Chapter 2 Answers
2.1. (a) We know that

yi[n] = z[n] * h[n] = Z hlk]z[n — k] (S2.1-1)
k=—00
The signals z[n] and h[n] are as shown in Figure S2.1.
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Figure S2.1
From this figure, we can easily see that the above convolution sum reduces to

yi[n] = h[-1l)z[n + 1] + h(l]z[n — 1]
= 2z[n+1]+2z[n 1]

This gives
y1[n] = 26[n + 1] + 46[n] + 26[n — 1] + 2[n — 2] — 26[n — 4]
(b) We know that .
yoln}=z[n +2]*hin] = > hlklz[n+2 - K]

k=-—00

Comparing with eq. (S2.1-1), we see that
yo[n] = y1[n + 2]

(c) We may rewrite eq. (S2.1-1) as

y1[n] = z[n] * h[n] = Z z[k)h[n — k]
k=—00
Similarly, we may write
ys[n] = z[n] *h[n +2] = Z z[klh[n + 2 - k]
k=—00

Comparing this with eq. (S2.1), we see that

y3[n] = y1[n + 2]

30

© 1997 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.



2.2. Using the given definition for the signal h[n], we may write

k-1
Hk] = (%) {ulk + 3] — ulk — 10]}

The signal h[k] is non zero only in the range —3 < k < 9. From this we know that the signal
h[—k] is non zero only in the range —9 < k < 3. If we now shift the signal h[—k] by n to the
right, then the resultant signal h[n — k] will be non zero in the range (n —9) < k < (n+3).

Therefore,
A=n-9, B=n+3

afi = (3) b

hi[n] = u[n].

2.3. Let us define the signals

and

We note that :
z[n]=z1[n—-2] and hln] =hi[n+2]

Now,

yin] = afn] *hln) = zifn -2« h[n +2]

= > zmlk=2hn~k+2

k=-o00

By replacing k with m + 2 in the abovr summation, we obtain

(e <]

y[n] = Z z1[mlhi[n — m] = z1[n] * hy[n]

m=—0o0

Using the results of Example 2.1 in the text book, we may write

yin] =2 [1 - (%)M] uln]

oo

yln] = zln] + hin] = 3. zlklhln — K

k=00
The signals z[n] and y[n] are as shown in Figure S2.4. From this figure, we see that the
above summation reduces to

y[n] = z[3]h[n — 3] + z[4]h[n — 4] + z[5]h[n — 5] + z[6)h[n — 6] + z[7]h[n — 7] + z[8]A[n — 8]

2.4. We know that

This gives
n — 6, 7<n<1l
y[n] = 6, 12<n<18
24 —n, 19<n<23
0, otherwise
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2.5.  The signal y[n] is

y[n] = z[n] * h[n] = Z z[k]h[n — k]
k=—c0
In this case, this summation reduces to
9 9
y[n] = Z zlklh[n — k] = Z hln — k]
k=0 k=0

From this it is clear that y[n] is a summation of shifted replicas of h[n]. Since the last
replica will begin at n = 9 and h[n] is zero for n > N, y[n] is zero for n > N + 9. Using
this and the fact that y[14] = 0, we may conclude that N can at most be 4. Furthermore,
since y[4] = 5, we can conclude that h[n] has at least 5 non-zero points. The only value of
"N which satifies both these conditions is 4.

2.6. From the given information, we have:

oo

y[n] = z[n]xhn]= Z z[k]h[n — k]

k=—-00

S (%)‘ku[—k ~lun—k—1]

k=—o00

= ¥ @ Fun-k-1

k=-00
[}

= z(%)ku[n +k-1)

k=1
Replacing k by p — 1,
= 1
yln] = ;(g)pﬂu[n +2] (52.6-1)

For n > 0 the above equation reduces to,
1
oinl = 3G =

p=0

1
1—

wW| =
[
N =
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For n < 0 eq. (S2.6-1) reduces to,

y[n] = _2: (_:]3;)?+1 = (%)—n+12(%)1’
p=-n p=0

L 1 _ (Lol _3°

= @TIII=E7IT 3

Therefore,

_ [ (3"/2), n<0
il ={ gm0

2.7. (a) Given that

z[n] = é[n — 1],
we see that
ynl= Y alklgln — 2K] = gln — 2] = uln — 2] - uln — 6]
k=-—00
(b) Given that
:z:[n] 3 6[" TS 2]’
we see that
yln]= > zlklgln—2k] =gln—4] = uln—4] - u[n - §]
k=—00

(c) The input to the system in part (b) is the same as the input in part (a) shifted by 1
to the right. If S is time invariant then the system output obtained in part (b) has to
the be the same as the system output obtained in part (a) shifted by 1 to the right.
Clealry, this is not the case. Therefore, the system is not LTI

(d) If z[n] = u[n], then

o0

yin] = ) wlklgln - 2k]

k=-—00
00
= ) g[n— 2k
k=0

The signal g[n — 2k] is plotted for k = 0, 1,2 in Figure S2.7. From this figure it is clear
that

1, n=01
yn] =< 2, n>1 = 2u[n] — é[n] — O[n — 1]
0, otherwise
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2.8.

2.9.
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Figure S2.7
Using the convolution integral,
o0 oo
z(t) x h(t) = / z(T)h(t — 7)dT = / h(T)z(t — 7)dr.
-0 -—00

Given that h(t) = 6(t + 2) + 26(t + 1), the above integral reduces to
z(t) xy(t) = z(t +2) + 2z(t + 1)
The signals z(t + 2) and 2z(t + 1) are plotted in Figure S2.8.
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Figure S2.8
Using these plots, we can easily show that
t+3, -2<t<L -1

(t) = t+ 4, -1<tL0

VW=92-2t, o0<t<1

0, otherwise

Using the given definition for the signal (), we may write

e?, T1>5
k(1) = € u(—7 +4) + e Tu(r = 5) = €7, T<4
' 0, 4<7<5
Therefore,
e, T< -5
h(-=7)={ e %, T>—4
0, -S<1< -4
If we now shift the signal h(—7) by t to the right, then the resultant signal h(t — 7) will be

e~ 2(t=7), T<t—5
h(t—7) = eXt-7) T>t-4

0, (t—5) <7< (t—4)
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Therefore,
A=t-5  B=t—4

2.10. From the given information, we may sketch z(t) and h(t) as shown in Figure S2.10.
(a) With the aid of the plots in Figure S2.10, we can show that y(t) = z(t) * h(t) is as

shown in Figure S2.10.

1
2(%) h(x)
0 | “: o A ‘l‘
N -
0 & (I L7 t
Figure S2.10
Therefore,
t, 0<t<a
) = a, a<t<Ll1
YW=Y 14a-t, 1<t<(l+a)
0, otherwise

(b) From the plot of y(t), it is clear that d"{d—(tt) has discontinuities at 0, @, 1, and 1 + a. If
we want de(tQ to have only three discontinuities, then we need to ensure that o = 1.

2.11. (a) From the given information, we see that h(t) is non zero only for 0 < ¢ < co. Therefore,

y(t) = z(t)xh(t) = /_:h(v')a:(t - T)dT

]

/ooe'3"(u(t —7-=3)—u(t—7—25))dr
0

We can easily show that (u(t — 7 — 3) — u(t — 7 — 5)) is non zero only in the range
(t —5) < 7 < (t — 3). Therefore, for ¢t < 3, the above integral evaluates to zero. For

3 <t <5, the above integral is
—3(t~3)

t—3 _
y(t) = / e 3dr = 177
0 3

For t > 5, the integral is

/-t—3 g (1 — e=6)e3(t=5)
t - 3
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Therefore, the result of this convolution may be expressed as

0, —00<t<3
y(t) = 1_:£_"_3("_3), 3<t<5
U=e9e 5 ci<oo

(b) By differentiating z(t) with respect to time we get

da(t)

= = 3(t—3) - 8(t - 5)

Therefore,

9(t) = E‘I-“;(t—t) * h(t) = e300y (t — 3) — 73Oyt — 5).

(c) From the result of part (a), we may compute the derivative of y(t) to be

0, —00<t<3
_d:’(Ji(tt) = e'3(t_3), 3<t<5b
(€6 — 1)e~3(t=5) 5<t< 00

This is exactly equal to g(¢). Therefore, g(t) = dyTYl.
2.12. The signal y(t) may be written as
y(t) = -+ e Oyt 4+ 6) + e~ TDu(t4-3) + e tu(t) +e EDu(t —3) +e Oyt —6) +---
In the range 0 < t < 3, we may write y(t) as

y@) = - +e TVt 16)+ eIyt + 3) + e7tu(t)
= et pem(t43) 4 o=(t46) 4 .
= et(1+ed+et+..0)
53
1—e3

= €

Therefore, A = ;.

2.13. (a) We require that

B =) -

Putting n = 1 and solving for A gives A = é
(b) From part (a), we know that

hin] %h[n ~1 = dn]
]+ (6] = 3éln — 1) = 8ln]
From the definition of an inverse system, we may argue that

g[n] = é[n] — %6[77, -1].
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2.14. (a) We first determine if h;(t) is absolutely integrable as follows
oo oo
/ |hi(7)|dT = / e~ldr =1
—00 0
Therefore, h;(t) is the impulse response of a stable LTI system.
(b) We determine if hy(t) is absolutely integrable as follows
oo o0
/ |ha(7)|dT = / e~ t| cos(2t)|dT
-0 0
This integral is clearly finite-valued because e~*| cos(2t)| is an exponentially decaying

function in the range 0 < ¢ < co. Therefore, ho(t) is the impulse response of a stable
LTI system.

2.15. (a) We determine if h;[n] is absolutely summable as follows

> Ikl = Y Kl cos(ZH)|
k=0

k=-00
This sum does not have a finite value because the function k| cos(§k)| increases as the
value of k increases. Therefore, hi[n] cannot be the impulse response of a stable LTI
system.
(b) We determine if hy[n] is absolutely summable as follows

o0 10
> Ihelk]l = Y 3 =32

k=—00 k=-—00

Therefore, ho[n] is the impulse response of a stable LTI system.

2.16. (a) True. This may be easily argued by noting that convolution may be viewed as the
process of carrying out the superposition of a number of echos of hin]. The first such
echo will occur at the location of the first non zero sample of z[n]. In this case, the
first echo will occur at Nj. The echo of h[n] which occurs at n = N; will have its first
non zero sample at the time location N; + Np. Therefore, for all values of n which are
lesser that N; + Nj, the output y[n] is zero.

(b) False. Consider
yln] = zn] * h(n]

= ) zlklh[n— K
k=—o00
From this,
yln—-1] = Z z[k]h[n — 1 — k]
k=~oc0

= z[n]* hln —1]

This shows that the given statement is false.
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(¢) True. Consider

o

y(t) = z(t) x h(t) = / z(7)h(t — 7)dT.

—00

From this,

y(=t) = /wx(r)h(—t —7)dT

—0o0

= /wz(—f)h(—-t + 7)dT

—00
= z(-—t) * h(-1)
This shows that the given statement is true.
(d) True. This may be argued by considering

o0

y(t) = (t) * h(t) = / (r)h(t — 7)dr.

-0

In Figure S2.16, we plot z(7) and h(t — 7) under the assumptions that (1) z(¢) = 0
for t > T} and (2) h(t) = 0 for ¢t > Ty. Clearly, the product z(7)h(t — 7) is zero if

2(T) h(x-T)

r T ) 1-T, T

Figure S2.16

t — To > T). Therefore, y(t) =0 for t > T} + T>.

2.17. (a) We know that y(t) is the sum of the particular and homogeneous solutions to the
given differential equation. We first determine the particular solution y,(¢) by using
the method specified in Example 2.14. Since we are given that the input is z(t) =
e(=1+3)ty(¢) for t > 0, we hypothesize that for ¢ > 0

yp(t) = KelT1+9),
Substituting for z(¢) and y(t) in the given differential equation,

(_1 + 3j)K€(_1+3j)t +4Ke(—1+3j)t = e(—1+3j)t

38

© 1997 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.



This gives
1
—-1+37)K +4K =1, =2=K=—
( 7) 3057

Therefore,

1 .
t) = (—1+35)t t

In order to determine the homogeneous solution, we hypothesize that
yn(t) = Ae®
Since the homogeneous solution has to satisfy the following differential equation

dyn(t)
dt

+ 4yh(t) =0,

we obtain
Ase®t + 4Ae’t = Aes(s +4) =0.

This implies that s = —4 for any A. The overall solution to the differential equation
now becomes ]
t) = Ae 4 ——TIH 150
Now in order to determine the constant A, we use the fact that the system satisfies the
condition of initial rest. Given that y(0) = 0, we may conclude that
1 -1

O & A= —
Atsazy =0 3047

Therefore for ¢ > 0,

1 —4t (—1+3j)t
= - t
y(t) 3(1+j)[ e e ] >0
Since the system satisfies the condition of initial rest, y(t) = 0 for ¢ < 0. Therefore,
y(t) = 1%.7 [_e—4t + e(—1+3j)t] u(t)

(b) The output will now be the real part of the answer obtained in part (a).

y(t) = % [e"‘ cos 3t + e tsin3t — e"‘“] u(t).
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2.18. Since the system is causal, y[n] = 0 for n < 1. Now,

y[1] = %y[0]+a:[1]= +1=1

W2 = qulil+efe)=+0=1

W8 = Jul+als= s +0= &
y[m] — (%)m—l

Therefore, .
yln] = (3"l 1]

2.19. (a) Consider the difference equation relating y[n] and w(n] for Sy:
yln] = ayln — 1] + Buln]

From this we may write .
a
wn| =—=yln})—=yln -1
[n] ﬂy{] it ]

and 1 o
win=1]==yn-1] - -y[n -2
[n =11 = 5uln— 1] - Zyin ~2]
Weighting the previous equation by 1/2 and subtracting from the one before, we obtain
a

wln] = Juln = 1] = Zyfr] - Goln — 1] - gvln = 1+ gzufn —2

Substituting this in the difference equation relating w([n] and z{n] for S,

Fvln] = uin = 1] = g5vln = 1+ zufn — 2] = =

That is, .
o
yln] = (@ + )yln — 1] = Syln - 2] + fz[n]
Comparing with the given equation relating y[n] and z[n], we obtain

, B=1

a=

L
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(b) The difference equations relating the input and output of the systems S; and S are
1 1
wln] = Ew[n —1)+z[n] and yn]= Zy[n — 1] + w(n]

From these, we can use the method specifed in Example 2.15 to show that the impulse

responses of S; and S; are
1 n
hiln] = (5) u[n]

patn} = (3) ol

respectively. The overall impulse response of the system made up of a cascade of S;and

and

S, will be
hin] = hiln]*hofn] = D hilklhofn — K]
k=—00
21,1
= (5)5(3)" *uln - K]
?L:az 1 "
= Y GrGIE= Y
k=0 k=0
= 230" = (el
2.20. (a)
/wwanmma=/mamﬁ=1
(b)

/(; i sin(27t)é(t + 3)dt = sin(6mw) =0
(c) In order to evaluate the integral
/Z uy (1 — 7) cos(2n7)dr,
consider the signal

z(t) = cos(2mt)[u(t + 5) — u(t — 5)].
We know that

e e}

- mm*ﬂﬂ=/ wy (¢ — 1)z (r)dr

-0

dz(t)
dt

= /5 uy(t — 7) cos(2n7)dT
-5
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Now,

5
dz(?) =/ uy (1 — 7) cos(2nT)dT
dt t=1 -5

which is the desired integral. We now evaluate the value of the integral as

dz(t)
dt

= sin(2nt)|,—; = 0.
t=1

2.21. (a) The desired convolution is

yln] = z[n]*hln]

= Y zfklh[n—k]
k=—00
= B> (a/B)f forn>0
k=0
ﬂ"+1 — ottt
= [—_—ﬂ — Juln] for a # B.
(b) From (a), .
y[n] = ™ [E 1] un} = (n + 1)a™u[n].
=0
(c) For n <6,
nf 2 Ly 1y
y[n] =4 Z(—g) - Z(—g) -
k=0 k=0
For n > 6,
o) 1 n—1 1 .
y[n] = 4" {Z(—g)k -3 —'8') } :
k=0 k=0
Therefore,

_J (8/9)(-=1/8)*4",  n<6
vinl = { (8/9)(-1/2)%, n>6
(d) The desired convolution is

(o <]

yin) = Y zlklhln—k]

k=—00
z[0]h[n] + z[1]h[n — 1] + z[2)h[n — 2] + z[3]h[n — 3] + z[4]h[n — 4]
= h[n]+ h[n — 1] + h[n — 2] + h[n — 3] + h[n — 4].

This is as shown in Figure S2.21.
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Figure S2.21

2.22. (a) The desired convolution is

(e <]

y(t) = : z(7)h(t — 7)dT

t
= / e e Bl-T)dgr t >0
0
Then

B—a

y(t) = e Nut)  a#B
te=Ptu(t) a=p

(b) The desired convolution is
o0
y(t) = / z(T)h(t — 7)dT
—o0
2 5
o / h(t — 7)dr — / h(t — 7)dr.
0 2

This may be written as

¢ 2 5
/ e2(t=7)dr — / e2(t-T)dr, t<1
0, 2

5
/ e2t=7)dr _/ ez(t-"')d'r, 1<t<3
t—1 2

5
_ / 207 g, 3<t<6
t—-1
L 0, 6<t

y(t) = 4

Therefore,
( (1/2)[e2t _ 262(t_2) + eZ(t—S)], t<1
(1/2)[€? + e2(t=5) — 2¢2(t-2)], 1<t<3
y(t) = (1/2)[62(t—5) _ 62], 3<t<6
\ 0, 6<t
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(c) The desired convolution is

o0

y(t) = / z(7)h(t — 7)dT
o
2

= / sin(w7)h(t — 7)dT.
0
This gives us
0, t<1

y (2/m)[1 = cos{m(t — 1)}], 1<t<3
y(t) = (2/7r)[cos{1r t—3)}—1], 3<t<5

0, 5<t
(d) Let
h(t) = ha(t) — 56(: = 2),
where 43 0<i<1
ha(t) = { 0, , otEerv-v—ise )
Now, )
(t) = h(t) » 2(t) = [n(8) ¥ 2(0)] ~ 32t — 2).
We have
t 4
ha(t) * 2(t) = / Sar +8)dr = [—at2 a(t — 12 4 bt —b(t—1)).
t—1
Therefore,
41 , 1 g 1
y(t) = §[§at - Ea(t 1) +bt-b(t-1)]— §[a(t —2) + b = at + b= z(t).

(e) z(t) periodic implies y(t) periodic. .". determine 1 period only. We have

=1 t
/t_:(t—'r-1)d'r+/_l(1—t+'r)d1'=%+t—t2, —1<t<3
y(t) = i t
/ (1—t+7')d'r+ﬁ(t—l—'r)d7=t2—3t+7/4, %<t<%

t—1 1
The period of y(t) is 2.
2.23. y(t) is sketched in Figure S2.23 for the different values of T'.
2.24. (a) We are given that hy[n] = d[n] + é[n — 1]. Therefore,

ha[n] * ha[n] = é[n] + 26[n — 1] + é[n — 2].
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Since
h[n] = hi[n] * [ha[n] * ha[n]],
we get
h[n] = ha[n] + 2hi[n —1] + hy[n — 2].
Therefore,
h{0] = hy[0] = h1[0] =1,
M=+l =  ml]=3
h[2] =M [2] +2h [1] + hy [0] = hy [2] =3,
h[3] =M [3] + 2hy [2] + hy [1] = hy [3] = 2,
h[4] = hi[4] + 2h1[3] + h1[2] = hi4=1
h[5] = h1[5] + 2h1[4] + hy[3] = h1[5] =0.

hi[n] =0 for n <0 and n > 5.

(b) In this case,
y[n] = z[n] * h[n] = hln] — h[n —1].

z[n] = (%) "

2.25. (a) We may write z[n] as
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Now, the desired convolution is

y[n] = h[n]=*z[n]
-1

= > (1/3)7*F/9" *un -k +3] + i(l /3)%(1/4)" *uln — k + 3]

k=—00 k=0 .
= (1/12)i(1/3)k(1/4)"+ku[n +k+4)+ i(1/3)’=(1 /4" *uln — k + 3]
k=0 k=0

By consider each summation in the above equation separately, we may show that

(124/11)3", n< —4
y[n] = { (1/11)44, n=—4 .
(1/4)"(1/11) + —3(1/4)™ + 3(256)(1/3)*, n> -3

(b) Now consider the convolution

yiln] = [(1/3)"uln]] » [(1/4)"u[n + 3]
We may show that
0, n< =3
yn] = { —3(1/4)™ +3(256)(1/3)", n>-3 °
Also, consider the convolution

ya[n] = [(8)"u[-n — 1]] x [(1/4)"u[n + 3]].

We may show that
] = (12%/11)3", n<—4
RAU=N a/4m@1/11), n>-3"

Clearly, y1[n] + y2[n] = y[n] obtained in the previous part.

2.26. (a) We have

oo

yn[n] = z1[n] * zon] = Z z1[k]z2[n — k]

k=-—00

= i(O.S)ku[n +3 -k
=0

This evaluates to

2{1-(1/2)"*}, n>-3
0, otherwise ~

yi[n] = z1[n] * z2[n] = {
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(b) Now,
yln] = z3[n] * y1[n] = wi[n] — y1[n — 1].

Therefore,
2{1—-(1/2"} +2{1— (1/2)***} = 1/2)"*3, n>-2
yln]=4¢ 1, n=-3
0, otherwise

Therefore, y[n] = (1/2)*3u[n + 3].

(c) We have
ya[n] = z2[n] * z3[n] = u[n + 3] — u[n + 2] = d[n + 3].

(d) From the result of part (c), we get

y[n] = ya[n] x z1[n] = z1[n + 3] = (1/2)"+3u[n + 3]
2.27. The proof is as follows.

4 = [ e

- /_ i /_ ::z:(T)h(t _ 7)drdt
/_ :x(r) /_ :h(t — r)dtdr

= /oo z(1)ApdT

—00

= A:Ah

o0
2.28. (a) Causal because h[n] =0 for n < 0. Stable because Z(%)" =5/4 < o0.

n=0

o0
(b) Not causal because h[n] # 0 for n < 0. Stable because 2 (0.8)" =5 < 0.

n=-2

0
(c) Anti-causal because h[n] = 0 for n > 0. Unstable because Z (1/2)" =0

n=-—oo

3
(d) Not causal because h[n] # 0 for n < 0. Stable because Z 57 =828 < 0

n=—00
(e) Causal because h[n] = 0 for n < 0. Unstable because the second term becomes infinite
as n — oo.

o0
(f) Not causal because h[n] # 0 for n < 0. Stable because Z |h[n]| = 305/3 < o0
n—oo
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o0
(g) Causal because h[n] = 0 for n < 0. Stable because Z |h[n])] =1 < oo.

n=—oo

oo
2.29.  (a) Causal because h(t) =0 for t < 0. Stable because / |h(t)|dt = e78/4 < oo.

—00
o0
(b) Not causal because h(t) # 0 for ¢ < 0. Unstable because / |h(t)] = oo.
—00
o0
(c) Not causal because h(t) # 0 for ¢ < 0. a Stable because / |h(t)|dt = e'9°/2 < oco.
-0

(o <]

(d) Not causal because h(t) # 0 for ¢ < 0. Stable because / |h(t)|dt = e72/2 < oo.
o e]

(e <]

(e) Not causal because h(t) # 0 for ¢t < 0. Stable because / |h(t)|dt =1/3 < oo.
o0

oo

(f) Causal because h(t) = 0 for t < 0. Stable because / |h(t)|dt =1 < 0.
o0

(e <]

(g) Causal because h(t) = 0 for ¢ < 0. Unstable because / |h(t)]|dt = oo.

—00

2.30. We need to find the output of the system when the input is z[n] = d[n]. Since we are asked
to assume initial rest, we may conclude that y[n] = 0 for n < 0. Now,

yln] = z[n] = 2y[n - 1).
Therefore,
y[0] = z[0] — 2y[-1) =1, y[l] =z[1] - 24[0) = -2,  y[2] = =z[2] +2y[2] = 4
and so on. In closed form,
y[n] = (-2)"u[n].
This is the impulse response of the system.
2.31. Initial rest implies that y[n] = 0 for n < —2. Now
y[n] = z[n] + 2z[n — 2] — 2y[n - 1].
Therefore,
y[-2] = 1, y[-1] =0, y[0]=5, y[1] = -
y[4] = 56,y[5] = =110, y[n] = —110(=2)""° forn > 5.

2.32. (a) If yu[n] = A(1/2)", then we need to verify

1\* 1 /1\*!
A('é) '5*“(5) =0

Clearly this is true.
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(b) We now require that for n > 0
1 n 1 1 n—1 1 n
2(3) -22(3) =(3)-
Therefore, B = —2.

(c) From eq. (P2.32-1), we know that y[0] = z[0] + (1/2)y[—1] = z[0] = 1. Now we also
have
yo]=A+B = A=1-B=3.

2.33. (a) (i) From Example 2.14, we know that

1

1
z€ % ] u(t).

uie) = |

(ii) We solve this along the lines of Example 2.14. First assume that y,(t) is of the
form Ke?t for t > 0. Then using eq. (P2.33-1), we get for ¢ > 0

2Ke? + 2Ke?t =¥ = =-.

We now know that yp(t) = %ezt for t > 0. We may hypothesize the homogeneous

solution to be of the form
yn(t) = 4e%.

Therefore, !
ya(t) = Ae % + Zezt, for t > 0.
Assuming initial rest, we can conclude that y2(t) = 0 for ¢ < 0. Therefore,

1 1

Then,
(L2 1 2
yo(t) = [ i + 3¢ u(t).
(iii) Let the input be z3(t) = ce3u(t) + Be*u(t). Assume that the particular solution

yp(t) is of the form
yp(t) = Ki0e® + Kofe*

for t > 0. Using eq. (P2.33-1), we get
3K ae® + 2K,0e* + 2K Laedt + 2K,Be* = o + Be*t.

Equating the coefficients of €3 and e* on both sides, we get

1 1
Kl = g and K2 = Z
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t

Now hypothesizing that y,(t) = Ae~%, we get

1 1
y3(t) = gaeat + Zﬁezt + Ae™2

for ¢t > 0. Assuming initial rest,
y3(0)=0=A+a/5+8/4 = A=-—<2+é).
Therefore,
1 1 a _
ys(t) = {gae“ + Zﬂe” - (3 + g) e 2‘} u(t).

Clearly, ys(t) = ay1(t) + By2(?).
(iv) For the input-output pair z;(t) and y:(t), we may use eq. (P2.33-1) and the initial
rest condition to write

dy;t(t) + 21 (8) = 1 (2), y1(t) =0 for t < t;.
(S2.33-1)

For the input-output pair z2(t) and y2(t), we may use eq. (P2.33-1) and the initial
rest condition to write

t
dyzt( ) 2u(t) = 22(8),  ya(t) = 0 for t < to.

d (S2.33-2)

Scaling eq. (S2.33-1) by o and eq. (S2.33-2) by § and summing, we get

2 {oni(6) + B ()} + 2{on () + Bua(t)} = az(0) + Baa(?),
and
y1(t) + y2(t) = 0 for ¢ < min(ty, t2).

By inspection, it is clear that the output is y3(¢) = a1 (t) + By2(t) when the input
is z3(t) = az;(t) + Bz2(t). Furthermore, y3(t) = 0 for ¢ < t3, where 3 denotes the
time until which z3(¢) = 0.

(b) (i) Using the result of (a-ii), we may write
K -
yi(t) = vy [e2t —e 2t] u(t).

(ii) We solve this along the lines of Example 2.14. First assume that yp(¢) is of the
form KYe2t=T) for ¢t > T. Then using eq. (P2.33-1), we get for ¢t > T

2Ke?T) 42K T = = = 41'1'
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We now know that y,(t) = %ez(“T) for t > T. We may hypothesize the homoge-
neous solution to be of the form

yn(t) = Ae™ 2.
Therefore,
yo(t) = Ae™2 + i{—ez(t’T), fort>T.

Assuming initial rest, we can conclude that y2(t) = 0 for ¢t < T'. Therefore,
y2(T) =0=Ae'2T+§ = A=-—-—c

Then,
wm::-%aw41+§éWﬂym—Ty

Clearly, y2(t) = y1(t - T).
(iii) Consider the input-output pair z;(t) — y;(t) where z,(t) = 0 for ¢ < ¢;. Note that

dy:(t
WO o) =ml), 9l =0, fort<to
Since the derivative is a time-invariant operation, we may now write
dyi(t—T)

a +2y(t =T) =z:(t=T), y1(t) =0, for t < £p.

This suggests that if the input is a signal of the form z3(t) = z1(t — T'), then the
output is a signal of the form y2(t) = v1(t — T'). Also, note that the new output
y2(t) will be zero for ¢ < g + 7. This supports time-invariance since z5(t) is zero
for t < tg + T. Therefore, we may conclude that the system is time-invariant.

2.34. (a) Consider z;(t) N y1(t) and z2(t) N y2(t). We know that y;(1) = y2(1) = 1. Now
consider a third input to the system which is z3(t) = z1(¢t)+z2(t). Let the corresponding
output be y3(t). Now, note that y3(1) = 1 # y1(1) + y2(1). Therefore, the system is
not linear. A specific example follows.

Consider an input signal z;(t) = e*u(t). From Problem 2.33(a-ii), we know that
the corresponding output for ¢t > 0 is

y(t) = :11e2t + Ae™%.
Using the fact that y;(1) = 1, we get for t > 0
_ 1o €\ —a(t-1)
wm_4e+o Je :

Now, consider a second signal z(t) = 0. Then, the corresponding output is

y2(t) = Be™
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for ¢t > 0. Using the fact that yo(1) = 1, we get for t > 0
ya(t) = 20D,

Now consider a third signal z3(t) = z1(t) + z2(t) = z1(t). Note that the output will
still be y3(t) = y1(¢) for t > 0. Clearly, y3(¢) # y1(t) + y2(t) for t > 0. Therefore, the

system is not linear.
2t

(b) Again consider an input signal z;(t) = e®u(t). From part (a), we know that the
corresponding output for ¢ > 0 with y;(1) =1 is

_ l 2t _ €\ _-2(t-1)
() = ¢ + (1 4)6 .

Now, consider an input signal of the form z3(t) = z;(t — T') = e2t~T)y(t — T). Then
fort>T, .
yo(t) = Ze2(t"T) + Ae™ 2%,

Using the fact that y2(1) = 1 and also assuming that T'< 1, , we get for t > T
1 1
y2(t) = Zez(t'T) + (1 - Ze2(1‘T)) e—2(t-1).

Now note that y2(t) # y1 (¢ — T) for t > T. Therefore, the system is not time invariant.
(c) In order to show that the system is incrementally linear with the auxiliary condition
specified as y(1) = 1, we need to first show that the system is linear with the auxiliary
condition specified as y(1) = 0.
For an input-output pair z;(t) and y;(t), we may use eq. (P2.33-1) and the fact
that y;(1) = 0 to write

dy(}t(t) +2(t) ==(t),  wn(l) =0 (S2.34-1)

For an input-output pair z2(t) and yo(t), we may use eq. (P2.33-1) and the initial rest
condition to write
dy2(t)
dt
Scaling eq. (S2.34-1) by a and eq. (S2.34-2) by # and summing, we get

+2y2(t) = z2(8),  y2(1) =0. (52.34-2)

2 (ann(®) + b)) + 2{em(0) + bualt)} = oz () + Boa()

and
y3(1) = y1(1) + y2(1) = 0.
By inspection, it is clear that the output is y3(t) = ayi1(t) + Byz(t) when the input is
z3(t) = az(t) + Bz2(t). Furthermore, y3(1) = 0 = y1(1) +y2(1). Therefore, the system
is linear.
Therefore, the overall system may be treated as the cascade of a linear system with
an adder which adds the response of the system to the auxiliary conditions alone.
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(d) In the previous part, we showed that the system is linear when y(1) = 0. In order to
show that the system is not time-invariant, consider an input of the form z; (t) = e?u(t).
From part (a), we know that the corresponding output will be

y1(t) = %ezt + Ae™%.
Using the fact that y;(1) = 0, we get for t > 0
_ Lo 1 5t
yi(t) = ¢ € .

Now consider an input of the form z5(t) = z;(¢ — 1/2). Note that y2(1) = 0. Clearly,
y2(1) # y1(1 — 1/2) = (1/4)(e — €3). Therefore, yo(t) # yi(t — 1/2) for all ¢. This
implies that the system is not time invariant.

(e) A proof which is very similar to the proof for linearity used in part (c) may be used
here. We may show that the system is not time invariant by using the method outlined
in part (d).

2.35. (a) Since the system is linear, the response y;(¢) = 0 for all ¢.

(b) Now let us find the output y2(t) when the input is z(¢). The particular solution is of

the form

Substituting in eq. (P2.33-1), we get
2Y =1.
Now, including the homogeneous solution which is of the form yx(t) = Ae™?%, we get

the overall solution: )

yo(t) = Ae % + 5 t>-L
Since y(0) = 0, we get
yo(t) = —%e'” + % t>—1. (S2.35-1)
For t < —1, we note that z2(t) = 0. Thus the particular solution is zero in this range
and
yo(t) = Be %, t< -1 (S2.35—2)
Since the two pieces of the solution for yo(t) in egs. (52.35-1) and (S2.35-2) must match
at ¢ = —1, we can determine B from the equation
1 1, _ o
5 3¢ = Be
which yields

yo(t) = (% - %ez) 2+ p < -1
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Now note that since z1(t) = z2(t) for ¢t < —1, it must be true that for a causal system
y1(t) = yo(t) for t < —1. However the results of parts (a) and (b) show that this is not
true. Therefore, the system is not causal.

2.36. (a) Consider an input z1[n] such that z;[n] = 0 for n < n;. The corresponding output will
be

wiln] = %yl[n —1+mn), yin]=0forn < ni.
(52.36—1)

Also, consider another input z2[n] such that z3[n] = 0 for n < ny. The corresponding
output will be

yaln] = %yg[n — 1]+ z2[n], y2[n] =0 for n < ny.
(52.36—2)

Scaling eq. (S2.36-1) by o and eq. (52.36-2) by 8 and summing, we get

o] + Bualn] = Sy — 1]+ Syaln — 1) + amiln] + Bl

By inspection, it is clear that the output is y3[n] = ayi[n] + By2[n] when the input is
z3[n] = az[n]+ Bz2[n]. Furthermore, y3(1) =0 =y1(1)+y2(1). Therefore, the system
is linear.
(b) Let us consider two inputs
zi[n] =0, foralln,

0, n<-1
.’Dz[n] = 1, n>-1"

and

Since the system is linear, the response to z;[n] is y1[n] = 0 for all n. Now let us find
the output yo[n] when the input is z2[n]. Since y2[0] =0,

¥2(1] = (1/2)0+0=0, 2[2]=(1/2)0+0=0,
Therefore, yo[n] = 0 for n > 0. Now, for n < 0, note that
y2[0] = (1/2)y2[-1] + =z[0].

Therefore, yo[—1] = —2. Proceeding similarly, we get y2[—2] = —4, y2[-3] = —8, and
so on. Therefore, y2[n] = —(1/2)*u[—n —1].

Now note that since z1[n] = z2[n] for n < 0, it must be true that for a causal system
y1[n] = y2[n] for n < 0. However, the results obtained above show that this is not true.
Therefore, the system is not causal.
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2.37. Let us consider two inputs
z1(t) =0, forallt

and
T2(t) = e[u(t) — u(t — 1))
Since the system is linear, the response y;(¢) = 0 for all ¢.
Now let us find the output y2(t) when the input is zo(¢). The particular solution is of
the form
() =Ye, 0<t<l
Substituting in eq. (P2.33-1), we get

3y =1.

Now, including the homogeneous solution which is of the form y,(t) = Ae™%, we get the

overall solution:

y2(t) = Ae™ % + %et, 0<t<l.

Assuming final rest, we have y(1) = 0. Using this we get A = —e®/3. Therefore,

ya(t) = ~%e—2‘+3 + %et, 0<t<l. (S2.37-1)
For t < 0, we note that z2(t) = 0. Thus the particular solution is zero in this range and
ya(t)=Be™#, - t<O. (S2.37-2)

Since the two pieces of the solution for y»(t) in egs. (52.37-1) and (52.37-2) must match at
t = 0, we can determine B from the equation

which ylelds
1 13\ o
=== t .
yz(t) (3 36 ) e, <0

Now note that since z;(t) = z2(t) for t < 0, it must be true that for a causal system
y1(t) = yo(t) for ¢t < 0. However, the results of obtained above show that this is not true.
Therefore, the system is not causal.

2.38. The block diagrams are as shown in Figure 52.38.
2.39. The block diagrams are as shown in Figure S2.39.

2.40. (a) Note that ,
t—

t
y(t) = / e~ (r — 2)dr = / e~ (t=2=")g(r")dr.
-0 -—00

Therefore,
h(t) = e~ ¢yt - 2).
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N dj ylnl x[n) & o] Y(n)

Figure S2.38

0 y(t) —r— °
rt) ¢ ) S Y&
g
-2
ﬁg
Figure S2.39
(b) We have

y(t) = /_:h(f):z(t —T)dT

= /ooe'("'z) [ut—-74+1)—u(t—7-2)
2

h(r) and z(t — 7) are as shown in the figure below.
Using this figure, we may write

0, t<1
t+1
e~ (Ddr =1 — e~(t-1), 1<t<4
y(t) = 2
t+1
/ e~ (=Adr = e~ (t-9[1 — 73], t>4
t—2
2.41. (a) We may write
gin] = zln] - asln - 1]
= a"u[n] - a"u[n —1]
= dn).
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(xk(’l’) AXE-T)

0 2 7 t-2 O ++1 T

Figure S2.40
(b) Note that g[n] = z[n] * {d[n] — ad[n — 1]}. Therefore, from part (a), we know that
z[n] * {§[n] — ad[n — 1]} = d[n]. Using this we may write

zn]* {§fln—1] —adn - 2]} = d[n—1],
ol s {Bln+ 1] - dfn} = dn+1,
z[n]* {§[n+2] —adn+1}} = d[n+2].

Now note that
={n] » hin] = 46[n + 2 + 26 +1] +3[n] + 36ln — 1]
Therefore,

z[n] * hn]

4zfn] x {0[n + 2] — adé[n + 1]}
2zfn] * {6[n + 1] — od[n]}

z[n] * {d[n] — ad[n — 1]}
(1/2)z[n] * {é[n — 1] — ad[n — 2]}

+ + +

This may be written as

z[n] * h[n] = z[n] * {4d[n + 2] — 4ad[n + 1] + 26[n + 1]
— 2aé[n] + d[n] — ad[n — 1]
+ (1/2)é[n — 1] — (1/2)é[n - 2]
Therefore,

hln] = 48[n+2]+ (2 - 4e)d[n + 1] + (1 — 2a)d[n] -
+ (1/2=a)d[n—1] - (1/2)é[n — 2]

2.42. We have

y(t) = () * h(t) = /_ (:Zeiwo(t—f)d.,._
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Therefore,

0.5 . 9
y(0) = / e 7“7dr = — sin(wo/2).
-0.5 wo

(a) If wp = 2, then y(0) = 0.
(b) Clearly, our answer to part (a) is not unique. Any wy = 2k, k € Z and k # 0 will
suffice.

2.43. (a) We first have
[2(2) * h(t)] % g(t) = /_ ” /_ ” S0’ = 7)g(t = o')drdo’
- /_ ” /_ " s(1)h(e)g(t — o — 7)drdo

Also,

I

(t) % [h(t) * g(2)] /_ : /_ ::a:(t — o')h(r)g(o’ — 7)do'dr

= [-:[_:z(a)h(r)g(t — T —o0)drdo
= [:[Zz(f)h(a)g(t — 0o —T)drdo

The equality is proved.
(b) (i) We first have

win) = ufn] « hy[n]) = g (—%)k = [r- 3] ol

Now,
y[n] = win] * ha[n] = (n + 1)u[n].

(ii) We first have

n k n-—1
oin) = nlnl <) = Y- (=1) + 33 (-3)* =]

k=0

Now,
y[n] = u[n] * g[n] = u[n] * u[n] = (n + 1)un].

The same result was obtained in both parts (i) and (ii).

(c) Note that
z[n] * (he[n] * hq[n]) = (z[n] * ha[n]) * h1[n].

Also note that ‘
z[n] * ho[n] = a"uln] — a™u[n — 1] = d[n].

Therefore,
z[n] * hi[n] * ho[n] = é[n] * sin8n = sin 8n.
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2.44. (a) We have i
z(t) * h(t) = /_ z(T)h(t — 7)dT = /_; z(1)h(t — 7)dT.

Note that h(—7) = 0 for |7| > T». Therefore, h(t—7) =0 for 7 > t+T5 and 7 < —Tp+t.
Therefore, the above integral evaluates to zero either if T} < —=T> +t or T +t < —Tj.
This implies that the convolution integral is zero if ¢t > |T1 + T3|.

(b) (i) We have
y[n] = h[n] * z[n] = Z h[k]z[n — k).

k=Np

Note that z[—k] # 0 for —N3 < n < —N,. Therefore, z[—k+n] # 0 for —N3+n <
k < —N, + n. Clearly, the convolution sum is not zero if —N3 +n < N; and
—Njy +n > Ny. Therefore, y[n] is nonzero for n < N; + N3 and n > Ng + Ns.

(ii) We can easily show that My, = My + M; — 1.
(c) h[n] =0 for n > 5.
(d) From the figure it is clear that

-1
u(t) = h(t) * o(t) = /_ st~ r)dr +5(t-)

Therefore, .

y(0) = / z(7)dr + z(—6).

-2
This implies that z(¢) must be known for 1 <t < 2 and for ¢t = —6.

2.45. (a) (i) We have

h
Taking limit as h — 0 on both sides of the above equation:

o(t) = ot = ) 171 y() =yt =)
h

2 B (@)
(ii) Differentiating the convolution integral, we get
d o0
Jo = 2 [ / ot - T)h(T)dT]
dt |J_o
/_ Gt = mh(r)ar

= /;w z (t — 7)h(r)dr
= z'(t) * h(t).
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Figure S2.45

(iii) Let us name the output of the system with impulse response u;(t) as w(t). Then,
w(t) = z(t) * u1(¢) = z'(t) and 2(t) = z'(t) * h(2).
Since both systems in the cascade are LTI, we may interchange their order as
shown in Figure S2.45.
Then, y(t) = z(t) * h(t) and p(t) = y'(t). Since z(t) and p(t) have to be the same,
we may conclude that '(t) * h(t) = ¢/(2).
(b) (i) We have already proved that y'(t) = z'(t) *h(t). Now we may interchange z(t) and
' h(t) in the earlier proofs and they would all still hold. Therefore, we may argue
that y'(t) = z(t) * h'(t).
(i1) Consider

y(t) = [z(t) xu(®)] xR (2)
= z(t) * [u(t) * ua(8)] * h(F)
(t)

z(t) * h(t).

This shows that [z(t) * u(t)]h’(t) is equivalent to z(t) * h(t). Now the same thing
may be written as:

y(t) = [z(t) xu(®)] *A'(2)
= [[=(2) * wa ()] * A()] * u(?)

= ' (7)h(t — T)dT

—00

z'(t) » [A(2) * u(t)]

o) / h(r)dr

(c) Note that z'(t) = 6(t) — 5e~5tu(t). Therefore, the output of the LTI system to z'(t)
will be h(t) — 5sin(wpt). Since this has to be equal to y'(t) = wg cos(wot), we have

h(t) = wq cos(wpt) + 5sin(wpt).
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(d) (i) We have

= [z(t) * ur(2)] * [u(t) * h(2)]
= :z:'(t) * s(t)
= > z'(1)s(t — 7)d7
(i1) Also,
z(t) =. z(t) * 6(t)
= [z(t) * u1(t)] * u(?)
= /oo z'(1)u(t — 7)dr

(e) In this case .
' (t) = etu(t) + &(t).

Therefore,
y(t) = s(t) + etu(t) * s(t)-
This may be written as

y(t) = [e73t=2e% +1)u(t)

+ G =)

- —g—(et ey — ¢t — 1Ju(f).

(f) Using the fact that [8[n] = é[n — 1]] * u[n] = é[n] gives:
yln] = [zln] — zln — 1]] * sln] = D _[z[k] - z[k — 1}s[n — ]
k

and
oo

z[n] = [z[n] — z[n — 1]) x u[n] = E [z[k] — z[k — 1]Ju[n — &].

k=-—00

2.46. Note that
dz(t)

- = —6e 3tu(t — 1) +26(t — 1) = —3z(t) + 25(t — 1).

Given that
z(t) = 2e73u(t — 1) — y(t)

we know that %ﬂ = —3z(t) +26(t — 1) must yield —3y(t) + 2h(t — 1) at the output. From
the given information, we may conclude that 2h(t — 1) = e~2tu(t). Therefore,

hit) = -;—e'z(t"'l)u(t +1).
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2.47. (a) y(t) = 2yo(2).
(b) y(t) = yo(t) — yo(t — 2).
(c) y(t) = yo(t —1).
(d) Not enough information.
() y(t) = yo(—1).
(£) y(t) = %" (t)-
The signals for all parts of this problem are plotted in the Figure S2.47.

Y yl)
2
1
o z 't> ol 2 4 _E
(@) (b
) 4 A
1 — Ve
=~ . 2 L.
ol 1 2 i o) % o 4 o *
ced Figcur)e $2.47 () "
—

* 2.48. (a) True. If h(t) periodic and nonzero, then
(o o)
/ |h(t)|dt = oo.
—00

Therefore, h(t) is unstable.
(b) False. For example, inverse of h[n] = d[n — k] is g[n] = d[n + k] which is noncausal.
(c) False. For example h[n] = u[n] implies that

(o <]

> Jhln]| = co.

n=-—0oo

This is an unstable system.
(d) True. Assuming that h[n] is bounded and nonzero in the range n; < n < no,
> nolhlk]| < co.
k=n1
This implies that the system is stable.

(e) False. For example, h(t) = e'u(t) is causal but not stable.

(f) False. For example, the cascade of a causal system with impulse response hj[n] =
§[n — 1] and a non-causal system with impulse response hz[n] = d[n + 1] leads to a
system with overall impulse response given by h[n] = hi[n] * hy[n] = é[n].
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(g) False. For example, if h(t) = e~tu(t), then s(t) = (1 — e~*)u(t) and
* t ¢|oo
/0 1—eF|ldt=t+e” |0 = 00.

Although the system is stable, the step response is not absolutely integrable.

[o ¢}
(h) True. We may write u[n] = Zé[n — k]. Therefore,
k=0

s[n] = Zh[n — k]
k=0

If s[n] = 0 for n < 0, then h[n] = 0 for n < 0 and the system is causal.

2.49. (a) It is a bounded input. |z[n]| < 1 = B; for all n.
(b) Consider

vl = 3 o[-KlhlK]

Therefore, the output is not bounded. Thus, the system is not stable and absolute
summability is necessary:.

(c) Let
(0 0, if h(—t) =0
z(t) = - . .
o ER(=t) #£0
Now, |z(t)] < 1 for all ¢. Therefore, z(t) is a bounded input Now,

o0

y(0) = / z(—7)h(r)dT

-—00

® k2(r)
/_wm(r)l‘”

- /w IA(t)|dt = oo

—00
Therefore, the system is unstable if the impulse response is not absolutely integrable.

2.50. (a) The output will be az1(t) + bza(t).
(b) The output will be z,(t — 7).
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2.51. (a) For the system of Figure P2.51(a) the response to an unit impulse is

1
yi[n] = n(5)"uln].
For the system of Figure P2.51(b) the response to an unit impulse is
y2[n] = 0.

Clearly, y1[n] # y2ln].
(b) For the system of Figure P2.51(a) the response to an unit impulse is

ym] = (%)“u['n] + 2.

For the system of Figure P2.51(b) the response to an unit impulse is
1
yln] = (5)"ufn] + 4.

Clearly, y1[n] # y2[n]-

2.52. We get

n
(k+1)a n>0
s[n] = h[n] *x u[n] = kzo
0, otherwise.

Noting that
n n+1 n+2
Ko @ k_ «a
>+ De = z - =)

we get

s[n] =

2.53. (a) Let us assume that

Then,
Zak T (Aes°t) = ZAake”t k=

k=0 k=0

Therefore, Ae® is a solution of eq. (P2.53-1).

64

© 1997 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.



(b) Consider

Nk N N
st _ k st st k-1
Zakat—k(Ate ) = ZAakts e’ + ZAakke s
k=0 k=0 k=0
N Ny
— st k st ok
= Ate Zaks + Ae Zakds(s )
k=0 k=0
N a
= Ate® sk 4+ Aest— k,
Seust + 4% S S
k=0 k=0
N
If s; is a solution, then Zaksf = 0. This implies that te%? is a solution.
k=0

(c) (i) Here,
s2+35+2=0, = s=-2,s=-1.

Therefore,
yn(t) = Ae™? + Be ™.

Since yx(0) =0, ¥'4(0) = 2, A+ B = 0 and 24 + B = 2. Therefore, A = =2,
B =2.
y(t) = 2e7t - 2¢7%.

(ii) Here,
s24+354+2=0 = y(t) = Ae™% + Be™t.

Since y(0) = 1, ¥’(0) = ~1, we have y(t) = e™*.

(iii) y(t) = 0 because of initial rest condition.

(iv) Here,
2425 41=0=(s+1?% = s=-l0=2

and
y(t) = Ae™t + Bte™".

Since y(0) =1, ¥'(0) = 1, A =1, B = 2. Therefore,
y(t) = e~ + 2tet.
(v) Here,
S+s2—s-1=0=(s—1)(s+1)?2 =  y(t) = Ae'+ Be '+ Cte "

Since y(0) = 1, ¥'(0) = 1, and y"(0) = —2, we get A = 1/2, B = 3/4, C = 3/2.

Therefore, . 3 3
_ Lttt 92—t 9, —t
y(t) = 7€ +4e + 2te .
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(vi) Here, s = —1 £ 25 and
y(t) = Ae~te¥t + Bete Y1,

Since y(0) = 1, ¥'(0) = 1,

A=Z(1-j)=B"

N =

Therefore,
y(t) = e~*[cos 2t + sin 2t].

2.54. (a) Let us assume that
N
Zakz(',‘ =0.
k=0
Then, if y[n] = Az},

N N N
> okyln — K= _ar(Azf %) = Azf Y arzp* =0.
k=0 k=0 k=0

Therefore, Az} is a solution of eq. (P2.54-1).
(b) If y[n] = nz™"1, then

N N
> aryln —kl = ak(n - k)z" L, - (S2.54-1)
k=0 k=0

Taking the right-hand side of the equation that we want to prove,

N N
RHS = "Ny aq(N-k)zZNF* 1+ (n-N)> a
k=0 k=0
N
= Zak(n _ k)zn—k—l (S2.54-2)
k=0
Comparing egs. (S2.54-1) and (S2.54-2), we conclude that the equation is proved.
c) (i) Here,
(c) () , . .

3 4,1 o5 _ _ 1
1+ZZ +§Z =0 = z= 2,2-— r

Therefore, . !
yln] = A(=3)" + B(=7)"™

Since y[0] = 1, y[-1] = —6, we get A= —1, B =2, and

yln] = 2(=3)" — (~3)"
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(ii) Here,
22-2z2+1=0.

Therefore,
y[n] = A(1)" + Bn(1)" = A+ Bn.

Since, y[0] =1, y[1] =0 we get A =1, B = -1, and
yln]=1-n.
(iii) Only difference from previous part is initial conditions. Since y[0] = 1, y[10] = 21,

weget A=1, B=2, and
y[n] =1+ 2n.

(iv) Here,

2\/‘1*7)

Therefore, ) 1
yln] = A[F(l +)I" + B[m(1 - "

= =1
575 B= 5/ and

Since y[0] =0, y[-1] =1, we get A =
vln] = == ()" sinfr /).
2.55. (a) y[0] = z[0] = 1. h[n] satisfies the equation
hin] = %h[n ~1, n>1l

The auxiliary condition is h[0] = 1. Using the method introduced in the previous
problem, we have z = 1/2. Therefore, h[n] = A(1/2)". Using the auxiliary condition,

1 n
(b) From Figure P2.55(b), we know that if z[n] = é[n], then

wlr] = hafr] = (3)"ufnl.

This implies that

vln] = hin] = (%)nu[n]+2(-;-)""1u[n—l].
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(c) Plugging eq. (P2.55-3) into eq. (P2.55-1) gives:

n n—1
S bl —mialm] - 33kl —m—1afm] = Y GF"abnl- 3. (5)""alm)
= (")
= z[n].

This implies that eq. (P2.55-3) satisfies eq. P(2.55-1).
(d) (i) Given that ag # 0 and that the system obeys initial rest, we get

1

wyfll=1 = )=

The homogeneous equation is
N
Zakh[n —kl=0
k=0

with the initial conditions
h[0] = 1/ay, h[-1) =+ =h[-N+1]=0.
(ii) We have

M
hfn] =Y “bihi[n — k] =0,
k=0
where hi[n] is as above.
(e) For n > M,

N
> axhln— k] =0
k=0

with
hl[0] = y[0],-- - , h[M] = y[M].

(f) (i) We get
1, n even, n >0

h[n]={0, noddorn<0 °

(i1) We get
1, nevenandn >0
hin] = ¢ 2, n odd and n > 0
0, n<0
(iii) We get

2, n=20,2
hin] =< -1, nevenn>4 .
0, else

© 1997 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.



(iv) We get
h[n] = —[cos " 4 V3sin = —]

2.56. (a) In this case, s + 2 = 0 which implies that

Since y(0+) =1, A=1and

Now consider eq. (P2.56-1).

LHS. = / h(t — 1)z d’T+2/ h(t — 7)z(7)dT
= / e~ 2t=1§(t — 7)z(7)dT
—00

= z(t) = R.H.S.

This implies that y(t) does solve the differential equation.
(b) Take
y(t) =D o)
l

Then

ZakzalukH 8(t)-

k=0

Integrating between ¢t =07 and ¢ = O'*‘ and matching coefficients, we get a; = 0 except
a_n = 1/ay. This implies that for 0~ <t < 0%

(1) = ——u-n(t)
and
Of) =y (07)=---=¢yV2(0%) =0
and V-1 0 I
atN-1 |y an’

(c) The impulse response is
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(d) (i) Taking
y(t) = > ou(t)

we get
Z[a,ur+2(t) + 3arur+1(t) + 20,u,) = 6(2)

-
This implies that rme; = —2 and a_y = 1. Therefore, h(0+) = 0 and '(0") =1
constitute the initial conditions. Now,

$+354+2=0 = s=-2,s=-1.

Therefore,
h(t) = Ae”%t + Be™®, t > 0.

Applying initial conditions, we get A = —1, B = 1. Therefore,
h(t) = (e7t — e H)u_y (2).
(ii) The initial conditions are h(0") = 0 and A'(0%)1, Also, s = —1 £ j. Therefore
h(t) = [e" sin t]u—1(t).

M
(e) From part (c), if M > N, then Zbk%’éﬂ will contain singularity terms at ¢ = 0 This
k=0
implies that

h(t) = artiy(t) +--- .

(f) (i) Now,
> ot (t) + 2 arur = 3ua(t) + uo(?).
Therefore, Tmez = O.TAlso
agu (t) + a—1uo(t) + 200uo(t) = 3ui(t) + uo(t).
This gives ap = 3 and a_; = —5. The initial condition is ~(0*) = —5 and
h(t) = 3ug(t) — 5e~2u_y(t) = 38(t) — 5e~*u(t).

(ii) Here, &y = 1, g = =3, -1 = 13, a_y = —44. Therefore h(0*) = 13 and
h'(0%) = —44 and

R(t) = u1(t) — 3uo(t) + 18e™3tu_y (t) — 5e™%u_y(2).

2.57. (a) Realizing that zp[n] = yi[n], we may eliminate these from the two given difference
equations. This would give us '

ya[n] = —aya[n — 1] + boz1[n] + biz1[n — 1].

This is the same as the overall difference equation.
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Figure S2.57

(b) The figures corresponding to the remaining parts of this problem are shown in the
Figure S2.57.

2.58. (a) Realizing that z2[n] = yi[n], we may eliminate these from the two given difference
equations. This would give us

2ua[n] — yo[n — 1] + y2[n — 3] = z1[n] — 5z1[n — 4].

This is the same as the overall difference equation.

(b) The figures corresponding to the remaining parts of this problem are shown in Figure
S2.58.

2.59. (a) Integrating the given differential equation once and simplifying, we get
t bo [ b
y(t) = —a—O/ y(r)dr + —0/ z(r)dT + 2z(2).
a1 J- a1 J—co a)

Therefore, A= —ao/al, B = bl/al, C= bo/al.
(b) Realizing that z2(t) = y1(t), we may eliminate these from the two given integral equa-
tions. This would give us

yo(t) = A/;t yo(7)dT + B[t z1(7)dT + Cz1(2).
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Figure S2.58

(c) The figures corresponding to the remaining parts of this problem are shown in Figure
S52.59.

2.60. (a) Integrating the given differential equation once and simplifying, we get

S t t T
y(t) = S y(r)dr — -Z—Z/_oo/_ooy(a)dadr

a2 J-co
t T t
+ b—O/ / z(o)dodr + 21-/ z(r)dr + —b—z—x(t).
42 J-c0J —00 a2 J-x ay

Therefore, A = —a;/as, B = —ap/az, C = bz2/a1, D = b1 /az, E = by/as.

(b) Realizing that z2(t) = y1(t), we may eliminate these from the two given integral equa-
tions.

(c) The figures corresponding to the remaining parts of this problem are shown in Figure
S2.60.

2.61. (a) (i) From Kirchoff’s voltage law, we know that the input voltage must equal the sum
of the voltages across the inductor and capacitor. Therefore,

2
o(t) = Lcd—;’igﬂ +y(t).
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Figure S2.59

Using the values of L and C' we get
?y(t)
e

(ii) Using the results of Problem 2.53, we know that the homogeneous solution of the
differential equation

+y(t) = z(2).

d*y(t) | dy(t)
az T g

will have terms of the form K;e%0+ Koe®'t where sg and s; are roots of the equation

+ agy(t) = bz(2).

32+als+a2=0.

(It is assumed here that so # s1.) In this problem, a; = 0 and a; = 1. Therefore,
the root of the equation are sp = j and s; = —j.. The homogeneous solution is

yh(t) = Klei‘ + ng'ﬁ.

And, w; =1 = ws.
(iii) If the voltage and current are restricted to be real, then K 1 = Ko = K. Therefore,

yn(t) = 2K cos(t) = 2K sin(t + 7/2).
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Figure S2.60

(b) (i) From Kirchoff’s voltage law, we know that the input voltage must equal the sum
of the voltages across the resistor and capacitor. Therefore,

dy(t)

z(t) = RC 7 + y(t).
Using the values of R, L, and C we get
dy(t) _
7 +y(t) = =(t).

(ii) The natural response of the system is the homogeneous solution of the above differ-
ential equation. Using the results of Problem 2.53, we know that the homogeneous
solution of the differential equation

%%Q + a1y(t) = bz(t).

will have terms of the form Ae**! where s is the root of the equation
s+a; =0.

In this problem, a; = 1. Therefore, the root of the equation are sp = —1. The

homogeneous solution is
yn(t) = Ke™.

And,a=1.
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(c) (i) From Kirchoff’s voltage law, we know that the input voltage must equal the sum
of the voltages across the resistor, inductor, and capacitor. Therefore,

o) | podu(®)

z(t) = e 7 + y(t).

Using the values of R, L, and C we get
d®y(t) | dy(t)
iz T

(ii) Using the results of Problem 2.53, we know that the homogeneous solution of the
differential equation

+ 5y(t) = 5z(¢t).

2
ddzgt) +a; ZE:) + agy(t) = bz(2).

will have terms of the form K;e®ot+ Koe51® where s and s; are roots of the equation

2+ ay1s+ay=0.

(It is assumed here that sy # s1.) In this problem, a; = 2 and a; = 5. Therefore,
the root of the equation are s = —1 + 2j and s; = —1 — 2j. The homogeneous

solution is : .
yp(t) = Kle'tezﬁ + ng_te—zﬁ.

And, a = 1.
(iii) If the voltage and current are restricted to be real, then K; = Ko = K. Therefore,

y(t) = 2Ke t cos(2t) = 2Ke " sin(2t + 7/2).

2.62. (a) The force z(t) must equal the sum of the force required to displace the mass and the
force required to stretch the spring. Therefore,

d*y(t) _
z(t) = m—=—= 7 + Ky(t) = z(2).
Substituting the values of m and K, we get

d?y(t)

I + 4y(t) = 2z(t).

Using the results of Problem 2.53, we know that the homogeneous solution of the
differential equation
dPy(t) | dy(t)

+a; + agy(t) = bz(t).
dt? dt

will have terms of the form Kje’ot + Koes!t where sp and s; are roots of the equation

s2+a1s+as=0.
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(It is assumed here that sg # s1.) In this problem, a; = 0 and a; = 4. Therefore, the
root of the equation are so = +27 and s; = —2j. The homogeneous solution is

yh(t) = Klert + ng_zjt.
Assuming that y(t) is real, we have K; = K3 = K. Therefore,
yn(t) = 2K cos(2t).

Clearly, yx(t) is periodic.

(b) The force z(t) must equal the sum of the force required to displace the mass and the
force required to stretch the spring. Therefore,

d t
o(t) =m &Y 1 py(s).
Substituting the values of m and b, we get
dy(t) . y@) _ z(t)

dt 10000 ~ 1000°

Using the results of Problem 2.53, we know that the homogeneous solution of the

differential equation

W) 1 gtey = o)

will have terms of the form Ae®®* where s is the root of the equation
s4+a; =0.

In this problem, a; = 1/10000. Therefore, the root of the equation are so = —1074.

The homogeneous solution is »
yn(t) = Ke 0

Clearly, y,(t) decreases with increasing t.
(c) (i) We know that the input force z(t) = (Force required to displace mass by y(t)) +
(Force required to displace dashpot by y(t)) + (Force required to displace spring
by y(t)). Therefore,

2y
z(t) = ddtgt) +b d(t) + Ky(t).

Using the values of m, b, and K we get

2
a dzgt) + 2dgjiit) + 2y(t) = =(2)-
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(ii) Using the results of Problem 2.53, we know that the homogeneous solution of the
differential equation

d?y(t) dy(t)
a2 T

will have terms of the form K;e%0t+ Koe®!t where sg and s; are roots of the equation

+ agy(t) = byz(t).

32+a13+a2 =0.

(It is assumed here that sp # s;.) In this problem, a; = 2 and az = 2. Therefore,
the root of the equation are sp = —1 + j and s; = —1 — j. The homogeneous
solution is
yn(t) = Kie~telt + Koe~te™7.
And,a=1.
(iii) If the force is restricted to be real, then K; = K, = K. Therefore,

yn(t) = 2Ke tcos(t) = 2Ke sin(t + 7/2).

2.63. (a) We have

y[n] = Amt. borrowed — Amt. paid + Compounded Amt from prev. month
100,0005[n] + 1.01y[n — 1} — Du[n— 1].

Therefore,
y[n] =1.0lyln-1}-D, =n>0

and y[0] = 100,000 and y =1.01.

(b) We have
yp[n] = 1.01yp[n — 1] — D.

This implies that y,[n] = 100D. Also the homogeneous solution is of the form
ynln] = A(1.01)".

Therefore,
y[n] = yu[n] + yp[n] = A(1.01)" + 100D

Using the initial condition y[0] = 100000, we have
A = 100000 — 100D.

Therefore,
y[n] = (100000 — 100D)(1.01)" + 100D.

(c) We have
y[360] = 0 = (P — 100D)(1.01)%° + 100D.

Therefore, D = $1028.60.
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(d) Total payment = $370, 296.
(e) The toughest question in this book!!

2.64. (a) We have y(t) = z(¢) = h(t) and z(t) = y(t) * g(¢). Therefore, g(t) * h(t) = §(¢). Now,

h(t) * 9(t)| izt = thgn—k‘s (t —nT).
k=0

Therefore we want
Therefore,

(b) In this case, go = 1, g1 = —1/2, g2 = (=1/2)?, g3 = (—1/2)3, and so on. This implies
that

(o] 1 k
@) =6t)+ Y (-=) é(—kT).
s =30+ (-3)

oo
(c) (i) Here, h(t) = > oks(t—T).
k=0
(ii) If 0 < @ < 1, then o < 1. Therefore, h(t) is bounded and absolutely integrable
and corresponds to a stable system. If &> 1, then h(t) is not absolutely integrable
making the system unstable.

(iii) Here, g(t) = 1 — ad(t = T'). The inverse system is as shown in the figure below.

S, ™™\ o S

yw ) " T ki)

Figure S2.64

(d) If z1[n] = é[n], y[n] = h[n). If zo[n] = 14[n] + 1é[n — N, y[n] = A[n].

2.65. (a) The autocorrelation sequences are as shown in Figure 52.65.
(b) The autocorrelation sequences are as shown in Figure 52.65.
(c) We get
(o <]
¢ayln] = D h[—klzz[n — K.
k=—o0

Therefore,¢zy[n] may be viewed as

$zz[n] = | h[-n] | = ¢zy[n].
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(d) Figure S2.65 (d)

Also,
¢yy [n] = Z Gzz [n - k]¢hh [k]
k

Therefore, ¢y, [n] may be viewed as

bzz[n] = | h[n] * h[—n] | = ¢yy[n].

(d) ¢zy[n] and ¢yy are as shown in Figure S2.65.

2.66. (a) The plot of z;(t) is as shown in Figure S2.66.
(b) The plots of zo(t) and z2(t) are as shown in Figure S2.66.
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Figure S2.66
(c) z1(¢) * hao(t) = zz(t) * h3(t) = z1(t) * h3(t) =0 for t = 4.
2.67. (a) The autocorrelation functions are:
atd — Lt 4 2, 0<t<2
b2y (t) = { (2)? 2 3 ¢ ;2 o and P12 (t) = ¢z131(-t)-
and
([ 7(1L=1t), 0<t<1
1—t¢, 1<t<2
t—3, 2<t<3
3—t, 3<t<4
$za30(t) = 4 t—5 4<t<5 and  ¢zyz,(t) = Praz, (—1)-

5—t, 5<t<L6

t-17, 6<t<7
. 0, t>7

(b) If the impulse response is h(t) = z(T —t), then y(t) = ¢z (t — T).
(c) We have

T
o(T) /0 Z(r)h(T — 7)dr

T 1/2
< o] [Tt
0

T 1/2
Therefore, y(t) is at most M1/2 [ / mz(t)dt] .
0
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If we now choose

M
——
/ z2(t)dt

0

T
y(T) = M*? / z2(t)dt] /2.
0

Clearly, y(T') is maximized for the above choice of A(t).
(d) (i) The responses are as sketched in Figure S2.67.

z(T —t).

then

/r‘%ol—o Tx_bL.l
4 //\\ <
2
\ : - S 5 ol R /\rs ¥ 8
0 4 .f- 47 2 3 4 T g
’-2.- V '1 v'
/ANYL
/ﬂl“ T‘ ik
3 41
21 /\ g
. _ ) ~ > t . P
-4 N T > 2 3 § v &~~— '+
-2f

u > Modi‘f'fwl-
° [ I 2 t ) for
(d,—i {

Figure S2.67

(ii) Let the impulse responses of Ly and L; be hr,(t) and hz,(t). Then,

zo(t) * hro(t)|i=g =

zo(t) * hr, (t)|;=g

I (t) * hLo (t)lt=4 =
)

1 (¢

Il

]
NI SIS

*hr, (8)li=4

To make the job of the receiver easier, modify zo(t) as shown in the figure below.

81

© 1997 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.



2.68. We have
bm(r) = [ p(rp(e-+ )i
< [ Pt e+ ryarts
< / p(r)dr

Therefore,
Gop(T) < Bpp(0) = $pp(0) = mtax¢pp(t)~
Also,
¢:cp(t) = ¢pp(t — to) = ¢:rp(t0) = ¢pp(0) = mta-x¢zp(t)'
2.69. (a) Let g(7) = z(t — 7). Then

/ " g(ur(r)dr = —g'(0) = ~2'(%).

~ (b) Consider r(t) = g(t)f(t). Then,
i " r(ua(t)dt = —r'(0) = = (0) £(0) — g(0)£'(0).
Also,

[ s0s@ua - [ 90110 = ¢ @50 - 0)0)

-0

which is the same as above.

© [ otruatriir = 9'0)

(d) We have
[ _stiGratir = Slo(-D7 -l
=~ 21/ (~07(=1) + g(~0)F' (~Dlemo
= ¢'07(0) - 26'(0)7'(0) +39(0)1"(0)
Therefore,

F(@)uz(t) = f(0)uz(t) — 2f'(0)ur(t) + £ (0)uo(2)-
2.70. (a) We have

oo

> almlulm] = ) z[m}{s[m] - é[m - 1]}

m=—00

= z[0] —z[1].
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(b) We have

z[njui[n] = =z[0)0[n] — z[1}é[n — 1] + [z[0)é[n — 1] — z[0)d[n — 1]]
z[0Jus[n] — {z[1] — z[0]}6[n — 1]

= z[0]é[n] — z[1])é[n — 1] + z[1]é[n] — z[1]é[n]

= zljui[n] - {z[1] — 2[0]}é[n]

(c) We have
ug[n] = u[n] * ui[n] = é§[n] — 26[n — 1] + é[n — 2]

and
us[n] = 6[n] — 3d[n — 1] + 3é[n — 2] — é[n — 3].

The plots for these signals are as shown in Figure S2.70.

3
1 g
{ g
e[z n PRCRT ilH—Tn
[ :
- Lc) __3
ID @
3 6
3
h b u,s[") ¢ a ?
u-Z[JITI PO SR N (II]
=% 2 n "o 1z 3 n
(4)
Figure S2.70
(d) We have
u—gn]=(n+1), n>0
and
u_3[n]=(n—-*_%(n-+—2), n > 0.

The plots for these signals are as shown in the Figure S2.70.
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(e) The statement is true for k = 1,2,3. Assume it is true for k. Then, for k£ > 0
ug+1[n] = u1[n] * ug[n] = ug[n] — ug[n — 1.

By induction, we may now claim that the statement is true for all £ > 0.
(f) For k =1, u_;[n] = u[n] which shows that the statement is true. For k = 2,

(n+1)!
n!

u—g[n] = u[n] = (n + 1)u[n]

which again shows that the statement is true. Assume that it is true for k —1 > 0.

Then,
u_(k_l)[n] = u_k[n] - u_k[n - 1]. (52.70-1)
Also,
wpyl) = SEE
(n+k—1)! (n+k-2)!

= k-1 Ul = G TR = yuln =2

Using the above equation with eq. (S2.70-1), we get

usg[n] = k&~ ;')'u[n]

nl(k -1
By induction, we may now claim that the statement is true for all £ > 0.

2.71. (a) We have
z(t) * [ur(t) *u(t)l =z(t) =1, forallt,

[z(t) * u1(t)] *u(t) =0+ u(t) =0 forallt,

and
[z(t) * u(t)] * u1(t) = 0o * u;(t) = undefined.

(b) We have z(t) = e, h(t) = e~u(t), and g(t) = u1(t) + 8(t). Therefore,
z(t) * [R(t) * g(8)] = 2(t) = 7",

[z(2) * g(£)] » h(2) =0,

and o
g(t) * [z(t) = h(t)] = g(¢t) * e‘t/ 1d7 = undefined.
0
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(c) We have .
ol « [+ o) = (3 )+l =
(z[n] * g[n]) * h[n] = 0% h[n] =0,

and

(afrn] = hfnl) » gfn] = {(5)">_1} » gln] = .

k=0

(d) Let A(t) = ui(t). Then if the input is z;(t) = 0, the output will be y;(¢) = 0. Now if
zo(t) = constant, then y5(t) = 0. Therefore, the system is not invertible.

Now note that
t .
_Jo if zo(t) = OVt
| /_ofz(f)d" = { o ifza(t) #0

t .
/ cdt # oo, then only z5(t) = 0 will yield y2(t) = 0. Therefore,
-0 t—o0

the system is invertible.

Therefore, if

2.72. We have 1
8a(t) = zul®)  [8(8) —o(t — 7).

Differentiating both sides we get

a‘itgAt " %u’(t)*[J(t)—a(t—T)]
1
i —?-J(t)*[é(t)—é(t—T)]

= <o) - (¢ = 7]

2.73. For k = 1, u_1(t) = u(t). Therefore, the given statement is true for k = 1. Now assume
that it is true for some k > 1. Then,

u_k+1)(8) = u(t) *u—k(t)

[ utr= | “ui(r)dr

t k-1
= —_— t>0
/0 (k-1 -

k

I

T

k(k — 1)!

T=t>0 k!
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