
The loan officer at one of the Central Mountain Credit Union’s branch offices has asked
you to write a loan amortization application to run on her desktop PC. The application
should allow the user to enter the amount of a loan, the number of years of the loan, and
the annual interest rate. An amortization report should then be saved to a text file.

Calculations

The credit union uses the following formula to calculate the monthly payment of a loan:

The Amortization Class

C
A

S
E

S
T

U
D

Y

2

=
× ×

−
12

1
Payment

Loan
Rate

Term

Term

where:	 Loan 5 the amount of the loan,
	 Rate 5 the annual interest rate, and
	 Term 5 (11Rate/12)Years 3 12

Report Requirements
The report produced by the program should show the monthly payment amount and the
following information for each month in the loan period: amount applied to interest,
amount applied to principal, and the balance. The following report may be used as a
model. It shows all the required information on a one-year $5,000 loan at 5.9 percent
annual interest.

CS2-1

From Starting Out with Java: From Control Structures through Objects, Sixth Edition. Tony Gaddis.
Copyright © 2016 by Pearson Education, Inc. All rights reserved.

CS2-2	 Case Study 2   The Amortization Class

Monthly Payment: $430.10
Month Interest Principal Balance

 1 24.58 405.52 4,594.48
 2 22.59 407.51 4,186.97
 3 20.59 409.52 3,777.45
 4 18.57 411.53 3,365.92
 5 16.55 413.55 2,952.37
 6 14.52 415.59 2,536.78
 7 12.47 417.63 2,119.15
 8 10.42 419.68 1,699.47
 9 8.36 421.75 1,277.72
10 6.28 423.82 853.90
11 4.20 425.90 428.00
12 2.10 428.00 0.00

The core of the program will be a class, Amortization, that holds the primary data,
performs the mathematical calculations, and displays the report. Figure CS2-1 shows
a UML diagram for the class.

Table CS2-1 lists and describes the class’s fields.

Figure CS2-1  UML diagram for the Amortization class

	 Case Study 2   The Amortization Class	 CS2-3

Table CS2-2 lists and describes the class’s methods.

Table CS2-1  Amortization class fields

Field Description

loanAmount A double variable to hold the amount of the loan.

interestRate A double variable to hold the annual interest rate.

loanBalance A double variable to hold the loan balance.

term A double variable used in the calculation of the monthly payment.

payment A double variable to hold the amount of the monthly payment.

loanYears An int variable to hold the number of years of the loan.

Table CS2-2  Amortization class methods

Method Description

Constructor The constructor accepts three arguments: the loan amount, the annual
interest rate, and the number of years of the loan. These values are
stored in their corresponding fields. The private method calcPayment
is then called.

 calcPayment A private method that is used to calculate the monthly payment
amount. The result is stored in the payment field.

 getNumberOfPayments Returns as an int the number of loan payments.

 saveReport Saves the amortization report to a text file.

 getLoanAmount Returns as a double the amount of the loan.

 getInterestRate Returns as a double the annual interest rate.

 getLoanYears Returns as an int the number of years of the loan.

Code Listing CS2-1 shows the code for the class.

Code Listing CS2-1   (Amortization.java)

 1 import java.io.*; // For file-related classes
 2
 3 /**
 4 This class stores loan information and creates a
 5 text file containing an amortization report.
 6 */

CS2-4	 Case Study 2   The Amortization Class

 7
 8 public class Amortization
 9 {
 10 private double loanAmount; // Loan Amount
 11 private double interestRate; // Annual Interest Rate
 12 private double loanBalance; // Monthly Balance
 13 private double term; // Payment Term
 14 private double payment; // Monthly Payment
 15 private int loanYears; // Years of Loan
 16
 17 /**
 18 The constructor accepts the loan amount, the annual
 19 interest rate, and the number of years of the loan
 20 as arguments. The private method CalcPayment is then
 21 called.
 22 @param loan The loan amount.
 23 @param rate The annual interest rate.
 24 @param years The number of years of the loan.
 25 */
 26
 27 public Amortization(double loan, double rate, int years)
 28 {
 29 loanAmount = loan;
 30 loanBalance = loan;
 31 interestRate = rate;
 32 loanYears = years;
 33 calcPayment();
 34 }
 35
 36 /**
 37 The calcPayment method calculates the monthly payment
 38 amount. The result is stored in the payment field.
 39 */
 40
 41 private void calcPayment()
 42 {
 43 // Calculate value of Term
 44 term =
 45 Math.pow((1+interestRate/12.0), 12.0 * loanYears);
 46
 47 // Calculate monthly payment
 48 payment =
 49 (loanAmount * interestRate/12.0 * term) / (term - 1);
 50 }
 51
 52 /**
 53 The getNumberOfPayments method returns the total number of
 54 payments to be made for the loan.

	 Case Study 2   The Amortization Class	 CS2-5

 55 @return The number of loan payments.
 56 */
 57
 58 public int getNumberOfPayments()
 59 {
 60 return 12 * loanYears;
 61 }
 62
 63 /**
 64 The saveReport method saves the amortization report to
 65 the file named by the argument.
 66 @param filename The name of the file to create.
 67 */
 68
 69 public void saveReport(String filename) throws IOException
 70 {
 71 double monthlyInterest; // The monthly interest rate
 72 double principal; // The amount of principal
 73 //DecimalFormat dollar = new DecimalFormat(“#,##0.00”);
 74 FileWriter fwriter = new FileWriter(filename);
 75 PrintWriter outputFile = new PrintWriter(fwriter);
 76
 77 // Print monthly payment amount.
 78 outputFile.println(String.format(
 79 “Monthly Payment: $%.2f”, payment));
 80
 81 // Print the report header.
 82 outputFile.println(“Month\tInterest\tPrincipal\tBalance”);
 83 outputFile.println(“-----------------------------------” +
 84 “--------------”);
 85
 86 // Display the amortization table.
 87 for (int month = 1; month <= getNumberOfPayments(); month++)
 88 {
 89 // Calculate monthly interest.
 90 monthlyInterest = interestRate / 12.0 * loanBalance;
 91
 92 if (month != getNumberOfPayments())
 93 {
 94 // Calculate payment applied to principal
 95 principal = payment - monthlyInterest;
 96 }
 97 else // This is the last month.
 98 {
 99 principal = loanBalance;
100 payment = loanBalance + monthlyInterest;
101 }
102

CS2-6	 Case Study 2   The Amortization Class

103 // Calculate the new loan balance.
104 loanBalance -= principal;
105
106 // Display a line of data.
107 outputFile.println(String.format(“%d\t%.2f\t\t%.2f\t\t%.2f”,
108 month, monthlyInterest, principal,
109 loanBalance));
110 }
111
112 // Close the file.
113 outputFile.close();
114 }
115
116 /**
117 The getLoanAmount method returns the loan amount.
118 @return The value in the loanAmount field.
119 */
120
121 public double getLoanAmount()
122 {
123 return loanAmount;
124 }
125
126 /**
127 The getInterestRate method returns the interest rate.
128 @return The value in the interestRate field.
129 */
130
131 public double getInterestRate()
132 {
133 return interestRate;
134 }
135
136 /**
137 The getLoanYears method returns the years of the loan.
138 @return The value in the loanYears field.
139 */
140
141 public int getLoanYears()
142 {
143 return loanYears;
144 }
145 }

	 Case Study 2   The Amortization Class	 CS2-7

The Main Program
The main program code is shown in Code Listing CS2-2. First, it gets the amount of the
loan, the annual interest rate, and the years of the loan as input from the user. It then
creates an instance of the Amortization class and passes this data to the class’s construc-
tor. The program then saves the amortization report in the file LoanAmortization.txt.
It asks the user whether he or she wants to run another report. If so, the program repeats
these steps. Figure CS2-2 shows an example of interaction with the program.

E

Figure CS2-2  Interaction with the LoanReport program

Code Listing CS2-2   (LoanReport.java)

 1 import javax.swing.JOptionPane; // For the JOptionPane class
 2
 3 // The following import statement is required because the main
 4 // method has a throws IOException clause. Although this program
 5 // doesn’t have code that directly performs file I/O, the import
 6 // statement is still required because of IOException.
 7 import java.io.*;
 8
 9 /**
10 This program displays a loan amortization report.
11 */
12
13 public class LoanReport
14 {

CS2-8	 Case Study 2   The Amortization Class

15 public static void main(String[] args) throws IOException
16 {
17 String input; // To hold user input
18 double loan; // Loan amount
19 double interestRate; // Annual interest rate
20 int years; // Years of the loan
21 char again; // To indicate if loop should repeat
22
23 do
24 {
25 // Get the loan amount.
26 input = JOptionPane.showInputDialog("Enter the " +
27 "loan amount.");
28 loan = Double.parseDouble(input);
29
30 // Validate the loan amount.
31 // (No negative amounts.)
32 while (loan < 0)
33 {
34 input = JOptionPane.showInputDialog("Invalid amount. " +
35 "Enter the loan amount.");
36 loan = Double.parseDouble(input);
37 }
38
39 // Get the annual interest rate.
40 input = JOptionPane.showInputDialog("Enter the " +
41 "annual interest rate.");
42 interestRate = Double.parseDouble(input);
43 // Validate the interest rate
44 // (No negative amounts.)
45 while (interestRate < 0)
46 {
47 input = JOptionPane.showInputDialog("Invalid amount. " +
48 "Enter the annual interest rate.");
49 interestRate = Double.parseDouble(input);
50 }
51
52 // Get the years of the loan.
53 input = JOptionPane.showInputDialog("Enter the " +
54 "years of the loan.");
55 years = Integer.parseInt(input);
56
57 // Validate the number of years.
58 // (No negative amounts.)
59 while (years < 0)
60 {
61 input = JOptionPane.showInputDialog("Invalid amount. " +
62 "Enter the years of the loan.");

	 Case Study 2   The Amortization Class	 CS2-9

63 years = Integer.parseInt(input);
64 }
65
66 // Create and initialize an Amortization object.
67 Amortization am =
68 new Amortization(loan, interestRate, years);
69
70 // Save the report.
71 am.saveReport("LoanAmortization.txt");
72 JOptionPane.showMessageDialog(null, "Report saved to " +
73 "the file LoanAmortization.txt.");
74
75 // Do another report?
76 input = JOptionPane.showInputDialog("Would you like " +
77 "to run another report? Enter Y for " +
78 "yes or N for no: ");
79 again = input.charAt(0);
80
81 } while (again == 'Y' || again == 'y');
82
83 System.exit(0);
84 }
85 }

Contents of the file LoanAmortization.txt:

Monthly Payment: $430.10
Month Interest Principal Balance
--
 1 24.58 405.52 4,594.48
 2 22.59 407.51 4,186.97
 3 20.59 409.52 3,777.45
 4 18.57 411.53 3,365.92
 5 16.55 413.55 2,952.37
 6 14.52 415.59 2,536.78
 7 12.47 417.63 2,119.15
 8 10.42 419.68 1,699.47
 9 8.36 421.75 1,277.72
10 6.28 423.82 853.90
11 4.20 425.90 428.00
12 2.10 428.00 0.00

First, notice that a do-while loop (in lines 23 through 81) controls everything done in
this program. Here is a condensed version of the loop:

23 do
24 {

(Code to get the loan data and display the report.)

CS2-10	 Case Study 2   The Amortization Class

75 // Do another report?
76 input = JOptionPane.showInputDialog("Would you like " +
77 "to run another report? Enter Y for " +
78 "yes or N for no: ");
79 again = input.charAt(0);
80
81 } while (again == 'Y' || again == ‘y’);

During each iteration, this loop first gathers the necessary loan data as input and then
writes the amortization report. At the end of the iteration, the user is asked whether he or
she wants to run another report. If the user enters Y or y for yes, the loop repeats. Otherwise,
the loop terminates and the program ends.

Inside the loop, the code that gathers input from the user also validates the input. For
example, here is the code in lines 25 through 37 that gets and validates the loan amount:

25 // Get the loan amount.
26 input = JOptionPane.showInputDialog("Enter the " +
27 "loan amount.");
28 loan = Double.parseDouble(input);
29
30 // Validate the loan amount.
31 // (No negative amounts.)
32 while (loan < 0)
33 {
34 input = JOptionPane.showInputDialog
35 ("Invalid amount. Enter the loan amount.");
36 loan = Double.parseDouble(input);
37 }

If the user enters a negative number, the while loop displays an error message and asks the
user to enter the loan amount again. The code that gets the annual interest rate and the
years of the loan, in lines 39 through 64, also performs similar input validation. Once
these values have been correctly entered, an instance of the Amortization class is created in
lines 67 and 68:

Amortization am =
 new Amortization(loan, interestRate, years);

Then, the saveReport method is called in line 71 to save the amortization report to the file
LoanAmortization.txt:

am.printReport("LoanAmortization.txt");

Note:  Notice that Code Listing CS2-1 has the following import statement in line 1:

import java.io.*;

Although this program does not have any code that directly performs file I/O, we still
have to have this import statement because of the throws IOException clause in the main
method header. The main method has to have the throws IOException clause because it
calls the saveReport method in the Amortization class.

