
Copyright © 2016 Pearson Education, Inc., Hoboken NJ

Chapter 1 Lab

Algorithms, Errors, and Testing

Lab Objectives

 Be able to write an algorithm

 Be able to compile a Java program

 Be able to execute a Java program using the JDK or a Java IDE

 Be able to test a program

 Be able to debug a program with syntax and logic errors.

Introduction

Your teacher will introduce your computer lab and the environment you will be using for

programming in Java.

In chapter 1 of the textbook, we discuss writing your first program. The example calculates

the user’s gross pay. It calculates the gross pay by multiplying the number of hours worked

by hourly pay rate. However, it is not always calculated this way. What if you work 45 hours

in a week? The hours that you worked over 40 hours are considered overtime. You will need

to be paid time and a half for the overtime hours you worked.

In this lab, you are given a program which calculates user’s gross pay with or without

overtime. You are to work backwards this time, and use pseudocode to write an algorithm

from the Java code. This will give you practice with algorithms while allowing you to

explore and understand a little Java code before we begin learning the Java programming

language.

You will also need to test out this program to ensure the correctness of the algorithm and

code. You will need to develop test data that will represent all possible kinds of data that the

user may enter.

1. Syntax Errors—errors in the “grammar” of the programming language. These are caught

by the compiler and listed out with line number and error found. You will learn how to

understand what they tell you with experience. All syntax errors must be corrected before

the program will run. If the program runs, this does not mean that it is correct, only that

there are no syntax errors. Examples of syntax errors are spelling mistakes in variable

names, missing semicolon, unpaired curly braces, etc.

2. Logic Errors—errors in the logic of the algorithm. These errors emphasize the need for a

correct algorithm. If the statements are out of order, if there are errors in a2 formula, or if

there are missing steps, the program can still run and give you output, but it may be the

wrong output. Since there is no list of errors for logic errors, you may not realize you

have errors unless you check your output. It is very important to know what output you

expect. You should test your programs with different inputs, and know what output to

Copyright © 2016 Pearson Education, Inc., Hoboken NJ

expect in each case. For example, if your program calculates your pay, you should check

three different cases: less than 40 hours, 40 hours, and more than 40 hours. Calculate

each case by hand before running your program so that you know what to expect. You

may get a correct answer for one case, but not for another case. This will help you figure

out where your logic errors are.

3. Run time errors—errors that do not occur until the program is run, and then may only

occur with some data. These errors emphasize the need for completely testing your

program.

Task #1 Writing an Algorithm

1. Copy the file Pay.java (see Code Listing 1.1) from the Student CD or as directed by your

instructor.

2. Open the file in your Java Integrated Development Environment (IDE) or a text editor as

directed by your instructor. Examine the file, and compare it with the detailed version of

the pseudocode in step number 3, section 1.6 of the textbook. Notice that the pseudocode

does not include every line of code. The program code includes identifier declarations

and a statement that is needed to enable Java to read from the keyboard. These are not

part of actually completing the task of calculating pay, so they are not included in the

pseudocode. The only important difference between the example pseudocode and the

Java code is in the calculation. Below is the detailed pseudocode from the example, but

without the calculation part. You need to fill in lines that tell in English what the

calculation part of Pay.java is doing.

Display “How many hours did you work?”.

Input hours.

Display “How much are you paid per hour?”.

Input rate.

Display the value in the pay variable.

Copyright © 2016 Pearson Education, Inc., Hoboken NJ

Task #2 Compile and Execute a Program

1. Compile Pay.java using the JDK or a Java IDE as directed by your instructor.

2. You should not receive any error messages.

3. When this program is executed, it will ask the user for input. You should calculate

several different cases by hand. Since there is a critical point at which the calculation

changes, you should test three different cases: the critical point, a number above the

critical point, and a number below the critical point. You want to calculate by hand so

that you can check the logic of the program. Fill in the chart below with your test cases

and the result you get when calculating by hand.

4. Execute the program using your first set of data. Record your result. You will need to

execute the program three times to test all your data. Note: you do not need to compile

again. Once the program compiles correctly once, it can be executed many times. You

only need to compile again if you make changes to the code.

Hours Rate Pay (hand calculated) Pay (program result)

Task #3 Debugging a Java Program

1. Copy the file SalesTax.java (see Code Listing 1.2) from the Student CD or as directed by

your instructor.

2. Open the file in your IDE or text editor as directed by your instructor. This file contains a

simple Java program that contains errors. Compile the program. You should get a listing

of syntax errors. Correct all the syntax errors, you may want to recompile after you fix

some of the errors.

3. When all syntax errors are corrected, the program should compile. As in the previous

exercise, you need to develop some test data. Use the chart below to record your test data

and results when calculated by hand.

4. Execute the program using your test data and recording the results. If the output of the

program is different from what you calculated, this usually indicates a logic error.

Examine the program and correct any logic errors. Compile the program and execute

using the test data again. Repeat until all output matches what is expected.

Item Price Tax Total (calculated) Total (output)

Copyright © 2016 Pearson Education, Inc., Hoboken NJ

Code Listing 1.1 (Pay.java)

import java.util.Scanner; // Needed for the Scanner class

/**

 This program calculates the user's gross pay.

*/

public class Pay

{

 public static void main(String[] args)

 {

 // Create a Scanner object to read from the keyboard.

 Scanner keyboard = new Scanner(System.in);

 // Identifier declarations

 double hours; // Number of hours worked

 double rate; // Hourly pay rate

 double pay; // Gross pay

 // Display prompts and get input.

 System.out.print("How many hours did you work? ");

 hours = keyboard.nextDouble();

 System.out.print("How much are you paid per hour? ");

 rate = keyboard.nextDouble();

 // Perform the calculations.

 if(hours <= 40)

 pay = hours * rate;

 else

 pay = (hours - 40) * (1.5 * rate) + 40 * rate;

 // Display results.

 System.out.println("You earned $" + pay);

 }

}

Copyright © 2016 Pearson Education, Inc., Hoboken NJ

Code Listing 1.2 (SalesTax.java)

import java.util.Scanner; // Needed for the Scanner class

/**

 This program calculates the total price which includes

 sales tax.

*/

public class SalesTax

{

 public static void main(String[] args)

 {

 // Identifier declarations

 final double TAX_RATE = 0.055;

 double price;

 double tax

 double total;

 String item;

 // Create a Scanner object to read from the keyboard.

 Scanner keyboard = new Scanner(System.in);

 // Display prompts and get input.

 System.out.print("Item description: ");

 item = keyboard.nextLine();

 System.out.print("Item price: $");

 price = keyboard.nextDouble();

 // Perform the calculations.

 tax = price + TAX_RATE;

 totl = price * tax;

 // Display the results.

 System.out.print(item + " $");

 System.out.println(price);

 System.out.print("Tax $");

 System.out.println(tax);

 System.out.print("Total $");

 System.out.println(total);

 }

}

