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This manual is intended to be an aid in using and studying from the textbook, Thermodynamics
and Heat Power, Sixth Edition, by Kurt C. Rolle. There are included solutions to the practice
problems at the end of each chapter and some brief suggested answers to the discussion
questions. In addition, there are eleven suggested lesson plans for various courses and I am
including an example syllabus of a course which I have offered in engineering from time to time.

The approaches to solving thermodynamic problems are often subject to various interpretations
and assumptions, so more than one correct method may be used for the same problem. The
methodology and solutions set down in this manual often include some discussion about the
assumptions or observations that can help to clarify the methods. Calculations are shown in as
complete a manner as possible and answers are indicated with an underline. Many of the
problem solutions are quite lengthy and then some details are omitted. In those cases it is usual
that other previous problem solutions demonstrate the same sort of detailed calculations. Also,
some of the problems were solved using the computer with the software package of programs
mentioned in the textbook and listed in the appendix A. In those instances, the solution set down
in this manual often includes only the program inputs and the resulting outputs. Numerical
answers are given to at least three significant figures or, in the case of irrational numerical
answers, a series of dots (...) indicate that the answer has been left in an incomplete form. For
example the value of pi, 7, may be expressed as 3.14159... and the value for 1/3 as 0.333....
Since many problems are long, with extended calculations, round-off discrepancies will occur
and this can give slightly different answers to the same problem. The emphasis has been placed
on giving methods and solutions that the students and readers can closely match and be satisfied
with their methodology for solving the practice problems. .

When giving the solutions to a large number of problems, particularly when there is such a wide
variety of problems and a dual system of units (SI and English) to consider, there will be errors
and discrepancies. The author and publisher appreciate all of the comments and suggestions
made by those readers of the past editions and we solicit your input regarding any corrections or
suggested revisions to this edition as well.

Finally, I want to thank all of the users of the earlier editions of this textbook and manual. In
many ways you contributed to developing a more accurate and clear publication. I appreciate the
work done by Dan Mueller in preparing the programs in a windows format and Hans Jensen for
doing some editorial work on those programs. James Wiese and Andrew Cravens helped in
facilitating the preparation of the CD as well. I also want to thank Debbie Yarnell and Jon
Tenthoff at Prentice-Hall who provided the environment for creating this sixth edition. Again, I
hope that you find this manual useful and complimentary to the textbook.

Kurt C. Rolle
Summer, 2004
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Thermodynamics and Heat Power has been written to provide the
engineering and engineering technology students with a textbook
that attempts to cover the most important aspects of thermodynamics
and its technological applications. The text is intended to
provide enough depth in the coverage as well as a variety of topics
so that it may be used in a number of special emphasis or distinct
courses. It can be supplemented with a set of BASIC programs,
available from the publisher on a diskette for use with a personal
computer, that allows for computer aided instruction of some of the

material.

The following lesson plans have been set down as suggested
approaches for some specific course work. The lesson plans are
written for two or three hour semester courses and include those
topics and sections from the text that would be considered. There
is usually enough material in the book sections to spend more time
than indicated in the lesson plans. Individual experiences will
give each instructor added insights into improved variations from

these plans.
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LESSON PLAN 1

3 Semester credits of HEAT POWER

[y

Week Topics Book Sections
1 Introduction, System '~ Chapters 1 and 2
2 Work, Power, and Heat Sections 3.1-3.3
3 Energy and Conservation of Mass Sections 3.4-4.2
4 Steady Flow Energy Equation Sections 4.3-4.6
5 Conservation of Energy Sections 4.7-4.9
6 Equations of State Chapter 5
-7 Processes Sections 6.1-6.4
8 Carnot Cycle and Entropy Sections 7.1-7.8
-9 otto Cycle Sections 9.1-9.4
10 Diesel and Dual Cycles , Sections 9.5-9.10
11 Gas Turbines Sections 10.1-10.5,10.9
12 Steam Turbine Power Cycles Sections 11.1-11.6
13 Analysis of Rankine Cycles Sections 11.7-11.11
14 Refrigeration Cycles Sections 12.1-12.3
15 Mixtures and Psychometrics Sections 13.1-13.4
16 Combustion Analysis Sections 14.1-14.5

***************************************************************#
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LESSON PLAN 2

2 Semester Credits of HEAT POWER

Week

B W N
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11
12
13
14
15

16

Topics

Introduction

System

Work and power

Heat, energy, and

conservation of mass
Conservation of energy
Equations of state, Perfect gas
Properties of pure substance
Processes of perfect gases
Processes of pure substances

" Carnot cycle

Ootto cycle
Diesel cycle
Rankine cycle

Book Sections

Chapter 1
Chapter 2
Sections
Sections
and 4.1~
Sections
Sections
Sections
Sections
Sections
Sections
Sections
Sections
Sections
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Refrigeration

Mixtures, combustion

Combustion

Sections 12.1-~
Sections 13.1-1

Sections 14.2-14.5
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LESSON PLAN 3

2 Semester credits of .POWER PLANTS

Week

UL W N =

Topics

Introduction, systems

Work, power, and heat
Conservation and mass and energy
Properties of pure substances
Processes of steam, heat engines

Thermal efficiency
Isentropic processes
Rankine cycle components
Analysis of rankine cycles
Reheat cycle

Regenerative cycle
Reheat-regenerative cycles
Gas turbine analysis

Regenerative gas turbines
electric generators

Combustion processes

Combustion analysis

Book Sections

Chapters 1 and 2
Chapter 3
Chapter 4
Chapter 5
Sections 6.6,7.1,

Sections 7
Sections 7.
Sections 1
Sections 1
Section 11.8
Section 11.9
Sections 11.10,11.11
Sections 10.1,10.2,
10.5
Sections 10.6,10.7,
17.1
Sections 14.1-14.3
Sections 14.4-14.8
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LESSON PLAN 4

3 Semester credits of INTRODUCTORY THERMODYNAMICS followed by a
second
3 semester credits of APPLIED THERMODYNAMICS.

Week Topics Book Sections
1 Introduction Chapter 1
2 System and properties Chapter 2
3 Work, power, and heat Sections 3.1-3.3
4 Energy forms and types Sections 3.4-3.8
5 Conservation of mass and energy Sections 4.1-4.6
6 Steady flow energy equation Sections 4.7-4.9
7 Equations of state Sections 5.1-5.3
8 Calorimetry Sections 5.4-5.6
S - Processes of perfect gases Sections 6.1-6.2
10 Processes of liquids and solids Sections 6.3-6.5
11 Processes of pure substances Section 6.6
12 Heat engines and heat pumps Sections 7.1-7.5
13 Entropy and the third law Sections 7.6-7.9
14 Carnot cycle analysis Sections 7.10~-7.11
15 Useful work and availability Sections 8.1-8.3
16 Free energies Section 8.4
3 Semester credits of A?PLIED THERMODYNAMICS
Week Topics Book Sections
1 Otto cycle analysis Sections 9.1-9.4
2 Diesel and dual cycles Sections 9.5-9.8
3 Brayton cycle components Sections 10.1-10.4
4 Gas turbine, jet propulsion Sections 10.5-10.7
10.9
5 Rankine cycle components Sections 11.1-11.6
6 Analysis of rankine cycles Sections 11.7-11.11
7 Vapor compression cycles Sections 12.1-12.3
8 Air cycle, cryogenics, heat pumps Sections 12.4, 12.6,
: ’ _ 12.7,12.8
9 Mixture analysis Sections 13.1-13.3
10 Processes of water-air mixtures Sections 13.4-13.7
11 Combustion processes Sections 14.1-14.3
12 Combustion analysis Sections 14.4-14.8
13 Conduction, convection Sections 15.1-15.3
heat transfer ,
14 Radiation, heat exchangers Sections 15.6-15.8
15 Electrical processes Sections 17.1-17.3
16 MHD, bio-systems, Stirling cycle Sections 17.4-17.7
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LESSON PLAN 5

2 semester credits of THERMODYNAMICS followed by a second 2
semester credits of APPLIED THERMODYNAMICS

Week , Topics Book Sections
1 Introduction Chapter 1
2 System, pressure, density Sections 2.1-2.9
3 Temperature, energy Sections 2.10-2.14.
4 Work, power, and heat Sections 3.1-3.3
5 Reversibility, energy forms Sections 3.4-3.8
6 Conservation of mass and energy Sections 4.1,4.2,4.4
7 Steady flow energy equation Sections 4.5-4.9
8 Equations of state . Sections 5.1-5.3
9 ~ Properties of pure substances Sections 5.5-5.6
10 Processes of perfect gases Sections 6.1,6.2
11 Processes of pure substances Sections 6.3-6.7
12 Heat engines Sections 7.1,7.2
13 Thermal efficiency Sections 7.3,7.4
14 Entropy : Sections 7.5,7.6
15 Isentropic processes Sections 7.7-7.9
16 Carnot cycle analysis Section 7.10
2 Semester credits of APPLIED THERMODYNAMICS
Week Topics Book Sections
1 Ootto cycles Sections 9.1-9.3
2 Diesel cycles Sections 9.4,9.5
3 Diesel and dual cycles Sections 9.6-9.8
4 Brayton cycle Sections 10.1-10.4
5 Gas turbine analysis Section 10.5
6 Rankine cycle Sections 11.1-11.3
7 Analysis of rankine cycles Sections 11.4-11.7
8 Reheat and regeneration Sections 11.8-11.9
9 Reheat-regeneration cycles Section 11.10
10 Vapor compression refrigeration Sections 12.1-12.3
11 Heat pumps, mixture analysis Sections 12.7,13.1
12 Psychometrics Sections 13.2-13.4 .
13 Combustion processes Sections 14.1-14.3
14 Combustion analysis Sections 14.4,14.5
15 Heat transfer Sections 15.1-15.3
16 Other applications Chapter 17
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LESSON PLAN 6

2 Semester credits of HEAT TRANSFER

Week

ORNNGD WN

Topics

Review of terms

Work, power, and heat
Conduction heat transfer
Conservation of mass :
First law of thermodynamics
Steady flow energy equation
Properties of pure substances
Processes of fluids and solids
Convection heat transfer

Fins

" Lumped heat capacity

Forced convection
Natural convection
Radiation heat transfer
Radiation analysis

Heat Exchangers

Book Sections

Chapters 1 and 2
Sections 3.1-3.3
Section 15.1

Sections 4.1-4.4
Sections 4.5,4.6
Sections 4.7,4.8
Sections 5.3,5.5
Sections 6.4-6.6
Section 15.2
Section 15.3
Section 15.3
Section 15.4
Section 15.5
Section 15.6

Section 15.6
Section 15.7
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LESSON PLAN 7

3 Semester credits of HEAT TRANSFER

Week

1
2

W
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9
10
11
12
13
14
15
16

Topics

Introduction, review of terms
Work, heat and mass flow

Conservation of energy and
equations of state

Processes of fluids and solids

Conduction heat transfer

Convection heat transfer

Fins, lumped heat capacity

Flow of fluids, pure substances

Forced convection

Natural convection
Radiation heat transfer
Radiation analysis

Heat pxchangers
Psychometrics

Analysis of heating
analysis of air conditioning

- Book Sections

Chapters 1
Sections 3.
4.1,4.
Sections 4.
Sections 6.4
Section 15.1
Section 15.2
Section 15.3
Sections 4.7,4.8,

’ 5.5
Section 15.4
Section 15.5
Section 15.6
Section 15.6
Section 15.7
Sections 13.1-13.4
Sections 16.1,16.2
Section 16.3
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LESSON PLAN 8

2 Semester credits of INTERNAL COMBUSTION ENGINES

Week

W

N o

8

9
10
11
12
13
14
15
16

Topics

Introduction, system
Work, power, and heat
Conservation of mass
Conservation of energy

Equations of state
Processes of perfect gases
Carnot heat engine

. Isentropic processes

Carnot cycle analysis

Otto cycle analysis

Diesel and dual cycles

Computer aided analysis

Brayton cycle

Gas turbine analysis

Regenerative cycles

Computer aided analysis of
gas turbines

Book Sections

Chapters
Sections
Sections
Sections

Sections
Sections
Sections

Sections
Sections
Sections
Sections
Sections
Sections

°

WOV

Section 10. 5
Sections 10.6,10.7
Sectioq 10.9
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LESSON PLAN 9

3 Semester credits of INTERNAL COMBUSTION ENGINES

Week

W N =

B b e e et
VR WNROWENO U

Topics

Introduction, system
Work, power, and heat

Conservation of mass and energy

Equations of state
Processes of gases,
Carnot heat engine
Isentropic processes
Carnot cycle analysis
Otto cycle analysis
Diesel engines

Dual cycle analysis
Brayton. cycle

Gas turbine analysis
Regenerative cycles

Jet propulsion

Rockets, Stirling engine

heat engines

Book Sections

Chapters 1 and 2

Chapter 3
Sections

4.4,
Sections
Sections
Sections
Sections
Sections
Sections
Sections
Sections
Sections
Sections

4.
4.
5.
6.
7.
7.
7.
9.
9.
9.
1

1

1,4.2,
5,4.8
1-5.3
1,6.2,7.1
2-7.5
6-7.8
9,7.10
1-9.4
5,9.6
7-9.10
.1-10.3
.4,10.5

Section 10.6
Sections 10.7,10.9
Sections 10.8,17.6
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LESSON PLAN 10

3 Semester credits of HEATING AND AIR CONDITIONING

HWeek

Oy Ut b L O

7
8
9

10

11

12

13

14

15
16

Topics

Introduction, system
Work and heat
Conservation of mass and energy
Steady flow energy equation
Property equations

Processes of perfect gases

and pure substances
Heat pump analysis
Vapor compression refrigeration
Air cycle analysis

" Cryogenics

Mixtures and psychometrics

Conduction and convection

Heat exchangers

Parameters in heating and air
- ¢onditioning

Analysis of heating

Analysis of air conditioning,

Book Sections

Chapters 1 and 2
Chapter 3

Sections 4
Sections 4
Sections 5
Sections 6

Sections 7.1,7.4
Sections 12.1-1
Sections 12.4,1
Sections 12.6,1
Sections 13.1-13.4
Sections 15.1-15.3
Sections 15.5,15.7
Section 16.1

Section 16.2
Sections 16.3,17.6
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LESSON PLAN 11

2 Semester credits of ‘HEATING AND AIR CONDITIONING

Week

OO0 W N

9
10
11
12
13
14
15
16

Topics

Introduction

System and properties

Work, power, and heat

Conservation of mass

Conservation of energy

Equations of state

Pure substances

Perfect gases and incompressible
substances

Processes of pure substances

Carnot heat pump

Vapor compression refrigeration

Conduction and convection

Applications of heat transfer

Parameters in heating and a/c

Analysis of space heating

Analysis of air conditioning

Book Sections

Chapter 1
Chapter 2
Chapter 3
Sections 4.1
Sections 4.4
Sections 5.1
Sections 5.5
Sections 6.2

Sections 6.6
Sections 7.2
Sections 12.1-12.3
Sections 15.1,15.2
Section 15.3
Section 16.1
Section 16.2
Section 16.3
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Basic Thermodynamics for Engineers

Course Information
Description: ‘

Thermodynamic systems, Properties, zeroth law of  thermodynamics, conservation of mass
and energy, firstand  second laws of thermodynamics, Ideal gases, steam, Refrigerants, Power and
refrigeration cycles, Heat Transfer.

Text:

Thermodynamics and Heat Power, Fifth Edition, K.C.Rolle

Prerequisites:
Physics Mechanics, Heat light and Sound

Differential and Integral Calculus

Regquirements:
The student is expected to attend class, be prepared by reading the assignments for the day, and do

_ the practice problems.

Grading:
The students semester grades will be based on examinations, homework, and bonus quizzes. There

will be 4 examinations, each examination pertaining to the material covered since the last
examination and each based on 100 points. The homework is due on the-days indicated on the
semester schedule. Each homework problem is worth 5 points maximum; that is,

5 points - done correctly

4 points - done with calculation error

3 points - done with conceptual error

2 points - done with more than one error
1 point - aitempted

There will be 16 homework problems due. There will also be 5 quizzes, unannounced and closed-
book each worth 5 points. These are Bonus Points and if you miss the quiz by being late or absent
from class it cannot be made up. The semester grade will be determined by the semester percentage
score (SPS).
SPS = Students test scores, homework, and quizzes
480

Letter grades will be assigned by the scientific scale:

A 90 to 100%
B 80to 89%
C 70t0 79%
D 60to 69%
F Below 60%




Thermodynamics for Engineers

Semester Schedule

Practice Home
Class Topics Readings Problems Work
1 Introduction, Units 1.1 thru 1.8 15, 1.6
2 System and properties 2.1thru 2.7 1.14,1.22,
3 Pressure, Temperature, 2.8 through 1.26,1.28
2.13 1.30, 2.16
4 Work and Power 3.1,3.2 2.18,2.25
2.24,2.35
2.40,2.43
5 Heat and Energy Forms 3.3-3.7 3.10.3.14 2.27
3.24,3.25
6 Conservation of Mass 41,42 42,48 ) 3.9
and Steady Flow 4.10,4.18
7 Uniform Flow and 4344 4.20,4.22
Unsteady Flow 4.25
8 First Law of Thermo 4.5-4.8 4.38,4.40 4.57
9 Problem Session 444,448
4.41
10 Review
11 Examination One
12 Equations of state 51,52 52,54
5.10
13 Calorimetry 53,54 5.16,5.20 5.23
5.28,5.30, 5.38
14 Properties of Pure 5.5 5.54,5.58 543
Substances 5.66, 5.45



/0

Class Topics Readings Practice Home
Problems Work
15 Processes 6.1 6.2,6.8
16 Adiabatic Processes
of Perfect Gas 6.2 6.12, 6.20
17 Processes of Comp.Gases 6.3 6.26, 6.30 6.35
18 Processes of Liquids and 6.4-6.5 6.43, 6.44
Solids 6.50, 6.52
19 Processes of Pure 6.58, 6.62
Substances 6.68, 6.77
6.85
20 Review
21 Examination Two
22 Heat Engines 7.1-7.4 7.2,7.4
23 Camot Cycle 7.6,7.8
Heat Pumps 7.12
24 Second Law of Thermo 7.5-7.6 7.16,7.18 7.13
25 Entropy 7.7-1.9 7.20, 7.24
Isentropic Processes 7.26
26 Mixtures 13.1-13.2 13.2,13.3 7.29
27 Psychrometrics 13.3 13.4,13.6
28 Psychrometric Processes 13.4 13.12,13.14
29 Rankine Cycle 11.1-11.7 13.16, 13.18
13.26
30 Rankine Cycle Analysis 11.8-11.9 11.5,11.12
11.20,11.28
31 Refrigeration Cycles 12.1-12.4 12.2,12.6, 13.25
12.10, 12. 11,



Class Topics Readings Practice
Problems
32 Problem Session 12.17,12.18
33 Review
34 Examination Three
35 Conduction Heat Transfer 15.1 15.2, 15.6, 15.2
15.10
36 Convection Heat Transfer 15.2 15.12,15.14
37 Conduction/Convection 15.3 15.20,15.24
15.28
38 Forced and Free Convection 15.4 15.30, 15.36 15.21
15.5 15.40, 15.39
39 Radiation Heat Transfer 15.6 15.44,15.50
40 Heat Exchangers 15.7 15.54,15.55
41 Useful Work 8.1,8.2 8.2,8.8 15.31
42 Availability and Free Energy 8.3,8.4 8.10, 8.12 15.49
43 Review 8.13, 8.16 8.9
44 Examination Four

********************************************************##&**%C*****
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Class Topics Readings Practice Home
Problems Work

32 Problem Session 12.17,12.18
33 Review
34 Examination Three
35 Conduction Heat Transfer 15.1 15.2, 15.6, 15.2
15.10
36 Convection Heat Transfer 15.2 15.12,15.14
37 Conduction/Convection 15.3 15.20,15.24
15.28
38 Forced and Free Convection 15.4 15.30, 15.36 15.21
15.5 15.40, 15.39
39 Radiation Heat Transfer 15.6 15.44,15.50
40 Heat Exchangers 15.7 15.54,15.55
41 Useful Work 8.1,8.2 8.2,8.8 15.31
42 Availability and Free Energy 8.3,8.4 8.10, 8.12 15.49
43 Review 8.13, 8.16 8.9
44 Examination Four
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FPEACTICE IN  APPEOXIMATING AREAS LUMDER
CURVES AND USING TIZAPSEDIS Pliis.

A7 Aren UNDERR Curve = Akerd oF Becrmsie
= BASE X HEIGH T

= (s ms“-,Oémi)(foo ,%)




[/E. ABER WDEK CUBVE = ABcH OF TRAPLESDID
A = 2% (BASG’YS’UM or Two 5/@%)

- /7 e o e ‘
A =5 /a@C»lOCXZ‘V@/oocf C;@/a"c)
C,@ r00c = 3.5+ .0/%/06 = 4§ %
@ IC B35+ fo = 34 -éJ;/j
So A= L (por @93/ A7)

= Bg4 5 LT,
Zs

119, Aesn vvoere Cueve = A= Aren vmosrt Cuews
| WEKE y VARSES

RS ELY WITH X

AS /v Arrerox A9,

A= C.Z.é') Vz/v
WHewe C = 50,000 f"‘)\ /. O 3= 50, 000:4-—4[
So

A :{5@ 200 ,5‘./4[) Dn 4o
= 69,3/, 7 H-ly

AN ALTERZAATE APPLOXIHIHTES SotoTI0N CAN)
BE OB8H/AscD BY S/NG Smacl 7BIACTOID

AecHS  Stsmsed AS 100 AerEnsX Hs A%./

/6



AS ONE EXAMIPLE OF TMUS, USNG 3
TRAFPECOILAC ARSHS ~

V, = 1043 7 250,000 4
V= 2.0 &° 7~ 257000
V, = 3.0A° P, = /6867
V, = 4.0 R, < /2,500

THEN THE Alzfsﬁ CAN BE APPEW#3T5D

A £ 00 XE 7))+ 20y Vo)
*£(4-u )5+ R)

> 04 o000 M2 ONoscr)

* 5 ()25/67)= T, U7 -l

THIS FrRoBLw] CAAN Also & Sorveo
BY USING ComevTsit o624,
AREA AND pucro ComrvTeT

20 Aeen UNMNDER CURUE = A = ABEA UMDSC A
Curve 4= 8/




THEA
A= m(g Py & j)
’E Y, 2150 /o
B = 200 Wt

V.L = /0&.0/;:3
- V;)/. s /m s~
/D} Y= (i',“' = 20.06‘5:3 = 3/ 24s

AND
—720.0x/00.0 - 3%// 265/ 57?)

-3
= &32795 Hpn . E527.95 -1y

/n

1.2/ APPROX/mATE AREA ynpst curvE = A4

AND
A= Svm or Smac TrAREECIDI. AREAS

= L (o/og LOUJ 743>(/000 + Foo /é,z‘/,, )

+ £ ( 0/17- @/a?)(;’oe% 90) v (@/30 @//)
(Zoo +‘7oo) - 5:4 (0/45':- ,O/3o>(700+é o0)
+ e (O/éOa-,O/‘AS')/éOD +5"0¢9 # L (020 —

O/éo)( SO0+ «'%oo) &./ /5,[ 72
= 878.4 fﬂ- /A!'




L22. ARea unvper Cveve onv T-8 puceam=A
ASE Sum oF TrRecmortgc Azers

THIS CAN B& DONE USING SHms SowT
OF CALCULATION HS IN PRro@rery /.2/
O BY Us/ivGg FROSzA AnD
A IICED LOmrTER. . IMPUT T T
 FROGRAM ACEA Wil Bs N7 4AD
Y(1)= 3400 | x(1)=¢.7%
Y(2)= 3500 , w(2):¢.€/
Y(3)= 3600 | X(3): ¢ 83
Y@y 3700 | X(4):¢.873

Y(5> * 3800 | X(g) : 4.904
Y(e) =3900 | X(¢\:4.942
Y(# 29000 | X (7y: ¢.940

THE Eeswuer 1s A= 865 ’é‘Z

J

/23 Aren unoere curve on T-s Duasean=A
A2 Sum oF 7Tr4cszoioAL Arens .

THIS CAN B DONE USING SAME Sorr
OF CALCULATIONS HS /N PROBLEY) /-Z/
O BY USING Proseqam AREA AubD

/¥



reac JPUT 7o T
2an] ALEA Wit B ; N=35 AuD
Y (1) Soo |, X(A)= 245
Y (2)= éé‘@ X(2) 2789
Y (3): 70@ , X(3)= 39s¢
Y (4): 8o, X(4)= 4ooz
Y (5)® Goo , X(5): 40//

THe KesolT 1S A= 33408 Bu

/}24 FOEEA p:—?Z@,SV 'Wé"‘ FID P AT v oF
Frornw)y [ 70 0

P 14

20.5 /

410 2

&/, 3

82,0 v

/02.5 S

- /23.0 &

/43.8 /

/&40 g

/84S 7

205.0 /O




THE AREA UNDEE THE CUBVE p=20.SV
!S APPEOXIMATED BY THE

TRAPE Zo0/D A REAS , USIMNE THE METHD
oF PRoBeem /.2/ @E VE/NG RO
- AREA AND A PERS
INPUT To THE PROGAM ¢ ouLp BE
N= o AND VALUES OF P & JHE
Y-viives AND ) FoR. THE X-yAlues.
THE keEsvir /S

A = SOI4 TS5

USING CALCULUS :
10

10 /0
A gfpz,r :ff(v)dv e/ZO,S vduv
/ / |

10

/
= 24(20,5)0‘7 = 2'-/(20@2//00 “{)
/
A= /O 75

/.25 FOR THE CHANGE IN INTEBAAL ENseey
OF A DéT'EFs’ET 6AS, AU, WE HQue

AU == chgT ABEA vinps 4

Cews /n c,~7
_ DIAGeam .

20



7 oF 50 DeGeses | we

USInG

CALCUATE <, AT 7= /00 7"‘0 7=

Soo: = 3.8E + 03 T
= 7@2 , 1=/ 00
= 875 4, 7T=/50
cy= 1048 , 7=200
C,= /2.2/, T=R2S50
c,s/39%, 7=300
c,s/5¢7, T=350
Cys/740, T =400
c,c19./73, 7=450
€, 42086, 7=506

LsInG /42 AND A FEESoA/LL.

CO/??PUTSE W/T‘H INPVTS OF AN/= /0,
Cy VALUVES RO YAVALVES , AwD 7T Fo&
X-=VALUES, THE EBsSwer /s

A= 5574 k%},

USING CALCOLVS
A= fa a7~ _[2355,‘ @3’%7) dT

Soo

= 3567 + o (onde 7—9/

/006




AU = S57& w/,?

THE SAME AREA CAN BE APREOXIMATED
BY THE Sum OF TBAFEE
USING ALEA AVD A

COMPUTER. WITH N= 30 AMD VALUES
OF P FoR Y-VALUES AMD V (Feom

)OO TO 300 JN INCEEIDNENTS OF /@)
FOR X, VALUES orF P ARE DETEEA7 )4jcD
Feom) = 27004/ So THAT, AT
V=/0 , p= 8538 ; AT V=20, p =
603.7 Arnp So on. PRocrAm AREA
NEEDS Tb BE REVISED 70 RUN
THIS PRo&Lem WiTH 3o LIS,
CHANGE LINE 100 70 READ :
100 DIm X(31)
A/\)D LINE J/0 TO REAHAD .
1710 DIM Y (3))




{ﬁ@f) G/VE

A T 76 7§ 8.2 (Dswes

NOING

VSZ VIRV R

SN Lovwnp-ore oF DAL

THE PROBLEMS IN SECTION 7, 7
ARE INTENDED 76 FPROV)DE PRACTICE
IN USING ENGINEERING EQRUATIGN)
soLveRr (E£&s)

/27 OPENING & £S5 E’@L/fqﬁgw
WHKZOW A Exre

. {Problem 1-27}

x+2*y=3 .4
X"*2+y**2=4 5

THA) Clickng CALCULATE ﬁ/up
THenN SOLVE &/VES ¢

Unit Settings: [kJ]/[C]/[kPa]/[kg]/[degrees]
x =2.003

Yy =0.6985

No unit consistency or conversion problems were detected.




/.28 OPENING EES EQUATION
Wi DOW AND ENTEZ WG :

{Problem 1-28)

§=3.458
T's"*1.4=4456

THEN) CLICK CALLUVLATE ON TLE
7ODLBAR, AND SOLVE GI/ES ¢

Unit Settings: [kJ]/[C]/[kPa]/[kg]/[degrees]
s =3.458 T =7845

No unit consistency or conversion problems were detected.

/.29 OPEN EFES EeuA Tol\j Wonzou/
AND ENTEZ, !

{Problem 1 -29)

P*V**1.4=280

THEN CLICK TASBLES ON TOOLBAR
AND NEW FPARAMETRIC., TASL &
- Se7 NO.OF Runs T <O, PUT
P AND \/ N VnensLes //\J TABLE

BY CLicernvg Owﬁj TN A DO
THEN ©OMN V AND A DO, cz,/c,('




/.29 (Zou?t)

QK AND ENTEK ALl VALUSsS
FOR p FROM O/ To Z .
THEN CL)Cikc CALCULATE AND
POLVE TABLE , (CLICK oK

AND BESpLe7 S ¢

Parametric Table: Table 1

p v
Run 1 0.1 289.9
Run 2 02 176.7
Run 3 0.3 132.3
Run 4 04 1077
~Runb 05 91.83
Run 6 06 80.62
Run7 0.7 7221
Run 8 08 65.64
Run 9 09 60.35
Run 10 1 6597
Run 11 1.1 52.29
Run 12 12 49.14
Run 13 13  46.41
Run 14 14  44.01
Run 15 15 41.9
Run 16 16  40.01
Run 17 1.7 38.31
Run 18 18 36.78
Run 19 19  35.39
Run 20 2 3412




/30 TO FLOT RESULTS OF PRoSLeM
/. RQ, CLIC)K PLOTS ON 750464@}

THEN NEW BP2o0T5 WI/NDow/,
CLjck. V. Jor X-AX)s AND
= Fox V= AXIS. THEN Crick.
O AND FPLoT ResuLTs :

1.6}

1.2}

0.8}-

0 50 100 150 200 250 300
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L£ES EQUATIDN WINpow

{Problem 1-31)

Wk=p*v**1.4
p*v=4.56°T
Wk=Q-0.234*T
Q=456/T
T=23%p

THEN CLICck CALcviRs AND
SOLVE 75 08744

Unit Settings: [kJ]/[C]/[kPa]/(kg]/[degrees]
p =0.1708 Q =116.1 T =3.928 v =104.9

Wk =115.2

No unit consistency or conversion problems were detected.




Chapter 2 Discussion Questions

Section 2.1

2.1 A system is aregion in space having at least a volume.

2.2 A system needs a boundary to define the volume of that system.

Section 2.2

2.3 A moleormolisa given number of molecules or atoms. Avogadro’s
Number is the number of molecules or atoms in one mole based on a gram.
That is, one gram-mole of a substance has 6.022 x 10% atoms or molecules,
which is Avogadro’s number.

2.4  Yes, a gram-mole is only 1/454 of a Ibm-mol.

Section 2.3

2.5 A property helps describe a system.

2.6  Intensive properties of a system are properties based on one unit of mass of
the system. Extensive properties describe the total system.

2.7  Specific energy is the energy per unit mass of a system.
Section 2.4

2.8 A state of a system is the complete description of a system, or the list of
properties describing the system.

Section 2.5
2.9 A process is a change in a system’s state.
Section 2.6

2.10 A cycle is a set of processes of a system which returns the system to its
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Section 2.1

2.1  Asystem is aregion in space having at least a volume.
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2.3 A moleormolisa given number of molecules or atoms. Avogadro’s
Number is the number of molecules or atoms in one mole based on a gram.
That is, one gram-mole of a substance has 6.022 x 10% atoms or molecules,
which is Avogadro’s number.

2.4 Yes, a gram-mole is only 1/454 of a Ibm-mol.
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2.5 A property helps describe a system.

2.6  Intensive properties of a system are properties based on one unit of mass of
the system. Extensive properties describe the total system.
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2.8 A state of a system is the complete description of a system, or the list of
properties describing the system.

Section 2.5
2.9 A process is a change in a system’s state.
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N EES EQUATION WINDOW/

{Problem 1-31)

Wk=p*v**{ .4
p*v=4.56*T
Wk=Q-0.234*T
Q=456/T
T=23%p

CTHEN CLick CAtcUaTe AND
SOLVE 75 687/ -

Unit Settings: [kJVIC)/[kPa)/[kg)/[degrees] :
p =0.1708 Q=116.1 T =3.928 v =104.9

Wk =115.2

No unit consistency or conversion problems were detected.




original state.

Section 2.7

2.11 Weight is the gravitational attraction between two bodies. The mass is a
quantity of matter and weight is mass multiplied by the gravitational

acceleration.

2.12 The term g, is a constant of proportionality between momentum change (or
mass times acceleration) and force (or weight)

Section 2.8
2.13  Specific volume is the volume per unit mass of a system.
2.14 Specific weight is the weight per unit volume of a system.

2.15 Specific Gravity is the ratio of the density of a substance to that of water at
4° C, standard atmospheric pressure of 1 bar.

2.16 Density is the mass per unit volume, or inverse specific volume.

2.17 Gage pressure is the pressure measured by a gage, usually when the gage is
placed in a standard atmosphere of 1 bar pressure. It is a difference in
pressure between absolute pressure of a system and the atmospheric
pressure. Gage pressure is the pressure “felt” by a system at its boundary.

Section 2.9

2.18 The zeroth law of thermodynamics makes a temperature measurement
independent of a system. Thus, a temperature of, say 30 degrees, is the
same anywhere and anytime.

Section 2.10

2.19 Temperature is a measure of the “hotness” of a system.

2.20 A thermopile a group of thermocouples, all connected in series to each
other.




Section 2.11

2.21 Energy is the capacity of a system to affect changes to its surroundings.

2.22 Internal energy is the form of energy manifested by the hotness or
temperature, or the thermal energy. It is the kinetic energy of the individual
atmos or molecules making up the system.

Section 2.12

2.23 Some outputs from a system would be, for instance, power produced by an
engine, amount of water boiled in a boiler, or an amount of air pressurized

in an air compressor.

2.24  Some inputs to a system would be, for instance, rate of fuel used by an
engine, amount of energy used by a boiler, or power to drive a COMPpressor.

Section 2.13

2.25 A derived unit is a unit or combination of fundamental units for describing a
particular property or quantity.
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CHAPTER Z

THE PEOBLEMS IN SECTIONS 2.7 AND 2.8 ARE
INTENDED T HELP UNDEEST;

OF  WEIHT, M4ss, Vorvms, Dswsry, SPECIFIC
V@é,ymg AND PRESSURE,

2.l WEIGHT W'=mq . THUs, Ar 2Em /52
W = (Z&cg)(‘igm/sﬂ ﬂ;

AT 93 278m/5*

W= (2ks X378z 19.5¢ N
SO THAT THE GOLD CUBE HAS GCRSATEX
WEIEHT AT LOCATION WHERSE @2 F.8m
THE MASS 1S TS SAme Ar Bbori
LOocAhATIONS.

& MNewrws

)

2z W*-Mf (5 4aX .79 mfam) = 2757 N

2. 3 W= m; /a. For ENGUsH ENGR, L.
So THAT mp= W /da;
AT SeA LevEL g < 32,74 AT S0 TwAT

= (S’ 333 /O/Fﬁa”‘//é—}é") /é’z,/?s/ #/Sz)




m= &.333 /b,
ALso, 32,074 Jbu = ) Slug S0 Thqr
m= &333/%,/7.«7! = j

O.258F... stuvgs

2.4 THE MmAss oF Tye BATTE®RY IS THE Sqme
ON THE EARTH AND DN THE MOON.

m = W;c éf (32 ¢ X(32.074 75-/4//4,,..;)

[,

(32179 #47)
= 32 /bm
oN T Moow W HEEZE S7 hhe
We (/ 2/ ﬁ?)/(gz 17%)

W = S%‘éfl«- 4 r

2.5 (a) //éméé %‘53,5’?9/*@»%5 =~ élsa‘/ﬁmms
</ 17

(6 2 thy,= 2x0I5ITP by - 0.907/8 kg

(€D Povnos-Forece /s A Forcs OF WE/EH T
wnvIT.  F ;? 3217 74/3'2‘ AND SINCE
20 SLYes /s 4 MASS , e HEvE
W= mg = (o stwes (5270 44)
= &93.48 K

(Z/.) OYvE 1S A Porce O Wwernsrr oiT,
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IF i s PEm/f= AND me
Tkp/

W= mg = a/égxggm[g‘ =098 N
Bur /) N= 1% DYwes | S0

W= 78, 000 pywnes

(€ 7r1s /s A Cowivees/on FRom MASS ToO
FokCs And Freony ST 76 engersH
URI7TS . Srwecs = 2@@&5 AN f»
7.3 /5% , WE HAlE

 w(F)= mg éoek?)(?ghﬁ/s
= /?é@ N
Swwee [/ N= 0.2248 My wa HAve

W (F) = lo.c.- lby

LA
2.6 (a) Vorume = V= T« @“Zem) « LEWG 72

2
V= ﬂ(—é—b}-%fm) = L /78 m

W_ éocoN ¥
78w

(6) SpciFic wererr =

V= s093 M43

(e Dewnsrry = p= "y = Wév | f/;




S093NLE

O Fazy. T 5786 447

S.6. = 0.5/9¢..

2,7 W<mq AND Vemuyv .. Tosw m=‘//er~z>
W= g/’lf“ 508.3’7/7217‘7/\)(; leves :

W = ( H4800 ams)(,?, 78 m/5 2Y;Q§ém %m 3)
O. P, o

Vi
W= o0.0sz...pn

2.8 (2?‘) P = /Dg + QZgMOS/OAQf/é pressore
P=10 kP + /O] LR = 102 LA

( 6 ,> V7= amospéﬁr/'a pressore = 768 nym
- / erm, X O/333 LA
AND  T3Ren)
PO, + 768 x0./1333 L
L= /0339 LR = J03d L~y

‘G

2.9 A TANE IS Sn, HIGH Anp HALF-Fur . oF
WARTEZ
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(a) ASSUME AIR PRESSUEE
/S CONSTANT A7 /3 L2
IN TOP HALE OF TANK,
THEN THE GAG¢€
PRESSVUERE /s THE SAme
AT 7HE Tor= OF THs nATER .
B,= 13 kFz

/é.) PRESSVURE AT Borios = Pg = ;DH%W % 4

40 2
= /3 4R + (9?8‘ % x 7282 svn)

S /B AP + 244957 LR = 3745y L2

(C) Py IBkm+10/ki = 174 LA
Pa = B7.95) +/0/ = /38.</SY £

/
2./0 (a) DEwsITy o = % =/ao7fr%m;’0993 /3

(6) sPecicic weshr = 2 /o

32./ K a
0= (32/74/%‘;/4»4 3(0993 43

Y= 097 %t
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(¢.) Speciric GrAVITY = £ féz.43 = .00 /59

Z.]] AIR IS ASSUMED To HAVE A ConsTAMT
PEESSUERE THRZOYUEHO LT ANVY ONE CloSEd

VoLums~ So 7HAT p AcTs on MERCOR Y/
IN fOANOMETER AS
SHOWAN, THE PRESSuLE

IN THE meecury /S ;)1-
THE SAME AT AnyY

Qe ELEVATION . THUS

p= Pﬁfg‘r

- SoLving Fore h :

pe B _(omy musimish)
3;; (855 /1/53)
h= 0.3 /4

2.2 PReSSURE = rorCE /A REA

ForcE = PRESSVLRE rA4REL]

“(zs0 ZXor )\ 15 Wosatintpe)

= 28 274 by
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2. /S (Q.) /47{8 PS:V’ _

(6 /4, Hy Vacuun

204 (a) M7 psi = 29,9389 1 Hy

(Q’) S00 sn. Nﬁ = /473 posd
(‘7/) S0 pse - S TS Lo

(f-) L0 4Lz = 29008 s
20 mches WG = ©.722 Psig
S50em WG = 4.903

= ?S g Pg ;
P= 9€9.4 psia_




SerTIoNs 2.9 Anvo 2,70
ISNVOBD 7O MEZ L STVDEATS DNDERS -

Zd7  Brecks 4 Ane B Are poT I V2SI,
ERQUILIBLIYM . THEY wourr Bs Jr)
THEZh9 L CQUILIBRIUM I TAHY Wer e
77 THE SHME TEMPERATULE .

ZLAE  corpsme- consTHATHAI TTHEL 1OCOLI L
Wite, GENET2ATE AN Emr (VoLTA6E) Jn/

DIRECT PROFORTION T THS JoNCTION)

TEMPERATVEE . TiE hf)f%/mum LorT-

AGE W/Le B OARServABce AF Yoor
AN Freom TABLs Z-3 THIS wowed
Be 95823 mievoers

2,18 seon- CONSTANTAN “TTHERrmoCovere~ HS A
mEASLRD EME OF %700 my. From
TRBLE Z-3  THs Ternorrmqruves MY Be
FPournd BY LneHre nTseeolgrion




7177 . 8700-9483 Sog7y
"8.9-177  7.947-9.483 7

T =77 — /43285 = 762,475 °C.

A
WHERE 1 ANnD b ARE consTanTS . THEN

WE SussTITuTe VALwues | 7,20 WHEN 7=
28.5°C AVD T = joo weew T =696°C. .
o= m(28.5’>+ p
/002 m (690 ) + &
SoLvin G THESE 7Wo  EPUATIONS oz m

A b T m = CIS12. AVD b=— 4 3208
So  THAT
Ty = OISIZT, = 44308

220 we may weire T = m 7 *b

ASO T2 T =278 s Tous sy

KELVIw DesrssS. AT J8soruys xS
/=0  so

Sy

N /5’/4/7‘1- 273>m¢71, 308

b= —SSSEN 4y Hssorurs Foco







23 @y /HO°F = goop

(6D 88°F= sz %%
(c) 236k < Jl0C
() 87k = I1sc.q e

2.2497@) $2F = 872% = 484y k
(6 B2°F = 492% = 273,
(¢ 177C = 390 & = 702
(d) 72°C = 395 kK = 62/°R

USING TABLE

THERmocovePLE /s
AT 200° F.
A CROULE OF Tiicr

/S

ém;: & x 3.9 7 \/
= 3, 73é mV

4/



PQQSiEMS oF SSCT!@M 2.1/ ARre M-

RSIANDI N &

2.2¢

- -2
(a) KINETIC ENERGY = é’-ml/

KE = ( ZX9€ 000 kj)(/ooa ) 34,0D5>

3
AND 1000 m (a m)"’ [kim SO THAT

KE = ( 73¢ K /Y/o m" /,73gx,t96£J

( b.) POTENTIAL ENERGSY = n z
= (9s; 600 %;)( 78/ 5 X 3000 m)

PE = }3. 2d35 % 10 LT

27 (a) Zero (¢ c:>> , Sivee  V 4ppears
7o Be gerEO. |

iy _ L, o ) W o7
( > E = Z/‘)?\/*‘ Z(g")v
! ToN /h
= /40 000
(Z‘ Y 78 M/s )g’éooJ
KEZ /3,000 4T |




g (a) ‘ﬁm Woop Wee ffﬁéé SO metbes. Tus

2L = m g ( 2z) §(7 ég )@8 '”Y%@m)

| = 392J

| (‘é> THE STEEL Wil Sixk AMD TAA
FALe GO medhers .

N PE = (/k; Xos o N60m) 568 T

229 7ue EMEEY SuvPPLIED BY 7Hs Pume
mus7 BE EQLAL To THE JNCREASE W
POTENTIAL ENEESY oF 7e waTE
WHicy) )5S

4pez'ADF/,7: 3(232)
= (98742 ) 75m) 73‘5\%2

FORE

230 ke= F V7= (4 )24 3’1’)2: 288 J/ky
4
23] KE=ZimV' g(/éi)(’éogf: /800 J

2.32 (a) To7L ENERGY = AKE + K&E #PE 24
= 305 4AJ




TOTAL. MECHAANV)CA L. @VE’ES}’ = AKES ke

> PE
= 270 ,éj -

2 33 (;) %mm% Ewerey, PE = mgz’/éc

A&Q g 32.09 .74/3 Feom 748te B. 7.
THE BALLOON MASS s \

2./7
< g W = (3,7 /@ ocsd i
THEN
PE = ?ni?{f ( o. 539’/4,.—.)@520%4/ )é’ooo;@> |
| (32 /7;4/@/&5)
PE = 362,/ Ay

(6D AT S€a tever  g=32.708 rFeom
TASLe” 8.2 ’ Wery) T2 —1000 f

p o = (0.634 /4, X32,008 Aefir)(Cr000 fr)
=—&32.778 {r-ly.
(c.) Zero S/NQE’ BELENsE oy hys

ASSUmsD 70 B& Frevatyons OF
ZerO FoTenT/q¢L ENERESY , -




2. 34 TOTAL ENERGY = KE 3 PE 44

= 28 Bru~+ 2 Bryr 1508y
= /8O By .

| 2. 2
235 te= ;- V/*- (70 mi Y (247 s fomi )
ge  (2)(32.07 H-lbm/ Uy . s*)
ke = /645 Frlbr I,

Z.36 Teme Evsree, £ = Ko+ Perd
= (01500 Yo Gosioo
+ /$ 006 Bry ‘
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Chapter 3 Discussion Questions

Section 3-1

3.1  Work is energy crossing a system boundary due to a force acting through a
distance.

3.2 A volume change is due to a boundary moving and this is due to a force or
pressure, thus we call this boundary work.

Section 3-2
3.3 Power is the time rate of doing work.

3.4 A kilowatt hour can describe power summed or integrated over a time
period and this is work.

Section 3-3

3.5  Heat is energy crossing the boundary of a system due to a temperature
difference and not a force acting through a distance.

3.6  The calorie is an amount of energy that could raise the temperature of one
(1) gram of water by one (1) degree celsius.

3.7  Heat Transfer is the time rate of heat.
Section 3-4

3.8 Both friction and viscous effects are not reversible and thus work done
against them is irreversible work.

Section 3-5

3.9  Heat and work have the same units of energy and both are energy in
transition or crossing the system boundary.
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Section 3-6
3.10 The three types of systems are isolated, closed, and open.
Section 3-7

3.11 Work and heat cannot be stored in a system or stored in the surroundings.
Thus, being transitional phenomena, they are not properties of a system.
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Chapter 4 Discussion Questions

Section 4-1

4.1  Mass flow rate is the time rate at which mass flows past a stationary plane,
or boundary of an open system.

4.2 Volume flow rate is the time rate at which a volume of fluid flows past a
stationary plane or boundary of an open system..

Section 4-2

4.3  Steady flow means that the flow rate is constant in time.
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Chapter 4 Discussion Questions

Section 4-1

4.1 Mass flow rate is the time rate at which mass flows past a stationary plane,
or boundary of an open system.

Volume ﬂow rate is the time rate at which a volume of fluid flows past a

4.2
stationary plane or boundary of an open system..

Section 4-2

4.3 Steady flow means that the flow rate is constant in time.
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Section 4-3

4.4 Uniform flow means that the properties of a flowing fluid are same
throughout, including in the system from which or to which they are
flowing.

4.5  The filling process is a process where fluid only flows into a system.

4.6 The empb)ing process is a process where fluid only flows out of a system. -

Section 4-4

4.7 By convention, in engineering and technology work obtained from a system
is described as positive work. Thus, work into a system needs to be
negative.

Section 4-5

4.8  The first law of thermodynamics is usually considered to be the
conservation of energy. Sometimes the law is interpreted to mean that
energy is a property of a system.

Section 4-6
4.9  Anisolated system is a system that cannot loss or gain either mass or
energy.
&
4.10 Adiabatic means no heat or heat transfer can occur.

Section 4-7

4.11 Flow energy is the energy used to account for fluid flow across a system
boundary. It can be calculated by the product of pressure times volume or
for specific flow energy, by the product of pressure times specific volume.

4.12  Enthalpy is internal energy plus flow energy, or U+ pV.
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Section 4-8

4.13 An open system is one that allows for mass and energy to cross the

boundary.

4.14  Shaft work is work transmitted through a rotating shaft, often a boundary of
an open system.

4.15 Open system work is closed system work minus the difference in flow work
between out flow and in flow.
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