Chapter 1 Lab
Algorithms, Errors, and Testing

Lab Objectives

Be able to write an algorithm

Be able to compile a Java program

Be able to execute a Java program using the JDK or a Java IDE
Be able to test a program

Be able to debug a program with syntax and logic errors.

Introduction

Your teacher will introduce your computer lab and the environment you will be using for
programming in Java.

In chapter 1 of the textbook, we discuss writing your first program. The example calculates
the user’s gross pay. It calculates the gross pay by multiplying the number of hours worked
by hourly pay rate. However, it is not always calculated this way. What if you work 45 hours
in a week? The hours that you worked over 40 hours are considered overtime. You will need
to be paid time and a half for the overtime hours you worked.

In this lab, you are given a program which calculates user’s gross pay with or without
overtime. You are to work backwards this time, and use pseudocode to write an algorithm
from the Java code. This will give you practice with algorithms while allowing you to
explore and understand a little Java code before we begin learning the Java programming
language.

You will also need to test out this program to ensure the correctness of the algorithm and
code. You will need to develop test data that will represent all possible kinds of data that the
user may enter.

1. Syntax Errors—errors in the “grammar” of the programming language. These are caught
by the compiler and listed out with line number and error found. You will learn how to
understand what they tell you with experience. All syntax errors must be corrected before
the program will run. If the program runs, this does not mean that it is correct, only that
there are no syntax errors. Examples of syntax errors are spelling mistakes in variable
names, missing semicolon, unpaired curly braces, etc.

2. Logic Errors—errors in the logic of the algorithm. These errors emphasize the need for a
correct algorithm. If the statements are out of order, if there are errors in a2 formula, or if
there are missing steps, the program can still run and give you output, but it may be the
wrong output. Since there is no list of errors for logic errors, you may not realize you
have errors unless you check your output. It is very important to know what output you
expect. You should test your programs with different inputs, and know what output to

Copyright © 2016 Pearson Education, Inc., Hoboken NJ

expect in each case. For example, if your program calculates your pay, you should check
three different cases: less than 40 hours, 40 hours, and more than 40 hours. Calculate
each case by hand before running your program so that you know what to expect. You
may get a correct answer for one case, but not for another case. This will help you figure
out where your logic errors are.

Run time errors—errors that do not occur until the program is run, and then may only
occur with some data. These errors emphasize the need for completely testing your
program.

Task #1 Writing an Algorithm

1.

2.

Copy the file Pay.java (see Code Listing 1.1) from the Student CD or as directed by your
instructor.

Open the file in your Java Integrated Development Environment (IDE) or a text editor as
directed by your instructor. Examine the file, and compare it with the detailed version of
the pseudocode in step number 3, section 1.6 of the textbook. Notice that the pseudocode
does not include every line of code. The program code includes identifier declarations
and a statement that is needed to enable Java to read from the keyboard. These are not
part of actually completing the task of calculating pay, so they are not included in the
pseudocode. The only important difference between the example pseudocode and the
Java code is in the calculation. Below is the detailed pseudocode from the example, but
without the calculation part. You need to fill in lines that tell in English what the
calculation part of Pay. java is doing.

Display “How many hours did you work? .
Input hours.

Display “How much are you paid per hour?”.
Input rate.

Display the value in the pay variable.

Copyright © 2016 Pearson Education, Inc., Hoboken NJ

Task #2 Compile and Execute a Program

1.
2.
3.

Compile Pay. java using the JDK or a Java IDE as directed by your instructor.

You should not receive any error messages.

When this program is executed, it will ask the user for input. You should calculate
several different cases by hand. Since there is a critical point at which the calculation
changes, you should test three different cases: the critical point, a number above the
critical point, and a number below the critical point. You want to calculate by hand so
that you can check the logic of the program. Fill in the chart below with your test cases
and the result you get when calculating by hand.

Execute the program using your first set of data. Record your result. You will need to
execute the program three times to test all your data. Note: you do not need to compile
again. Once the program compiles correctly once, it can be executed many times. You
only need to compile again if you make changes to the code.

Hours Rate Pay (hand calculated) | Pay (program result)

Task #3 Debugging a Java Program

1.

2.

Copy the file SalesTax.java (see Code Listing 1.2) from the Student CD or as directed by
your instructor.

Open the file in your IDE or text editor as directed by your instructor. This file contains a
simple Java program that contains errors. Compile the program. You should get a listing
of syntax errors. Correct all the syntax errors, you may want to recompile after you fix
some of the errors.

When all syntax errors are corrected, the program should compile. As in the previous
exercise, you need to develop some test data. Use the chart below to record your test data
and results when calculated by hand.

Execute the program using your test data and recording the results. If the output of the
program is different from what you calculated, this usually indicates a logic error.
Examine the program and correct any logic errors. Compile the program and execute
using the test data again. Repeat until all output matches what is expected.

Item Price Tax Total (calculated) | Total (output)

Copyright © 2016 Pearson Education, Inc., Hoboken NJ

Code Listing 1.1 (Pay . java)

import java.util.Scanner; // Needed for the Scanner class

/**

This program calculates the user's gross pay.

*/

public class Pay

{

public static void main(String[] args)

{

// Create a Scanner object to read from the keyboard.
Scanner keyboard = new Scanner (System.in);

// Identifier declarations

double hours; // Number of hours worked
double rate; // Hourly pay rate
double pay; // Gross pay

// Display prompts and get input.
System.out.print ("How many hours did you work? ");

hours = keyboard.nextDouble() ;
System.out.print ("How much are you paid per hour? ");
rate = keyboard.nextDouble() ;

// Perform the calculations.
if (hours <= 40)
pay = hours * rate;
else
pay

(hours - 40) * (1.5 * rate) + 40 * rate;

// Display results.
System.out.println("You earned $" + pay);

Copyright © 2016 Pearson Education, Inc., Hoboken NJ

Code Listing 1.2 (SalesTax. java)

import java.util.Scanner; // Needed for the Scanner class

/**
This program calculates the total price which includes
sales tax.

*/

public class SalesTax
{
public static void main (String[] args)
{
// Identifier declarations
final double TAX RATE = 0.055;
double price;
double tax
double total;
String item;

// Create a Scanner object to read from the keyboard.
Scanner keyboard = new Scanner (System.in);

// Display prompts and get input.
System.out.print ("Item description: ");
item = keyboard.nextLine();
System.out.print ("Item price: §");
price = keyboard.nextDouble() ;

// Perform the calculations.
tax = price + TAX RATE;

totl = price * tax;

// Display the results.

System.out.print (item + " s$");
System.out.println (price);
System.out.print ("Tax s$");
System.out.println (tax);
System.out.print ("Total ") ;

System.out.println(total);

Copyright © 2016 Pearson Education, Inc., Hoboken NJ

