|2 Using UML in Class Design

<
(@]
Z
L
[
[
<

When designing a class it is often helpful to draw a UML diagram. UML stands for Unified
Modeling Language. The UML provides a set of standard diagrams for graphically
depicting object-oriented systems. Your text book and this appendix introduce some of the
more commonly used ones. Figure F-1 shows the general layout of a UML diagram for a
class. Notice that the diagram is a box divided into three sections. The top section is where
you write the name of the class. The middle section holds a list of the class member
variables. The bottom section holds a list of the class member functions.

Figure F-1

The class name goes here —

Member variables are listed here —

Member functions are listed here —

For example, in Chapter 7, Introduction to Classes and Objects, you studied a Rectangle
class that could be used in a program that works with rectangles. The class has the
following member variables:

® Jlength
® width

The class also has the following member functions:

setLength
setWidth
getLength
getWidth
getArea

F-2 Appendix F Using UML in Class Design

From this information we can construct a simple UML diagram for the class, as shown in
Figure F-2.

Figure F-2

Rectangle

length
width

setLength()
setWidth()
getLength()
getWidth()
getArea()

The UML diagram in Figure F-2 tells us the name of the class, the names of the member
variables, and the names of the member functions. Compare this diagram to the actual
C++ class declaration, which follows.

class Rectangle

{

private:
double length;
double width;

public:
void setLength(double);
void setWidth(double);
double getLength();
double getWidth();
double getArea();

Yi
The UML diagram shown in Figure F-2 does not include many of the class details, such as access

specification, member variable data types, parameter data types, and function return types.
However, the UML does provide optional notation if you wish to include these types of details.

Showing Access Specification in UML Diagrams

The UML diagram in Figure F-2 lists all of the members of the Rectangle class but does
not indicate which members are private and which are public. To include this information
in a UML diagram you place a - character before a member name to indicate that it is
private, or a + character to indicate that it is public. Figure F-3 shows the UML diagram
modified to include this notation.

Data Type and Parameter Notation in UML Diagrams F-3

Figure F-3

Rectangle

- length
- width

+ setLength()
+ setWidth()
+ getLength()
+ getWidth()
+ getArea()

Data Type and Parameter Notation in UML Diagrams

The Unified Modeling Language also provides notation that you may use to indicate the
data types of member variables, member functions, and parameters. To indicate the data
type of a member variable, place a colon followed by the name of the data type after the
variable name. For example, the width variable in the Rectangle class is a double, so it
could be listed in the UML diagram like this:

- width : double

& NOTE: In UML notation the variable name is listed first, then the data type. This is the
reverse of C++ syntax, which requires the data type to appear first.

The return type of a member function can be listed in the same manner: After the function’s
name, place a colon followed by the return type. The Rectangle class getLength function
returns a double, so it could be listed in the UML diagram like this:

+ getLength() : double

Parameter variables and their data types may be listed inside a member function’s
parentheses. For example, the Rectangle class setLength function has a double
parameter named len, so it could be listed in the UML diagram like this:

+ setLength(len : double) : void

Figure F-4 shows a UML diagram for the Rectangle class that includes data type, return
type, and parameter notation.

F-4

Appendix F Using UML in Class Design

Figure F-4

Rectangle

- length : double
- width : double

+ setLength(len : double) : void
+ setWidth(w : double) : void

+ getLength() : double

+ getWidth() : double

+ getArea() : double

Showing Constructors and Destructors in a UML Diagram

There is more than one accepted way of showing a constructor in a UML diagram. In this
appendix we will show a constructor just as any other method, except we will list no return
type. Figure F-5 shows a UML diagram for the sale class, which was also discussed in
Chapter 7. This class has two overloaded constructors, as well as a calcSaleTotal method.

Figure F-5

Sale

- taxRate : double

+ Sale()
+ Sale(rate : double)
+ calcSaleTotal(cost : double) : double

Object Composition in UML Diagrams

Chapter 11 of the text introduces object composition. This occurs when a class contains an
instance of another class as a member. Object composition is shown in a UML diagram by
connecting two classes with a line that has an open diamond at one end. The diamond is
closest to the class that contains instances of other classes.

For example, suppose we have the PersonInfo class shown in Figure F-6, which holds
information about a person.

Figure F-6

Object Composition in UML Diagrams

Personlnfo

- customerName : string

- customerAddress : string
- customerCity : string

- customerState : string

- customerZip : string

+ Personinfo(name : string,
address : string,
city : string,
state : string,
zZip : string)

+ getName() : string

+ getAddress() : string

+ getCity() : string

+ getState() : string

+ getZip() : string

Suppose we also have the BankAccount class shown in Figure F-7, which holds the balance
of a bank account, and can perform operations such as making deposits and withdrawals.

Figure F-7

BankAccount

- balance : double
- interestRate : double
- interest : double

+ BankAccount(startBalance : double,
intRate : double) :

+ deposit(amount : double) : void

+ withdraw(amount : double) : void

+ addInterest() : void
+ getBalance() : double
+ getinterest() : double

F-5

F-6

Appendix F Using UML in Class Design

Figure F-8 shows a UML diagram for another class, BankCustomer, which contains
instances of the PersonInfo and BankAccount classes as members. The relationship
between the classes is shown by the connecting lines with the open diamond. The open
diamond is closest to the BankCustomer class because it is the one that contains instances
of the other classes as members.

Figure F-8

BankCustomer

- info : Personlinfo
- checking : BankAccount
- savings : BankAccount

+ BankCustomer(i : Personinfo,
¢ : BankAccount,
s : BankAccount)
+ getCheckingBalance() : double
+ getSavingsBalance() : double
+ makeCheckingDeposit(amt : double) : void
+ makeCheckingWithdrawal(amt : double) : void
+ makeSavingsDeposit(amt: double) : void
+ makeSavingsWithdrawal(amt : double) : void

Personinfo BankAccount
- customerName : string - balance : double
- customerAddress : string - interestRate : double
- customerCity : string - interest : double

- customerState : string
- customerZip : string

+ BankAccount(startBalance : double,

+ Personinfo(name : string, intRate : double)
address : string, + deposit(amount : double) : void
city : string, + withdraw(amount : double) : void
state : string, + addInterest() : void
zip : string) + getBalance() : double

+ getName() : string + getinterest() : double

+ getAddress() : string
+ getCity() : string

+ getState() : string

+ getZip() : string

Showing Protected Members

Chapter 11 of the text also introduces inheritance, which allows new classes to be derived
from existing classes.

If a class is going to serve as a base class from which other classes are derived, it is often
desirable to designate some of its members as protected, rather than public or private.
As explained in Chapter 11, protected members of a class are safeguarded from outside use
like private members, but they can be accessed by member functions of derived classes.
Protected class members may be denoted in a UML diagram with the # symbol. Figure F-9
shows a UML diagram for a class with two protected variables and a protected method.

Figure F-9

Inheritance in UML Diagrams

GradedActivity

letter : char
score : double
determineGrade() : void

+ setScore(s : double) : void
+ getScore() : double
+ getLetter() : char

Inheritance in UML Diagrams

You show inheritance in a UML diagram by connecting two classes with a line that has an
open arrowhead at one end. The arrowhead points to the base class. For example, Figure F-10
shows a UML diagram depicting the relationship between a class named Gradedactivity and
a class named FinalExam that is derived from it. The arrowhead points toward the

GradedActivity class because it is the base class.

Figure F-10

GradedActivity

letter : char
score : double
determineGrade() : void

+ setScore(s : double) : void
+ getScore() : double
+ getlLetter() : char

T

FinalExam

- numQuestions : int
- pointsEach : double
- numMissed : int

+ FinalExam(questions : int)
+ setPointsEach(n : int) : void
+ setNumMissed(n : int) : void
+ getPointsEach() : double

+ getNumMissed() : int

F-7

