Exam

Name_____

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Solve the equation.

o the equation.				
1) a - 3 = 1 A) 2	B) -2	C) 4	D) -4	1)
2) a + 6 = 7 A) 1	B) 13	C) -1	D) -13	2)
3) 9 = s + 1 A) -10	B) -8	C) 8	D) 10	3)
4) -30 = m - 13 A) -43	B) 43	C) -17	D) 17	4)
5) m - 5 = 11 A) -16	B) 16	C) -6	D) 6	5)
6) 22 = -29 + x A) -7	B) -51	C) 7	D) 51	6)
7) a - 5.70 = 0 A) 5.70	B) -4.70	C) -5.70	D) 4.70	7)
8) -17.2 = 19.5 + s A) 2.3	B) 36.7	C) -36.7	D) -2.3	8)
9) $t + \frac{2}{7} = \frac{3}{7}$	_D 1	c) ²	D) 5	9)
A) 1	B) 1 7	C) $\frac{2}{7}$	D) 5 7	
10) x - $\frac{1}{2} = -\frac{5}{14}$ A) $\frac{6}{7}$	B) 1 7	C) - ¹ / ₇	D) - <u>6</u> 7	10)
11) 8a = -24 A) 32	B) 1	C) -32	D) -3	11)
12) 81 = -9k A) -90	B) -9	C) 1	D) 90	12)
13) -2x = -6 A) 2	B) -4	C) 4	D) 3	13)

	14) 8b = -88 A) 1	B) 96	C) -11	D) -96	14)
	15) - 38.4 = -6.4c A) 6.0	B) 32.0	C) -32.0	D) 2.0	15)
	16) $-\frac{1}{20}a = 0$				16)
	A) -20	B) 20	C) 0	D) 1	
	$17) - \frac{4}{7}t = -\frac{1}{9}$	7	24	7	17)
	A) $\frac{7}{36}$	B) $-\frac{7}{36}$	C) 36 7	D) $-\frac{7}{9}$	
	18) -5.6c = -22.4 A) 2.0	B) 16.8	C) -16.8	D) 4.0	18)
	19) $\frac{1}{3}y = \frac{4}{5}$				19)
	A) - $\frac{12}{5}$	B) $-\frac{24}{5}$	C) ⁵ / ₁₂	D) $\frac{12}{5}$	
Solve	the problem.				20)
	20) A small farm field is a squa A) 400 ft	B) 1600 ft	C) 200 ft	D) 800 ft	20)
	21) The area of a rectangular galw)	arden is to be 154 ft. ² . Find	d the length if the width m	ust be 7 ft. (Use A =	21)
	A) 21 ft.	B) 147 ft.	C) 22 ft.	D) 24 ft.	
	22) A box has a volume of 612 lwh)	in. ³ . The length is 6 in. an	d the width is 17 in. Find t	he height. (Use V =	22)
	A) 6 in.	B) 4 in.	C) 7 in.	D) 10 in.	
	23) If a salesman's salary is mu is \$31,620. Find the salesm	an's current salary.			23)
	A) \$37,200	B) \$31,000	C) \$31,620	D) \$620	
	24) One lap around a running meters?				24)
	A) 48 laps	B) 96 laps	C) 12 laps	D) 24 laps	
	25) There are 4 quarts in 1 gallo A) 32 quarts	on. Find the number of qu B) 16 quarts	uarts in 8 gallons. C) 4 quarts	D) 2 quarts	25)

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

26)

27)

Provide an appropriate response.

26) Your friend solves an equation as follows:

x - 20 = 29 x = 29 - 20 x = 9

Did your friend make a mistake? If so, identify the mistake and provide a correct solution.

- 27) Your friend solves an equation as follows:
 - $\frac{3}{8}x = 5$ $x = 5 \cdot \frac{3}{8}$ $x = \frac{15}{8}$

Did your friend make a mistake? If so, identify the mistake and provide a correct solution.

- 28) What is the first step to solve an equation in the form b + x = a? What is the solution of the 28) equation?
- 29) What is the first step to solve an equation in the form $\frac{a}{b}x = \frac{c}{d}$? What is the solution of the 29) ______equation?
- 30) What should you add to both sides of the equation to solve n + 3 = -18? 30)

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

31) What should you multiply on each side of the equation to solve $2x = -\frac{9}{7}$?				
A) 2	B) $\frac{1}{2}$	C) $-\frac{9}{7}$	D) - 7	

Determine whether the equation is linear. If it is linear, give values for a and b so that the equation can be written in the form ax + b = 0.

32) $10x + 8 = 28$ A) Yes; $a = 10, b = 36$ C) Yes; $a = 20, b = 10$	B) Yes; a = 10, b = -20 D) No	32)
33) 2x - 3 = 0		33)
A) No	B) Yes; a = 2, b = 3	
C) Yes; a = -3, b = 2	D) Yes; a = 2, b = -3	

34)
$$7x^2 - 25 = 6$$
 34)

 A) Yes; $a = 7, b = -31$
 B) Yes; $a = 31, b = 7$
 34)

 35) $\frac{1}{4}x = 0$
 35)
 35)

 A) No
 B) Yes; $a = 0, b = \frac{1}{4}$
 35)

 C) Yes; $a = \frac{1}{4}, b = 0$
 D) Yes; $a = 0, b = \frac{1}{4}$
 36)

 C) Yes; $a = \frac{1}{4}, b = 0$
 D) Yes; $a = 0, b = \frac{1}{4}$
 36)

 A) No
 B) Yes; $a = 0, b = \frac{1}{4}$
 36)

 A) Yes; $a = 2, b = 12$
 B) Yes; $a = 9, b = 20$
 36)

 C) Yes; $a = -12, b = 9$
 D) No
 37)
 37)

 37) $2\sqrt{x} - 13 = 0$
 B) Yes; $a = 2, b = -13$
 37)

 A) Yes; $a = -12, b = 9$
 D) No
 37)
 37)

 38) 24.0x = 4.7
 B) No
 D) Yes; $a = -13, b = 2$
 38)

 A) Yes; $a = 24.0, b = 4.7$
 B) No
 D) Yes; $a = -4.0, b = -4.7$
 39)

 A) Yes; $a = 4.0, b = -28$
 B) Yes; $a = 4, b = -7$
 39)
 4(x - 7) = 0
 39)

 A) No
 B) Yes; $a = 10, b = -13$
 D) Yes; $a = -28, b = 4$
 40)
 40)

 A) No
 C) Yes; $a = 10, b = 29$
 D) Yes; $a = 10, b = -13$
 40)
 40)

 A) No
 C) Yes; $a = 10, b = 29$

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Evaluate the expression for each value of x in the table. Then use the table to solve the equation. 42) -9x + 5 = -31

 $\frac{x | 1 2 3 4 5}{-9x + 5 | -4}$ 43) 3 + (4x - 5) = -6 $\frac{x | -5 -4 -3 -2 -1}{3 + (4x - 5) | -22}$

42)

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Solve the equation. 44) 14 = 2x - 4 A) 20	B) 16	C) 9	D) 11	44)
45) $140 = 11x + 9x$ A) $\frac{1}{7}$	B) 160	C) 7	D) 120	45)
46) 2r - 5 = 2 + 4r A) $\frac{2}{7}$	B) - 2 7	C) - 7 /2	D) - 2	46)
47) $3y - 8 + y = 7 + 2y - 3y$ A) $-\frac{1}{3}$	B) - <u>1</u> 5	C) - ¹ / ₄	D) 3	47)
48) $\frac{1}{2}a - \frac{1}{2} = -6$ A) 11	B) 13	C) -11	D) -13	48)
49) -3.7q = -22 - 1.5q A) 10	B) 6.4	C) 5.9	D) -24	49)
50) -5q + 1.5 = -25.7 - 1.6q A) 5.4	B) -31	C) 8	D) 5.8	50)
51) 9x - $(2x - 1) = 2$ A) - $\frac{1}{11}$	B) 1 7	C) <u>1</u>	D) - <u>1</u> 7	51)
52) (y - 11) - (y + 10) = 4y A) - $\frac{1}{2}$	B) - <u>21</u>	C) - <u>21</u> 4	D) - <u>1</u>	52)
53) $-4x + 3(-3x - 7) = -25 - 9x$ A) $\frac{23}{2}$	B) - 1	C) 1	D) <u>23</u> 11	53)

Determine whether the equation has no solution, one solution, or infinitely many solutions.

54) 14m + 8 = 2(5m + 10)

A) Infinitely many solutions

B) One solution

C) No solutions

open A)No solutionsB)CompositionC)B)One solutionC)Infinitely many solutions56)C)No solutionsSiSiSiSiOne solutionSiSiSiSiOne solutionsSiSiSiSiOne solutionsSiSiSiSiOne solutionsSiSiSiSiOne solutionsSiSiSiSiNo solutionsSiSiSiSiNo solutionsSiSiSiSiNo solutionsSiSiSiSiInfinitely many solutionsSiSiSiSiInfinitely many solutionsSiSiSiSiInfinitely many solutionsSiSiSiSiSiInfinitely many solutionsSiSiSiSiSiInfinitely many solutionsSiSiSiSiSiInfinitely many solutionsSiSiSiSiSiInfinitely many solutionsSiSiSiSiSiInfinitely many solutionsSiSiSiSiSiSiInfinitely many solutionsSiSiSiSiSiSiSiInfinitely many solutionsSiSiSiSiSiSiSiInfinitely many solutionsSiSiSiSiSiSiSiSolve the problem.Si		55) 36 = 7x - 6				55)
B) One solution C) Infinitely many solutions 50) $7x = 7x - 28$ 50)		-				
C) Infinitely many solutions56)56)56) $7x = 7x - 28$ A) One solutions56)57)7) No solutions57)57)7) No solutions57)57)8) Dne solution C) Infinitely many solutions57)57)58) 8(x - 6) + (-3x) = 5(x - 6) + 3 A) No solutions58)58)59) 8(x - 6) + (-3x) = 5(x - 6) + 3 A) No solutions58)58)59) 12(x - 2) = 2(6x - 3) - 18 A) No solutions59)59)59) 12(x - 2) = 2(6x - 3) - 18 A) No solutions59)59)60) $4x = 5(x + 3) - xA) No solutions60)60)60) 4x = 5(x + 3) - xA) No solutions60)60)61) 7x - (13x - 11) = 42 - 6xA) Infinitely many solutionsC) One solution61)62) 16k - 31 = 4(4k - 10)A) No solutions62)62) 16k - 31 = 4(4k - 10)A) No solutions62)63) 4x + 5(x + 1) + 4 = 9 - 2xA) One solution63)64) 0B) Infinitely many solutionsC) No solutions63)65) 14t - 31 = 4(4k - 10)A) No solutions63)66) 14t - 31 = 4(4k - 10)A) No solutions63)67) 16t - 31 = 4(4k - 10)A) No solutions63)68) Infinitely many solutionsC) One solution63)69) 16t - 31 = 4(4k - 10)A) No solutions63)60) 16t - 31 = 4(4k - 10)A) No solutions63)61) 17t - $						
56) $7x - 7x - 28$ 56)A) One solution5) Infinitely many solutionsC) No solutions57)A) No solutions57)B) One solutions57)B) One solutions59)C) Infinitely many solutions59)S) $8(x - 6) + (-3x) = 5(x - 6) + 3$ A) No solutions59)B) Infinitely many solutions59)C) One solution59)B) Infinitely many solutions59)C) One solution59)S) 12(x - 2) = 2(6x - 3) - 18A) No solutions59)B) Infinitely many solutions59)C) One solution60)60) $4x = 5(x + 3) - x$ 60)A) No solutions60)B) Infinitely many solutions60)C) One solution61)C) One solution62)C) One solution62)C) No solutions62)B) Infinitely many solutions62)C) One solution63)C) No solutions63)C) One solution63)C) One solution63)C) One solution63)C) No solutions63)C) No solutions63)C) One solution63)C) No solutions64)Solve the problem.64)C) No solutions641Solve the problem.641			IS			
A) One solutionInfinitely many solutionsB) Infinitely many solutions57)50) No solutions57)51) $7(x + 3) = 7x + 21$ A) No solutions57)52) One solution59)53) $8(x - 6) + (-3x) = 5(x - 6) + 3$ A) No solutions59)54) $8(x - 2) = 2(6x - 3) - 18$ A) No solutions59)55) $12(x - 2) = 2(6x - 3) - 18$ A) No solutions59)56) $11(x + 2) = 2(6x - 3) - 18$ A) No solutions59)57) $($, , ,				
A) One solutionInfinitely many solutionsB) Infinitely many solutions57)50) No solutions57)51) $7(x + 3) = 7x + 21$ A) No solutions57)52) One solution59)53) $8(x - 6) + (-3x) = 5(x - 6) + 3$ A) No solutions59)54) $8(x - 2) = 2(6x - 3) - 18$ A) No solutions59)55) $12(x - 2) = 2(6x - 3) - 18$ A) No solutions59)56) $11(x + 2) = 2(6x - 3) - 18$ A) No solutions59)57) $($		56) 7x = 7x - 28				56)
B) Infinitely many solutions57)57)Solutions50) One solution57)B) One solution58) One solutionC) Infinitely many solutions58)Solutions58)B) Infinitely many solutions59)C) One solution59)Solutions59)B) Infinitely many solutions59)C) One solution59)Solutions59)B) Infinitely many solutions59)C) One solution60)60) $4x = 5(x + 3) - x$ 60)A) No solutions60)B) Infinitely many solutions60)C) One solution61)61) $7x - (13x - 11) = 42 - 6x$ 61)A) Infinitely many solutions61)C) One solution62)C) No solutions62)B) Infinitely many solutions62)C) One solution63)43) $4x + 5(x + 1) + 4 = 9 - 2x$ 63)A) One solution63)B) Infinitely many solutions63)C) No solutions64)B) Infinitely many solutions63)C) No solutions64)		-				, <u> </u>
C) No solutions57) $7(x+3) = 7x+21$ A) No solutions57)B) One solution C) Infinitely many solutions58)58) $8(x-6) + (-3x) = 5(x-6) + 3$ A) No solutions58)B) Infinitely many solutions59)C) One solution59)59) $12(x-2) = 2(6x-3) - 18$ A) No solutions59)B) Infinitely many solutions59)C) One solution60)60) $4x = 5(x+3) - x$ A) No solutions60)B) Infinitely many solutions60)C) One solution60)61) $7x - (13x - 11) - 42 - 6x$ A) Infinitely many solutions61)61) $7x - (13x - 11) - 42 - 6x$ A) Infinitely many solutions61)62) $16k - 31 = 4(4k - 10)$ A) No solutions62)62) $16k - 31 = 4(4k - 10)$ A) No solutions62)63) $4x + 5(x + 1) + 4 = 9 - 2x$ A) One solution63)63) $4x + 5(x + 1) + 4 = 9 - 2x$ A) One solution63)Solive the problem. 44 Drand A soup contains 955 milligrams of socium. Write a formula that computes the number of milligrams of socium, 5, in x cans of Brand A soup.64)		-	IS			
A) No solutions B) One solution C) Infinitely many solutions58)58) $8(x - 6) + (-3x) = 5(x - 6) + 3$ A) No solutions B) Infinitely many solutions C) One solution58)59) $12(x - 2) = 2(6x - 3) - 18$ A) No solutions C) One solution59)59) $12(x - 2) = 2(6x - 3) - 18$ A) No solutions C) One solution59)60) $4x = 5(x + 3) - x$ A) No solutions C) One solution60)60) $4x = 5(x + 3) - x$ A) No solutions C) One solution60)61) $7x - (13x - 11) = 42 - 6x$ A) Infinitely many solutions B) Infinitely many solutions B) One solution61)62) $16k - 31 = 4(4k - 10)$ A) No solutions62)62) $16k - 31 = 4(4k - 10)$ A) No solutions62)63) $4x + 5(x + 1) + 4 = 9 - 2x$ A) One solution63)64) Dres olution63)70) One solution63)63) $4x + 5(x + 1) + 4 = 9 - 2x$ A) One solution63)64) Brand A soup contains 955 milligrams of sodium. Write a formula that computes the number of milligrams of sodium. Si in x cans of Brand A soup.		C) No solutions				
A) No solutions B) One solution C) Infinitely many solutions58)58) $8(x - 6) + (-3x) = 5(x - 6) + 3$ A) No solutions B) Infinitely many solutions C) One solution58)59) $12(x - 2) = 2(6x - 3) - 18$ A) No solutions C) One solution59)59) $12(x - 2) = 2(6x - 3) - 18$ A) No solutions C) One solution59)60) $4x = 5(x + 3) - x$ A) No solutions C) One solution60)60) $4x = 5(x + 3) - x$ A) No solutions C) One solution60)61) $7x - (13x - 11) = 42 - 6x$ A) Infinitely many solutions B) Infinitely many solutions B) One solution61)62) $16k - 31 = 4(4k - 10)$ A) No solutions62)62) $16k - 31 = 4(4k - 10)$ A) No solutions62)63) $4x + 5(x + 1) + 4 = 9 - 2x$ A) One solution63)64) Dres olution63)70) One solution63)63) $4x + 5(x + 1) + 4 = 9 - 2x$ A) One solution63)64) Brand A soup contains 955 milligrams of sodium. Write a formula that computes the number of milligrams of sodium. Si in x cans of Brand A soup.						
B) One solution C) Infinitely many solutions 58) $B(x - 6) + (-3x) = 5(x - 6) + 3$ 58) A) No solutions B) Infinitely many solutions C) One solution 59) A) No solutions 59) B) Infinitely many solutions 59) C) One solution 59) A) No solutions 60) B) Infinitely many solutions 60) C) One solution 60) 60) $4x = 5(x + 3) - x$ 60) A) No solutions 60) B) Infinitely many solutions 60) C) One solution 61) 61) $7x - (13x - 11) = 42 - 6x$ 61) A) Insolutions 61) B) Dne solution 62) C) No solutions 62) B) Infinitely many solutions 62) C) No solutions 62) B) Infinitely many solutions 62) C) One solution 63) G) 10x + 31 = 4(4k - 10) 62) A) No solutions 63) B) Infinitely many solutions 63) C) One solution 63) B) Infinitely many solutions		57) 7(x + 3) = 7x + 21				57)
C) Infinitely many solutions58) $8(x - 6) + (-3x) = 5(x - 6) + 3$ A) No solutions58)B) Infinitely many solutions C) One solution59)59) $12(x - 2) = 2(6x - 3) - 18$ A) No solutions B) Infinitely many solutions C) One solution59)60) $4x = 5(x + 3) - x$ A) No solutions B) Infinitely many solutions C) One solution60)60) $4x = 5(x + 3) - x$ A) No solutions B) Infinitely many solutions C) One solution60)61) $7x - (13x - 11) = 42 - 6x$ A) Infinitely many solutions B) One solution61)62) $16k - 31 = 4(4k - 10)$ A) No solutions B) Infinitely many solutions C) One solution62)62) $16k - 31 = 4(4k - 10)$ A) No solutions62)63) $4x + 5(x + 1) + 4 = 9 - 2x$ A) One solution63)63) $4x + 5(x + 1) + 4 = 9 - 2x$ A) One solution63)63) $4x + 5(x + 1) + 4 = 9 - 2x$ A) One solution63)64) Drand A soup contains 955 milligrams of sodium. Write a formula that computes the number of milligrams of sodium. S, in x cans of Brand A soup.						
58) $8(x - 6) + (-3x) = 5(x - 6) + 3$ A) No solutions B) Infinitely many solutions C) One solution58)59) $12(x - 2) = 2(6x - 3) - 18$ A) No solutions B) Infinitely many solutions C) One solution59)60) $4x = 5(x + 3) - x$ A) No solutions C) One solution60)60) $4x = 5(x + 3) - x$ A) No solutions B) Infinitely many solutions C) One solution60)61) $7x - (13x - 11) = 42 - 6x$ A) Infinitely many solutions B) One solution61)62) $16k - 31 = 4(4k - 10)$ A) No solutions B) Infinitely many solutions C) One solution62)63) $4x + 5(x + 1) + 4 = 9 - 2x$ A) One solution63)63) $4x + 5(x + 1) + 4 = 9 - 2x$ A) One solution63)63) $4x + 5(x + 1) + 4 = 9 - 2x$ A) One solution63)64) Dres of a solution s B) Infinitely many solutions C) No solutions63)65) $4x + 5(x + 1) + 4 = 9 - 2x$ A) One solution63)63) $4x + 5(x + 1) + 4 = 9 - 2x$ A) One solution63)64) Brand A soup contains 955 milligrams of sodium. Write a formula that computes the number of milligrams of sodium, S, in x cans of Brand A soup.						
A) No solutions B) Infinitely many solutions C) One solution59)59) $12(x - 2) = 2(6x - 3) - 18$ A) No solutions B) Infinitely many solutions C) One solution59)60) $4x = 5(x + 3) - x$ A) No solutions B) Infinitely many solutions C) One solution60)60) $4x = 5(x + 3) - x$ A) No solutions B) Infinitely many solutions C) One solution60)61) $7x - (13x - 11) = 42 - 6x$ A) Infinitely many solutions B) One solution61)62) $16k - 31 = 4(4k - 10)$ A) No solutions B) Infinitely many solutions C) One solution62)62) $16k - 31 = 4(4k - 10)$ A) No solutions B) Infinitely many solutions C) One solution62)63) $4x + 5(x + 1) + 4 = 9 - 2x$ A) One solution63)63) $4x + 5(x + 1) + 4 = 9 - 2x$ A) One solutions C) No solutions63)63) $4x + 5(x + 1) + 4 = 9 - 2x$ A) One solution C) No solutions63)63) $4x + 5(x + 1) + 4 = 9 - 2x$ A) One solution B) Infinitely many solutions C) No solutions63)64) Brand A soup contains 955 milligrams of sodium. Write a formula that computes the number of milligrams of sodium, S, in x cans of Brand A soup.64)		C) Infinitely many solution	IS			
A) No solutions B) Infinitely many solutions C) One solution59)59) $12(x - 2) = 2(6x - 3) - 18$ A) No solutions B) Infinitely many solutions C) One solution59)60) $4x = 5(x + 3) - x$ A) No solutions B) Infinitely many solutions C) One solution60)60) $4x = 5(x + 3) - x$ A) No solutions B) Infinitely many solutions C) One solution60)61) $7x - (13x - 11) = 42 - 6x$ A) Infinitely many solutions B) One solution61)62) $16k - 31 = 4(4k - 10)$ A) No solutions B) Infinitely many solutions C) One solution62)62) $16k - 31 = 4(4k - 10)$ A) No solutions B) Infinitely many solutions C) One solution62)63) $4x + 5(x + 1) + 4 = 9 - 2x$ A) One solution63)63) $4x + 5(x + 1) + 4 = 9 - 2x$ A) One solutions C) No solutions63)63) $4x + 5(x + 1) + 4 = 9 - 2x$ A) One solution C) No solutions63)63) $4x + 5(x + 1) + 4 = 9 - 2x$ A) One solution B) Infinitely many solutions C) No solutions63)64) Brand A soup contains 955 milligrams of sodium. Write a formula that computes the number of milligrams of sodium, S, in x cans of Brand A soup.64)						
B) Infinitely many solutions C) One solution 59) $12(x - 2) = 2(6x - 3) - 18$ A) No solutions B) Infinitely many solutions C) One solution 60) $4x = 5(x + 3) - x$ A) No solutions B) Infinitely many solutions C) One solution 60) $$		58) $8(x - 6) + (-3x) = 5(x - 6) + 3$				58)
C) One solution59)59)59) $12(x - 2) = 2(6x - 3) - 18$ A) No solutions B) Infinitely many solutions C) One solution59)60) $4x = 5(x + 3) - x$ A) No solutions B) Infinitely many solutions C) One solution60)61) $4x = 5(x + 3) - x$ A) No solutions C) One solution60)61) $7x - (13x - 11) = 42 - 6x$ A) Infinitely many solutions B) One solution61)62) $16k - 31 = 4(4k - 10)$ A) No solutions62)62) $16k - 31 = 4(4k - 10)$ A) No solutions62)63) $4x + 5(x + 1) + 4 = 9 - 2x$ A) One solution63)63) $4x + 5(x + 1) + 4 = 9 - 2x$ A) One solution63)63) $4x + 5(x + 1) + 4 = 9 - 2x$ A) One solution63)63) $4x + 5(x + 1) + 4 = 9 - 2x$ A) One solution63)64) Brand A soup contains 955 milligrams of sodium. Write a formula that computes the number of milligrams of sodium, 5, in x cans of Brand A soup.64)						
59) $12(x - 2) = 2(6x - 3) - 18$ 59)			IS			
A) No solutions B) Infinitely many solutions C) One solution60)60) $60) 4x = 5(x + 3) - x$ A) No solutions B) Infinitely many solutions C) One solution60)60) $61) 7x - (13x - 11) = 42 - 6x$ A) Infinitely many solutions B) One solution61)61) $61) 7x - (13x - 11) = 42 - 6x$ A) Infinitely many solutions B) One solution61)61) $61) 7x - (13x - 11) = 42 - 6x$ A) Infinitely many solutions B) One solution C) No solutions61)61) $62) 16k - 31 = 4(4k - 10)$ A) No solutions62)62) $62) 16k - 31 = 4(4k - 10)$ B) Infinitely many solutions C) One solution62)62) $63) 4x + 5(x + 1) + 4 = 9 - 2x$ A) One solution B) Infinitely many solutions C) No solutions63)63)Solve the problem. 64) Brand A soup contains 955 milligrams of sodium. Write a formula that computes the number of milligrams of sodium, S, in x cans of Brand A soup.64)		C) One solution				
A) No solutions B) Infinitely many solutions C) One solution60)60) $60) 4x = 5(x + 3) - x$ A) No solutions B) Infinitely many solutions C) One solution60)60) $61) 7x - (13x - 11) = 42 - 6x$ A) Infinitely many solutions B) One solution61)61) $61) 7x - (13x - 11) = 42 - 6x$ A) Infinitely many solutions B) One solution61)61) $61) 7x - (13x - 11) = 42 - 6x$ A) Infinitely many solutions B) One solution C) No solutions61)61) $62) 16k - 31 = 4(4k - 10)$ A) No solutions62)62) $62) 16k - 31 = 4(4k - 10)$ B) Infinitely many solutions C) One solution62)62) $63) 4x + 5(x + 1) + 4 = 9 - 2x$ A) One solution B) Infinitely many solutions C) No solutions63)63)Solve the problem. 64) Brand A soup contains 955 milligrams of sodium. Write a formula that computes the number of milligrams of sodium, S, in x cans of Brand A soup.64)						
B)Infinitely many solutionsC)One solution60)4x = $5(x + 3) - x$ A)No solutionsB)Infinitely many solutionsC)One solution61) $7x - (13x - 11) = 42 - 6x$ A)Infinitely many solutionsB)One solution61) $7x - (13x - 11) = 42 - 6x$ A)Infinitely many solutionsB)One solutionC)No solutions61)(2)C)No solutions62)16k - 31 = 4(4k - 10)A)No solutionsB)Infinitely many solutionsC)One solution63)4x + 5(x + 1) + 4 = 9 - 2xA)One solutionB)Infinitely many solutionsC)No solutionsSolve the problem.64)Brand A soup contains 955 milligrams of sodium. Write a formula that computes the number of milligrams of sodium, S, in x cans of Brand A soup.						59)
C) One solution60)60) $60) 4x = 5(x + 3) - x$ $60)$ A) No solutions $61)$ Infinitely many solutionsC) One solution $61) 7x - (13x - 11) = 42 - 6x$ $61) 7x - (13x - 11) = 42 - 6x$ $61)$ A) Infinitely many solutions $61)$ B) One solution $61)$ C) No solutions $62)$ B) One solutions $62)$ $62) 16k - 31 = 4(4k - 10)$ $62)$ A) No solutions $62)$ B) Infinitely many solutions $62)$ C) One solution $63) 4x + 5(x + 1) + 4 = 9 - 2x$ A) One solution $63)$ $63)$ B) Infinitely many solutions $63)$ C) No solutions $63)$ Solve the problem. $64)$ G4) Brand A soup contains 955 milligrams of sodium. Write a formula that computes the number of milligrams of sodium, S, in x cans of Brand A soup.						
60) 4x = 5(x + 3) - x $60)$ A) No solutionsB) Infinitely many solutionsC) One solution $61) 7x - (13x - 11) = 42 - 6x$ A) Infinitely many solutions $61)$ B) One solution $61)$ C) No solutions $61)$ 62) 16k - 31 = 4(4k - 10) $62)$ A) No solutions $62)$ B) Infinitely many solutions $62)$ C) One solution $62)$ G) 16k - 31 = 4(4k - 10) $62)$ A) No solutions $62)$ B) Infinitely many solutions $62)$ C) One solution $63) 4x + 5(x + 1) + 4 = 9 - 2x$ A) One solution $63)$ B) Infinitely many solutions $63)$ C) No solutions $63)$ Solve the problem. $64)$ 64) Brand A soup contains 955 milligrams of sodium. Write a formula that computes the number of milligrams of sodium, S, in x cans of Brand A soup.			IS			
A) No solutions B) Infinitely many solutions C) One solution 61) 7x - (13x - 11) = 42 - 6x A) Infinitely many solutions B) One solution C) No solutions 62) 16k - 31 = 4(4k - 10) A) No solutions 62) 16k - 31 = 4(4k - 10) A) No solutions B) Infinitely many solutions C) One solution 62) 16k - 31 = 4(4k - 10) A) No solutions B) Infinitely many solutions C) One solution 63) 4x + 5(x + 1) + 4 = 9 - 2x A) One solution B) Infinitely many solutions C) No solutions Solve the problem. 64) Brand A soup contains 955 milligrams of sodium. Write a formula that computes the number of milligrams of sodium, S, in x cans of Brand A soup.		C) One solution				
A) No solutions B) Infinitely many solutions C) One solution 61) 7x - (13x - 11) = 42 - 6x A) Infinitely many solutions B) One solution C) No solutions 62) 16k - 31 = 4(4k - 10) A) No solutions 62) 16k - 31 = 4(4k - 10) A) No solutions B) Infinitely many solutions C) One solution 62) 16k - 31 = 4(4k - 10) A) No solutions B) Infinitely many solutions C) One solution 63) 4x + 5(x + 1) + 4 = 9 - 2x A) One solution B) Infinitely many solutions C) No solutions Solve the problem. 64) Brand A soup contains 955 milligrams of sodium. Write a formula that computes the number of milligrams of sodium, S, in x cans of Brand A soup.						
B) Infinitely many solutions C) One solution61)61) $61) 7x - (13x - 11) = 42 - 6x$ A) Infinitely many solutions B) One solution C) No solutions61)61) $62) 16k - 31 = 4(4k - 10)$ A) No solutions B) Infinitely many solutions C) One solution62)62) $63) 4x + 5(x + 1) + 4 = 9 - 2x$ A) One solution B) Infinitely many solutions C) No solution63)63) $63) 4x + 5(x + 1) + 4 = 9 - 2x$ A) One solution63)63) $63) 4x + 5(x + 1) + 4 = 9 - 2x$ A) One solution63)63) $63) 4x + 5(x + 1) + 4 = 9 - 2x$ A) One solution63)63) $64)$ Brand A soup contains 955 milligrams of sodium. Write a formula that computes the number of milligrams of sodium, S, in x cans of Brand A soup.64)						60)
C) One solution61) $7x - (13x - 11) = 42 - 6x$ 61)A) Infinitely many solutions61)B) One solution61)C) No solutions62)62) 16k - 31 = 4(4k - 10)62)A) No solutions62)B) Infinitely many solutions62)C) One solution63)63) $4x + 5(x + 1) + 4 = 9 - 2x$ 63)A) One solution63)B) Infinitely many solutions63)C) No solutions63)Solve the problem.64)64) Brand A soup contains 955 milligrams of sodium. Write a formula that computes the number of milligrams of sodium, S, in x cans of Brand A soup.		-	_			
61) $7x - (13x - 11) = 42 - 6x$ 61)A) Infinitely many solutions61)B) One solution62) no solutions62) $16k - 31 = 4(4k - 10)$ 62)A) No solutions62)B) Infinitely many solutions62)C) One solution63) $4x + 5(x + 1) + 4 = 9 - 2x$ A) One solution63) $4x + 5(x + 1) + 4 = 9 - 2x$ A) One solution63) Infinitely many solutionsC) No solutions63)Solve the problem.64) Erand A soup contains 955 milligrams of sodium. Write a formula that computes the number of milligrams of sodium, S, in x cans of Brand A soup.			IS			
 A) Infinitely many solutions B) One solution C) No solutions 62) 16k - 31 = 4(4k - 10) A) No solutions B) Infinitely many solutions C) One solution 63) 4x + 5(x + 1) + 4 = 9 - 2x A) One solution 63) 4x + 5(x + 1) + 4 = 9 - 2x A) One solution B) Infinitely many solutions C) No solutions Solve the problem. 64) Brand A soup contains 955 milligrams of sodium. Write a formula that computes the number of milligrams of sodium, S, in x cans of Brand A soup. 		C) One solution				
 A) Infinitely many solutions B) One solution C) No solutions 62) 16k - 31 = 4(4k - 10) A) No solutions B) Infinitely many solutions C) One solution 63) 4x + 5(x + 1) + 4 = 9 - 2x A) One solution 63) 4x + 5(x + 1) + 4 = 9 - 2x A) One solution B) Infinitely many solutions C) No solutions Solve the problem. 64) Brand A soup contains 955 milligrams of sodium. Write a formula that computes the number of milligrams of sodium, S, in x cans of Brand A soup. 		(1) 7y (10y 11) 10 (y				(1)
 B) One solution C) No solutions 62) 16k - 31 = 4(4k - 10) A) No solutions B) Infinitely many solutions C) One solution 63) 4x + 5(x + 1) + 4 = 9 - 2x A) One solution B) Infinitely many solutions C) No solution Solve the problem. 64) Brand A soup contains 955 milligrams of sodium. Write a formula that computes the number of milligrams of sodium, S, in x cans of Brand A soup. 		, , ,				01)
C) No solutions 62) 16k - 31 = 4(4k - 10) A) No solutions B) Infinitely many solutions C) One solution 63) 4x + 5(x + 1) + 4 = 9 - 2x A) One solution B) Infinitely many solutions C) No solution 63) 4x + 5(x + 1) + 4 = 9 - 2x A) One solution B) Infinitely many solutions C) No solutions Solve the problem. 64) Brand A soup contains 955 milligrams of sodium. Write a formula that computes the number of milligrams of sodium, S, in x cans of Brand A soup.			12			
62) 16k - 31 = 4(4k - 10) 62) A) No solutions B) Infinitely many solutions C) One solution 63) 4x + 5(x + 1) + 4 = 9 - 2x 63) 4x + 5(x + 1) + 4 = 9 - 2x 63) A) One solution B) Infinitely many solutions C) No solutions 63) Solve the problem. 64) Brand A soup contains 955 milligrams of sodium. Write a formula that computes the number of milligrams of sodium, S, in x cans of Brand A soup.						
 A) No solutions B) Infinitely many solutions C) One solution 63) 4x + 5(x + 1) + 4 = 9 - 2x A) One solution B) Infinitely many solutions C) No solutions Solve the problem. 64) Brand A soup contains 955 milligrams of sodium. Write a formula that computes the number of milligrams of sodium, S, in x cans of Brand A soup. 						
 A) No solutions B) Infinitely many solutions C) One solution 63) 4x + 5(x + 1) + 4 = 9 - 2x A) One solution B) Infinitely many solutions C) No solutions Solve the problem. 64) Brand A soup contains 955 milligrams of sodium. Write a formula that computes the number of milligrams of sodium, S, in x cans of Brand A soup. 		62) 16k - 31 = $4(4k - 10)$				62)
 B) Infinitely many solutions C) One solution 63) 4x + 5(x + 1) + 4 = 9 - 2x A) One solution B) Infinitely many solutions C) No solutions Solve the problem. 64) Brand A soup contains 955 milligrams of sodium. Write a formula that computes the number of milligrams of sodium, S, in x cans of Brand A soup. 						
 C) One solution 63) 4x + 5(x + 1) + 4 = 9 - 2x 63) 63) 63) 63) 63) 64) Infinitely many solutions 64) Brand A soup contains 955 milligrams of sodium. Write a formula that computes the number of milligrams of sodium, S, in x cans of Brand A soup. 		-	IS			
 A) One solution B) Infinitely many solutions C) No solutions Solve the problem. 64) Brand A soup contains 955 milligrams of sodium. Write a formula that computes the number of 64)						
 A) One solution B) Infinitely many solutions C) No solutions Solve the problem. 64) Brand A soup contains 955 milligrams of sodium. Write a formula that computes the number of 64)						
 A) One solution B) Infinitely many solutions C) No solutions Solve the problem. 64) Brand A soup contains 955 milligrams of sodium. Write a formula that computes the number of 64)		63) $4x + 5(x + 1) + 4 = 9 - 2x$				63)
 B) Infinitely many solutions C) No solutions Solve the problem. 64) Brand A soup contains 955 milligrams of sodium. Write a formula that computes the number of milligrams of sodium, S, in x cans of Brand A soup. 						
Solve the problem. 64) Brand A soup contains 955 milligrams of sodium. Write a formula that computes the number of 64) milligrams of sodium, S, in x cans of Brand A soup.		B) Infinitely many solution	IS			
64) Brand A soup contains 955 milligrams of sodium. Write a formula that computes the number of 64) milligrams of sodium, S, in x cans of Brand A soup.		C) No solutions				
64) Brand A soup contains 955 milligrams of sodium. Write a formula that computes the number of 64) milligrams of sodium, S, in x cans of Brand A soup.						
milligrams of sodium, S, in x cans of Brand A soup.	So	ve the problem.				
		64) Brand A soup contains 955 m	-	rite a formula that compu	tes the number of	64)
A) $S = 955 + x$ B) $S = 955x$ C) $S = x - 955$ D) $S = 955$		-	-			
		A) $S = 955 + x$	3) S = 955x	C) S = x - 955	D) S = 955	

A) 5 days		C) 2 days	D) 14 days	
	B) 4 days	0) 2 0033	<i>D</i>) 11 ddy3	
66) The temperature, t, in	degrees Fahrenheit, of	water being heated is 66 + $\frac{1}{2}$	m where m is the number	66)
of minutes since heati		I it take for the temperature		
degrees Fahrenheit? A) 8 min	B) 2 min	C) 5 min	D) 16 min	
Ay o min	0) 2 11111	C) 5 mm		
sales in thousands of	dollars and x is the num	bw the model y = 85 - 13.25 ber of years after the store o the year first be less than S	opened. How many years	67)
A) 5 yr	B) 8 yr	C) 10 yr	D) 863 yr	
y = 47.38 + 0.617x whe	ere y is the amount char	tain type of copy machine f ged in dollars and x is the r	number of minutes the	68)
· · ·	, ,	es would it take for the cost	of repair to reach \$120?	
(Round to the nearest A) 118 min	B) 187 min	C) 12 min	D) 271 min	
69) When going more tha	n 38 miles per hour, the	gas mileage of a certain ca	r fits the model	69)
y = 43.81 - 0.395x whe	ere x is the speed of the s model, at what speed	car in miles per hour and y will the car average 15 mile	is the miles per gallon of	
A) 73 mph	B) 48 mph	C) 149 mph	D) 98 mph	
model y = 15.2 - 0.537 Celsius temperature c	x where x is the number of the water at that depth	n. Based on this model, how	face of the lake and y is the	70)
model y = 15.2 - 0.537 Celsius temperature o	x where x is the number	r of feet down from the sur n. Based on this model, how	face of the lake and y is the	70)
model y = 15.2 - 0.537 Celsius temperature c water 11 degrees? (Ro A) 64 ft	Yx where x is the number of the water at that depth ound to the nearest foot.) B) 8 ft	r of feet down from the sur n. Based on this model, how	face of the lake and y is the deep in the lake is the	70)
model y = 15.2 - 0.537 Celsius temperature o water 11 degrees? (Ro	Yx where x is the number of the water at that depth ound to the nearest foot.) B) 8 ft	r of feet down from the sur n. Based on this model, how	face of the lake and y is the deep in the lake is the	70)
model y = 15.2 - 0.537 Celsius temperature o water 11 degrees? (Ro A) 64 ft ide an appropriate respons 71) 2x - 5 = 5 + 7x - 3 Is this a linear equatio	Vx where x is the number of the water at that depth bund to the nearest foot.) B) 8 ft se.	r of feet down from the sur n. Based on this model, how C) 49 ft	face of the lake and y is the deep in the lake is the	
model y = 15.2 - 0.537 Celsius temperature o water 11 degrees? (Ro A) 64 ft ide an appropriate respons 71) 2x - 5 = 5 + 7x - 3	Vx where x is the number of the water at that depth bund to the nearest foot.) B) 8 ft se.	r of feet down from the sur n. Based on this model, how	face of the lake and y is the deep in the lake is the	
model y = 15.2 - 0.537 Celsius temperature o water 11 degrees? (Ro A) 64 ft ide an appropriate respons 71) 2x - 5 = 5 + 7x - 3 Is this a linear equatio	Vx where x is the number of the water at that depth bund to the nearest foot.) B) 8 ft se.	r of feet down from the sur n. Based on this model, how C) 49 ft	face of the lake and y is the deep in the lake is the	
model y = 15.2 - 0.537 Celsius temperature of water 11 degrees? (Ro A) 64 ft ide an appropriate respons 71) 2x - 5 = 5 + 7x - 3 Is this a linear equatio A) Yes 72) - $\frac{3}{x} = 83$ Is this a linear equatio	vx where x is the number of the water at that depth ound to the nearest foot.) B) 8 ft ee.	r of feet down from the surf a. Based on this model, how C) 49 ft B) No	face of the lake and y is the deep in the lake is the	71)
model y = 15.2 - 0.537 Celsius temperature of water 11 degrees? (Ro A) 64 ft ide an appropriate respons 71) 2x - 5 = 5 + 7x - 3 Is this a linear equatio A) Yes 72) - $\frac{3}{x} = 83$	vx where x is the number of the water at that depth ound to the nearest foot.) B) 8 ft ee.	r of feet down from the sur n. Based on this model, how C) 49 ft	face of the lake and y is the deep in the lake is the	71)
model y = 15.2 - 0.537 Celsius temperature of water 11 degrees? (Ro A) 64 ft ide an appropriate respons 71) 2x - 5 = 5 + 7x - 3 Is this a linear equatio A) Yes 72) - $\frac{3}{x} = 83$ Is this a linear equatio	vx where x is the number of the water at that depth ound to the nearest foot.) B) 8 ft ee.	r of feet down from the surf a. Based on this model, how C) 49 ft B) No	face of the lake and y is the deep in the lake is the	71)

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

74) If one step in the solution of an equation is 2 = 55, what is the final solution of the equation? 74)

	75) True or false? This pair of	equations is equivalent. 2)	<pre>< - 5 = 5 and 4x + 5 = 25</pre>	75)	
	76) True or false? The solution	n of the equation 7y - 6 = 7	7y + 3 is 0. Explain.	76)	
	77) True or false? The solution	of the equation 7(7s - 4)	= 49s - 28 is 1. Explain.	77)	
	78) Find all values of s that ma	ke this statement true: 8(3s - 6) = 64s - 48.	78)	
MUL	TIPLE CHOICE. Choose the o	ne alternative that best co	mpletes the statement or	answers the question	l.
Trans	slate the sentence to an equatio 79) The sum of a number and		hen solve the equation.		79)
	A) x + 5 = 17; 12	B) $5x = 17; \frac{5}{17}$	C) x + 17 = 5; -12	D) x = 5 + 17; 22	
	80) A number minus 4 equals				80)
	A) x = 4 - 2; 2	B) x = 2 - 4; -2	C) 4 - x = 2; 2	D) x - 4 = 2;6	
	81) 5 times a number equals 4		ber.		81)
	A) $5x = 4 - 6; -\frac{2}{5}$	B) $5x = 4 - 6x; \frac{4}{11}$	C) 5x - 4 = 6x; - 4	D) $5x = 6x - 4; 4$	
	82) Four times a number adde A) 4x(9 + x) = 52; -4	d to 9 times the number e	quals 52. B) 9x - 4x = 52; 4		82)
	C) $9x + 4x = 52; 4$		D) $4(x + 9) = 52x; -4$		
	83) When 4 times a number is	subtracted from 7 times th			83)
	A) 7x - 4x = 21; 7 C) 4x + 7x = 21; 3		B) 4x(7 - x) = 21; -7 D) 4(x - 7) = 21x; 3		
	84) If 5 times a number is adde	d to 6 the result is equa	to 11 times the number		84)
	A) $11(5x - 6) = -6; -1$	eu to -o, the result is equa	B) $5x + 6x = 11; 1$		
	C) 5x + (-6) = 11x; -1		D) 5x - (-6) = 11x; 1		
	85) When $\frac{1}{4}$ of a number is ad	ded to 12, the result is 26.			85)
	A) $12 + \frac{1}{4}x = 26;56$		B) $\frac{1}{4} + x = 26; 26$		
	C) $\frac{1}{4}x - 12 = 26; 152$		D) $26 + \frac{1}{4}x = 12;56$		
	86) When 50% of a number is a A) 70 + 0.5x = x - 2; 144 C) 70 - 50 = x - 2; 22		sult is 2 less than the numb B) 0.5x - 70 = x - 2; -13 D) 70 - 0.5x = x - 2; 48		86)
Find	the number or numbers.				6 7)
	87) The sum of two consecutiv A) 46	ve even integers is 74. Find B) 38	the larger number. C) 34	D) 32	87)

	88) The sum of the page numb A) 191	ers on the facing pages of B) 179	a book is 361. Find the lar C) 181	ger page number. D) 176	88)
	89) The difference between two Find the integers.	o positive integers is 42. O	ne integer is three times a	s great as the other.	89)
	A) 42 and 63	B) 21 and 63	C) 21 and 42	D) 63 and 105	
	90) If -11 is added to a number number.	r and the sum is doubled,	the result is -14 less than t	he number. Find the	90)
	A) -3	B) 36	C) 8	D) -8	
	91) The sum of twice a number and the number. What is th		per is the same as the differ	rence between -26	91)
	A) -6	B) -4	C) -10	D) -5	
	92) The sum of two consecutiv A) -182	e integers is -363. Find the B) -181	e larger integer. C) -180	D) -183	92)
	93) The sum of three consecuti A) 143, 144, 145	ve integers is 432. Find the B) 144, 145, 146	e integers. C) 142, 143, 144	D) 142, 144, 146	93)
	94) The sum of three consecuti A) 74, 75, 76	ve odd integers is 243. Fin B) 81, 83, 85	nd the integers. C) 79, 81, 83	D) 83, 85, 87	94)
	95) If three times the smaller of 130. Find the smaller intege	-	is added to four times the	larger, the result is	95)
	A) 19	B) 17	C) 54	D) 18	
	96) If the first and third of thre the second integer. Find the		s are added, the result is 8	7 less than five times	96)
	A) 29	B) 31	C) 58	D) 27	
Write	e the percent as a fraction in sim 97) 62.5%	nplest form.			97)
	A) $\frac{5}{8}$	B) ⁵ / ₁₆	C) $\frac{5}{4}$	D) $\frac{25}{4}$	·
	98) $41\frac{2}{3}\%$				98)
	A) $\frac{5}{6}$	B) $\frac{25}{6}$	C) $\frac{5}{24}$	D) <u>5</u> 12	
	99) 285 <mark>5</mark> %				99)
	A) 28 ⁴ / ₇	B) 2 ⁶ /7	C) $5\frac{5}{7}$	D) $1\frac{3}{7}$	

100) 0.8% A) <u>1</u> 125	B) $\frac{2}{25}$	C) $\frac{2}{125}$	D) <u>1</u> 250	100)
101)				101)
A) $\frac{1}{800}$	B) <u>1</u> 200	C) $\frac{1}{40}$	D) <u>1</u> 400	
102) 62.5% A) 5 <u>9</u>	B) $\frac{25}{4}$	C) <u>5</u> 11	D) ⁵ / ₈	102)
103) 6.45% A) <u>129</u>	B) <u>129</u> 2000	C) $\frac{129}{20}$	D) <u>129</u> 200	103)
Write the percent as a decimal. 104) 55% A) 0.44	B) 0.55	C) 5.5	D) 0.055	104)
105) 90% A) 0.79	B) 9	C) 0.09	D) 0.9	105)
106) 90.4% A) 0.904	B) 0.0904	C) 0.794	D) 9.04	106)
107) 600% A) 60	B) 0.6	C) 6	D) 6.01	107)
108) 770% A) 77	B) 7.71	C) 7.7	D) 0.77	108)
109) 776% A) 7.76	B) 77.6	C) 0.776	D) 7.77	109)
110) 0.5% A) 0.5	B) 0.005	C) 0.006	D) 0.05	110)
111) 34.45% A) 0.3345	B) 0.3445	C) 0.03445	D) 3.445	111)
112) $66\frac{2}{3}\%$				112)
A) 0.6623	B) 66. 6	C) 0.6	D) 6.6	

113) 14	1 1 %				113)
	A) 0.141	B) 0.141	C) 14.1	D) 0.141	
Write as a p					114)
114) 0.	A) 0.098%	B) 98%	C) 9.8%	D) 980%	114)
115) 0.	3 A) 0.03%	B) 0.3%	C) 300%	D) 30%	115)
116) 0.	962 A) 0.0962%	B) 96.2%	C) 962%	D) 0.962%	116)
117) 0.	762 A) 0.762%	B) 762%	C) 0.0762%	D) 76.2%	117)
118) 8.	7 A) 0.87%	B) 870%	C) 87%	D) 0.0087%	118)
119) 0 .	00962 A) 0.000962%	B) 0.481%	C) 0.962%	D) 0.0962%	119)
120) 1	A) 0.1%	B) 50%	C) 100%	D) 0.01%	120)
121) 0.4	00027 A) 0.000027%	B) 0.027%	C) 0.0027%	D) 0.27%	121)
122) 0.	023 A) 23%	B) 0.23%	C) 2.3%	D) 0.0023%	122)
123) 0.	1545 A) 0.01545%	B) 1.545%	C) 15.45%	D) 154.5%	123)
Write as a po 124) <u>4</u>	ercent. Round your answe 1 <u>3</u> 00	er to the nearest tenth, if i	necessary.		124)
	A) 0.43%	B) 4.3%	C) 43%	D) 430%	
125) <u>-3</u>	-				125)
	A) 0.3%	B) 3%	C) 300%	D) 30%	
126) <u>1</u> 9					126)
	A) 12.3%	B) 1.1%	C) 90%	D) 11.1%	

12	27) $\frac{1}{3}$				127)
	A) 3.3%	B) 33.3%	C) 120%	D) 27.8%	
12	28) $\frac{1}{2}$				128)
	A) 5%	B) 25%	C) 1000%	D) 50%	
12	29) 9 17				129)
	A) 170%	B) 52.9%	C) 5.3%	D) 31.1%	
13	30) $\frac{14}{5}$				130)
	A) 280%	B) 28%	C) 50%	D) 560%	
Solve. 13	31) An insurance fund invests \$ much money is earned per		arns 11% per year on the i	nvestment. How	131)
	A) \$661,818	B) \$80,080	C) \$8008	D) \$66,182	
13	32) A chemical solution contairA) 1.2 mL	is 3% potassium. How mu B) 133.333 mL	ch potassium is in 4 mL o C) 13.333 mL	f solution? D) 0.12 mL	132)
13	33) An appliance store had more was spent on promotions?	nthly sales of \$106,400 and	I spent 2% of it on promot	ions. How much	133)
	A) \$2128	B) \$532,000	C) \$5,320,000	D) \$21,280	
13	34) The First National Bank pay	ys $4\frac{2}{5}$ % interest per year o	n money market accounts	. What is the annual	134)
	income on a money market A) \$277,500	account of \$111,000? Rou B) \$2,775,000	nd your answer to the nea C) \$4884	rest dollar. D) \$48,840	
13	35) A decorator has 62 clients, 5A) 31,000 clients	i0% of which are business B) 310 clients	es. Find the number of bus C) 3100 clients	siness clients. D) 31 clients	135)
13	36) 47.5% of the students at a ce 1400, how many female stu		ne total number of student	s at the college is	136)
	A) 700 students	B) 665 students	C) 755 students	D) 735 students	
13	37) If Gloria received a 3 percer the raise?	nt raise and is now making	g \$23,690 a year, what was	s her salary before	137)
	A) \$21,690	B) \$22,690	C) \$23,000	D) \$24,000	
13	38) An investor bought 100 sha How much did the investor		-		138)
	A) \$1550	B) \$1591	C) \$1495	D) \$1500	

		Alex and Juana went on a 10	-	-	hey traveled 24	139)
	n	niles. What percent of the to A) 24%	B) 400%	C) 0.24%	D) 4%	
	-	tudents at Maple School ea rip. What percent of their g	0	They want to accumulate	\$2000 for a club	140)
		A) 60%	B) 6%	C) 0.164%	D) 16.4%	
Use		mula d = rt to find the valu I = 350 miles, r = 70 mph	ue of the missing variable).		141)
		A) t = 5 hr	B) t = 4 hr	C) t = 6 hr	D) $t = \frac{1}{5} hr$	
	142) d	l = 1900 feet, r = 10 feet per	second			142)
		A) t = 190 sec	B) t = 19 sec	C) t = 19,000 sec	D) t = $\frac{1}{190}$ sec	
	143) t	= 230 sec, r = 10 feet per se	cond			143)
		A) d= 23,000 ft	B) d = 23 ft	C) d = $\frac{1}{23}$ ft	D) d = 2300 ft	
	144) r	= 13.4 mph, t = 5 hours				144)
		A) d = 80.4 mi	B) d = 67 mi	C) d = 13.4 mi	D) d = 2.7 mi	
	145) r	= 22 feet per minute, t = 5 A) d = 110 ft	minutes B) d = 0.2 ft	C) d = 17 ft	D) d = 4.4 ft	145)
	146) d	l = 240 miles, r = 60 mph A) t = 5 hr	B) t = 144 hr	C) t = 30 hr	D) t = 4 hr	146)
	147) d	l = 325 miles, t = 5 days	_,	.,	_,	147)
	147) 0	A) $r = 70 \text{ mi/day}$	B) r = 320 mi/day	C) r = 65 mi/day	D) r = 62 mi/day	
	148) d	l = 21 miles, t = 6 hours (R A) r = 0.3 mph	ound to the nearest tenth v B) r = 15 mph	when necessary.) C) r = 126 mph	D) r = 3.5 mph	148)
Solv	re the n	roblem.	, , ,		,	
		ay drove 292 kilometers at	the average rate of 73 kilor	meters per hour. How long	g did the trip take?	149)
		A) $\frac{1}{4}$ hr	B) 5 hr	C) 4 hr	D) 3 hr	
	150) Ja	anet drove 325 kilometers a	and the trip took 5 hours. H	How fast was Janet traveli	ng?	150)
		A) 65 km/hr	B) $\frac{1}{65}$ km/hr	C) 1625 km/hr	D) 66 km/hr	
		ill is 18 kilometers away fro	-		same time. Jill	151)
	V	valks at 2 km/hr. They mee A) 6.5 km/hr	t in 4 hours. How fast is Jo B) 10 km/hr	e walking? C) 2.25 km/hr	D) 2.5 km/hr	

	s per hour. In how many	ven in opposite directions, on hours will they be 399 miles B) 3 hours D) 4 hours	•	152)
	·	de bicycles in opposite direct n how many hours will they B) Not enough inform D) 5 hours	be 52 miles apart?	153)
		pposite directions, one at 7 r ill they be 45 miles apart? C) 1 hr	niles per hour and the D) 3 hr	154)
		aveling 54 in the same directi them to be 10.5 miles apart? C) 2.5 hr.	on on the highway. If D) 1.5 hr.	155)
156) On her way to a holida	/ weekend, Nancy drove	$1\frac{1}{2}$ hours in rush-hour traffi	c. When traffic eased	156)
up, she was able to incr	ease her speed by 42 mile	s per hour and drove anothe	r 4 $\frac{1}{2}$ hours. If the	
entire trip was 321 mile	s, how fast did she drive	in rush-hour traffic?	-	
1	B) 24 mph	C) 23 mph	D) 22 mph	
157) A solution contains 4% make a 1.2% solution?	salt. How much water sh	ould be added to 72 ounces o	of this solution to	157)
A) 168 oz	B) 178 oz	C) 166 oz	D) 170 oz	
158) How many liters of a 20 40% solution?	% alcohol solution must	be mixed with 20 liters of a 7	0% solution to get a	158)
A) 50 L	B) 3 L	C) 30 L	D) 5 L	
	ition. How many liters of	n the radiator of a certain car this should be drained and r		159)
A) 12.5 L	B) 16.7 L	C) 20 L	D) 25 L	
160) How much pure acid sł acid solution?	nould be mixed with 3 gal	llons of a 50% acid solution in	n order to get an 80%	160)
A) 4.5 gal	B) 7.5 gal	C) 1.5 gal	D) 12 gal	
-	ers of each that should be mL of 80%	but has only 20% and 80% so mixed to get the desired solu B) 90 mL of 20%; 110 n D) 120 mL of 20%; 80 n	ution. nL of 80%	161)

restaurar	t. The student ir	ivested part of the mor	vacation working as a wa ney at 9% and the rest at 6 now much was invested a	5%. If the student rec	162) eived
A) \$28		B) \$933	C) \$3800	D) \$1800	
interest. A) \$50		st paid was \$350, how at 4%	ng 5% interest as he did ir much did he invest in eac B) \$2500 at 5%, \$5 D) \$50 at 5%, \$25 a	ch account? 000 at 4%	4% 163)
The \$600 interest r A) 7.5 ^c B) 8.7 C) 8.2	D loan has an int ate for each loan 6 for \$6000 loan; % for \$6000 loar % for \$6000 loar	erest rate 2% higher th		-	· · · · · · · · · · · · · · · · · · ·
	annual income f		nvested \$5000 more than nts was \$4010. How much C) \$2700		
Provide an appropriate appropriate and time (a) $\frac{d}{t} = r$	o of the followin		rrectly state the relationsh	nip between distance	, rate 166)
(c) $\frac{r}{t} = d$	(d) $\frac{d}{r} = t$				
A) (b)	<u> </u>	B) (b) & (d)	C) (a) & (c)	D) (a) & (d)	
SHORT ANSWER	Write the word	l or phrase that best co	ompletes each statement	or answers the ques	tion.
-	•	ould not be a reasonat per of cars parked in a	ble answer in an applied p parking lot?	problem that	167)
(i) 6.5	ii) 33 (iii) 3 ((iv) 175			
168) Express t	nree consecutive	e integers, all in terms o	of x, if x is the largest inte	ger.	168)
	ber is twice anot n terms of m?	ther. If the larger num	per is m, how do you expr	ress the other	169)
	-	lenry drove his new ca a total of (xy) miles. Is	r for y minutes at x mph. this correct? Explain.	Since d = rt,	170)
17%, so f	-	-	ment broker: This producent one year. Is the		171)

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

		•	·	
Solve the problem.				
172) What is the area of a squar			2	172)
A) 6.76 cm ²	B) 17 cm ²	C) 5.2 cm ²	D) 27.04 cm ²	
173) Find the area of a triangle v	with height 9 meters and b	base 5 meters.		173)
A) 22.5 m ²	B) 7 m ²	C) 45 m ²	D) 90 m ²	
174) The area of a trapezoid is 6	o3 square feet. If the bases a	are 6 feet and 12 feet, find	the altitude of the	174)
trapezoid. A) 14 ft	B) 7 ft	C) 4 ft	D) 1.5 ft	
,	,	,		
175) The area of a triangle with	base b and height h is give	en by the formula $A = \frac{1}{2}bh$	n. Find the area of a	175)
triangle with base 3 meters	and height 16 meters.			
A) 19 m ²	B) 24 m ²	C) 48 m ²	D) 19.5 m ²	
				17/)
176) Find the area of the rectang	jie.			176)
21 m				
11 m				
A) 231 m ²	B) 121 m ²	C) 64 m ²	D) 441 m ²	
,	,	,	,	
177) Find the area of the triangle	e.			177)
/				
6 ft				
10 ft				
A) 60 ft ²	B) 30 ft ²	C) 8 ft ²	D) 15 ft ²	
178) Find the area of the circle.				178)
6 in.				
$(1) (4 - in)^2$	D) 72 = in 2	$() 24 = in^{2}$	D) $12 - in^{2}$	
A) 6π in. ²	B) 72π in. ²	C) 36π in. ²	D) 12π in. ²	

179) Find the area of the trapezoid. 10 yd	179)
A) 32 yd ² B) 16 yd ² C) 8 yd ² D) 60 yd ²	
	180)
38 in. 38 in. 62 in.	
A) 3366 in. ² B) 1900 in. ² C) 1178 in. ² D) 50 in. ²	
first. Find the measure of the smallest angle.	181)
A) 125° B) 35° C) 25° D) 55°	
182) The second angle of a triangle is 4 times as large as the first. The third angle is 170° more than the sum of the other two angles. Find the measure of the second angle.	182)
A) 1° B) 5° C) $\frac{1}{4}$ ° D) 4°	
183) The sum of the measures of the angles in any triangle is 180 degrees. In triangle ABC, angles A and B have the same measure, while angle C is 135 degrees larger than each of the other two angles. Find the measure of angle C.	183)
A) 30° B) 150° C) 15° D) 165°	
 184) The sum of the measures of the angles of any triangle is 180°. In triangle ABC, angles A and B have the same measure, while the measure of angle C is 135° larger than each of A and B. What are the measures of the three angles? A) A and C: 130°; B: 25° B) A and B: 15°; C: 150° 	184)
C) A and B: 150°; C: 15° D) A and B: 25°; C: 130°	
185) Two angles of a triangle are 50° and 100°. What is the measure of the third angle?	185)

186) What is the measure of the third angle? 186) 20° ່ 35 ° B) 70° A) 305° C) 125° D) 55° 187) The angle measures in a triangle are 5x, 3x, and 4x. Find the value of x. 187) A) $\frac{15}{2}^{\circ}$ B) 30° C) 168° D) 15° Solve the problem. 188) A circle has a circumference of 56π m. Find the radius of the circle. 188) D) 28 m A) 56 m B) 9 m C) 14 m 189) The area of a circle with radius r is given by the formula $A = \pi r^2$. Find the area of a circle with 189) radius 3 centimeters. Use 3.14 for π . A) 28.26 cm² B) 6.14 cm² C) 29.58 cm² D) 9.42 cm² 190) A wicker basket has a circular rim with a diameter of 11 in. How many inches of ribbon are needed 190) to go once around the rim? Use 3.14 for π . Round the answer to the nearest hundredth if necessary. A) 34.54 in. B) 121 in. C) 69.08 in. D) 32.54 in. 191) 191) The diameter of a circle is 15 ft. Find its area. B) $\frac{225}{4}\pi$ ft² C) 15π ft² D) 30π ft² A) 225π ft² 192) The radius of a circle is $\frac{5}{3}$ in. Find its circumference. 192) C) $\frac{100}{0}\pi$ in B) $\frac{5}{2}\pi$ in D) $\frac{25}{0}\pi$ in A) $\frac{10}{2}\pi$ in 193) The circumference of a circle is 8π ft. Find its radius. 193) A) 16 ft B) 8 ft C) 4 ft D) 4π ft 194) The circumference of a circle is 11π yd. Find its area. 194) C) $\frac{11}{2}\pi \, yd^2$ D) $\frac{121}{4}\pi \text{ yd}^2$ A) $11\pi \text{ yd}^2$ B) $22\pi \text{ yd}^2$ 195) Find the surface area of a cylinder with a radius of 5 cm and a height of 10 cm. Use 3.14 for π . 195) A) 314 cm² B) 345.4 cm² C) 471 cm² D) 1884 cm² 196) A baking pan measures 13 inches long, 5 inches wide, and 2 inches deep. What is the volume of the 196)

18

C) 130 in.³

D) 20 in.³

B) 36 in.³

pan?

A) 65 in.³

inches across and requir	es 1.9 bags of concrete in		vel. What is the	197)
A) 21 in.	B) 19 in.	C) 12 in.	D) 15 in.	
5	•	0		198)
A) 763.0 in. ³	B) 678.2 in. ³	C) 1526.0 in. ³	D) 3052.1 in. ³	
			0	199)
A) 2653.3 m ³	B) 663.3 m ³	C) 408.2 m ³	D) 1326.7 m ³	
nd the surface area of a b	ox with length 4 feet, wic	1th 5 feet, and height 2 feet		200)
A) 40 ft ²	B) 38 ft ²	C) 76 ft ²	D) 80 ft ²	·
nd the volume of a box w	with length $\frac{1}{2}$ in, width $\frac{1}{2}$	in, and height 1 in.		201)
A) $\frac{3}{4}$ in. ³	B) $\frac{5}{4}$ in. ³	C) $\frac{1}{2}$ in. ³	D) $\frac{1}{4}$ in. ³	
A) 27.52 ft ²	B) 7.524 ft ²	Ith 2.2 in, and height 3.8 in C) 13.76 ft ²	D) 15.048 ft ²	202)
				203)
A) $h = \frac{b}{2A}$	B) h = $\frac{Ab}{2}$	C) h = $\frac{2A}{b}$	D) h = $\frac{A}{2b}$	
$= 2\pi rh + 2\pi r^2$ for h				204)
A) h = 2π (S - r)	B) h = $\frac{S}{2\pi r}$ - 1	C) h = $\frac{S - 2\pi r^2}{2\pi r}$	D) h = S - r	
$=\frac{1}{3}Bh$ for h				205)
A) h = $\frac{3B}{V}$	B) h = $\frac{B}{3V}$	C) h = $\frac{V}{3B}$	D) h = $\frac{3V}{B}$	
	T inches across and requirer properties and requirer properties and requirer properties and requirer properties and the set of the hole? Round y end of the hole? The	The inches across and requires 1.9 bags of concrete in epth of the hole? Round your answer to the nearess e appropriate amount of water, makes 1800 in. ³ or A) 21 in. B) 19 in. cylindrical flower vase is 9 in. across the top and a later could it hold? Use 3.14 for π . Round the answer A) 763.0 in. ³ B) 678.2 in. ³ the foundation for a cylindrical fountain is a cylind able m of concrete are needed to build the foundate barest tenth if necessary. A) 2653.3 m ³ B) 663.3 m ³ Ind the surface area of a box with length 4 feet, with $\frac{1}{2}$ in, width $\frac{1}{2}$ and the volume of a box with length $\frac{1}{2}$ in, width $\frac{1}{2}$ A) $\frac{3}{4}$ in. ³ B) $\frac{5}{4}$ in. ³ Ind the surface area of a box with length 0.9 in, with $\frac{1}{2}$ in. 3 Ind the surface area of a box with length 0.9 in, with $\frac{1}{2}$ in $\frac{1}{2}$ bh for h A) $h = \frac{b}{2A}$ B) $h = \frac{Ab}{2}$ $= 2\pi rh + 2\pi r^2$ for h A) $h = 2\pi (S - r)$ B) $h = \frac{S}{2\pi r} - 1$	The foundation for a cylindrical foundation for a cylindrical for the surface area of a box with length $\frac{1}{2}$ in, $\frac{3}{4}$ in, $\frac{1}{2}$ in, $\frac{3}{4}$	inches across and requires 1.9 bags of concrete in order to fill it to ground level. What is the pith of the hole? Round your answer to the nearest inch. (One bag of concrete, when mixed with e appropriate amount of water, makes 1800 in. ³ of material.) A) 21 in. B) 19 in. C) 12 in. D) 15 in. cylindrical flower vase is 9 in. across the top and about 12 in. high. How many cubic inches of ater could it hold? Use 3.14 for π . Round the answer to the nearest tenth if necessary. A) 763.0 in. ³ B) 678.2 in. ³ C) 1526.0 in. ³ D) 3052.1 in. ³ the foundation for a cylindrical fountain is a cylinder 13 m in diameter and 5 m high. How many tubic m of concrete are needed to build the foundation? Use 3.14 for π . Round the answer to the arest tenth if necessary. A) 2653.3 m ³ B) 663.3 m ³ C) 408.2 m ³ D) 1326.7 m ³ and the surface area of a box with length 4 feet, width 5 feet, and height 2 feet. A) 40 ft ² B) 38 ft ² C) 76 ft ² D) 80 ft ² and the volume of a box with length $\frac{1}{2}$ in, and height 1 in. A) $\frac{3}{4}$ in. ³ B) $\frac{5}{4}$ in. ³ C) $\frac{1}{2}$ in. ³ D) $\frac{1}{4}$ in. ³ and the surface area of a box with length 0.9 in, width 2.2 in, and height 3.8 in. A) 27.52 ft ² B) 7.524 ft ² C) 76 ft ² D) 15.048 ft ² rmula for the specified variable. $=\frac{1}{2}$ bh for h A) h $= \frac{b}{2A}$ B) h $= \frac{Ab}{2}$ C) h $= \frac{2A}{b}$ D) h $= \frac{A}{2b}$ $= 2\pi rh + 2\pi r2$ for h A) h $= 2\pi (S - r)$ B) h $= \frac{S}{2\pi r} - 1$ C) h $= \frac{S - 2\pi r^2}{2\pi r}$ D) h $= S - r$ $= \frac{1}{3}$ Bh for h

207)	$F = \frac{9}{5}C + 32$ for C				207)
	A) C = $\frac{5}{F - 32}$	B) C = $\frac{9}{5}$ (F - 32)	C) C = $\frac{F - 32}{9}$	D) C = $\frac{5}{9}$ (F - 32)	
208)	$A = \frac{1}{2}h(b_1 + b_2)$ for b_1				208)
	A) $b_1 = \frac{2Ab_2 - h}{h}$	B) $b_1 = \frac{hb_2 - 2A}{h}$	C) $b_1 = \frac{2A - hb_2}{h}$	D) $b_1 = \frac{A - hb_2}{2h}$	
209)	d = rt for r A) r = $\frac{d}{t}$	B) r = d - t	C) $r = \frac{t}{d}$	D) r = dt	209)
210)	P = 2L + 2W for L A) L = d - 2W	B) L = $\frac{P - 2W}{2}$	C) L = $\frac{P - W}{2}$	D) L = P - W	210)
211)	A = P(1 + nr) for r A) r = $\frac{A - P}{Pn}$	B) $r = \frac{A}{n}$	C) r = $\frac{Pn}{A - P}$	D) r = <u>P - A</u> Pn	211)
Solve the 212)	problem. Find the corresponding Cel if necessary. A) 566.6°C	sius temperature for a ten B) 147.2°C	nperature of 297°F. Round C) 161.4°C	to the nearest tenth, D) 477°C	212)
213)	Find the corresponding Far tenth, if necessary.	nrenheit temperature for a	temperature of 78°C. Rou	nd to the nearest	213)
	A) 25.6°F	B) 172.4°F	C) 198°F	D) 61.1°F	
214)	When the temperature is 47 the nearest tenth if necessar	-	re in degrees Celsius? Rou	ind your answer to	214)
	A) 5.9°C	B) 116.6°C	C) 8.3°C	D) 52.6°C	
215)	What is the perimeter of a r A) 25 ft	rectangle of length 10 ft an B) 35 ft	d width 15 ft? C) 100 ft	D) 50 ft	215)
216)	A rectangular Persian carpo more than the width. What A) 57 inches by 81 inches C) 78 inches by 102 inches	are the dimensions of the	-	S	216)
217)	A square plywood platforn Find the length of a side.		_	-	217)
	A) 7	B) 3	C) 1	D) 10	

218) 218) A pie-shaped (triangular) lake-front lot has a perimeter of 1000 feet. One side is 300 feet longer than the shortest side, while the third side is 400 feet longer than the shortest side. Find the lengths of all three sides. B) 200 ft, 500 ft, 600 ft A) 100 ft, 200 ft, 300 ft C) 200 ft, 200 ft, 200 ft D) 100 ft, 400 ft, 500 ft 219) 219) Find the length of a rectangular lot with a perimeter of 114 meters if the length is 5 meters more than the width. (P = 2L + 2W)A) 62 m C) 57 m B) 31 m D) 26 m 220) Find the grade point average (GPA) of a student with 12 credits with a grade of A, 9 credits with a 220) grade of B, 27 credits with a grade of C, 24 credits with a grade of D, and 28 credits with a grade of F. A) 2.13 B) 1.53 C) 1.69 D) 1.33 221) 221) Find the grade point average (GPA) of a student with 28 credits with a grade of A, 24 credits with a grade of B, 8 credits with a grade of C, 2 credits with a grade of D, and 2 credits with a grade of F. C) 2.96 A) 2.83 B) 3.11 D) 3.16 SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Provide an appropriate response. 222) Suppose the formula A = $2\pi rh + 2\pi r^2$ is solved for r with the following result: r = 222) $\frac{A}{2\pi h + 2\pi r}$. Is this an acceptable solution? Explain. 223) Suppose the formula $s = \frac{1}{2}gt^2 + v_0t$ is solved for t with the following result: $t = \frac{2s}{gt + 2v_0}$. Is 223) this an acceptable solution? Explain. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 224) Which of the following is not a correct answer when the formula A = $\frac{1}{2}h(b + B)$ is solved for b? 224) A) $\frac{A - \frac{1}{2}Bh}{\frac{1}{2}h}$ B) $\frac{2A - B}{h}$ C) $\frac{2A}{h} - B$ D) $\frac{2A - Bh}{h}$ 225) Which of the following is not a correct answer when the formula V = $\frac{1}{3}\pi r^2 h$ is solved for h? 225) A) $\frac{3V}{r^2}$ B) $\frac{1}{3} \left(\frac{V}{\pi r^2} \right)$ C) $3 \left(\frac{V}{\pi r^2} \right)$ D) $\frac{V}{\frac{1}{\pi r^2}}$ SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. 226) The volume of a rectangular solid is to be 108 cubic units. Give two sets of possible 226) dimensions for the solid.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

227) In order to purchase fence for a garden, would yo much to buy?	ou need to use perimeter or area to decide how	227)
A) Perimeter	B) Area	
228) In order to purchase paint for a ceiling, would yo much to buy?	ou need to use perimeter or area to decide how	228)
A) Perimeter	B) Area	
Graph the inequality. 229) x > 4		229)
-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8		
-8 - / -022 - 1 0 1 2 5 4 5 0 / 8		
<u> </u>		
-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 A)	-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 B)	
-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8	-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8	
C)	D)	
230) x < -7		230)
-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7		
A)		
B)		

4 -7 **-**6 **-**5 **-**4 **-**3 **-**2 **-**1 **0 1 2 3 4 5 6 7**

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

C)

D)

	(_	
A)	-7 -6 -5 -4	-3 -2 -1 0	1 2 3	4 5	67
B)	-7 -6 -5 -4	-3 -2 -1 0	1 2 3	4 5	6 7
C)	-7 -6 -5 -4	-3 -2 -1 0	1 2 3	4 5	6 7
D)	-7 -6 -5 -4	-3 -2 -1 0	1 2 3	4 5	6 7

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

Express the set of real numbers graphed on the number line using an inequality.

233) _____ 233) -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 A) x > 1 B) x < 1 C) x ≤1 D) x ≥1 234) 234) -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 A) x ≥ 3 B) x < 3 C) x ≤ 3 D) x > 3 235) 235) -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 A) x > -3 B) x ≥ - 3 C) x < -3 D) x ≤ - 3

23

	236)				236)
	-8 -7 -6 -5 -4 -3 -2 -1 0 1 2	2 3 4 5 6 7 8			
	A) x ≥ - 4	B) x < -4	C) x ≤ -4	D) x > -4	
	237)				237)
	-8 -7 -6 -5 -4 -3 -2 -1 0 1 2	2 3 4 5 6 7 8			
	A) x ≥ -4	B) x > -4	C) x ≤ -4	D) x < -4	
	222)				222)
	238)	<u> </u>			238)
	$\begin{array}{c} \bullet & \bullet $	2 3 4 5 6 7 8 B) x < 1	C) x > 1	D) x ≥1	
	$A) X \ge 1$	D) X < 1	0, 1 2 1	D) X 2 1	
	239)				239)
	-8 -7 -6 -5 -4 -3 -2 -1 0 1 C	2 3 4 5 6 7 8			
	A) x ≤ -6	B) x < -6	C) x > -6	D) x ≥ -6	
	240)				240)
	-8 -7 -6 -5 -4 -3 -2 -1 0 1 2				, <u> </u>
	A) x ≤0	B) x > 0	C) x ≥0	D) x < 0	
VVrit	te the solution set to the inequal 241 x ≥ 5	uality in interval notation	on.		241)
	A) [5, ∞)	B) (⊸ , 5)	C) (5, ∞)	D) (∞ , 5]	
	242) x > 10				242)
	A) (10, ∞)	B) (⊸ , 10]	C) (⊸ , 10)	D) [10, ∞)	, <u> </u>
	243) x > -7				243)
	A) [-7, ∞)	B) (-∞ , -7]	C) (-7,∞)	D) (-∞ , -7)	,
	244) x ≥ -10				244)
	A) (∞ , -10]	B) (⊸ , -10)	C) (-10, ∞)	D) [-10, ∞)	244)
	245) x < 9				245)
	A) (∞ , 9]	B) (9, ∞)	C) (-∞ , 9)	D) [9, ∞)	245)
					2442
	246) x ≤ 18 A) [18, ∞)	B) (18, ∞)	C) (-∞ , 18]	D) (⊷ , 18)	246)
	247) x ≤ -3 A) (-3, ∞)	B) (⊸ , -3]	C) [-3, ∞)	D) (∞ , -3)	247)
		, , , - 1	-/ /	/ 、 / -/	
	248) x < −19 A) [-19, ∞)	B) (∞ , -19)	C) (-19, ∞)	D) (∞ , -19]	248)
	/ y [⁻ / /, ~/	ע <i>יי</i> י, דיז)	$\bigcirc (-1)_1 \sim)$		

Determine whether the given value is a solution of the inequality.

249) 5 + x ≤7, x = 2 A) Yes	B) No	249)
250) -4x ≥ 10, x = $\frac{9}{2}$		250)
A) Yes	B) No	
251) 7x + 8 > 29, x = 8 A) Yes	B) No	251)
252) $6(x - 4) \ge 6 - 9(x - 8), x = -3$ A) No	B) Yes	252)
253) -(4 - x) ≥ -2(x + 3) - 1, x = 8 A) No	B) Yes	253)
254) $\frac{2}{5}x - \frac{1}{3} \le x + \frac{1}{10}, x = \frac{7}{10}$ A) Yes	B) No	254)
A 163	D) 110	

255) _____

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Complete the table. Then use the table to solve the inequality. 255) $2x + 4 \ge 18$

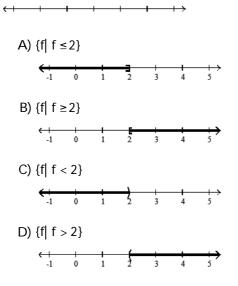
4 + x

3x + 2 -1

3

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
256) - 3x + 5 > 2	256)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
257) $-2x + 7 \le 3$	257)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
258) 4 + x < 3x + 2	258)
x -1 0 1 2 3	

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.


Solve and graph. Write the answer in set-builder notation.

259) a + 2	< -2							
(+ +	+		— —•		↦		
A)	{a a ≥							
	-7	-6	-5	-4	-3	-2	-1	
B)	{a a ≤	-4}						
	-7	-6	-5	-4	-3	-2	+→ -1	
C)	{a a <	-4}						
	-7	-6	-5	4	-3	-2	-1	
D)	{a a >	-4}						
	-7	- <mark>6</mark>	-5	4	-3	-2	-1	
260) -11n ←⊢	+ 2 > -					↦		
< 		+		ıı	-	↦		
< 	+	-4}					-1 ···	
(+	{n n ≥ ←-7 {n n >	-4} -6 -8}	-5	- -4	-3	-2		
(+	+ + + {n n ≥ ←+ -7	-4} -6 -8}	-5	- -4	-3	-2		
(+ A) B)	$\{n \mid n \ge \frac{n}{2}, n \mid n \ge \frac{n}{2}, n \mid n > \frac{n}{2}, n \mid n \le \frac{n}{2}, n \mid n \ge \frac{n}{2}, n \mid$	-4} -6 -8} + 10 -4}	+ -5 -9	-4 -4	-3	-2 -2 -6	-5	
(+ A) B)	$ n \geq $ $(n n \geq $ $(n n > $ $(n n > $ $(1 - 1) $	-4} -6 -8} + 10 -4}	+ -5 -9	-4 -4	-3	-2 -2 -6	-5	
<+ A) B) C)	$\{n \mid n \ge \frac{n}{2}, n \mid n \ge \frac{n}{2}, n \mid n > \frac{n}{2}, n \mid n \le \frac{n}{2}, n \mid n \ge \frac{n}{2}, n \mid$	-4} -6 -8} -4} -6 -8}	+ -5 -9	-4 -8 -8	+ -7 -3	+ -2 -6 -2		

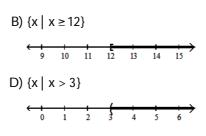
260)

A) {t | t < -3} $\begin{array}{c} \overleftarrow{} & \overleftarrow{$

264)
$$\frac{k}{6} \ge 3$$

A) {k | k > 18}

-1 + + + +


C) {k
$$|k \le 18$$
}

265)
$$-4 < \frac{k}{5}$$

A) {k | k < -20}
 $\xrightarrow{-23} -22 -21 -20 -19 -18 -17$
B) {k | k < -20}
 $\xrightarrow{-23} -22 -21 -20 -19 -18 -17$
C) {k | k > -20}
 $\xrightarrow{-23} -22 -21 -20 -19 -18 -17$
D) {k | k > -20}
 $\xrightarrow{-23} -22 -21 -20 -19 -18 -17$
D) {k | k > -20}
 $\xrightarrow{-23} -22 -21 -20 -19 -18 -17$
D) {k | k > -20}
 $\xrightarrow{-23} -22 -21 -20 -19 -18 -17$
D) {k | k > -20}
 $\xrightarrow{-23} -22 -21 -20 -19 -18 -17$
D) {k | k > -20}
 $\xrightarrow{-23} -22 -21 -20 -19 -18 -17$
D) {k | k > -20}
 $\xrightarrow{-23} -22 -21 -20 -19 -18 -17$
D) {k | k > -20}
 $\xrightarrow{-23} -22 -21 -20 -19 -18 -17$
D) {k | k > -20}
 $\xrightarrow{-23} -22 -21 -20 -19 -18 -17$
D) {k | k > -20}
 $\xrightarrow{-23} -22 -21 -20 -19 -18 -17$
D) {k | k > -20}
 $\xrightarrow{-23} -22 -21 -20 -19 -18 -17$
D) {k | k > -20}
 $\xrightarrow{-23} -22 -21 -20 -19 -18 -17$
C) {n | n < -6}

+

A) {x | x > 3}

$$\overbrace{0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6}^{\bullet}$$

C) {x | x ≥ 3}
 $\overbrace{0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6}^{\bullet}$

266) _____

A)
$$\langle x \mid x < 2 \rangle$$

 $\downarrow \\ -1 \quad 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \qquad B) \langle x \mid x > -2 \rangle$
 $\downarrow \\ -5 \quad 4 \quad -3 \quad -2 \quad -1 \quad 0 \quad 1 \qquad C) \langle x \mid x < -2 \rangle$
 $\downarrow \\ -5 \quad 4 \quad -3 \quad -2 \quad -1 \quad 0 \quad 1 \qquad C) \langle x \mid x < -2 \rangle$
 $\downarrow \\ -5 \quad 4 \quad -3 \quad -2 \quad -1 \quad 0 \quad 1 \qquad C) \langle x \mid x > 2 \rangle$

Solve the inequality. Write the answer in set-builder notation.

269) -1 - 5a + 7 ≥ -6a - 4 A) {a a > -5}	B) {a a ≤-10}	C) {a a ≥-10}	D) {a a < -5}	269)
270) $0.6x + 17 + x > 2x + 20 - 0.5$ A) $\{x \mid x \ge -3\}$	x B) {x x > 30}	C) {x x < 30}	D) {x x < -3}	270)
271) $\frac{x}{2} + 5 \le 7$				271)
A) $\{x x \ge 4\}$	B) {x x < 6}	C) {x x ≤0}	D) {x x ≤4}	
272) 24n - 48 ≤6(3n - 9) A) {n n ≤ -1}	B) {n n > -1}	C) {n n ≥ -1}	D) {n n < -1}	272)
273) 8(x - 7) - 7x < -1(-3x + 5) A) {x x > -51}	- 3x B) {x x < -51}	C) {x x > 51}	D) {x x < 51}	273)
274) $\frac{5}{18}(x+8) > \frac{1}{9}(x+2)$				274)
A) {x x < 12}	B) {x x > - 12}	C) {x x < - 12}	D) {x x > 12}	
275) $6(2x - 4) \le 36$ A) $\left\{ x \mid x \le \frac{10}{3} \right\}$	B) {x x ≤5}	C) $\left\{ x \mid x < \frac{10}{3} \right\}$	D) {x x ≥5}	275)
276) 2(t + 7) < 6(t - 4) A) $\left\{ x \mid x > \frac{11}{2} \right\}$	$B)\left\{ x \middle x > \frac{19}{3} \right\}$	C) $\left\{ x \mid x < \frac{19}{2} \right\}$	D) $\left\{ x \mid x > \frac{19}{2} \right\}$	276)
277) $\frac{3}{4}(3x+3) \ge 19$				277)
A) $\left\{ x \mid x \ge \frac{76}{9} \right\}$	B) $\left\{ x \mid x \ge \frac{67}{9} \right\}$	C) $\left\{ x \mid x < \frac{67}{9} \right\}$	D) $\left\{ x \mid x \ge \frac{67}{3} \right\}$	

268) _____

2	$278) \frac{3}{5}(7x - 5) - \frac{3}{4} < \frac{1}{4}$				278)
	$A) \left\{ x \middle x < \frac{10}{7} \right\}$	B) $\left\{ x \mid x < \frac{20}{21} \right\}$	C) $\left\{ x \mid x < \frac{20}{3} \right\}$	D) $\left\{ x \mid x > \frac{20}{21} \right\}$	
	late the sentence to an algebraic	c inequality.			
2	279) A number is greater than 2. A) x ≥2	B) x > 2	C) x < 2	D) x ≤2	279)
2	280) A number is less than or equ A) x ≥ - 4	ual to -4. B) x > -4	C) x < -4	D) x ≤ - 4	280)
			, ,		
2	281) John weighs at least 89 pour A) x ≥89	nds. B) x < 89	C) x ≤89	D) x > 89	281)
2	282) The cost is no more than \$56 A) x < 563.36	53.36. B) x ≤563.36	C) x > 563.36	D) x ≥ 563.36	282)
		D)		D) x _ 000.00	
2	283) The number of people at a c A) x > 1522	concert is not to exceed 152 B) x ≥ 1522	22. C) x ≤1522	D) x < 1522	283)
2	284) The height of a member of t A) x ≥ 78	he basketball team is at le B) x < 78	ast 78 inches. C) x > 78	D) x ≤78	284)
	the problem. 285) One side of a rectangle is 14 perimeter at least 52?	inches and the other side	is x inches. What values c	f x will make the	285)
	A) x ≥ 12	B) x < 12	C) x ≤12	D) 0 < x ≤ 12	
2	286) One side of a rectangle is 9 i be at least 99 square inches.	nches and the other side i	s x inches. Find the value	of x if the area must	286)
	A) $0 < x \le 11$	B) x ≤11	C) x ≥11	D) x = 11	
2	287) A shop keeper is making a t to adhere to zoning laws. If				287)
	triangular sign? A) 5 ft	B) 10 ft	C) 20 ft	D) 38 ft	
2	288) The equation y = 0.004x + 0. producing x items. How ma			-	288)
	A) x ≤851,650	B) 0 < x ≤ 851,649	C) x ≥851,650	D) x ≥851,850	
2	289) If the formula R = -0.037t + t years after 1925, for what y	-			289)
	A) 1998 or after	B) 1999 or after	C) 1973 or after	D) 1997 or after	

290)	A car rental company has two rental rates. Rate 1 is \$42 per day plus \$.14 per mile. Rate 2 is \$84 per day plus \$.07 per mile. If you plan to rent for one week, how many miles would you need to drive to pay less by taking Rate 2?			290)	
	A) more than 4200 miles C) more than 30,100 mile	a) more than 4200 miles B) more than 58,800 miles			
291)	Jim has gotten scores of 95 a keep an average of 80 or gre		s. What score must he g	et on his third test to	291)
	A) At least 81	B) At least 79.3	C) At least 79	D) At least 82	
292)	92) Jon has 836 points in his math class. He must have 63% of the 1500 points possible by the end of the term to receive credit for the class. What is the minimum number of additional points he must earn by the end of the term to receive credit for the class?				292)
	A) 109 points	B) 664 points	C) 527 points	D) 945 points	
293)	DG's Plumbing and Heating being billed just over \$400 fo Bill's house?		0 0		293)
	A) 14 hours	B) 8 hours	C) 10 hours	D) 6 hours	
294)	A 7-pound puppy is gainin	g weight at a rate of $\frac{2}{3}$ lb	per week. How much m	ore time will it take	294)
	for the puppy's weight to ex	cceed $27\frac{2}{3}$ lb?			
	A) more than $15\frac{1}{2}$ week(s	3)	B) more than 32 weeks	5	
	C) more than 52 weeks		D) more than 31 weeks	5	
	ne question or solve the prol True or False? If x < 5 then -				295)
,	A) True		B) False		
296)	True or False? If x > 3 then 1 A) True	10x > 30.	B) False		296)
SHORT A	NSWER. Write the word o	r phrase that best comple	etes each statement or a	nswers the question.	
297)	Under what conditions mus inequality?	t the inequality symbol be	e reversed when solving	an 297) _	
298)	In solving the inequality 9x Explain why.	≤ -27, would you have to	reverse the inequality s	ymbol? 298) _	
299)	If a < b, is it always true tha	$t \frac{1}{a} > \frac{1}{b}$? Explain.		299)	
300)	If a ≤ b, is it always true that	ta - 5≤b - 5? Explain.		300)	

301) _____

- 1) C
- 2) A
- 3) C 4) C
- 5) B
- 6) D
- 7) A
- 8) C
- 9) B
- 10) B
- 11) D
- 12) B
- 13) D
- 14) C
- 15) A
- 16) C 17) A
- 18) D
- 19) D
- 20) D
- 21) C
- 22) A
- 23) B
- 24) D
- 25) A
- 26) Yes, the friend did make a mistake. She should have added 20 to both sides of the equation. The correct solution should be x = 49.
- 27) Yes, the friend did make a mistake. He should have multiplied by $\frac{8}{3}$ on both sides of the equation. The correct

solution should be $x = \frac{40}{3}$.

- 28) The first step is to add (- b) to both sides of the equation. The solution will be x = a + (-b).
- 29) The first step is to multiply both sides of the equation by $\frac{b}{a}$. The solution will be $x = \frac{cb}{da}$.
- 30) 3
- 31) B
- 32) B
- 33) D
- 34) D
- 35) C
- 36) D 37) C
- 38) D
- 39) A
- 40) A
- 41) B

42)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
-77 + 3 -4 - 13 - 22 - 31 - 40
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
44) C
45) C
46) C
47) D
48) C
49) A
50) C
51) B 52) C
52) C
54) B
55) B
56) C
57) C
58) A
59) B
60) A 61) C
62) A
63) A
64) B
65) B
66) A
67) A
68) A
69) A 70) B
71) A
72) A
73) A
74) There is no solution.
75) True. Each has the solution set 5.
76) False 6 = 3 is a false statement, thus there is no solution.
77) False. Solving creates a true statement without a variable, thus the equation has infinitely many solutions.
78) All real numbers.
79) A 80) D
81) D
82) C
83) A
84) C

84) C 85) A

86) D 87) B 88) C 89) B 90) B 91) D 92) B 93) A 94) C 95) D 96) B 97) A 98) D 99) B 100) A 101) D 102) D 103) B 104) B 105) D 106) A 107) C 108) C 109) A 110) B 111) B 112) C 113) B 114) B 115) D 116) B 117) D 118) B 119) C 120) C 121) B 122) C 123) C 124) C 125) D 126) D 127) B 128) D 129) B 130) A 131) C 132) D 133) A 134) C 135) D

136) D

137) C 138) D 139) A 140) D 141) A 142) A 143) D 144) B 145) A 146) D 147) C 148) D 149) C 150) A 151) D 152) B 153) C 154) D 155) D 156) D 157) A 158) C 159) A 160) A 161) A 162) C 163) A 164) C 165) B 166) A

- 167) i
- 168) x 2, x 1, x
- 169) $\frac{m}{2}$ or $\frac{1}{2}$ m
- 170) No, it is not correct. When using the formula d = rt (distance = rate × time), you must make sure that all the units correspond. When expressing rate in miles per hour (mph), you should express time in hours, not minutes. Replace y minutes with $\frac{y}{60}$ hours to calculate a distance of d = x mph × $\frac{y}{60}$ hours = $\frac{xy}{60}$ miles. (Alternatively, convert the rate to

miles per minute and calculate d = $\frac{x}{60}$ miles per minute × y minutes = $\frac{xy}{60}$ miles.)

- 171) The investment broker is incorrect. Given an APR of 17%, for every dollar you invest, you will earn \$0.17 after one year. The investment broker apparently forgot to divide by 100 when converting the percentage to a decimal. Then again, maybe the investment broker is taking advantage of you. The APR sounds very high, too.
- 172) A
- 173) A
- 174) B
- 175) B
- 176) A

177) B 178) C 179) B 180) B 181) C 182) D 183) B 184) B 185) D 186) C 187) D 188) D 189) A 190) A 191) B 192) A 193) C 194) D 195) C 196) C 197) D 198) A 199) B 200) C 201) D 202) A 203) C 204) C 205) D 206) D 207) D 208) C 209) A 210) B 211) A 212) B 213) B 214) C 215) D 216) B 217) A 218) D 219) B 220) B 221) D 222) No. The variable r should not appear on both sides of the equation in the solution. 223) No. The variable t should not appear on both sides of the equation in the solution. 224) B

225) B

226) Answers will vary, but the product of the three dimensions must be 108.

227) A 228) B 229) A 230) B 231) A 232) C 233) A 234) A 235) D 236) B 237) D 238) D 239) C 240) A 241) A 242) A 243) C 244) D 245) C 246) C 247) B 248) B 249) A 250) B 251) A 252) B 253) B 254) B 255) 256) 257) 258) 259) C 260) B 261) B 262) C 263) B 264) D 265) D 266) A 267) C

268) C 269) C 270) B

271) D

272) A 273) D

273) D 274) B

275) B

276) D

277) B

278) B

279) B

280) D 281) A

282) B

283) C

284) A

285) A

286) C

287) C

288) C

289) A

290) A

291) D

292) A

293) D

294) D

295) B

296) A

297) When multiplying or dividing by a negative number.

298) No, since you don't have to divide or multiply by a negative number. The fact that the number you are dividing into is negative is irrelevant. (Explanations will vary.)

299) No. The second statement only follows from the first if a and b are either both positive or both negative. Divide both sides of the original inequality by (ab). If a and b are of opposite signs, then (ab) < 0. When dividing by a negative a - b = 1 - 1

number, the inequality sign must be reversed (thus, $\frac{a}{ab} > \frac{b}{ab}$, and $\frac{1}{b} > \frac{1}{a}$). In addition, if a (or b) is zero, then its

reciprocal is undefined. (Explanations will vary.)

- 300) Yes. Adding a positive or negative number to both sides of an inequality produces an equivalent inequality. (Explanations will vary.)
- 301) No..Multiplying an inequality by a negative number requires reversing the inequality symbol. (Explanations will vary.)