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One of the many powers that C++ gives the programmer is the ability to work with the
individual bits of an integer field. The purpose of this appendix is to give an overview of
how integer data types are stored in binary and explain the bitwise operators that the C++
offers. Finally, we will look at bit fields, which allow us to treat the individual bits of a
variable as separate entities.

Integer Forms

The integer types that C++ offers are as follows:

char

int

short

long

unsigned char

unsigned (same as unsigned int)
unsigned short

unsigned long

When you assign constant values to integers in C++, you may use decimal, octal, or
hexadecimal. Placing a zero in the first digit creates an octal constant. For example, 0377
would be interpreted as an octal number. Hexadecimal constants are created by placing 0x
or 0X (zero-x, not O-x) in front of the number. The number 0X4B would be interpreted as
a hex number.

Binary Representation

Regardless of how you express constants, integer values are all stored the same way
internally—in binary format. Let’s take a quick review of binary number representation.

Let’s assume we have a one-byte field. Figure M-1 shows the field broken into its individual
bits.
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Figure M-1

Bit Bit Bit Bit Bit Bit Bit Bit
7 6 5 4 3 2 1 0

High Order > Low Order

The leftmost bits are called the high order bits and the rightmost bits are called the low
order bits. Bit number 7 is the highest order bit, so it is called the most significant bit.

Each of these bits has a value assigned to it. Figure M-2 shows the values of each bit.

Figure M-2

Bit Bit Bit Bit Bit Bit Bit Bit

Values —> 128 64 32 16 8 4 2 1

These values are actually powers of two. The value of bit 0 is 2°, which equals 1. The value
of bit 1 is 2!, which equals 2. Bit 2 has the value 2%, which equals 4. This pattern of values
continues to the last bit.

When a number is stored in this field, each bit may be set to either 1 or 0. Figure M-3 shows
an example.

Figure M-3

Bit Bit Bit Bit Bit Bit Bit Bit

7 6 5 4 3 2 1 0
LoJtrfrjojofi]1]o]
Values —> 128 64 32 16 8 4 2

Here, bits 1, 2, 5, and 6 are set to 1. To calculate the overall value of this bit pattern, we
add up all of the bit values of the bits that are set to 1.

Bit 1’s value 2
Bit 2’s value 4
Bit §’s value 32
Bit 6’s value 64
Overall Value 102

Thus the bit pattern 01100110 has the decimal value 102.

Negative Integer Values

One way that a computer can store a negative integer is to use the leftmost bit as a sign bit.
When this bit is set to 1, it would indicate a negative number, and when it is set to 0 the
number would be positive. The problem with this, however, is that we would have two bit
patterns for the number 0. The patterns of all 0’s would be for positive 0 and the pattern of
a 1 followed by all 0’s would be for negative 0. Because of this, most systems use two’s
complement representation for negative integers.



Bitwise Operators

To calculate the two’s complement of a number, first you must get what is known as the
one’s complement. This means changing each 1 to a 0, and each 0 to a 1. Next, add 1 to
the resulting number. This gives you the two’s complement. Here is how the computer
stores the value -2.

2 is stored as 00000010
Get the one’s complement 11111101
Add 1 1
And the result is 11111110

Notice that the highest order bit for a negative number will always be set to 1, whereas the
highest order bit will always be a zero for a positive number or a zero.

Bitwise Operators

C++ provides operators that let you perform logical operations on the individual bits of
integer values, and shift the bits right or left.

The Bitwise Negation Operator

The bitwise negation operator is the ~ symbol. It is a unary operator that performs a
negation, or one’s complement on each bit in the field. The expression

~val

returns the one’s complement of val. It does not change the contents of val. It could be
used in the following manner:

negval = ~val;

This will store the one’s complement of val in negval.

The Bitwise AND Operator

The bitwise AND operator is the & symbol. This operator performs a logical AND
operation on each bit of two operands. This means that it compares the two operands bit
by bit. For each position, if both bits are 1, the result will be 1. If either or both bits are
0, the results will be 0. Here is an example:

andval = val & 0377;

The result of the AND operation will be stored in andval. There is a combined assignment
version of this operator. Here is an example:

val &= 0377;
This is the same as:

val = val & 0377;
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The Bitwise OR Operator

The bitwise OR operator is the | symbol. This operator performs a logical OR operation
on each bit of two operands. This means that it compares the two operands bit by bit.
For each position, if either of the two bits is 1, the result will be 1. Otherwise, the results
will be 0. Here is an example:

orval = val | 0377;

The result of the OR operation will be stored in orval. There is a combined assignment
version of this operator. Here is an example:

val |= 0377;
This is the same as

val = val | 0377;

The Bitwise EXCLUSIVE OR Operator

The bitwise EXCLUSIVE OR operator is the * symbol. This operator performs a logical
XOR operation on each bit of two operands. This means that it compares the two
operands bit by bit. For each position, if one of the two bits is 1, but not both, the result
will be 1. Otherwise, the results will be 0. Here is an example:

xorval = val ~ 0377;

The result of the XOR operation will be stored in xorval. There is a combined assignment
version of this operator. Here is an example:

val "= 0377;
This is the same as:

val = val © 0377;

Using Bitwise Operators with Masks

Suppose we have the following variable declarations:
char value = 110, cloak = 2;

Figure M-4 illustrates the binary pattern for each of these two variables.

Figure M-4

value—->| 0 | 1 | 1 |
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cloak—->|0|0|0|0|0|0|1|0|=2

The statement

value = value & cloak;



Turning Bits On

will perform a logical bitwise AND on the two variables value and cloak. The result will
be stored in value. Remember a bitwise AND will produce a 1 only when both bits are set
to 1. Figure M-5 shows the result of this AND operation.

Figure M-5
value -==> | o | 1 [ 1 [ o | 1 | 1 | 1 | o |
AND
cloak ==> | 0 | o [ o [ o | o [ o | 1 | o |
equals
result -—=> | 0 | 0o | o [ o [ o [ o [ 1 [ o |

The 0’ in the cloak variable “hide” the values that are in the corresponding positions of the
value variable. This is called masking. When you mask a variable, the only bits that will “show
through” are the ones that correspond with the 1’s in the mask. All others will be turned off.

Turning Bits On

Sometimes you may want to turn on selected bits in a variable and leave all of the rest alone.
This operation can be performed with the bitwise OR operator. Let’s see what happens when
we OR the value variable used above with a new value for the cloak variable.

char value = 110, cloak = 16;
value = value | cloak; //The cloak variable acts as the mask.

Figure M-6 illustrates the result of this OR operation.

Figure M-6
value -=> [ o | 1 [ 1 | o | 1 | 1 | 1 [ o |
OR
cloak -==> | o [ o [ o [ 2 | o | o | o | o |
equals
result -=> | 0 [ 1 | 1 [ 1 | 1 [ 1 ]| 1 | o |

This caused bit 4 of the value variable to be turned on and all the rest to be left alone.

Turning Bits Off

Suppose that instead of turning specific bits on, you wish to turn them off. Assume we
have the following declaration:

char status = 127, cloak = 8;

Because binary 8 is stored as 1000, this sets bit 3 of cloak to 1, and all the rest to 0. If we
wish to set bit 3 of status to 0, we must AND it with the negation of cloak. In other
words, we must first get the one’s complement of cloak, and then AND it with status.
The statement would look like this:

status = status & ~cloak;
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This works because the unary negation operation is done before the binary AND
operation. Figure M-7 illustrates these steps.

Figure M-7
cloak —--> | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
~cloak --> | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 |
status --> | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
AND
~cloak --> | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 |

Result assigned as the new value of status

status—->|0|1|l|1|0|l|1|1|

Bit 3 of status is now turned off, and all other bits are left unchanged.

Toggling Bits
To toggle a bit is to flip it off when it is on, and on when it is off. This can be done with
the EXCLUSIVE OR operator. We will use the following variables to illustrate.

char status = 127, cloak = 8;
Our objective is to toggle bit 3 of status, so we will use the XOR operator.

S

status = status cloak;

Figure M-8 illustrates this operation.

Figure M-8
status -->| 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
XOR
cloak —--> | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |

Result assigned as the new value of status

status-->|o|1|1|1|0|1|1|1|

The operation has changed bit 3 of status from 1 to 0.



Testing the Value of a Bit

Testing the Value of a Bit

To test the value of an individual bit, you can use the AND operator. For example, if we
want to test the variable bitvar to see if bit 2 is on, we use a mask that has bit 2 turned
on. Here is an example of the test:

if ((bitvar & 4) == 4)
cout << "Bit 2 is on.\n";

Remember that ANDing a value with a mask produces a value that hides all of the bits but
the ones turned on in the mask. If bit 2 of bitvar is on, the expression bitvar & 4 will
return the value 4.

The parentheses around bitvar & 4 are necessary to ensure that the AND operation is done
before the test for equality because the == operator has higher precedence than the & operator.

The Bitwise Left Shift Operator

The symbol for the bitwise left shift operator is two less-than signs (<<). This operator
takes two operands. The operand on the left is the one to be shifted, and the operand on
the right is the number of places to shift. When the bit values are shifted left, the vacated
positions to the right are filled with 0’s and the bits that shift out of the field are lost.
Suppose we have the following variables:

char val = 2, shiftval;
The following statement will store in shiftval the value of val shifted left 2 places.
shiftval = val << 2;

Figure M-9 shows what is happening behind the scenes with the value in val.

Figure M-9

Beforeshift|0|0|0|0|0|0|l|0|

Aftershift|0|0|0|0|1|0|0|0|

Realize, however, that val itself is not being shifted. Only the variable shiftval is being
changed. It is set to the value of val shifted left 2 places. If we wanted to shift val itself,
we would need to say

val = val << 2;
Or, we could use the combined assignment version of the left shift operator, like this:
val <<= 2;

Shifting a number left by 7 places is the same as multiplying it by 2”. So, this example is the
same as:

val *= 4;

The bitwise shift will almost always work faster, however.
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The Bitwise Right Shift Operator

The symbol for the bitwise right shift operator is two greater-than signs (>>). Like the
left shift operator, it takes two operands. The operand on the left is the one to be shifted,
and the operand on the right is the number of places to shift. When the bit values are
shifted right, and the variable is signed, what the vacated positions to the left are filled
with depends on the machine. They could be filled with Os, or with the value of the sign
bit. If the variable is unsigned, the places will be filled with Os. The bits that shift out of
the field are lost. Suppose we have the following variables:

char val = 8, shiftval;
The following statement will store in shiftval the value of val shifted right 2 places.
shiftval = val >> 2;

Figure M-10 shows what is happening behind the scenes with the value in val.

Figure M-10

Beforeshift|O|0|0|0|1|0|0|0|

Aftershift|0|O|0|0|0|0|l|0|

As before, the value of val itself is not changed. The variable shiftval is being set to the
value of val shifted right 2 places.

Shifting a number right by 7 places is the same as dividing it by 2” (as long as the number
is not negative). So, the example is the same as

val /= 4;

The bitwise shift will almost always work faster, however.

Bit Fields

C++ allows you to create data structures that use bits as individual variables. Bit fields
must be declared as part of a structure. Here is an example.

struct {
unsigned fieldl :
unsigned field2 :
unsigned field3 :
unsigned field4 :
} fourbits;

N
~e we e we

The variable fourbits contains 4 bit fields: fieldl, field2, field3, and field4.
Following the colon after each name is a number that tells how many bits each field should be
made up of. In this example, each field is 1 bit in size. This structure is stored in memory in a
regular unsigned int. Because we are only using 4 bits, the remaining ones will go unused.

Values may be assigned to the fields just as if it were a regular structure. The following
statement assigns the value 1 to the f£ieldl member:

fourbits.fieldl = 1;



Bit Fields

Because these fields are only 1 bit in size, we can only put a 1 or a 0 in each of them. If we
wanted to expand the capacity of the bit fields we could make them larger, as in the
following example:

struct {
unsigned fieldl 1
unsigned field2 : 2
unsigned field3 : 3
unsigned field4 : 4
} mybits;

Here, mybits.fieldl is only 1 bit in size, but others are larger. mybits.field2 occupies
2 bits, mybits.field3 occupies 3 bits, and mybits.field4 occupies 4 bits. Table M-1
shows the size and the maximum value that can be stored in each field:

Table M-1

Field Name Number of Bits Maximum Value
mybits.fieldl 1 1
mybits.field2 2 3
mybits.field3 3 7
mybits.field4 4 15

This data structure uses a total of 10 bits. If you create a bit field structure that uses more bits
than will fit in an int, the next int sized area will be used. Suppose we define the following
bit field structure on a system that has 16 bit integers.

struct {
unsigned tiny
unsigned small
unsigned big
unsigned bigger
unsigned biggest
} flags;

~e

o ~e

~e

e es se s e

O 00 O
~

~e

This structure requires a total of 28 bits, so it will need to occupy more than one integer. It
might seem that the bits would fit in two integers. However, because the compiler will not
allow a field to straddle two different integers, three integers are used. Here is what occurs.
The fields tiny, small, and big will occupy the first integer, leaving five unused bits in it.
Because the fields bigger and biggest, totalling 17 bits, cannot fit in the same integer,
bigger will be placed in its own second integer and biggest will be placed in a third one.
There will be 8 unused bits in the second area, and 7 unused bits in the third.

You can force a field to be aligned with the next integer area by putting an unnamed bit
field with a length of 0 before it. Here is an example:

struct {
unsigned first

~e

o~

unsigned second

~e
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unsigned third
} scattered;

~e



M-10 Appendix M Binary Numbers and Bitwise Operations

The unnamed fields with the 0 width force second and third to each be placed in the next
int area.

You can also create unnamed fields with lengths other than 0. This way you can force gaps
to exist at certain places. Here is an example.

struct {
unsigned first

~e

o~

unsigned second

~e
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~

~e

unsigned third
} gaps;
This will cause a 2-bit gap to come between first and second, and a 3-bit gap to come

between second and third.

Bit fields are not very portable, however, when the physical order of the fields and the exact
location of the boundaries are used. Some machines order the bit fields from left to right,
but others order them from right to left.



