2 The Amortization Class

>
(@)
)
-
(%)
Ll
%)
<
O

The loan officer at one of the Central Mountain Credit Union’s branch offices has asked
you to write a loan amortization application to run on her desktop PC. The application
should allow the user to enter the amount of a loan, the number of years of the loan, and
the annual interest rate. An amortization report should then be saved to a text file.

Calculations

The credit union uses the following formula to calculate the monthly payment of a loan:

Rate
Loan x x Term
Payment =
Term—1
where: Loan = the amount of the loan,

Rate = the annual interest rate, and
Term = (1+Rate/12)Years X 12

Report Requirements

The report produced by the program should show the monthly payment amount and the
following information for each month in the loan period: amount applied to interest,
amount applied to principal, and the balance. The following report may be used as a
model. It shows all the required information on a one-year $5,000 loan at 5.9 percent
annual interest.

From Starting Out with Java: From Control Structures through Objects, Sixth Edition. Tony Gaddis.
Copyright © 2016 by Pearson Education, Inc. All rights reserved.

CS2-1

CS2-2 Case Study 2 The Amortization Class

Monthly Payment: $430.10

Month Interest Principal Balance
1 24.58 405.52 4,594.48
2 22.59 407.51 4,186.97
3 20.59 409.52 3,777.45
4 18.57 411.53 3,365.92
5 16.55 413.55 2,952.37
6 14.52 415.59 2,536.78
7 12.47 417.63 2,119.15
8 10.42 419.68 1,699.47
9 8.36 421.75 1,277.72

10 6.28 423.82 853.90

11 4.20 425.90 428.00

12 2.10 428.00 0.00

The core of the program will be a class, Amortization, that holds the primary data,
performs the mathematical calculations, and displays the report. Figure CS2-1 shows
a UML diagram for the class.

Table CS2-1 lists and describes the class’s fields.

Figure CS2-1 UML diagram for the Amortization class

Amortization

- loanAmount : double
- interestRate : double
- loanBalance : double
- term : double

- payment : double

- loanYears : int

+ Amortization(loan : double,
rate : double
years :int) :
- calcPayment() : void
+ getNumberOfPayments() : int
+ saveReport(filename : String) : void
+ getLoanAmount() : double
+ getinterestRate() : double
+ getLoanYears() : int

Case Study 2 The Amortization Class

Table C$2-1 Amortization class fields

Field Description

loanAmount A double variable to hold the amount of the loan.

interestRate A double variable to hold the annual interest rate.

loanBalance A double variable to hold the loan balance.

term A double variable used in the calculation of the monthly payment.
payment A double variable to hold the amount of the monthly payment.
loanYears An int variable to hold the number of years of the loan.

Table CS2-2 lists and describes the class’s methods.

Table €C$2-2 Amortization class methods

Method Description

Constructor The constructor accepts three arguments: the loan amount, the annual
interest rate, and the number of years of the loan. These values are
stored in their corresponding fields. The private method calcPayment
is then called.

calcPayment A private method that is used to calculate the monthly payment
amount. The result is stored in the payment field.

getNumberOfPayments Returns as an int the number of loan payments.

saveReport Saves the amortization report to a text file.

getLoanAmount Returns as a double the amount of the loan.

getInterestRate Returns as a double the annual interest rate.

getLoanYears Returns as an int the number of years of the loan.

Code Listing CS2-1 shows the code for the class.

Code Listing CS2-1

1 import java.io.*;

(Amortization.java)

// For file-related classes

2

3 /*x*

4 This class stores loan information and creates a
5 text file containing an amortization report.

6 */

Cs2-3

CS2-4 Case Study 2 The Amortization Class

7
8 public class Amortization
9 {
10 private double loanAmount; // Loan Amount
11 private double interestRate; // Annual Interest Rate
12 private double loanBalance; // Monthly Balance
13 private double term; // Payment Term
14 private double payment; // Monthly Payment
15 private int loanYears; // Years of Loan
16
17 /**
18 The constructor accepts the loan amount, the annual
19 interest rate, and the number of years of the loan
20 as arguments. The private method CalcPayment is then
21 called.
22 @param loan The loan amount.
23 @param rate The annual interest rate.
24 @param years The number of years of the loan.
25 */
26
27 public Amortization(double loan, double rate, int years)
28 {
29 loanAmount = loan;
30 loanBalance = loan;
31 interestRate = rate;
32 loanYears = years;
33 calcPayment();
34 }
35
36 /**
37 The calcPayment method calculates the monthly payment
38 amount. The result is stored in the payment field.
39 */
40
41 private void calcPayment()
42 {
43 // Calculate value of Term
44 term =
45 Math.pow((l+interestRate/12.0), 12.0 * loanYears);
46
47 // Calculate monthly payment
48 payment =
49 (loanAmount * interestRate/12.0 * term) / (term - 1);
50 }
51
52 /**
53 The getNumberOfPayments method returns the total number of

54 payments to be made for the loan.

55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
71
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

Case Study 2 The Amortization Class

@return The number of loan payments.
*/

public int getNumberOfPayments()
{

return 12 * loanYears;

/x*
The saveReport method saves the amortization report to
the file named by the argument.
@param filename The name of the file to create.

*/

public void saveReport(String filename) throws IOException
{
double monthlyInterest; // The monthly interest rate
double principal; // The amount of principal
//DecimalFormat dollar = new DecimalFormat (“#,##0.00");
FileWriter fwriter = new FileWriter(filename);
PrintWriter outputFile = new PrintWriter(fwriter);

// Print monthly payment amount.
outputFile.println(String.format(
“Monthly Payment: $%.2f”, payment));

// Print the report header.
outputFile.println(“Month\tInterest\tPrincipal\tBalance”);
outputFile.println(¥--—==————————mm "o+

// Display the amortization table.
for (int month = 1; month <= getNumberOfPayments(); month++)
{

// Calculate monthly interest.

monthlyInterest = interestRate / 12.0 * loanBalance;

if (month != getNumberOfPayments())

{
// Calculate payment applied to principal
principal = payment - monthlyInterest;
}
else // This is the last month.
{
principal = loanBalance;
payment = loanBalance + monthlyInterest;
}

CS2-5

CS$2-6 Case Study 2 The Amortization Class

103 // Calculate the new loan balance.

104 loanBalance -= principal;

105

106 // Display a line of data.

107 outputFile.println(String.format (“%d\t%.2f\t\t%.2f\t\t%.2£",
108 month, monthlyInterest, principal,
109 loanBalance));

110 }

111

112 // Close the file.

113 outputFile.close();

114 }

115

116 /**

117 The getLoanAmount method returns the loan amount.
118 @return The value in the loanAmount field.

119 */

120

121 public double getLoanAmount()

122 {

123 return loanAmount;

124 }

125

126 /**

127 The getInterestRate method returns the interest rate.
128 @return The value in the interestRate field.

129 */

130

131 public double getInterestRate()

132 {

133 return interestRate;

134 }

135

136 [**

137 The getLoanYears method returns the years of the loan.
138 @return The value in the loanYears field.

139 */

140

141 public int getLoanYears()

142 {

143 return loanYears;

144 }

145 }

Case Study 2 The Amortization Class

The Main Program

The main program code is shown in Code Listing CS2-2. First, it gets the amount of the
loan, the annual interest rate, and the years of the loan as input from the user. It then
creates an instance of the Amortization class and passes this data to the class’s construc-
tor. The program then saves the amortization report in the file LoanAmortization.txt.
It asks the user whether he or she wants to run another report. If so, the program repeats
these steps. Figure CS2-2 shows an example of interaction with the program.

Figure C$2-2 Interaction with the LoanReport program

-

-

Input ﬁw rInput M1
IE' Enter the loan amount. @ Enter the annual interest rate.
|5000.00 | 0.059 |
| OK |‘ Cancel‘ | OK || Cancel‘
Input ﬁ (Message @1
Enter th f the loan. T
IEI nierte years o1 The foan (1) Report saved to the file LoanAmortization.txt.
1 |
| 0K | ‘ Cancel ‘

’ |

rInput Mw

Would you like to run another report? Enter Y for yes or N for no;

In |

| 0K H Can-::el|

Code Listing €$2-2 (LoanReport.java)

0 ~J o U1 &= W N

e e e
R =)

import javax.swing.JOptionPane; // For the JOptionPane class

// The following import statement is required because the main
// method has a throws IOException clause. Although this program
// doesn’t have code that directly performs file I/O, the import
// statement is still required because of IOException.

import java.io.*;

/**
This program displays a loan amortization report.

*/

public class LoanReport

{

Cs2-7

CS$2-8 Case Study 2 The Amortization Class

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

public static void main(String[] args) throws IOException

{

String input; // To hold user input

double loan; // Loan amount

double interestRate; // Annual interest rate

int years; // Years of the loan

char again; // To indicate if loop should repeat
do

{

// Get the loan amount.

input = JOptionPane.showInputDialog("Enter the " +
"loan amount.");

loan = Double.parseDouble(input);

// Validate the loan amount.
// (No negative amounts.)
while (loan < 0)
{
input = JOptionPane.showInputDialog("Invalid amount. " +
"Enter the loan amount.");
loan = Double.parseDouble(input);

// Get the annual interest rate.
input = JOptionPane.showInputDialog("Enter the " +
"annual interest rate.");
interestRate = Double.parseDouble(input);
// Validate the interest rate
// (No negative amounts.)
while (interestRate < 0)
{
input = JOptionPane.showInputDialog("Invalid amount. " +
"Enter the annual interest rate.");
interestRate = Double.parseDouble(input);

// Get the years of the loan.

input = JOptionPane.showInputDialog("Enter the " +
"years of the loan.");

years = Integer.parselnt(input);

// validate the number of years.
// (No negative amounts.)
while (years < 0)
{
input = JOptionPane.showInputDialog("Invalid amount. " +
"Enter the years of the loan.");

63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

Case Study 2 The Amortization Class

years = Integer.parselnt(input);

// Create and initialize an Amortization object.
Amortization am =
new Amortization(loan, interestRate, years);

// Save the report.

am.saveReport ("LoanAmortization.txt");

JOptionPane.showMessageDialog(null, "Report saved to " +
"the file LoanAmortization.txt.");

// Do another report?

input = JOptionPane.showInputDialog("Would you like " +
"to run another report? Enter Y for " +
"yes or N for no: ");

again = input.charAt(0);

} while (again == 'Y' || again == 'y');

System.exit (0);

Contents of the file LoanAmortization.txt:

Monthly Payment: $430.10

Month Interest Principal Balance
1 24.58 405.52 4,594.48
2 22.59 407.51 4,186.97
3 20.59 409.52 3,777.45
4 18.57 411.53 3,365.92
5 16.55 413.55 2,952.37
6 14.52 415.59 2,536.78
7 12.47 417.63 2,119.15
8 10.42 419.68 1,699.47
9 8.36 421.75 1,277.72

10 6.28 423.82 853.90

11 4.20 425.90 428.00

12 2.10 428.00 0.00

First, notice that a do-while loop (in lines 23 through 81) controls everything done in
this program. Here is a condensed version of the loop:

23
24

do
{

(Code to get the loan data and display the report.)

Cs2-9

CS$2-10 Case Study 2 The Amortization Class

75 // Do another report?

76 input = JOptionPane.showInputDialog("Would you like " +
77 "to run another report? Enter Y for " +
78 "yes or N for no: ");

79 again = input.charAt(0);

80

81 } while (again == 'Y' || again == ‘y’);

During each iteration, this loop first gathers the necessary loan data as input and then
writes the amortization report. At the end of the iteration, the user is asked whether he or
she wants to run another report. If the user enters Y or y for yes, the loop repeats. Otherwise,
the loop terminates and the program ends.

Inside the loop, the code that gathers input from the user also validates the input. For
example, here is the code in lines 25 through 37 that gets and validates the loan amount:

25 // Get the loan amount.

26 input = JOptionPane.showInputDialog("Enter the " +
27 "loan amount.");
28 loan = Double.parseDouble(input);

29

30 // Validate the loan amount.

31 // (No negative amounts.)

32 while (loan < 0)

33 {

34 input = JOptionPane.showInputDialog

35 ("Invalid amount. Enter the loan amount.");
36 loan = Double.parseDouble(input);

37 }

If the user enters a negative number, the while loop displays an error message and asks the
user to enter the loan amount again. The code that gets the annual interest rate and the
years of the loan, in lines 39 through 64, also performs similar input validation. Once
these values have been correctly entered, an instance of the Amortization class is created in
lines 67 and 68:

Amortization am =
new Amortization(loan, interestRate, years);

Then, the saveReport method is called in line 71 to save the amortization report to the file
LoanAmortization.txt:

am.printReport ("LoanAmortization.txt");

O NOTE: Notice that Code Listing CS2-1 has the following import statement in line 1:
import java.io.*;

Although this program does not have any code that directly performs file I/O, we still
have to have this import statement because of the throws IOException clause in the main
method header. The main method has to have the throws IOException clause because it
calls the saveReport method in the Amortization class.

