 17	D) y = 3x - 8
250) f(x) = x ² - x at (-4, 20) A) y = -9x + 16 Answer: D	B) y = -9x - 12	C) y = -9x + 12	D) y = -9x - 16
251) f(x) = x ³ - x ² at (0, 0) A) y = 3 Answer: C	B) y = -2	C) y = 0	D) y = 1
252) f(x) = x - x ² at (-2, -6) A) y = + 4 Answer: A	B) y = -3x + 4	C) y = -5x + 4	D) y = -3x - 4
253) $f(x) = \frac{27}{x} \text{ at } (1, 27)$ A) $y = -27x + 27$ Answer: B	B) y = - 27x + 54	C) y = - 54x + 81	D) y = - 27x
254) y = $4\sqrt{x^3}$ - $5\sqrt{x}$ at (16, 236)			

A)
$$y = \frac{187}{8}x - 138$$
 B) $y = \frac{91}{4}x - 128$ C) $y = \frac{197}{8}x - 158$ D) $y = \frac{101}{4}x - 168$

Find all values of x (if any) where the tangent line to the graph of the function is horizontal. 255) y = x + 3

A) $-\frac{1}{2}$	B) All real numbers	C) None	D) 0
Answer: C			
256) y = -2 A) 0 Answer: B	B) All real numbers	C) None	D) -2
257) y = x ² + 2x - 3 A) -1	B) 0	C) 1	D) $\frac{1}{2}$

258) y = 2 + 8x - x ² A) -8 Answer: C	B) -4	C) 4	D) 8
259) y = x ³ - 3x ² + 1 A) 0, 2 Answer: A	B) -2, 0, 2	C) 2	D) 0
260) y = x ³ - 12x + 2 A) 0, 2 Answer: B	B) 2, -2	C) 0	D) -2, 0, 2
261) $y = x^7 + \sqrt{x}$ A) $8\sqrt{\frac{1}{16}}$ Answer: C	B) - <u>1</u> 16	C) None	D) 0
262) $y = x^3 + 8x^2 - 204x + 34$ A) $-\frac{34}{3}, \frac{34}{3}, 6$ Answer: C	B) $\frac{34}{3}$, -6	C) - <u>34</u> , 6	D) 6
263) y = -0.01x ² - 0.1x + 60 A) -2.5 Answer: B	B) -5	C) 2.5	D) 5
264) $y = \frac{1}{3}x^3 - 2x + 7$ A) -2, 2 Answer: D	B) -7, 7	C) 7 - $\sqrt{2}$, 7 + $\sqrt{2}$	D) -√2,√2
the given function, find the points 265) y = 15x - x ² A) (1, 14) Answer: D	on the graph at which the ta B) (14, 112)	ngent line has slope 1. C) (7.5, 56.25)	D) (7, 56)
266) y = -0.25x ² + 7x A) (1, 6.75) Answer: D	B) (0, 0)	C) (14, 49)	D) (12, 48)
267) $y = -0.5x^2 + 7x$ A) (6, 24)	B) (0, 0)	C) (3, 12)	D) (1, 6.5)

Answer: A

For

268)
$$y = \frac{1}{3}x^3 - \frac{3}{2}x^2 + x$$

A) (0, 0) and $\left[3, -\frac{3}{2}\right]$ B) $\left[3, -\frac{3}{2}\right]$ C) (0, 0) and $\left[3, -\frac{7}{6}\right]$ D) (1, 0) and $\left[3, -\frac{3}{2}\right]$
Answer: A
269) $y = \frac{1}{3}x^3 - 2x^2 + x$
A) $\left[4, -\frac{10}{3}\right]$ B) (0, 0) and $\left[4, -\frac{20}{3}\right]$ C) (0, 0) and $\left(4, 1\right)$ D) (0, 0)
Answer: B
270) $y = \frac{1}{3}x^3 - 6x^2 + x$
A) (0, 0) and (12, -276) B) (12, -300)

$$y = \frac{1}{3}x^3 - 6x^2 + x
A) (0, 0) and (12, -276) B) (12, -300)
C) (0, 0) and (12, -300) D) (0, 1) and (12, -288)
Answer: A$$

271)
$$y = x^3 - \frac{3}{2}x^2 + x$$

A) $\left[3, \frac{33}{2}\right]$ and $\left[1, \frac{1}{2}\right]$
B) $(1, 0)$ and $\left[1, \frac{1}{2}\right]$
C) $\left[3, \frac{33}{2}\right]$ and $\left[0, \frac{1}{2}\right]$
D) $(0, 0)$ and $\left[1, \frac{1}{2}\right]$
Answer: D

272)
$$y = \frac{1}{3}x^3 - \frac{1}{2}x^2 + x + 1$$

A) (0, 0) and $\left[1, \frac{7}{6}\right]$ B) (0, 1) and $\left[1, \frac{11}{6}\right]$ C) (0, 0) and $\left[1, \frac{5}{6}\right]$ D) (0, 1) and $\left[1, \frac{7}{6}\right]$

Answer: B

273)
$$y = \frac{1}{3}x^3 - 4x^2 + x + 1$$

A) (0, 0) and $\begin{bmatrix} 8, -\frac{38}{3} \end{bmatrix}$
C) (0, 1) and $\begin{bmatrix} 8, -\frac{229}{3} \end{bmatrix}$
Answer: C

274)
$$y = \frac{1}{3}x^3 - 2x^2 + 4x + 1$$

A) $\left[0, \frac{10}{3}\right]$ and (3, 4) B) (1, 3) and (3, 4) C) (0, 3) and (3, 3) D) $\left[1, \frac{10}{3}\right]$ and (3, 4)
Answer: D

Solve the problem.

275) The perimeter, P, in feet, of a square garden plot is given by

P(s) = 4s,

where s is the length of one side of the garden plot, in feet.

(i) Find the rate of change of the perimeter with respect to the length of the side, s.

- (ii) Explain the meaning of your answer to part (i).
 - A) (i) P'(s) = $\frac{4}{s}$; (ii) The perimeter is changing at the variable rate of $\frac{4}{s}$ feet for every change of 1 foot in the side of the plot.
 - B) (i) P'(s) = 4s; (ii) The perimeter is changing at the variable rate of 4s feet for every change of 1 foot in the side of the plot.
 - C) (i) P'(s) = s; (ii) The perimeter is changing at the variable rate of s feet for every change of 1 foot in the side of the plot.
 - D) (i) P'(s) = 4; (ii) The perimeter is changing at the constant rate of 4 feet for every change of 1 foot in the side of the plot.

Answer: D

276) The median weight of a baby chimpanzee whose age is between 0 and 36 months can be approximated by the function $w(t) = 6.71 + 1.72t - 0.0581t^2 + 0.000656t^3$, where t is measured in months and w is measured in pounds.

Use this approximation to find the following for a baby chimpanzee with median weight:

(i) The rate of change of weight with respect to time.

(ii) The weight of the baby chimpanzee at age 30 months (rounded to the nearest pound).

(iii) The rate of change of the baby's weight with respect to time at age 30 months (rounded to the nearest hundredth).

- A) (i) w'(t) = 1.72 0.1162t + 0.001968t²;
 (ii) w(30) is about 24 pounds;
 (iii) w'(30) is about 0.01 pounds/month
- C) (i) w'(t) = 1.72 0.0581t + 0.001312t²;
 (ii) w(30) is about 24 pounds;
 (iii) w'(30) is about 1.16 pounds/month

- B) (i) w'(t) = $1.72 0.1743t + 0.002624t^2$; (ii) w(30) is about 24 pounds; (iii) w'(20) is about 1.15 pounds/month
 - (iii) w'(30) is about -1.15 pounds/month
- D) (i) w'(t) = 1.72 + 0.1162t 0.001968t²;
 (ii) w(30) is about 24 pounds;
 (iii) w'(30) is about 3.43 pounds/month

277)	If the price (in dollars) of a product is given by $P(x) = \frac{1024}{x} + 2200$, where x represents the demand for the			
	product, find the rate of change A) -\$64/unit	e of price when the demand is B) \$4/unit	s 16 units. C) \$64/unit	D) -\$4/unit
	Answer: D			
278)	The area $A(r) = \pi r^2$ of a circula respect to the radius when $r = 9$	r oil spill changes with the ra) ft?	dius. At what rate does the a	rea change with
	A) 18 ft ² /ft	B) 9π ft ² /ft	C) 18π ft ² /ft	D) 81π ft ² /ft
	Answer: C			
279)	Exposure to ionizing radiation exposed to identical doses of io days. The researchers find that	is known to increase the incionizing radiation, and the inciont the total number of rats that	dence of cancer. One thousan dence of cancer is recorded d have developed cancer t mon	d laboratory rats are uring subsequent ths after the initial
	exposure is modeled by N(t) = cases at the 7th month	1.18t ^{2.2} for $0 \le t \le 10$ months.	Find the rate of growth of the	e number of cancer
	A) 26.8 cases/month Answer: A	B) 30.8 cases/month	C) 187.7 cases/month	D) 21.8 cases/month
			702\\	
280)	(80) The body-mass index (BMI) is calculated using the equation $BMI = \frac{70.3W}{h^2}$, where w is in pounds and h is in inches. Find the rate of change of BMI with respect to weight for Sally, who is 62" tall and weighs 120 lbs. If both Sally and her brother Jesse gain the same small amount of weight, who will see the largest increase in BMI? Jesse is 73" tall and weighs 190 lbs.			
	A) 21.946, Jesse Answer: B	B) 0.183, Sally	C) 0.183, Jesse	D) 21.946, Sally
281)	The velocity of water in ft/s at t $Ib/in.^2$ of the water at the point	he point of discharge is giver of discharge. Find the rate of	h by v = 11.57 \sqrt{P} , where P is the change of the velocity with r	the pressure in respect to pressure if
	the pressure is 30.00 lb/in.^2 .		\mathbf{D} 21 (0 ft/s a sattle //a 2	
	A) $1.0562 \text{ II/S per ID/ID.}^2$		B) $31.69 \text{ H/S per Ib/In.}^2$	
	Answer: A			
For the fu	nction, find the interval(s) for v	which f'(x) is positive.		
282)	$f(x) = x^2 - 2x + 9$			
	A) (9, ∞)	B) (1 , ∞)	C) (2, ∞)	D) (4.5, ∞)
	Answer: B			
283)	$f(x) = x^2 + 3x + 8$			
	A) (8, ∞)	B) (4, ∞)	C) (-1.5, ∞)	D) (1.5, ∞)
	Answer: C			
284)	$f(x) = \frac{1}{3}x^3 - 6x^2 - 13x + 9$			
	A) (∞ , 1) and (13, ∞)	B) (-13, ∞)	C) (∞ , -1) and (13, ∞)	D) (-1, ∞)
	Answer: C			

285) $f(x) = \frac{2}{3}x^3 + 2x^2 - 16x + 8$			
A) (4, ∞) Answer: D	B) (∞ , -2) and (4, ∞)	C) (∞ , -4)	D) (∞ , -4) and (2, ∞)
Find the derivative.			
286) $y = (x + 8)(5x + 5)$ A) 0	B) 10x + 45	C) 5	D) 10x + 85
Answer: B			
287) y = (2x - 6)(4x + 1)			
A) 16x - 26	B) 16x - 11	C) 8x - 22	D) 16x - 22
Answer: D			
288) $y = (3x + 2)^2$			
A) 9x + 6	B) 9x + 4	C) 6x + 4	D) 18x + 12
Answer: D			
289) y = $(2x^2 + 5x)^2$			
A) $8x^3 + 30x^2 + 25x$	B) 16x ³ + 60x ² + 50x	C) 8x ³ + 30x ² + 50x	D) 16x ³ + 30x ² + 50x
Answer: B			
$290) y = (x^2 + 2)^3$			
(x + 2) A) $(x^5 + 12x^3 + 12x)$	B) $3x^{5} + 24x^{3} + 24x$	C) $6x^{5} \pm 20x^{3} \pm 24x$	0) 6v5 + 24v3 + 24v
Answer: D	D) 3A 7 7 24A 7 7 24A	C) 0x * + 20x * + 24x	D) 0x + 24x + 24x
291) $y = \sqrt{x}(3x - 5) + 6x - 10$			
A) 2x ^{1/2} - 5x ^{-1/2} + 6		B) 4.5x ^{1/2} - 5x-1/2 ₊ 6	
C) 2x ^{1/2} - 2.5x ^{-1/2} + 6		D) 4.5x ^{1/2} - 2.5x ^{-1/2} + 6	
Answer: D			
292) $y = \frac{x^2 - 4}{x}$			
A) y' = 1 - $\frac{4}{x^2}$	B) $y' = 1 + \frac{4}{x^2}$	C) $y' = x + \frac{4}{x^2}$	D) $y' = 1 + \frac{4}{x}$
Answer: B			
293) $y = \frac{x+3}{\sqrt{x}}$			
A) x ^{3/2} + 3√x	B) $\frac{1}{2\sqrt{x}} - \frac{3}{2 x^{3/2}}$	C) $\frac{1}{\sqrt{x}} + \frac{3}{x^{3/2}}$	D) $\frac{1}{2\sqrt{x}} - \frac{3}{2x}$

Answer: B

$$204) y = \frac{x^2 + 8x + 3}{\sqrt{x}}$$
A) $\frac{2x + 8}{\sqrt{x} + 32}$
B) $\frac{3x^2 + 8x - 3}{x}$
C) $\frac{2x + 8}{x}$
D) $\frac{3x^2 + 8x - 3}{2x^{3/2}}$
Answer: D
Differentiate.
$$205) y = x \cdot x^2$$
A) $\frac{dy}{dx} = x^2$
B) $\frac{dy}{dx} = 3x^3$
C) $\frac{dy}{dx} = 3x^2$
D) $\frac{dy}{dx} = x^3$
Answer: C
$$206) y = 2x(4x^2 - 2x)$$
A) $\frac{dy}{dx} = 16x^2 - 8x$
B) $\frac{dy}{dx} = 16x^2 - 4x$
C) $\frac{dy}{dx} = 24x^2 - 8x$
D) $\frac{dy}{dx} = 24x^2 - 4x$
Answer: C
$$207) y = (2 - 5x^2)(3x^2 - 60)$$
A) $\frac{dy}{dx} = -60x^3 + 612x$
D) $\frac{dy}{dx} = -60x^3 + 612x$
C) $\frac{dy}{dx} = -60x^3 + 612$
C) $\frac{dy}{dx} = -60x^3 + 612x$
D) $\frac{dy}{dx} = -60x^3 + 612x$
D) $\frac{dy}{dx} = 15x^3 + 306x$
Answer: C
$$208) (x) = (5x - 5)(6x + 1)$$
A) $\Gamma(x) = 60x - 12.5$
B) $\Gamma(x) = 60x - 2.5$
C) $\Gamma(x) = 60x - 3.5$
D) $\Gamma(x) = 30x - 2.5$
Answer: B
$$209) \Gamma(x) = (4x^3 + 3)(3x^7 - 8)$$
A) $\Gamma(x) = 102x^9 + 63x^6 - 96x^2$
D) $\Gamma(x) = 120x^9 + 63x^6 - 96x^2$
C) $\Gamma(x) = 10x^3 + 63x^6 - 96x^2$
D) $\Gamma(x) = 10x^3 + 63x^6 - 96x^2$
A) $\Gamma(x) = 10x^3 + 63x^6 - 96x^2$
D) $\Gamma(x) = 10x^3 + 63x^6 - 96x^2$
D) $\Gamma(x) = 10x^3 + 63x^6 - 96x^2$
D) $\Gamma(x) = 10x^3 + 63x^6 - 96x^2$
Answer: B
$$300) \Gamma(x) = (6x - 3)(5x^3 - x^2 + 1)$$
A) $\Gamma(x) = 10x^3 + 63x^2 + 4x - 8$
D) $\Gamma(x) = 15x^4 - 28x^3 + 24x^2 + 4x - 8$
C) $\Gamma(x) = 3x^4 - 24x^3 + 24x^2 + 4x - 8$
D) $\Gamma(x) = 15x^4 - 24x^3 + 24x^2 + 4x - 8$
D) $\Gamma(x) = 15x^4 - 24x^3 + 24x^2 + 4x - 8$
D) $\Gamma(x) = 15x^4 - 24x^3 + 24x^2 + 4x - 8$
D) $\Gamma(x) = 15x^4 - 24x^3 + 24x^2 + 4x - 8$
D) $\Gamma(x) = 15x^4 - 24x^3 + 24x^2 + 4x - 8$
D) $\Gamma(x) = 15x^4 - 24x^3 + 24x^2 + 4x - 8$
D) $\Gamma(x) = 15x^4 - 24x^3 + 24x^2 + 4x - 8$
D) $\Gamma(x) = 15x^4 - 24x^3 + 24x^2 + 4x - 8$
D) $\Gamma(x) = 15x^4 - 24x^3 + 24x^2 + 4x - 8$
D) $\Gamma(x) = 15x^4 - 24x^3 + 24x^2 + 4x - 8$
D) $\Gamma(x) = 15x^4 - 24x^3 + 24x^2 + 4x - 8$
D) $\Gamma(x) = 15x^4 - 24x^3 + 24x^2 + 4x - 8$
D) $\Gamma(x) = 15x^4 - 24x^3 + 24x^2 + 4x - 8$
D) $\Gamma(x) = 15x^4 - 24x^3 + 24x^2 + 4x - 8$
D) $\Gamma(x) = 15x^4 - 24x^3 + 24x^2 + 4x - 8$
D) $\Gamma(x) = 15x^4 - 24x^3 + 24x^2 + 4x - 8$
D) $\Gamma(x) = 15x^4 - 24x^3 + 24x^2 + 4x - 8$
D) $\Gamma(x) = 15x^4 - 24x^3 + 24x^2 + 4x - 8$
D) $\Gamma(x) = 15x^4$

303)
$$f(x) = (3x^4 + 8)^2$$

A) $f(x) = 9x^{16} + 64$
C) $f(x) = 144x^{15} + 96x^3$
Answer: B
304) $y = \left(\frac{2}{x} + x\right)\left(\frac{2}{x} - x\right)$
A) $\frac{dy}{dx} = -\frac{8}{x^3} - 2x$
B) $\frac{dy}{dx} = -\frac{8}{x} + 2x$
Answer: A
305) $f(x) = (5x - 3)(\sqrt{x} + 3)$
A) $f'(x) = 3.33x^{1/2} - 1.5x^{-1/2} + 15$
C) $f'(x) = 7.5x^{1/2} - 1.5x^{-1/2} + 15$
A) $f'(x) = 3.33x^{1/2} - 3x^{-1/2} + 15$
Answer: B
306) $f(x) = (6\sqrt{x} - 2)(5\sqrt{x} + 7)$
A) $f'(x) = 30x + 32x^{1/2}$
B) $f'(x) = 30x + 16x^{1/2}$
Answer: C) $f'(x) = 30 + 32x^{-1/2}$
Answer: D
307) $g(x) = (x^{-5} + 3)(x^{-3} + 5)$
A) $g'(x) = -8x^{-9} - 25x^{-6} - 9x^{-4}$
C) $g'(x) = -8x^{-9} - 25x^{-6} - 9x^{-4}$
D) $g'(x) = -8x^{-9} - 25x^{-6} - 9x^{-4}$

Answer: C

308)
$$f(x) = \left[x + \frac{5}{x}\right](x^2 - 6)$$

[Do not use algebra before differentiating]
A) $f'(x) = 2x\left[x + \frac{5}{x}\right] + (1 - 5x)(x^2 - 6)$
B) $f'(x) = 2x\left[x + \frac{5}{x}\right] + (1 - \frac{5}{x^2})(x^2 - 6)$
C) $f'(x) = 2x\left[x + \frac{5}{x}\right] + \left[1 - \frac{5}{x^2}\right](x^2 - 6)$
D) $f'(x) = x\left[x + \frac{5}{x}\right] + \left[1 + \frac{5}{x}\right](x^2 - 6)$

Answer: C

309) f(x) =
$$(2x^5 - 2x^3 - 2)(9x^2 - 5\sqrt{x})$$

[Do not use algebra before differentiating]
A) f'(x) = $(10x^4 - 6x^2)\left[18x - \frac{5}{2\sqrt{x}}\right]$
B) f'(x) = $(9x^2 - 5\sqrt{x})(10x^4 - 6x^2 - 2) + \left[18x - \frac{5\sqrt{x}}{2}\right](2x^5 - 2x^3 - 2)$
C) f'(x) = $(9x^2 - 5\sqrt{x})(2x^4 - 2x^2) + \left[9x - \frac{5}{2\sqrt{x}}\right](2x^5 - 2x^3 - 2)$
D) f'(x) = $(9x^2 - 5\sqrt{x})(10x^4 - 6x^2) + \left[18x - \frac{5}{2\sqrt{x}}\right](2x^5 - 2x^3 - 2)$

310)
$$y = \frac{x}{4x - 5}$$

A) $\frac{dy}{dx} = -\frac{5x}{(4x - 5)^2}$
B) $\frac{dy}{dx} = \frac{8x - 5}{(4x - 5)^2}$
C) $\frac{dy}{dx} = -\frac{5}{4x - 5}$
D) $\frac{dy}{dx} = -\frac{5}{(4x - 5)^2}$

311)
$$y = \frac{2x - 6}{6x^2 + 1}$$

A) $\frac{dy}{dx} = \frac{36x^2 - 72x + 2}{(6x^2 + 1)^2}$
B) $\frac{dy}{dx} = \frac{-12x^2 + 70x + 8}{(6x^2 + 1)^2}$
C) $\frac{dy}{dx} = \frac{12x^3 - 24x^2 + 74x}{(6x^2 + 1)^2}$
D) $\frac{dy}{dx} = \frac{-12x^2 + 72x + 2}{(6x^2 + 1)^2}$

Answer: D

312)
$$y = \frac{x^3}{x-1}$$

A) $\frac{dy}{dx} = \frac{-2x^3 + 3x^2}{(x-1)^2}$
B) $\frac{dy}{dx} = \frac{2x^3 - 3x^2}{(x-1)^2}$
C) $\frac{dy}{dx} = \frac{2x^3 + 3x^2}{(x-1)^2}$
D) $\frac{dy}{dx} = \frac{-2x^3 - 3x^2}{(x-1)^2}$

Answer: B

313)
$$y = \frac{x^2 - 4}{x}$$

A) $\frac{dy}{dx} = 1 + \frac{4}{x^2}$
B) $\frac{dy}{dx} = 1 + \frac{4}{x}$
C) $\frac{dy}{dx} = x + \frac{4}{x^2}$
D) $\frac{dy}{dx} = 1 - \frac{4}{x^2}$

Answer: A

314)
$$y = \frac{5x+9}{3x-1}$$

A) $\frac{dy}{dx} = \frac{30x+22}{(3x-1)^2}$
B) $\frac{dy}{dx} = -\frac{32}{(3x-1)^2}$
C) $\frac{dy}{dx} = -\frac{32x}{(3x-1)^2}$
D) $\frac{dy}{dx} = \frac{22}{3x-1}$

Answer: B

315)
$$g(x) = \frac{x^2 + 5}{x^2 + 6x}$$

A) $g'(x) = \frac{4x^3 + 18x^2 + 10x + 30}{x^2(x + 6)^2}$
B) $g'(x) = \frac{2x^3 - 5x^2 - 30x}{x^2(x + 6)^2}$
C) $g'(x) = \frac{x^4 + 6x^3 + 5x^2 + 30x}{x^2(x + 6)^2}$
D) $g'(x) = \frac{6x^2 - 10x - 30}{x^2(x + 6)^2}$

316)
$$q(t) = \frac{6t}{t^2 - 7t - 2}$$

A) $q'(t) = \frac{-6(t^2 + 2)}{(t^2 - 7t - 2)^2}$
B) $q'(t) = \frac{-6(t^2 - 7t + 2)}{(t^2 - 7t - 2)^2}$
C) $q'(t) = \frac{6}{2t - 7}$
D) $q'(t) = \frac{-6t^2}{(t^2 - 7t - 2)^2}$

Answer: A

317)
$$f(x) = \frac{x+9}{x-9}$$

A) $f'(x) = \frac{2}{x-9}$
B) $f'(x) = \frac{-18}{(x+9)^2}$
C) $f'(x) = \frac{-9}{(x-9)^2}$
D) $f'(x) = \frac{-18}{(x-9)^2}$

Answer: D

318)
$$f(x) = \frac{1}{x^7 + 2}$$

A) $f'(x) = -\frac{7x^6}{(x^7 + 2)^2}$ B) $f'(x) = -\frac{1}{(7x^7 + 2)^2}$ C) $f'(x) = \frac{1}{(7x^7 + 2)^2}$ D) $f'(x) = \frac{7x^6}{(x^7 + 2)^2}$

Answer: A

319)
$$g(x) = \frac{x^2}{x - 11}$$

A) $g'(x) = \frac{x^2 - 22x}{(x - 11)^2}$ B) $g'(x) = \frac{22x}{(x - 11)^2}$ C) $g'(x) = \frac{x^2}{(x - 11)^2}$ D) $g'(x) = \frac{x^2 + 22x}{(x - 11)^2}$

Answer: A

320)
$$y = \frac{x^2 - 3x + 2}{x^7 - 2}$$

A) $\frac{dy}{dx} = \frac{-5x^8 + 18x^7 - 13x^6 - 4x + 6}{(x^7 - 2)^2}$
B) $\frac{dy}{dx} = \frac{-5x^8 + 18x^7 - 14x^6 - 3x + 6}{(x^7 - 2)^2}$
C) $\frac{dy}{dx} = \frac{-5x^8 + 18x^7 - 14x^6 - 4x + 6}{(x^7 - 2)^2}$
D) $\frac{dy}{dx} = \frac{-5x^8 + 19x^7 - 14x^6 - 4x + 6}{(x^7 - 2)^2}$

Answer: C

321)
$$y = \frac{x^2 + 2x - 2}{x^2 - 2x + 2}$$

A) $\frac{dy}{dx} = \frac{4x^2 - 8x}{(x^2 - 2x + 2)^2}$
B) $\frac{dy}{dx} = \frac{-4x^2 + 8x}{(x^2 - 2x + 2)^2}$
C) $\frac{dy}{dx} = \frac{4x^2 + 8x}{(x^2 - 2x + 2)^2}$
D) $\frac{dy}{dx} = \frac{-4x^2 - 8x}{(x^2 - 2x + 2)^2}$

Answer: B

322)
$$y = \frac{\sqrt{x} + 3}{\sqrt{x} - 3}$$

A) $\frac{dy}{dx} = -\frac{\sqrt{x} + 3}{(\sqrt{x} - 3)^2}$
C) $\frac{dy}{dx} = \frac{3}{2\sqrt{x}(\sqrt{x} - 3)^2}$

Answer: B

323)
$$y = \frac{3x^2 + x - 1}{x^3 - 9x^2}$$

A) $\frac{dy}{dx} = \frac{15x^4 - 108x^3 + 12x^2 - 18x}{(x^3 - 9x^2)^2}$
C) $\frac{dy}{dx} = \frac{-3x^4 - 2x^3 + 12x^2 - 18x}{(x^3 - 9x^2)^2}$

Answer: C

324)
$$y = \frac{x^2 + 8x + 3}{\sqrt{x}}$$

A) $\frac{dy}{dx} = \frac{2x + 8}{x}$
B) $\frac{dy}{dx} = \frac{2x + 8}{2x^{3/2}}$

Answer: D

325)
$$y = \frac{4x - 3}{x^2 - 4x + 1}$$

A) $\frac{dy}{dx} = \frac{4x^3 - 24x^2 + 26x - 12}{(x^2 - 4x + 1)^2}$
B) $\frac{dy}{dx} = \frac{4x^2 + 6x - 8}{x^2 - 4x + 1}$
C) $\frac{dy}{dx} = \frac{12x^2 - 38x + 16}{(x^2 - 4x + 1)^2}$
D) $\frac{dy}{dx} = \frac{-4x^2 + 6x + -1}{(x^2 - 4x + 1)^2}$

Answer: D

326)
$$f(t) = \frac{t^3}{\sqrt{t-3}}$$

A) $f'(t) = \frac{t^{5/2} - 9t^2}{2(\sqrt{t-3})^2}$
B) $f'(t) = \frac{5t^3 - 18t^2}{2\sqrt{t}(\sqrt{t-3})^2}$
C) $f'(t) = \frac{5t^{5/2} - 18t^2}{2(\sqrt{t-3})^2}$
D) $f'(t) = \frac{5t^3 - 18t^2}{2(\sqrt{t-3})^2}$

B)
$$\frac{dy}{dx} = -\frac{3}{\sqrt{x}(\sqrt{x}-3)^2}$$

D) $\frac{dy}{dx} = -\frac{3\sqrt{x}}{(\sqrt{x}-3)^2}$

B)
$$\frac{dy}{dx} = \frac{-3x^4 - 3x^3 + 21x^2 - 18x}{(x^3 - 9x^2)^2}$$

D) $\frac{dy}{dx} = \frac{15x^4 - 2x^3 + 12x^2 - 18x}{x^3 - 9x^2}$

C)
$$\frac{dy}{dx} = \frac{3x^2 + 8x - 3}{x}$$
 D) $\frac{dy}{dx} = \frac{3x^2 + 8x - 3}{2x^{3/2}}$

B)
$$\frac{dy}{dx} = \frac{4x^2 + 6x - 8}{x^2 - 4x + 1}$$

D) $\frac{dy}{dx} = \frac{-4x^2 + 6x + -8}{(x^2 - 4x + 1)^2}$

$$f'(t) = \frac{5t^3 - 18t^2}{2\sqrt{t}(\sqrt{t} - 3)^2}$$
$$f'(t) = \frac{5t^3 - 18t^2}{2\sqrt{t}(\sqrt{t} - 3)^2}$$

327)
$$h(r) = \frac{r^2 + 4r + 1}{7r + 9}$$

A) $h'(r) = \frac{7r^2 + 20r + 29}{(7r + 9)^2}$
B) $h'(r) = \frac{7r^2 + 18r + 29}{7r + 9}$
C) $h'(r) = \frac{7r^2 + 18r + 29}{(7r + 9)^2}$
D) $h'(r) = \frac{2r + 4}{7}$

Answer: C

328)
$$q(t) = \frac{t^2 - 4t - 3}{t^2 + 3t - 7}$$

A) $q'(t) = \frac{7t^2 - 8t + 37}{(t^2 + 3t - 7)^2}$
B) $q'(t) = \frac{7t^2 - 14t + 37}{(t^2 + 3t - 7)^2}$
C) $q'(t) = \frac{7t^2 - 8t + 37}{t^2 + 3t - 7}$
D) $q'(t) = \frac{7t^2 - 8t + 28}{(t^2 + 3t - 7)^2}$

Answer: A

329)
$$f(x) = \frac{x}{6 + x^{-1}}$$

A) $f'(x) = \frac{6x^2}{(6x + 1)^2}$
B) $f'(x) = \frac{6x^2 + 2x}{(6x + 1)^2}$
C) $f'(x) = \frac{1}{(6 + x^{-1})^2}$
D) $f'(x) = -x^2$

Answer: B

Write an equation of the tangent line to the graph of y = f(x) at the point on the graph where x has the indicated value. 330) $f(x) = (-5x^2 + 5x - 2)(-2x + 3), x = 0$

A)
$$y = -x + 6$$
 B) $y = x - 6$ C) $y = -x - 6$ D) $y = x + 6$

Answer: B

331)
$$f(x) = \frac{-2x^2 + 15}{2x + 3}$$
, $x = 0$
A) $y = -\frac{10}{3}x + 5$
B) $y = \frac{10}{3}x + 5$
C) $y = \frac{10}{3}x - 5$
D) $y = -\frac{10}{3}x - 5$

Solve the problem.

332) Assume that the temperature of a person during an illness is given by $T(t) = \frac{3t}{t^2 + 1} + 98.6$, where T is the

temperature, in degrees Fahrenheit, at time t, in hours. Find the rate of change of the temperature with respect to time.

A)
$$\frac{dT}{dt} = \frac{3(1-t^2)}{(t^2+1)^2}$$
 B) $\frac{dT}{dt} = \frac{3}{t^2+1}$ C) $\frac{dT}{dt} = \frac{3(t^2-1)}{(t^2+1)^2}$ D) $\frac{dT}{dt} = \frac{3(1-t^2)}{t^2+1}$

333) The population P, in thousands, of a small city is given by P(t) = $\frac{700t}{2t^2 + 1}$, where t is the time, in months. Find the

growth rate.

A)
$$P'(t) = \frac{700(1 - 2t^2)}{(2t^2 + 1)^2}$$
 B) $P'(t) = \frac{700(2t^2 - 1)}{(2t^2 + 1)^2}$ C) $P'(t) = \frac{700(1 + 6t^2)}{(2t^2 + 1)^2}$ D) $P'(t) = \frac{700(1 - 2t^2)}{2t^2 + 1}$

Answer: A

334) A men's suit manufacturer finds that the cost, in dollars, of producing x suits is given by C(x) = 970 + 13√x. Find the rate at which the average cost is changing when 200 suits have been produced. Round the answer to four decimal places.
A) \$5.3096/suit
B) \$0.0265/suit
C) -\$0.0265/suit
D) -\$5.3096/suit

A) \$5.3096/suit	B) \$0.0265/suit	C) -\$0.0265/suit	D) -\$5.3096/sui
Answer: C			

335) A vitamin water maker finds that the revenue, in dollars, from the sale of x bottles of vitamin water is given by $R(x) = 9.3x^{0.7}$. Find the rate at which average revenue is changing when 63 bottles of vitamin water have been produced. Round the answer to four decimal places.

A) -\$0.0128/bottle	B) \$1.8784/bottle	C) \$0.0128/bottle	D) -\$1.8784/bottle
Answer: A			

336) An appliance manufacturer has determined that the cost, in dollars, of producing x espresso makers is given by $C(x) = 4200 + 1.4x^{0.6}$. If the revenue from the sale of x espresso makers is given by $R(x) = 59x^{0.8}$, find the rate at which the average profit per espresso maker is changing when 60 espresso makers have been made and sold. Round to the nearest cent.

A) \$1.08/espresso maker	B) \$1.26/espresso maker
C) -\$1.08/espresso maker	D) -\$1.26/espresso maker

Answer: A

Differentiate.

337)
$$f(x) = \frac{(x-1)(x^2 + x + 1)}{9}$$

A) $f'(x) = \frac{x^2}{81}$ B) $f'(x) = \frac{x^2}{9}$ C) $f'(x) = \frac{x^2}{27}$ D) $f'(x) = \frac{x^2}{3}$

Answer: D

338)
$$f(x) = \frac{(x+4)(x+1)}{(x-4)(x-1)}$$

A) $f'(x) = \frac{-10x^2 + 40}{(x-4)^2(x-1)^2}$
B) $f'(x) = \frac{-x^2 + 8}{(x-4)^2(x-1)^2}$
C) $f'(x) = \frac{10x^2 - 40}{(x-4)^2(x-1)^2}$
D) $f'(x) = \frac{10x - 40}{(x-4)^2(x-1)^2}$

339)
$$f(x) = \frac{(x - 9)(x^2 + 3x)}{x^3}$$

A) $f'(x) = x - \frac{54}{x^2} - \frac{54}{x^3}$ B) $f'(x) = \frac{12}{x^2} - \frac{54}{x^3}$ C) $f'(x) = 54 + \frac{54}{x}$ D) $f'(x) = \frac{6}{x^2} + \frac{54}{x^3}$

340)
$$f(x) = \left(\frac{1+2x}{2x}\right)(2-x)$$

A) $f'(x) = -\frac{1}{x^2} - 1$ B) $f'(x) = \frac{1}{x^2} + 1$ C) $f'(x) = \frac{1}{x^2} + 2$ D) $f'(x) = x^2 - 1$

Answer: A

341)
$$f(t) = \left(\frac{t^7 + 4}{2t}\right) \left(\frac{t^8 + 6}{t}\right)$$

A)
$$f'(t) = \frac{13}{2}t^{12} - \frac{24}{t^3}$$

B)
$$f'(t) = \frac{17}{2}t^{16} + 20t^9 + 27t^8 - \frac{24}{t^3}$$

C)
$$f'(t) = \frac{13}{2}t^{12} + 12t^5 + 15t^4 - \frac{24}{t^3}$$

D)
$$f'(t) = \frac{1}{2}t^{12} + 2t^5 + 3t^4 + \frac{24}{t^3}$$

Answer: C

342)
$$f(x) = \frac{(3x - 1)(2x^{2} + 2)}{4x + 3}$$

A)
$$f'(x) = \frac{24x^{3} + 46x^{2} + 12x + 26}{(4x + 3)^{2}}$$

C)
$$f'(x) = \frac{48x^{3} + 46x^{2} - 12x + 26}{(4x + 3)^{2}}$$

Answer: C

343)
$$f(x) = \frac{\frac{3}{x} + 1}{\frac{7}{x^2} - 1}$$

A) $f'(x) = \frac{3x^2 + 14x + 21}{(7 - x^2)^2}$
C) $f'(x) = \frac{-3x^2 - 14x + 21}{(7 - x^2)^2}$

B)
$$f'(x) = \frac{48x^3 + 54x^2 - 12x + 26}{(4x + 3)^2}$$

D) $f'(x) = \frac{48x^3 + 46x^2 - 12x + 26}{4x + 3}$

B)
$$f'(x) = \frac{-2x^2 - 3x + 7}{(7 - x^2)^2}$$

D) $f'(x) = \frac{-3x^2 - 14x - 21}{(7 - x^2)^2}$

344)
$$f(x) = x(x^2 + 2)(x^3 + 6x + 4)$$

A) $f'(x) = x(x^2 + 2)(3x^2 + 6) + (x^3 + 6x + 4)(3x^2 + 2)$
C) $f'(x) = x(x^2 + 2)(3x^2 + 6) + (x^3 + 6x + 4)(3x^2 + 2)$
D) $f'(x) = x(x^2 + 2)(3x^2 + 6) + (x^3 + 6x + 4)(3x^2 + 2)$
D) $f'(x) = x(x^2 + 2)(3x^2 + 6) + (x^3 + 6x + 4)(3x^2 + 2)$
D) $f'(x) = x(x^2 + 2)(3x^2 + 6) + (x^3 + 6x + 4)$
Answer: B
345) $f(x) = (4x + 5)^2$
A) $f'(x) = 8(4x + 5)^2$
B) $f'(x) = 2(4x + 5)$
C) $f'(x) = 8(4x + 5)$
D) $f'(x) = 4(4x + 5)$
Answer: C
346) $f(x) = -36(-9x - 5)^3$
C) $f'(x) = 4(-9x - 5)^3$
Answer: A
347) $f(x) = -36(-9x - 5)^3$
A) $f'(x) = -38(-9x - 5)^3$
A) $f'(x) = -38(-9x - 5)^3$
A) $f'(x) = -38(-9x - 5)^3$
B) $f'(x) = -32x(4x^2 - 8)^3$
A) $f'(x) = -38(-2x - 8)^3$
A) $f'(x) = -\frac{2x}{\sqrt{1 - 4x}}$
A) $f'(x) = -\frac{2x}{\sqrt{1 - 4x}}$
B) $f'(x) = -\frac{4}{\sqrt{1 - 4x}}$
C) $f'(x) = \frac{1}{2\sqrt{1 - 4x}}$
D) $f'(x) = -\frac{2}{\sqrt{1 - 4x}}$
A) $f'(x) = -\frac{8x}{(4x^2 - x)^{1/3}}$
B) $f'(x) = -\frac{10x + 4}{(3(x^2 - x)^{2/3}}$
Answer: D
351) $f(x) = \frac{1}{(5x^2 + 4)^2}$
B) $f'(x) = -\frac{10x + 4}{(5x^2 + 4)^2}$
C) $f'(x) = -\frac{10x}{5x^2 + 4}$
A) $f'(x) = -\frac{1}{(5x^2 + 4)^2}$
B) $f'(x) = -\frac{10x + 4}{(5x^2 + 4)^2}$
C) $f'(x) = -\frac{10x}{5x^2 + 4}$
D) $f'(x) = -\frac{10x}{(5x^2 + 4)^2}$

352)
$$f(x) = \frac{1}{\sqrt{4x+8}}$$

A) $f'(x) = -\frac{1}{2(4x+8)^{3/2}}$
B) $f'(x) = -\frac{2}{(4x+8)^{1/2}}$
C) $f'(x) = \frac{4}{(4x+8)^{3/2}}$
D) $f'(x) = -\frac{2}{(4x+8)^{3/2}}$

353)
$$f(x) = \sqrt{11x - x^3}$$

A) $f'(x) = \frac{1}{2\sqrt{11x - x^3}}$
B) $f'(x) = \frac{1}{2\sqrt{11 - 3x^2}}$
C) $f'(x) = \frac{-3x^2}{\sqrt{11x - x^3}}$
D) $f'(x) = \frac{11 - 3x^2}{2\sqrt{11x - x^3}}$

Answer: D

354)
$$f(x) = \frac{1}{(5x^2 + 9x - 1)^3}$$

A) $f'(x) = -\frac{3(10x + 9)}{(5x^2 + 9x - 1)^4}$
B) $f'(x) = -\frac{3}{(5x^2 + 9x - 1)^4}$
C) $f'(x) = \frac{(10x + 9)}{(5x^2 + 9x - 1)^4}$
D) $f'(x) = -\frac{3(10x + 9)}{(5x^2 + 9x - 1)^3}$

Answer: A

355)
$$f(x) = (x^3 - 8)^{2/3}$$

A) $f'(x) = \frac{2x}{\sqrt[3]{x^3 - 8}}$
B) $f'(x) = \frac{x^2}{\sqrt[3]{x^3 - 8}}$
C) $f'(x) = \frac{2x^2}{\sqrt[3]{x^3 - 8}}$
D) $f'(x) = \frac{x}{\sqrt[3]{x^3 - 8}}$

Answer: C

356)
$$f(x) = \sqrt{15x - x^7}$$

A) $f'(x) = \frac{1}{2\sqrt{15x - x^7}}$
B) $f'(x) = \frac{1}{2\sqrt{15 - 7x^6}}$
C) $f'(x) = \frac{15 - 7x^6}{2\sqrt{15x - x^7}}$
D) $f'(x) = \frac{-7x^6}{\sqrt{15x - x^7}}$

Answer: C

357)
$$f(x) = \frac{5}{(2x - 3)^4}$$

A) $f'(x) = \frac{-40}{(2x - 3)^5}$ B) $f'(x) = \frac{5}{4(2x - 3)^3}$ C) $f'(x) = \frac{-40}{(2x - 3)^3}$ D) $f'(x) = \frac{5}{8(2x - 3)^5}$

358)
$$y = (3x^2 + 5x + 1)^{3/2}$$

A) $\frac{dy}{dx} = \frac{3}{2}(6x + 5)(3x^2 + 5x + 1)^{1/2}$
C) $\frac{dy}{dx} = (6x + 5)(3x^2 + 5x + 1)^{1/2}$

Answer: A

359)
$$g(x) = \left(5x^5 - 3x + \frac{1}{x^2}\right)^{6/5}$$

A) $g'(x) = \frac{6}{5}\left(25x^4 - 3 - \frac{2}{x^3}\right)^{1/5}$
C) $g'(x) = \frac{6}{5}\left(5x^5 - 3x + \frac{1}{x^2}\right)^{1/5}\left(25x^4 - 3 - \frac{2}{x^3}\right)^{1/5}$

Answer: C

360)
$$f(x) = \sqrt[3]{x^7 + 5x}$$

A) $f'(x) = \frac{1}{3}(7x^6 + 5)^{-2/3}$
C) $f'(x) = \frac{1}{3}(x^7 + 5x)^{-2/3}(7x^6 + 5)^{-2/3}$

Answer: C

361)
$$f(x) = (3x^5 - 4x^4 + 2)^{304}$$

A) $f'(x) = 304(3x^5 - 4x^4 + 2)^{303}$
C) $f'(x) = 304(3x^5 - 4x^4 + 2)^{303}(5x^4 - 4x^3)$
Answer: D

362)
$$f(x) = (4x^2 - 4)^4 - (1 + 4x^3)^5$$

A) $f'(x) = 32x(4x^2 - 4)^3 - 12x^2(1 + 4x^3)^4$
C) $f'(x) = 32x(4x^2 - 4)^3 - 60x^2(1 + 4x^3)^4$
Answer: C

363)
$$f(x) = \sqrt{1 - 14x} + (1 - 7x)^2$$

A) $f'(x) = \frac{1}{2\sqrt{1 - 14x}} + 2(1 - 7x)$
C) $f'(x) = \frac{7}{\sqrt{1 - 14x}} + 14(1 - 7x)$

364)
$$f(x) = 3x(4x + 3)^3$$

A) $f'(x) = 3(4x + 3)^3(7x + 3)$
C) $f'(x) = 3(4x + 3)^2(16x + 3)$
Answer: C

B)
$$\frac{dy}{dx} = \frac{3}{2}(3x^2 + 5x + 1)^{1/2}$$

D) $\frac{dy}{dx} = (3x^2 + 5x + 1)^{1/2}$

B)
$$g'(x) = \frac{6}{5} \left[5x^5 - 3x + \frac{1}{x^2} \right]^{1/5}$$

D) $g'(x) = \frac{6}{5} \left[5x^5 - 3x + \frac{1}{x^2} \right]^{1/5} \left[25x^4 - 3 - \frac{2}{x} \right]^{1/5}$

B)
$$f'(x) = \frac{1}{3}(x^7 + 5x)^{-2/3}$$

D) $f'(x) = \frac{1}{3}(x^7 + 5x)^{1/2}(7x^6 + 5)$

B)
$$f'(x) = 304(15x^4 - 16x^3)^{303}$$

D) $f'(x) = 304(3x^5 - 4x^4 + 2)^{303}(15x^4 - 16x^3)$

B)
$$f'(x) = 4(4x^2 - 4)^3 - 5(1 + 4x^3)^4$$

D) $f'(x) = (32x - 4)(4x^2 - 4)^3 - (1 + 60x^2)(1 + 4x^3)^4$

B)
$$f'(x) = -\frac{14}{\sqrt{1-14x}} - 7(1-7x)$$

D) $f'(x) = -\frac{7}{\sqrt{1-14x}} - 14(1-7x)$

B) $f'(x) = 3(16x + 3)^2$ D) $f'(x) = 3(4x + 3)^2$

365)
$$f(x) = \left(\frac{4x+5}{x-3}\right)^5$$

A) $f'(x) = \left(\frac{4x+5}{x-3}\right)^4$
C) $f'(x) = \left(\frac{-85}{(x-3)^2}\right)^4$

366)
$$y = (x + 1)^2(x^2 + 1)^{-3}$$

A) $\frac{dy}{dx} = 2(x + 1)(x^2 + 1)^{-4}(2x^2 + 3x - 1)$
C) $\frac{dy}{dx} = -2(x + 1)(x^2 + 1)^{-4}(2x^2 + 3x - 1)$

B)
$$f'(x) = \frac{17(4x+5)^4}{(x-3)^2(x-3)^4}$$

D) $f'(x) = \frac{-85(4x+5)^4}{(x-3)^2(x-3)^4}$

B)
$$\frac{dy}{dx} = 2(x + 1)(x^2 + 1)^{-4}(2x^2 - 3x - 1)$$

D) $\frac{dy}{dx} = -2(x + 1)(x^2 + 1)^{-4}(2x^2 - 3x - 1)$

367)
$$y = (2x - 1)^3(x + 7)^{-3}$$

A) $\frac{dy}{dx} = 45(2x - 1)^3(x + 7)^{-2}$
B) $\frac{dy}{dx} = 45(2x - 1)^2(x + 7)^{-3}$
C) $\frac{dy}{dx} = 45(2x - 1)^2(x + 7)^{-4}$
D) $\frac{dy}{dx} = 45(2x - 1)^3(x + 7)^{-4}$

Answer: C

368)
$$y = x \sqrt{x^2 + 1}$$

A) $\frac{dy}{dx} = \frac{x^2 + 1}{\sqrt{x^2 + 1}}$
B) $\frac{dy}{dx} = \frac{\sqrt{x^2 + 1}}{2x^2 + 1}$
C) $\frac{dy}{dx} = \frac{2x^2 + 1}{\sqrt{x^2 + 1}}$
D) $\frac{dy}{dx} = \frac{\sqrt{x^2 + 1}}{x^2 + 1}$

Answer: C

369)
$$y = \frac{3}{\sqrt{x^2 + 3}}{x}$$

A) $\frac{dy}{dx} = \frac{3}{x^2(x^2 + 3)^{2/3}}$
C) $\frac{dy}{dx} = \frac{x^2 + 9}{3x^2(x^2 + 3)^{2/3}}$

Answer: D

370)
$$y = \frac{1}{5}(9x + 12)^3 + \left(1 - \frac{1}{x^3}\right)^{-1}$$

A) $\frac{dy}{dx} = \frac{3}{5}(9x)^2 - \left(\frac{3}{x^4}\right)^{-2}$
C) $\frac{dy}{dx} = \frac{27}{5}(9x + 12)^2 - \frac{3}{x^4}\left(1 - \frac{1}{x^3}\right)^{-2}$

C)
$$\frac{dy}{dx} = \frac{2x + 1}{\sqrt{x^2 + 1}}$$
 D) $\frac{dy}{dx} = \frac{\sqrt{x^2 + 1}}{x^2 + 1}$

B)
$$\frac{dy}{dx} = \frac{-3}{x^2(x^2+3)^{2/3}}$$

D) $\frac{dy}{dx} = \frac{-x^2-9}{3x^2(x^2+3)^{2/3}}$

B)
$$\frac{dy}{dx} = \frac{9}{5}(9x + 12)^2 + \frac{3}{x^4}\left(1 - \frac{1}{x^3}\right)^{-2}$$

D) $\frac{dy}{dx} = \frac{3}{5}(9x + 12)^2 - \left(1 - \frac{1}{x^3}\right)^{-2}$

371)
$$h(z) = \sqrt[5]{\frac{7z+2}{-8z+1}}$$

A) $h'(z) = \frac{23(7z+2)^{-4/5}}{5(1-8z)^2(1-8z)^{-4/5}}$
B) $h'(z) = \frac{23(7z+2)^{-4/5}}{(1-8z)^2(1-8z)^{-4/5}}$
C) $h'(z) = -\frac{7(7z+2)^{-4/5}}{40(1-8z)^{-4/5}}$
D) $h'(z) = \frac{(7z+2)^{-4/5}}{5(1-8z)^{-4/5}}$

C) 25x - 5

C) - <u>28</u> 7x - 5 D) 50x - 10

D) - $\frac{56}{(7x - 5)^3}$

Answer: A

Find an expression for dy/dx.

372) $y = u^2$ and u = 5x - 1A) 10x - 5 Answer: D

373)
$$y = \frac{4}{u^2}$$
 and $u = 7x - 5$
A) $-\frac{56}{7x - 5}$ B) $\frac{56x}{7x - 5}$

Answer: D

374) y = u(u - 1) and $u = x^2 + x$ A) $4x^3 + 6x^2 - 1$ B) $2x^2 + 4x + 1$ C) $4x^3 + 6x^2 - 2x$ D) $2x^2 + 4x$ Answer: A

375)
$$y = u^{-3/4}$$
 and $u = x^2 + 5x + 6$
A) $\frac{-3}{4(2x+5)(x^2+5x+6)^{3/4}}$
C) $\frac{-3(2x+5)}{4(x^2+5x+6)^{7/4}}$
B) $\frac{-3(2x+5)}{4(x^2+5x+6)^{-1/4}}$
D) $\frac{-3}{4(x^2+5x+6)^{7/4}}$

Answer: C

376)
$$y = (u + 3)(u - 3)$$
 and $u = x^2 + 6$
A) $4x(x^2 + 6)^2$
B) $2(x^2 + 6) + 2x$
C) $4x(x^2 + 6)$
D) $2(x^2 + 6)$
Answer: C

377)
$$y = \frac{u+5}{u-5}$$
 and $u = \sqrt{x} + 9$
A) $\frac{10}{\sqrt{x}(\sqrt{x}+4)^2}$
B) $\frac{-10}{\sqrt{x}(\sqrt{x}+4)^2}$
C) $\frac{-5}{\sqrt{x}(\sqrt{x}+4)^2}$
D) $\frac{5}{(\sqrt{x}+4)^2}$

Find the equation of the line tangent to the graph of the function at the indicated point.

378)
$$y = \sqrt{x^2 + 1}$$
 at the point $(-2, \sqrt{5})$
A) $y = 2\sqrt{5}(x + 2) - \sqrt{5}$
B) $y = \frac{-2}{\sqrt{5}}(x + 2) + \sqrt{5}$
C) $y = -\frac{1}{2\sqrt{5}}(x + 2) + \sqrt{5}$
D) $y = \frac{1}{2\sqrt{5}}(x + 2) + \sqrt{5}$
Answer: B
379) $y = \frac{(x^3 - 3x)^2}{(3x - 7)^2}$ at the point (2, 4)
A) $y = 12(x - 2) + 4$
B) $y = -12(x - 2) + 4$
C) $y = 60(x - 2) + 4$
D) $y = -60(x - 2) + 4$
Answer: C
380) $y = (x^2 + 28)^{4/5}$ at $x = 2$
A) $y = \frac{4}{5}x + \frac{64}{5}$
B) $y = \frac{8}{5}x$
C) $y = \frac{8}{5}x + \frac{96}{5}$
D) $y = \frac{8}{5}x + \frac{64}{5}$
Answer: D
381) $y = x^3\sqrt{x^3 + 3}$ at $x = 1$

A)
$$y = \frac{27}{4}x - \frac{19}{4}$$
 B) $y = \frac{27}{4}x - \frac{13}{4}$ C) $y = \frac{35}{6}x - \frac{20}{3}$ D) $y = \frac{35}{6}x + \frac{20}{3}$

Find functions f(x) and g(x) such that $h(x) = (f \circ g)(x)$.

382)
$$h(x) = \frac{1}{x^2 - 2}$$

A) $f(x) = \frac{1}{x^2}$, $g(x) = -\frac{1}{2}$
B) $f(x) = \frac{1}{x^2}$, $g(x) = x - 2$
C) $f(x) = \frac{1}{2}$, $g(x) = x^2 - 2$
D) $f(x) = \frac{1}{x}$, $g(x) = x^2 - 2$

Answer: D

383)
$$h(x) = \frac{8}{x^2} + 1$$

A) $f(x) = \frac{8}{x^2}$, $g(x) = 1$
B) $f(x) = x$, $g(x) = \frac{8}{x} + 1$
C) $f(x) = x + 1$, $g(x) = \frac{8}{x^2}$
D) $f(x) = \frac{1}{x}$, $g(x) = \frac{8}{x} + 1$

384)
$$h(x) = \frac{10}{\sqrt{2x+1}}$$

A) $f(x) = \sqrt{2x+1}$, $g(x) = 10$
B) $f(x) = \frac{10}{x}$, $g(x) = 2x+1$
C) $f(x) = \frac{10}{\sqrt{x}}$, $g(x) = 2x+1$
Answer: C

385)
$$h(x) = (-7x - 5)^4$$

A) $f(x) = -7x - 5$, $g(x) = x^4$
C) $f(x) = -7x^4$, $g(x) = x - 5$
Answer: D

386)
$$h(x) = \sqrt{10 + 6x^2}$$

A) $f(x) = \sqrt[4]{10 + 6x^2}$, $g(x) = \sqrt[4]{10 + 6x^2}$
C) $f(x) = \sqrt{10 + 6x}$, $g(x) = x$
Answer: B

387)
$$h(x) = (x^{1/2} + 2)^3 + 3(x^{1/2} + 2)^2 - 5$$

A) $f(x) = x^3 + 3x^2 - 5$, $g(x) = x^{1/2} + 2$
C) $f(x) = (x + 2)^3 + 3(x + 2)^2 - 5$, $g(x) = x^{1/2} + 2$
Answer: A

388)
$$h(x) = \frac{6}{(3x^2 - 6x + 1)^3}$$

A) $f(x) = x^{-3}$, $g(x) = 3x^2 - 6x + 1$
B) $f(x) = \frac{6}{x}$, $g(x) = (3x^2 - 6x + 1)^3$
C) $f(x) = \frac{1}{x}$, $g(x) = (3x^2 - 6x + 1)^3$
D) $f(x) = 6x^{-3}$, $g(x) = 3x^2 - 6x + 1$

B) $f(x) = \sqrt{x}, g(x) = 10 + 6x^2$

D) $f(x) = 10 + 6x^2$, $g(x) = \sqrt{x}$

B) $f(x) = (x + 2)^3 + 3x^2 - 5$, $g(x) = x^{1/2}$ D) $f(x) = x^{1/2} + 2$, $g(x) = x^3 + 3x^2 - 5$

Find
$$(f \circ g)(x)$$
 and $(g \circ f)(x)$.
389) $f(x) = 5x + 9$; $g(x) = 4x - 7$
A) $(f \circ g)(x) = 20x + 26$ B) $(f \circ g)(x) = 20x - 29$ C) $(f \circ g)(x) = 20x + 29$ D) $(f \circ g)(x) = 20x - 26$
 $(g \circ f)(x) = 20x - 29$ $(g \circ f)(x) = 20x + 26$ $(g \circ f)(x) = 20x - 26$ $(g \circ f)(x) = 20x + 29$
Answer: D
390) $f(x) = 2x + 11$; $g(x) = 11x + 2$
A) $(f \circ g)(x) = 22x + 15$ B) $(f \circ g)(x) = 22x + 15$ $(g \circ f)(x) = 22x + 15$
 $(g \circ f)(x) = 22x + 123$ D) $(f \circ g)(x) = 22x + 123$
 $(g \circ f)(x) = 22x + 123$ D) $(f \circ g)(x) = 22x + 123$
 $(g \circ f)(x) = 22x + 123$ $(g \circ f)(x) = 22x + 15$
Answer: B

391)
$$f(x) = 5x^3 + 8; g(x) = 2x$$
A) $(f \circ g)(x) = 10x^3 + 8$ B) $(f \circ g)(x) = 40x^3 + 16$ B) $(f \circ g)(x) = 40x^3 + 16$ C) $(f \circ g)(x) = 40x^3 + 8$ C) $(f \circ g)(x) = 10x^3 + 8$ C) $(f \circ g)(x) = 10x^3 + 16$ C) $(g \circ f)(x) = 10x^3 + 16$ C) $(f \circ g)(x) = 10x^3 + 16$

392)
$$f(x) = \frac{2}{x}$$
; $g(x) = 2x^{3}$
A) $(f \circ g)(x) = \frac{4}{x^{3}}$
B) $(f \circ g)(x) = \frac{1}{x^{3}}$
C) $(f \circ g)(x) = \frac{1}{x^{3}}$
D) $(f \circ g)(x) = \frac{16}{x^{3}}$
 $(g \circ f)(x) = \frac{1}{x^{3}}$
 $(g \circ f)(x) = \frac{1}{x^{3}}$
 $(g \circ f)(x) = \frac{1}{x^{3}}$

Answer: C

393)
$$f(x) = \frac{7}{x^4}$$
; $g(x) = 2x^3$
A) $(f \circ g)(x) = \frac{7x^{12}}{686}$
B) $(f \circ g)(x) = \frac{686}{7x^{12}}$
C) $(f \circ g)(x) = \frac{7x^{12}}{16}$
D) $(f \circ g)(x) = \frac{7}{16x^{12}}$
 $(g \circ f)(x) = \frac{x^{12}}{16}$
 $(g \circ f)(x) = \frac{16}{x^{12}}$
 $(g \circ f)(x) = \frac{x^{12}}{686}$
 $(g \circ f)(x) = \frac{686}{x^{12}}$

394)
$$f(x) = \sqrt{x + 5}; g(x) = 4x - 1$$

A) $(f \circ g)(x) = \sqrt{4x^2 + 1}$
 $(g \circ f)(x) = \sqrt{4x^2 - 5}$
C) $(f \circ g)(x) = 2\sqrt{x + 1}$
 $(g \circ f)(x) = 4\sqrt{x + 5} - 1$
B) $(f \circ g)(x) = 2\sqrt{x + 5}$
 $(g \circ f)(x) = \sqrt{4x^2 - 5}$
 $(g \circ f)(x) = \sqrt{4x^2 - 5}$
 $(g \circ f)(x) = \sqrt{4x^2 - 5}$

Answer: C

395)
$$f(x) = \frac{1}{x-5}$$
; $g(x) = x + 5$
A) $(f \circ g)(x) = \frac{1}{x-5}$
 $(g \circ f)(x) = x - 5$
 $(g \circ f)(x) = x - 5$
 $(g \circ f)(x) = \frac{1}{x}$
 $(g \circ f)(x) = \frac{1}{x-5}$
 $(g \circ f)(x) = \frac{1}{x-5}$
 $(g \circ f)(x) = \frac{1}{x-5}$
 $(g \circ f)(x) = \frac{5x-24}{x-5}$

396)
$$f(x) = 5x^2; g(x) = x + 3$$
B) $(f \circ g)(x) = 5x^2 + 30x + 45$ B) $(f \circ g)(x) = 5x^2 + 3$ $(g \circ f)(x) = 5x^2 + 3$ $(g \circ f)(x) = 5x^2 + 30x + 49$ C) $(f \circ g)(x) = 5x^2 + 45$ D) $(f \circ g)(x) = 5x^2 + 30x + 3$ $(g \circ f)(x) = 5x^2 + 30x + 3$ $(g \circ f)(x) = 5x^2 + 45$ Answer: AAnswer: A

397) $f(x) = x^2 + 2x + 3$; $g(x) = x - 4$ A) $(f \circ g)(x) = x^2 - 6x + 11$ $(g \circ f)(x) = x^2 + 2x - 1$ C) $(f \circ g)(x) = x^2 + 2x - 1$ $(g \circ f)(x) = x^2 + 6x + 11$ Answer: A		B) $(f \circ g)(x) = x^2 + 2x - 1$ $(g \circ f)(x) = x^2 - 6x + 11$ D) $(f \circ g)(x) = x^2 + 6x + 11$ $(g \circ f)(x) = x^2 + 2x - 1$	
Calculate the requested derivative from	the given information.		
398) Given $f(u) = u^2$ and $g(x) = u = \Delta - 30$	x ⁵ + 2, find (f ∘g)'(1). B) 30	C	D) 15
Answer: B	D) 30		D) 13
399) Given f(u) = <u>u - 1</u> , g(x) = u = 4	√x, find (f⊸g)'(25).		
A) $\frac{2}{36}$	B) 2 180	C) $\frac{1}{180}$	D) <u>1</u> 36
Answer: C			
400) Given f(u) = $\sqrt[3]{u}$ and g(x) = u = A) $\frac{2}{3\sqrt{2}}$	= 1 + 2x ³ , find (f ∘g)'(0). B) 2 /3	C) -2	D) 0
√ ⁹ Answer: D			
401) Given f(u) = u ³ and g(x) = u = A) 450	x + 4/x - 2, find (f ∘g)'(1). B) 75	C) - 450	D) - 75
Answer: C			
402) Given $f(u) = \frac{1}{u}$ and $g(x) = u =$	4x - x ² , find (f ∘g)'(1).		
A) $\frac{1}{2}$	B) - ² / ₉	C) $-\frac{1}{2}$	D) 2
Answer: B			
403) Given f(u) = $\frac{u}{u^2 - 1}$ and u = g((x) = 9x ² + x + 2, find (f ∘g)'(0)).	
A) 11/9	B) - <u>5</u>	C) $\frac{1}{3}$	D) 5
Answer: B	,		,

Use the Chain Rule to differentiate the function. You may need to apply the rule more than once.

404)
$$f(x) = (4x^3 - (8x + 9)^2)^7$$

A) $f'(x) = 7[4x^3 - (8x + 9)^2]^6[12x^2 - 16(8x + 9)]$
C) $f'(x) = 7[4x^3 - (8x + 9)^2]^6[12x^2 - 2(8x + 9)]$
Answer: A
B) $f'(x) = 7[4x^3 - (8x + 9)^2]^7[12x^1 - 2(8x + 9)]$
D) $f'(x) = 7[4x^3 - (8x + 9)^2]^7[12x^1 - 16(8x + 9)]$

405)
$$f(x) = (-x^{7} - 9x - \sqrt{1 - 2x})^{5}$$

A)
$$f'(x) = -5(x^{7} - 9x - \sqrt{1 - 2x})^{4} \sqrt{7x^{6} - 9 - \frac{1}{2}\sqrt{1 - 2x}}$$

B)
$$f'(x) = 5(-x^{7} - 9x - \sqrt{1 - 2x})^{4} \sqrt{-7x^{6} - 9 + \frac{1}{\sqrt{1 - 2x}}}$$

C)
$$f'(x) = -5(x^{7} - 9x - \sqrt{1 - 2x})^{4} (7x^{6} - 9 - \sqrt{1 - 2x})$$

D)
$$f'(x) = 5(-x^{7} - 9x - \sqrt{1 - 2x})^{4} \sqrt{-7x^{6} - 9 + \frac{1}{2\sqrt{1 - 2x}}}$$

Answer: B

406)
$$f(x) = \sqrt{x^2 - \sqrt{1 + 7x}}$$

A) $f'(x) = \left(\frac{1}{2\sqrt{x^2 - \sqrt{1 + 7x}}}\right) \left(2x - \frac{7}{2\sqrt{1 + 7x}}\right)$
B) $f'(x) = \left(\frac{2}{\sqrt{2x^2 - \sqrt{1 + 7x}}}\right) \left(x - \frac{7}{2\sqrt{1 + 7x}}\right)$
C) $f'(x) = \left(\frac{2}{\sqrt{x^2 - \sqrt{1 + 7x}}}\right) \left(x - \frac{7}{\sqrt{1 + 7x}}\right)$
D) $f'(x) = \left(\frac{1}{\sqrt{x^2 - \sqrt{1 + 7x}}}\right) \left(x - \frac{7}{\sqrt{1 + 7x}}\right)$

Answer: A

407)
$$f(x) = \sqrt[4]{8x - (x^2 - x + 8)^5}$$

A) $f'(x) = \frac{1}{4}(8x - (x^2 - x + 8)^5)^{3/4}[8 - 5(x^2 - x + 8)^4]$
B) $f'(x) = \frac{1}{4}(8x - (x^2 - x + 8)^5)^{-3/4}[8 - 5(x^2 - x + 8)^4]$
C) $f'(x) = \frac{1}{4}(8x - (x^2 - x + 8)^5)^{-3/4}[8 - 5(x^2 - x + 8)^4(2x - 1)]$
D) $f'(x) = \frac{1}{4}(8x - (x^2 - x + 8)^5)^{3/4}[8 - 5(x^2 - x + 8)^4(2x - 1)]$

Answer: C

Solve the problem.

408) \$1200 is deposited in an account with an interest rate of r% per year, compounded monthly. At the end of 8 years, the balance in the account is given by $A = 1200 \left(1 + \frac{r}{1200}\right)^{96}$. Find the rate of change of A with respect to r when r = 6. Round answer to the nearest hundredth, if necessary.

A)
$$\frac{dA}{dr} = 154.19$$
 B) $\frac{dA}{dr} = 96.96$ C) $\frac{dA}{dr} = 96.48$ D) $\frac{dA}{dr} = 154.96$

409) If \$5000 is invested at interest rate i, compounded quarterly, it will grow in 5 years to an amount A, in dollars,

given by A =
$$5000\left(1 + \frac{i}{4}\right)^{20}$$
. Find the rate of change, $\frac{dA}{di}$.
A) $\frac{dA}{di} = 100,000\left(1 + \frac{i}{4}\right)^{19}$
B) $\frac{dA}{di} = 25,000\left(1 + \frac{i}{4}\right)^{20}$
C) $\frac{dA}{di} = 100,000\left(1 + \frac{i}{4}\right)^{20}$
D) $\frac{dA}{di} = 25,000\left(1 + \frac{i}{4}\right)^{19}$
Answer: D

410) The formula E = 1000(100 - T) + 580(100 - T)² is used to approximate the elevation (in meters) above sea level at which water boils at a temperature of T (in degrees Celsius). Find the rate of change of E with respect to T for a temperature of 85°C.

A) 18,400 m/°C B) -18,400 m/°C C) -67,700 m/°C D) -17,400 m/°C Answer: B

411) The concentration of a certain drug in the bloodstream t minutes after swallowing a pill containing the drug can be approximated using the equation $C(t) = \frac{1}{9}(4t + 1)^{-1/2}$, where C(t) is the concentration in arbitrary units and t

is in minutes. Find the rate of change of concentration with respect to time at t = 12 minutes.

A)
$$-\frac{1}{6174}$$
 units/min B) $-\frac{2}{3087}$ units/min C) $-\frac{1}{63}$ units/min D) $-\frac{2}{63}$ units/min

Answer: B

412) The dosage for Carboplatin Chemotherapy drugs depends on several parameters of the drug as well as the age, weight, and sex of the patient. For a male patient, the formulas giving the dosage for a certain drug are:

D = A(c + 25)

and

$$c = \frac{(140 - y)w}{72x} ,$$

where A and x depend on which drug is used, D is the dosage in milligrams (mg), c is called the creatine clearance, y is the patient's age in years, and w is the patient's weight in kg. For a 50 year old man, find an expression for $\frac{dD}{dw}$ in terms of A and x.

A)
$$\frac{dD}{dw} = \frac{5A}{4x} + 25A$$
 B) $\frac{dD}{dw} = \frac{5}{4x}$ C) $\frac{dD}{dw} = \frac{5A}{4x}$ D) $\frac{dD}{dw} = \frac{5Aw}{4x}$

Answer: C

413) A circular oil slick spreads so that as its radius changes, its area changes. Both the radius r and the area A change with respect to time. If dr/dt is found to be 2.0 m/hr, find dA/dt when r = 37.8 m. Hint: $A(r) = \pi r^2$, and, using the Chain Rule, $\frac{dA}{dt} = \frac{dA}{dr} \cdot \frac{dr}{dt}$.

A)
$$151.2\pi \text{ m}^2/\text{hr}$$
 B) $37.8\pi \text{ m}^2/\text{hr}$ C) $75.6\pi \text{ m}^2/\text{hr}$ D) $302.4\pi \text{ m}^2/\text{hr}$
Answer: A

Differentiate. $\sqrt{2}$

414)
$$y = \sqrt{(9x+6)^7 - 6}$$

A) $\frac{63(9x+6)^6}{\sqrt{(9x+6)^7 - 6}}$
B) $\frac{7(9x+6)^6}{\sqrt{(9x+6)^7 - 6}}$
C) $\frac{7(9x+6)^6}{2\sqrt{(9x+6)^7 - 6}}$
D) $\frac{63(9x+6)^6}{2\sqrt{(9x+6)^7 - 6}}$

Answer: D

415)
$$y = \sqrt[4]{x^4 - 8x - 1 \cdot x^4}$$

A) $\frac{20x^9 - 136x^3 - 16x^4}{4(x^4 - 8x - 1)^{3/4}}$
B) $\frac{20x^7 - 144x^4 - 20x^3}{4(x^4 - 8x - 1)^{1/4}}$
C) $\frac{20x^8 - 136x^3 - 16x^2}{4(x^4 - 8x - 1)^{1/4}}$
D) $\frac{20x^7 - 136x^4 - 16x^3}{4(x^4 - 8x - 1)^{3/4}}$

Answer: D

416)
$$y = \left(\frac{x}{\sqrt{4-x}}\right)^3$$

A) $\frac{-3x^2(8+x)}{2(4-x)^{5/2}}$ B) $\frac{3x^2(8+x)}{(4-x)^{5/2}}$ C) $\frac{-3x^2(8-x)}{2(4-x)^{5/2}}$ D) $\frac{3x^2(8-x)}{2(4-x)^{5/2}}$

Answer: D

417)
$$y = \left(\frac{x^2 + x + 1}{x^2 - 1}\right)^5$$

A)
$$\frac{5(x^2 + x + 1)^4(x^2 + 4x - 1)}{(x^2 - 1)^7}$$

C)
$$\frac{5(x^2 + x + 1)^4(-x^2 + 4x - 1)}{(x^2 - 1)^7}$$

Answer: B

418)
$$F(t) = [7t(t + 9)^4 - 1]^3$$

A) $21[7t(t + 9)^4 - 1](t + 9)^3(5t + 9)$
C) $3[7t(t + 9)^4 - 1](t + 9)^3(4t + 9)$
Answer: A

$$\frac{d^2y}{dx^2}$$
419) $y = 4x - 2$
A) $\frac{4}{x}$
B) $4x^3 - 2x^2$
C) 4
D) 0

B) $\frac{5(x^2 + x + 1)^4(-x^2 - 4x - 1)}{(x^2 - 1)^6}$

D) $\frac{5(x^2 + x + 1)^4(x^2 - 4x + 1)}{(x^2 - 1)^6}$

Answer: D

Find

420) $y = 6x^2 + 6x - 7$ A) 12x + 6 Answer: C	B) 0	C) 12	D) 6
421) $y = 5x^4 - 6x^2 + 4$ A) $60x^2 - 12x$ Answer: C	B) 20x ² - 12x	C) 60x ² - 12	D) 20x ² - 12
422) $y = 2x^{3/2} - 6x^{1/2}$ A) $3x^{1/2} - 3x^{-1/2}$ Answer: C	B) 1.5x ^{1/2} + 1.5x ^{-1/2}	C) 1.5x ^{-1/2} + 1.5x ^{-3/2}	D) 3x ^{-1/2} + 3x ^{-3/2}
423) $y = \frac{1}{x^2 - 1}$ A) $\frac{6x^2 - 2}{(x^2 - 1)^3}$ Answer: D	B) $\frac{6x^2 - 2}{(x^2 - 1)^4}$	C) $\frac{6x^2 + 2}{(x^2 - 1)^4}$	D) $\frac{6x^2 + 2}{(x^2 - 1)^3}$
424) $y = x^2 + \sqrt{x}$ A) $\frac{2x^{3/2} + 1}{x^{3/2}}$ Answer: D	B) $\frac{8x^{3/2} + 1}{4x^{3/2}}$	C) $\frac{2x^{3/2} - 1}{x^{3/2}}$	D) $\frac{8x^{3/2} - 1}{4x^{3/2}}$
425) $y = \sqrt{3x - 7}$ A) $\frac{10}{4(3x - 7)^{3/2}}$ Answer: C	B) 9 4(3x - 7) ^{3/2}	C) - $\frac{9}{4(3x - 7)^{3/2}}$	D) - $\frac{10}{4(3x - 7)^{3/2}}$
426) y = (4x + 5) ³ A) 384x + 480 Answer: A	B) 24x + 30	C) 4x + 5	D) 12x + 15
427) $y = \frac{x}{x+1}$ A) $(x + 1)^{-2}$ Answer: B	B) -2(x + 1) ⁻³	C) (x + 1) ⁻³	D) -2(x + 1)-2
428) $y = (x^2 + 7x)^{40}$ A) $40(x^2 + 7x)^{39}(2x + 7)$ C) $40(x^2 + 7x)^{38}(2x^2 + 92)^{40}(2x^2 + 92)^{4$	2x + 273)	B) 1560(x ² + 7x) ³⁸ D) 40(x ² + 7x) ³⁸ (158x ² +	1106x + 1911)

Find the indicated derivative of the function.

$$429) \frac{d^3y}{dx^3} \text{ of } y = 2x^3 + 2x^2 - 5x$$
A) 6
B) 12x + 6
C) 12
D) 6x + 12
Answer: C
$$430) \frac{d^4y}{dx^4} \text{ of } y = 5x^5 - 2x^2 - 4x + 1$$
A) 600x
B) 400x² + 4
C) 300x
D) 400x + 4
Answer: A
$$431) \frac{d^4y}{dx^4} \text{ of } y = 7x^6 - 5x^4 + 4x^2$$
A) 2520x² - 120x
B) 2520x² - 120
C) 1680x² - 60x
D) 1680x² - 60
Answer: B
$$432) \frac{d^3y}{dx^4} \text{ of } y = \frac{1}{x+1}$$
A) 6(x + 1)^{-3}
B) -6(x + 1)^{-4}
C) -6(x + 1)^{-3}
D) 6(x + 1)^{-4}
Answer: B
$$433) \frac{d^4y}{dx^4} \text{ of } y = \sqrt{x+2}$$
A) $\frac{15}{16(x+2)^{5/2}}$
B) $\frac{15}{16(x+2)^{7/2}}$
C) $-\frac{15}{16(x+2)^{7/2}}$
D) $-\frac{15}{16(x+2)^{5/2}}$
Answer: C
$$434) \frac{d^3y}{dx^3} \text{ of } y = \frac{x}{x+1}$$
A) -6(x + 1)^{-3}
B) 6(x + 1)^{-4}
C) 6(x + 1)^{-3}
D) -6(x + 1)^{-4}
Answer: B
$$435) \frac{d^4y}{dx^4} \text{ of } y = 3\sqrt{x}$$
A) $-\frac{80}{81x^{11/3}}$
B) $-\frac{81}{80x^{11/3}}$
C) $\frac{80}{81x^{11/3}}$
D) $\frac{81}{80x^{11/3}}$
Answer: A
$$436) \frac{d^5y}{dx^5} \text{ of } y = 2x^6 - 3x^4 + 5x^2 - 2$$
A) 720x² - 72
B) 1440x
C) 1440
D) 0

	437)	$\frac{d^6y}{dx^6} \text{ of } y = 4x^7 + 2x^5 - 4x^3 - 4$			
		A) 0	B) 20.160x	C) 20.160	D) 10.080x ² + 240
		Answer: B		-,	_,
Solv	e the	problem.			
	438)	If s is a distance given by s(t) = A) a(t) = 10	t^2 + 4t + 10, find the accelera B) a(t) = 2t	tion, a(t). C) a(t) = 2t + 4	D) a(t) = 2
		Answer: D	, , ,	, ,,	, , ,
	439)	If s is a distance given by s(t) =	$9t^3 + t + 4$, find the acceleration	on, a(t).	
		A) $a(t) = 3t^2 + 1$	B) a(t) = 54t	C) $a(t) = 27t^2 + 1$	D) a(t) = 27t
		Answer: B			
	440)	If s is a distance given by s(t) =	$5t^3 + 8t^2 + 4t$, find the accele	eration, a(t).	
		A) a(t) = 30t	B) a(t) = 46t + 4	C) a(t) = 30t + 16	D) a(t) = 15t ² + 16t
		Answer: C			
	441)	If s is a distance given by $s(t) =$	$3t^4 + 9t^3 + 4t$, find the accele	ration, a(t).	
		A) $a(t) = 12t^3 + 27t^2 + 4$		B) a(t) = 36t + 54	
		C) a(t) = 36t ² + 54t		D) a(t) = 12t ² + 27t	
		Answer: C			
	442)	If s is a distance given by s(t) =	$2t^4 + 3t^2 + 2t$, find the accele	ration, a(t).	
		A) $a(t) = 8t^2 + 6t + 2$	B) $a(t) = 8t^3 + 6t + 2$	C) $a(t) = 24t + 6$	D) $a(t) = 24t^2 + 6$
		Answer: D			
	443)	A population grows from an in	itial size of 100,000 people to	an amount P(t), given by	
		$P(t) = 100,000(1 + 0.9t + t^2)$, when	ere t is measured in years fro	m 1987. How rapidly is the g	rowth rate of the
		A) (200,000t + 90,000) people	per year ²	B) 200,000 people per year ²	
		C) 90,000t + 200,000 people r	per year ²	D) 100,000 people per year ²	
		Answer: B	5		
	444)	A population grows from an in is measured in years from 1996	itial size of 10 people to an a . Find the acceleration in the	mount P(t), given by P(t) = 10 population t years from 1996	0(4 + 0.5t + t ³), where t
		A) 60 people per year ²		B) (5 + 30t ²) people per year	r ²
		C) 30t people per year ²		D) 60t people per year ²	
		Answer: D			
	445)	A population grows from an in	itial size of 2 people to an an	nount P(t), given by P(t) = $2(1)$	+ 2t + t ³), where t is
		A) 12t people per voar ²	ind the acceleration in the po	B) 3t people per vear ²	
		C) $(4 + 3t^2)$ neonle per vezr2		D) $(4 + 6t^2)$ neonle per vear	2
		Answer: A			
		-			

446) A population grows from an initial size of 0.2 people to an amount P(t), given by P(t) = $0.2(2 + 0.4t + t^3)$, where t is measured in years from 1991. How rapidly is the growth rate of the population increasing t years from 1991?

A) 0.08 + 0.6t² B) 0.08 + 0.6t C) 1.2 D) 1.2t Answer: D

447) For a motorcycle traveling at speed v (in mph) when the brakes are applied, the distance d (in feet) required to stop the motorcycle may be approximated by the formula d = 0.05 v² + v. Find the instantaneous rate of change of distance with respect to velocity when the speed is 42 mph.
A) 43 mph
B) 5.2 mph
C) 10.4 mph
D) 4.2 mph

Answer: B

Provide an appropriate response.

448) What information does the difference quotient, $\frac{f(x + h) - f(x)}{h}$, provide about the differentiable function f(x)?

- A) The instantaneous rate of change of f(x) as a function of x.
- B) The limit of f(x) as x approaches h.
- C) The average rate of change of f(x) over the interval [x, x + h].
- D) The slope of the line tangent to f(x) at the point (x, f(x)).

Answer: C

- 449) What is the difference between the information provided by a secant line and the information provided by a tangent line?
 - A) A secant line touches the graph of a function just once, but a tangent line generally touches the curve twice.
 - B) The slope of a secant line is the instantaneous rate of change of a function at a point, whereas the slope of a tangent line is the average rate of change of a function over an interval.
 - C) The slope of a secant line drawn for a function f(x) is the average value of f(x) over an interval, whereas the slope of a tangent line is the instantaneous value of f(x) at a point.
 - D) The slope of a secant line is the average rate of change of a function over an interval, whereas the slope of a tangent line is the instantaneous rate of change of a function at a point.

Answer: D

450) What is the derivative of a function f(x)?

- A) The derivative of the function f(x) is a function, usually denoted f'(x), whose output f'(a) is the instantaneous rate of change of f(x) at the point (a, f(a)), where a is any value of x in the domain for f(x) where f'(x) exists.
- B) The derivative of the function f(x) is a function, usually denoted f'(x), whose output f'(a) is the average rate of change of f(x) at the point (a, f(a)), where a is any value of x in the domain for f(x) where f'(x) exists.
- C) The derivative of the function f(x) is a function, usually denoted f'(x), whose output f'(a) is the instantaneous value of f(x) at the point (a, f(a)), where a is any value of x in the domain for f(x) where f'(x) exists.
- D) The derivative of the function f(x) is a function, usually denoted f'(x), whose output f'(a) is the average value of f(x) at the point (a, f(a)), where a is any value of x in the domain for f(x) where f'(x) exists.

Answer: A

451) Is it true that a function must be continuous at a point in order to have a derivative at that point? If a function is continuous at a point, must it have a derivative at that point?

A) No; yes	B) Yes; yes	C) No; no	D) Yes; no
Answer: D			

452) What are four ways that a function may fail to be differentiable at a point?

- A) The function is not defined at the point; the function is discontinuous at the point; the function has a corner or similar sharp change in direction at the point; the function has a horizontal tangent at the point.
- B) The function is not defined at the point; the function is discontinuous at the point; the function has a corner or similar sharp change in direction at the point; the function has a vertical tangent at the point.
- C) The function is not defined at the point; the function is discontinuous at the point; the function has a limit at the point; the function has a vertical tangent at the point.
- D) The function is not defined at the point; the function is discontinuous at the point; the function has a peak or a valley at the point; the function has a vertical tangent at the point.

Answer: B

453) Suppose that y is a function of u, and that u is itself a function of x. How does one find the derivative of y in terms of x?

A) The product rule: $\frac{d(y \cdot u)}{dx} = y \cdot \frac{du}{dx} + u \cdot \frac{dy}{dx}$ B) The sum rule: $\frac{d(y + u)}{dx} = \frac{dy}{dx} + \frac{du}{dx}$ C) The difference rule: $\frac{d(y - u)}{dx} = \frac{dy}{dx} - \frac{du}{dx}$ D) The chain rule: $\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$

Answer: D

- 454) What is f(g(x))?
 - A) The function f(g(x)) is the product of f(x) and g(x).
 - B) The function f(g(x)) is the result of substituting x in place of the independent variable in the expression for f.
 - C) The function f(g(x)) is the derivative of g in terms of x.
 - D) The composition of functions, f(g(x)), is the result of substituting g, expressed in terms of the independent variable x, in place of the independent variable in the expression for f.

Answer: D

455) The first derivative is to instantaneous velocity as the second derivative is to

A) Instantaneous accelerationB) Average velocityC) Instantaneous speedD) Average momentum

Answer: A

456) Critique the validity of the expression
$$\sqrt{\frac{d^2y}{dx^2}} = \frac{dy}{dx}$$
.
A) It is not valid, because the notation $\frac{d^2y}{dx^2}$ does not mean the square of $\frac{dy}{dx}$.
B) It is not valid, because it should read " $\sqrt{\frac{d^2y}{dx^2}} = \pm \frac{dy}{dx}$ ".
C) It is valid, because $\frac{d^2y}{dx^2}$ cannot be negative.

D) It is valid, because a derivative can be squared the same as any function. Answer: A

- 457) A second derivative will not exist for a function at a point if
 - A) The function is not defined at the point, the first derivative is discontinuous at the point; the first derivative has a corner or similar sharp change in direction at the point; the first derivative has a vertical tangent at the point.
 - B) The function is not defined at the point, the function is discontinuous at the point; the first derivative has a peak or a valley at the point, or the function has a vertical tangent at the point.
 - C) The first derivative is not defined at the point; the first derivative is discontinuous at the point; the first derivative has a corner or similar sharp change in direction at the point; or the first derivative has a horizontal tangent at the point.
 - D) The first derivative is not defined at the point, the first derivative is discontinuous at the point, the first derivative has a limit at the point; or the function has a vertical tangent at the point.