0 Oy

ooooono
goooooo
OO0000oooao

1gooag
1000
ooono
o0oano
o0o0oao

Random Access Files

>
@]
Z
(NN]
o
o
<

Structuring Data into Fields and Fixed-Length Records

Data that is written to a file is commonly structured as fields and records. In file terminol-
ogy, a field is an individual piece of data, such as a person’s name or telephone number. A
record is a collection of fields pertaining to a single item. For example, a record might con-
sist of a specific person’s name, age, address, and telephone number.

Quite often you can save the contents of an object as a record in a file. You do this by writ-
ing each of the object’s fields to the file, one after the other. When you have saved all of the
object’s fields, a complete record has been written. When the fields from multiple objects
have been saved, then multiple records have been written to the file.

Random access files are particularly useful for storing and retrieving records. However, the
sizes of the items stored in a random access file must be known in order to calculate the
position of a specific item. Records that are stored in a random access file must be the same
size and must have a fixed length. This means that the size of a record cannot change.

In Java, the sizes of the primitive data types are well documented and guaranteed to be the
same on all systems. If an object’s fields are all of the primitive data types, you can easily cal-
culate the size of the record: it will be the sum of the sizes of all the fields. However, a prob-
lem arises if an object has a field that is a string because its contents can vary in length.
You can get around this problem by making sure that a string field is always written as a
specific number of characters. The example in this appendix shows one way to do this.

First we will introduce the InventoryItem class shown in Code Listing A-1. An object of
this class can represent an item that a company might have in its inventory. This class has
two fields: description, a string that holds an item’s description, and units, an int
that holds the number of units on hand. The class also has the necessary accessor methods,
mutator methods, and two constructors.

From Starting Out with Java: From Control Structures through Objects, Sixth Edition. Tony Gaddis.
Copyright © 2016 by Pearson Education, Inc. All rights reserved.

Working with Records and

A-2

Appendix A Working with Records and Random Access Files

Code Listing A-1 (InventoryItem.java)

1 /**

2 InventoryItem class

3 %/

4

5 public class InventoryItem

6 {

7 private String description; // Item description
8 private int units; // Units on hand
9

10 /%%

11 This constructor assigns an empty string
12 to description and 0 to units.

13 */

14

15 public InventoryItem()

16 {

17 description = "";

18 units = 0;

19 }
20
21 /**
22 This constructor assigns values
23 to the description and units fields.
24 @param d The description.
25 @param u The units on hand.
26 */
27

28 public InventoryItem(String d, int u)
29 {

30 description = d;

31 units = u;

32 }

33

34 /**

35 The setDescription method assigns a string
36 to the description field.

37 @param d The string to assign to description.
38 */

39

40 public void setDescription(String d)

41 {

42 description = d;

43 }

44

45 /**

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77 3}

Structuring Data into Fields and Fixed-Length Records

The setUnits method assigns a value
to the units field.
@param u The value to assign to units.

*/

public void setUnits(int u)

{

units = uj;

/x*
The getDescription method returns the item’s
description.
@return The description field.

*/

public String getDescription()
{

return description;

/x*
The getUnits method returns the number of
units on hand.
@return The units field.

*/

public int getUnits()
{

return units;

The InventoryItemFile class shown in Code Listing A-2 is designed to read and write
InventoryItem objects as records in a random access file. The class can also move the file
pointer to a specific record. To keep the code simple, none of the exceptions are caught.

Code Listing A-2 (InventoryItemFile.java)

1 import java.io.*;

2

3 /**

4
5

This class manages a random access file which contains
InventoryItem records.

6 */

A-3

A-4 Appendix A Working with Records and Random Access Files

7

8 public class InventoryItemFile

9 A
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

private final int RECORD_SIZE = 44;
private RandomAccessFile inventoryFile;

/**
The constructor opens a random access file
for both reading and writing.
@param filename The name of the file.
@exception FileNotFoundException When the file
is not found.
*/

public InventoryItemFile(String filename)
throws FileNotFoundException

{
// Open the file for reading and writing.
inventoryFile =
new RandomAccessFile(filename, "rw");
}
/**

The writeInventoryItem method writes the contents

of an InventoryItem object to the file at the

current file pointer position.

@param item The InventoryItem object to write.

@exception IOException When a file error occurs.
*/

public void writeInventoryItem(InventoryItem item)
throws IOException

// Get the item’s description.
String str = item.getDescription();

// Write the description.
if (str.length() > 20)

{
// I1If there are more than 20 characters in the
// string, then write only the first 20.
for (int i = 0; 1 < 20; i++)

inventoryFile.writeChar(str.charAt(i));

}

else

{

// Write the description to the file.
inventoryFile.writeChars(str);

55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
71
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

Structuring Data into Fields and Fixed-Length Records

// Write enough spaces to pad it out

// to 20 characters.

for (int i = 0; i < (20 - str.length()); it++)
inventoryFile.writeChar(' ');

// Write the units to the file.
inventoryFile.writeInt(item.getUnits());

The readInventoryItem method reads and returns

the record at the current file pointer position.
@return A reference to an InventoryItem object.
@exception IOException When a file error occurs.

*/

public InventoryItem readInventoryItem()
throws IOException

char[] charArray = new char[20];

// Read the description, character by character,
// from the file into the char array.
for (int i = 0; i < 20; i++)

charArray[i] = inventoryFile.readChar();

// Store the char array in a String.
String desc = new String(charArray);

// Trim any trailing spaces from the string.
desc.trim();

// Read the units from the file.
int u = inventoryFile.readInt();

// Create an InventoryItem object and initialize
// it with these values.
InventoryItem item =

new InventoryItem(desc, u);

// Return the object.
return item;

/**
The getByteNum method returns a record's
starting byte number.

A-5

A-6 Appendix A Working with Records and Random Access Files

103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147 }

@param recordNum The record number of the
desired record.
*/

private long getByteNum(long recordNum)

{
return RECORD SIZE * recordNum;

/**
The moveFilePointer method moves the file
pointer to a specified record.
@param recordNum The number of the record to
move to.
@exception IOException When a file error occurs.

*/

public void moveFilePointer(long recordNum)
throws IOException

inventoryFile.seek(getByteNum(recordNum));

/**
The getNumberOfRecords method returns the number
of records stored in the file.
@return The number of records in the file.
@exception IOException When a file error occurs.
*/

public long getNumberOfRecords() throws IOException

{
return inventoryFile.length() / RECORD_SIZE;

/**
The close method closes the file.

@exception IOException When a file error occurs.
*/

public void close() throws IOException

{

inventoryFile.close();

Structuring Data into Fields and Fixed-Length Records

The RECORD_s1ZE field, declared in line 10, is a final int variable initialized with the
value 44. This is the size, in bytes, of a record. In a moment you will see how this
number was determined. The inventoryFile field, declared in line 11, is a RandomAccessFile
reference variable that will be used to open and work with a random access file. The
constructor accepts a filename as a string. This filename is used to open a random access
file, referenced by the inventoryFile variable, for reading and writing.

By looking at the writeInventoryItem method, in lines 37 through 63, we can see how
the record size of 44 bytes was determined. The method accepts an InventoryItem object
as an argument, the contents of which will be written as a record to the file. In line 41 the
description field is retrieved and referenced by str, a local variable. Next, in lines 44
through 59, we write the description field to the file. To ensure that each record has the
same fixed length, this method always writes the description as 20 characters. If the descrip-
tion has more than 20 characters, then only the first 20 are written. If the description has
fewer than 20 characters, spaces are added to make up the difference. Next, in line 62, the
method writes the units field, as an int, to the file.

Now we can see how the record size of 44 bytes was determined. When a character is writ-
ten to the file, it is written as two bytes. The description field is written as 20 characters,
so that’s 40 bytes. The units field is written as an int, which uses 4 bytes. That makes a
total record size of 44 bytes.

The readInventoryItem method in lines 72 through 98 reads a record from the file and
returns an InventoryItem object containing the record’s data. In line 75 the reference vari-
able charArray is declared and a 20-element char array is created to hold the description.
Then the code in lines 79 and 80 reads the 20 characters from the file and stores them in the
array. Next, in line 83, a string object is created and the char array is passed as an
argument. This copies the characters from the array to the string object.

If the description was less than 20 characters long, it will be padded with trailing spaces.
The statement in line 86 trims any trailing spaces that might be in the string. Then the state-
ment in line 89 reads the units field from the file and stores it in the u variable.

Now we can construct an InventoryItem object with the data we have read. This is done in
lines 93 and 94. The last step, in line 97, is to return the object.

The class also has the ability to move the file pointer to a specific record. Two methods work
together to perform this. First, getByteNum (in lines 107 through 110) is a private method
that accepts a record number as an argument, and returns the record’s starting byte number.
It calculates the starting byte number by multiplying the record size by the record number.
(The first record in the file is considered record 0.) The moveFilePointer method (in lines
120 through 124) accepts a record number as its argument, and moves the file pointer to the
specified record. This method calls the getByteNum method to determine the record’s
starting location.

The getNumberofRecords method appears in lines 133 through 136. This method returns
the number of records in the file. It calculates the number of records by dividing the length
of the file by the record size. The length of the file is returned by the RandomaccessFile class’s
length method.

A-8 Appendix A Working with Records and Random Access Files

The last method in the class is the close method, which closes the file. The program in
Code Listing A-3 shows a simple demonstration of this class. This program asks the user to
enter data for five items, which are stored in an array of InventoryItem objects. The
program then saves the contents of the array elements to a file.

Code Listing A-3 (CreateInventoryFile.java)

1 import java.io.*;

2 import java.util.Scanner;

3

4 [**

5 This program uses the InventoryFile class to create a
6 file containing data from 5 InventoryItem objects.

7 %/

8

9 public class CreateInventoryFile

10 {

11 public static void main(String[] args) throws IOException
12 {

13 final int NUM_ITEMS = 5; // Number of items

14 String description; // Item description

15 int units; // Units on hand

16

17 // Create a Scanner object for keyboard input.

18 Scanner keyboard = new Scanner(System.in);

19
20 // Create an array to hold InventoryItem objects.
21 InventoryItem[] items = new InventoryItem[NUM ITEMS];
22
23 // Get data for the InventoryItem objects.
24 System.out.println("Enter data for " + NUM ITEMS +
25 " inventory items.");
26
27 for (int i = 0; i < items.length; i++)
28 {
29 // Get the description.

30 System.out.print("Enter an item description: ");
31 description = keyboard.nextLine();

32

33 // Get the units on hand.

34 System.out.print("Enter the number of units: ");
35 units = keyboard.nextInt();

36

37 // Consume the remaining newline.

38 keyboard.nextLine();

39

40 // Create an InventoryItem object in the array.

Structuring Data into Fields and Fixed-Length Records A-9

41 items[i] = new InventoryItem(description, units);
42 }

43

44 // Create an InventoryFile object.

45 InventoryItemFile file =

46 new InventoryItemFile("Inventory.dat");
47

48 // Write the contents of the array to the file.

49 for (int i = 0; i < items.length; i++)

50 {

51 file.writeInventoryItem(items[i]);

52 }

53

54 // Close the file.

55 file.close();

56

57 System.out.println("The data was written to the " +
58 "Inventory.dat file.");

59 }

60 }

Program Output with Example Input Shown in Bold

Enter data for 5 inventory items.

Enter an item description: Wrench [Enter]
Enter the number of units: 20 [Enter]

Enter an item description: Hammer [Enter]
Enter the number of units: 15 [Enter]

Enter an item description: Pliers [Enter]
Enter the number of units: 12 [Enter]

Enter an item description: Screwdriver [Enter]
Enter the number of units: 25 [Enter]

Enter an item description: Ratchet [Enter]
Enter the number of units: 10 [Enter]

The data was written to the Inventory.dat file.

The program in Code Listing A-4 demonstrates how records can be randomly read from the

file.

Code Listing A-4 (ReadInventoryFile.java)

1 import java.io.*;

2 import java.util.Scanner;

3

4 [x*

5 This program displays specified records from
6 the Inventory.dat file.

A-10 Appendix A Working with Records and Random Access Files

7/

8

9 public class ReadInventoryFile

10 {

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

public static void main(String[] args) throws IOException

int recordNumber; // Record number
String again; // To get a Y or an N
InventoryItem item; // An object from the file

// Create a Scanner object for keyboard input.
Scanner keyboard = new Scanner(System.in);

// Open the file.
InventoryItemFile file =
new InventoryItemFile("Inventory.dat");

// Report the number of records in the file.
System.out.println("The Inventory.dat file has " +
file.getNumberOfRecords() + " records.");

// Get a record number from the user and
// display the record.
do
{
// Get the record number.
System.out.print("Enter the number of the record " +
"you wish to see: ");
recordNumber = keyboard.nextInt();

// Consume the remaining newline.
keyboard.nextLine();

// Move the file pointer to that record.
file.moveFilePointer (recordNumber) ;

// Read the record at that location.
item = file.readInventoryItem();

// Display the record.

System.out.println("\nDescription: " +
item.getDescription());

System.out.println("Units: " + item.getUnits());

// Ask the user whether to get another record.

System.out.print("\nDo you want to see another " +
"record? (Y/N): ");

again = keyboard.nextLine();

55 } while (again.charAt(0)
56

57 // Close the file.

58 file.close();

59 }

60 }

Structuring Data into Fields and Fixed-Length Records

== 'Y' || again.charAt(0) == 'y');

Program Output with Example Input Shown in Bold

The Inventory.dat file has 5 recor
Enter the number of the record you
Description: Ratchet

Units: 10

Do you want to see another record?
Enter the number of the record you
Description: Pliers

Units: 12

Do you want to see another record?
Enter the number of the record you
Description: Wrench

Units: 20

Do you want to see another record?
Enter the number of the record you
Description: Hammer

Units: 15

Do you want to see another record?
Enter the number of the record you
Description: Screwdriver

Units: 25

Do you want to see another record?

ds.
wish to see: 4 [Enter]

(Y/N): y [Enter]
wish to see: 2 [Enter]

(Y/N): y [Enter]
wish to see: O [Enter]

(Y/N): y [Enter]
wish to see: 1 [Enter]

(Y/N): y [Enter]
wish to see: 3 [Enter]

(Y/N): n [Enter]

As a last demonstration, the program in Code Listing A-5 shows how an existing record in
the file can be overwritten with a new record.

Code Listing A-5 (ModifyRecord.java)

import java.io.*;
import java.util.Scanner;

/*

Inventory.dat file.
*/

public class ModifyRecord
{

= O W 00 N o0 U1 & W N =

—=

This program allows the user to modify records in the

public static void main(String[] args) throws IOException

A-11

A-12 Appendix A Working with Records and Random Access Files

12 {
13 int recordNumber; // Record number

14 int units; // Units on hand

15 String again; // Want to change another one?
16 String sure; // Is the user sure?

17 String description; // Item description

18 InventoryItem item; // To reference an item

19

20 // Create a Scanner object for keyboard input.

21 Scanner keyboard = new Scanner(System.in);

22

23 // Open the file.

24 InventoryItemFile file =

25 new InventoryItemFile("Inventory.dat");

26

27 // Report the number of records in the file.

28 System.out.println("The Inventory.dat file has " +
29 file.getNumberOfRecords() + " records.");
30

31 // Get a record number from the user and

32 // allow the user to modify it.

33 do

34 {

35 // Get the record number.

36 System.out.print ("Enter the number of the record " +
37 "you wish to modify: ");

38 recordNumber = keyboard.nextInt();

39

40 // Consume the remaining newline.

41 keyboard.nextLine();

42

43 // Move the file pointer to that record number.
44 file.moveFilePointer (recordNumber) ;

45

46 // Read the record at that location.

47 item = file.readInventoryItem();

48

49 // Display the existing contents.

50 System.out.println("Existing data:");

51 System.out.println("\nDescription: " +

52 item.getDescription());

53 System.out.println("Units: " + item.getUnits());
54

55 // Get the new data.

56 System.out.print("\nEnter the new description: ");

57 description = keyboard.nextLine();

Structuring Data into Fields and Fixed-Length Records

58 System.out.print("Enter the number of units: ");

59 units = keyboard.nextInt();

60 keyboard.nextLine(); // Consume the remaining newline.
61

62 // Store the new data in the object.

63 item.setDescription(description);

64 item.setUnits(units);

65

66 // Make sure the user wants to save this data.

67 System.out.print("Are you sure you want to save " +
68 "this data? (Y/N) ");

69 sure = keyboard.nextLine();

70 if (sure.charAt(0) == 'Y' || sure.charAt(0) == 'y')
71 {

72 // Move back to the record's starting position.

73 file.moveFilePointer (recordNumber) ;

74 // Save the new data.

75 file.writeInventoryItem(item);

76 }

77

78 // Ask the user whether to change another record.

79 System.out.print("\nDo you want to modify another " +
80 "record? (Y/N): ");

81 again = keyboard.nextLine();

82 } while (again.charAt(0) == 'Y' || again.charAt(0) == 'y');
83

84 // Close the file.

85 file.close();

86 }

87 3}

Program Output with Example Input Shown in Bold

The Inventory.dat file has 5 records.

Enter the number of the record you wish to modify: 3 [Enter]
Existing data:

Description: Screwdriver

Units: 25

Enter the new description: Duct Tape [Enter]

Enter the number of units: 30 [Enter]

Are you sure you want to save this data? (Y/N) y [Enter]

Do you want to modify another record? (Y/N): n [Enter]

In the example running of the program, record 3 was modified. We can run the
ReadInventoryFile program in Code Listing A-4 again to verify that the record was
changed. Here is the output of that program if we run it again.

A-13

A-14 Appendix A Working with Records and Random Access Files

Program Output with Example Input Shown in Bold (ReadInventoryFile.java)

The Inventory.dat file has 5 records.

Enter the number of the record you wish to see: 3 [Enter]
Description: Duct Tape

Units: 30

Do you want to see another record? (Y/N): n [Enter]

