K C++ Casts and Run-Time
Type Identification

<
0
Z
Ll
o
o
<

Introduction

There are many times when a programmer needs to use type casts to tell the compiler to
convert the type of an expression to another type. For example, suppose that you have the
sum of n integer values in an integer variable sum, and would like to compute the average
and store it in a variable average of type float. In this case, you must tell the compiler to
first convert sum to double before performing the division by using a type cast:

double average;
average = (double)sum / n;

This type of casting is called the C- style of casting. Alternatively, you can use the newer
C++ functional style of casting:

double average;
average = double(sum) / n;

The functional style of casting will work for primitive built-in types such as char, float,
int and double, as well as for user-defined class types that provide convert constructors.
The effect of functional style casting is in most cases the same as that of C-style casting.

Another example of casting occurs frequently in reading from an I/O device such as a
network connection or a disk from which data arrives as a stream of bytes. In this case, to
store the data in a data item of some type, say a structure like the following one,

struct PersonData
{
char name[20];
int age;
Yi
PersonData data;
the address of data must be treated as the address of a location where a sequence of bytes
will be stored. In other words, a pointer to data must be treated as a pointer to a byte.



K-2

Appendix K C++ Casts and Run-Time Type Identification

Because C++ treats bytes as if they were characters, this just means that a pointer to the
type PersonData must be regarded as if it were a pointer to char. Again, this is
accomplished through the use of a type cast:

char *pChar = (char *)&data;

This statement takes a pointer to the structure data, treats it as a pointer to char using a
type cast, and uses the resulting value to initialize the newly created pointer variable pChar.

It is clear that these two examples of casting are different, not only in their purpose, but also
in the way that they are implemented by the compiler. In converting an int to a double, the
compiler must change the internal bit representation of an integer into the bit representation
of a double, whereas in the second example, no transformation of the bit representation is
performed. The designers of the C++ standard decided to introduce different casting
notations to represent these two different kinds of casts as well as two other kinds of casts
also used in the language. The designers introduced four different ways of casting:

1. static cast

2. reinte;pret_cast

3. const_cast
4. dynamic_cast

Using the new style casts clarifies the programmer’s intent to the compiler and enables the
compiler to catch casting errors.

In this appendix, we will discuss the four ANSI C++ style type casts and briefly touch on
the related topic of using the typeid operator.

static_cast

The most commonly used type of cast is the static_cast, which is used to convert an
expression to a value of a specified type. For example, to convert an expression exprl to a
value of type Typel and assign it to a variable var1, you would write

typel varl = static_cast< typel >(exprl);
in place of the traditional C-style cast
typel varl = (typel) exprl;

For example, to perform the conversion of int to double mentioned in the first example of
the introductory section, you would write

double average = static_cast< double >(sum) / n;

A static_cast is used to convert an expression of one type to a second type when the
compiler has information on how to perform the indicated conversion. For example,
static_cast can be used to perform all kinds of conversions between char, int, long,
float, and double because the knowledge for performing those types of conversions is
already built into the compiler. A static_cast can also be used if information on how to
perform the conversion has been provided by the programmer through type conversion
operators. For example, consider the FeetInches class that follows.



class FeetInches
{
private:
int feet;
int inches;
public:
FeetInches(int £, int i)
{
feet = £;
inches = 1i;
}
// type conversion operator
operator double()
{

return feet + inches/12.0;

Y

static_cast

This class provides information to the compiler on how to convert a FeetInches object to
a double. As a result, the following main function will compile correctly and print 3.5 and

3 when it executes.

#include <iostream>
#include "FeetInchesEx.h"
using namespace std;

int main()

{
FeetInches ftObject(3, 6);
// use static_cast to convert to double
double ft = static_cast< double >(ftObject);
cout << ft;
// use static_cast to convert to int
cout << endl << static_cast< int >(ftObject);
return 0;

}

Here we have assumed that the class declaration is stored in the indicated header file. The
static cast to double succeeds because of the presence of the type conversion operator, while
the cast to int succeeds because the compiler already knows how to convert double to int.

An example of an improper use of static_cast might be instructive. Assuming the same
declaration of FeetInches as earlier, the following main function will be rejected by the compiler:

int main()

{
FeetInches ftObject(3, 6);
// illegal use of static_cast
char *pInt = static_cast< int * >(&ftObject);
cout << *pInt;
return 0;
}

The program fails to compile because the compiler has been given no information on how
to convert a pointer to a FeetInches object to a pointer to int.

K-3



K-4

Appendix K C++ Casts and Run-Time Type Identification

Finally, a static_cast can be used to cast a pointer to a base class to a pointer to a
derived class. We will see an example of this in the last section of this appendix.

reinterpret cast

A reinterpret cast is used to force the compiler to treat a value as if it were of a
different type when the compiler knows of no way to perform the type conversion. A
reinterpret cast is mostly used with pointers, when a pointer to one type needs to be
treated as if it were a pointer to a different type. In other words, reinterpret cast is
useful with the second kind of casting discussed in the introductory section. No change in
the bit representation takes place: The value being cast is just used as is.

The notation for reinterpret_cast is similar to that for static_cast. To force
expression exprl to be regarded as a value of type typel, we would write

typel varl = reinterpret_cast< typel >(exprl);

instead of the old C-style cast. For example, if for some reason we needed to treat a
FeetInches object as a pair of integers, we could set a pointer to int to point to the object,
and then access the integer components of the object by dereferencing the pointer. The
reinterpret cast would be used to force the change of type in the pointer. The following
main program would print 3 on one line and 6 on the next.

int main()

{
FeetInches ftObject(3, 6);
// point to beginning of object
int *p = reinterpret cast< int * >(&ftObject);
cout << *p << endl;
// advance the pointer by size of one int
pt++;
cout << *p;
return 0;
}

The compiler will reject the use of reinterpret_cast where there is already adequate
information on how to perform the type conversion. In particular, the following statement
generates a compiler error:

cout << reinterpret_cast< int >(ftObject);

Well-designed programs that do not work directly with hardware should have little need
for this type of casting. Indeed, a need to use reinterpret cast may well be an
indication of a design error.

const_cast

This type of casting is only used with pointers to constants, and is used to treat a pointer to
a constant as though it were a regular pointer. A pointer to a constant may not be used to
change the memory location it points to. For example, we may define a pair of integer
variables and a pointer to a constant int as follows:



const_cast

int k = 4;
int m = 20;
const int *pToC;

We may then make the pointer pToC point to different integer variables, as in

pToC = &k;
cout << *pToC; // prints 4
pToC = &m;

cout << *pToC; // prints 20
but we cannot use pToC to change whatever variable pToc points to. For example, the code
*pToC = 23;

is illegal. Moreover, you cannot assign the value of a pointer to a constant to another
pointer that is not itself a pointer to a constant, because the constant might then be
changed through the second pointer:

int *pl; // not a pointer to constant
pl = pToC; // error!!

For the same reason, a pointer to a constant can only be passed to a function if the
corresponding formal parameter is a pointer to a constant. Thus, with the function definition

void print(int *p)
{

cout << *p;

}
the call

print (pToC);

would be illegal. Such a call, however, would be all right if the function were modified to
take a parameter that is a pointer to a constant. Thus, in the presence of

void constPrint(const int *p)

{

cout << *p;

}
the call

constPrint (pToC);
would be alowed.

We have purposely kept these examples simple. In real programs, the pointer to a constant
might be returned by a member function of a class, and point to a member of the class that
needs to be protected from modification. This pointer might need to be passed to a
function such as print above which perhaps through poor planning was not written to
take a pointer to a constant. In this case, the compiler can be persuaded to accept the call
by “casting away” the “constness” of the pointer using a const_cast:

print( const_cast< int * >(pToC) );



K-6

Appendix K C++ Casts and Run-Time Type Identification

Naturally, const_cast can also be used to allow assignment of a pointer to a constant to a
regular pointer:

int *p = const_cast< int * >(pToC);

As in the case of reinterpret_cast, we note that the use of const_cast should not be
necessary in most well-designed programs.

dynamic cast

Polymorphic code is code that is capable of being invoked with objects belonging to different
classes within the same inheritance hierarchy. Because objects of different classes have
different storage requirements, polymorphic code does not use the objects directly. Instead, it
accesses them through references or pointers. In this appendix, we will deal mainly with the
access of polymorphic objects through pointers: access through references is similar.

Polymorphic code processes objects of different classes by treating them as belonging to
the same base class. At times, however, it is necessary to determine at run time the specific
derived class of the object, so that its methods can be invoked. Objects designed to be
processed by polymorphic code carry type information within them to make run-time type
identification possible. In C++, such objects must belong to a polymorphic class. A
polymorphic class is a class with at least one virtual member function, or one that is
derived from such a class.

In C++, a dynamic_cast is used to take a pointer (or reference) to an object of a
polymorphic class, determine whether the object is of a specified target class, and if so,
return that pointer cast as a pointer to the target class. If the object cannot be regarded as
belonging to the target class, dynamic_cast returns the special pointer value 0.

A typical use of dynamic_cast is as follows. Let pExpr be a pointer to an object of some
derived class of a polymorphic class PolyClass, and let DerivedClass be one of several
classes derived from PolyClass. We can determine whether the object pointed to by
pExpr is a DerivedClass object by writing

DerivedClass *dP = dynamic_cast<DerivedClass *>(pExpr);

if (dp)
{
// the object *dP belongs to DerivedClass
}
else
{
// *dp does not belong to DerivedClass
}

Here DerivedClass is what we have called the specified target class.

As an example, consider a farm that keeps cows for milk as well as a number of dogs to
guard the homestead. All the animals eat (have an eat member function), the cows give
milk (have a giveMilk member function), and the dogs keep watch (have a guardhouse
member function). We can describe all of these by using the following hierarchy of classes:



dynamic_cast

#include <iostream>
using namespace std;

class DomesticAnimal

{
public:
virtual void eat()
{ cout << "Animal eating: Munch munch." << endl;
}
}i
class Cow:public DomesticAnimal
{
public:
void giveMilk()
{
cout << "Cow giving milk." << endl;
}
}i
class Dog:public DomesticAnimal
{
public:
void guardHouse()
{
cout << "Dog guarding house." << endl;
}
}i

Note that the eat member function has been declared as a virtual member function in
order to make all the classes polymorphic.

Many applications work with collections, usually arrays of objects belonging to the same
inheritance hierarchy. For example, our farm may have two cows and two dogs, which can
be stored in an array as follows:

DomesticAnimal *a[4] = {new Dog, new Cow,
new Dog, new Cow

}i

We have to use an array of pointers since an array of DomesticAnimal would not be able
to hold Dog or cow objects, either of which would normally require more storage than a
DomesticAnimal. Now suppose that we wanted to go through the entire array of animals
and milk all the cows. We couldn’t just go through the array with a loop such as

for (int k = 0; k < 4; k++)
alk]->giveMilk();

for then we would cause run-time errors whenever a[k] points to a Dog. A dynamic_cast
will take a pointer such as a[k], look at the actual type of the object being pointed to, and
return the address of the object if the object matches the target type of the dynamic cast.
If the object does not match the target type of the cast, then 0 is returned in place of the



K-8 Appendix K C++ Casts and Run-Time Type Identification

address. As mentioned, the general format for casting an expression exprl to a target type
TargetType IS

dynamic_cast< TargetType >(exprl);

where TargetType must be a pointer or reference type. In our case, to determine if a
domestic animal pointed to by a[k] is a cow we would write

Cow *pC = dynamic_cast< Cow * >(a[k]);

and then test pC to see if it was 0. If it is 0, we know the animal is not a cow and that it is
useless to attempt to milk it; otherwise, we can milk the animal by invoking

alk]->giveMilk();
Here is a main function that puts all of this together.

int main()

{
DomesticAnimal *a[4] = {new Dog, new Cow,
new Dog, new Cow,
Yi
for (int k = 0; k < 4; k++)
{
Cow *pC = dynamic_cast<Cow *>(a[k]);
if (pC)
{
// pC not 0, so we found a cow
pC->giveMilk();
}
else
{
cout << "This animal is not a cow." << endl;
}
}
return 0;
b

When executed, the output will be

This animal is not a cow.
Cow giving milk.
This animal is not a cow.
Cow giving milk.

The dynamic_cast is so called because the type of the object of a polymorphic class cannot
always be determined statically, that is, at compile time without running the program. For
example, in the statement

alk]->giveMilk();

it is impossible to determine at compile time whether a[k] points to a Dog or a Cow since it
can point to objects of either type. In contrast, static_cast uses information available at
compile time.



Run-Time Type Identification K-9

Run-Time Type Identification

As we have seen, dynamic_cast can be used to identify the class type of a polymorphic
object within an inheritance hierarchy at run time. More generally, the typeid operator
can be used to identify the type of any expression at run time. The typeid operator can be
applied to both data and type expressions:

typeid(data_expression)
or
typeid(type_expression)
For example, if we have the definitions
int 1i;
Cow c;
Cow *pC;
then we could apply the typeid operator to the data items i+12, c, and pc, giving

typeid(i+12)
typeid(c)
typeid(pC)

which would respectively be equal to the results of applying typeid to the corresponding
type expressions

typeid(int)
typeid(Cow)
typeid(Cow *)

In the program in the last section, evaluating the expression
typeid(al[k]) == typeid(DomesticAnimal)

would always yield the value true. To find out if the animal pointed to by a[k] is a cow, we
would test the expression

typeid(*a[k]) == typeid(Cow)

to see if it was true. If it was true, we could then use a static_cast to cast a[k] to the
appropriate type in order to milk the cow:

static_cast<Cow *>(a[k])->giveMilk();
The cast is necessary since without it, the statement
alk]->giveMilk();

will not compile. This is because the type of a[k] is a pointer to a DomesticAnimal, and
domestic animals do not have a giveMilk() member function.



