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Chapter 1

Functions

1.1 Review of Functions

1.1.1 A function is a rule which assigns each domain element to a unique range element. The independent
variable is associated with the domain, while the dependent variable is associated with the range.

1.1.2 The independent variable belongs to the domain, while the dependent variable belongs to the range.

1.1.3 The vertical line test is used to determine whether a given graph represents a function. (Specifically,
it tests whether the variable associated with the vertical axis is a function of the variable associated with
the horizontal axis.) If every vertical line which intersects the graph does so in exactly one point, then the
given graph represents a function. If any vertical line x = a intersects the curve in more than one point,
then there is more than one range value for the domain value x = a, so the given curve does not represent a
function.

1.1.4 f(2) = 1
23+1 = 1

9 . f(y
2) = 1

(y2)3+1 = 1
y6+1 .

1.1.5 Item i. is true while item ii. isn’t necessarily true. In the definition of function, item i. is stipulated.
However, item ii. need not be true – for example, the function f(x) = x2 has two different domain values
associated with the one range value 4, because f(2) = f(−2) = 4.

1.1.6 (f ◦ g)(x) = f(g(x)) = f(x3 − 2) =
√
x3 − 2

(g ◦ f)(x) = g(f(x)) = g(
√
x) = x3/2 − 2.

(f ◦ f)(x) = f(f(x)) = f(
√
x) =

√√
x = 4

√
x.

(g ◦ g)(x) = g(g(x)) = g(x3 − 2) = (x3 − 2)3 − 2 = x9 − 6x6 + 12x3 − 10

1.1.7 f(g(2)) = f(−2) = f(2) = 2. The fact that f(−2) = f(2) follows from the fact that f is an even
function.

g(f(−2)) = g(f(2)) = g(2) = −2.

1.1.8 The domain of f ◦ g is the subset of the domain of g whose range is in the domain of f . Thus, we
need to look for elements x in the domain of g so that g(x) is in the domain of f .

1.1.9

When f is an even function, we have f(−x) = f(x)
for all x in the domain of f , which ensures that
the graph of the function is symmetric about the
y-axis.

�2 �1 1 2
x

1

2

3

4

5

6

y

5



6 Chapter 1. Functions

1.1.10

When f is an odd function, we have f(−x) =
−f(x) for all x in the domain of f , which ensures
that the graph of the function is symmetric about
the origin.

�2 �1 1 2
x

�5

5

y

1.1.11 Graph A does not represent a function, while graph B does. Note that graph A fails the vertical line
test, while graph B passes it.

1.1.12 Graph A does not represent a function, while graph B does. Note that graph A fails the vertical line
test, while graph B passes it.

1.1.13 The domain of this function is the set of a real
numbers. The range is [−10,∞).

�2 �1 1 2
x

�10

�5

5

10

15
f

1.1.14 The domain of this function is (−∞,−2)∪(−2, 3)∪
(3,∞). The range is the set of all real numbers. �4 �2 2 4 6

y

�3

�2

�1

1

2

3
g

1.1.15
The domain of this function is [−2, 2]. The range
is [0, 2]. �4 �2 2 4

x

�4

�2

2

4
f

Copyright c© 2015 Pearson Education, Inc.



1.1. Review of Functions 7

1.1.16 The domain of this function is (−∞, 2]. The range
is [0,∞).

�3 �2 �1 0 1 2
w

0.5

1.0

1.5

2.0
F

1.1.17 The domain and the range for this function are
both the set of all real numbers. �5 5

u

�2

�1

1

2
h

1.1.18 The domain of this function is [−5,∞). The range
is approximately [−9.03,∞).

�4 �2 2 4 x

�10

10

20

30

40

50
g

1.1.19 The domain of this function is [−3, 3]. The range
is [0, 27].

�3 �2 �1 1 2 3 x

5

10

15

20

25

y
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8 Chapter 1. Functions

1.1.20 The domain of this function is (−∞,∞)]. The
range is (0, 1].

�6 �4 �2 0 2 4 6 x

0.2

0.4

0.6

0.8

1.0

1.2

1.4

y

1.1.21 The independent variable t is elapsed time and the dependent variable d is distance above the ground.
The domain in context is [0, 8]

1.1.22 The independent variable t is elapsed time and the dependent variable d is distance above the water.
The domain in context is [0, 2]

1.1.23 The independent variable h is the height of the water in the tank and the dependent variable V is
the volume of water in the tank. The domain in context is [0, 50]

1.1.24 The independent variable r is the radius of the balloon and the dependent variable V is the volume
of the balloon. The domain in context is [0, 3

√
3/(4π)]

1.1.25 f(10) = 96 1.1.26 f(p2) = (p2)2 − 4 = p4 − 4

1.1.27 g(1/z) = (1/z)3 = 1
z3 1.1.28 F (y4) = 1

y4−3

1.1.29 F (g(y)) = F (y3) = 1
y3−3 1.1.30 f(g(w)) = f(w3) = (w3)2 − 4 = w6 − 4

1.1.31 g(f(u)) = g(u2 − 4) = (u2 − 4)3

1.1.32 f(2+h)−f(2)
h = (2+h)2−4−0

h = 4+4h+h2−4
h = 4h+h2

h = 4 + h

1.1.33 F (F (x)) = F
(

1
x−3

)
= 1

1
x−3−3

= 1
1

x−3− 3(x−3)
x−3

= 1
10−3x
x−3

= x−3
10−3x

1.1.34 g(F (f(x))) = g(F (x2 − 4)) = g
(

1
x2−4−3

)
=
(

1
x2−7

)3
1.1.35 f(

√
x+ 4) = (

√
x+ 4)2 − 4 = x+ 4− 4 = x.

1.1.36 F ((3x+ 1)/x) = 1
3x+1

x −3
= 1

3x+1−3x
x

= x
3x+1−3x = x.

1.1.37 g(x) = x3 − 5 and f(x) = x10. The domain of h is the set of all real numbers.

1.1.38 g(x) = x6 + x2 + 1 and f(x) = 2
x2 . The domain of h is the set of all real numbers.

1.1.39 g(x) = x4 + 2 and f(x) =
√
x. The domain of h is the set of all real numbers.

1.1.40 g(x) = x3 − 1 and f(x) = 1√
x
. The domain of h is the set of all real numbers for which x3 − 1 > 0,

which corresponds to the set (1,∞).

1.1.41 (f ◦g)(x) = f(g(x)) = f(x2−4) = |x2−4|. The domain of this function is the set of all real numbers.

1.1.42 (g ◦ f)(x) = g(f(x)) = g(|x|) = |x|2 − 4 = x2 − 4. The domain of this function is the set of all real
numbers.

Copyright c© 2015 Pearson Education, Inc.



1.1. Review of Functions 9

1.1.43 (f ◦G)(x) = f(G(x)) = f
(

1
x−2

)
=
∣∣∣ 1
x−2

∣∣∣. The domain of this function is the set of all real numbers

except for the number 2.

1.1.44 (f ◦ g ◦G)(x) = f(g(G(x))) = f
(
g
(

1
x−2

))
= f

((
1

x−2

)2
− 4

)
=

∣∣∣∣( 1
x−2

)2
− 4

∣∣∣∣. The domain of this

function is the set of all real numbers except for the number 2.

1.1.45 (G ◦ g ◦ f)(x) = G(g(f(x))) = G(g(|x|)) = G(x2 − 4) = 1
x2−4−2 = 1

x2−6 . The domain of this function

is the set of all real numbers except for the numbers ±√
6.

1.1.46 (F ◦ g ◦ g)(x) = F (g(g(x))) = F (g(x2 − 4)) = F ((x2 − 4)2 − 4) =
√

(x2 − 4)2 − 4 =
√
x4 − 8x2 + 12.

The domain of this function consists of the numbers x so that x4 − 8x2 + 12 ≥ 0. Because x4 − 8x2 + 12 =
(x2 − 6) · (x2 − 2), we see that this expression is zero for x = ±√

6 and x = ±√
2, By looking between these

points, we see that the expression is greater than or equal to zero for the set (−∞,−√
6]∪[−√

2,
√
2]∪[√2,∞).

1.1.47 (g ◦ g)(x) = g(g(x)) = g(x2 − 4) = (x2 − 4)2 − 4 = x4 − 8x2 +16− 4 = x4 − 8x2 +12. The domain is
the set of all real numbers.

1.1.48 (G ◦G)(x) = G(G(x)) = G(1/(x− 2)) = 1
1

x−2−2
= 1

1−2(x−2)
x−2

= x−2
1−2x+4 = x−2

5−2x . Then G ◦G is defined

except where the denominator vanishes, so its domain is the set of all real numbers except for x = 5
2 .

1.1.49 Because (x2 + 3)− 3 = x2, we may choose f(x) = x− 3.

1.1.50 Because the reciprocal of x2 + 3 is 1
x2+3 , we may choose f(x) = 1

x .

1.1.51 Because (x2 + 3)2 = x4 + 6x2 + 9, we may choose f(x) = x2.

1.1.52 Because (x2 + 3)2 = x4 + 6x2 + 9, and the given expression is 11 more than this, we may choose
f(x) = x2 + 11.

1.1.53 Because (x2)2 + 3 = x4 + 3, this expression results from squaring x2 and adding 3 to it. Thus we
may choose f(x) = x2.

1.1.54 Because x2/3 + 3 = ( 3
√
x)2 + 3, we may choose f(x) = 3

√
x.

1.1.55

a. (f ◦ g)(2) = f(g(2)) = f(2) = 4. b. g(f(2)) = g(4) = 1.

c. f(g(4)) = f(1) = 3. d. g(f(5)) = g(6) = 3.

e. f(f(8)) = f(8) = 8. f. g(f(g(5))) = g(f(2)) = g(4) = 1.

1.1.56

a. h(g(0)) = h(0) = −1. b. g(f(4)) = g(−1) = −1.

c. h(h(0)) = h(−1) = 0. d. g(h(f(4))) = g(h(−1)) = g(0) = 0.

e. f(f(f(1))) = f(f(0)) = f(1) = 0. f. h(h(h(0))) = h(h(−1)) = h(0) = −1.

g. f(h(g(2))) = f(h(3)) = f(0) = 1. h. g(f(h(4))) = g(f(4)) = g(−1) = −1.

i. g(g(g(1))) = g(g(2)) = g(3) = 4. j. f(f(h(3))) = f(f(0)) = f(1) = 0.

1.1.57 f(x+h)−f(x)
h = (x+h)2−x2

h = (x2+2hx+h2)−x2

h = h(2x+h)
h = 2x+ h.

1.1.58 f(x+h)−f(x)
h = 4(x+h)−3−(4x−3)

h = 4x+4h−3−4x+3
h = 4h

h = 4.
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10 Chapter 1. Functions

1.1.59 f(x+h)−f(x)
h =

2
x+h− 2

x

h =
2x−2(x+h)

x(x+h)

h = 2x−2x−2h
h(x)(x+h) = − 2h

h(x)(x+h) = − 2
(x)(x+h) .

1.1.60 f(x+h)−f(x)
h = 2(x+h)2−3(x+h)+1−(2x2−3x+1)

h = 2x2+4xh+2h2−3x−3h+1−2x2+3x−1
h =

4xh+2h2−3h
h = h(4x+2h−3)

h = 4x+ 2h− 3.

1.1.61 f(x+h)−f(x)
h =

x+h
x+h+1− x

x+1

h =
(x+h)(x+1)−x(x+h+1)

(x+1)(x+h+1)

h = x2+x+hx+h−x2−xh−x
h(x+1)(x+h+1) =

h
h(x+1)(x+h+1) =

1
(x+1)(x+h+1)

1.1.62 f(x)−f(a)
x−a = x4−a4

x−a = (x2−a2)(x2+a2)
x−a = (x−a)(x+a)(x2+a2)

x−a = (x+ a)(x2 + a2).

1.1.63 f(x)−f(a)
x−a = x3−2x−(a3−2a)

x−a = (x3−a3)−2(x−a)
x−a = (x−a)(x2+ax+a2)−2(x−a)

x−a =
(x−a)(x2+ax+a2−2)

x−a = x2 + ax+ a2 − 2.

1.1.64 f(x)−f(a)
x−a = 4−4x−x2−(4−4a−a2)

x−a = −4(x−a)−(x2−a2)
x−a = −4(x−a)−(x−a)(x+a)

x−a =
(x−a)(−4−(x+a))

x−a = −4− x− a.

1.1.65 f(x)−f(a)
x−a =

−4

x2 −−4

a2

x−a =
−4a2+4x2

a2x2

x−a = 4(x2−a2)
(x−a)a2x2 = 4(x−a)(x+a)

(x−a)a2x2 = 4(x+a)
a2x2 .

1.1.66 f(x)−f(a)
x−a =

1
x−x2−( 1

a−a2)

x−a =
1
x− 1

a

x−a − x2−a2

x−a =
a−x
ax

x−a − (x−a)(x+a)
x−a = − 1

ax − (x+ a).

1.1.67

a.

�2,64�

�5,400�

�1 1 2 3 4 5 t

100

200

300

400

d

b. The slope of the secant line is given by
400−64
5−2 = 336

3 = 112 feet per second. The
object falls at an average rate of 112 feet per
second over the interval 2 ≤ t ≤ 5.

1.1.68

a.

�5,30�

�20,120�

5 10 15 20 t

20

40

60

80

100

120
D

b. The slope of the secant line is given by
120−30
20−5 = 90

15 = 6 degrees per second. The
second hand moves at an average rate of 6
degrees per second over the interval 5 ≤ t ≤
20.
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1.1.69

a.

�1�2,4�

�2,1�

0.5 1.0 1.5 2.0 2.5 3.0 p

1

2

3

4

V

b. The slope of the secant line is given by
1−4

2−(1/2) = − 3
3/2 = −2 cubic cm per atmo-

sphere. The volume decreases at an average
rate of 2 cubic cm per atmosphere over the
interval 0.5 ≤ p ≤ 2.

1.1.70

a.

�50,10 15 �

�150,30 5 �

20 40 60 80 100 120 140 l

10

20

30

40

50

60

S

b. The slope of the secant line is given by
30

√
5−10

√
15

150−50 ≈ .2835 mph per foot. The
speed of the car changes with an average rate
of about .2835 mph per foot over the interval
50 ≤ l ≤ 150.

1.1.71 This function is symmetric about the y-axis, because f(−x) = (−x)4+5(−x)2−12 = x4+5x2−12 =
f(x).

1.1.72 This function is symmetric about the origin, because f(−x) = 3(−x)5 + 2(−x)3 − (−x) = −3x5 −
2x3 + x = −(3x5 + 2x3 − x) = f(x).

1.1.73 This function has none of the indicated symmetries. For example, note that f(−2) = −26, while
f(2) = 22, so f is not symmetric about either the origin or about the y-axis, and is not symmetric about
the x-axis because it is a function.

1.1.74 This function is symmetric about the y-axis. Note that f(−x) = 2| − x| = 2|x| = f(x).

1.1.75 This curve (which is not a function) is symmetric about the x-axis, the y-axis, and the origin. Note
that replacing either x by −x or y by −y (or both) yields the same equation. This is due to the fact that
(−x)2/3 = ((−x)2)1/3 = (x2)1/3 = x2/3, and a similar fact holds for the term involving y.

1.1.76 This function is symmetric about the origin. Writing the function as y = f(x) = x3/5, we see that
f(−x) = (−x)3/5 = −(x)3/5 = −f(x).

1.1.77 This function is symmetric about the origin. Note that f(−x) = (−x)|(−x)| = −x|x| = −f(x).

1.1.78 This curve (which is not a function) is symmetric about the x-axis, the y-axis, and the origin. Note
that replacing either x by −x or y by −y (or both) yields the same equation. This is due to the fact that
| − x| = |x| and | − y| = |y|.

1.1.79 Function A is symmetric about the y-axis, so is even. Function B is symmetric about the origin, so
is odd. Function C is also symmetric about the y-axis, so is even.

1.1.80 Function A is symmetric about the y-axis, so is even. Function B is symmetric about the origin, so
is odd. Function C is also symmetric about the origin, so is odd.
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12 Chapter 1. Functions

1.1.81

a. True. A real number z corresponds to the domain element z/2 + 19, because f(z/2 + 19) = 2(z/2 +
19)− 38 = z + 38− 38 = z.

b. False. The definition of function does not require that each range element comes from a unique domain
element, rather that each domain element is paired with a unique range element.

c. True. f(1/x) = 1
1/x = x, and 1

f(x) =
1

1/x = x.

d. False. For example, suppose that f is the straight line through the origin with slope 1, so that f(x) = x.
Then f(f(x)) = f(x) = x, while (f(x))2 = x2.

e. False. For example, let f(x) = x+2 and g(x) = 2x−1. Then f(g(x)) = f(2x−1) = 2x−1+2 = 2x+1,
while g(f(x)) = g(x+ 2) = 2(x+ 2)− 1 = 2x+ 3.

f. True. This is the definition of f ◦ g.
g. True. If f is even, then f(−z) = f(z) for all z, so this is true in particular for z = ax. So if

g(x) = cf(ax), then g(−x) = cf(−ax) = cf(ax) = g(x), so g is even.

h. False. For example, f(x) = x is an odd function, but h(x) = x + 1 isn’t, because h(2) = 3, while
h(−2) = −1 which isn’t −h(2).

i. True. If f(−x) = −f(x) = f(x), then in particular −f(x) = f(x), so 0 = 2f(x), so f(x) = 0 for all x.

1.1.82

If n is odd, then n = 2k + 1 for some integer k,
and (x)n = (x)2k+1 = x(x)2k, which is less than 0
when x < 0 and greater than 0 when x > 0. For
any number P (positive or negative) the number
n
√
P is a real number when n is odd, and f( n

√
P ) =

P . So the range of f in this case is the set of all
real numbers.
If n is even, then n = 2k for some integer k, and
xn = (x2)k. Thus g(−x) = g(x) = (x2)k ≥ 0 for
all x. Also, for any nonnegative number M , we
have g( n

√
M) = M , so the range of g in this case

is the set of all nonnegative numbers.

�4 �2 2 4
x

�100

�50

50

100

f

�4 �2 2 4
x

5

10

15

20

25

g

1.1.83

We will make heavy use of the fact that |x| is x if
x > 0, and is −x if x < 0. In the first quadrant
where x and y are both positive, this equation
becomes x − y = 1 which is a straight line with
slope 1 and y-intercept −1. In the second quad-
rant where x is negative and y is positive, this
equation becomes −x− y = 1, which is a straight
line with slope −1 and y-intercept −1. In the third
quadrant where both x and y are negative, we ob-
tain the equation −x − (−y) = 1, or y = x + 1,
and in the fourth quadrant, we obtain x + y = 1.
Graphing these lines and restricting them to the
appropriate quadrants yields the following curve:

�4 �2 2 4
x

�4

�2

2

4

y
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1.1.84

a. No. For example f(x) = x2 + 3 is an even function, but f(0) is not 0.

b. Yes. because f(−x) = −f(x), and because −0 = 0, we must have f(−0) = f(0) = −f(0), so
f(0) = −f(0), and the only number which is its own additive inverse is 0, so f(0) = 0.

1.1.85 Because the composition of f with itself has first degree, f has first degree as well, so let f(x) = ax+b.
Then (f ◦ f)(x) = f(ax+ b) = a(ax+ b) + b = a2x+ (ab+ b). Equating coefficients, we see that a2 = 9 and
ab+ b = −8. If a = 3, we get that b = −2, while if a = −3 we have b = 4. So the two possible answers are
f(x) = 3x− 2 and f(x) = −3x+ 4.

1.1.86 Since the square of a linear function is a quadratic, we let f(x) = ax+b. Then f(x)2 = a2x2+2abx+b2.
Equating coefficients yields that a = ±3 and b = ±2. However, a quick check shows that the middle term
is correct only when one of these is positive and one is negative. So the two possible such functions f are
f(x) = 3x− 2 and f(x) = −3x+ 2.

1.1.87 Let f(x) = ax2 + bx+ c. Then (f ◦ f)(x) = f(ax2 + bx+ c) = a(ax2 + bx+ c)2 + b(ax2 + bx+ c) + c.
Expanding this expression yields a3x4 +2a2bx3 +2a2cx2 + ab2x2 +2abcx+ ac2 + abx2 + b2x+ bc+ c, which
simplifies to a3x4 +2a2bx3 + (2a2c+ ab2 + ab)x2 + (2abc+ b2)x+ (ac2 + bc+ c). Equating coefficients yields
a3 = 1, so a = 1. Then 2a2b = 0, so b = 0. It then follows that c = −6, so the original function was
f(x) = x2 − 6.

1.1.88 Because the square of a quadratic is a quartic, we let f(x) = ax2 + bx + c. Then the square of f
is c2 + 2bcx + b2x2 + 2acx2 + 2abx3 + a2x4. By equating coefficients, we see that a2 = 1 and so a = ±1.
Because the coefficient on x3 must be 0, we have that b = 0. And the constant term reveals that c = ±6. A
quick check shows that the only possible solutions are thus f(x) = x2 − 6 and f(x) = −x2 + 6.

1.1.89 f(x+h)−f(x)
h =

√
x+h−√

x
h =

√
x+h−√

x
h ·

√
x+h+

√
x√

x+h+
√
x
= (x+h)−x

h(
√
x+h+

√
x)

= 1√
x+h+

√
x
.

f(x)−f(a)
x−a =

√
x−√

a
x−a =

√
x−√

a
x−a ·

√
x+

√
a√

x+
√
a
= x−a

(x−a)(
√
x+

√
a)

= 1√
x+

√
a
.

1.1.90 f(x+h)−f(x)
h =

√
1−2(x+h)−√

1−2x

h =

√
1−2(x+h)−√

1−2x

h ·
√

1−2(x+h)+
√
1−2x√

1−2(x+h)+
√
1−2x

=

1−2(x+h)−(1−2x)

h(
√

1−2(x+h)+
√
1−2x)

= − 2√
1−2(x+h)+

√
1−2x

.

f(x)−f(a)
x−a =

√
1−2x−√

1−2a
x−a =

√
1−2x−√

1−2a
x−a ·

√
1−2x+

√
1−2a√

1−2x+
√
1−2a

= (1−2x)−(1−2a)

(x−a)(
√
1−2x+

√
1−2a)

=
(−2)(x−a)

(x−a)(
√
1−2x+

√
1−2a)

= − 2
(
√
1−2x+

√
1−2a)

.

1.1.91 f(x+h)−f(x)
h =

−3√
x+h

− −3√
x

h = −3(
√
x−√

x+h)

h
√
x
√
x+h

= −3(
√
x−√

x+h)

h
√
x
√
x+h

·
√
x+

√
x+h√

x+
√
x+h

=
−3(x−(x+h))

h
√
x
√
x+h(

√
x+

√
x+h)

= 3√
x
√
x+h(

√
x+

√
x+h)

.

f(x)−f(a)
x−a =

−3√
x
−−3√

a

x−a =
−3

(√
a−√

x√
a
√

x

)
x−a = (−3)(

√
a−√

x)
(x−a)

√
a
√
x

·
√
a+

√
x√

a+
√
x
= (3)(x−a)

(x−a)(
√
a
√
x)(

√
a+

√
x)

= 3√
ax(

√
a+

√
x)
.

1.1.92 f(x+h)−f(x)
h =

√
(x+h)2+1−√

x2+1

h =

√
(x+h)2+1−√

x2+1

h ·
√

(x+h)2+1+
√
x2+1√

(x+h)2+1+
√
x2+1

=

(x+h)2+1−(x2+1)

h(
√

(x+h)2+1+
√
x2+1)

= x2+2hx+h2−x2

h(
√

(x+h)2+1+
√
x2+1)

= 2x+h√
(x+h)2+1+

√
x2+1

.

f(x)−f(a)
x−a =

√
x2+1−√

a2+1
x−a =

√
x2+1−√

a2+1
x−a ·

√
x2+1+

√
a2+1√

x2+1+
√
a2+1

= x2+1−(a2+1)

(x−a)(
√
x2+1+

√
a2+1)

=

(x−a)(x+a)

(x−a)(
√
x2+1+

√
a2+1)

= x+a√
x2+1+

√
a2+1

.
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1.1.93

a. The formula for the height of the rocket is
valid from t = 0 until the rocket hits the
ground, which is the positive solution to
−16t2 + 96t+ 80 = 0, which the quadratic
formula reveals is t = 3 +

√
14. Thus, the

domain is [0, 3 +
√
14]. b. 1 2 3 4 5 6

t

50

100

150

200

h

The maximum appears to occur at t = 3.
The height at that time would be 224.

1.1.94

a. d(0) = (10− (2.2) · 0)2 = 100.

b. The tank is first empty when d(t) = 0, which is when 10− (2.2)t = 0, or t = 50/11.

c. An appropriate domain would [0, 50/11].

1.1.95 This would not necessarily have either kind of symmetry. For example, f(x) = x2 is an even function
and g(x) = x3 is odd, but the sum of these two is neither even nor odd.

1.1.96 This would be an odd function, so it would be symmetric about the origin. Suppose f is even and g
is odd. Then (f · g)(−x) = f(−x)g(−x) = f(x) · (−g(x)) = −(f · g)(x).
1.1.97 This would be an odd function, so it would be symmetric about the origin. Suppose f is even and g

is odd. Then f
g (−x) = f(−x)

g(−x) = f(x)
−g(x) = − f

g (x).

1.1.98 This would be an even function, so it would be symmetric about the y-axis. Suppose f is even and
g is odd. Then f(g(−x)) = f(−g(x)) = f(g(x)).

1.1.99 This would be an even function, so it would be symmetric about the y-axis. Suppose f is even and
g is even. Then f(g(−x)) = f(g(x)), because g(−x) = g(x).

1.1.100 This would be an odd function, so it would be symmetric about the origin. Suppose f is odd and
g is odd. Then f(g(−x)) = f(−g(x)) = −f(g(x)).

1.1.101 This would be an even function, so it would be symmetric about the y-axis. Suppose f is even and
g is odd. Then g(f(−x)) = g(f(x)), because f(−x) = f(x).

1.1.102

a. f(g(−1)) = f(−g(1)) = f(3) = 3 b. g(f(−4)) = g(f(4)) = g(−4) = −g(4) = 2

c. f(g(−3)) = f(−g(3)) = f(4) = −4 d. f(g(−2)) = f(−g(2)) = f(1) = 2

e. g(g(−1)) = g(−g(1)) = g(3) = −4 f. f(g(0)− 1) = f(−1) = f(1) = 2

g. f(g(g(−2))) = f(g(−g(2))) = f(g(1)) = f(−3) = 3 h. g(f(f(−4))) = g(f(−4)) = g(−4) = 2

i. g(g(g(−1))) = g(g(−g(1))) = g(g(3)) = g(−4) = 2

1.1.103

a. f(g(−2)) = f(−g(2)) = f(−2) = 4 b. g(f(−2)) = g(f(2)) = g(4) = 1

c. f(g(−4)) = f(−g(4)) = f(−1) = 3 d. g(f(5)− 8) = g(−2) = −g(2) = −2

e. g(g(−7)) = g(−g(7)) = g(−4) = −1 f. f(1− f(8)) = f(−7) = 7
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1.2 Representing Functions

1.2.1 Functions can be defined and represented by a formula, through a graph, via a table, and by using
words.

1.2.2 The domain of every polynomial is the set of all real numbers.

1.2.3 The domain of a rational function p(x)
q(x) is the set of all real numbers for which q(x) 
= 0.

1.2.4 A piecewise linear function is one which is linear over intervals in the domain.

1.2.5

�2 �1 1 2
x

�15

�10

�5

5

10

15
y

1.2.6

�2 �1 1 2
x

�1.0

�0.5

0.5

1.0

y

1.2.7 Compared to the graph of f(x), the graph of f(x+ 2) will be shifted 2 units to the left.

1.2.8 Compared to the graph of f(x), the graph of −3f(x) will be scaled vertically by a factor of 3 and
flipped about the x axis.

1.2.9 Compared to the graph of f(x), the graph of f(3x) will be scaled horizontally by a factor of 3.

1.2.10 To produce the graph of y = 4(x+ 3)2 + 6 from the graph of x2, one must

1. shift the graph horizontally by 3 units to left

2. scale the graph vertically by a factor of 4

3. shift the graph vertically up 6 units.

1.2.11 The slope of the line shown is m = −3−(−1)
3−0 = −2/3. The y-intercept is b = −1. Thus the function

is given by f(x) = (−2/3)x− 1.

1.2.12 The slope of the line shown is m = 1−(5)
5−0 = −4/5. The y-intercept is b = 5. Thus the function is

given by f(x) = (−4/5)x+ 5.

1.2.13

The slope is given by 5−3
2−1 = 2, so the equation of

the line is y − 3 = 2(x− 1), which can be written
as y = 2x− 2 + 3, or y = 2x+ 1.

�2 �1 1 2 x

�2

2

4

y
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1.2.14

The slope is given by 0−(−3)
5−2 = 1, so the equation

of the line is y − 0 = 1(x− 5), or y = x− 5. 2 4 6 8 10 x

�4

�2

2

4

y

1.2.15 Using price as the independent variable p and the average number of units sold per day as the
dependent variable d, we have the ordered pairs (250, 12) and (200, 15). The slope of the line determined by
these points is m = 15−12

200−250 = 3
−50 . Thus the demand function has the form d(p) = (−3/50)p + b for some

constant b. Using the point (200, 15), we find that 15 = (−3/50) · 200 + b, so b = 27. Thus the demand
function is d = (−3/50)p + 27. While the domain of this linear function is the set of all real numbers, the
formula is only likely to be valid for some subset of the interval (0, 450), because outside of that interval
either p ≤ 0 or d ≤ 0.

100 200 300 400 p

5

10

15

20

25

d

1.2.16 The profit is given by p = f(n) = 8n− 175. The break-even point is when p = 0, which occurs when
n = 175/8 = 21.875, so they need to sell at least 22 tickets to not have a negative profit.

10 20 30 40 50 n

�100

100

200

p

1.2.17 The slope is given by the rate of growth, which is 24. When t = 0 (years past 2015), the population
is 500, so the point (0, 500) satisfies our linear function. Thus the population is given by p(t) = 24t + 500.
In 2030, we have t = 15, so the population will be approximately p(15) = 360 + 500 = 860.

5 10 15 20 t

200

400

600

800

1000
p
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1.2.18 The cost per mile is the slope of the desired line, and the intercept is the fixed cost of 3.5. Thus, the
cost per mile is given by c(m) = 2.5m+ 3.5. When m = 9, we have c(9) = (2.5)(9) + 3.5 = 22.5 + 3.5 = 26
dollars.

2 4 6 8 10 12 14 m

10

20

30

40

c

1.2.19 For x < 0, the graph is a line with slope 1 and y- intercept 3, while for x > 0, it is a line with slope
−1/2 and y-intercept 3. Note that both of these lines contain the point (0, 3). The function shown can thus
be written

f(x) =

⎧⎨
⎩x+ 3 if x < 0;

− 1
2x+ 3 if x ≥ 0.

1.2.20 For x < 3, the graph is a line with slope 1 and y- intercept 1, while for x > 3, it is a line with slope
−1/3. The portion to the right thus is represented by y = (−1/3)x + b, but because it contains the point
(6, 1), we must have 1 = (−1/3)(6) + b so b = 3. The function shown can thus be written

f(x) =

⎧⎨
⎩x+ 1 if x < 3;

(−1/3)x+ 3 if x ≥ 3.

Note that at x = 3 the value of the function is 2, as indicated by our formula.

1.2.21

The cost is given by

c(t) =

⎧⎨
⎩0.05t for 0 ≤ t ≤ 60

1.2 + 0.03t for 60 < t ≤ 120
.

20 40 60 80 100 120 t

1

2

3

4

y

1.2.22

The cost is given by

c(m) =

⎧⎨
⎩3.5 + 2.5m for 0 ≤ m ≤ 5

8.5 + 1.5m for m > 5
.

2 4 6 8 10 m

5

10

15

20

y
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1.2.23

1 2 3 4 x

1

2

3

4
y

1.2.24

1 2 3 4 x

1

2

3

4

5
y

1.2.25

�2 �1 1 2
x

�6

�4

�2

y

1.2.26

0.5 1.0 1.5 2.0
x

�1

1

2

3

y

1.2.27

�2 �1 1 2
x

0.5

1.0

1.5

2.0

2.5

3.0

y

1.2.28

�1 1 2 3 4
x

1

2

3

4

y

1.2.29

a.

�2 �1 1 2 3
x

5

10

15

y

b. The function is a polynomial, so its domain is the set
of all real numbers.

c. It has one peak near its y-intercept of (0, 6) and one
valley between x = 1 and x = 2. Its x-intercept is
near x = −4/3.
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1.2.30

a.

�6 �4 �2 2 4 6
x

�2

�1

1

2

3

4
y

b. The function’s domain is the set of all real numbers.

c. It has a valley at the y-intercept of (0,−2), and is very
steep at x = −2 and x = 2 which are the x-intercepts.
It is symmetric about the y-axis.

1.2.31

a. �8 �6 �4 �2 2 4 6
x

5

10

15

20

25

y

b. The domain of the function is the set of all real num-
bers except −3.

c. There is a valley near x = −5.2 and a peak near
x = −0.8. The x-intercepts are at −2 and 2, where
the curve does not appear to be smooth. There is a
vertical asymptote at x = −3. The function is never
below the x-axis. The y-intercept is (0, 4/3).

1.2.32

a.

�15 �10 �5 5 10 15
x

�2.0

�1.5

�1.0

�0.5

0.5

1.0

1.5

y

b. The domain of the function is (−∞,−2] ∪ [2,∞)

c. x-intercepts are at −2 and 2. Because 0 isn’t in the
domain, there is no y-intercept. The function has a
valley at x = −4.

1.2.33

a.

�3 �2 �1 1 2 3 4 x

�4

�3

�2

�1

1

2

3
y

b. The domain of the function is (−∞,∞)

c. The function has a maximum of 3 at x = 1/2, and a
y-intercept of 2.
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1.2.34

a.

�1 1 2 3 x

�1.5

�1.0

�0.5

0.5

1.0

1.5
y

b. The domain of the function is (−∞,∞)

c. The function contains a jump at x = 1. The max-
imum value of the function is 1 and the minimum
value is −1.

1.2.35 The slope of this line is constantly 2, so the slope function is s(x) = 2.

1.2.36 The function can be written as |x| =
⎧⎨
⎩−x if x ≤ 0

x if x > 0
.

The slope function is s(x) =

⎧⎨
⎩−1 if x < 0

1 if x > 0
.

1.2.37 The slope function is given by s(x) =

⎧⎨
⎩1 if x < 0;

−1/2 if x > 0.

1.2.38 The slope function is given by s(x) =

⎧⎨
⎩1 if x < 3;

−1/3 if x > 3.

1.2.39

a. Because the area under consideration is that of a rectangle with base 2 and height 6, A(2) = 12.

b. Because the area under consideration is that of a rectangle with base 6 and height 6, A(6) = 36.

c. Because the area under consideration is that of a rectangle with base x and height 6, A(x) = 6x.

1.2.40

a. Because the area under consideration is that of a triangle with base 2 and height 1, A(2) = 1.

b. Because the area under consideration is that of a triangle with base 6 and height 3, the A(6) = 9.

c. Because A(x) represents the area of a triangle with base x and height (1/2)x, the formula for A(x) is
1
2 · x · x

2 = x2

4 .

1.2.41

a. Because the area under consideration is that of a trapezoid with base 2 and heights 8 and 4, we have
A(2) = 2 · 8+4

2 = 12.

b. Note that A(3) represents the area of a trapezoid with base 3 and heights 8 and 2, so A(3) = 3· 8+2
2 = 15.

So A(6) = 15+(A(6)−A(3)), and A(6)−A(3) represents the area of a triangle with base 3 and height
2. Thus A(6) = 15 + 6 = 21.
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c. For x between 0 and 3, A(x) represents the area of a trapezoid with base x, and heights 8 and 8− 2x.
Thus the area is x · 8+8−2x

2 = 8x−x2. For x > 3, A(x) = A(3)+A(x)−A(3) = 15+2(x− 3) = 2x+9.
Thus

A(x) =

⎧⎨
⎩8x− x2 if 0 ≤ x ≤ 3;

2x+ 9 if x > 3.

1.2.42

a. Because the area under consideration is that of trapezoid with base 2 and heights 3 and 1, we have
A(2) = 2 · 3+1

2 = 4.

b. Note that A(6) = A(2)+(A(6)−A(2), and that A(6)−A(2) represents a trapezoid with base 6−2 = 4
and heights 1 and 5. The area is thus 4 +

(
4 · 1+5

2

)
= 4 + 12 = 16.

c. For x between 0 and 2, A(x) represents the area of a trapezoid with base x, and heights 3 and 3− x.

Thus the area is x · 3+3−x
2 = 3x− x2

2 . For x > 2, A(x) = A(2)+A(x)−A(2) = 4+(A(x)−A(2)). Note
that A(x) − A(2) represents the area of a trapezoid with base x − 2 and heights 1 and x − 1. Thus

A(x) = 4 + (x− 2) · 1+x−1
2 = 4 + (x− 2)

(
x
2

)
= x2

2 − x+ 4. Thus

A(x) =

⎧⎨
⎩3x− x2

2 if 0 ≤ x ≤ 2;

x2

2 − x+ 4 if x > 2.

1.2.43 f(x) = |x− 2|+3, because the graph of f is obtained from that of |x| by shifting 2 units to the right
and 3 units up.

g(x) = −|x + 2| − 1, because the graph of g is obtained from the graph of |x| by shifting 2 units to the
left, then reflecting about the x-axis, and then shifting 1 unit down.

1.2.44

a.

�4 �2 2 4
x

�4

�2

2

4
y

b. �4 �3 �2 �1 0 1 2
x

1

2

3

4
y

c. �2 �1 0 1 2 3 4
x

1

2

3

4
y

d. �4 �2 0 2 4
x

2

4

6

8
y

e. �4 �2 0 2 4
x

2

4

6

8
y

f. �4 �2 0 2 4
x

2

4

6

8
y

Copyright c© 2015 Pearson Education, Inc.



22 Chapter 1. Functions

1.2.45

a. �1 0 1 2 3 4 5
x

2

4

6

8
y

b. �1 0 1 2 3 4 5
x

2

4

6

8
y

c.

�1 1 2 3 4 5
x

�4

�2

2

4
y

d.

�1 1 2 3 4 5
x

�4

�2

2

4
y

1.2.46

a. �4 �3 �2 �1 0 1 2 3
x

1

2

3

4
y

b. �1 0 1 2 3 4 5 6
x

1

2

3

4

5

6
y

c. 0 1 2 3 4 5
x

0.5

1.0

1.5

2.0

2.5

3.0
y

d.

1 2 3 4 5 6 7
x

�5

�4

�3

�2

�1

1

2
y

1.2.47
The graph is obtained by shifting the graph of x2

two units to the right and one unit up.

�1 1 2 3 4 5 x

2

4

6

8

10
y
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1.2.48

Write x2−2x+3 as (x2−2x+1)+2 = (x−1)2+2.
The graph is obtained by shifting the graph of x2

one unit to the right and two units up.

�2 2 4 x

5

10

15

y

1.2.49 This function is −3 · f(x) where f(x) = x2

�2 �1 1 2
x

�12

�10

�8

�6

�4

�2

y

1.2.50 This function is 2 · f(x)− 1 where f(x) = x3 �1.5 �1.0 �0.5 0.5 1.0 1.5
x

�8

�6

�4

�2

2

4

6
y

1.2.51 This function is 2 · f(x+ 3) where f(x) = x2

�6 �4 �2
x

5

10

15

20

25

30

y

1.2.52
By completing the square, we have that p(x) =
(x2+3x+(9/4))− (29/4) = (x+(3/2))2− (29/4).
So it is f(x+ (3/2))− (29/4) where f(x) = x2.

�4 �3 �2 �1 1 2
x

�6

�4

�2

2

4

y

Copyright c© 2015 Pearson Education, Inc.



24 Chapter 1. Functions

1.2.53

By completing the square, we have that h(x) =
−4(x2 + x − 3) = −4

(
x2 + x+ 1

4 − 1
4 − 3

)
=

−4(x+ (1/2))2 + 13. So it is −4f(x+ (1/2)) + 13
where f(x) = x2.

�3 �2 �1 1 2 3
x

�30

�20

�10

10

y

1.2.54 Because |3x−6|+1 = 3|x−2|+1, this is 3f(x−2)+1
where f(x) = |x|.

�1 0 1 2 3 4
x

2

4

6

8
y

1.2.55

a. True. A polynomial p(x) can be written as the ratio of polynomials p(x)
1 , so it is a rational function.

However, a rational function like 1
x is not a polynomial.

b. False. For example, if f(x) = 2x, then (f ◦ f)(x) = f(f(x)) = f(2x) = 4x is linear, not quadratic.

c. True. In fact, if f is degree m and g is degree n, then the degree of the composition of f and g is m ·n,
regardless of the order they are composed.

d. False. The graph would be shifted two units to the left.

1.2.56 The points of intersection are found by solving x2 + 2 = x + 4. This yields the quadratic equation
x2 − x− 2 = 0 or (x− 2)(x+ 1) = 0. So the x-values of the points of intersection are 2 and −1. The actual
points of intersection are (2, 6) and (−1, 3).

1.2.57 The points of intersection are found by solving x2 = −x2 + 8x. This yields the quadratic equation
2x2 − 8x = 0 or (2x)(x− 4) = 0. So the x-values of the points of intersection are 0 and 4. The actual points
of intersection are (0, 0) and (4, 16).

1.2.58 y = x+ 1, because the y value is always 1 more than the x value.

1.2.59 y =
√
x− 1, because the y value is always 1 less than the square root of the x value.

1.2.60 y = x3 − 1. The domain is (−∞,∞). �2 �1 1 2
x

�5

5

y
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1.2.61

The car moving north has gone 30t miles after
t hours and the car moving east has gone 60t
miles. Using the Pythagorean theorem, we have
s(t) =

√
(30t)2 + (60t)2 =

√
900t2 + 3600t2 =√

4500t2 = 30
√
5t miles. The context domain

could be [0, 4].
1 2 3 4

s

50

100

150

200

250

t

1.2.62
y = 50

x . Theoretically the domain is (0,∞), but
the world record for the “hour ride” is just short
of 50 miles.

10 20 30 40 50
x

2

4

6

8

10

12

y

1.2.63

y = 3200
x . Note that x dollars per gallon

32 miles per gallon · ymiles
would represent the numbers of dollars, so this
must be 100. So we have xy

32 = 100, or y = 3200
x .

We certainly have x > 0, and a reasonable upper
bound to imagine for x is $5 (let’s hope), so the
context domain is (0, 5].

0 1 2 3 4 5 x : dollars

1000

2000

3000

4000

5000

6000

7000
y : miles

1.2.64

�3 �2 �1 1 2 3
x

�3

�2

�1

1

2
y

1.2.65

�3 �2 �1 1 2 3
x

�2

�1

1

2

3
y
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1.2.66

�1 0 1 2 3
x

0.2

0.4

0.6

0.8

y

1.2.67

�1 1 2 3
x

0.2

0.4

0.6

0.8

1.0
y

1.2.68

�2 �1 1 2
x

20

40

60

80

y

1.2.69

�2 �1 1 2 x

�2

�1

1

2

y

1.2.70

1 2 3 4 5
x

0.5

1.0

1.5

2.0

y

1.2.71

a. The zeros of f are the points where the graph crosses the x-axis, so these are points A, D, F , and I.

b. The only high point, or peak, of f occurs at point E, because it appears that the graph has larger and
larger y values as x increases past point I and decreases past point A.

c. The only low points, or valleys, of f are at points B and H, again assuming that the graph of f
continues its apparent behavior for larger values of x.

d. Past point H, the graph is rising, and is rising faster and faster as x increases. It is also rising between
points B and E, but not as quickly as it is past point H. So the marked point at which it is rising
most rapidly is I.

e. Before point B, the graph is falling, and falls more and more rapidly as x becomes more and more
negative. It is also falling between points E and H, but not as rapidly as it is before point B. So the
marked point at which it is falling most rapidly is A.

1.2.72

a. The zeros of g appear to be at x = 0, x = 1, x = 1.6, and x ≈ 3.15.

b. The two peaks of g appear to be at x ≈ 0.5 and x ≈ 2.6, with corresponding points ≈ (0.5, 0.4) and
≈ (2.6, 3.4).
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c. The only valley of g is at ≈ (1.3,−0.2).

d. Moving right from x ≈ 1.3, the graph is rising more and more rapidly until about x = 2, at which
point it starts rising less rapidly (because, by x ≈ 2.6, it is not rising at all). So the coordinates of the
point at which it is rising most rapidly are approximately (2.1, g(2)) ≈ (2.1, 2). Note that while the
curve is also rising between x = 0 and x ≈ 0.5, it is not rising as rapidly as it is near x = 2.

e. To the right of x ≈ 2.6, the curve is falling, and falling more and more rapidly as x increases. So the
point at which it is falling most rapidly in the interval [0, 3] is at x = 3, which has the approximate
coordinates (3, 1.4). Note that while the curve is also falling between x ≈ 0.5 and x ≈ 1.3, it is not
falling as rapidly as it is near x = 3.

1.2.73

a. �15 �10 �5 5 10 15 �

0.2

0.4

0.6

0.8

1.0
y

b. This appears to have a maximum when θ = 0. Our
vision is sharpest when we look straight ahead.

c. For |θ| ≤ .19◦. We have an extremely narrow
range where our eyesight is sharp.

1.2.74

a. f(.75) = .752

1−2(.75)(.25) = .9. There is a 90% chance that the server will win from deuce if they win 75%

of their service points.

b. f(.25) = .252

1−2(.25)(.75) = .1. There is a 10% chance that the server will win from deuce if they win 25%

of their service points.

1.2.75

a. Using the points (1986, 1875) and (2000, 6471) we see that the slope is about 328.3. At t = 0, the value
of p is 1875. Therefore a line which reasonably approximates the data is p(t) = 328.3t+ 1875.

b. Using this line, we have that p(9) = 4830.

1.2.76

a. We know that the points (32, 0) and (212, 100) are on our line. The slope of our line is thus 100−0
212−32 =

100
180 = 5

9 . The function f(F ) thus has the form C = (5/9)F + b, and using the point (32, 0) we see that
0 = (5/9)32 + b, so b = −(160/9). Thus C = (5/9)F − (160/9)

b. Solving the system of equations C = (5/9)F −(160/9) and C = F , we have that F = (5/9)F −(160/9),
so (4/9)F = −160/9, so F = −40 when C = −40.

1.2.77

a. Because you are paying $350 per month, the amount paid after m months is y = 350m+ 1200.

b. After 4 years (48 months) you have paid 350 · 48 + 1200 = 18000 dollars. If you then buy the car for
$10,000, you will have paid a total of $28,000 for the car instead of $25,000. So you should buy the
car instead of leasing it.
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1.2.78

Because S = 4πr2, we have that r2 = S
4π , so |r| =√

S
2
√
π
, but because r is positive, we can write r =

√
S

2
√
π
.

2 4 6 8
S

0.2

0.4

0.6

0.8

r

1.2.79 The function makes sense for 0 ≤ h ≤ 2.

0.5 1.0 1.5 2.0
h

1

2

3

4

V

1.2.80

a. Note that the island, the point P on shore, and
the point down shore x units from P form a right
triangle. By the Pythagorean theorem, the length
of the hypotenuse is

√
40000 + x2. So Kelly must

row this distance and then jog 600−xmeters to get
home. So her total distance d(x) =

√
40000 + x2+

(600− x). 100 200 300 400 500 600
x

200

400

600

800
d

b. Because distance is rate times time, we have that
time is distance divided by rate. Thus T (x) =√

40000+x2

2 + 600−x
4 .

100 200 300 400 500 600
x

50

100

150

200

250

300

T

c. By inspection, it looks as though she should head to a point about 115 meters down shore from P .
This would lead to a time of about 236.6 seconds.

1.2.81

a. The volume of the box is x2h, but because the box
has volume 125 cubic feet, we have that x2h = 125,
so h = 125

x2 . The surface area of the box is given
by x2 (the area of the base) plus 4 · hx, because
each side has area hx. Thus S = x2 + 4hx =
x2 + 4·125·x

x2 = x2 + 500
x .

0 5 10 15 20
x

100

200

300

400

500
y

b. By inspection, it looks like the value of x which minimizes the surface area is about 6.3.

1.2.82 Let f(x) = anx
n + smaller degree terms and let g(x) = bmxm + some smaller degree terms.
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a. The largest degree term in f ·f is anx
n ·anxn = a2nx

n+n, so the degree of this polynomial is n+n = 2n.

b. The largest degree term in f ◦ f is an · (anxn)n, so the degree is n2.

c. The largest degree term in f · g is anbmxm+n, so the degree of the product is m+ n.

d. The largest degree term in f ◦ g is an · (bmxm)n, so the degree is mn.

1.2.83 Suppose that the parabola f crosses the x-axis at a and b, with a < b. Then a and b are roots of the
polynomial, so (x− a) and (x− b) are factors. Thus the polynomial must be f(x) = c(x− a)(x− b) for some
non-zero real number c. So f(x) = cx2 − c(a + b)x + abc. Because the vertex always occurs at the x value

which is −coefficient on x
2·coefficient on x2 we have that the vertex occurs at c(a+b)

2c = a+b
2 , which is halfway between a and b.

1.2.84

a. We complete the square to rewrite the function f . Write f(x) = ax2+ bx+ c as f(x) = a(x2+ b
ax+

c
a ).

Completing the square yields

a

((
x2 +

b

a
x+

b2

4a

)
+

(
c

a
− b2

4a

))
= a

(
x+

b

2a

)2

+

(
c− b2

4

)
.

Thus the graph of f is obtained from the graph of x2 by shifting b
2a units to the left (and then

doing some scaling and vertical shifting) – moving the vertex from 0 to − b
2a . The vertex is therefore(

−b
2a , c− b2

4

)
.

b. We know that the graph of f touches the x-axis twice if the equation ax2 + bx + c = 0 has two real
solutions. By the quadratic formula, we know that this occurs exactly when the discriminant b2 − 4ac
is positive. So the condition we seek is for b2 − 4ac > 0, or b2 > 4ac.

1.2.85

a.
n 1 2 3 4 5

n! 1 2 6 24 120

b.

1 2 3 4 5
n

20

40

60

80

100

120

c. Using trial and error and a calculator yields that 10! is more than a million, but 9! isn’t.

1.2.86

a.
n 1 2 3 4 5 6 7 8 9 10

S(n) 1 3 6 10 15 21 28 36 45 55

b. The domain of this function consists of the positive integers. The range is a subset of the set of positive
integers.

c. Using trial and error and a calculator yields that S(n) > 1000 for the first time for n = 45.

1.2.87

a.
n 1 2 3 4 5 6 7 8 9 10

T (n) 1 5 14 30 55 91 140 204 285 385

b. The domain of this function consists of the positive integers.

c. Using trial and error and a calculator yields that T (n) > 1000 for the first time for n = 14.
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1.3 Inverse, Exponential and Logarithmic Functions

1.3.1 D = R, R = (0,∞).

1.3.2 f(x) = 2x + 1 is one-to-one on all of R. If f(a) = f(b), then 2a + 1 = 2b + 1, so it must follow that
a = b.

1.3.3 If a function f is not one-to-one, then there are domain values x1 
= x2 with f(x1) = f(x2). If f−1

were to exist, then f−1(f(x1)) = f−1(f(x2)) which would imply that x1 = x2, a contradiction.

1.3.4
�b,a�

�a,b�

0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

1.0

y

Recall that the graph of f−1(x) is obtained from the
graph of f(x) by reflecting across the line y = x.
Thus, if (a, b) is on the graph of y = f(x), then (b, a)
must be on the graph of y = f−1(x).

1.3.5
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1.3.6 To find the inverse of y = 3x−4, we write x = 3y−4 and solve for y. We have x+4 = 3y, so y = x+4
3 .

Thus f−1(x) = x+4
3 .

1.3.7 logb x represents the power to which b must be raised in order to obtain x. So, blogb x = x.

1.3.8 The properties are related in that each can be used to derive the other. Assume bx+y = bxby, for all real
numbers x and y. Then applying this rule to the numbers logb x and logb y gives blogb x+logb y = blogb xblogb y =
xy. Taking logs of the leftmost and rightmost sides of this equation yields logb x+ logb y = logb(xy).

Now assume that logb(xy) = logb x + logb y for all positive numbers x and y. Applying this rule to the
product bxby, we have logb(b

xby) = logb b
x + logb b

y = x + y. Now looking at the leftmost and rightmost
sides of this equality and applying the definition of logarithm yields bx+y = bxby, as was desired.

1.3.9 Because the domain of bx is R and the range of bx is (0,∞), and because logb x is the inverse of bx,
the domain of logb x is (0,∞) and the range is R.
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1.3.10 Let 25 = z. Then ln(25) = ln(z), so ln(z) = 5 ln(2). Taking the exponential function of both sides
gives z = e5 ln(2). Therefore, 25 = e5 ln(2).

1.3.11 f is one-to-one on (−∞,−1], on [−1, 1], and on [1,∞).

1.3.12 f is one-to-one on (−∞,−2], on [−2, 0], on [0, 2], and on [2,∞).

1.3.13 �2 �1 1 2 x

1

2

3

4
y

1.3.14 �6 �4 �2 2 x

5

10

15
y

1.3.15 f is one-to-one on R, so it has an inverse on R.

1.3.16 f is one-to-one on [−1/2,∞), so it has an inverse on that set. (Alternatively, it is one-to-one on the
interval (−∞,−1/2], so that interval could be used as well.)

1.3.17 f is one-to-one on its domain, which is (−∞, 5) ∪ (5,∞), so it has an inverse on that set.

1.3.18 f is one-to-one on the set (−∞, 6], so it has an inverse on that set. (Alternatively, it is one-to-one
on the interval [6,∞), so that interval could be used as well.)

1.3.19 f is one-to-one on the interval (0,∞), so it has an inverse on that interval. (Alternatively, it is
one-to-one on the interval (−∞, 0), so that interval could be used as well.)

1.3.20 Note that f can be written as f(x) = x2 − 2x+ 8 = x2 − 2x+ 1 + 7 = (x− 1)2 + 7. It is one-to-one
on the interval (1,∞), so it has an inverse on that interval. (Alternatively, it is one-to-one on the interval
(−∞, 1), so that interval could be used as well.)

1.3.21

a. Switching x and y, we have x = 2y, so y = 1
2x. Thus y = f−1(x) = 1

2x.

b. f(f−1(x)) = f
(
1
2x
)
= 2
(
1
2x
)
= x. Also, f−1(f(x)) = f−1(2x) = 1

2 · (2x) = x.

1.3.22

a. Switching x and y yields x = y
4 + 1. Solving for y gives y = 4(x− 1), so f−1(x) = 4x− 4.

b. f(f−1(x)) = f(4x−4) = 4x−4
4 +1 = x−1+1 = x. Also, f−1(f(x)) = f−1

(
x
4 + 1

)
= 4
(
x
4 + 1

)−4 = x.

1.3.23

a. Switching x and y, we have x = 6−4y. Solving for y in terms of x we have 4y = 6−x, so y = f−1(x) =
6−x
4 .

b. f(f−1(x)) = f
(
6−x
4

)
= 6− 4 · ( 6−x

4

)
= 6− (6− x) = x.

f−1(f(x)) = f−1(6− 4x) = 6−(6−4x)
4 = 4x

4 = x.

1.3.24

a. Switching x and y, we have x = 3y3. Solving for y in terms of x we have y = 3
√
x/3, so y = f−1(x) =

3
√

x/3.

b. f(f−1(x)) = f( 3
√
x/3) = 3( 3

√
x/3)3 = 3(x/3) = x.

f−1(f(x)) = f−1(3x3) = 3
√
3x3/3 =

3
√
x3 = x.
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1.3.25

a. Switching x and y, we have x = 3y+ 5. Solving for y in terms of x we have y = x−5
3 , so y = f−1(x) =

x−5
3 .

b. f(f−1(x)) = f
(
x−5
3

)
= 3
(
x−5
3

)
+ 5 = (x− 5) + 5 = x.

f−1(f(x)) = f−1(3x+ 5) = (3x+5)−5
3 = 3x

3 = x.

1.3.26

a. Switching x and y, we have x = y2+4. Solving for y in terms of x we have y2 = x−4, so |y| = √
x− 4.

But because we are given that the domain of f is {x : x ≥ 0}, we know that the range of f−1 is also
non-negative. So y = f−1(x) =

√
x− 4.

b. f(f−1(x)) = f(
√
x− 4) = (

√
x− 4)2 + 4 = x− 4 + 4 = x.

f−1(f(x)) = f−1(x2 + 4) =
√
x2 + 4− 4 =

√
x2 = |x| = x, because x ≥ 0.

1.3.27

a. Switching x and y, we have x =
√
y + 2. Solving for y in terms of x we have y = f−1(x) = x2 − 2.

Note that because the range of f is [0,∞), that is also the domain of f−1.

b. f(f−1(x)) = f(x2−2) =
√
x2 − 2 + 2 = |x| = x, because x is in the domain of f−1 and so is nonnegative.

f−1(f(x)) = f−1(
√
x+ 2) =

√
x+ 2

2 − 2 = x+ 2− 2 = x.

1.3.28

a. Switching x and y, we have x = 2
y2+1 . Solving for y in terms of x we have y2+1 = 2

x . Thus y
2 = 2

x −1,

so |y| =
√

2
x − 1. Note that the domain of f is [0,∞) and that this is therefore the range of f−1, so

we must have f−1(x) =
√

2
x − 1.

b. f(f−1(x)) = f
(√

2
x − 1

)
= 2√

2
x−1

2
+1

= 2
2
x

= x.

f−1(f(x)) = f−1
(

2
x2+1

)
=
√

2
2

x2+1

− 1 =
√
x2 + 1− 1 = |x| = x,

because x is in the domain of f and is thus nonnegative.

1.3.29 First note that because the expression is symmetric, switching x and y doesn’t change the expression.
Solving for y gives |y| = √

1− x2. To get the four one-to-one functions, we restrict the domain and choose
either the upper part or lower part of the circle as follows:

a. f1(x) =
√
1− x2, 0 ≤ x ≤ 1

f2(x) =
√
1− x2, −1 ≤ x ≤ 0

f3(x) = −√
1− x2, −1 ≤ x ≤ 0

f4(x) = −√
1− x2, 0 ≤ x ≤ 1

b. Reflecting these functions across the line y = x yields the following:

f−1
1 (x) =

√
1− x2, 0 ≤ x ≤ 1

f−1
2 (x) = −√

1− x2, 0 ≤ x ≤ 1

f−1
3 (x) = −√

1− x2, −1 ≤ x ≤ 0

f−1
4 (x) =

√
1− x2, −1 ≤ x ≤ 0

1.3.30 First note that because the expression is symmetric, switching x and y doesn’t change the expression.
Solving for y gives |y| = √2|x|. To get the four one-to-one functions, we restrict the domain and choose
either the upper part or lower part of the parabola as follows:
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a. f1(x) =
√
2x, x ≥ 0

f2(x) =
√−2x, x ≤ 0

f3(x) = −√−2x, x ≤ 0

f4(x) = −√
2x, x ≥ 0

b. Reflecting these functions across the line y = x yields the following:

f−1
1 (x) = x2/2, x ≥ 0

f−1
2 (x) = −x2/2, x ≥ 0

f−1
3 (x) = −x2/2, x ≤ 0

f−1
4 (x) = x2/2, x ≤ 0

1.3.31 Switching x and y gives x = 8 − 4y. Solving this
for y yields y = f−1(x) = 8−x

4 .
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1.3.32 Switching x and y gives x = 4y − 12. Solving this
for y yields y = f−1(x) = x

4 + 3.
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x

1

2

3

4

5
y

1.3.33
Switching x and y gives x =

√
y. Solving this for

y yields y = f−1(x) = x2, but note that the range
of f is [0,∞) so that is the domain of f−1.
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1.3.34

Switching x and y gives x =
√
3− y. Solving this

for y yields y = f−1(x) = 3 − x2, but note that
the range of f is [0,∞) so that is the domain of
f−1.
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1.3.35 Switching x and y gives x = y4 + 4. Solving this
for y yields y = f−1(x) = 4

√
x− 4.
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1.3.36

Switching x and y gives x = 6
y2−9 . Solving yields

y2 − 9 = 6
x , or |y| =

√
(6/x) + 9, but because the

domain of f is positive, the range of f−1 must be
positive as well, so we have f−1(x) =

√
(6/x) + 9.
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y
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1.3.37

Begin by completing the square: f(x) = x2−2x+
6 = (x2 − 2x + 1) + 5 = (x − 1)2 + 5. Switching
x and y yields x = (y − 1)2 + 5. Solving for y
gives |y − 1| =

√
x− 5. Choosing the principal

square root (because the original given interval has
x positive) gives y = f−1(x) =

√
x− 5 + 1, x ≥ 5.
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8
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14

y

1.3.38

Begin by completing the square: f(x) = −x2 −
4x− 3 = −(x2 + 4x+ 3) = −(x2 + 4x+ 4− 1) =
−((x + 2)2 − 1) = 1 − (x + 2)2. Switching x and
y yields x = 1 − (y + 2)2, and solving for y gives
|y + 2| =

√
1− x. Since the given domain of f

was negative, the range of f−1 must be negative,
so we must have y + 2 = −√

1− x, so the inverse
function is f−1(x) = −√

1− x− 2.

�20 �15 �10 �5 x

�20

�15

�10

�5

y

1.3.39

�1 1 2 3
x

�1

1

2

3
y

1.3.40

�1 1 2 3
x

�1

1

2

3
y

1.3.41 If log10 x = 3, then 103 = x, so x = 1000.

1.3.42 If log5 x = −1, then 5−1 = x, so x = 1/5.

1.3.43 If log8 x = 1/3, then x = 81/3 = 2.

1.3.44 If logb 125 = 3, then b3 = 125, so b = 5 because 53 = 125.

1.3.45 If lnx = −1, then e−1 = x, so x = 1
e .
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1.3.46 If ln y = 3, then y = e3.

1.3.47 logb

(
x
y

)
= logb x− logb y = .36− .56 = −0.2.

1.3.48 logb x
2 = 2 logb x = 2(.36) = 0.72.

1.3.49 logb xz = logb x+ logb z = .36 + .83 = 1.19.

1.3.50 logb
√
xy

z = logb(xy)
1/2 − logb z = 1

2 (logb x+ logb y)− logb z = (.36)/2 + (.56)/2− .83 = −.37.

1.3.51 logb
√
x

3
√
z
= logb x

1/2 − logb z
1/3 = (1/2) logb x− (1/3) logb z = (.36)/2− (.83)/3 = −.096.

1.3.52 logb
b2x5/2√

y = logb b
2x5/2−logb y

1/2 = logb b
2+(5/2) logb x−(1/2) logb y = 2+(5/2)(.36)−(1/2)(.56) =

2.62.

1.3.53 Since 7x = 21, we have that ln 7x = ln 21, so x ln 7 = ln 21, and x = ln 21
ln 7 .

1.3.54 Since 2x = 55, we have that ln 2x = ln 55, so x ln 2 = ln 55, and x = ln 55
ln 2 .

1.3.55 Since 33x−4 = 15, we have that ln 33x−4 = ln 15, so (3x − 4) ln 3 = ln 15. Thus, 3x − 4 = ln 15
ln 3 , so

x = (ln 15)/(ln 3)+4
3 = ln 15+4 ln 3

3 ln 3 = ln 5+ln 3+4 ln 3
3 ln 3 = ln 5

3 ln 3 + 5
3 .

1.3.56 Since 53x = 29, we have that ln 53x = ln 29, so (3x) ln 5 = ln 29. Solving for x gives x = ln 29
3 ln 5 .

1.3.57 We are seeking t so that 50 = 100e−t/650. This occurs when e−t/650 = 1
2 , which is when − t

650 =
ln(1/2), so t = 650 ln 2 ≈ 451 years.

1.3.58 In 2010 (when t = 0), the population is P (0) = 100. So we are seeking t so that 200 = 100et/50, or
et/50 = 2. Taking the natural logarithm of both sides yields t

50 = ln 2, or t = 50 ln 2 ≈ 35 years.

1.3.59 log2 15 = ln 15
ln 2 ≈ 3.9069.

1.3.60 log3 30 = ln 30
ln 3 ≈ 3.0959.

1.3.61 log4 40 = ln 40
ln 4 ≈ 2.6610.

1.3.62 log6 60 = ln 60
ln 6 ≈ 2.2851.

1.3.63 Let 2x = z. Then ln 2x = ln z, so x ln 2 = ln z. Taking the exponential function of both sides gives
z = ex ln 2.

1.3.64 Let 3sin x = z. Then ln 3sin x = ln z, so (sinx) ln 3 = ln z. Taking the exponential function of both
sides gives z = e(sin x) ln 3.

1.3.65 Let z = ln |x|. Then ez = |x|. Taking logarithms with base 5 of both sides gives log5 e
z = log5 |x|, so

z · log5 e = log5 |x|, and thus z = log5 |x|
log5 e .

1.3.66 Using the change of base formula, log2(x
2 + 1) = ln(x2+1)

ln 2 .

1.3.67 Let z = a1/ ln a. Then ln z = ln
(
a1/ ln a

)
= 1

ln a · ln a = 1. Thus z = e.

1.3.68 Let z = a1/ log a. Then log z = log
(
a1/ log a

)
= 1

log a · log a = 1. Thus z = 10.

1.3.69

a. False. For example, 3 = 31, but 1 
= 3
√
3.
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b. False. For example, suppose x = y = b = 2. Then the left-hand side of the equation is equal to 1, but
the right-hand side is 0.

c. False. log5 4
6 = 6 log5 4 > 4 log5 6.

d. True. This follows because 10x and log10 are inverses of each other.

e. False. ln 2e = e ln 2 < 2.

f. False. For example f(0) = 1, but the alleged inverse function evaluated at 1 is not 0 (rather, it has
value 1/2.)

g. True. f is its own inverse because f(f(x)) = f(1/x) = 1
1/x = x.

1.3.70

3�x

2�x

2x

3x

�4 �2 2 4
x

y

1.3.71

log2�x�

log4�x�

log10�x�

1 2 3 4 5 6
x

y

1.3.72

2x2�x

2x�1
22 x

2x�1

�4 �2 2 4
x

y
1.3.73

log2�x�1�

log2�x�

�log2�x��
2

log2�x��1

log2�x
2�

1 2 3 4 5
x

y

1.3.74 Since ex = x123, we have x = ln(x123), so x = 123 lnx. Consider the function f(x) = x − 123 lnx.
Plotting this function using a computer or calculator reveals a graph which crosses the x axis twice, near
x = 1 and near x = 826. (Try graphing it using the domain (0, 900)). Using a calculator and some trial and
error reveals that the roots of f are approximately 1.0082 and 826.1659.

1.3.75 Note that f is one-to-one, so there is only one inverse. Switching x and y gives x = (y + 1)3. Then
3
√
x = y + 1, so y = f−1(x) = 3

√
x− 1. The domain of f−1 is R.

1.3.76 Note that to get a one-to-one function, we should restrict the domain to either [4,∞) or (−∞, 4].
Switching x and y yields x = (y− 4)2, so

√
x = |y− 4|. So y = 4±√

x. So the inverse of f when the domain
of f is restricted to [4,∞) is f−1(x) = 4 +

√
x, while if the domain of f is restricted to (−∞, 4] the inverse

is f−1(x) = 4−√
x. In either case, the domain of f−1 is [0,∞).

1.3.77 Note that to get a one-to-one function, we should restrict the domain to either [0,∞) or (−∞, 0].
Switching x and y yields x = 2

y2+2 , so y2 + 2 = (2/x). So y = ±√(2/x)− 2. So the inverse of f when the

domain of f is restricted to [0,∞) is f−1(x) =
√
(2/x)− 2, while if the domain of f is restricted to (−∞, 0]

the inverse is f−1(x) = −√(2/x)− 2. In either case, the domain of f−1 is (0, 1].

1.3.78 Note that f is one-to-one. Switching x and y yields x = 2y
y+2 , so x(y + 2) = 2y. Thus xy + 2x = 2y,

so 2x = 2y − xy = y(2− x). Thus, y = 2x
2−x . The domain of f−1(x) = 2x

2−x is (−∞, 2) ∪ (2,∞).
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1.3.79

a. p(0) = 150(20/12) = 150.

b. At a given time t, let the population be z = 150(2t/12). Then 12 hours later, the time is 12 + t, and
the population is 150(2(t+12)/12) = 150(2(t/12)+1) = 150(2t/12 · 2) = 2z.

c. Since 4 days is 96 hours, we have p(96) = 150(296/12) = 150(28) = 38,400.

d. We can find the time to triple by solving 450 = 150(2t/12), which is equivalent to 3 = 2t/12. By taking
logs of both sides we have ln 3 = t

12 · ln 2, so t = 12 ln 3
ln 2 ≈ 19.0 hours.

e. The population will reach 10,000 when 10, 000 = 150(212/t), which is equivalent to 200
3 = 2t/12. By

taking logs of both sides we have ln(200/3) = t
12 ln 2, so = 12·ln(200/3)

ln 2 ≈ 72.7 hours.

1.3.80

a. The relevant graph is:
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b.
Varying a while holding c constant scales the curve verti-
cally. It appears that the steady-state charge is equal to
a.

a�2

a�1

a�3

20 40 60 80 100 120
t

0.5

1.0

1.5

2.0

2.5

3.0
Q

c.
Varying c while holding a constant scales the curve hori-
zontally. It appears that the steady-state charge does not
vary with c.
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d. As t grows large, the term ae−t/c approaches zero for any fixed c and a. So the steady-state charge for
a− ae−t/c is a.

1.3.81

a. No. The function takes on the values from 0 to 64 as t varies from 0 to 2, and then takes on the values
from 64 to 0 as t varies from 2 to 4, so h is not one-to-one.

b. Solving for h in terms of t we have h = 64t − 16t2, so (completing the square) we have h − 64 =

−16(t2 − 4t+ 4). Thus, h− 64 = −16(t− 2)2, and (t− 2)2 = 64−h
16 . Therefore |t− 2| =

√
64−h
4 . When

the ball is on the way up we know that t < 2, so the inverse of f is f−1(h) = 2−
√
64−h
4 .
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c. Using the work from the previous part of this problem, we have that when the ball is on the way down

(when t > 2) we have that the inverse of f is f−1(h) = 2 +
√
64−h
4 .

d. On the way up, the ball is at a height of 30 ft at 2−
√
64−30
4 ≈ 0.542 seconds.

e. On the way down, the ball is at a height of 10 ft at 2 +
√
64−10
4 ≈ 3.837 seconds.

1.3.82 The terminal velocity for k = 11 is 600
11 .
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t
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1.3.83 Using the change of base formula, we have log1/b x = ln x
ln 1/b = ln x

ln 1−ln b = ln x
− ln b = − ln x

ln b = − logb x.

1.3.84

a. Given x = bp, we have p = logb x, and given y = bq, we have q = logb y.

b. xy = bpbq = bp+q.

c. logb xy = logb b
p+q = p+ q = logb x+ logb y.

1.3.85 Using the same notation as in the previous problem, we have:
x
y = bp

bq = bp−q. Thus logb
x
y = logb b

p−q = p− q = logb x− logb y.

1.3.86

a. Given x = bp, we have p = logb x.

b. xy = (bp)y = byp.

c. logb x
y = logb b

yp = yp = y logb x.

1.3.87

a. f is one-to-one on (−∞,−√
2/2], on [−√

2/2, 0],
on [0,

√
2/2], and on [

√
2/2,∞).

�1.0 �0.5 0.5 1.0
x

�0.2

0.2

0.4

0.6

0.8

1.0

y

b. If u = x2, then our function becomes y = u2−u. Completing the square gives y+(1/4) = u2−u+(1/4) =
(u − (1/2))2. Thus |u − (1/2)| =

√
y + (1/4), so u = (1/2) ± √y + (1/4), with the “+” applying

for u = x2 > (1/2) and the “−” applying when u = x2 < (1/2). Now letting u = x2, we have

x2 = (1/2) ± √y + (1/4), so x = ±
√

(1/2)±√y + (1/4). Now switching the x and y gives the

following inverses:

Domain of f (−∞,−√
2/2] [−√

2/2, 0] [0,
√
2/2] [

√
2/2,∞)

Range of f [−1/4,∞) [−1/4, 0] [−1/4, 0] [−1/4,∞)

Inverse of f −
√
(1/2) +

√
x+ (1/4) −

√
(1/2)−√x+ (1/4)

√
(1/2)−√x+ (1/4)

√
(1/2) +

√
x+ (1/4)
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1.3.88

a. f(x) = g(h(x)) = g(x3) = 2x3 + 3. To find the inverse of f , we switch x and y to obtain x = 2y3 + 3,

so that y3 = x−3
2 , so f−1(x) = 3

√
x−3
2 . Note that g−1(x) = x−3

2 , and h−1(x) = 3
√
x, and so f−1(x) =

h−1(g−1(x)).

b. f(x) = g(h(x)) = g(
√
x) = (

√
x)2 + 1 = x+ 1. so the inverse of f is f−1(x) = x− 1.

Note that g−1(x) =
√
x− 1, and h−1(x) = x2, and so f−1(x) = h−1(g−1(x)).

c. If h and g are one-to-one, then their inverses exist, and f−1(x) = h−1(g−1(x)), because f(f−1(x)) =
g(h(h−1(g−1(x))) = g(g−1(x)) = x and likewise, f−1(f(x)) = h−1(g−1(g(h(x))) = h−1(h(x)) = x.

1.3.89 Let y = x3+2x. This function is one-to-one, so it has an inverse. Making the suggested substitution
yields y = (z − 2/(3z))3 + 2(z − 2/(3z)). Expanding gives y = z3 − 2z + 4/(3z)− 8/(27z3) + 2z − 4/(3z) =
z3 − 8/(27z3). Thus we have y = z3 − 8/(27z3), so 27z3y = 27(z3)2 − 8, or 27(z3)2 − 27y(z3) − 8 = 0.

Applying the quadratic formula gives z3 = y
2 ±

√
3
√

32+27y2

18 We will take the “+” part and finish solving to
obtain:

z =
3

√
y

2
+

√
3
√
32 + 27y2

18

Now

x = z − (2/(3z)) =
3z2 − 2

3z
=

3

(
3

√
y
2 +

√
3
√

32+27y2

18

)2

− 2

3
3

√
y
2 +

√
3
√

32+27y2

18

.

So the inverse function f−1(x) is now obtained by switching y and x.

1.3.90 The given function is one-to-one, so it has an inverse. Let y = x3 + 4x − 1, so y + 1 = x3 + 4x.
Making the suggested substitution yields y + 1 = (z − 4/(3z))3 + 4(z − 4/(3z)). Expanding gives y + 1 =
z3 − 4z + 16/(3z) − 64/(27z3) + 4z − 16/(3z) = z3 − 64/(27z3). Thus we have y + 1 = z3 − 64/(27z3),
so 27z3(y + 1) = 27(z3)2 − 64, or 27(z3)2 − 27(y + 1)(z3) − 64 = 0. Applying the quadratic formula gives

z3 = y+1
2 ±

√
3
√

256+27(y+1)2

18 We will take the “+” part and finish solving to obtain:

z =
3

√
y + 1

2
+

√
3
√
256 + 27(1 + y)2

18

Now

x = z − (4/(3z)) =
3z2 − 4

3z
=

3

(
3

√
y+1
2 +

√
3
√

256+27(y+1)2

18

)2

− 4

3
3

√
y+1
2 +

√
3
√

256+27(y+1)2

18

.

So the inverse function f−1(x) is now obtained by switching y and x.

1.3.91 Using the change of base formulas logb c =
ln c
ln b and logc b =

ln b
ln c we have

(logb c) · (logc b) =
ln c

ln b
· ln b
ln c

= 1.

1.4 Trigonometric Functions and Their Inverses

1.4.1 Let O be the length of the side opposite the angle x, let A be length of the side adjacent to the angle
x, and let H be the length of the hypotenuse. Then sinx = O

H , cosx = A
H , tanx = O

A , cscx = H
O , secx = H

A ,

and cotx = A
O .
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1.4.2 We consider the angle formed by the positive x axis and the ray from the origin through the point
P (x, y). A positive angle is one for which the rotation from the positive x axis to the other ray is counter-

clockwise. We then define the six trigonometric functions as follows: let r =
√

x2 + y2. Then sin θ = y
r ,

cos θ = x
r , tan θ = y

x , csc θ = r
y , sec θ = r

x , and cot θ = x
y .

1.4.3 The radian measure of an angle θ is the length of the arc s on the unit circle associated with θ.

1.4.4 The period of a function is the smallest positive real number k so that f(x + k) = f(x) for all x in
the domain of the function. The sine, cosine, secant, and cosecant function all have period 2π. The tangent
and cotangent functions have period π.

1.4.5 sin2 x+ cos2 x = 1, 1 + cot2 x = csc2 x, and tan2 x+ 1 = sec2 x.

1.4.6 cscx = 1
sin x , secx = 1

cos x , tanx = sin x
cos x , and cotx = cos x

sin x .

1.4.7 The tangent function is undefined where cosx = 0, which is at all real numbers of the form π
2 +

kπ, k an integer.

1.4.8 secx is defined wherever cosx 
= 0, which is {x : x 
= π
2 + kπ, k an integer}.

1.4.9 The sine function is not one-to-one over its whole domain, so in order to define an inverse, it must be
restricted to an interval on which it is one-to-one.

1.4.10 In order to define an inverse for the cosine function, we restricted the domain to [0, π] in order to get
a one-to-one function. Because the range of the inverse of a function is the domain of the function, we have
that the values of cos−1 x lie in the interval [0, π].

1.4.11 tan(tan−1(x)) = x for all real numbers x. (Note that the domain of the inverse tangent is R).
However, it is not always true that tan−1(tanx) = x. For example, tan 27π = 0, and tan−1(0) = 0. Thus
tan−1(tan(27π)) 
= 27π.

1.4.12

�1 1 2 3
x

�3

�2

�1

1

2

3

y
1.4.13 The numbers ±π/2 are not in the range of
tan−1 x. The range is (−π/2, π/2). However, it is
true that as x increases without bound, the values of
tan−1 x get close to π/2, and as x decreases without
bound, the values of tan−1 x get close to −π/2.

1.4.14 The domain of sec−1 x is {x : |x| ≥ 1}. The range is [0, π/2) ∪ (π/2, π].

1.4.15

The point on the unit circle associated with 2π/3
is (−1/2,

√
3/2), so cos(2π/3) = −1/2.

�
�1

2
,

3

2
�

�1.0 �0.5 0.5 1.0

�1.0

�0.5

0.5

1.0
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1.4.16 The point on the unit circle associated with 2π/3 is (−1/2,
√
3/2), so sin(2π/3) =

√
3/2. See the

picture from the previous problem.

1.4.17

The point on the unit circle associated with −3π/4
is (−√

2/2,−√
2/2), so tan(−3π/4) = 1.

�
� 2

2
,
� 2

2
�

�1.0 �0.5 0.5 1.0

�1.0

�0.5

0.5

1.0

1.4.18

The point on the unit circle associated with 15π/4
is (

√
2/2,−√

2/2), so tan(15π/4) = −1.

�
2

2
,
� 2

2
�

�1.0 �0.5 0.5 1.0

�1.0
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1.4.19

The point on the unit circle associated with
−13π/3 is (1/2,−√

3/2), so cot(−13π/3) =
−1/

√
3 = −√

3/3.

�
1

2
,
� 3

2
�
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1.4.20

The point on the unit circle associated with 7π/6
is (−√

3/2,−1/2), so sec(7π/6) = −2/
√
3 =

−2
√
3/3.

�
� 3

2
,
�1

2
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1.4.21

The point on the unit circle associated with
−17π/3 is (1/2,

√
3/2), so cot(−17π/3) = 1/

√
3 =√

3/3.

�
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1.4.22

The point on the unit circle associated with 16π/3
is (−1/2,−√

3/2), so sin(16π/3) = −√
3/2.

�
�1

2
,
� 3

2
�
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�1.0
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1.4.23 Because the point on the unit circle associated with θ = 0 is the point (1, 0), we have cos 0 = 1.

1.4.24 Because −π/2 corresponds to a quarter circle clockwise revolution, the point on the unit circle
associated with −π/2 is the point (0,−1). Thus sin(−π/2) = −1.

1.4.25 Because −π corresponds to a half circle clockwise revolution, the point on the unit circle associated
with −π is the point (−1, 0). Thus cos(−π) = −1.

1.4.26 Because 3π corresponds to one and a half counterclockwise revolutions, the point on the unit circle
associated with 3π is (−1, 0), so tan 3π = 0

−1 = 0.
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1.4.27 Because 5π/2 corresponds to one and a quarter counterclockwise revolutions, the point on the unit
circle associated with 5π/2 is the same as the point associated with π/2, which is (0, 1). Thus sec 5π/2 is
undefined.

1.4.28 Because π corresponds to one half circle counterclockwise revolution, the point on the unit circle
associated with π is (−1, 0). Thus cotπ is undefined.

1.4.29 From our definitions of the trigonometric functions via a point P (x, y) on a circle of radius r =√
x2 + y2, we have sec θ = r

x = 1
x/r = 1

cos θ .

1.4.30 From our definitions of the trigonometric functions via a point P (x, y) on a circle of radius r =√
x2 + y2, we have tan θ = y

x = y/r
x/r = sin θ

cos θ .

1.4.31 We have already established that sin2 θ+cos2 θ = 1. Dividing both sides by cos2 θ gives tan2 θ+1 =
sec2 θ.

1.4.32 We have already established that sin2 θ+cos2 θ = 1. We can write this as sin θ
(1/ sin θ) +

cos θ
(1/ cos θ) = 1, or

sin θ
csc θ + cos θ

sec θ = 1.

1.4.33

Using the triangle pictured, we see that sec(π/2−
θ) = c

a = csc θ.
This also follows from the sum identity cos(a+b) =
cos a cos b − sin a sin b as follows: sec(π/2 − θ) =

1
cos(π/2+(−θ)) = 1

cos(π/2) cos(−θ)−sin(π/2) sin(−θ) =
1

0−(− sin(θ)) = csc(θ).

Θ

Π
2
�Θ

a

b
c

1.4.34 Using the trig identity for the cosine of a sum (mentioned in the previous solution) we have:

sec(x+ π) =
1

cos(x+ π)
=

1

cos(x) cos(π)− sin(x) sin(π)
=

1

cos(x) · (−1)− sin(x) · 0 =
1

− cos(x)
= − secx.

1.4.35 Using the fact that π
12 = π/6

2 and the half-angle identity for cosine:

cos2(π/12) =
1 + cos(π/6)

2
=

1 +
√
3/2

2
=

2 +
√
3

4
.

Thus, cos(π/12) =

√
2+

√
3

4 .

1.4.36 Using the fact that 3π
8 = 3π/4

2 and the half-angle identities for sine and cosine, we have:

cos2(3π/8) =
1 + cos(3π/4)

2
=

1 + (−√
2/2)

2
=

2−√
2

4
,
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and using the fact that 3π/8 is in the first quadrant (and thus has positive value for cosine) we deduce that

cos(3π/8) =
√
2−√

2/2. A similar calculation using the sine function results in sin(3π/8) =
√

2 +
√
2/2.

Thus tan(3π/8) =
√

2+
√
2

2−√
2
, which simplifies as

√
2 +

√
2

2−√
2
· 2 +

√
2

2 +
√
2
=

√
(2 +

√
2)2

2
=

2 +
√
2√

2
= 1 +

√
2.

1.4.37 First note that tanx = 1 when sinx = cosx. Using our knowledge of the values of the standard
angles between 0 and 2π, we recognize that the sine function and the cosine function are equal at π/4. Then,
because we recall that the period of the tangent function is π, we know that tan(π/4 + kπ) = tan(π/4) = 1
for every integer value of k. Thus the solution set is {π/4 + kπ,where k is an integer}.

1.4.38 Given that 2θ cos(θ) + θ = 0, we have θ(2 cos(θ) + 1) = 0. Which means that either θ = 0, or
2 cos(θ) + 1 = 0. The latter leads to the equation cos θ = −1/2, which occurs at θ = 2π/3 and θ = 4π/3.
Using the fact that the cosine function has period 2π the entire solution set is thus

{0} ∪ {2π/3 + 2kπ,where k is an integer} ∪ {4π/3 + 2lπ,where l is an integer}.

1.4.39 Given that sin2 θ = 1
4 , we have |sin θ| = 1

2 , so sin θ = 1
2 or sin θ = − 1

2 . It follows that θ =
π/6, 5π/6, 7π/6, 11π/6.

1.4.40 Given that cos2 θ = 1
2 , we have |cos θ| = 1√

2
=

√
2
2 . Thus cos θ =

√
2
2 or cos θ = −

√
2
2 . We have

θ = π/4, 3π/4, 5π/4, 7π/4.

1.4.41 The equation
√
2 sin(x) − 1 = 0 can be written as sinx = 1√

2
=

√
2
2 . Standard solutions to this

equation occur at x = π/4 and x = 3π/4. Because the sine function has period 2π the set of all solutions
can be written as:

{π/4 + 2kπ,where k is an integer} ∪ {3π/4 + 2lπ,where l is an integer}.

1.4.42 Let u = 3x. Note that because 0 ≤ x < 2π, we have 0 ≤ u < 6π. Because sinu =
√
2/2 for u = π/4,

3π/4, 9π/4, 11π/4, 17π/4, and 19π/4, we must have that sin 3x =
√
2/2 for 3x = π/4, 3π/4, 9π/4, 11π/4,

17π/4, and 19π/4, which translates into

x = π/12, π/4, 3π/4, 11π/12, 17π/12, and 19π/12.

1.4.43 As in the previous problem, let u = 3x. Then we are interested in the solutions to cosu = sinu, for
0 ≤ u < 6π.

This would occur for u = 3x = π/4, 5π/4, 9π/4, 13π/4, 17π/4, and 21π/4. Thus there are solutions for the
original equation at

x = π/12, 5π/12, 3π/4, 13π/12, 17π/12, and 7π/4.

1.4.44 sin2(θ) − 1 = 0 wherever sin2(θ) = 1, which is wherever sin(θ) = ±1. This occurs for θ = π/2 +
kπ,where k is an integer.

1.4.45 If sin θ cos θ = 0, then either sin θ = 0 or cos θ = 0. This occurs for θ = 0, π/2, π, 3π/2.

1.4.46 If tan2 2θ = 1, then sin2 2θ = cos2 2θ, so we have either sin 2θ = cos 2θ or sin 2θ = − cos 2θ. This
occurs for 2θ = π/4, 3π/4, 5π/4, 7π/4 for 0 ≤ 2θ ≤ 2π, so the corresponding values for θ are π/8, 3π/8, 5π/8,
7π/8, 0 ≤ θ ≤ π.

1.4.47 Let z = sin−1(1). Then sin z = 1, and because sinπ/2 = 1, and π/2 is in the desired interval,
z = π/2.

1.4.48 Let z = cos−1(−1). Then cos z = −1, and because cosπ = −1 and π is in the desired interval, z = π.
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1.4.49 Let z = tan−1(1). Then tan z = 1, so sin z
cos z = 1, so sin z = cos z. Because cosπ/4 = sinπ/4, and π/4

is in the desired interval, z = π/4.

1.4.50 Let z = cos−1(−√
2/2). Then cos z = −√

2/2. Because cos 3π/4 = −√
2/2 and 3π/4 is in the desired

interval, we have z = 3π/4. (Note that cos(−π/4) is also equal to −√
2/2, but −π/4 isn’t in the desired

interval [0, π].)

1.4.51 sin−1(
√
3/2) = π/3, because sin(π/3) =

√
3/2.

1.4.52 cos−1(2) does not exist, because 2 is not in the domain of the inverse cosine function (because 2 is
not in the range of the cosine function.)

1.4.53 cos−1(−1/2) = 2π/3, because cos(2π/3) = −1/2.

1.4.54 sin−1(−1) = −π/2, because sin(−π/2) = −1.

1.4.55 cos(cos−1(−1)) = cos(π) = −1.

1.4.56 cos−1(cos(7π/6)) = cos−1(−√
3/2) = 5π/6. Note that the range of the inverse cosine function is

[0, π].

1.4.57

cos(sin−1(x)) =
side adjacent to sin−1(x)

hypotenuse
=

√
1− x2

1
=
√
1− x2.

sin�1�x�

1 � x2

x
1

1.4.58

cos(sin−1(x/3)) =
side adjacent to sin−1(x/3)

hypotenuse
=

√
9− x2

3
.

sin�1�x�3�

9 � x2

x
3
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1.4.59

sin(cos−1(x/2)) =
side opposite of cos−1(x/2)

hypotenuse
=

√
4− x2

2
.

cos�1�x�2�

x

4 � x2
2

1.4.60

Note (from the triangle pictured) that cos θ = b
c =

sin(π2 − θ). Thus sin−1(cos θ) = sin−1(sin(π2 −
θ)) = π

2 − θ.

Θ

Π
2
�Θ

a

b
c

1.4.61

Using the identity given, we have
sin(2 cos−1(x)) = 2 sin(cos−1(x)) cos(cos−1(x)) =
2x sin(cos−1(x)) = 2x

√
1− x2.

cos�1�x�

x

1 � x2
1
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1.4.62

First note that cos(sin−1(θ)) =
√
1− θ2, as indi-

cated in the triangle shown.
Using the identity given, we have
cos(2 sin−1(x)) = cos2((sin−1(x)) −
sin2(sin−1(x)) = (

√
1− x2)2 − x2 = 1− 2x2.

sin�1�Θ�

1 � Θ2

Θ
1

1.4.63

Let θ = cos−1(x), and note from the diagram
that it then follows that cos−1(−x) = π − θ. So
cos−1(x) + cos−1(−x) = θ + π − θ = π.

�x,y���x,y�

Θ�Θ
�1.0 �0.5 0.0 0.5 1.0

0.2

0.4

0.6

0.8

1.0

1.4.64 Let θ = sin−1(y). Then sin θ = y, and sin(−θ) = − sin(θ) = −y (because the sine function is an odd
function) and it then follows that −θ = sin−1(−y). Therefore, sin−1(y) + sin−1(−y) = θ+−θ = 0. It would
be instructive for the reader to draw his or her own diagram like that in the previous solution.

1.4.65 The graphs appear to be identical: so sin−1 x = π/2− cos−1(x).

1.4.66 The graphs appear to be identical: so tan−1 x = π/2− cot−1(x).

1.4.67 tan−1(
√
3) = tan−1

(√
3/2
1/2

)
= π/3, because sin(π/3) =

√
3/2 and cos(π/3) = 1/2.

1.4.68 cot−1(−1/
√
3) = cot−1

(
− 1/2√

3/2

)
= 2π/3, because sin(2π/3) =

√
3/2 and cos(2π/3) = −1/2.

1.4.69 sec−1(2) = sec−1
(

1
1/2

)
= π/3, because sec(π/3) = 1

cos(π/3) =
1

1/2 = 2.

1.4.70 csc−1(−1) = sin−1(−1) = −π/2.

1.4.71 tan−1(tan(π/4)) = tan−1(1) = π/4.

1.4.72 tan−1(tan(3π/4)) = tan−1(−1) = −π/4.

1.4.73 Let csc−1(sec 2) = z. Then csc z = sec 2, so sin z = cos 2. Now by applying the result of problem 60,
we see that z = sin−1(cos 2) = π/2− 2 = π−4

2 .

1.4.74 tan(tan−1(1)) = tan(π/4) = 1.
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1.4.75

cos(tan−1(x)) =
side adjacent to tan−1(x)

hypotenuse
=

1√
1 + x2

.

tan�1�x�

1

x
1 � x2

1.4.76

tan(cos−1(x)) =
side opposite of cos−1(x)

side adjacent to cos−1(x)
=

√
1− x2

x
.

cos�1�x�

x

1 � x2
1

1.4.77

cos(sec−1(x)) =
side adjacent to sec−1 x

hypotenuse
=

1

x
.

sec�1�x�

1

x2 � 1
x
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1.4.78

cot(tan−1 2x) =
side adjacent to tan−1 2x

side opposite of tan−1 2x
=

1

2x
.

tan�1�2x�

1

2x
1 � 4 x2

1.4.79

Assume x > 0. Then sin

(
sec−1

(√
x2 + 16

4

))
=

side opposite of sec−1
(√

x2+16
4

)
hypotenuse

=
|x|√

x2 + 16
.

Note: If x < 0, then the expression results in
a positive number, hence the necessary absolute
value sign in the result. sec�1�

x2 � 16

4
�

4

�x�
x2 � 16

1.4.80

cos

(
tan−1

(
x√

9− x2

))
=

side adjacent to tan−1
(

x√
9−x2

)
hypotenuse

=

√
9− x2

3
.

1.4.81 Because sin θ = x
6 , θ = sin−1(x/6). Also, θ = tan−1

(
x√

36−x2

)
= sec−1

(
6√

36−x2

)
.
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1.4.82

First note that tan(ψ) = 2x√
144−9x2

, so ψ =

tan−1
(

2x√
144−9x2

)
. Also, sin(θ + ψ) = 3x

12 = x
4 , so

θ + ψ = sin−1(x/4). Therefore, θ = sin−1(x/4) −
ψ = sin−1(x/4)− tan−1(2x/

√
144− 9x2).

Θ Ψ

x

144 � 9 x2

2x

12

1.4.83

a. False. For example, sin(π/2 + π/2) = sin(π) = 0 
= sin(π/2) + sin(π/2) = 1 + 1 = 2.

b. False. That equation has zero solutions, because the range of the cosine function is [−1, 1].

c. False. It has infinitely many solutions of the form π/6 + 2kπ,where k is an integer (among others.)

d. False. It has period 2π
π/12 = 24.

e. True. The others have a range of either [−1, 1] or (−∞,−1] ∪ [1,∞).

f. False. For example, suppose x = .5. Then sin−1(x) = π/6 and cos−1(x) = π/3, so that sin−1(x)
cos−1(x) =

π/6
π/3 = .5. However, note that tan−1(.5) 
= .5,

g. True. Note that the range of the inverse cosine function is [0, π].

h. False. For example, if x = .5, we would have sin−1(.5) = π/6 
= 1/ sin(.5).

1.4.84 If sin θ = −4/5, then the Pythagorean identity gives | cos θ| = 3/5. But if π < θ < 3π/2, then the
cosine of θ is negative, so cos θ = −3/5. Thus tan θ = 4/3, cot θ = 3/4, sec θ = −5/3, and csc θ = −5/4.

1.4.85 If cos θ = 5/13, then the Pythagorean identity gives | sin θ| = 12/13. But if 0 < θ < π/2, then the
sine of θ is positive, so sin θ = 12/13. Thus tan θ = 12/5, cot θ = 5/12, sec θ = 13/5, and csc θ = 13/12.

1.4.86 If sec θ = 5/3, then cos θ = 3/5, and the Pythagorean identity gives | sin θ| = 4/5. But if 3π/2 < θ <
2π, then the sine of θ is negative, so sin θ = −4/5. Thus tan θ = −4/3, cot θ = −3/4, and csc θ = −5/4.

1.4.87 If csc θ = 13/12, then sin θ = 12/13, and the Pythagorean identity gives | cos θ| = 5/13. But if
0 < θ < π/2, then the cosine of θ is positive, so cos θ = 5/13. Thus tan θ = 12/5, cot θ = 5/12, and
sec θ = 13/5.

1.4.88 The amplitude is 2, and the period is 2π
2 = π.

1.4.89 The amplitude is 3, and the period is 2π
1/3 = 6π.

1.4.90 The amplitude is 2.5, and the period is 2π
1/2 = 4π.

1.4.91 The amplitude is 3.6, and the period is 2π
π/24 = 48.
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1.4.92

�4 �2 2 4
x
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�1
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1.4.93
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1.4.94

�4 �2 2 4
x

�2

�1

1
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1.4.95

�40 �20 20 40
x

�1

1

2

3

4

5

y

1.4.96

It is helpful to imagine first shifting the func-
tion horizontally so that the x intercept is where
it should be, then stretching the function hori-
zontally to obtain the correct period, and then
stretching the function vertically to obtain the cor-
rect amplitude. Because the old x-intercept is at
x = 0 and the new one should be at x = 3 (halfway
between where the maximum and the minimum
occur), we need to shift the function 3 units to
the right. Then to get the right period, we need
to multiply (before applying the sine function) by
π/6 so that the new period is 2π

π/6 = 12. Finally,

to get the right amplitude and to get the max and
min at the right spots, we need to multiply on the
outside by 4. Thus, the desired function is:

f(x) = 4 sin((π/6)(x− 3)) = 4 sin((π/6)x− π/2).

�2 2 4 6 8
x

�4

�2

2

4
y
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1.4.97

It is helpful to imagine first shifting the func-
tion horizontally so that the x intercept is where
it should be, then stretching the function hori-
zontally to obtain the correct period, and then
stretching the function vertically to obtain the cor-
rect amplitude, and then shifting the whole graph
up. Because the old x-intercept is at x = 0 and
the new one should be at x = 9 (halfway between
where the maximum and the minimum occur), we
need to shift the function 9 units to the right.
Then to get the right period, we need to multi-
ply (before applying the sine function) by π/12 so
that the new period is 2π

π/12 = 24. Finally, to get

the right amplitude and to get the max and min at
the right spots, we need to multiply on the outside
by 3, and then shift the whole thing up 13 units.
Thus, the desired function is:

f(x) = 3 sin((π/12)(x−9))+13 = 3 sin((π/12)x−3π/4)+13.

�10 �5 0 5 10 15
x

5

10

15

20
y

1.4.98 Let C be the point on the end line so that segment AC is perpendicular to the endline. Then the
distance G1C = 38.3, G2C = 15, and AC = 69 and BC = 84, where all lengths are in feet. Thus

m(∠G1AG2) = m(∠G1AC)−m(∠G2AC) = tan−1

(
38.3

69

)
− tan−1

(
15

69

)
≈ 16.79◦,

while

m(∠G1BG2) = m(∠G1BC)−m(∠G2BC) = tan−1

(
38.3

84

)
− tan−1

(
15

84

)
≈ 14.4◦.

The kicking angle was not improved by the penalty.

1.4.99 Let C be the circumference of the earth. Then the first rope has radius r1 = C
2π . The circle generated

by the longer rope has circumference C + 38, so its radius is r2 = C+38
2π = C

2π + 38
2π ≈ r1 + 6, so the radius of

the bigger circle is about 6 feet more than the smaller circle.

1.4.100

a. The period of this function is 2π
2π/365 = 365.

b. Because the maximum for the regular sine function is 1, and this function is scaled vertically by a factor
of 2.8 and shifted 12 units up, the maximum for this function is (2.8)(1) + 12 = 14.8. Similarly, the
minimum is (2.8)(−1) + 12 = 9.2. Because of the horizontal shift, the point at t = 81 is the midpoint
between where the max and min occur. Thus the max occurs at 81+(365/4) ≈ 172 and the min occurs
approximately (365/2) days later at about t = 355.

c. The solstices occur halfway between these points, at 81 and 81 + (365/2) ≈ 264.

1.4.101 We are seeking a function with amplitude 10 and period 1.5, and value 10 at time 0, so it should
have the form 10 cos(kt), where 2π

k = 1.5. Solving for k yields k = 4π
3 , so the desired function is d(t) =

10 cos(4πt/3).

1.4.102

a. Because tan θ = 50
d , we have d = 50

tan θ .
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b. Because sin θ = 50
L , we have L = 50

sin θ .

1.4.103 Let L be the line segment connecting the tops of the ladders and let M be the horizontal line
segment between the walls h feet above the ground. Now note that the triangle formed by the ladders and L
is equilateral, because the angle between the ladders is 60 degrees, and the other two angles must be equal
and add to 120, so they are 60 degrees as well. Now we can see that the triangle formed by L, M and the
right wall is similar to the triangle formed by the left ladder, the left wall, and the ground, because they are
both right triangles with one angle of 75 degrees and one of 15 degrees. Thus M = h is the distance between
the walls.

1.4.104

Let the corner point P divide the pole into two
pieces, L1 (which spans the 3-ft hallway) and L2

(which spans the 4-ft hallway.) Then L = L1+L2.
Now L2 = 4

sin θ , and 3
L1

= cos θ (see diagram.)

Thus L = L1 + L2 = 3
cos θ + 4

sin θ . When L = 10,
θ ≈ .9273.

Θ P
3

4

L1

L2

Θ

1.4.105

To find s(t) note that we are seeking a periodic
function with period 365, and with amplitude 87.5
(which is half of the number of minutes between
7:25 and 4:30). We need to shift the function 4
days plus one fourth of 365, which is about 95 days
so that the max and min occur at t = 4 days and
at half a year later. Also, to get the right value for
the maximum and minimum, we need to multiply
by negative one and add 117.5 (which represents
30 minutes plus half the amplitude, because s = 0
corresponds to 4:00 AM.) Thus we have

s(t) = 117.5− 87.5 sin
( π

182.5
(t− 95)

)
.

A similar analysis leads to the formula

S(t) = 844.5 + 87.5 sin
( π

182.5
(t− 67)

)
.

The graph pictured shows D(t) = S(t)− s(t), the
length of day function, which has its max at the
summer solstice which is about the 172nd day of
the year, and its min at the winter solstice.

�50 50 100 150 200 250 300
t

200

400

600

800

D

1.4.106 Let θ1 be the viewing angle to the bottom of the television. Then θ1 = tan−1
(
3
x

)
. Now tan(θ+θ1) =

10
x , so θ + θ1 = tan−1

(
10
x

)
, so θ = tan−1

(
10
x

)− θ1 = tan−1
(
10
x

)− tan−1
(
3
x

)
.
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1.4.107 The area of the entire circle is πr2. The ratio θ
2π represents the proportion of the area swept out

by a central angle θ. Thus the area of a sector of a circle is this same proportion of the entire area, so it is
θ
2π · πr2 = r2θ

2 .

1.4.108 Using the given diagram, drop a perpendicular from the point (b cos θ, b sin θ) to the x axis, and
consider the right triangle thus formed whose hypotenuse has length c. By the Pythagorean theorem,
(b sin θ)2 + (a− b cos θ)2 = c2. Expanding the binomial gives b2 sin2 θ + a2 − 2ab cos θ + b2 cos2 θ = c2. Now
because b2 sin2 θ + b2 cos2 θ = b2, this reduces to a2 + b2 − 2ab cos θ = c2.

1.4.109 Note that sinA = h
c and sinC = h

a , so h = c sinA = a sinC. Thus

sinA

a
=

sinC

c
.

Now drop a perpendicular from the vertex A to the line determined by BC, and let h2 be the length of
this perpendicular. Then sinC = h2

b and sinB = h2

C , so h2 = b sinC = c sinB. Thus

sinC

c
=

sinB

b
.

Putting the two displayed equations together gives

sinA

a
=

sinB

b
=

sinC

c
.

Chapter One Review

1

a. True. For example, f(x) = x2 is such a function.

b. False. For example, cos(π/2 + π/2) = cos(π) = −1 
= cos(π/2) + cos(π/2) = 0 + 0 = 0.

c. False. Consider f(1 + 1) = f(2) = 2m + b 
= f(1) + f(1) = (m + b) + (m + b) = 2m + 2b. (At least
these aren’t equal when b 
= 0.)

d. True. f(f(x)) = f(1− x) = 1− (1− x) = x.

e. False. This set is the union of the disjoint intervals (−∞,−7) and (1,∞).

f. False. For example, if x = y = 10, then log10 xy = log10 100 = 2, but log10 10 · log10 10 = 1 · 1 = 1.

g. True. sin−1(sin(2π)) = sin−1(0) = 0.

2

a. Because the quantity under the radical must be non-zero, the domain of f is [0,∞). The range is also
[0,∞).

b. The domain is (−∞, 2)∪ (2,∞). The range is (−∞, 0)∪ (0,∞). (Note that if 0 were in the range then
1

y−2 = 0 for some value of y, but this expression has no real solutions.)

c. Because h can be written h(z) =
√

(z − 3)(z + 1), we see that the domain is (−∞,−1] ∪ [3,∞). The
range is [0,∞). (Note that as z gets large, h(z) gets large as well.)
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3

a.

This line has slope 2−(−3)
4−2 = 5/2. Therefore the

equation of the line is y − 2 = 5
2 (x − 4), so y =

5
2x− 8.

�2 �1 1 2 3 4
x

�12

�10

�8

�6

�4

�2

2
y

b.

This line has the form y = (3/4)x+b, and because
(−4, 0) is on the line, 0 = (3/4)(−4) + b, so b =
3. Thus the equation of the line is given by y =
(3/4)x+ 3.

�6 �4 �2 2 4
x

�2

2

4

6
y

c.
This line has slope 0−(−2)

4−0 = 1
2 , and the y-intercept

is given to be −2, so the equation of this line is
y = (1/2)x− 2.

�4 �2 2 4 6
x

�4

�3

�2

�1

1
y

4

The function is a piecewise step function which
jumps up by one every half-hour step.

0.5 1.0 1.5 2.0 2.5 3.0
x

1

2

3

4

5

6

7

y
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5

Because |x| =
⎧⎨
⎩−x if x < 0;

x if x ≥ 0,
we have

2(x− |x|) =
⎧⎨
⎩2(x− (−x)) = 4x if x < 0;

2(x− x) = 0 if x ≥ 0.

�2 �1 1 2
x

�8

�6

�4

�2

y

6 Because the trip is 500 miles in a car that gets 35 miles per gallon, 500
35 = 100

7 represents the number of
gallons required for the trip. If we multiply this times the number of dollars per gallon we will get the cost.
Thus C = f(p) = 100

7 p dollars.

7

a.
This is a straight line with slope 2/3 and y-
intercept 10/3.

�2 �1 0 1 2
x

1

2

3

4

5
y

b.
Completing the square gives y = (x2+2x+1)−4,
or y = (x+1)2−4, so this is the standard parabola
shifted one unit to the left and down 4 units. �4 �3 �2 �1 1 2

x

�4

�2

2

4

y

c.
Completing the square, we have x2+2x+1+y2+
4y+4 = −1+1+4, so we have (x+1)2+(y+2)2 = 4,
a circle of radius 2 centered at (−1,−2).

�3 �2 �1 1
x

�4

�3

�2

�1

y
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d.
Completing the square, we have x2−2x+1+y2−
8y+16 = −5+1+16, or (x− 1)2+(y− 4)2 = 12,
which is a circle of radius

√
12 centered at (1, 4).

�2 �1 0 1 2 3 4
x

2

4

6

8
y

8

To solve x1/3 = x1/4 we raise each side to the 12th
power, yielding x4 = x3. This gives x4−x3 = 0, or
x3(x− 1) = 0, so the only solutions are x = 0 and
x = 1 (which can be easily verified as solutions.)
Between 0 and 1, x1/4 > x1/3, but for x > 1,
x1/3 > x1/4.

1 2 3 4
x

0.5

1.0

1.5

y

9 The domain of x1/7 is the set of all real numbers, as is its range. The domain of x1/4 is the set of
non-negative real numbers, as is its range.

10

Completing the square in the second equation, we
have x2 + y2 − 7y + 49

4 = −8 + 49
4 , which can be

written as x2+(y− (7/2))2 = 17
4 . Thus we have a

circle of radius
√
17/2 centered at (0, 7/2), along

with the standard parabola. These intersect when
y = 7y−y2−8, which occurs for y2−6y+8 = 0, so
for y = 2 and y = 4, with corresponding x values
of ±2 and ±√

2.

�3 �2 �1 1 2 3
x

2

4

6

8

y

11 We are looking for the line between the points (0, 212) and (6000, 200). The slope is 212−200
0−6000 = − 12

6000 =

− 1
500 . Because the intercept is given, we deduce that the line is B = f(a) = − 1

500a+ 212.

12

a. The cost of producing x books is C(x) = 1000 + 2.5x.

b. The revenue generated by selling x books is R(x) = 7x.
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c.
The break-even point is where R(x) = C(x). This
is where 7x = 1000 + 2.5x, or 4.5x = 1000. So
x = 1000

4.5 ≈ 222.
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13

a.
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b.

y�2�x�4�2
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c.
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d.
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14

a.
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b.
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15

a. h(g(π/2)) = h(1) = 1

b. h(f(x)) = h(x3) = x3/2.

c. f(g(h(x))) = f(g(
√
x)) = f(sin(

√
x)) = (sin(

√
x))3.

d The domain of g(f(x)) is R, because the domain of both functions is the set of all real numbers.

e. The range of f(g(x)) is [−1, 1]. This is because the range of g is [−1, 1], and on the restricted domain
[−1, 1], the range of f is also [−1, 1].

16

a. If g(x) = x2 + 1 and f(x) = sinx, then f(g(x)) = f(x2 + 1) = sin(x2 + 1).

b. If g(x) = x2 − 4 and f(x) = x−3 then f(g(x)) = f(x2 − 4) = (x2 − 4)−3.

c. If g(x) = cos 2x and f(x) = ex, then f(g(x)) = f(cos 2x) = ecos 2x.

17 f(x+h)−f(x)
h = (x+h)2−2(x+h)−(x2−2x)

h = x2+2hx+h2−2x−2h−x2+2x
h = 2hx+h2−2h

h = 2x+ h− 2.

f(x)−f(a)
x−a = x2−2x−(a2−2a)

x−a = (x2−a2)−2(x−a)
x−a = (x−a)(x+a)−2(x−a)

x−a = x+ a− 2.

18 f(x+h)−f(x)
h = 4−5(x+h)−(4−5x)

h = 4−5x−5h−4+5x
h = − 5h

h = −5.

f(x)−f(a)
x−a = 4−5x−(4−5a)

x−a = − 5(x−a)
x−a = −5.

19 f(x+h)−f(x)
h = (x+h)2+2−(x3+2)

h = x2+3x2h+3xh2+h3+2−x3−2
h = h(3x2+3xh+h2)

h = 3x2 + 3xh+ h2.

f(x)−f(a)
x−a = x3+2−(a3+2)

x−a = x3−a3

x−a = (x−a)(x2+ax+a2)
x−a = x2 + ax+ a2.

20 f(x+h)−f(x)
h =

7
x+h+3− 7

x+3

h =
7x+21−(7x+7h+21)

(x+3)(x+h+3)

h = − 7h
(h)(x+3)(x+h+3) = − 7

(x+3)(x+h+3) .

f(x)−f(a)
x−a =

7
x+3− 7

a+3

x−a =
7a+21−(7x+21)

(x+3)(a+3)

x−a = − 7(x−a)
(x−a)(x+3)(a+3) = − 7

(x+3)(a+3) .

Copyright c© 2015 Pearson Education, Inc.



Chapter One Review 61

21

a. Because f(−x) = cos−3x = cos 3x = f(x), this is an even function, and is symmetric about the y-axis.

b. Because f(−x) = 3(−x)4 − 3(−x)2 + 1 = 3x4 − 3x2 + 1 = f(x), this is an even function, and is
symmetric about the y-axis.

c. Because replacing x by −x and/or replacing y by −y gives the same equation, this represents a curve
which is symmetric about the y-axis and about the origin and about the x-axis.

22 We have 8 = e4k, and so ln 8 = 4k, so k = ln 8
4 .

23 If log x2+3 log x = log 32, then log(x2 ·x3) = log(32), so x5 = 32 and x = 2. The answer does not depend
on the base of the log.

24

The functions are as labelled.

�ln�x�
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25

By graphing, it is clear that this function is not
one-to-one on its whole domain, but it is one-to-
one on the interval (−∞, 0], on the interval [0, 2],
and on the interval [2,∞), so it would have an
inverse if we restricted it to any of these particular
intervals.
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26

This function is a stretched version of the
sine function, it is one-to-one on the interval
[−3π/2, 3π/2] (and on other intervals as well . . . ) �5 5

t

�2

�1

1

2
y
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27

Completing the square gives f(x) = x2 − 4x+4+
1 = (x−2)2+1. Switching the x and y and solving
for y yields (y − 2)2 = x− 1, so |y − 2| = √

x− 1,
and thus y = f−1(x) = 2+

√
x− 1 (we choose the

“+” rather than the “−” because the domain of f
is x > 2, so the range of f−1 must also consist of
numbers greater than 2.)
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28 If y = 1/x2, then switching x and y gives x = 1/y2,
so y = f−1(x) = 1/

√
x.

0 2 4 6 8
x

1

2

3

4

5
y

29

a. A 135 degree angle measures 135 · (π/180) radians, which is 3π/4 radians.

b. A 4π/5 radian angle measues 4π/5 · (180/π) degrees, which is 144 degrees.

c. Because the length of the arc is the measure of the subtended angle (in radians) times the radius, this
arc would be 4π/3 · 10 = 40π

3 units long.

30

a. This function has period 2π
1/2 = 4π and amplitude

4. �10 �5 5 10
x

�4

�2

2

4
y

b. This function has period 2π
2π/3 = 3 and amplitude

2. �3 �2 �1 1 2 3
Θ

�2

�1

1

2
y
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c.

This function has period 2π
2 = π and amplitude

1. Compared to the ordinary cosine function it is
compressed horizontally, flipped about the x-axis,
and shifted π/4 units to the right.

�3 �2 �1 1 2 3
Θ

�1.0

�0.5

0.5

1.0
y

31

a. We need to scale the ordinary cosine function so that its period is 6, and then shift it 3 units to the
right, and multiply it by 2. So the function we seek is y = 2 cos((π/3)(t− 3)) = −2 cos(πt/3).

b. We need to scale the ordinary cosine function so that its period is 24, and then shift it to the right
6 units. We then need to change the amplitude to be half the difference between the maximum and
minimum, which would be 5. Then finally we need to shift the whole thing up by 15 units. The
function we seek is thus y = 15 + 5 cos((π/12)(t− 6)) = 15 + 5 sin(πt/12).

32 The pictured function has a period of π, an amplitude of 2, and a maximum of 3 and a minimum of −1.
It can be described by y = 1 + 2 cos(2(x− π/2)).

33

a. − sinx is pictured in F.

b. cos 2x is pictured in E.

c. tan(x/2) is pictured in D.

d. − secx is pictured in B.

e. cot 2x is pictured in C.

f. sin2 x is pictured in A.

34 If secx = 2, then cosx = 1
2 . This occurs for x = −π/3 and x = π/3, so the intersection points are

(−π/3, 2) and (π/3, 2).

35 sinx = − 1
2 for x = 7π/6 and for x = 11π/6, so the intersection points are (7π/6,−1/2) and (11π/6,−1/2).

36 Because sin(π/3) =
√
3/2, sin−1(

√
3/2) = π/3.

37 Because cos(π/6) =
√
3/2, cos−1(

√
3/2) = π/6.

38 Because cos(2π/3) = −1/2, cos−1(−1/2) = 2π/3.

39 Because sin(−π/2) = −1, sin−1(−1) = −π/2.

40 cos(cos−1(−1)) = cos(π) = −1.

41 sin(sin−1(x)) = x, for all x in the domain of the inverse sine function.

42 cos−1(sin 3π) = cos−1(0) = π/2.

43 If θ = sin−1(12/13), then 0 < θ < π/2, and sin θ = 12/13. Then (using the Pythagorean identity) we can
deduce that cos θ = 5/13. It must follow that tan θ = 12/5, cot θ = 5/12, sec θ = 13/5, and csc θ = 13/12.
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44

cos(tan−1(x)) =
side adjacent to tan−1(x)

hypotenuse
=

1√
1 + x2

.

tan�1�x�

1

x
1 � x2

45

sin(cos−1(x/2)) =
side opposite of cos−1(x/2)

hypotenuse
=

√
4− x2

2
.

cos�1�x�2�

x

4 � x2
2

46

tan(sec−1(x/2)) =
side opposite of sec−1(x/2)

side adjacent to sec−1(x/2)
=

√
x2 − 4

2
.

sec�1�
x

2
�

2

x2 � 4
x
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47

Note that

tan θ =
a

b
= cot(π/2− θ).

Thus, cot−1(tan θ) = cot−1(cot(π/2−θ)) = π/2−
θ.

Θ

Π
2
�Θ

a

b
c

48

(Using the figure from the previous solution) Note
that

sec θ =
c

b
= csc(π/2− θ).

Thus, csc−1(sec θ) = csc−1(csc(π/2− θ)) = π/2−
θ.

Θ

Π
2
�Θ

a

b
c

49 Let θ = sin−1(x). Then sin θ = x and note that then sin(−θ) = − sin θ = −x, so −θ = sin−1(−x). Then
sin−1(x) + sin−1(−x) = θ +−θ = 0.

50 Using the hint, we have sin(2 cos−1(x)) = 2 sin(cos−1(x)) cos(cos−1(x)) = 2x
√
1− x2.

51 Using the hint, we have cos(2 sin−1(x)) = cos2(sin−1(x))− sin2(sin−1(x)) = (
√
1− x2)2 − x2 = 1− 2x2.

52 Let N be the north pole, and C the center of the given circle, and consider the angle CNP . This angle
measures π−ϕ

2 . (Note that the triangle CNP is isosceles.) Now consider the triangle NOX where O is the

origin and X is the point (x, 0). Using triangle NOX, we have tan
(
π−ϕ
2

)
= x

2R , so x = 2R tan
(
π−ϕ
2

)
.
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Chapter 2

Limits

2.1 The Idea of Limits

2.1.1 The average velocity of the object between time t = a and t = b is the change in position divided by

the elapsed time: vav = s(b)−s(a)
b−a .

2.1.2 In order to compute the instantaneous velocity of the object at time t = a, we compute the average

velocity over smaller and smaller time intervals of the form [a, t], using the formula: vav = s(t)−s(a)
t−a . We let t

approach a. If the quantity s(t)−s(a)
t−a approaches a limit as t → a, then that limit is called the instantaneous

velocity of the object at time t = a.

2.1.3 The slope of the secant line between points (a, f(a)) and (b, f(b)) is the ratio of the differences f(b)−
f(a) and b− a. Thus msec =

f(b)−f(a)
b−a .

2.1.4 In order to compute the slope of the tangent line to the graph of y = f(t) at (a, f(a)), we compute the

slope of the secant line over smaller and smaller time intervals of the form [a, t]. Thus we consider f(t)−f(a)
t−a

and let t → a. If this quantity approaches a limit, then that limit is the slope of the tangent line to the curve
y = f(t) at t = a.

2.1.5 Both problems involve the same mathematics, namely finding the limit as t → a of a quotient of

differences of the form g(t)−g(a)
t−a for some function g.

2.1.6

Because f(x) = x2 is an even function, f(−a) =
f(a) for all a. Thus the slope of the secant line
between the points (a, f(a)) and (−a, f(−a)) is

msec = f(−a)−f(a)
−a−a = 0

−2a = 0. The slope of the
tangent line at x = 0 is also zero.

�a, f �a����a, f ��a��

�4 �2 2 4 x

5

10

15

20

y

2.1.7 The average velocity is s(3)−s(2)
3−2 = 156− 136 = 20.

2.1.8 The average velocity is s(4)−s(1)
4−1 = 144−84

3 = 60
3 = 20.
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2.1.9

a. Over [1, 4], we have vav = s(4)−s(1)
4−1 = 256−112

3 = 48.

b. Over [1, 3], we have vav = s(3)−s(1)
3−1 = 240−112

2 = 64.

c. Over [1, 2], we have vav = s(2)−s(1)
2−1 = 192−112

1 = 80.

d. Over [1, 1+h], we have vav = s(1+h)−s(1)
1+h−1 = −16(1+h)2+128(1+h)−(112)

h = −16h2−32h+128h
h = h(−16h+96)

h =
96− 16h = 16(6− h).

2.1.10

a. Over [0, 3], we have vav = s(3)−s(0)
3−0 = 65.9−20

3 = 15.3.

b. Over [0, 2], we have vav = s(2)−s(0)
2−0 = 60.4−20

2 = 20.2.

c. Over [0, 1], we have vav = s(1)−s(0)
1−0 = 45.1−20

1 = 25.1.

d. Over [0, h], we have vav = s(h)−s(0)
h−0 = −4.9h2+30h+20−20

h = (h)(−4.9h+30)
h = −4.9h+ 30.

2.1.11

a. s(2)−s(0)
2−0 = 72−0

2 = 36.

b. s(1.5)−s(0)
1.5−0 = 66−0

1.5 = 44.

c. s(1)−s(0)
1−0 = 52−0

1 = 52.

d. s(.5)−s(0)
.5−0 = 30−0

.5 = 60.

2.1.12

a. s(2.5)−s(.5)
2.5−.5 = 150−46

2 = 52.

b. s(2)−s(.5)
2−.5 = 136−46

1.5 = 60.

c. s(1.5)−s(.5)
1.5−.5 = 114−46

1 = 68.

d. s(1)−s(.5)
1−.5 = 84−46

.5 = 76.

2.1.13

0.5 1.0 1.5 2.0 2.5 t

50

100

150

s

The slope of the secant line is given by s(2)−s(.5)
2−.5 =

136−46
1.5 = 60. This represents the average velocity

of the object over the time interval [.5, 2].
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2.1.14

0.1 0.2 0.3 0.4 0.5 0.6 t

0.2

0.4

0.6

0.8

1.0

1.2
s

The slope of the secant line is given by s(.5)−s(0)
.5−0 =

1
.5 = 2. This represents the average velocity of the
object over the time interval [0, .5].

2.1.15
Time Interval [1, 2] [1, 1.5] [1, 1.1] [1, 1.01] [1, 1.001]

Average Velocity 80 88 94.4 95.84 95.984

The instantaneous velocity appears to be 96 ft/s.

2.1.16
Time Interval [2, 3] [2, 2.25] [2, 2.1] [2, 2.01] [2, 2.001]

Average Velocity 5.5 9.175 9.91 10.351 10.395

The instantaneous velocity appears to be 10.4 m/s.

2.1.17 s(1.01)−s(1)
.01 = 47.84, while s(1.001)−s(1)

.001 = 47.984 and s(1.0001)−s(1)
.0001 = 47.9984. It appears that the

instantaneous velocity at t = 1 is approximately 48.

2.1.18 s(2.01)−s(2)
.01 = −4.16, while s(2.001)−s(2)

.001 = −4.016 and s(2.0001)−s(2)
.0001 = −4.0016. It appears that the

instantaneous velocity at t = 2 is approximately −4.

2.1.19
Time Interval [2, 3] [2.9, 3] [2.99, 3] [2.999, 3] [2.9999, 3] [2.99999, 3]

Average Velocity 20 5.6 4.16 4.016 4.002 4.0002

The instantaneous velocity appears to be 4 ft/s.

2.1.20
Time Interval [π/2, π] [π/2, π/2 + .1] [π/2, π/2 + .01] [π/2, π/2 + .001] [π/2, π/2 + .0001]

Average Velocity −1.90986 −.149875 −.0149999 −.0015 −.00015

The instantaneous velocity appears to be 0 ft/s.

2.1.21
Time Interval [3, 3.1] [3, 3.01] [3, 3.001] [3, 3.0001]

Average Velocity −17.6 −16.16 −16.016 −16.002

The instantaneous velocity appears to be −16 ft/s.

2.1.22
Time Interval [π/2, π/2 + .1] [π/2, π/2 + .01] [π/2, π/2 + .001] [π/2, π/2 + .0001]

Average Velocity −19.9667 −19.9997 −20.0000 −20.0000

The instantaneous velocity appears to be −20 ft/s.

2.1.23
Time Interval [0, 0.1] [0, 0.01] [0, 0.001] [0, 0.0001]

Average Velocity 79.468 79.995 80.000 80.0000

The instantaneous velocity appears to be 80 ft/s.

2.1.24
Time Interval [0, 1] [0, 0.1] [0, 0.01] [0, 0.001]

Average Velocity −10 −18.1818 −19.802 −19.98

The instantaneous velocity appears to be −20 ft/s.
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2.1.25
x Interval [2, 2.1] [2, 2.01] [2, 2.001] [2, 2.0001]

Slope of Secant Line 8.2 8.02 8.002 8.0002

The slope of the tangent line appears to be 8.

2.1.26
x Interval [π/2, π/2 + .1] [π/2, π/2 + .01] [π/2, π/2 + .001] [π/2, π/2 + .0001]

Slope of Secant Line −2.995 −2.99995 −3.0000 −3.0000

The slope of the tangent line appears to be −3.

2.1.27
x Interval [0, 0.1] [0, 0.01] [0, 0.001] [0, 0.0001]

Slope of the Secant Line 1.05171 1.00502 1.0005 1.00005

The slope of the tangent line appears to be 1.

2.1.28
x Interval [1, 1.1] [1, 1.01] [1, 1.001] [1, 1.0001]

Slope of the Secant Line 2.31 2.0301 2.003 2.0003

The slope of the tangent line appears to be 2.

2.1.29

a. Note that the graph is a parabola with ver-
tex (2,−1).

b. At (2,−1) the function has tangent line with
slope 0.

�1 1 2 3 4 5
x

2

4

6

8
y

c.
x Interval [2, 2.1] [2, 2.01] [2, 2.001] [2, 2.0001]

Slope of the Secant Line .1 .01 .001 .0001

The slope of the tangent line at (2,−1) appears to be 0.

2.1.30

a. Note that the graph is a parabola with ver-
tex (0, 4).

b. At (0, 4) the function has a tangent line with
slope 0.

c. This is true for this function – because the
function is symmetric about the y-axis and
we are taking pairs of points symmetrically
about the y axis. Thus f(0 + h) = 4− (0 +
h)2 = 4− (−h)2 = f(0− h). So the slope of

any such secant line is 4−h2−(4−h2)
h−(−h) = 0

2h =
0.

�2 �1 1 2
x

�2

�1

1

2

3

4
y
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2.1.31

a. Note that the graph is a parabola with ver-
tex (4, 448).

b. At (4, 448) the function has tangent line with
slope 0, so a = 4.

2 4 6 8
x

100

200

300

400

y

c.
x Interval [4, 4.1] [4, 4.01] [4, 4.001] [4, 4.0001]

Slope of the Secant Line −1.6 −.16 −.016 −.0016

The slopes of the secant lines appear to be
approaching zero.

d. On the interval [0, 4) the instantaneous ve-
locity of the projectile is positive.

e. On the interval (4, 9] the instantaneous ve-
locity of the projectile is negative.

2.1.32

a. The rock strikes the water when s(t) = 96. This occurs when 16t2 = 96, or t2 = 6, whose only positive
solution is t =

√
6 ≈ 2.45 seconds.

b.
t Interval [

√
6− .1,

√
6] [

√
6− .01,

√
6] [

√
6− .001,

√
6] [

√
6− .0001,

√
6]

Average Velocity 76.7837 78.2237 78.3677 78.3821

When the rock strikes the water, its instantaneous velocity is about 78.38 ft/s.

2.1.33 For line AD, we have

mAD =
yD − yA
xD − xA

=
f(π)− f(π/2)

π − (π/2)
=

1

π/2
≈ .63662.

For line AC, we have

mAC =
yC − yA
xC − xA

=
f(π/2 + .5)− f(π/2)

(π/2 + .5)− (π/2)
= −cos(π/2 + .5)

.5
≈ .958851.

For line AB, we have

mAB =
yB − yA
xB − xA

=
f(π/2 + .05)− f(π/2)

(π/2 + .05)− (π/2)
= −cos(π/2 + .05)

.05
≈ .999583.

Computing one more slope of a secant line:

msec =
f(π/2 + .01)− f(π/2)

(π/2 + .01)− (π/2)
= −cos(π/2 + .01)

.01
≈ .999983.

Conjecture: The slope of the tangent line to the graph of f at x = π/2 is 1.
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2.2 Definition of a Limit

2.2.1 Suppose the function f is defined for all x near a except possibly at a. If f(x) is arbitrarily close to a
number L whenever x is sufficiently close to (but not equal to) a, then we write lim

x→a
f(x) = L.

2.2.2 False. For example, consider the function f(x) =

⎧⎨
⎩x2 if x 
= 0

4 if x = 0.

Then lim
x→0

f(x) = 0, but f(0) = 4.

2.2.3 Suppose the function f is defined for all x near a but greater than a. If f(x) is arbitrarily close to L
for x sufficiently close to (but strictly greater than) a, then we write lim

x→a+
f(x) = L.

2.2.4 Suppose the function f is defined for all x near a but less than a. If f(x) is arbitrarily close to L for
x sufficiently close to (but strictly less than) a, then we write lim

x→a−
f(x) = L.

2.2.5 It must be true that L = M .

2.2.6 Because graphing utilities generally just plot a sampling of points and “connect the dots,” they can
sometimes mislead the user investigating the subtleties of limits.

2.2.7

a. h(2) = 5.

b. lim
x→2

h(x) = 3.

c. h(4) does not exist.

d. lim
x→4

f(x) = 1.

e. lim
x→5

h(x) = 2.

2.2.8

a. g(0) = 0.

b. lim
x→0

g(x) = 1.

c. g(1) = 2.

d. lim
x→1

g(x) = 2.

2.2.9

a. f(1) = −1.

b. lim
x→1

f(x) = 1.

c. f(0) = 2.

d. lim
x→0

f(x) = 2.

2.2.10

a. f(2) = 2.

b. lim
x→2

f(x) = 4.

c. lim
x→4

f(x) = 4.

d. lim
x→5

f(x) = 2.

2.2.11

a.
x 1.9 1.99 1.999 1.9999 2 2.0001 2.001 2.01 2.1

f(x) = x2−4
x−2 3.9 3.99 3.999 3.9999 undefined 4.0001 4.001 4.01 4.1

b. lim
x→2

f(x) = 4.

2.2.12

a.
x .9 .99 .999 .9999 1 1.0001 1.001 1.01 1.1

f(x) = x3−1
x−1 2.71 2.9701 2.997 2.9997 undefined 3.0003 3.003 3.0301 3.31

b. lim
x→1

x3 − 1

x− 1
= 3
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2.2.13

a.
t 8.9 8.99 8.999 9 9.001 9.01 9.1

g(t) = t−9√
t−3

5.98329 5.99833 5.99983 undefined 6.00017 6.00167 6.01662

b. lim
t→9

t− 9√
t− 3

= 6.

2.2.14

a.
x .01 .001 .0001 .00001

f(x) = (1 + x)1/x 2.70481 2.71692 2.71815 2.71827

x −.01 −.001 −.0001 −.00001

f(x) = (1 + x)1/x 2.732 2.71964 2.71842 2.71830

b. lim
x→0

(1 + x)1/x ≈ 2.718.

c. lim
x→0

(1 + x)1/x = e.

2.2.15

a.

�1 1 2 3 x

�5

5

y

b.
x 1.99 1.999 1.9999 2.0001 2.001 2.01

f(x) .00217 .00014 .0000109 −.0000109 −.00014 −.00217

From both the graph and the table, the limit appears to be 0.

2.2.16

a.

�1.0 �0.5 0.5 1.0 x

1

2

3

4

y

b.
x −0.1 −0.01 −0.001 0.001 0.01 0.1

f(x) 1.8731 1.98673 1.9987 2.0013 2.0134 2.1403

From both the graph and the table, the limit appears to be 2.
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2.2.17

a.

�1 1 2 3 x

0.5

1.0

1.5

2.0
y

b.
x 0.9 0.99 0.999 1.001 1.01 1.1

f(x) 1.993342 1.999933 1.999999 1.999999 1.999933 1.993342

From both the graph and the table, the limit appears to be 2.

2.2.18

a.

�1 1 2 3 x

0.5

1.0

1.5

2.0

2.5

3.0

3.5
y

b.
x −0.1 −0.01 −0.001 0.001 0.01 0.1

f(x) 2.8951 2.99 2.999 3.001 3.0099 3.0949

From both the graph and the table, the limit appears to be 3.

2.2.19

x 4.9 4.99 4.999 4.9999 5 5.0001 5.001 5.01 5.1

f(x) = x2−25
x−5 9.9 9.99 9.999 9.9999 undefined 10.0001 10.001 10.01 10.1

lim
x→5+

x2 − 25

x− 5
= 10, lim

x→5−

x2 − 25

x− 5
= 10, and thus lim

x→5

x2 − 25

x− 5
= 10.

2.2.20

x 99.9 99.99 99.999 99.9999 100 100.0001 100.001 100.01 100.1

f(x) = x−100√
x−10

19.995 19.9995 19.99995 ≈ 20 undefined ≈ 20 20.0005 20.00005 20.005

lim
x→100+

x− 100√
x− 10

= 20, lim
x→100−

x− 100√
x− 10

= 20, and thus lim
x→100

x− 100√
x− 10

= 20.

2.2.21

a. f(1) = 0. b. lim
x→1−

f(x) = 1. c. lim
x→1+

f(x) = 0.

d. lim
x→1

f(x) does not exist, since the two one-sided limits aren’t equal.
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2.2.22

a. g(2) = 3. b. lim
x→2−

g(x) = 2. c. lim
x→2+

g(x) = 3.

d. lim
x→2

g(x) does not exist. e. g(3) = 2. f. lim
x→3−

g(x) = 3.

g. lim
x→3+

g(x) = 2. h. g(4) = 3. i. lim
x→4

g(x) = 3.

2.2.23

a. f(1) = 3. b. lim
x→1−

f(x) = 2. c. lim
x→1+

f(x) = 2.

d. lim
x→1

f(x) = 2. e. f(3) = 2. f. lim
x→3−

f(x) = 4.

g. lim
x→3+

f(x) = 1. h. lim
x→3

f(x) does not exist. i. f(2) = 3.

j. lim
x→2−

f(x) = 3. k. lim
x→2+

f(x) = 3. l. lim
x→2

f(x) = 3.

2.2.24

a. g(−1) = 3. b. lim
x→−1−

g(x) = 2. c. lim
x→−1+

g(x) = 2.

d. lim
x→−1

g(x) = 2. e. g(1) = 2. f. lim
x→1

g(x) does not exist.

g. lim
x→3

g(x) = 4. h. g(5) = 5. i. lim
x→5−

g(x) = 5.

2.2.25

a.
x 2

π
2
3π

2
5π

2
7π

2
9π

2
11π

f(x) = sin(1/x) 1 −1 1 −1 1 −1

If xn = 2
(2n+1)π , then f(xn) = (−1)n where n is a non-negative integer.

b. As x → 0, 1/x → ∞. So the values of f(x) oscillate dramatically between −1 and 1.

c. lim
x→0

sin(1/x) does not exist.

2.2.26

a.
x 12

π
12
3π

12
5π

12
7π

12
9π

12
11π

f(x) = tan(3/x) 1 −1 1 −1 1 −1

We have alternating 1’s and −1’s.

b.
tan 3x alternates between 1 and −1 infinitely
many times on (0, h) for any h > 0.

�0.5 0.5 1.0 1.5 2.0 2.5
x

�10

�5

5

10

y

c. lim
x→0

tan(3/x) does not exist.

2.2.27

a. False. In fact lim
x→3

x2 − 9

x− 3
= lim

x→3
(x+ 3) = 6.
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b. False. For example, if f(x) =

⎧⎨
⎩x2 if x 
= 0;

5 if x = 0
and if a = 0 then f(a) = 5 but lim

x→a
f(x) = 0.

c. False. For example, the limit in part a of this problem exists, even though the corresponding function
is undefined at a = 3.

d. False. It is true that the limit of
√
x as x approaches zero from the right is zero, but because the

domain of
√
x does not include any numbers to the left of zero, the two-sided limit doesn’t exist.

e. True. Note that lim
x→π/2

cosx = 0 and lim
x→π/2

sinx = 1, so lim
x→π/2

cosx

sinx
=

0

1
= 0.

2.2.28

0.5 1.0 1.5 2.0 2.5 3.0 t

�4

�2

2

4

6
y

2.2.29

1 2 3 4 x

�3

�2

�1

1

y

2.2.30

�2 �1 1 2 x

1

2

3

4
y

2.2.31

�2 �1 1 2 3 4 x

0.5

1.0

1.5

2.0

2.5

3.0
y

2.2.32

h .01 .001 .0001 −.0001 −.001 −.01

(1 + 2h)1/h 7.24465 7.37431 7.38758 7.39053 7.40387 7.54037

lim
h→0

(1 + 2h)1/h ≈ 7.39.

2.2.33

h .01 .001 .0001 −.0001 −.001 −.01

(1 + 3h)2/h 369.356 399.821 403.066 403.792 407.083 442.235

lim
h→0

(1 + 3h)2/h ≈ 403.4.

2.2.34

h .01 .001 .0001 −.0001 −.001 −.01
2h−1

h .695555 .693387 .693171 .693123 .692907 .69075

lim
h→0

2h − 1

h
≈ .6931.
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2.2.35

h .01 .001 .0001 −.0001 −.001 −.01
ln(1+h)

h .995033 .9995 .99995 1.00005 1.0005 1.00503

lim
h→0

ln(1 + h)

h
= 1.

2.2.36

a. Note that f(x) = |x|
x is undefined at 0, and

lim
x→0−

f(x) = −1 and lim
x→0+

f(x) = 1.

b. lim
x→0

f(x) does not exist, since the two one-

side limits aren’t equal.

�2 �1 1 2 m

�1.0

�0.5

0.5

1.0

y

2.2.37

a. lim
x→−1−

�x = −2, lim
x→−1+

�x = −1, lim
x→2−

�x = 1, lim
x→2+

�x = 2.

b. lim
x→2.3−

�x = 2, lim
x→2.3+

�x = 2, lim
x→2.3

�x = 2.

c. In general, for an integer a, lim
x→a−

�x = a− 1 and lim
x→a+

�x = a.

d. In general, if a is not an integer, lim
x→a−

�x = lim
x→a+

�x = �a.

e. lim
x→a

�x exists and is equal to �a for non-integers a.

2.2.38

a. Note that the graph is piecewise constant.

b. lim
x→2−

�x� = 2, lim
x→1+

�x� = 2, lim
x→1.5

�x� = 2.

c. lim
x→a

�x� exists and is equal to �a� for non-

integers a. �2 �1 1 2 3
x

�1

1

2

3
y

2.2.39 By zooming in closely, you should be able to convince yourself that the answer is 0.

2.2.40 By zooming in closely, you should be able to convince yourself that the answer is 2.

2.2.41 By zooming in closely, you should be able to convince yourself that the answer is 16.

2.2.42 By zooming in closely, you should be able to convince yourself that the answer is 1.
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2.2.43

a. Note that the function is piecewise constant.

b. lim
w→3.3

f(w) = .95.

c. lim
w→1+

f(w) = .61 corresponds to the fact

that for any piece of mail that weighs slightly
over 1 ounce, the postage will cost 61 cents.
lim

w→1−
f(w) = .44 corresponds to the fact

that for any piece of mail that weighs slightly
less than 1 ounce, the postage will cost 44
cents.

d. lim
w→4

f(w) does not exist because the two cor-

responding one-side limits don’t exist. (The
limit from the left is .95, while the limit from
the right is 1.12.)

1 2 3 4 5
x

0.2

0.4

0.6

0.8

1.0

y

2.2.44

a. Note that H is piecewise constant.

b. lim
x→0−

H(x) = 0, lim
x→0+

H(x) = 1, and so

lim
x→0

H(x) does not exist.

�1.0 �0.5 0.5 1.0
x

0.2

0.4

0.6

0.8

1.0

1.2

y

2.2.45

a. Because of the symmetry about the y axis, we must have lim
x→−2+

f(x) = 8.

b. Because of the symmetry about the y axis, we must have lim
x→−2−

f(x) = 5.

2.2.46

a. Because of the symmetry about the origin, we must have lim
x→−2+

g(x) = −8.

b. Because of the symmetry about the origin, we must have lim
x→−2−

g(x) = −5.

2.2.47

a.

�0.4 �0.2 0.2 0.4
x

0.5

1.0

1.5

2.0

2.5

3.0

y

limx→0
tan 2x
sin x = 2.

�0.4 �0.2 0.2 0.4
x

2

4

6

8

10

12

y

limx→0
tan 3x
sin x = 3.
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�0.3 �0.2 �0.1 0.1 0.2 0.3
x

2

4

6

8

y

limx→0
tan 4x
sin x = 4.

b. It appears that lim
x→0

tan(px)

sinx
= p.

2.2.48

a.

�1.0 �0.5 0.0 0.5 1.0
x

1

2

3

4

5
y

limx→0
sin x
x = 1.

�1.0 �0.5 0.0 0.5 1.0
x

1

2

3

4

5
y

limx→0
sin 2x

x = 2.

�1.0 �0.5 0.0 0.5 1.0
x

1

2

3

4

5
y

limx→0
sin 3x

x = 3.

�1.0 �0.5 0.0 0.5 1.0
x

1

2

3

4

5
y

limx→0
sin 4x

x = 4.

b. It appears that lim
x→0

sin(px)

x
= p.

2.2.49

For p = 8 and q = 2, it appears that the limit is 4.

�0.3 �0.2 �0.1 0.0 0.1 0.2 0.3
x

1

2

3

4

5
y
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For p = 12 and q = 3, it appears that the limit is 4.

�0.3 �0.2 �0.1 0.0 0.1 0.2 0.3
x

1

2

3

4

5
y

For p = 4 and q = 16, it appears that the limit is 1/4.

�0.15 �0.10 �0.05 0.00 0.05 0.10 0.15
x

1

2

3

4

5
y

For p = 100 and q = 50, it appears that the limit is 2.
�0.3 �0.2 �0.1 0.1 0.2 0.3

x

�2

�1

1

2
y

Conjecture: lim
x→0

sin px

sin qx
=

p

q
.

2.3 Techniques of Computing Limits

2.3.1 If f(x) = anx
n+an−1x

n−1+· · ·+a1x+a0, then limx→a f(x) = limx→a(anx
n+an−1x

n−1+· · ·+a1x+a0)
= an(limx→a x)

n + an−1(limx→a x)
n−1 + · · ·+ a1 limx→a x+ limx→a a0

= ana
n + an−1a

n−1 + · · ·+ a1a+ a0.

2.3.2 If f(x) is a polynomial, then lim
x→a−

f(x) = lim
x→a+

f(x) = f(a).

2.3.3 For a rational function r(x), we have lim
x→a

r(x) = r(a) exactly for those numbers a which are in the

domain of r.

2.3.4 If f(x) = g(x) for x 
= 3, and lim
x→3

g(x) = 4, then lim
x→3

f(x) = 4 as well.

2.3.5 Because x2−7x+12
x−3 = (x−3)(x−4)

x−3 = x− 4 (for x 
= 3), we can see that the graphs of these two functions
are the same except that one is undefined at x = 3 and the other is a straight line that is defined everywhere.

Thus the function x2−7x+12
x−3 is a straight line except that it has a “hole” at (3,−1). The two functions have

the same limit as x → 3, namely lim
x→3

x2 − 7x+ 12

x− 3
= lim

x→3
(x− 4) = −1.
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2.3.6 lim
x→2

f(x)2/3 =
(
lim
x→2

f(x)
)2/3

= (−8)2/3 = (−2)2 = 4.

2.3.7 If p and q are polynomials then lim
x→0

p(x)

q(x)
=

lim
x→0

p(x)

lim
x→0

q(x)
=

p(0)

q(0)
. Because this quantity is given to be

equal to 10, we have p(0)
2 = 10, so p(0) = 20.

2.3.8 By a direct application of the squeeze theorem, lim
x→2

g(x) = 5.

2.3.9 lim
x→5

√
x2 − 9 =

√
lim
x→5

(x2 − 9) =
√
16 = 4.

2.3.10 lim
x→3−

f(x) = lim
x→3−

4 = 4, and lim
x→3+

f(x) = lim
x→3+

(x+ 2) = 5.

2.3.11 lim
x→4

(3x− 7) = 3 lim
x→4

x− 7 = 3 · 4− 7 = 5.

2.3.12 lim
x→1

(−2x+ 5) = −2 lim
x→1

x+ 5 = −2 · 1 + 5 = 3.

2.3.13 lim
x→−9

(5x) = 5 lim
x→−9

x = 5 · −9 = −45.

2.3.14 lim
x→2

(−3x) = −3 lim
x→2

x = −3 · 2 = −6.

2.3.15 lim
x→6

4 = 4.

2.3.16 lim
x→−5

π = π.

2.3.17 lim
x→1

4f(x) = 4 lim
x→1

f(x) = 4 · 8 = 32. This follows from the Constant Multiple Law.

2.3.18 lim
x→1

f(x)

h(x)
=

lim
x→1

f(x)

lim
x→1

h(x)
=

8

2
= 4. This follows from the Quotient Law.

2.3.19 lim
x→1

(f(x)− g(x)) = lim
x→1

f(x)− lim
x→1

g(x) = 8− 3 = 5. This follows from the Difference Law.

2.3.20 lim
x→1

f(x)h(x) = lim
x→1

f(x) · lim
x→1

h(x) = 8 · 2 = 16. This follows from the Product Law.

2.3.21 lim
x→1

f(x)g(x)

h(x)
=

lim
x→1

(f(x)g(x))

lim
x→1

h(x)
=

lim
x→1

f(x) · lim
x→1

g(x)

lim
x→1

h(x)
=

8 · 3
2

= 12. This follows from the Quotient

and Product Laws.

2.3.22 lim
x→1

f(x)

g(x)− h(x)
=

lim
x→1

f(x)

lim
x→1

[g(x)− h(x)]
=

lim
x→1

f(x)

lim
x→1

g(x)− lim
x→1

h(x)
=

8

3− 2
= 8. This follows from the

Quotient and Difference Laws.

2.3.23 lim
x→1

(h(x))5 =
(
lim
x→1

h(x)
)5

= (2)5 = 32. This follows from the Power Law.

2.3.24 lim
x→1

3
√
f(x)g(x) + 3 = 3

√
lim
x→1

(f(x)g(x) + 3) = 3

√
lim
x→1

f(x) · lim
x→1

g(x) + lim
x→1

3 = 3
√
8 · 3 + 3 =

3
√
27 =

3. This follows form the Root, Product, Sum and Constant Laws.

2.3.25 lim
x→1

(2x3−3x2+4x+5) = lim
x→1

2x3− lim
x→1

3x2+ lim
x→1

4x+ lim
x→1

5 = 2( lim
x→1

x)3−3( lim
x→1

x)2+4( lim
x→1

x)+5 =

2(1)3 − 3(1)2 + 4 · 1 + 5 = 8.
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2.3.26 lim
t→−2

(t2 +5t+7) = lim
t→−2

t2 + lim
t→−2

5t+ lim
t→−2

7 =

(
lim

t→−2
t

)2

+5 lim
t→−2

t+7 = (−2)2 +5 · (−2)+7 = 1.

2.3.27 lim
x→1

5x2 + 6x+ 1

8x− 4
=

lim
x→1

(5x2 + 6x+ 1)

lim
x→1

(8x− 4)
=

5( lim
x→1

x)2 + 6 lim
x→1

x+ lim
x→1

1

8 lim
x→1

x− lim
x→1

4
=

5(1)2 + 6 · 1 + 1

8 · 1− 4
= 3.

2.3.28 lim
t→3

3
√
t2 − 10 = 3

√
lim
t→3

(t2 − 10) = 3

√
lim
t→3

t2 − lim
t→3

10 =
3

√(
lim
t→3

t
)2

− 10 = 3
√
(3)2 − 10 = −1.

2.3.29 lim
b→2

3b√
4b+ 1− 1

=
lim
b→2

3b

lim
b→2

(
√
4b+ 1− 1)

=
3 lim
b→2

b

lim
b→2

√
4b+ 1− lim

b→2
1
=

3 · 2√
lim
b→2

(4b+ 1)− 1
=

6

3− 1
= 3.

2.3.30 lim
x→2

(x2 − x)5 =
(
lim
x→2

(x2 − x)
)5

=
(
lim
x→2

x2 − lim
x→2

x
)5

= (4− 2)5 = 32.

2.3.31 lim
x→3

−5x√
4x− 3

=
lim
x→3

−5x

lim
x→3

√
4x− 3

=
−5 lim

x→3
x√

lim
x→3

(4x− 3)
=

−5 · 3√
4 lim
x→3

x− lim
x→3

3
=

−15√
4 · 3− 3

= −5.

2.3.32 lim
h→0

3√
16 + 3h+ 4

=
lim
h→0

3

lim
h→0

(
√
16 + 3h+ 4)

=
3√

lim
h→0

(16 + 3h) + lim
h→0

4
=

3√
lim
h→0

16 + lim
h→0

3h+ 4
=

3√
16 + 3 · 0 + 4

=
3

4 + 4
=

3

8
.

2.3.33

a. lim
x→−1−

f(x) = lim
x→−1−

(x2 + 1) = (−1)2 + 1 = 2.

b. lim
x→−1+

f(x) = lim
x→−1+

√
x+ 1 =

√−1 + 1 = 0.

c. lim
x→−1

f(x) does not exist.

2.3.34

a. lim
x→−5−

f(x) = lim
x→−5−

0 = 0. b. lim
x→−5+

f(x) = lim
x→−5+

√
25− x2 =

√
25− 25 = 0.

c. lim
x→−5

f(x) = 0. d. lim
x→5−

f(x) = lim
x→5−

√
25− x2 =

√
25− 25 = 0.

e. lim
x→5+

f(x) = lim
x→5+

3x = 15. f. lim
x→5

f(x) does not exist.

2.3.35

a. lim
x→2+

√
x− 2 =

√
2− 2 = 0.

b. The domain of f(x) =
√
x− 2 is [2,∞). Thus, any question about this function that involves numbers

less than 2 doesn’t make any sense, because those numbers aren’t in the domain of f .

2.3.36

a. Note that the domain of f(x) =
√

x−3
2−x is (2, 3]. lim

x→3−

√
x− 3

2− x
= 0.

b. Because the numbers to the right of 3 aren’t in the domain of this function, the limit as x → 3+ of
this function doesn’t make any sense.
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2.3.37 Using the definition of |x| given, we have lim
x→0−

|x| = lim
x→0−

(−x) = −0 = 0. Also, lim
x→0+

|x| = lim
x→0+

x =

0. Because the two one-sided limits are both 0, we also have lim
x→0

|x| = 0.

2.3.38
If a > 0, then for x near a, |x| = x. So in this case, lim

x→a
|x| = lim

x→a
x = a = |a|.

If a < 0, then for x near a, |x| = −x. So in this case, lim
x→a

|x| = lim
x→a

(−x) = −a = |a|, (because a < 0).

If a = 0, we have already seen in a previous problem that lim
x→0

|x| = 0 = |0|.
Thus in all cases, lim

x→a
|x| = |a|.

2.3.39 lim
x→1

x2 − 1

x− 1
= lim

x→1

(x+ 1)(x− 1)

x− 1
= lim

x→1
(x+ 1) = 2.

2.3.40 lim
x→3

x2 − 2x− 3

x− 3
= lim

x→3

(x− 3)(x+ 1)

x− 3
= lim

x→3
(x+ 1) = 4.

2.3.41 lim
x→4

x2 − 16

4− x
= lim

x→4

(x+ 4)(x− 4)

−(x− 4)
= lim

x→4
[−(x+ 4)] = −8.

2.3.42 lim
t→2

3t2 − 7t+ 2

2− t
= lim

t→2

(t− 2)(3t− 1)

−(t− 2)
= lim

t→2
[−(3t− 1)] = −5.

2.3.43 lim
x→b

(x− b)50 − x+ b

x− b
= lim

x→b

(x− b)50 − (x− b)

x− b
= lim

x→b

(x− b)((x− b)49 − 1)

x− b
=

lim
x→b

[(x− b)49 − 1] = −1.

2.3.44 lim
x→−b

(x+ b)7 + (x+ b)10

4(x+ b)
= lim

x→−b

(x+ b)((x+ b)6 + (x+ b)9)

4(x+ b)
= lim

x→−b

(x+ b)6 + (x+ b)9

4
=

0

4
= 0.

2.3.45 lim
x→−1

(2x− 1)2 − 9

x+ 1
= lim

x→−1

(2x− 1− 3)(2x− 1 + 3)

x+ 1
= lim

x→−1

2(x− 2)2(x+ 1)

x+ 1
= lim

x→−1
4(x − 2) =

4 · (−3) = −12.

2.3.46 lim
h→0

1
5+h − 1

5

h
= lim

h→0

(
1

5+h − 1
5

)
· 5 · (5 + h)

h · 5 · (5 + h)
= lim

h→0

5− (5 + h)

5h(5 + h)
= lim

h→0

−h

5h(5 + h)
=

lim
h→0

−1

5(5 + h)
=

−1

25
.

2.3.47 lim
x→9

√
x− 3

x− 9
= lim

x→9

(
√
x− 3)(

√
x+ 3)

(x− 9)(
√
x+ 3)

= lim
x→9

x− 9

(x− 9)(
√
x+ 3)

= lim
x→9

1√
x+ 3

=
1

6
.

2.3.48 Expanding gives

lim
t→3

(
4t− 2

t− 3

)(
6 + t− t2

)
= lim

t→3

(
4t(6 + t− t2)− 2(6 + t− t2)

t− 3

)
= lim

t→3

(
4t(6 + t− t2)− 2(3− t)(2 + t)

t− 3

)
.

Now because t− 3 = −(3− t), we have

lim
t→3

(
4t(6 + t− t2) + 2(2 + t)

)
= 12(6 + 3− 9) + 2(2 + 3) = 10.

2.3.49 lim
x→a

x− a√
x−√

a
= lim

x→a

x− a√
x−√

a
·
√
x+

√
a√

x+
√
a
= lim

x→a

(x− a)(
√
x+

√
a)

x− a
= lim

x→a
(
√
x+

√
a) = 2

√
a.

2.3.50 lim
x→a

x2 − a2√
x−√

a
= lim

x→a

x2 − a2√
x−√

a
·
√
x+

√
a√

x+
√
a
= lim

x→a

(x− a)(x+ a)(
√
x+

√
a)

x− a
=

(a+ a)(
√
a+

√
a) = 4a3/2.
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2.3.51 lim
h→0

√
16 + h− 4

h
= lim

h→0

(
√
16 + h− 4)(

√
16 + h+ 4)

h(
√
16 + h+ 4)

= lim
h→0

(16 + h)− 16

h(
√
16 + h+ 4)

= lim
h→0

h

h(
√
16 + h+ 4)

= lim
h→0

1

(
√
16 + h+ 4)

=
1

8
.

2.3.52 Note that x3 − a3 = (x− a)(x2 + ax+ a2), and thus as long as x 
= a, we have

x3 − a3

x− a
= x2 + ax+ a2.

Thus,

lim
x→a

x3 − a3

x− a
= lim

x→a
(x2 + ax+ a2) = a2 + a2 + a2 = 3a2.

2.3.53

a. �4 �3 �2 �1 0 1
x

0.5

1.0

1.5

y

b. The slope of the secant line between (0, 1)
and (x, 2x) is 2x−1

x .

c.
x −1 −.1 −.01 −.001 −.0001 −.00001

2x−1
x .5 .66967 .69075 .692907 .693123 .693145

It appears that limx→0−
2x−1

x ≈ 0.693.

2.3.54

a.

�3 �2 �1 1 2 3 x

�10

�5

5

10

y

b. The slope of the secant line between (0, 1)
and (x, 3x) is 3x−1

x .

c.
x −.1 −.01 −.001 −.0001 .0001 .001 .01 .1

3x−1
x 1.04042 1.0926 1.09801 1.09855 1.09867 1.09922 1.10467 1.16123

It appears that lim
x→0

3x − 1

x
≈ 1.099.

2.3.55

a. The statement we are trying to prove can be stated in cases as follows: For x > 0, −x ≤ x sin(1/x) ≤ x,
and for x < 0, x ≤ x sin(1/x) ≤ −x.

Now for all x 
= 0, note that −1 ≤ sin(1/x) ≤ 1 (because the range of the sine function is [−1, 1]).
We will consider the two cases x > 0 and x < 0 separately, but in each case, we will multiply this
inequality through by x, switching the inequalities for the x < 0 case.
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For x > 0 we have −x ≤ x sin(1/x) ≤ x, and for x < 0 we have −x ≥ x sin(1/x) ≥ x, which are exactly
the statements we are trying to prove.

b.

�0.4 �0.2 0.2 0.4
x

�0.3

�0.2

�0.1

0.1

0.2

0.3
y

c. Because lim
x→0

−|x| = lim
x→0

|x| = 0, and

because −|x| ≤ x sin(1/x) ≤ |x|,
the Squeeze Theorem assures us that
lim
x→0

[x sin(1/x)] = 0 as well.

2.3.56

a.

�2 �1 1 2
x

�1.0

�0.5

0.5

1.0
y

b. Note that lim
x→0

[
1− x2

2

]
= 1 = lim

x→0
1. So

because 1 − x2

2 ≤ cosx ≤ 1, the squeeze
theorem assures us that lim

x→0
cosx = 1 as

well.

2.3.57

a. �2 �1 1 2
x

0.2

0.4

0.6

0.8

1.0
y

b. Note that lim
x→0

[
1− x2

6

]
= 1 = lim

x→0
1. So

because 1 − x2

6 ≤ sin x
x ≤ 1, the squeeze

theorem assures us that lim
x→0

sinx

x
= 1 as

well.

2.3.58

a.

�1.0 �0.5 0.5 1.0
x

�1.0

�0.5

0.5

1.0
y

b. Note that lim
x→0

(−|x|) = 0 = lim
x→0

|x|. So

because −|x| ≤ x2 lnx2 ≤ |x|, the squeeze
theorem assures us that lim

x→0
(x2 lnx2) = 0

as well.

2.3.59

a. False. For example, if f(x) =

⎧⎨
⎩x if x 
= 1;

4 if x = 1,
then lim

x→1
f(x) = 1 but f(1) = 4.
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b. False. For example, if f(x) =

⎧⎨
⎩x+ 1 if x ≤ 1;

x− 6 if x > 1,
then lim

x→1−
f(x) = 2 but lim

x→1+
f(x) = −5.

c. False. For example, if f(x) =

⎧⎨
⎩x if x 
= 1;

4 if x = 1,
and g(x) = 1, then f and g both have limit 1 as x → 1,

but f(1) = 4 
= g(1).

d. False. For example lim
x→2

x2 − 4

x− 2
exists and is equal to 4.

e. False. For example, it would be possible for the domain of f to be [1,∞), so that the one-sided limit
exists but the two-sided limit doesn’t even make sense. This would be true, for example, if f(x) = x−1.

2.3.60 lim
h→0

100

(10h− 1)11 + 2
=

100

(−1)11 + 2
=

100

1
= 100.

2.3.61 lim
x→2

(5x− 6)3/2 = (5 · 2− 6)3/2 = 43/2 = 23 = 8.

2.3.62 lim
x→3

1
x2+2x − 1

15

x− 3
= lim

x→3

15−(x2+2x)
15(x2+2x)

x− 3
= lim

x→3

15− (x2 + 2x)

15(x2 + 2x)(x− 3)
= lim

x→3

15− 2x− x2

15(x2 + 2x)(x− 3)
=

lim
x→3

(3− x)(5 + x)

15(x2 + 2x)(x− 3)
= lim

x→3

−(5 + x)

15(x2 + 2x)
=

−8

225
.

2.3.63 lim
x→1

√
10x− 9− 1

x− 1
= lim

x→1

(
√
10x− 9− 1)(

√
10x− 9 + 1)

(x− 1)(
√
10x− 9 + 1)

= lim
x→1

(10x− 9)− 1

(x− 1)(
√
10x− 9 + 1)

=

lim
x→1

10(x− 1)

(x− 1)(
√
10x− 9 + 1)

= lim
x→1

10

(
√
10x− 9 + 1)

=
10

2
= 5.

2.3.64 lim
x→2

(
1

x− 2
− 2

x2 − 2x

)
= lim

x→2

(
x

x(x− 2)
− 2

x(x− 2)

)
= lim

x→2

(
x− 2

x(x− 2)

)
= lim

x→2

1

x
=

1

2
.

2.3.65 lim
h→0

(5 + h)2 − 25

h
= lim

h→0

25 + 10h+ h2 − 25

h
= lim

h→0

h(10 + h)

h
= lim

h→0
(10 + h) = 10.

2.3.66 lim
x→c

x2 − 2cx+ c2

x− c
= lim

x→c

(x− c)2

x− c
= lim

x→c
x− c = c− c = 0.

2.3.67 We have

lim
w→−k

w2 + 5kw + 4k2

w2 + kw
= lim

w→−k

(w + 4k)(w + k)

(w)(w + k)
= lim

w→−k

w + 4k

w
=

−k + 4k

−k
= −3.

If k = 0, we have lim
w→−k

w2 + 5kw + 4k2

w2 + kw
= lim

w→0

w2

w2
= 1.

2.3.68 In order for lim
x→2

f(x) to exist, we need the two one-sided limits to exist and be equal. We have

lim
x→2−

f(x) = lim
x→2−

(3x+ b) = 6 + b, and lim
x→2+

f(x) = lim
x→2+

(x− 2) = 0. So we need 6 + b = 0, so we require

that b = −6. Then lim
x→2

f(x) = 0.

2.3.69 In order for lim
x→−1

g(x) to exist, we need the two one-sided limits to exist and be equal. We have

lim
x→−1−

g(x) = lim
x→−1−

(x2 − 5x) = 6, and lim
x→−1+

g(x) = lim
x→−1+

(ax3 − 7) = −a− 7. So we need −a− 7 = 6, so

we require that a = −13. Then lim
x→−1

f(x) = 6.
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2.3.70 lim
x→2

x5 − 32

x− 2
= lim

x→2

(x− 2)(x4 + 2x3 + 4x2 + 8x+ 16)

x− 2
= lim

x→2
(x4 + 2x3 + 4x2 + 8x+ 16) = 16 + 16 +

16 + 16 + 16 = 80.

2.3.71 lim
x→1

x6 − 1

x− 1
= lim

x→1

(x− 1)(x5 + x4 + x3 + x2 + x+ 1)

x− 1
= lim

x→1
(x5 + x4 + x3 + x2 + x+ 1) = 6.

2.3.72 lim
x→−1

x7 + 1

x+ 1
= lim

x→−1

(x+ 1)(x6 − x5 + x4 − x3 + x2 − x+ 1)

x+ 1
= lim

x→−1
(x6 − x5 + x4 − x3 + x2 − x+ 1) = 7.

2.3.73 lim
x→a

x5 − a5

x− a
= lim

x→a

(x− a)(x4 + ax3 + a2x2 + a3x+ a4)

x− a
= lim

x→a
(x4 + ax3 + a2x2 + a3x+ a4) = 5a4.

2.3.74 lim
x→a

xn − an

x− a
= lim

x→a

(x− a)(xn−1 + axn−2 + · · ·+ an−2x+ an−1)

x− a
= lim

x→a
(xn−1+axn−2+· · ·+an−2x+

an−1) = nan−1.

2.3.75 lim
x→1

3
√
x− 1

x− 1
= lim

x→1

3
√
x− 1

( 3
√
x− 1)(

3
√
x2 + 3

√
x+ 1)

= lim
x→1

1
3
√
x2 + 3

√
x+ 1

=
1

3
.

2.3.76 lim
x→16

4
√
x− 2

x− 16
= lim

x→16

4
√
x− 2

( 4
√
x− 2)(

4
√
x3 + 2

4
√
x2 + 4 4

√
x+ 8)

= lim
x→16

1
4
√
x3 + 2

4
√
x2 + 4 4

√
x+ 8

=
1

32
.

2.3.77 lim
x→1

x− 1√
x− 1

= lim
x→1

(x− 1)(
√
x+ 1)

(
√
x− 1)(

√
x+ 1)

= lim
x→1

(x− 1)(
√
x+ 1)

x− 1
= lim

x→1
(
√
x+ 1) = 2.

2.3.78 lim
x→1

x− 1√
4x+ 5− 3

= lim
x→1

(x− 1)(
√
4x+ 5 + 3)

(
√
4x+ 5− 3)(

√
4x+ 5 + 3)

= lim
x→1

(x− 1)(
√
4x+ 5 + 3)

4x+ 5− 9
=

lim
x→1

(x− 1)(
√
4x+ 5 + 3)

4(x− 1)
= lim

x→1

(
√
4x+ 5 + 3)

4
=

6

4
=

3

2
.

2.3.79 limx→4
3(x−4)

√
x+5

3−√
x+5

= limx→4
3(x−4)(

√
x+5)(3+

√
x+5)

(3−√
x+5)(3+

√
x+5)

= limx→4
3(x−4)(

√
x+5)(3+

√
x+5)

9−(x+5) =

limx→4
3(x−4)(

√
x+5)(3+

√
x+5)

−(x−4) = limx→4[−3(
√
x+ 5)(3 +

√
x+ 5)] = (−3)(3)(3 + 3) = −54.

2.3.80 Assume c 
= 0. lim
x→0

x√
cx+ 1− 1

= lim
x→0

x(
√
cx+ 1 + 1)

(
√
cx+ 1− 1)(

√
cx+ 1 + 1)

= lim
x→0

x(
√
cx+ 1 + 1)

(cx+ 1)− 1
=

lim
x→0

x(
√
cx+ 1 + 1)

cx
= lim

x→0

(
√
cx+ 1 + 1)

c
=

2

c
.

2.3.81 Let f(x) = x− 1 and g(x) = 5
x−1 . Then lim

x→1
f(x) = 0, lim

x→1
f(x)g(x) = lim

x→1

5(x− 1)

x− 1
= lim

x→1
5 = 5.

2.3.82 Let f(x) = x2 − 1. Then lim
x→1

f(x)

x− 1
= lim

x→1

x2 − 1

x− 1
= lim

x→1
(x+ 1) = 2.

2.3.83 Let p(x) = x2 + 2x− 8. Then lim
x→2

p(x)

x− 2
= lim

x→2

(x− 2)(x+ 4)

x− 2
= lim

x→2
(x+ 4) = 6.

The constants are unique. We know that 2 must be a root of p (otherwise the given limit couldn’t
exist), so it must have the form p(x) = (x − 2)q(x), and q must be a degree 1 polynomial with leading
coefficient 1 (otherwise p wouldn’t have leading coefficient 1.) So we have p(x) = (x− 2)(x+ d), but because

lim
x→2

p(x)

x− 2
= lim

x→2
(x + d) = 2 + d = 6, we are forced to realize that d = 4. Therefore, we have deduced that

the only possibility for p is p(x) = (x− 2)(x+ 4) = x2 + 2x− 8.

2.3.84

a. L(c/2) = L0

√
1− (c/2)2

c2 = L0

√
1− (1/4) =

√
3L0/2.
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b. L(3c/4) = L0

√
1− (1/c2)(3c/4)2 = L0

√
1− (9/16) =

√
7L0/4.

c. It appears that that the observed length L of the ship decreases as the ship speed increases.

d. lim
x→c−

L0

√
1− (ν2/c2) = L0 ·0 = 0. As the speed of the ship approaches the speed of light, the observed

length of the ship shrinks to 0.

2.3.85 lim
S→0+

r(S) = lim
S→0+

(1/2)

(√
100 +

2S

π
− 10

)
= 0.

The radius of the circular cylinder approaches zero as the surface area approaches zero.

2.3.86 lim
t→200−

d(t) = lim
t→200−

(3 − 0.015t)2 = (3 − (0.015)(200))2 = (3 − 3)2 = 0. As time approaches 200

seconds, the depth of the water in the tank is approaching 0.

2.3.87 lim
x→10

E(x) = lim
x→10

4.35

x
√
x2 + 0.01

=
4.35

10
√
100.01

≈ .0435 N/C.

2.3.88 Because lim
x→1

f(x) = 4, we know that f is near 4 when x is near 1 (but not equal to 1). It follows

that lim
x→−1

f(x2) = 4 as well, because when x is near but not equal to −1, x2 is near 1 but not equal to 1.

Thus f(x2) is near 4 when x is near −1.

2.3.89

a. As x → 0+, (1− x) → 1−. So lim
x→0+

g(x) = lim
(1−x)→1−

f(1− x) = lim
z→1−

f(z) = 6. (Where z = 1− x.)

b. As x → 0−, (1− x) → 1+. So lim
x→0−

g(x) = lim
(1−x)→1+

f(1− x) = lim
z→1+

f(z) = 4. (Where z = 1− x.)

2.3.90

a. Suppose 0 < θ < π/2. Note that sin θ > 0, so | sin θ| = sin θ. Also, sin θ = |AC|
1 , so |AC| = | sin θ|.

Now suppose that −π/2 < θ < 0. Then sin θ is negative, so | sin θ| = − sin θ. We have sin θ = −|AC|
1 ,

so |AC| = − sin θ = | sin θ|.
b. Suppose 0 < θ < π/2. Because AB is the hypotenuse of triangle ABC, we know that |AB| > |AC|.

We have | sin θ| = |AC| < |AB| < the length of arc AB = θ = |θ|.
If −π/2 < θ < 0, we can make a similar argument. We have

| sin θ| = |AC| < |AB| < the length of arc AB = −θ = |θ|.

c. If 0 < θ < π/2, we have sin θ = | sin θ| < |θ|, and because sin θ is positive, we have −|θ| ≤ 0 < sin θ.
Putting these together gives −|θ| < sin θ < |θ|.
If −π/2 < θ < 0, then | sin θ| = − sin θ. From the previous part, we have | sin θ| = − sin θ < |θ|.
Therefore, −|θ| < sin θ. Now because sin θ is negative on this interval, we have sin θ < 0 ≤ |θ|. Putting
these together gives −|θ| < sin θ < |θ|.

d. If 0 < θ < π/2, we have

0 ≤ 1− cos θ = |OB| − |OC| = |BC| < |AB| < the length of arc AB = θ = |θ|.

For −π/2 < θ < 0, we have

0 ≤ 1− cos θ = |OB| − |OC| = |BC| < |AB| < the length of arc AB = −θ = |θ|.

2.3.91 lim
x→a

p(x) = lim
x→a

(anx
n+an−1x

n−1+ · · ·+a1x+a0) = lim
x→a

(anx
n)+ lim

x→a
(an−1x

n−1)+ · · ·+ lim
x→a

(a1x)+

lim
x→a

a0 = an lim
x→a

xn+an−1 lim
x→a

xn−1+· · ·+a1 lim
x→a

x+a0 = an( lim
x→a

x)n+an−1( lim
x→a

x)n−1+· · ·+a1( lim
x→a

x)+a0 =

ana
n + an−1a

n−1 + · · ·+ a1a+ a0 = p(a).
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2.4 Infinite Limits

2.4.1

lim
x→a+

f(x) = −∞ means that when x is very close

to (but a little bigger than) a, the corresponding
values for f(x) are negative numbers whose abso-
lute value is very large.

a
x

y

2.4.2

lim
x→a

f(x) = ∞ means that when x is close to (but

not equal to) a, the corresponding values for f(x)
are very large positive numbers.

y � f �x�

a
x

y

2.4.3 A vertical asymptote for a function f is a vertical line x = a so that one or more of the following are
true: lim

x→a−
f(x) = ±∞, lim

x→a+
f(x) = ±∞.

2.4.4 No. For example, if f(x) = x2 − 4 and g(x) = x − 2 and a = 2, we would have lim
x→2

f(x)

g(x)
= 4, even

though g(2) = 0.

2.4.5 Because the numerator is approaching a non-zero constant while the denominator is approaching zero,
the quotient of these numbers is getting big – at least the absolute value of the quotient is getting big. The
quotient is actually always negative, because a number near 100 divided by a negative number is always

negative. Thus lim
x→2

f(x)

g(x)
= −∞.

2.4.6 Using the same sort of reasoning as in the last problem – as x → 3 the numerator is fixed at 1, but
the denominator is getting small, so the quotient is getting big. It remains to investigate the sign of the
quotient. As x → 3−, the quantity x− 3 is negative, so the quotient of the positive number 1 and this small
negative number is negative. On the other hand, as x → 3+, the quantity x− 3 is positive, so the quotient

of 1 and this number is positive. Thus: lim
x→3−

1

x− 3
= −∞, and lim

x→3+

1

x− 3
= ∞.

2.4.7

x x+1
(x−1)2 x x+1

(x−1)2

1.1 210 .9 190

1.01 20,100 .99 19,900

1.001 2,001,000 .999 1,999,000

1.0001 200,010,000 .9999 199,990,000

From the data given, it appears that lim
x→1

f(x) = ∞.

2.4.8 lim
x→3

f(x) = ∞, and lim
x→−1

f(x) = −∞.
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2.4.9

a. lim
x→1−

f(x) = ∞. b. lim
x→1+

f(x) = ∞. c. lim
x→1

f(x) = ∞.

d. lim
x→2−

f(x) = ∞. e. lim
x→2+

f(x) = −∞. f. lim
x→2

f(x) does not exist.

2.4.10

a. lim
x→2−

g(x) = ∞. b. lim
x→2+

g(x) = −∞. c. lim
x→2

g(x) does not exist.

d. lim
x→4−

g(x) = −∞. e. lim
x→4+

g(x) = −∞. f. lim
x→4

g(x) = −∞.

2.4.11

a. lim
x→−2−

h(x) = −∞. b. lim
x→−2+

h(x) = −∞. c. lim
x→−2

h(x) = −∞.

d. lim
x→3−

h(x) = ∞. e. lim
x→3+

h(x) = −∞. f. lim
x→3

h(x) does not exist.

2.4.12

a. lim
x→−2−

p(x) = −∞. b. lim
x→−2+

p(x) = −∞. c. lim
x→−2

p(x) = −∞.

d. lim
x→3−

p(x) = −∞. e. lim
x→3+

p(x) = −∞. f. lim
x→3

p(x) = −∞.

2.4.13

a. lim
x→0−

1

x2 − x
= ∞.

b. lim
x→0+

1

x2 − x
= −∞.

c. lim
x→1−

1

x2 − x
= −∞.

d. lim
x→1+

1

x2 − x
= ∞.

0 1 x

2.4.14

a. lim
x→−2+

e−x

x(x+ 2)2
= −∞.

b. lim
x→−2

e−x

x(x+ 2)2
= −∞.

c. lim
x→0−

e−x

x(x+ 2)2
= −∞.

d. lim
x→0+

e−x

x(x+ 2)2
= ∞.

�2 0 x
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2.4.15

1 2 3 4 x

�4

�2

2

4

y

2.4.16

2 4 6 8 x

�5

5

y

2.4.17

a. lim
x→2+

1

x− 2
= ∞. b. lim

x→2−

1

x− 2
= −∞. c. lim

x→2

1

x− 2
does not exist.

2.4.18

a. lim
x→3+

2

(x− 3)3
= ∞. b. lim

x→3−

2

(x− 3)3
= −∞. c. lim

x→3

2

(x− 3)3
does not exist.

2.4.19

a. lim
x→4+

x− 5

(x− 4)2
= −∞. b. lim

x→4−

x− 5

(x− 4)2
= −∞. c. lim

x→4

x− 5

(x− 4)2
= −∞.

2.4.20

a. lim
x→1+

x− 2

(x− 1)3
= −∞. b. lim

x→1−

x− 2

(x− 1)3
= ∞. c. lim

x→1

x− 2

(x− 1)3
does not exist.

2.4.21

a. lim
x→3+

(x− 1)(x− 2)

(x− 3)
= ∞. b. lim

x→3−

(x− 1)(x− 2)

(x− 3)
= −∞. c. lim

x→3

(x− 1)(x− 2)

(x− 3)
does not exist.

2.4.22

a. lim
x→−2+

(x− 4)

x(x+ 2)
= ∞. b. lim

x→−2−

(x− 4)

x(x+ 2)
= −∞. c. lim

x→−2

(x− 4)

x(x+ 2)
does not exist.

2.4.23

a. lim
x→2+

x2 − 4x+ 3

(x− 2)2
= −∞. b. lim

x→2−

x2 − 4x+ 3

(x− 2)2
= −∞. c. lim

x→2

x2 − 4x+ 3

(x− 2)2
= −∞.

2.4.24

a. lim
x→−2+

x3 − 5x2 + 6x

x4 − 4x2
= lim

x→−2+

x(x− 2)(x− 3)

x2(x− 2)(x+ 2)
= lim

x→−2+

x− 3

x(x+ 2)
= ∞.

b. lim
x→−2−

x3 − 5x2 + 6x

x4 − 4x2
= lim

x→−2−

x(x− 2)(x− 3)

x2(x− 2)(x+ 2)
= lim

x→−2−

x− 3

x(x+ 2)
= −∞.

c. Because the two one-sided limits differ, lim
x→−2

x3 − 5x2 + 6x

x4 − 4x2
does not exist.
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d. lim
x→2

x3 − 5x2 + 6x

x4 − 4x2
= lim

x→2

x− 3

x(x+ 2)
=

−1

8
.

2.4.25 lim
x→0

x3 − 5x2

x2
= lim

x→0

x2(x− 5)

x2
= lim

x→0
(x− 5) = −5.

2.4.26 lim
t→5

4t2 − 100

t− 5
= lim

t→5

4(t− 5)(t+ 5)

t− 5
= lim

t→5
[4(t+ 5)] = 40.

2.4.27 lim
x→1+

x2 − 5x+ 6

x− 1
= lim

x→1+

(x− 2)(x− 3)

x− 1
= ∞. (Note that as x → 1+, the numerator is near 2, while

the denominator is near zero, but is positive. So the quotient is positive and large.)

2.4.28 lim
z→4

z − 5

(z2 − 10z + 24)2
= lim

z→4

z − 5

(z − 4)2(z − 6)2
= −∞. (Note that as z → 4, the numerator is near −1

while the denominator is near zero but is positive. So the quotient is negative with large absolute value.)

2.4.29

a. lim
x→5

x− 5

x2 − 25
= lim

x→5

1

x+ 5
=

1

10
, so there isn’t a vertical asymptote at x = 5.

b. lim
x→−5−

x− 5

x2 − 25
= lim

x→−5−

1

x+ 5
= −∞, so there is a vertical asymptote at x = −5.

c. lim
x→−5+

x− 5

x2 − 25
= lim

x→−5+

1

x+ 5
= ∞. This also implies that x = −5 is a vertical asymptote, as we

already noted in part b.

2.4.30

a. lim
x→7−

x+ 7

x4 − 49x2
= lim

x→7−

x+ 7

x2(x+ 7)(x− 7)
= lim

x→7−

1

x2(x− 7)
= −∞, so there is a vertical asymptote

at x = 7.

b. lim
x→7+

x+ 7

x4 − 49x2
= lim

x→7+

x+ 7

x2(x+ 7)(x− 7)
= lim

x→7+

1

x2(x− 7)
= ∞. This also implies that there is a

vertical asymptote at x = 7, as we already noted in part a.

c. lim
x→−7

x+ 7

x4 − 49x2
= lim

x→−7

x+ 7

x2(x+ 7)(x− 7)
= lim

x→−7

1

x2(x− 7)
=

1

−686
. So there is not a vertical

asymptote at x = 7.

d. lim
x→0

x+ 7

x4 − 49x2
= lim

x→0

x+ 7

x2(x+ 7)(x− 7)
= lim

x→0

1

x2(x− 7)
= −∞. So there is a vertical asymptote at

x = 0.

2.4.31 f(x) = x2−9x+14
x2−5x+6 = (x−2)(x−7)

(x−2)(x−3) . Note that x = 3 is a vertical asymptote, while x = 2 appears to be

a candidate but isn’t one. We have lim
x→3+

f(x) = lim
x→3+

x− 7

x− 3
= −∞ and lim

x→3−
f(x) = lim

x→3−

x− 7

x− 3
= ∞, and

thus lim
x→3

f(x) doesn’t exist. Note that lim
x→2

f(x) = 5.

2.4.32 f(x) = cos x
x(x+2) has vertical asymptotes at x = 0 and at x = −2. Note that cosx is near 1 when x is

near 0 , and cosx is near −.4 when x is near −2. Thus, lim
x→0+

f(x) = +∞, lim
x→0−

f(x) = −∞, lim
x→−2+

f(x) = ∞,

and lim
x→−2−

f(x) = −∞.

2.4.33 f(x) = x+1
x3−4x2+4x = x+1

x(x−2)2 . There are vertical asymptotes at x = 0 and x = 2. We have

lim
x→0−

f(x) = lim
x→0−

x+ 1

x(x− 2)2
= −∞, while lim

x→0+
f(x) = lim

x→0+

x+ 1

x(x− 2)2
= ∞, and thus lim

x→0
f(x) doesn’t

exist.

Also we have lim
x→2−

f(x) = lim
x→2−

x+ 1

x(x− 2)2
= ∞, while lim

x→2+
f(x) = lim

x→2+

x+ 1

x(x− 2)2
= ∞, and thus

lim
x→2

f(x) = ∞ as well.
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2.4.34 g(x) = x3−10x2+16x
x2−8x = x(x−2)(x−8)

x(x−8) . This function has no vertical asymptotes.

2.4.35 lim
θ→0+

csc θ = lim
θ→0+

1

sin θ
= ∞.

2.4.36 lim
x→0−

cscx = lim
x→0−

1

sinx
= −∞.

2.4.37 lim
x→0+

−10 cotx = lim
x→0+

−10 cosx

sinx
= −∞. (Note that as x → 0+, the numerator is near −10 and the

denominator is near zero, but is positive. Thus the quotient is a negative number whose absolute value is
large.)

2.4.38 lim
θ→(π/2)+

1

3
tan θ = lim

θ→(π/2)+

sin θ

3 cos θ
= −∞. (Note that as θ → (π/2)+, the numerator is near 1 and

the denominator is near 0, but is negative. Thus the quotient is a negative number whose absolute value is
large.)

2.4.39

a. lim
x→(π/2)+

tanx = −∞.

b. lim
x→(π/2)−

tanx = ∞.

c. lim
x→(−π/2)+

tanx = −∞.

d. lim
x→(−π/2)−

tanx = ∞.

�3 �2 �1 1 2 3 x

�10

�5

5

10
y

2.4.40

a. lim
x→(π/2)+

secx tanx = ∞.

b. lim
x→(π/2)−

secx tanx = ∞.

c. lim
x→(−π/2)+

secx tanx = −∞.

d. lim
x→(−π/2)−

secx tanx = −∞.

�3 �2 �1 1 2 3 x

�10

�5

5

10
y

2.4.41

a. False. lim
x→1−

f(x) = lim
x→1+

f(x) = lim
x→1

f(x) = lim
x→1

(x− 1)(x− 6)

(x− 1)(x+ 1)
=

−5

2
.

b. True. For example, lim
x→−1+

f(x) = lim
x→−1+

(x− 1)(x− 6)

(x− 1)(x+ 1)
= −∞.

c. False. For example g(x) = 1
x−1 has lim

x→1+
g(x) = ∞, but lim

x→1−
g(x) = −∞.
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2.4.42

One such function is f(x) = x2−4x+3
x2−3x+2 =

(x−1)(x−3)
(x−1)(x−2) .

�1 1 2 3 x

�4

�2

2

4

6

y

2.4.43 One example is f(x) = 1
x−6 .

2.4.44
function a b c d e f

graph D C F B A E

2.4.45 f(x) = x2−3x+2
x10−x9 = (x−2)(x−1)

x9(x−1) . f has a vertical asymptote at x = 0, because lim
x→0+

f(x) = −∞ (and

lim
x→0−

f(x) = ∞.) Note that lim
x→1

f(x) = −1, so there isn’t a vertical asymptote at x = 1.

2.4.46 g(x) = 2− lnx2 has a vertical asymptote at x = 0, because lim
x→0

(2− lnx2) = ∞.

2.4.47 h(x) = ex

(x+1)3 has a vertical asymptote at x = −1, because lim
x→−1+

ex

(x+ 1)3
= ∞ (and lim

x→−1−
h(x) =

−∞.)

2.4.48 p(x) = sec(πx/2) = 1
cos(πx/2) has a vertical asymptote on (−2, 2) at x = ±1.

2.4.49 g(θ) = tan(πθ/10) = sin(πθ/10)
cos(πθ/10) has a vertical asymptote at each θ = 10n + 5 where n is an integer.

This is due to the fact that cos(πθ/10) = 0 when πθ/10 = π/2+nπ where n is an integer, which is the same
as {θ : θ = 10n+ 5, n an integer}. Note that at all of these numbers which make the denominator zero, the
numerator isn’t zero.

2.4.50 q(s) = π
s−sin s has a vertical asymptote at s = 0. Note that this is the only number where sin s = s.

2.4.51 f(x) = 1√
x sec x

= cos x√
x

has a vertical asymptote at x = 0.

2.4.52 g(x) = e1/x has a vertical asymptote at x = 0, because lim
x→0+

e1/x = ∞. (Note that as x → 0+,

1/x → ∞, so e1/x → ∞ as well.)

2.4.53

a. Note that the numerator of the given expression factors as (x− 3)(x − 4). So if a = 3 or if a = 4 the

limit would be a finite number. In fact, lim
x→3

(x− 3)(x− 4)

x− 3
= −1 and lim

x→4

(x− 3)(x− 4)

x− 4
= 1.

b. For any number other than 3 or 4, the limit would be either ±∞. Because x − a is always positive
as x → a+, the limit would be +∞ exactly when the numerator is positive, which is for a in the set
(−∞, 3) ∪ (4,∞).

c. The limit would be −∞ for a in the set (3, 4).
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2.4.54

a. The slope of the secant line is given by f(h)−f(0)
h = h1/3

h = h−2/3.

b. lim
h→0

1
3
√
h2

= ∞. This tells us that the slope of the tangent line is infinite – which means that the

tangent line at (0, 0) is vertical.

2.4.55

a. The slope of the secant line is f(h)−f(0)
h = h2/3

h = h−1/3.

b. lim
h→0+

1

h1/3
= ∞, and lim

h→0−

1

h1/3
= −∞. The tangent line is infinitely steep at the origin (i.e., it is a

vertical line.)

2.5 Limits at Infinity

2.5.1

As x < 0 becomes large in absolute value, the
corresponding values of f level off near 10.

x

10
y

2.5.2 A horizontal asymptote is a horizontal line y = L so that either lim
x→∞ f(x) = L or lim

x→−∞ f(x) = L (or

both.)

2.5.3 If f(x) → 100, 000 as x → ∞ and g(x) → ∞ as x → ∞, then the ratio f(x)
g(x) → 0 as x → ∞. (Because

eventually the values of f are small compared to the values of g.)

2.5.4 As x → ∞, we note that e−2x → 0, while as x → −∞, we have e−2x → ∞.

2.5.5 lim
x→∞(−2x3) = −∞, and lim

x→−∞(−2x3) = ∞.

2.5.6 The line y = 0 may be a horizontal asymptote, the line y = a where a 
= 0 may be a horizontal
asymptote, and the limit at ±∞ may not exist either with or without a slant asymptote.

2.5.7 lim
x→∞ ex = ∞, lim

x→−∞ ex = 0, and lim
x→∞ e−x = 0.

2.5.8

As x → ∞, lnx → ∞. (Albeit somewhat slowly.)

2000 4000 6000 8000 10 000
x

2

4

6

8

y
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2.5.9 lim
x→∞(3 + 10/x2) = 3 + lim

x→∞(10/x2) = 3 + 0 = 3.

2.5.10 lim
x→∞(5 + 1/x+ 10/x2) = 5 + lim

x→∞(1/x) + lim
x→∞(10/x2) = 5 + 0 + 0 = 5.

2.5.11 lim
θ→∞

cos θ

θ2
= 0. Note that −1 ≤ cos θ ≤ 1, so − 1

θ2 ≤ cos θ
θ2 ≤ 1

θ2 . The result now follows from the

squeeze theorem.

2.5.12 lim
x→∞

3 + 2x+ 4x2

x2
= lim

x→∞
3

x2
+ lim

x→∞
2x

x2
+ lim

x→∞
4x2

x2
= 0 + lim

x→∞
2

x
+ lim

x→∞ 4 = 0 + 0 + 4 = 4.

2.5.13 lim
x→∞

cosx5

√
x

= 0. Note that −1 ≤ cosx5 ≤ 1, so −1√
x
≤ cos x5√

x
≤ 1√

x
. Because lim

x→∞
1√
x
= lim

x→∞
−1√
x
=

0, we have lim
x→∞

cosx5

√
x

= 0 by the squeeze theorem.

2.5.14 lim
x→−∞

(
5 +

100

x
+

sin4(x3)

x2

)
= 5 + 0 + 0 = 5. For this last limit, note that 0 ≤ sin4(x3) ≤ 1, so

0 ≤ sin4(x3)
x2 ≤ 1

x2 . The result now follows from the squeeze theorem.

2.5.15 lim
x→∞x12 = ∞. Note that x12 is positive when x > 0.

2.5.16 lim
x→−∞ 3x11 = −∞. Note that x11 is negative when x < 0.

2.5.17 lim
x→∞x−6 = lim

x→∞
1

x6
= 0.

2.5.18 lim
x→−∞x−11 = lim

x→−∞
1

x11
= 0.

2.5.19 lim
x→∞(3x12 − 9x7) = ∞.

2.5.20 lim
x→−∞(3x7 + x2) = −∞.

2.5.21 lim
x→−∞(−3x16 + 2) = −∞.

2.5.22 lim
x→−∞ 2x−8 = lim

x→−∞
2

x8
= 0.

2.5.23 lim
x→∞(−12x−5) = lim

x→∞−12

x5
= 0.

2.5.24 lim
x→−∞(2x−8 + 4x3) = 0 + lim

x→−∞ 4x3 = −∞.

2.5.25 lim
x→∞

4x

20x+ 1
= lim

x→∞
4x

20x+ 1
· 1/x
1/x

= lim
x→∞

4

20 + 1/x
=

4

20
=

1

5
. Thus, the line y = 1

5 is a horizontal

asymptote.

lim
x→−∞

4x

20x+ 1
= lim

x→−∞
4x

20x+ 1
· 1/x
1/x

= lim
x→−∞

4

20 + 1/x
=

4

20
=

1

5
. This shows that the curve is also

asymptotic to the asymptote in the negative direction.

2.5.26 lim
x→∞

3x2 − 7

x2 + 5x
= lim

x→∞
3x2 − 7

x2 + 5x
· 1/x

2

1/x2
= lim

x→∞
3− (7/x2)

1 + (5/x)
=

3− 0

1 + 0
= 3. Thus, the line y = 3 is a

horizontal asymptote.

lim
x→−∞

3x2 − 7

x2 + 5x
= lim

x→−∞
3x2 − 7

x2 + 5x
· 1/x

2

1/x2
= lim

x→−∞
3− (7/x2)

1 + (5/x)
=

3− 0

1 + 0
= 3. Thus, the curve is also

asymptotic to the asymptote in the negative direction.
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2.5.27 lim
x→∞

(6x2 − 9x+ 8)

(3x2 + 2)
· 1/x

2

1/x2
= lim

x→∞
6− 9/x+ 8/x2

3 + 2/x2
=

6− 0 + 0

3 + 0
= 2. Similarly lim

x→−∞ f(x) = 2. The

line y = 2 is a horizontal asymptote.

2.5.28 lim
x→∞

(4x2 − 7)

(8x2 + 5x+ 2)
· 1/x

2

1/x2
= lim

x→∞
4− 7/x2

8 + 5/x+ 2/x2
=

4− 0

8 + 0 + 0
=

1

2
. Similarly lim

x→−∞ f(x) =
1

2
. The

line y = 1
2 is a horizontal asymptote.

2.5.29 lim
x→∞

3x3 − 7

x4 + 5x2
= lim

x→∞
3x3 − 7

x4 + 5x2
· 3/x

4

1/x4
= lim

x→∞
1/x− (7/x4)

1 + (5/x2)
=

0− 0

1 + 0
= 0. Thus, the line y = 0 (the

x-axis) is a horizontal asymptote.

lim
x→−∞

3x3 − 7

x4 + 5x2
= lim

x→−∞
3x3 − 7

x4 + 5x2
· 3/x

4

1/x4
= lim

x→−∞
1/x− (7/x4)

1 + (5/x2)
=

0− 0

1 + 0
= 0. Thus, the curve is

asymptotic to the x-axis in the negative direction as well.

2.5.30 lim
x→∞

x4 + 7

x5 + x2 − x
= lim

x→∞
x4 + 7

x5 + x2 − x
· 1/x

5

1/x5
= lim

x→∞
(1/x) + (7/x5)

1 + (1/x3)− (1/x4)
=

0 + 0

1 + 0− 0
= 0. Thus, the

line y = 0 (the x-axis) is a horizontal asymptote.

lim
x→−∞

x4 + 7

x5 + x2 − x
= lim

x→−∞
x4 + 7

x5 + x2 − x
· 1/x

5

1/x5
= lim

x→−∞
(1/x) + (7/x5)

1 + (1/x3)− (1/x4)
=

0 + 0

1 + 0− 0
= 0. Thus, the

curve is asymptotic to the x-axis in the negative direction as well.

2.5.31 lim
x→∞

(2x+ 1)

(3x4 − 2)
· 1/x

4

1/x4
= lim

x→∞
2/x3 + 1/x4

3− 2/x4
=

0 + 0

3− 0
= 0. Similarly lim

x→−∞ f(x) = 0. The line y = 0 is

a horizontal asymptote.

2.5.32 lim
x→∞

(12x8 − 3)

(3x8 − 2x7)
· 1/x

8

1/x8
= lim

x→∞
12− 3/x8

3− 2/x
=

12− 0

3− 0
= 4. Similarly lim

x→−∞ f(x) = 4. The line y = 4

is a horizontal asymptote.

2.5.33 lim
x→∞

(40x5 + x2)

(16x4 − 2x)
· 1/x

4

1/x4
= lim

x→∞
40x+ 1/x2

16− 2/x3
= ∞. Similarly lim

x→−∞ f(x) = −∞. There are no

horizontal asymptotes.

2.5.34 lim
x→∞

(−x3 + 1)

(2x+ 8)
· 1/x
1/x

= lim
x→∞

−x2 + 1/x

2 + 8/x
= −∞. Similarly lim

x→−∞ f(x) = −∞. There are no horizon-

tal asymptotes.

2.5.35

a. f(x) = x2−3
x+6 = x− 6 + 33

x+6 . The oblique asymptote of f is y = x− 6.

b.

Because lim
x→−6+

f(x) = ∞, there is a verti-

cal asymptote at x = −6. Note also that
lim

x→−6−
f(x) = −∞.

c.

�12 �10 �8 �6 �4 �2 2 x

�60

�40

�20

20

y

2.5.36

a. f(x) = x2−1
x+2 = x− 2 + 3

x+2 . The oblique asymptote of f is y = x− 2.
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b.

Because lim
x→−2+

f(x) = ∞, there is a verti-

cal asymptote at x = −2. Note also that
lim

x→−2−
f(x) = −∞.

c.

�4 �3 �2 �1 1 2 x

�15

�10

�5

5

y

2.5.37

a. f(x) = x2−2x+5
3x−2 = (1/3)x− 4/9 + 37

9(3x−2) . The oblique asymptote of f is y = (1/3)x− 4/9.

b.

Because lim
x→(2/3)+

f(x) = ∞, there is a verti-

cal asymptote at x = 2/3. Note also that
lim

x→(2/3)−
f(x) = −∞.

c.

�4 �2 2 4 x

�6

�4

�2

2

4

y

2.5.38

a. f(x) = 3x2−2x+7
2x−5 = (3/2)x+ 11/4 + 83

4(2x−5) . The oblique asymptote of f is y = (3/2)x+ 11/4.

b.

Because lim
x→(5/2)+

f(x) = ∞, there is a verti-

cal asymptote at x = 5/2. Note also that
lim

x→(5/2)−
f(x) = −∞.

c.

1 2 3 4 x

�20

20

40

y

2.5.39

a. f(x) = 4x3+4x2+7x+4
1+x2 = 4x+ 4 + 3x

1+x2 . The oblique asymptote of f is y = 4x+ 4.

b. There are no vertical asymptotes.

c.

�3 �2 �1 1 2 3 x

�5

5

10

15

y
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2.5.40

a. f(x) = 3x2−2x+5
3x+4 = x− 2 + 13

3x+4 . The oblique asymptote of f is y = x− 2.

b.

Because lim
x→(−4/3)+

f(x) = ∞, there is a verti-

cal asymptote at x = −4/3. Note also that
lim

x→(−4/3)−
f(x) = −∞.

c.

�4 �2 2 4 x

�15

�10

�5

5

10

y

2.5.41 First note that
√
x6 = x3 if x > 0, but

√
x6 = −x3 if x < 0. We have lim

x→∞
4x3 + 1

(2x3 +
√
16x6 + 1)

·1/x
3

1/x3
=

lim
x→∞

4 + 1/x3

2 +
√

16 + 1/x6
=

4 + 0

2 +
√
16 + 0

=
2

3
.

However, lim
x→−∞

4x3 + 1

(2x3 +
√
16x6 + 1)

· 1/x
3

1/x3
= lim

x→−∞
4 + 1/x3

2−√16 + 1/x6
=

4 + 0

2−√
16 + 0

=
4

−2
= −2.

So y = 2
3 is a horizontal asymptote (as x → ∞) and y = −2 is a horizontal asymptote (as x → −∞).

2.5.42 First note that
√
x2 = x for x > 0, while

√
x2 = −x for x < 0. Then lim

x→∞ f(x) can be written as

lim
x→∞

√
x2 + 1

2x+ 1
· 1/

√
x2

1/x
= lim

x→∞

√
1 + 1/x2

2 + 1/x
=

1

2
.

However, lim
x→−∞ f(x) can be written as

lim
x→−∞

√
x2 + 1

2x+ 1
· 1/

√
x2

−1/x
= lim

x→−∞

√
1 + 1/x2

−2− 1/x
= −1

2
.

2.5.43 First note that
3
√
x6 = x2 and

√
x4 = x2 for all x (even when x < 0.) We have lim

x→∞

3
√
x6 + 8

(4x2 +
√
3x4 + 1)

·
1/x2

1/x2
= lim

x→∞

3
√
1 + 8/x6

4 +
√

3 + 1/x4
=

1

4 +
√
3 + 0

=
1

4
√
3
.

The calculation as x → −∞ is similar. So y = 1
4
√
3
is a horizontal asymptote.

2.5.44 First note that
√
x2 = x for x > 0 and

√
x2 = −x for x < 0.

We have

lim
x→∞ 4x(3x−

√
9x2 + 1) = lim

x→∞
4x(3x−√

9x2 + 1)(3x+
√
9x2 + 1)

3x+
√
9x2 + 1

= lim
x→∞

(4x)(−1)

(3x+
√
9x2 + 1)

· 1/x
1/x

= lim
x→∞− 4

3 +
√

9 + 1/x2
= −4

6
= −2

3
.

Moreover, as x → −∞ we have

Copyright c© 2015 Pearson Education, Inc.



100 Chapter 2. Limits

lim
x→−∞ 4x(3x−

√
9x2 + 1) = lim

x→−∞
4x(3x−√

9x2 + 1)(3x+
√
9x2 + 1)

3x+
√
9x2 + 1

= lim
x→−∞

(4x)(−1)

(3x+
√
9x2 + 1)

· 1/x
1/x

= lim
x→−∞− 4

3−√9 + 1/x2
= ∞.

Note that this last equality is due to the fact that the numerator is the constant −4 and the denominator
is approaching zero (from the left) so the quotient is positive and is getting large.

So y = − 2
3 is the only horizontal asymptote.

2.5.45

lim
x→∞(−3e−x) = −3 · 0 = 0. lim

x→−∞(−3e−x) = −∞.

�2 2 4 6
x

�25

�20

�15

�10

�5

y

2.5.46

lim
x→∞ 2x = ∞. lim

x→−∞ 2x = 0.

�4 �2 2 4
x

5

10

15

y

2.5.47

lim
x→∞(1− lnx) = −∞. lim

x→0+
(1− lnx) = ∞.

1 2 3 4 5 6 7
x

�1.0

�0.5

0.5

1.0

1.5

2.0

2.5

y

Copyright c© 2015 Pearson Education, Inc.



2.5. Limits at Infinity 101

2.5.48

lim
x→∞ | lnx| = ∞. lim

x→0+
| lnx| = ∞.

2 4 6 8 10 12
x

1

2

3

4

y

2.5.49

y = sinx has no asymptotes. lim
x→∞ sinx and

lim
x→−∞ sinx do not exist. �10 �5 5 10

x

�1.0

�0.5

0.5

1.0
y

2.5.50

lim
x→∞

50

e2x
= 0. lim

x→−∞
50

e2x
= ∞.

�1.0 �0.5 0.5 1.0 1.5 2.0
x

50

100

150

200

250

300

350

y

2.5.51

a.
False. For example, the function y = sin x

x on the
domain [1,∞) has a horizontal asymptote of y = 0,
and it crosses the x-axis infinitely many times.

10 20 30 40 50
x

�0.10

�0.05

0.05

0.10

y

b. False. If f is a rational function, and if lim
x→∞ f(x) = L 
= 0, then the degree of the polynomial in the

numerator must equal the degree of the polynomial in the denominator. In this case, both lim
x→∞ f(x)

and lim
x→−∞ f(x) =

an
bn

where an is the leading coefficient of the polynomial in the numerator and bn is

the leading coefficient of the polynomial in the denominator. In the case where lim
x→∞ f(x) = 0, then

the degree of the numerator is strictly less than the degree of the denominator. This case holds for
lim

x→−∞ f(x) = 0 as well.
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c. True. There are only two directions which might lead to horizontal asymptotes: there could be one as
x → ∞ and there could be one as x → −∞, and those are the only possibilities.

2.5.52

a. lim
x→∞

x2 − 4x+ 3

x− 1
= ∞, and lim

x→−∞
x2 − 4x+ 3

x− 1
= −∞. There are no horizontal asymptotes.

b. It appears that x = 1 is a candidate to be a vertical asymptote, but note that f(x) = x2−4x+3
x−1 =

(x−1)(x−3)
x−1 . Thus lim

x→1
f(x) = lim

x→1
(x− 3) = −2. So f has no vertical asymptotes.

2.5.53

a. lim
x→∞

2x3 + 10x2 + 12x

x3 + 2x2
· (1/x

3)

(1/x3)
= lim

x→∞
2 + 10/x+ 12/x2

1 + 2/x
= 2. Similarly, lim

x→−∞ f(x) = 2. Thus, y = 2

is a horizontal asymptote.

b. Note that f(x) = 2x(x+2)(x+3)
x2(x+2) . So lim

x→0+
f(x) = lim

x→0+

2(x+ 3)

x
= ∞, and similarly, lim

x→0−
f(x) = −∞.

There is a vertical asymptote at x = 0. Note that there is no asymptote at x = −2 because lim
x→−2

f(x) =

−1.

2.5.54

a. We have lim
x→∞

√
16x4 + 64x2 + x2

2x2 − 4
· (1/x

2)

(1/x2)
= lim

x→∞

√
16 + 64/x2 + 1

2− 4/x2
=

5

2
. Similarly, lim

x→−∞ f(x) =
5

2
.

So y = 5
2 is a horizontal asymptote.

b. lim
x→√

2
+
f(x) = lim

x→−√
2
−
f(x) = ∞, and lim

x→√
2
−
f(x) = lim

x→−√
2
+
f(x) = −∞ so there are vertical asymp-

totes at x = ±√
2.

2.5.55

a. We have lim
x→∞

3x4 + 3x3 − 36x2

x4 − 25x2 + 144
· (1/x

4)

(1/x4)
= lim

x→∞
3 + 3/x− 36/x2

1− 25/x2 + 144/x4
= 3. Similarly, lim

x→−∞ f(x) = 3.

So y = 3 is a horizontal asymptote.

b. Note that f(x) = 3x2(x+4)(x−3)
(x+4)(x−4)(x+3)(x−3) . Thus, lim

x→−3+
f(x) = −∞ and lim

x→−3−
f(x) = ∞. Also,

lim
x→4−

f(x) = −∞ and lim
x→4+

f(x) = ∞. Thus there are vertical asymptotes at x = −3 and x = 4.

2.5.56

a. First note that

f(x) = 16x2(4x2 −
√

16x4 + 1) · 4x
2 +

√
16x4 + 1

4x2 +
√
16x4 + 1

= − 16x2

4x2 +
√
16x4 + 1

.

We have lim
x→∞− 16x2

4x2 +
√
16x4 + 1

· (1/x
2)

(1/x2)
= lim

x→∞− 16

4 +
√

16 + 1/x4
= −2. Similarly, the limit as

x → −∞ of f(x) is −2 as well. so y = −2 is a horizontal asymptote.

b. f has no vertical asymptotes.

2.5.57

a. lim
x→∞

x2 − 9

x2 − 3x
· (1/x

2)

(1/x2)
= lim

x→∞
1− 9/x2

1− 3/x
= 1. A similar result holds as x → −∞. So y = 1 is a horizontal

asymptote.
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b. Because lim
x→0+

f(x) = lim
x→0+

x+ 3

x
= ∞ and lim

x→0−
f(x) = −∞, there is a vertical asymptote at x = 0.

2.5.58

a. lim
x→∞

x− 1

x2/3 − 1
· 1/x

2/3

1/x2/3
= lim

x→∞
x1/3 − 1/x2/3

1− 1/x2/3
= ∞. Similarly, lim

x→−∞ f(x) = −∞. So there are no

horizontal asymptotes.

b. There is a vertical asymptote at x = −1. The easiest way to see this is to factor the denominator as
the difference of squares, and the numerator as the difference of cubes. We have

f(x) =
x− 1

x2/3 − 1
=

(x1/3 − 1)(x2/3 + x1/3 + 1)

(x1/3 + 1)(x1/3 − 1)
.

Thus,

lim
x→−1+

f(x) = lim
x→−1+

x2/3 + x1/3 + 1

x1/3 + 1
= ∞.

Similarly, lim
x→−1−

f(x) = −∞.

2.5.59

a. First note that f(x) =
√
x2+2x+6−3

x−1 ·
√
x2+2x+6+3√
x2+2x+6+3

= x2+2x+6−9
(x−1)(

√
x2+2x+6+3)

= (x−1)(x+3)

(x−1)(
√
x2+2x+6+3)

.

Thus

lim
x→∞ f(x) = lim

x→∞
x+ 3√

x2 + 2x+ 6 + 3
· 1/x
1/x

= lim
x→∞

1 + 3/x√
1 + 2/x+ 6/x2 + 3/x

= 1.

Using the fact that
√
x2 = −x for x < 0, we have lim

x→−∞ f(x) = −1. Thus the lines y = 1 and y = −1

are horizontal asymptotes.

b. f has no vertical asymptotes.

2.5.60

a. Note that when x is large |1 − x2| = x2 − 1. We have lim
x→∞

|1− x2|
x2 + x

= lim
x→∞

x2 − 1

x2 + x
= 1. Likewise

lim
x→−∞

|1− x2|
x2 + x

= lim
x→−∞

x2 − 1

x2 + x
= 1. So there is a horizontal asymptote at y = 1.

b. Note that when x is near 0, we have |1−x2| = 1−x2 = (1−x)(1+x). So lim
x→0+

f(x) = lim
x→0+

1− x

x
= ∞.

Similarly, lim
x→0−

f(x) = −∞. There is a vertical asymptote at x = 0.

2.5.61

a. Note that when x > 1, we have |x| = x and |x− 1| = x− 1. Thus

f(x) = (
√
x−√

x− 1) ·
√
x+

√
x− 1√

x+
√
x− 1

=
1√

x+
√
x− 1

.

Thus lim
x→∞ f(x) = 0.

When x < 0, we have |x| = −x and |x− 1| = 1− x. Thus

f(x) = (
√−x−√

1− x) ·
√−x+

√
1− x√−x+

√
1− x

= − 1√−x+
√
1− x

.

Thus, lim
x→−∞ f(x) = 0. There is a horizontal asymptote at y = 0.
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b. f has no vertical asymptotes.

2.5.62

a. lim
x→π/2−

tanx = ∞ and lim
x→π/2+

tanx = −∞. These are infinite limits.

b.
lim
x→∞ tan−1(x) = π/2 and lim

x→−∞ tan−1(x) =

−π/2. �40 �20 20 40
x

� Π
2

� Π
4

Π

4

Π

2

y

2.5.63

a. lim
x→∞ sec−1 x = π/2.

b. lim
x→−∞ sec−1 x = π/2.

�6 �4 �2 0 2 4 6
x

Π

2

Π
y

2.5.64

a. lim
x→∞

ex + e−x

2
= ∞.

lim
x→−∞

ex + e−x

2
= ∞.

b. cosh(0) = e0+e0

2 = 1+1
2 = 1.

�2 �1 1 2 x
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1.0
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2.0
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3.0

3.5

y

2.5.65

a. lim
x→∞

ex − e−x

2
= ∞.

lim
x→−∞

ex − e−x

2
= −∞.
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b. sinh(0) = e0−e0

2 = 1−1
2 = 0.

�6 �4 �2 2 4 6
x

�100

�50

50

100
y

2.5.66

One possible such graph is:
�10 �5 5 10 x

�2

�1

1

2
y

2.5.67

One possible such graph is:
�6 �4 �2 2 4 6

x

�5

5

y

2.5.68 lim
x→0+

e1/x = ∞. lim
x→∞ e1/x = 1. lim

x→−∞ e1/x = 1.

There is a vertical asymptote at x = 0 and a horizontal asymptote at y = 1.

2.5.69 lim
x→0+

cosx+ 2
√
x√

x
= ∞. lim

x→∞
cosx+ 2

√
x√

x
= lim

x→∞

(
2 +

cosx√
x

)
= 2.

There is a vertical asymptote at x = 0 and a horizontal asymptote at y = 2.

2.5.70 lim
t→∞ p(t) = lim

t→∞
2500

t+ 1
= 0. The steady state exists. The steady state value is 0.

2.5.71 lim
t→∞ p(t) = lim

t→∞
3500t

t+ 1
= 3500. The steady state exists. The steady state value is 3500.

2.5.72 lim
t→∞m(t) = lim

t→∞ 200(1− 2−t) = 200. The steady state exists. The steady state value is 200.

2.5.73 lim
t→∞ v(t) = lim

t→∞ 1000e0.065t = ∞. The steady state does not exist.

2.5.74 lim
t→∞ p(t) = lim

t→∞
1500

3 + 2e−.1t
=

1500

3
= 500. The steady state exists. The steady state value is 500.
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2.5.75 lim
t→∞ a(t) = lim

t→∞ 2

(
t+ sin t

t

)
= lim

t→∞ 2

(
1 +

sin t

t

)
= 2. The steady state exists. The steady state

value is 2.

2.5.76 lim
n→∞ f(n) = lim

n→∞
4

n
= 0.

2.5.77 lim
n→∞ f(n) = lim

n→∞
n− 1

n
= lim

n→∞[1− (1/n)] = 1.

2.5.78 lim
n→∞ f(n) = lim

n→∞
n2

n+ 1
= lim

n→∞
n

1 + 1/n
= ∞, so the limit does not exist.

2.5.79 lim
n→∞ f(n) = lim

n→∞
n+ 1

n2
= lim

n→∞[1/n+ 1/n2] = 0.

2.5.80

a. Suppose m = n.

lim
x→±∞ f(x) = lim

x→±∞
p(x)

q(x)
· 1/x

n

1/xn

= lim
x→±∞

an + an−1/x+ · · ·+ a1/x
n−1 + a0/x

n

bn + bn−1/x+ · · ·+ b1/xn−1 + b0/xn

=
an
bn

.

b. Suppose m < n.

lim
x→±∞ f(x) = lim

x→±∞
p(x)

q(x)
· 1/x

n

1/xn

= lim
x→±∞

an/x
n−m + an−1/x

n−m+1 + · · ·+ a1/x
n−1 + a0/x

n

bn + bn−1/x+ · · ·+ b1/xn−1 + b0/xn

=
0

bn
= 0.

2.5.81 No. If m = n, there will be a horizontal asymptote, and if m = n + 1, there will be an oblique
asymptote.

2.5.82

a. lim
x→∞

ex + e2x

e2x + e3x
= lim

x→∞
ex + e2x

e2x + e3x
· 1/e

3x

1/e3x
= lim

x→∞
(1/e2x) + (1/ex)

(1/ex) + 1
=

0 + 0

0 + 1
= 0.

b. lim
x→−∞

ex + e2x

e2x + e3x
= lim

x→−∞
ex + e2x

e2x + e3x
· 1/e

2x

1/e2x
= lim

x→−∞
e−x + 1

1 + ex
= ∞.

c. The line y = 0 is a horizontal asympotote.

d. �3 �2 �1 1 2 x

5

10

15

20
y
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2.5.83 lim
x→∞

2ex + 3e2x

e2x + e3x
= lim

x→∞
2ex + 3e2x

e2x + e3x
· 1/e

3x

1/e3x
= lim

x→∞
2/ex + 3/ex

1/ex + 1
=

0 + 0

0 + 1
= 0. Thus the line y = 0 is

a horizontal asymptote.

lim
x→−∞

2ex + 3e2x

e2x + e3x
= lim

x→−∞
2ex + 3e2x

e2x + e3x
· 1/e

2x

1/e2x
= lim

x→−∞
2e−x + 3

1 + ex
= ∞.

�2 �1 1 2 x
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2.5.84 lim
x→∞

3ex + e−x

ex + e−x
= lim

x→∞
3ex + e−x

ex + e−x
· 1/e

x

1/ex
= lim

x→∞
3 + e−2x

1 + e−2x
=

3 + 0

1 + 0
= 3. Thus the line y = 3 is a

horizontal asymptote.

lim
x→−∞

3ex + e−x

ex + e−x
= lim

x→−∞
3ex + e−x

ex + e−x
· e

x

ex
= lim

x→−∞
3e2x + 1

e2x + 1
=

0 + 1

0 + 1
= 1. Thus the line y = 1 is a

horizontal asymptote.
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2.5.85 The numerator of f is defined for −3 < x < 3. The denominator is defined everywhere, but is zero
when 2ex = e−x. Simplifying gives 2e2x = 1, or e2x = 1/2. This has the solution x = (− ln 2)/2 ≈ −0.347,
which lies in the domain of the numerator. So the domain of f is {x : −3 < x < 3, x 
= (− ln 2)/2}, and
any questions about horizontal asymptotes are moot. As x → 3− or as x → −3+, the numerator approaches
−∞, which follows because limt→0+ ln t = −∞, and the denominator is approaching a positive constant as
x → 3− and a negative constant as x → −3+. Thus limx→3− f(x) = −∞ and limx→−3+ f(x) = ∞, and
there are vertical asymptotes at x = 3 and x = −3.

As x → −(ln 2)/2, the numerator is nonzero because 9−x2 is not approaching 1. Thus, there is a vertical
asymptote at x = −(ln 2)/2. A graph of the function, with the vertical asymptotes shown in gray, verifies
this analysis. Note that the vertical asymptotes at ±3 require a different viewing window.
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2.6 Continuity

2.6.1

a. a(t) is a continuous function during the time period from when she jumps from the plane and when
she touches down on the ground, because her position is changing continuously with time.

b. n(t) is not a continuous function of time. The function “jumps” at the times when a quarter must be
added.

c. T (t) is a continuous function, because temperature varies continuously with time.

d. p(t) is not continuous – it jumps by whole numbers when a player scores a point.

2.6.2 In order for f to be continuous at x = a, the following conditions must hold:

• f must be defined at a (i.e. a must be in the domain of f),

• lim
x→a

f(x) must exist, and

• lim
x→a

f(x) must equal f(a).

2.6.3 A function f is continuous on an interval I if it is continuous at all points in the interior of I, and it
must be continuous from the right at the left endpoint (if the left endpoint is included in I) and it must be
continuous from the left at the right endpoint (if the right endpoint is included in I.)

2.6.4 The words “hole” and “break” are not mathematically precise, so a strict mathematical definition can
not be based on them.

2.6.5

a. A function f is continuous from the left at x = a if a is in the domain of f , and lim
x→a−

f(x) = f(a).

b. A function f is continuous from the right at x = a if a is in the domain of f , and lim
x→a+

f(x) = f(a).

2.6.6 A rational function is discontinuous at each point not in its domain.

2.6.7 The domain of f(x) = ex

x is (−∞, 0) ∪ (0,∞), and f is continuous everywhere on this domain.

2.6.8 The Intermediate Value Theorem says that if f is continuous on [a, b] and if L is strictly between
f(a) and f(b), then there must be a domain value c (with a < c < b) where f(c) = L. This means that a
continuous function assumes all the intermediate values between the values at the endpoints of an interval.

2.6.9 f is discontinuous at x = 1, at x = 2, and at x = 3. At x = 1, f(1) does not exist (so the first
condition is violated). At x = 2, f(2) exists and lim

x→2
f(x) exists, but lim

x→2
f(x) 
= f(2) (so condition 3 is

violated). At x = 3, lim
x→3

f(x) does not exist (so condition 2 is violated).

2.6.10 f is discontinuous at x = 1, at x = 2, and at x = 3. At x = 1, lim
x→1

f(x) 
= f(1) (so condition 3 is

violated). At x = 2, lim
x→2

f(x) does not exist (so condition 2 is violated). At x = 3, f(3) does not exist (so

condition 1 is violated).

2.6.11 f is discontinuous at x = 1, at x = 2, and at x = 3. At x = 1, lim
x→1

f(x) does not exist, and f(1) does

not exist (so conditions 1 and 2 are violated). At x = 2, lim
x→2

f(x) does not exist (so condition 2 is violated).

At x = 3, f(3) does not exist (so condition 1 is violated).
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2.6.12 f is discontinuous at x = 2, at x = 3, and at x = 4. At x = 2, lim
x→2

f(x) does not exist (so condition

2 is violated). At x = 3, f(3) does not exist and lim
x→3

f(x) does not exist (so conditions 1 and 2 are violated).

At x = 4, lim
x→4

f(x) 
= f(4) (so condition 3 is violated).

2.6.13 The function is defined at 5, in fact f(5) = 50+15+1
25+25 = 66

50 = 33
25 . Also, limx→5

f(x) = lim
x→5

2x2 + 3x+ 1

x2 + 5x
=

33

25
= f(5). The function is continuous at a = 5.

2.6.14 The number −5 is not in the domain of f , because the denominator is equal to 0 when x = −5.
Thus, the function is not continuous at −5.

2.6.15 f is discontinuous at 1, because 1 is not in the domain of f .

2.6.16 g is discontinuous at 3 because 3 is not in the domain of g.

2.6.17 f is discontinuous at 1, because lim
x→1

f(x) 
= f(1). In fact, f(1) = 3, but lim
x→1

f(x) = 2.

2.6.18 f is continuous at 3, because lim
x→3

f(x) = f(3). In fact, f(3) = 2 and lim
x→3

f(x) = lim
x→3

(x− 3)(x− 1)

x− 3
=

lim
x→3

(x− 1) = 2.

2.6.19 f is discontinuous at 4, because 4 is not in the domain of f .

2.6.20 f is discontinuous at −1 because lim
x→−1

f(x) = lim
x→−1

x(x+ 1)

x+ 1
= lim

x→−1
x = −1 
= f(−1) = 2.

2.6.21 Because f is a polynomial, it is continuous on all of R.

2.6.22 Because g is a rational function, it is continuous on its domain, which is all of R. (Because x2+x+1
has no real roots.)

2.6.23 Because f is a rational function, it is continuous on its domain. Its domain is (−∞,−3) ∪ (−3, 3) ∪
(3,∞).

2.6.24 Because s is a rational function, it is continuous on its domain. Its domain is (−∞,−1) ∪ (−1, 1) ∪
(1,∞).

2.6.25 Because f is a rational function, it is continuous on its domain. Its domain is (−∞,−2) ∪ (−2, 2) ∪
(2,∞).

2.6.26 Because f is a rational function, it is continuous on its domain. Its domain is (−∞,−2) ∪ (−2, 2) ∪
(2,∞).

2.6.27 Because f(x) =
(
x8 − 3x6 − 1

)40
is a polynomial, it is continuous everywhere, including at 0. Thus

lim
x→0

f(x) = f(0) = (−1)40 = 1.

2.6.28 Because f(x) =
(

3
2x5−4x2−50

)4
is a rational function, it is continuous at all points in its domain,

including at x = 2. So lim
x→2

f(x) = f(2) =
81

16
.

2.6.29 Because f(x) =
(

x+5
x+2

)4
is a rational function, it is continuous at all points in its domain, including

at x = 1. Thus lim
x→1

f(x) = f(1) = 16.
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2.6.30 lim
x→∞

(
2x+ 1

x

)3

= lim
x→∞(2 + (1/x))3 = 23 = 8.

2.6.31 Because x3 − 2x2 − 8x = x(x2 − 2x− 8) = x(x− 4)(x+ 2), we have (as long as x 
= 4)√
x3 − 2x2 − 8x

x− 4
=
√
x(x+ 2).

Thus, lim
x→4

√
x3 − 2x2 − 8x

x− 4
= lim

x→4

√
x(x+ 2) =

√
24, using Theorem 2.12 and the fact that the square root

is a continuous function.

2.6.32 Note that t− 4 = (
√
t− 2)(

√
t+ 2), so for t 
= 4, we have

t− 4√
t− 2

=
√
t+ 2.

Thus, lim
t→4

t− 4√
t− 2

= lim
t→4

(
√
t + 2) = 4. Then using Theorem 2.12 and the fact that the tangent function is

continuous at 4, we have lim
t→4

tan

(
t− 4√
t− 2

)
= tan

(
lim
t→4

t− 4√
t− 2

)
= tan 4.

2.6.33 Recall that lim
x→0

sinx

x
= 1. Now noting that the function f(x) = ln 2x is continuous at 1, we have by

Theorem 2.12 that lim
x→0

ln

(
2 sinx

x

)
= ln

(
2

(
lim
x→0

sinx

x

))
= ln(2 · 1) = ln 2.

2.6.34 First note that

lim
x→0

x√
16x+ 1− 1

= lim
x→0

x

(
√
16x+ 1− 1)

· (
√
16x+ 1 + 1)

(
√
16x+ 1 + 1)

= lim
x→0

x(
√
16x+ 1 + 1)

16x
=

2

16
=

1

8
.

Then because f(x) = x1/3 is continuous at 1/8, we have lim
x→0

(
x√

16x+ 1− 1

)1/3

=

(
1

8

)1/3

=
1

2
, by

Theorem 2.12.

2.6.35 f is continuous on [0, 1), on (1, 2), on (2, 3], and on (3, 4].

2.6.36 f is continuous on [0, 1), on (1, 2], on (2, 3), and on (3, 4].

2.6.37 f is continuous on [0, 1), on (1, 2), on [2, 3), and on (3, 5].

2.6.38 f is continuous on [0, 2], on (2, 3) , on (3, 4), and on (4, 5].

2.6.39

a. f is defined at 1. We have f(1) = 12+(3)(1) = 4. To see whether or not lim
x→1

f(x) exists, we investigate

the two one-sided limits. lim
x→1−

f(x) = lim
x→1−

2x = 2, and lim
x→1+

f(x) = lim
x→1+

(x2 + 3x) = 4, so lim
x→1

f(x)

does not exist. Thus f is discontinuous at x = 1.

b. f is continuous from the right, because lim
x→1+

f(x) = 4 = f(1).

c. f is continuous on (−∞, 1) and on [1,∞).

2.6.40

a. f is defined at 0, in fact f(0) = 1. However, limx→0− f(x) = limx→0−(x
3 + 4x + 1) = 1, while

limx→0+ f(x) = limx→0+ 2x3 = 0. So limx→0 f(x) does not exist.
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b. f is continuous from the left at 0, because limx→0− f(x) = f(0) = 1.

c. f is continuous on (−∞, 0] and on (0,∞).

2.6.41 f is continuous on (−∞,−√
8] and on [

√
8,∞).

2.6.42 g is continuous on (−∞,−1] and on [1,∞).

2.6.43 Because f is the composition of two functions which are continuous everywhere, it is continuous
everywhere.

2.6.44 f is continuous on (−∞,−1] and on [1,∞).

2.6.45 Because f is the composition of two functions which are continuous everywhere, it is continuous
everywhere.

2.6.46 f is continuous on [1,∞).

2.6.47 lim
x→2

√
4x+ 10

2x− 2
=

√
18

2
= 3.

2.6.48 lim
x→−1

(
x2 − 4 +

3
√
x2 − 9

)
= (−1)2 − 4 + 3

√
(−1)2 − 9 = −3 + 3

√−8 = −3 +−2 = −5.

2.6.49 lim
x→3

√
x2 + 7 =

√
9 + 7 = 4.

2.6.50 lim
t→2

t2 + 5

1 +
√
t2 + 5

=
9

1 +
√
9
=

9

4
.

2.6.51 f(x) = cscx isn’t defined at x = kπ where k is an integer, so it isn’t continuous at those points. So it is

continuous on intervals of the form (kπ, (k+1)π) where k is an integer. lim
x→π/4

cscx =
√
2. lim

x→2π−
cscx = −∞.

2.6.52 f is defined on [0,∞), and it is continuous there, because it is the composition of continuous functions
defined on that interval.

lim
x→4

f(x) = e2. lim
x→0

f(x) does not exist—but lim
x→0+

f(x) = e0 = 1, because f is continuous from the right.

2.6.53 f isn’t defined for any number of the form π/2 + kπ where k is an integer, so it isn’t continuous
there. It is continuous on intervals of the form (π/2 + kπ, π/2 + (k + 1)π), where k is an integer.

lim
x→π/2−

f(x) = ∞. lim
x→4π/3

f(x) =
1−√

3/2

−1/2
=

√
3− 2.

2.6.54 The domain of f is (0, 1], and f is continuous on this interval because it is the quotient of two
continuous functions and the function in the denominator isn’t zero on that interval.

lim
x→1−

f(x) = lim
x→1−

lnx

sin−1(x)
=

ln 1

sin−1(1)
=

0

π/2
= 0.

2.6.55 This function is continuous on its domain, which is (−∞, 0) ∪ (0,∞).

lim
x→0−

f(x) = lim
x→0−

ex

1− ex
= ∞, while lim

x→0+
f(x) = lim

x→0+

ex

1− ex
= −∞.

2.6.56 This function is continuous on its domain, which is (−∞, 0) ∪ (0,∞).

lim
x→0

f(x) = lim
x→0

e2x − 1

ex − 1
= lim

x→0

(ex + 1)(ex − 1)

ex − 1
= lim

x→0
(ex + 1) = 2.

Copyright c© 2015 Pearson Education, Inc.



112 Chapter 2. Limits

2.6.57

a. Because A is a continuous function of r on [0, .08], and because A(0) = 5000 and A(.08) ≈ 11098.2, (and
7000 is an intermediate value between these two numbers) the Intermediate Value Theorem guarantees
a value of r between 0 and .08 where A(r) = 7000.

b.

Solving 5000(1 + (r/12))120 = 7000 for r, we see
that (1+ (r/12))120 = 7/5, so 1+ r/12 = 120

√
7/5,

so r = 12( 120
√
7/5− 1) ≈ 0.034.

0.02 0.04 0.06 0.08
r

2000

4000

6000

8000

10 000

A

2.6.58

a. Because m is a continuous function of r on [.06, .08], and because m(.06) ≈ 899.33 and m(.08) ≈
1100.65, (and 1000 is an intermediate value between these two numbers) the Intermediate Value The-
orem guarantees a value of r between .06 and .08 where m(r) = 1000.

b.
Using a computer algebra system, we see that the
required interest rate is about .0702.

0.065 0.070 0.075 0.080
r

950

1000

1050

1100
m

2.6.59

a. Note that f(x) = 2x3 + x − 2 is continuous everywhere, so in particular it is continuous on [−1, 1].
Note that f(−1) = −5 < 0 and f(1) = 1 > 0. Because 0 is an intermediate value between f(−1) and
f(1), the Intermediate Value Theorem guarantees a number c between −1 and 1 where f(c) = 0.

b.

Using a graphing calculator and a computer al-
gebra system, we see that the root of f is about
0.835.

c.

�1.0 �0.5 0.5 1.0
x

�5

�4

�3

�2

�1

1
y

2.6.60

a. Note that f(x) =
√
x4 + 25x3 + 10 − 5 is continuous on its domain, so in particular it is continuous

on [0, 1]. Note that f(0) =
√
10 − 5 < 0 and f(1) = 6 − 5 = 1 > 0. Because 0 is an intermediate

value between f(0) and f(1), the Intermediate Value Theorem guarantees a number c between 0 and
1 where f(c) = 0.
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b.
Using a graphing calculator and a computer alge-
bra system, we see the root of f(x) is at about
.834.

c.

0.2 0.4 0.6 0.8 1.0
x

�1.5

�1.0

�0.5

0.5

1.0
y

2.6.61

a. Note that f(x) = x3 − 5x2 + 2x is continuous everywhere, so in particular it is continuous on [−1, 5].
Note that f(−1) = −8 < −1 and f(5) = 10 > −1. Because −1 is an intermediate value between f(−1)
and f(5), the Intermediate Value Theorem guarantees a number c between −1 and 5 where f(c) = −1.

b.

Using a graphing calculator and a computer alge-
bra system, we see that there are actually three
different values of c between −1 and 5 for which
f(c) = −1. They are c ≈ −0.285, c ≈ 0.778, and
c ≈ 4.507.

c.

�1 1 2 3 4 5
x

�2.0

�1.5

�1.0

�0.5

0.5

1.0
y

2.6.62

a. Note that f(x) = −x5− 4x2+2
√
x+5 is continuous on its domain, so in particular it is continuous on

[0, 3]. Note that f(0) = 5 > 0 and f(3) ≈ −270.5 < 0. Because 0 is an intermediate value between f(0)
and f(3), the Intermediate Value Theorem guarantees a number c between 0 and 3 where f(c) = 0.

b.
Using a graphing calculator and a computer alge-
bra system, we see that the value of c guaranteed
by the theorem is about 1.141.

c.

0.5 1.0 1.5 2.0 2.5 3.0
x

�50

�40

�30

�20

�10

10
y

2.6.63

a. Note that f(x) = ex + x is continuous on its domain, so in particular it is continuous on [−1, 0]. Note
that f(−1) = 1

e − 1 < 0 and f(0) = 1 > 0. Because 0 is an intermediate value between f(−1) and
f(0), the Intermediate Value Theorem guarantees a number c between −1 and 0 where f(c) = 0.

b.
Using a graphing calculator and a computer alge-
bra system, we see that the value of c guaranteed
by the theorem is about −0.567.

c.

�2.0 �1.5 �1.0 �0.5 0.5 1.0 x

�2

�1

1

2

3

y
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2.6.64

a. Note that f(x) = x lnx− 1 is continuous on its domain, so in particular it is continuous on [1, e]. Note
that f(1) = ln 1− 1 = −1 < 0 and f(e) = e− 1 > 0. Because 0 is an intermediate value between f(1)
and f(e), the Intermediate Value Theorem guarantees a number c between 1 and e where f(c) = 0.

b.
Using a graphing calculator and a computer alge-
bra system, we see that the value of c guaranteed
by the theorem is about 1.76322.

c.

0.5 1.0 1.5 2.0 2.5 x

�1.0

�0.5

0.5

1.0

1.5

y

2.6.65

a. True. If f is right continuous at a, then f(a) exists and the limit from the right at a exists and is equal
to f(a). Because it is left continuous, the limit from the left exists — so we now know that the limit
as x → a of f(x) exists, because the two one-sided limits are both equal to f(a).

b. True. If lim
x→a

f(x) = f(a), then lim
x→a+

f(x) = f(a) and lim
x→a−

f(x) = f(a).

c. False. The statement would be true if f were continuous. However, if f isn’t continuous, then the

statement doesn’t hold. For example, suppose that f(x) =

⎧⎨
⎩0 if 0 ≤ x < 1;

1 if 1 ≤ x ≤ 2,
Note that f(0) = 0 and

f(2) = 1, but there is no number c between 0 and 2 where f(c) = 1/2.

d. False. Consider f(x) = x2 and a = −1 and b = 1. Then f is continuous on [a, b], but f(1)+f(−1)
2 = 1,

and there is no c on (a, b) with f(c) = 1.

2.6.66 Let f(x) = |x|.
For values of a other than 0, it is clear that lim

x→a
|x| = |a| because f is defined to be either the polynomial

x (for values greater than 0) or the polynomial −x (for values less than 0.) For the value of a = 0, we have
lim

x→0+
f(x) = lim

x→0+
x = 0 = f(0). Also, lim

x→0−
f(x) = lim

x→0−
(−x) = −0 = 0. Thus lim

x→0
f(x) = f(0), so f is

continuous at 0.

2.6.67 Because f(x) = x3 +3x− 18 is a polynomial, it is continuous on (−∞,∞), and because the absolute
value function is continuous everywhere, |f(x)| is continuous everywhere.
2.6.68 Let f(x) = x+4

x2−4 . Then f is continuous on (−∞,−2) ∪ (−2, 2) ∪ (2,∞). So g(x) = |f(x)| is also
continuous on this set.

2.6.69 Let f(x) = 1√
x−4

. Then f is continuous on [0, 16) ∪ (16,∞). So h(x) = |f(x)| is continuous on this

set as well.

2.6.70 Because x2 + 2x + 5 is a polynomial, it is continuous everywhere, as is |x2 + 2x + 5|. So h(x) =
|x2 + 2x+ 5|+√

x is continuous on its domain, namely [0,∞).

2.6.71 lim
x→π

cos2 x+ 3 cosx+ 2

cosx+ 1
= lim

x→π

(cosx+ 1)(cosx+ 2)

cosx+ 1
= lim

x→π
(cosx+ 2) = 1.

2.6.72 lim
x→3π/2

sin2 x+ 6 sinx+ 5

sin2 x− 1
= lim

x→3π/2

(sinx+ 5)(sinx+ 1)

(sinx− 1)(sinx+ 1)
= lim

x→3π/2

sinx+ 5

sinx− 1
=

4

−2
= −2.
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2.6.73 lim
x→π/2

sinx− 1√
sinx− 1

= lim
x→π/2

(
√
sinx+ 1) = 2.

2.6.74 lim
θ→0

1
2+sin θ − 1

2

sin θ
· (2)(2 + sin θ)

(2)(2 + sin θ)
= lim

θ→0

2− (2 + sin θ)

(sin θ)(2)(2 + sin θ)
= lim

θ→0
− 1

2(2 + sin θ)
= −1

4
.

2.6.75 lim
x→0

cosx− 1

sin2 x
= lim

x→0

cosx− 1

1− cos2 x
= lim

x→0

cosx− 1

(1− cosx)(1 + cosx)
= lim

x→0
− 1

1 + cosx
= −1

2
.

2.6.76 lim
x→0+

1− cos2 x

sinx
= lim

x→0+

sin2 x

sinx
= lim

x→0+
sinx = 0.

2.6.77 Recall that −π/2 ≤ tan−1 x ≤ π/2. Thus for x > 0, −π/2
x ≤ tan−1 x

x ≤ π/2
x . Thus lim

x→∞
tan−1(x)

x
= 0

by the Squeeze Theorem.

2.6.78 Recall that −1 ≤ cos t ≤ 1, and that e3t > 0 for all t. Thus − 1
e3t ≤ cos t

e3t ≤ 1
e3t . Thus lim

t→∞
cos t

e3t
= 0

by the Squeeze Theorem.

2.6.79 lim
x→1−

x

lnx
= −∞.

2.6.80 lim
x→0+

x

lnx
= 0.

2.6.81

The graph shown isn’t drawn correctly at the in-
tegers. At an integer a, the value of the function
is 0, whereas the graph shown appears to take on
all the values from 0 to 1.
Note that in the correct graph, lim

x→a−
f(x) = 1 and

lim
x→a+

f(x) = 0 for every integer a.

�2 �1 1 2
x

0.2

0.4

0.6

0.8

1.0
y

2.6.82
The graph as drawn on most graphing calculators appears to be continuous at x = 0, but it isn’t, of

course (because the function isn’t defined at x = 0). A better drawing would show the “hole” in the graph
at (0, 1).

a. �3 �2 �1 0 1 2 3
x

0.5

1.0

1.5

2.0
y

b. �3 �2 �1 0 1 2 3
x

0.5

1.0

1.5

2.0
y

c. It appears that lim
x→0

sinx

x
= 1.
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2.6.83 With slight modifications, we can use the examples from the previous two problems.

a. The function y = x − �x is defined at x = 1 but
isn’t continuous there.

�2 �1 1 2
x

0.2

0.4

0.6

0.8

1.0
y

b. The function y = sin(x−1)
x−1 has a limit at x = 1,

but isn’t defined there, so isn’t continuous there.

0.5 1.0 1.5 2.0 2.5 3.0
x

0.2

0.4

0.6

0.8

1.0
y

2.6.84 In order for this function to be continuous at x = −1, we require lim
x→−1

f(x) = f(−1) = a. So the

value of a must be equal to the value of lim
x→−1

x2 + 3x+ 2

x+ 1
= lim

x→−1

(x+ 2)(x+ 1)

x+ 1
= lim

x→−1
(x+ 2) = 1. Thus

we must have a = 1.

2.6.85

a. In order for g to be continuous from the left at x = 1, we must have lim
x→1−

g(x) = g(1) = a. We have

lim
x→1−

g(x) = lim
x→1−

(x2 + x) = 2. So we must have a = 2.

b. In order for g to be continuous from the right at x = 1, we must have lim
x→1+

g(x) = g(1) = a. We have

lim
x→1+

g(x) = lim
x→1+

(3x+ 5) = 8. So we must have a = 8.

c. Because the limit from the left and the limit from the right at x = 1 don’t agree, there is no value of
a which will make the function continuous at x = 1.

2.6.86 lim
x→0−

2ex + 5e3x

e2x − e3x
= lim

x→0−

2ex + 5e3x

e2x(1− ex)
= ∞.

lim
x→0+

2ex + 5e3x

e2x − e3x
= lim

x→0+

2ex + 5e3x

e2x(1− ex)
= −∞.

lim
x→−∞

2ex + 5e3x

e2x − e3x
= lim

x→−∞
2ex + 5e3x

e2x − e3x
· e

−2x

e−2x
= lim

x→−∞
2e−x + 5ex

1− ex
= ∞.

lim
x→∞

2ex + 5e3x

e2x − e3x
= lim

x→∞
2ex + 5e3x

e2x − e3x
· e

−3x

e−3x
= lim

x→∞
2e−2x + 5

e−x − 1
= −5.

�2 �1 1 2 x
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There is a vertical asymptote at x = 0, and the line y = −5 is a horizontal asymptote.

2.6.87 lim
x→0

2ex + 10e−x

ex + e−x
=

12

2
= 6.

lim
x→−∞

2ex + 10e−x

ex + e−x
= lim

x→−∞
2ex + 10e−x

ex + e−x
· e

x

ex
= lim

x→−∞
2e2x + 10

e2x + 1
=

10

1
= 10.

lim
x→∞

2ex + 10e−x

ex + e−x
= lim

x→∞
2ex + 10e−x

ex + e−x
· e

−x

e−x
= lim

x→∞
2 + 10e−2x

1 + e−2x
=

2

1
= 2.

�2 �1 1 2 x

2

4

6

8

10
y

There are no vertical asymptotes. The lines y = 2 and y = 10 are horizontal asymptotes.

2.6.88 Let f(x) = x3 + 10x2 − 100x + 50. Note that f(−20) < 0, f(−5) > 0, f(5) < 0, and f(10) > 0.
Because the given polynomial is continuous everywhere, the Intermediate Value Theorem guarantees us a
root on (−20,−5), at least one on (−5, 5), and at least one on (5, 10). Because there can be at most 3 roots
and there are at least 3 roots, there must be exactly 3 roots. The roots are x1 ≈ −16.32, x2 ≈ 0.53 and
x3 ≈ 5.79.

2.6.89 Let f(x) = 70x3 − 87x2 +32x− 3. Note that f(0) < 0, f(.2) > 0, f(.55) < 0, and f(1) > 0. Because
the given polynomial is continuous everywhere, the Intermediate Value Theorem guarantees us a root on
(0, .2), at least one on (.2, .55), and at least one on (.55, 1). Because there can be at most 3 roots and there
are at least 3 roots, there must be exactly 3 roots. The roots are x1 = 1/7, x2 = 1/2 and x3 = 3/5.

2.6.90 The function is continuous on (0, 15], on (15, 30], on (30, 45], and on (45, 60].

2.6.91

a. Note that A(.01) ≈ 2615.55 and A(.1) ≈ 3984.36. By the Intermediate Value Theorem, there must be
a number r0 between .01 and .1 so that A(r0) = 3500.

b. The desired value is r0 ≈ 0.0728 or 7.28%.

2.6.92

a. We have f(0) = 0, f(2) = 3, g(0) = 3 and g(2) = 0.

b. h(t) = f(t)− g(t), h(0) = −3 and h(2) = 3.

c. By the Intermediate Value Theorem, because h is a continuous function and 0 is an intermediate value
between −3 and 3, there must be a time c between 0 and 2 where h(c) = 0. At this point f(c) = g(c),
and at that time, the distance from the car is the same on both days, so the hiker is passing over the
exact same point at that time.

2.6.93 We can argue essentially like the previous problem, or we can imagine an identical twin to the original
monk, who takes an identical version of the original monk’s journey up the winding path while the monk is
taking the return journey down. Because they must pass somewhere on the path, that point is the one we
are looking for.

2.6.94

a. Because | − 1| = 1, |g(x)| = 1, for all x.
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b. The function g isn’t continuous at x = 0, because lim
x→0+

g(x) = 1 
= −1 = lim
x→0−

g(x).

c. This constant function is continuous everywhere, in particular at x = 0.

d. This example shows that in general, the continuity of |g| does not imply the continuity of g.

2.6.95 The discontinuity is not removable, because lim
x→a

f(x) does not exist. The discontinuity pictured is a

jump discontinuity.

2.6.96 The discontinuity is not removable, because lim
x→a

f(x) does not exist. The discontinuity pictured is

an infinite discontinuity.

2.6.97 Note that lim
x→2

x2 − 7x+ 10

x− 2
= lim

x→2

(x− 2)(x− 5)

x− 2
= lim

x→2
(x− 5) = −3. Because this limit exists, the

discontinuity is removable.

2.6.98 Note that lim
x→1

x2 − 1

1− x
= lim

x→1

(x− 1)(x+ 1)

1− x
= lim

x→1
[−(x + 1)] = −2. Because this limit exists, the

discontinuity is removable.

2.6.99

a. Note that −1 ≤ sin(1/x) ≤ 1 for all x 
= 0, so −x ≤ x sin(1/x) ≤ x (for x > 0. For x < 0 we would
have x ≤ x sin(1/x) ≤ −x.) Because both x → 0 and −x → 0 as x → 0, the Squeeze Theorem tells us
that lim

x→0
x sin(1/x) = 0 as well. Because this limit exists, the discontinuity is removable.

b. Note that as x → 0+, 1/x → ∞, and thus lim
x→0+

sin(1/x) does not exist. So the discontinuity is not

removable.

2.6.100 This is a jump discontinuity, because lim
x→2+

f(x) = 1 and lim
x→2−

f(x) = −1.

2.6.101 Note that h(x) = x3−4x2+4x
x(x−1) = x(x−2)2

x(x−1) . Thus lim
x→0

h(x) = −4, and the discontinuity at x = 0 is

removable. However, lim
x→1

h(x) does not exist, and the discontinuity at x = 1 is not removable (it is infinite.)

2.6.102 Because g is continuous at a, as x → a, g(x) → g(a). Because f is continuous at g(a), as z → g(a),
f(z) → f(g(a)). Let z = g(x), and suppose x → a. Then g(x) = z → g(a), so f(z) = f(g(x)) → f(g(a)), as
desired.

2.6.103

a. Consider g(x) = x + 1 and f(x) = |x−1|
x−1 . Note that both g and f are continuous at x = 0. However

f(g(x)) = f(x+ 1) = |x|
x is not continuous at 0.

b. The previous theorem says that the composition of f and g is continuous at a if g is continuous at a and
f is continuous at g(a). It does not say that if g and f are both continuous at a that the composition
is continuous at a.

2.6.104 The Intermediate Value Theorem requires that our function be continuous on the given interval. In
this example, the function f is not continuous on [−2, 2] because it isn’t continuous at 0.

2.6.105

a. Using the hint, we have

sinx = sin(a+ (x− a)) = sin a cos(x− a) + sin(x− a) cos a.

Note that as x → a, we have that cos(x− a) → 1 and sin(x− a) → 0.

So,

lim
x→a

sinx = lim
x→a

sin(a+(x−a)) = lim
x→a

(sin a cos(x− a) + sin(x− a) cos a) = (sin a) ·1+0 · cos a = sin a.
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b. Using the hint, we have

cosx = cos(a+ (x− a)) = cos a cos(x− a)− sin a sin(x− a).

So,

lim
x→a

cosx = lim
x→a

cos(a+(x−a)) = lim
x→a

((cos a) cos(x− a)− (sin a) sin(x− a)) = (cos a)·1−(sin a)·0 = cos a.

2.7 Precise Definitions of Limits

2.7.1 Note that all the numbers in the interval (1, 3) are within 1 unit of the number 2. So |x − 2| < 1 is
true for all numbers in that interval. In fact, {x : 0 < |x− 2| < 1} is exactly the set (1, 3) with x 
= 2.

2.7.2 Note that all the numbers in the interval (2, 6) are within 2 units of the number 4. So |f(x)− 4| < ε
for ε = 2 (or any number greater than 2).

2.7.3
(3, 8) has center 5.5, so it is not symmetric about the number 5.
(1, 9) and (4, 6) and (4.5, 5.5) are symmetric about the number 5.

2.7.4 No. At x = a, we would have |x− a| = 0, not |x− a| > 0, so a is not included in the given set.

2.7.5 lim
x→a

f(x) = L if for any arbitrarily small positive number ε, there exists a number δ, so that f(x) is

within ε units of L for any number x within δ units of a (but not including a itself).

2.7.6 The set of all x for which |f(x) − L| < ε is the set of numbers so that the value of the function f at
those numbers is within ε units of L.

2.7.7 We are given that |f(x) − 5| < .1 for values of x in the interval (0, 5), so we need to ensure that the
set of x values we are allowing fall in this interval.

Note that the number 0 is two units away from the number 2 and the number 5 is three units away from
the number 2. In order to be sure that we are talking about numbers in the interval (0, 5) when we write
|x − 2| < δ, we would need to have δ = 2 (or a number less than 2). In fact, the set of numbers for which
|x− 2| < 2 is the interval (0, 4) which is a subset of (0, 5).

If we were to allow δ to be any number greater than 2, then the set of all x so that |x − 2| < δ would
include numbers less than 0, and those numbers aren’t on the interval (0, 5).

2.7.8

lim
x→a

f(x) = ∞, if for any N > 0, there exists δ > 0

so that if 0 < |x− a| < δ then f(x) > N .
y � f �x�

a� Δ a� Δa
x

N

y

2.7.9

a. In order for f to be within 2 units of 5, it appears that we need x to be within 1 unit of 2. So δ = 1.

b. In order for f to be within 1 unit of 5, it appears that we would need x to be within 1/2 unit of 2. So
δ = .5.

2.7.10

a. In order for f to be within 1 unit of 4, it appears that we would need x to be within 1 unit of 2. So
δ = 1.

b. In order for f to be within 1/2 unit of 4, it appears that we would need x to be within 1/2 unit of 2.
So δ = 1/2.
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2.7.11

a. In order for f to be within 3 units of 6, it appears that we would need x to be within 2 units of 3. So
δ = 2.

b. In order for f to be within 1 unit of 6, it appears that we would need x to be within 1/2 unit of 3. So
δ = 1/2.

2.7.12

a. In order for f to be within 1 unit of 5, it appears that we would need x to be within 3 units of 4. So
δ = 3.

b. In order for f to be within 1/2 unit of 5, it appears that we would need x to be within 2 units of 4.
So δ = 2.

2.7.13

a.

If ε = 1, we need |x3 + 3 − 3| < 1. So we need
|x| < 3

√
1 = 1 in order for this to happen. Thus

δ = 1 will suffice.

�2 �1 1 2
x

2

4

6

y

b.

If ε = .5, we need |x3 + 3 − 3| < .5. So we need
|x| < 3

√
.5 in order for this to happen. Thus δ =

3
√
.5 ≈ .79 will suffice.

�2 �1 1 2
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2.7.14

a. By looking at the graph, it appears that for ε = 1,
we would need δ to be about .4 or less.

1.5 2.0 2.5 3.0
x

22

24

26

28
y
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b.
By looking at the graph, it appears that for ε = .5,
we would need δ to be about .2 or less.

1.5 2.0 2.5 3.0
x

23

24

25

26
y

2.7.15

a. For ε = 1, the required value of δ would also be 1. A larger value of δ would work to the right of 2,
but this is the largest one that would work to the left of 2.

b. For ε = 1/2, the required value of δ would also be 1/2.

c. It appears that for a given value of ε, it would be wise to take δ = min(ε, 2). This assures that the
desired inequality is met on both sides of 2.

2.7.16

a. For ε = 2, the required value of δ would be 1 (or smaller). This is the largest value of δ that works on
either side.

b. For ε = 1, the required value of δ would be 1/2 (or smaller). This is the largest value of δ that works
on the right of 4.

c. It appears that for a given value of ε, the corresponding value of δ = min(5/2, ε/2).

2.7.17

a. For ε = 2, it appears that a value of δ = 1 (or smaller) would work.

b. For ε = 1, it appears that a value of δ = 1/2 (or smaller) would work.

c. For an arbitrary ε, a value of δ = ε/2 or smaller appears to suffice.

2.7.18

a. For ε = 1/2, it appears that a value of δ = 1 (or smaller) would work.

b. For ε = 1/4, it appears that a value of δ = 1/2 (or smaller) would work.

c. For an arbitrary ε, a value of 2ε or smaller appears to suffice.

2.7.19 For any ε > 0, let δ = ε/8. Then if 0 < |x− 1| < δ, we would have |x− 1| < ε/8. Then |8x− 8| < ε,
so |(8x + 5) − 13| < ε. This last inequality has the form |f(x) − L| < ε, which is what we were attempting
to show. Thus, lim

x→1
(8x+ 5) = 13.

2.7.20 For any ε > 0, let δ = ε/2. Then if 0 < |x− 3| < δ, we would have |x− 3| < ε/2. Then |2x− 6| < ε,
so | − 2x+ 6| < ε, so |(−2x+ 8)− 2| < ε. This last inequality has the form |f(x)−L| < ε, which is what we
were attempting to show. Thus, lim

x→3
(−2x+ 8) = 2.

2.7.21 First note that if x 
= 4, f(x) = x2−16
x−4 = x+ 4.

Now if ε > 0 is given, let δ = ε. Now suppose 0 < |x− 4| < δ. Then x 
= 4, so the function f(x) can be
described by x+4. Also, because |x−4| < δ, we have |x−4| < ε. Thus |(x+4)−8| < ε. This last inequality

has the form |f(x)− L| < ε, which is what we were attempting to show. Thus, lim
x→4

x2 − 16

x− 4
= 8.

Copyright c© 2015 Pearson Education, Inc.



122 Chapter 2. Limits

2.7.22 First note that if x 
= 3, f(x) = x2−7x+12
x−3 = (x−4)(x−3)

x−3 = x− 4.
Now if ε > 0 is given, let δ = ε. Now suppose 0 < |x− 3| < δ. Then x 
= 3, so the function f(x) can be

described by x − 4. Also, because |x − 3| < δ, we have |x − 3| < ε. Thus |(x − 4) − (−1)| < ε. This last
inequality has the form |f(x)− L| < ε, which is what we were attempting to show. Thus, lim

x→3
f(x) = −1.

2.7.23 Let ε > 0 be given. Let δ =
√
ε. Then if 0 < |x− 0| < δ, we would have |x| < √

ε. But then |x2| < ε,
which has the form |f(x)− L| < ε. Thus, lim

x→0
f(x) = 0.

2.7.24 Let ε > 0 be given. Let δ =
√
ε. Then if 0 < |x − 3| < δ, we would have |x − 3| < √

ε. But then
|(x− 3)2| < ε, which has the form |f(x)− L| < ε. Thus, lim

x→3
f(x) = 0.

2.7.25 Let ε > 0 be given.
Because lim

x→a
f(x) = L, we know that there exists a δ1 > 0 so that |f(x)−L| < ε/2 when 0 < |x−a| < δ1.

Also, because lim
x→a

g(x) = M , there exists a δ2 > 0 so that |g(x)−M | < ε/2 when 0 < |x− a| < δ2.

Now let δ = min(δ1, δ2).
Then if 0 < |x − a| < δ, we would have |f(x) − g(x) − (L − M)| = |(f(x) − L) + (M − g(x))| ≤

|f(x) − L| + |M − g(x)| = |f(x) − L| + |g(x) − M | ≤ ε/2 + ε/2 = ε. Note that the key inequality in this
sentence follows from the triangle inequality.

2.7.26 First note that the theorem is trivially true if c = 0. So assume c 
= 0.
Let ε > 0 be given. Because lim

x→a
f(x) = L, there exists a δ > 0 so that if 0 < |x − a| < δ, we have

|f(x)− L| < ε/|c|. But then |c||f(x)− L| = |cf(x)− cL| < ε, as desired. Thus, lim
x→a

cf(x) = cL.

2.7.27

a. Let ε > 0 be given. It won’t end up mattering what δ is, so let δ = 1. Note that the statement
|f(x)−L| < ε amounts to |c− c| < ε, which is true for any positive number ε, without any restrictions
on x. So lim

x→a
c = c.

b. Let ε > 0 be given. Let δ = ε. Note that the statement |f(x)− L| < ε has the form |x− a| < ε, which
follows whenever 0 < |x− a| < δ (because δ = ε). Thus lim

x→a
x = a.

2.7.28 First note that if m = 0, this follows from exercise 27a. So assume m 
= 0.
Let ε > 0 be given. Let δ = ε/|m|. Now if 0 < |x−a| < δ, we would have |x−a| < ε/|m|, so |mx−ma| < ε.

This can be written as |(mx+ b)− (ma+ b)| < ε, which has the form |f(x)−L| < ε. Thus, lim
x→a

f(x) = f(a),

which implies that f is continuous at x = a by the definition of continuity at a point. Because a is an
arbitrary number, f must be continuous at all real numbers.

2.7.29 Let N > 0 be given. Let δ = 1/
√
N . Then if 0 < |x− 4| < δ, we have |x− 4| < 1/

√
N . Taking the

reciprocal of both sides, we have 1
|x−4| >

√
N , and squaring both sides of this inequality yields 1

(x−4)2 > N .

Thus lim
x→4

f(x) = ∞.

2.7.30 Let N > 0 be given. Let δ = 1/ 4
√
N . Then if 0 < |x− (−1)| < δ, we have |x+ 1| < 1/ 4

√
N . Taking

the reciprocal of both sides, we have 1
|x+1| >

4
√
N , and raising both sides to the 4th power yields 1

(x+1)4 > N .

Thus lim
x→−1

f(x) = ∞.

2.7.31 Let N > 1 be given. Let δ = 1/
√
N − 1. Suppose that 0 < |x− 0| < δ. Then |x| < 1/

√
N − 1, and

taking the reciprocal of both sides, we see that 1/|x| > √
N − 1. Then squaring both sides yields 1

x2 > N−1,
so 1

x2 + 1 > N . Thus lim
x→0

f(x) = ∞.

2.7.32 Let N > 0 be given. Let δ = 1/ 4
√
N + 1. Then if 0 < |x − 0| < δ, we would have |x| < 1/ 4

√
N + 1.

Taking the reciprocal of both sides yields 1
|x| >

4
√
N + 1, and then raising both sides to the 4th power gives

1
x4 > N + 1, so 1

x4 − 1 > N . Now because −1 ≤ sinx ≤ 1, we can surmise that 1
x4 − sinx > N as well,

because 1
x4 − sinx ≥ 1

x4 − 1. Hence lim
x→0

(
1

x4
− sinx

)
= ∞.
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2.7.33

a. False. In fact, if the statement is true for a specific value of δ1, then it would be true for any value of
δ < δ1. This is because if 0 < |x− a| < δ, it would automatically follow that 0 < |x− a| < δ1.

b. False. This statement is not equivalent to the definition – note that it says “for an arbitrary δ there
exists an ε” rather than “for an arbitrary ε there exists a δ.”

c. True. This is the definition of lim
x→a

f(x) = L.

d. True. Both inequalities describe the set of x’s which are within δ units of a.

2.7.34

a. We want it to be true that |f(x)−2| < .25. So we need |x2−2x+3−2| = |x2−2x+1| = (x−1)2 < .25.
Therefore we need |x− 1| < √

.25 = .5. Thus we should let δ = .5.

b. We want it to be true that |f(x)− 2| < ε. So we need |x2 − 2x+ 3− 2| = |x2 − 2x+ 1| = (x− 1)2 < ε.
Therefore we need |x− 1| < √

ε. Thus we should let δ =
√
ε.

2.7.35 Assume |x− 3| < 1, as indicated in the hint. Then 2 < x < 4, so 1
4 < 1

x < 1
2 , and thus

∣∣ 1
x

∣∣ < 1
2 .

Also note that the expression
∣∣ 1
x − 1

3

∣∣ can be written as
∣∣x−3

3x

∣∣.
Now let ε > 0 be given. Let δ = min(6ε, 1). Now assume that 0 < |x− 3| < δ. Then

|f(x)− L| =
∣∣∣∣x− 3

3x

∣∣∣∣ <
∣∣∣∣x− 3

6

∣∣∣∣ < 6ε

6
= ε.

Thus we have established that
∣∣ 1
x − 1

3

∣∣ < ε whenever 0 < |x− 3| < δ.

2.7.36 Note that for x 
= 4, the expression x−4√
x−2

= x−4√
x−2

·
√
x+2√
x+2

=
√
x + 2. Also note that if |x − 4| < 1,

then x is between 3 and 5, so
√
x > 0. Then it follows that

√
x + 2 > 2, and therefore 1√

x+2
< 1

2 . We will

use this fact below.
Let ε > 0 be given. Let δ = min(2ε, 1). Suppose that 0 < |x− 4| < δ, so |x− 4| < 2ε. We have

|f(x)− L| = |√x+ 2− 4| = |√x− 2| =
∣∣∣∣ x− 4√

x+ 2

∣∣∣∣
<

|x− 4|
2

<
2ε

2
= ε.

2.7.37 Assume |x− (1/10)| < (1/20), as indicated in the hint. Then 1/20 < x < 3/20, so 20
3 < 1

x < 20
1 , and

thus
∣∣ 1
x

∣∣ < 20.

Also note that the expression
∣∣ 1
x − 10

∣∣ can be written as
∣∣ 10x−1

x

∣∣.
Let ε > 0 be given. Let δ = min(ε/200, 1/20). Now assume that 0 < |x− (1/10)| < δ. Then

|f(x)− L| =
∣∣∣∣10x− 1

x

∣∣∣∣ < |(10x− 1) · 20|

≤ |x− (1/10)| · 200 <
ε

200
· 200 = ε.

Thus we have established that
∣∣ 1
x − 10

∣∣ < ε whenever 0 < |x− (1/10)| < δ.

2.7.38 Note that if |x − 5| < 1, then 4 < x < 6, so that 9 < x + 5 < 11, so |x + 5| < 11. Note also that
16 < x2 < 36, so 1

x2 < 1
16 .

Let ε > 0 be given. Let δ = min(1, 400
11 ε). Assume that 0 < |x− 5| < δ. Then

|f(x)− L| =
∣∣∣∣ 1x2

− 1

25

∣∣∣∣ = |x+ 5||x− 5|
25x2

<
11|x− 5|
25x2

<
11

25 · 16 |x− 5| < 11

400

400ε

11
= ε.
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2.7.39 Because we are approaching a from the right, we are only considering values of x which are close to,
but a little larger than a. The numbers x to the right of a which are within δ units of a satisfy 0 < x−a < δ.

2.7.40 Because we are approaching a from the left, we are only considering values of x which are close to,
but a little smaller than a. The numbers x to the left of a which are within δ units of a satisfy 0 < a−x < δ.

2.7.41

a. Let ε > 0 be given. let δ = ε/2. Suppose that 0 < x < δ. Then 0 < x < ε/2 and

|f(x)− L| = |2x− 4− (−4)| = |2x| = 2|x|
= 2x < ε.

b. Let ε > 0 be given. let δ = ε/3. Suppose that 0 < 0− x < δ. Then −δ < x < 0 and −ε/3 < x < 0, so
ε > −3x. We have

|f(x)− L| = |3x− 4− (−4)| = |3x| = 3|x|
= −3x < ε.

c. Let ε > 0 be given. Let δ = ε/3. Because ε/3 < ε/2, we can argue that |f(x) − L| < ε whenever
0 < |x| < δ exactly as in the previous two parts of this problem.

2.7.42

a. This statement holds for δ = 2 (or any number less than 2).

b. This statement holds for δ = 2 (or any number less than 2).

c. This statement holds for δ = 1 (or any number less than 1).

d. This statement holds for δ = .5 (or any number less than 0.5).

2.7.43 Let ε > 0 be given, and let δ = ε2. Suppose that 0 < x < δ, which means that x < ε2, so that√
x < ε. Then we have

|f(x)− L| = |√x− 0| = √
x < ε.

as desired.
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2.7.44

a. Suppose that lim
x→a−

f(x) = L and lim
x→a+

f(x) = L. Let ε > 0 be given. There exists a number δ1 so

that |f(x) − L| < ε whenever 0 < x − a < δ1, and there exists a number δ2 so that |f(x) − L| < ε
whenever 0 < a − x < δ2. Let δ = min(δ1, δ2). It immediately follows that |f(x) − L| < ε whenever
0 < |x− a| < δ, as desired.

b. Suppose lim
x→a

f(x) = L, and let ε > 0 be given. We know that a δ exists so that |f(x)−L| < ε whenever

0 < |x− a| < δ. In particular, it must be the case that |f(x)−L| < ε whenever 0 < x− a < δ and also
that |f(x)− L| < ε whenever 0 < a− x < δ. Thus lim

x→a+
f(x) = L and lim

x→a−
f(x) = L.

2.7.45

a. We say that lim
x→a+

f(x) = ∞ if for each positive number N , there exists δ > 0 such that

f(x) > N whenever a < x < a+ δ.

b. We say that lim
x→a−

f(x) = −∞ if for each negative number N , there exists δ > 0 such that

f(x) < N whenever a− δ < x < a.

c. We say that lim
x→a−

f(x) = ∞ if for each positive number N , there exists δ > 0 such that

f(x) > N whenever a− δ < x < a.

2.7.46 Let N < 0 be given. Let δ = −1/N , and suppose that 1 < x < 1 + δ. Then 1 < x < N−1
N , so

1−N
N < −x < −1, and therefore 1 + 1−N

N < 1 − x < 0, which can be written as 1
N < 1 − x < 0. Taking

reciprocals yields the inequality N > 1
1−x , as desired.

2.7.47 Let N > 0 be given. Let δ = 1/N , and suppose that 1 − δ < x < 1. Then N−1
N < x < 1, so

1−N
N > −x > −1, and therefore 1 + 1−N

N > 1 − x > 0, which can be written as 1
N > 1 − x > 0. Taking

reciprocals yields the inequality N < 1
1−x , as desired.

2.7.48 Let M < 0 be given. Let δ =
√−2/M . Suppose that 0 < |x − 1| < δ. Then (x − 1)2 < −2/M , so

1
(x−1)2 > M

−2 , and
−2

(x−1)2 < M , as desired.

2.7.49 Let M < 0 be given. Let δ = 4
√−10/M . Suppose that 0 < |x+ 2| < δ. Then (x+ 2)4 < −10/M , so

1
(x+2)4 > M

−10 , and
−10

(x+2)4 < M , as desired.

2.7.50 Let ε > 0 be given. Let N = 10
ε . Suppose that x > N . Then x > 10

ε so 0 < 10
x < ε. Thus, | 10x −0| < ε,

as desired.

2.7.51 Let ε > 0 be given. LetN = 1/ε. Suppose that x > N . Then 1
x < ε, and so |f(x)−L| = |2+ 1

x−2| < ε.

2.7.52 Let M > 0 be given. Let N = 100M . Suppose that x > N . Then x > 100M , so x
100 > M , as

desired.

2.7.53 Let M > 0 be given. Let N = M − 1. Suppose that x > N . Then x > M − 1, so x + 1 > M , and

thus x2+x
x > M , as desired.

2.7.54 Let ε > 0 be given. Because lim
x→a

f(x) = L, there exists a number δ1 so that |f(x)−L| < ε whenever

0 < |x − a| < δ1. And because lim
x→a

h(x) = L, there exists a number δ2 so that |h(x) − L| < ε whenever

0 < |x − a| < δ2. Let δ = min(δ1, δ2), and suppose that 0 < |x − a| < δ. Because f(x) ≤ g(x) ≤ h(x) for
x near a, we also have that f(x) − L ≤ g(x) − L ≤ h(x) − L. Now whenever x is within δ units of a (but
x 
= a), we also note that −ε < f(x)− L ≤ g(x)− L ≤ h(x)− L < ε. Therefore |g(x)− L| < ε, as desired.
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2.7.55 Let ε > 0 be given. Let N = �(1/ε) + 1. By assumption, there exists an integer M > 0 so that
|f(x)− L| < 1/N whenever |x− a| < 1/M . Let δ = 1/M .

Now assume 0 < |x− a| < δ. Then |x− a| < 1/M , and thus |f(x)− L| < 1/N . But then

|f(x)− L| < 1

�(1/ε)+ 1
< ε,

as desired.

2.7.56 Suppose that ε = 1. Then no matter what δ is, there are numbers in the set 0 < |x− 2| < δ so that
|f(x)− 2| > ε. For example, when x is only slightly greater than 2, the value of |f(x)− 2| will be 2 or more.

2.7.57 Let f(x) = |x|
x and suppose lim

x→0
f(x) does exist and is equal to L. Let ε = 1/2. There must be

a value of δ so that when 0 < |x| < δ, |f(x) − L| < 1/2. Now consider the numbers δ/3 and −δ/3, both
of which are within δ of 0. We have f(δ/3) = 1 and f(−δ/3) = −1. However, it is impossible for both
|1 − L| < 1/2 and | − 1 − L| < 1/2, because the former implies that 1/2 < L < 3/2 and the latter implies
that −3/2 < L < −1/2. Thus lim

x→0
f(x) does not exist.

2.7.58 Suppose that lim
x→a

f(x) exists and is equal to L. Let ε = 1/2. By the definition of limit, there must

be a number δ so that |f(x)−L| < 1
2 whenever 0 < |x− a| < δ. Now in every set of the form (a, a+ δ) there

are both rational and irrational numbers, so there will be value of f equal to both 0 and 1. Thus we have
|0− L| < 1/2, which means that L lies in the interval (−1/2, 1/2), and we have |1− L| < 1/2, which means
that L lies in the interval (1/2, 3/2). Because these both can’t be true, we have a contradiction.

2.7.59 Because f is continuous at a, we know that lim
x→a

f(x) exists and is equal to f(a) > 0. Let ε = f(a)/3.

Then there is a number δ > 0 so that |f(x)− f(a)| < f(a)/3 whenever |x− a| < δ. Then whenever x lies in
the interval (a − δ, a + δ) we have −f(a)/3 ≤ f(x) − f(a) ≤ f(a)/3, so 2f(a)/3 ≤ f(x) ≤ 4f(a)/3, so f is
positive in this interval.

Chapter Two Review

1

a. False. Because lim
x→1

x− 1

x2 − 1
= lim

x→1

1

x+ 1
=

1

2
, f doesn’t have a vertical asymptote at x = 1.

b. False. In general, these methods are too imprecise to produce accurate results.

c. False. For example, the function f(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
2x if x < 0;

1 if x = 0;

4x if x > 0

has a limit of 0 as x → 0, but f(0) = 1.

d. True. When we say that a limit exists, we are saying that there is a real number L that the function
is approaching. If the limit of the function is ∞, it is still the case that there is no real number that
the function is approaching. (There is no real number called “infinity.”)

e. False. It could be the case that lim
x→a−

f(x) = 1 and lim
x→a+

f(x) = 2.

f. False.

g. False. For example, the function f(x) =

⎧⎨
⎩2 if 0 < x < 1;

3 if 1 ≤ x < 2,
is continuous on (0, 1), and on [1, 2), but

isn’t continuous on (0, 2).
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h. True. lim
x→a

f(x) = f(a) if and only if f is continuous at a.

2

a. f(−1) = 1 b. lim
x→−1−

f(x) = 3. c. lim
x→−1+

f(x) = 1.

d. lim
x→−1

f(x) does not exist. e. f(1) = 5. f. lim
x→1

f(x) = 5.

g. lim
x→2

f(x) = 4. h. lim
x→3−

f(x) = 3. i. lim
x→3+

f(x) = 5.

j. lim
x→3

f(x) does not exist.

3 This function is discontinuous at x = −1, at x = 1, and at x = 3. At x = −1 it is discontinuous because
lim

x→−1
f(x) does not exist. At x = 1, it is discontinuous because lim

x→1
f(x) 
= f(1). At x = 3, it is discontinuous

because f(3) does not exist, and because lim
x→3

f(x) does not exist.

4

a. The graph drawn by most graphing calculators and
computer algebra systems doesn’t show the disconti-
nuities where sin θ = 0.

b. It appears to be equal to 2

c. Using a trigonometric identity, lim
θ→0

sin 2θ

sin θ
=

lim
θ→0

2 sin θ cos θ

sin θ
. This can then be seen to be

lim
θ→0

2 cos θ = 2.

�6 �4 �2 2 4 6
x

�2

�1

1

2
y

True graph, showing discontinuities
where sin θ = 0.

�6 �4 �2 2 4 6
x

�2

�1

1

2
y

Graph shown without discontinuities.

5

a.
x .9π/4 .99π/4 .999π/4 .9999π/4

f(x) 1.4098 1.4142 1.4142 1.4142

x 1.1π/4 1.01π/4 1.001π/4 1.0001π/4

f(x) 1.4098 1.4142 1.4142 1.4142

The limit appears to be approximately 1.4142.

b. lim
x→π/4

cos 2x

cosx− sinx
= lim

x→π/4

cos2 x− sin2 x

cosx− sinx
= lim

x→π/4
(cosx+ sinx) =

√
2.
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6

a. 1 2 3 4 5

20

40

60

80

b. lim
t→2.9

f(t) = 55.

c. lim
t→3−

f(t) = 55 and lim
t→3+

f(t) = 70.

d. The cost of the rental jumps by $15 exactly
at t = 3. A rental lasting slightly less than
3 days cost $55 and rentals lasting slightly
more than 3 days cost $70.

e. The function f is continuous everywhere ex-
cept at the integers. The cost of the rental
jumps by $15 at each integer.

7

There are infinitely many different correct func-
tions which you could draw. One of them is:

2

4

�2

2 4�2�4

y

x

8 lim
x→1000

18π2 = 18π2.

9 lim
x→1

√
5x+ 6 =

√
11.

10

lim
h→0

√
5x+ 5h−√

5x

h
·
√
5x+ 5h+

√
5x√

5x+ 5h+
√
5x

= lim
h→0

(5x+ 5h)− 5x

h(
√
5x+ 5h+

√
5x)

= lim
h→0

5√
5x+ 5h+

√
5x

=
5

2
√
5x

.

11 lim
x→1

x3 − 7x2 + 12x

4− x
=

1− 7 + 12

4− 1
=

6

3
= 2.

12 lim
x→4

x3 − 7x2 + 12x

4− x
= lim

x→4

x(x− 3)(x− 4)

4− x
= lim

x→4
x(3− x) = −4.

13 lim
x→1

1− x2

x2 − 8x+ 7
= lim

x→1

(1− x)(1 + x)

(x− 7)(x− 1)
= lim

x→1

−(x+ 1)

x− 7
=

1

3
.

14 lim
x→3

√
3x+ 16− 5

x− 3
·
√
3x+ 16 + 5√
3x+ 16 + 5

= lim
x→3

3(x− 3)

(x− 3)(
√
3x+ 16 + 5)

= lim
x→3

3√
3x+ 16 + 5

=
3

10
.
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15

lim
x→3

1

x− 3

(
1√
x+ 1

− 1

2

)
= lim

x→3

2−√
x+ 1

2(x− 3)
√
x+ 1

· (2 +
√
x+ 1)

(2 +
√
x+ 1)

= lim
x→3

4− (x+ 1)

2(x− 3)(
√
x+ 1)(2 +

√
x+ 1)

= lim
x→3

−(x− 3)

2(x− 3)(
√
x+ 1)(2 +

√
x+ 1)

= lim
x→3

− 1

2
√
x+ 1(2 +

√
x+ 1)

= − 1

16
.

16 lim
t→1/3

t− 1
3

(3t− 1)2
= lim

t→1/3

3t− 1

3(3t− 1)2
= lim

t→1/3

1

3(3t− 1)
, which does not exist.

17 lim
x→3

x4 − 81

x− 3
= lim

x→3

(x− 3)(x+ 3)(x2 + 9)

x− 3
= lim

x→3
(x+ 3)(x2 + 9) = 108.

18 Note that p5−1
p−1 = p4 + p3 + p2 + p+ 1. (Use long division.)

lim
p→1

p5 − 1

p− 1
= lim

p→1
(p4 + p3 + p2 + p+ 1) = 5.

19 lim
x→81

4
√
x− 3

x− 81
= lim

x→81

4
√
x− 3

(
√
x+ 9)( 4

√
x+ 3)( 4

√
x− 3)

= lim
x→81

1

(
√
x+ 9)( 4

√
x+ 3)

=
1

108
.

20 lim
θ→π/4

sin2 θ − cos2 θ

sin θ − cos θ
= lim

θ→π/4

(sin θ − cos θ)(sin θ + cos θ)

sin θ − cos θ
= lim

θ→π/4
(sin θ + cos θ) =

√
2.

21 lim
x→π/2

1√
sin x

− 1

x+ π/2
=

0

π
= 0.

22 The domain of f(x) =
√

x−1
x−3 is (−∞, 1] and (3,∞), so lim

x→1+
f(x) doesn’t exist.

However, we have lim
x→1−

f(x) = 0.

23

a. �1.0 �0.5 0.5 1.0
x

0.8

1.0

1.2

1.4

y

b. Because lim
x→0

cosx = lim
x→0

1

cosx
= 1, the squeeze

theorem assures us that lim
x→0

sinx

x
= 1 as well.

24 Note that lim
x→0

(sin2 x + 1) = 1. Thus if 1 ≤ g(x) ≤ sin2 x + 1, the squeeze theorem assures us that

lim
x→0

g(x) = 1 as well.

25 lim
x→5

x− 7

x(x− 5)2
= −∞.

26 lim
x→−5+

x− 5

x+ 5
= −∞.
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27 lim
x→3−

x− 4

x2 − 3x
= lim

x→3−

x− 4

x(x− 3)
= ∞.

28 lim
x→0+

u− 1

sinu
= −∞.

29 lim
x→0−

2

tanx
= −∞.

30

First note that f(x) = x2−5x+6
x2−2x = (x−3)(x−2)

x(x−2) .

a. lim
x→0−

f(x) = lim
x→0−

(x− 3)(x− 2)

x(x− 2)
= ∞.

lim
x→0+

f(x) = lim
x→0+

(x− 3)(x− 2)

x(x− 2)
= −∞.

lim
x→2−

f(x) = lim
x→2−

x− 3

x
= −1

2
.

lim
x→2+

f(x) = lim
x→2+

x− 3

x
= −1

2
.

b. By the above calculations and the definition of
vertical asymptote, f has a vertical asymptote at
x = 0.

c. Note that the actual graph has a “hole” at the
point (2,−1/2), because x = 2 isn’t in the domain,
but lim

x→2
f(x) = −1/2.

�4 �2 2 4
x

�5

5

y

31 lim
x→∞

2x− 3

4x+ 10
= lim

x→∞
2− (3/x)

4 + (10/x)
=

2

4
=

1

2
.

32 lim
x→∞

x4 − 1

x5 + 2
= lim

x→∞
(1/x)− (1/x5)

1 + (2/x5)
=

0− 0

1 + 0
= 0.

33 lim
x→−∞(−3x3 + 5) = ∞.

34 lim
z→∞

(
e−2z +

2

z

)
= 0 + 0 = 0.

35 lim
x→∞(3 tan−1 x+ 2) =

3π

2
+ 2.

36 lim
r→∞

1

ln r + 1
= 0.

37 lim
x→∞

4x3 + 1

1− x3
= lim

x→∞
4 + (1/x3)

(1/x3)− 1
=

4 + 0

0− 1
= −4. A similar result holds as x → −∞. Thus, y = −4 is a

horizontal asymptote as x → ∞ and as x → −∞.

38 First note that
√

1
x2 =

∣∣ 1
x

∣∣ =
⎧⎨
⎩

1
x if x > 0;

− 1
x if x < 0.

.

lim
x→∞

x+ 1√
9x2 + x

= lim
x→∞

1 + (1/x)√
9 + 1

x

=
1

3
.

On the other hand, lim
x→−∞

x+ 1√
9x2 + x

= lim
x→∞

1 + (1/x)

−
√
9 + 1

x

= −1

3
.

So y = 1
3 is a horizontal asymptote as x → ∞, and y = − 1

3 is a horizontal asymptote as x → −∞.
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39 lim
x→∞(1− e−2x) = 1, while lim

x→−∞(1− e−2x) = −∞.

y = 1 is a horizontal asymptote as x → ∞.

40 lim
x→∞

1

lnx2
= 0, and lim

x→−∞
1

lnx2
= 0, so y = 0 is a horizontal asymptote as x → ∞ and as x → −∞.

41 Recall that tan−1 x = 0 only for x = 0. The only vertical asymptote is x = 0.

lim
x→∞

1

tan−1 x
=

1

π/2
=

2

π
.

lim
x→−∞

1

tan−1 x
=

1

−π/2
= − 2

π
. So y = 2

π is a horizontal asymptote as x → ∞ and y = − 2
π is a horizontal

asymptote as x → −∞.

42 Note that f(x) = 2x2+6
2x2+3x−2 = 2(x2+3)

(2x−1)(x+2) .

We have lim
x→∞ f(x) = lim

x→∞
2 + 6/x2

2 + 3/x− 2/x2
= 1. A similar result holds as x → −∞.

lim
x→1/2−

f(x) = −∞. lim
x→1/2+

f(x) = ∞.

lim
x→−2−

f(x) = ∞. lim
x→−2+

f(x) = −∞.

Thus, y = 1 is a horizontal asymptote as x → ∞ and as x → −∞. Also, x = 1
2 and x = −2 are vertical

asymptotes.

43 lim
x→∞

3x2 + 2x− 1

4x+ 1
= lim

x→∞
3x2 + 2x− 1

4x+ 1
· 1/x
1/x

= lim
x→∞

3x+ 2− 1/x

4 + 1/x
= ∞.

lim
x→−∞

3x2 + 2x− 1

4x+ 1
= lim

x→−∞
3x2 + 2x− 1

4x+ 1
· 1/x
1/x

= lim
x→−∞

3x+ 2− 1/x

4 + 1/x
= −∞.

By long division, we can write f(x) as f(x) = 3x
4 + 5

16 + −21/16
4x+1 , so the line y = 3x

4 + 5
16 is the slant

asymptote.

44 lim
x→∞

9x2 + 4

(2x− 1)2
= lim

x→∞
9x2 + 4

4x2 − 4x+ 1
· 1/x

2

1/x2
= lim

x→∞
9 + 4/x2

4− 4/x+ 1/x2
=

9

4
.

lim
x→−∞

9x2 + 4

(2x− 1)2
= lim

x→−∞
9x2 + 4

4x2 − 4x+ 1
·1/x

2

1/x2
= lim

x→−∞
9 + 4/x2

4− 4/x+ 1/x2
=

9

4
. Because there is a horizontal

asymptote, there is not a slant asymptote.

45 lim
x→∞

1 + x− 2x2 − x3

x2 + 1
= lim

x→∞
1 + x− 2x2 − x3

x2 + 1
· 1/x

2

1/x2
= lim

x→∞
1/x2 + 1/x− 2− x

1 + 1/x2
= −∞.

lim
x→−∞

1 + x− 2x2 − x3

x2 + 1
= lim

x→−∞
1 + x− 2x2 − x3

x2 + 1
· 1/x

2

1/x2
= lim

x→−∞
1/x2 + 1/x− 2− x

1 + 1/x2
= ∞.

By long division, we can write f(x) as f(x) = −x−2+ 2x+3
x2+1 , so the line y = −x−2 is the slant asymptote.

46 lim
x→∞

x(x+ 2)3

3x2 − 4x
= lim

x→∞
x4 + 6x3 + 12x2 + 8x

3x2 − 4x
· 1/x

2

1/x2
= lim

x→∞
x2 + 6x+ 12 + 8/x

3− 4/x
= ∞.

lim
x→−∞

x(x+ 2)3

3x2 − 4x
= lim

x→−∞
x4 + 6x3 + 12x2 + 8x

3x2 − 4x
· 1/x

2

1/x2
= lim

x→−∞
x2 + 6x+ 12 + 8/x

3− 4/x
= ∞.

Because the degree of the numerator of this rational function is two more than the degree of the denom-
inator, there is no slant asymptote.

47 f is discontinuous at 5, because f(5) does not exist, and also because lim
x→5

f(x) does not exist

48 g is discontinuous at 4 because lim
x→4

g(x) = lim
x→4

(x+ 4)(x− 4)

x− 4
= 8 
= g(4).

49 h is not continuous at 3 because lim
x→3−

h(x) does not exist, so lim
x→3

h(x) does not exist.
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50 g is continuous at 4 because lim
x→4

g(x) = lim
x→4

(x+ 4)(x− 4)

x− 4
= 8 = g(4).

51 The domain of f is (−∞,−√
5] and [

√
5,∞), and f is continuous on that domain.

52 The domain of g is [2,∞), and it is continuous from the right at x = 2.

53 The domain of h is (−∞,−5), (−5, 0), (0, 5), (5,∞), and like all rational functions, it is continuous on
its domain.

54 g is the composition of two functions which are defined and continuous on (−∞,∞), so g is continuous
on that interval as well.

55 In order for g to be left continuous at 1, it is necessary that lim
x→1−

g(x) = g(1), which means that

a = 3. In order for g to be right continuous at 1, it is necessary that lim
x→1+

g(x) = g(1), which means that

a+ b = 3 + b = 3, so b = 0.

56

a. Because the domain of h is (−∞,−3] and [3,∞), there is no way that h can be left continuous at 3.

b. h is right continuous at 3, because lim
x→3+

h(x) = 0 = h(3).

57

One such possible graph is pictured to the right.
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58 a. Consider the function f(x) = x5 + 7x+ 5. f is continuous everywhere, and f(−1) = −3 < 0 while
f(0) = 5 > 0. Therefore, 0 is an intermediate value between f(−1) and f(0). By the IVT, there must
a number c between 0 and 1 so that f(c) = 0.

b. Using a computer algebra system, one can find that c ≈ −0.691671 is a root.

59

a. Note that m(0) = 0 and m(5) ≈ 38.34 and m(15) ≈ 21.2. Thus, 30 is an intermediate value between
both m(0) and m(5), and m(5) and m(15). Note also that m is a continuous function. By the IVT,
there must be a number c1 between 0 and 5 with m(c1) = 30, and a number c2 between 5 and 15 with
m(c2) = 30.

b. A little trial and error leads c1 ≈ 2.4 and c2 ≈ 10.8.

c. No. The graph of the function on a graphing calculator suggests that it peaks at about 38.5

60 Let ε > 0 be given. Let δ = ε/5. Now suppose that 0 < |x− 1| < δ.
Then

|f(x)− L| = |(5x− 2)− 3| = |5x− 5|
= 5|x− 1| < 5 · ε

5
= ε.
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