

H-1

A
P

P
E

N
D

IX

H

Multiple and Virtual
Inheritance

Introduction

Like all object-oriented programming languages, C++ supports the concept of inheritance.
Unlike most other such languages, however, C++ also supports the concept of multiple
inheritance.

Multiple inheritance

 is a type of inheritance in which a new class is simultaneously
derived from two or more base classes. A programmer should consider using multiple
inheritance to model an object that seems to simultaneously belong to more than one class. For
example, one might have a class

Home

 to model structures in which people live, and another
class

Automobile

 to model certain types of machines that humans use for purposes of
transportation. One can then envision a class

MobileHome

 whose objects are simultaneously
instances of the

Home

 and

Automobile

 classes. This relationship is depicted in Figure H-1.

In this figure, the upward-pointing arrows depict an

is

-

a

 relationship, illustrating the fact
that a mobile home is at once both a home and an automobile. In C++, the relationship
would be represented by the class declarations

class Automobile
{
 // Automobile members
};
class Home
{
 // Home members
};

class MobileHome : public Automobile, public Home
{
 // Additional members of MobileHome
};

Figure H-1

Home Automobile

MobileHome

Z08_GADD0929_07_SE_APPH.fm Page 1 Friday, August 2, 2013 10:25 AM

H-2

Appendix H Multiple and Virtual Inheritance

As another example of a situation in which the use of multiple inheritance might be
appropriate, consider a professional sports organization that has various types of employees.
Players and coaches are both employees, so the inheritance hierarchy shown in Figure H-2 is
quite natural.

Now consider an employee that is both a player and a coach. Such people have traditionally
been called

player-coaches

. Because a player-coach is both a player and a coach, we get the
inheritance diagram shown in Figure H-3.

We will refer to the situation depicted in Figure H-3 as the

multiple inheritance diamond

.
The upper part of the figure is the usual single inheritance structure because it shows that
both

Player

 and

Coach

 have a single base class. The bottom part of the figure depicts
multiple inheritance: it shows that

PlayerCoach

 has two base classes.

C++ Implementation of Multiple Inheritance

In C++, the inheritance hierarchy shown in the upper part of Figure H-3 might be implemented
with code as follows:

Figure H-2

Figure H-3

Contents of

PlayerCoach.h

1 #include <string>
2 #include <iostream>
3 using namespace std;
4 class Employee
5 {
6 string name;
7 public:
8 string getName(){ return name; }
9 Employee(string name){ this->name = name; }
10 };
11

Employee

Player Coach

Employee

Player

PlayerCoach

Coach

Z08_GADD0929_07_SE_APPH.fm Page 2 Friday, August 2, 2013 10:25 AM

C++ Implementation of Multiple Inheritance

H-3

12 class Player : public Employee
13 {
14 int salary;
15 public:
16 int getSalary(){ return salary; }
17 void play()
18 {
19 cout << getName() << " is playing.\n";
20 }
21 //Constructor
22 Player(string name, int salary):
23 // Constructor initialization
24 Employee(name), salary(salary)
25 {
26 }
27 };
28
29 class Coach : public Employee
30 {
31 int salary;
32 public :
33 int getSalary(){ return salary; }
34 void coach()
35 {
36 cout << getName() << " is coaching.\n";
37 }
38 //Constructor
39 Coach(string name, int salary):
40 // Constructor initialization
41 Employee(name), salary(salary)
42 {
43 }
44 };

Contents of

PlayerCoach.cpp
1 #include "PlayerCoach.h"
2 int main()
3 {
4 // Create Player and Coach objects
5 Player phil("Phillip", 20000);
6 Coach carol("Carol", 30000);
7 // Call play and coach member functions
8 phil.play();
9 carol.coach();
10
11 return 0;
12 }

Program Output

Phillip is playing.
Carol is coaching.

Z08_GADD0929_07_SE_APPH.fm Page 3 Friday, August 2, 2013 10:25 AM

H-4

Appendix H Multiple and Virtual Inheritance

Let us now consider the use of multiple inheritance to define a

PlayerCoach

 class. Before
we do so, however, we should mention that multiple inheritance is rarely used in C++, and
indeed, it can be the cause of many problems in programs that use it. We will point out
some of these difficulties as we work through our

PlayerCoach

 example.

The simplest class that derives from both

Player

 and

Coach

 is

#include "playercoach.h"
class PlayerCoach : public Player, public Coach
{
};

Note that

PlayerCoach

 has no members other than those it inherits from its two base
classes. We deliberately do this to keep our example as simple as possible: In more realistic
situations a derived class would have additional members not found in its base classes.
Unfortunately, this class will not compile. The reason is both of its base classes have non-
default constructors that need to be passed arguments. We can try to solve that problem by
equipping

PlayerCoach

 with a constructor initialization list, as shown here.

As you can see, the constructor for

PlayerCoach

 takes three parameters: the name of the
employee, the employee’s salary as a player, and the employee’s salary as a coach. The constructor
then invokes the constructors of its base classes, passing each the appropriate sequence of
parameters. But now, if we try to print the employee’s salary,

cout << pc.getSalary();

We run into another problem. The

PlayerCoach

 class has two different versions of the

getSalary()

 member function, one inherited from each of its base classes, and the compiler
cannot determine which of the two functions to call. To get the statement to compile, we
must remove the ambiguity by using the name of a base class together with the scope-
resolution operator

::

 as shown in lines 6, 8, 10 and 12 of the following program.

Contents of

PlayerCoachMult.h
1 #include "playerCoach.h"
2 using namespace std;
3 class PlayerCoach : public Player, public Coach
4 {
5 public:
6 PlayerCoach(string name, int playerSalary, int coachSalary):
7 Player(name, playerSalary), Coach(name, coachSalary)
8 {
9 }
10 };

Contents of

of MultInherit1.cpp
1 #include "PlayerCoachMult.h"
2 int main()
3 {
4 PlayerCoach pc("Peter Collins", 40000, 50000);
5 cout << "The name of the Employee is "
6 << pc.Player::getName() << "\n";
7 cout << "The name of the Employee is "
8 << pc.Coach::getName() << "\n";

Z08_GADD0929_07_SE_APPH.fm Page 4 Friday, August 2, 2013 10:25 AM

Virtual Inheritance

H-5

It is not surprising that the

PlayerCoach

 class has two versions of the

getSalary()

function because it inherits one from each of its base classes. In fact,

PlayerCoach

 will have
two copies of every member of its grandparent class

Employee

. This is because a copy
of each member of

Employee

 is separately inherited by both

Player

 and

Coach

, and
these different copies are then inherited by

PlayerCoach

. This is why lines 6 and 8 of

MultiInherit1.cpp

 have to use the scope-resolution operator when accessing the

getName()

 function inherited from

Employee

. Whenever a class

K

 is derived from two
different classes that directly or indirectly share the same base class, there will be two distinct
copies of the common base class object in the class

K

. Having two copies of the base class is
unnecessary and wasteful of memory. It forces the programmers using the derived class to
resort to the use of the scope-resolution operator to remove the resulting ambiguity. Over
time, this may lead to errors in the program due to inconsistencies in application of the
scope-resolution operator. Although not possible with our simple example, one can imagine
updating

pc.Player::name

 and then later accessing

pc.Coach::name

. For these reasons,
multiple inheritance should be avoided when possible, and used with great care when it
cannot.

Virtual Inheritance

The problem of inheriting multiple copies of a shared base class are addressed through the
concepts of

virtual

inheritance

 and

virtual

base classes

. A class being derived from another
class can declare its base class

virtual

 by prefixing the keyword virtual to the base class
specification. For example, the

Player

 and

Coach

 classes can declare their base class
virtual as follows:

class Player : virtual public Employee
{
 // Constructor for Player invokes constructor for Employee
};

class Coach: virtual public Employee
{
 // Constructor for Player invokes constructor for Employee
};

When processing a declaration of a class

K

 that inherits from multiple classes with a
common base class

B

 the compiler will ensure that no more than a single copy of

B

 is
included in

K

 if

B

 has been declared virtual. While solving the problem of multiple copies

9 cout << "Player salary is ";
10 cout << pc.Player::getSalary() << "\n";
11 cout << "Total salary is ";
12 cout << pc.Player::getSalary() + pc.Coach::getSalary() << endl;
13 return 0;
14 }

Program Output

The name of the Employee is Peter Collins
The name of the Employee is Peter Collins
Player salary is 40000
Total salary is 90000

Z08_GADD0929_07_SE_APPH.fm Page 5 Friday, August 2, 2013 10:25 AM

H-6

Appendix H Multiple and Virtual Inheritance

of a shared base class, virtual inheritance brings with it a few problems of its own. Look
again at the constructor initialization list in Line 7 in the listing of the

PlayerCoach

 class
in the

PlayerCoachMult.h

:

Player(name, playerSalary), Coach(name, coachSalary)

Because

Employee

 is a virtual base class, the

PlayerCoach

 class has only one copy of it.
The invocation of the

Player

 and

Coach

 constructors result in two invocations of the
constructor for the single

Employee

 object inside

PlayerCoach. This fact will result in yet
another compiler error.

To solve the problem of multiple initialization of a virtual base class, the C++ compiler will
ignore invocations of constructors of a virtual base class in all intermediate classes along
the various derivation chains. To make sure that the virtual base class gets initialized, C++
requires the most derived class (the class at the common end of the multiple derivation
chains) to specify the initialization of the common virtual base class. As an example, look
at Figure H-3. The inheritance diamond shown there has two derivation chains (the left
and right sides of the diamond) and the intermediate classes along these two chains are
respectively Player and Coach. Accordingly, the compiler will ignore the invocations
Employee(name) in the constructors of those two classes. To ensure that the Employee
object will be initialized, a call to its constructor must be included in the constructor
initialization list of PlayerCoach which is of course the most derived class. This
modification is shown in the following code listing.

Contents of vPlayerCoach.h
1 #include <string>
2 #include <iostream>
3 using namespace std;
4 class Employee
5 {
6 string name;
7 public:
8 string getName(){ return name; }
9 Employee(string name){ this->name = name; }
10 };
11
12 class Player : virtual public Employee
13 {
14 int salary;
15 public:
16 int getSalary(){ return salary; }
17 void play()
18 {
19 cout << getName() << " is playing.\n";
20 }
21 //Constructor
22 Player(string name, int salary):
23 // Constructor initialization
24 Employee(name), salary(salary)
25 {
26 }
27 };
28

Z08_GADD0929_07_SE_APPH.fm Page 6 Friday, August 2, 2013 10:25 AM

Virtual Inheritance H-7

Note that the changes required to support virtual inheritance are not extensive. In our case,
we have added the keyword virtual in Lines 12 and 29 of the PlayerCoach.h file, and a
call to the Employee constructor in Line 8 of the last file shown. The program can be tested
with the same main function used for the previous example.

29 class Coach : virtual public Employee
30 {
31 int salary;
32 public :
33 int getSalary(){ return salary; }
34 void coach()
35 {
36 cout << getName() << " is coaching.\n";
37 }
38 //Constructor
39 Coach(string name, int salary):
40 // Constructor initialization
41 Employee(name), salary(salary)
42 {
43 }
44 };

Contents of vPlayerCoachMult.h
1 #include "vplayerCoach.h"
2 using namespace std;
3 class PlayerCoach : public Player, public Coach
4 {
5 public:
6 PlayerCoach(string name, int playerSalary, int coachSalary):
7 Player(name, playerSalary), Coach(name, coachSalary),
8 Employee(name)
9 {
10 }
11 };

Z08_GADD0929_07_SE_APPH.fm Page 7 Friday, August 2, 2013 10:25 AM

