OOoOdnO
OOO0O0On0
OJododddoonO
JoOoOoOooOonon
1000
1000
OOooOonO
OOoOon0
o000

@) Multi-Source File Programs

<
0
Z
Ll
o
o
<

Programming students normally begin by writing programs that are contained in a single file.
Once the size of a program grows large enough, however, it becomes necessary to break it up
into multiple files. This results in smaller files that compile more quickly and are easier to
manage. In addition, dividing the program into several files facilitates the parceling out of
different parts of the program to different programmers when the program is being developed
by a team.

Generally, a multi-file program consists of two types of files: those that contain function
definitions, and those that contain function prototypes and templates. Here is a common
strategy for creating such a program:

e Group all specialized functions that perform similar tasks into the same file. For
example, a file might be created for functions that perform mathematical operations.
Another file might contain functions for user input and output.

¢ Group function main and all functions that play a primary role into one file.

¢ For each file that contains function definitions, create a separate header file to hold
the prototypes for each function and any necessary templates.

As an example, consider a multi-file banking program that processes loans, savings
accounts, and checking accounts. Figure G-1 illustrates the different files that might be
used. Notice the file-naming conventions used and how the files are related.

e FEach file that contains function definitions has a filename with a .cpp extension.

e FEach .cpp file has a corresponding header file with the same name, but with a .h file
extension. The header file contains function prototypes and templates for all functions
that are part of the corresponding .cpp file.

e Fach .cpp file has an #include directive for its own header file. If the .cpp file
contains calls to functions in another .cpp file, it will also have an #include directive
for the header file for that function.

G-2 Appendix G Multi-Source File Programs

Figure G-1

File: 1: bank.cpp

File: 3: loans.cpp

Contains main and all
primary functions

Contains all functions
for processing loans

File: 2: bank.h

File: 4: loans.h

Contains prototypes
for functions
in bank.cpp.

Contains prototypes
for functions
in loans.h

File: 5: savings.cpp

File: 7: checking.cpp

Contains all functions
for processing savings
accounts

Contains all functions
for processing checking
accounts

File: 6: savings.h

File: 8: checking.h

Contains prototypes
for functions
in savings.cpp

Contains prototypes
for functions
in checking.cpp

Compiling and Linking a Multi-File Program

In a program with multiple source code files, all of the .cpp files are compiled into
separate object files. The object files are then linked into a single executable file.
Integrated development environments such as Netbeans, Eclipse, and Microsoft Visual
Studio facilitate this process by allowing you to organize a collection of source code files
into a project and then use menu items to add files to the project. The individual source
files can be compiled, and an executable program can be created, by invoking commands
on menus.

If you are using a command line compiler such as gec, you can compile all source files and
create an executable by passing the names of the source files to the compiler as command
line arguments.

g++ -o bankprog bank.cpp loans.cpp checking.cpp savings.cpp

Compiling and Linking a Multi-File Program

This command will compile the four source code files and link them into an executable
called bankprog. Notice that the file listed after the -o is the name of the file where the
executable will be placed. The following .cpp files are the source code files, with the first
one listed being the file that contains the main function. Notice that the .h header files do
not need to be listed because the contents of each one will automatically be added to the
program when it is #included by the corresponding .cpp file.

Global Variables in a Multi-File Program

Normally, global variables can only be accessed in the file in which they are defined. For
this reason, they are said to have file scope. However, the scope of a global variable defined
in one file can be extended to make it accessible to functions in another file by placing an
extern declaration of the variable in the second file, as shown here.

extern int accountNum;

The extern declaration does not define another variable; it just permits access to a
variable defined in some other file.

Only true variables, not constant variables, should be declared to be extern.
const int maxCustomers = 35; // Don't declare this as extern.

This is because some compilers compile certain types of constant variables right into the code and
do not allocate space for them in memory, thereby making it impossible to access the constant
variable from another file. So how can functions in one file be allowed to use the value of a
variable defined in another file while ensuring that they do not alter its value? The solution is to
use the const key word in conjunction with the extern declaration. Thus the variable is defined
in the original file, as shown here:

string nameOfBank = "First Federal Savings Bank";

In the other file that will be allowed to access that variable, the const key word is placed
on the extern declaration, as shown here:

extern const string nameOfBank;

If you want to protect a global variable from any use outside the file in which it is defined,
you can declare the variable to be static. This limits its scope to the file in which it is
defined and hides its name from other files:

static double balance;

Figure G-2 shows some global variable declarations in the example banking program. The
variables customer and accountNum are defined in bank.cpp. Because they are not
declared to be static variables, their scope is extended to loans.cpp, savings.cpp, and
checking.cpp, the three files that contain an extern declaration of these variables. Even
though the variables are defined in bank.cpp, they may be accessed by any function in the
three other files.

G-3

G-4 Appendix G Multi-Source File Programs

Figure G-2

bank.cpp

loans.cpp

#include "bank.h"
#include "loans.h"
#include "savings.h"
#include "checking.h"

(other #include
directives)

char customer[35];
int accountNum;

int main()

{
}

functionl()

{
}
function2()

{
}

#include "loans.h"
(other #include
directives)

extern char customer|];
extern int accountNum;
static double loanAmount;
static int months;

static double interest;
static double payment;

function3()

{
}
function4 ()

{
}

checking.cpp

savings.cpp

#include "checking.h"
(other #include
directives)

extern char customer|[];
extern int accountNum;
static double balance;
static double checkAmnt;
static double deposit;

function5()

{

}
functioné6()

{
}

#include "savings.h"
(other #include
directives)

extern char customer([];
extern int accountNum;
static double balance;
static int interest;
static double deposit;
static double withdrawl;

function7()

{

}

function8()

{

}

Compiling and Linking a Multi-File Program

Figure G-2 includes examples of static global variables. These variables may not be
accessed outside the file they are defined in. The variable interest, for example, is defined
as a static global in both loans.cpp and savings.cpp. This means each of these two files
has its own variable named interest, which is not accessible outside the file it is defined
in. The same is true of the variables balance and deposit, defined in savings.cpp and
checking.cpp.

In our example, the variable customer is defined to be an array of characters. It could have
been defined to be a string object, but it was made a C-string instead to illustrate how an
extern declaration handles arrays. Notice that in bank.cpp, the array is defined with a
size declarator

char customer[35];
but in the extern declarations found in the other files, it is referenced as
extern char customer[];

In a one-dimensional array, the size of the array is normally omitted from the extern
declaration. In a multidimensional array, the size of the first dimension is usually omitted.
For example, the two-dimensional array defined in one file as

int myArray[20][30];
would be made accessible to other files by placing the following declaration in them.

extern int myArray[][30];

Object-Oriented Multi-File Programs

When creating object-oriented programs that define classes and create objects of those
classes, it is common to store class declarations and member function definitions in
separate files. Typically, program components are stored in the following fashion.

e The class declaration—The class declaration is stored in its own header file, which is
called the class specification file. The name of the specification file is usually the same
as the class, with a .h extension.

e Member function definitions—The member function definitions for the class are
stored in a separate .cpp file, which is called the class implementation file. This file,
which must #include the class specification file, usually has the same name as the
class, with a .cpp extension.

¢ Client functions that use the class—Any files containing functions that create and use
class objects should also #include the class specification file. They must then be
linked with the compiled class implementation file.

G-5

G-6

Appendix G Multi-Source File Programs

These components are illustrated in the following example, which creates and uses an
Address class. Notice how a single program is broken up into separate files. The .cpp files
making up the program can be separately compiled and then linked to create the executable
program.

//**

// Contents of address.h

// This is the specification file that contains the class declaration.
//************'k******'k******************'k******'k************************
#include <string>

using namespace std;

class Address
{private:
string name;
string street;
string city;

public:
Address(string name, string street, string city);
Address();
void print();

//***

// Contents of address.cpp

// This is the implementation file that contains the function definitions
// for the class member functions.
//***
#include "address.h"

#include <iostream>

Address::Address(string name_in, string street_in, string city_in)
{

name = name_in;

street = street_in;

city = city in;

}
Address: :Address()
{
name = street = city = "";
}

void Address::print()
{
cout << name << endl
<< street << endl
<< city << endl;

Compiling and Linking a Multi-File Program

//***

// Contents of userfile.cpp
// This file contains the client code that uses the Address class.
//***

#include "address.h"

int main()

{
// Create an address and print it.
Address addr("John Doe", "123 Main Street", "Hometown, USA");
addr.print();

// Other code could go here.
return 0;

