Correlations and Least Squares

Ouitline Example. Wisconsin Lottery Sales

o What factors affect lottery sales? Helpful to know for marketing, e.g.,
where to establish new retail outlets.

e j unit of analysis, ZIP (postal) code

Basic Linear Regression Model e n =50 randomly selected geographic areas

e y=average lottery sales (SALES) over a forty-week period, April, 1998
through January, 1999,

Is the Model Useful?: Some Basic Summary Measures « x = population (POP), measure of size of the area.

o Later, we will introduce other factors including area’s typical age,

. . . . education level, income, and so forth. Population is the obvious place to

Properties of Regression Coefficient Estimators start.

e Here are some summary statistics.

Correlations and Least Squares

Statistical Inference
Table: Summary Statistics of Each Variable

Building a Better Model: Residual Analysis Standard
Variable Mean Median Deviation Minimum Maximum
POP 9,311 4,406 11,098 280 39,098
Application: Capital Asset Pricing Model SALES 6,495 2426 8,103 189 33,181

Source: Frees and Miller (2003).
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Example. Wisconsin Lottery Sales Scatter Plot

¢ The basic graphical tool used to investigate the relationship

Frequency Froueng between the two variables is a scatter plot.
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Correlations and Least Squares
Correlations

¢ One way to summarize the strength of the relationship between
two variables is through a correlation statistic.
e The ordinary, or Pearson, correlation coefficient is defined as
1 . - _
= Xi—X)(Vi—Y).
(n_.I)SXSyZ(I )(yl y)

i=1

r

Recall the sample standard deviation s, = \/,,171 S (i — 7)2.

e The correlation coefficient is said to be a "unitless” measure.
e It is unaffected by scale and location changes of either, or both,
variables.
¢ It can readily be compared across different data sets.
e Correlation coefficients take up less space to report than a scatter
plot and are often the primary statistic of interest.
e Scatter plots help us understand other aspects of the data, such as
the range, and also provide indications of nonlinear relationships in
the data.
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Correlations and Least Squares

Method of Least Squares

e Can knowledge of population (x) help us understand sales (y)?
e Method of Least Squares
e Begin with the line y = b§ + b x, where the intercept and slope, b; and bj,
are merely generic values.
 For the ith observation, y; — (b + b x;) represents the deviation of the
observed value y; from the line at x;.
e The sum of squared deviations is

n
SS(bg. by) = > (vi — (b5 + bjxi))?

i=1

« Minimize this quantity by taking derivatives with respect to the intercept and
slope, setting equal to zero and solving

6 k * “ k k
67833(%,!91) = (-2)(yi — (b + bix)) =0

i=1

and .,
8 >k X L3 X
b S5(bg, by) = Z(—le’) (vi — (b + bix;)) = 0.
1 i=1
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Least Squares Estimates

¢ The solution gives the least squares intercept and slope estimates

by=r—=% and by=Yy— biX.

o We have dropped the asterisk, or star (*) notation because these
are no longer generic values.

e The line that they determine, y = by + by x, is called the estimated,
or fitted, regression line.

Correlations and Least Squares

Example. Wisconsin Lottery Sales

For these data, we have r = 0.886 and recall

Table: Summary Statistics of Each Variable

Standard
Variable Mean Median Deviation Minimum Maximum
POP 9,311 4,406 11,098 280 39,098
SALES 6,495 2,426 8,103 189 33,181

Thus,
e by =0.886(8,103) /11,098 = 0.647 and
e by =6,495 — (0.647)9,311 = 470.8.
¢ This yields the fitted regression line

y = 470.8 + (0.647)x.
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Example. Summarizing Simulations

Correlations and Least Squares

Example. Summarizing Simulations

¢ Manistre and Hancock (2005) simulated a 10-year European put
option and demonstrated the relationship between the
value-at-risk (VaR) and the conditional tail expectation (CTE)

e Stock prices are modeled as

S(Z) = 100 exp ((.08)10 + .15\@2) ,

annual mean return of 8% and standard deviation 15% .
e The present value of this option is

C(Z) = e %0810 max (0,110 — S(2)),

based on a 6% discount rate.

¢ 1,000 i.i.d. standard normal random variables were simulated and
calculate each of 1000 present values, Cj1, .. ., C; 1000-

o Var; is the 95th percentile

e CTE; is the average of the highest 50.
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The correlation coefficient turns out to be r = 0.782.

CTE Estimates
10 12 14 16 18 20

8

VaR Estimates

Figure: Plot of Conditional Tail Expectation (CTE) versus Value at Risk (VaR). Based

on n = 1,000 simulations from a 10 year European put bond.
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Observables Representation

Basic Linear Regression Model
Observables Representation Sampling Assumptions
F1. E yi = Bo + B1X:.
F2. {x1,..., xp} are non-stochastic variables.
F3. Var y; = o°.
F4. {y;} are independent random variables.
e For F4, think of stratified sampling, where each x; is a strata (or
group)
e For F3, a common variance is known as homoscedasticity

o We sometimes require

F5. {y;} are normally distributed.

However, approximate normality is enough for central limit
theorems that we will need for inference.
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Basic Linear Regression Model

Graphical Representation

True Unknown
Regression Line
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Figure: The distribution of the response varies by the level of the explanatory

variable.
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Basic Linear Regression Model
Error Representation

Basic Linear Regression Model
Error Representation Sampling Assumptions
E1. yi = Bo + B1Xi +&i.
E2. {xy,...,xn} are non-stochastic variables.
E3. E¢; = 0 and Var ¢; = o°.
E4. {¢;} are independent random variables.

e The error representation is a useful springboard for residual
analysis (Section 2.6)

¢ The observable representation is a useful springboard for
extensions to nonlinear regression models

e These two sets of assumptions are equivalent
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Basic Linear Regression Model

Statistics versus Parameters

o Statistics summarize the (observed) sample/data
e Parameters summarize the (generally unobserved) population
o Use Greek letters for parameters, roman letters for statistics

Table: Summary Measures of the Population and Sample

Data Summary Regression Variance
Measures Line
Intercept  Slope
Population Parameters Bo B4 o?
Sample Statistics bo by §?
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Is the Model Useful?: Some Basic Summary Measures

Partitioning the Variability

Is the Model Useful?: Some Basic Summary Measures

Partitioning the Variability

We now have two “estimates” of y;, ¥ and ¥;

Yvi—y = Vi~V + Y-y

S—— S— S
total = unexplained + explained
deviation deviation deviation

x|
x

After a little algebraic manipulation, this yields

n n n

SG-v2=S -9 +>. -,
i=1

i=1 i=1

or Total SS = Error SS + Regression SS where SS stands for sum of squares.

e Summarize with “R-square,” the coefficient of determination, defined as

B2 _ Regression SS
~ Total SS

R? = the proportion of variability explained by the regression line.

If the regression line fits the data perfectly, then Error SS = 0 and R? = 1.
If the regression line provides no information about the response, then
Regression SS = 0 and R? = 0.

Property: 0 < R? < 1, with larger values implying a better fit.




Is the Model Useful?: Some Basic Summary Measures

The Size of a Typical Deviation: s

o Define the estimate of the disturbance term ¢; = y; — (8o + 51 Xi),
e = i — (bo + b1 x;)

the ith residual.
« If we could observe disturbances, then we would estimate o2 using
(n=1)"TL; (e -7

« Instead, an estimator of 02, the mean square error (MSE), is defined as

1 n
_ 2
N n—ZZe’ '
i—1

« The residual standard deviation is s = v/s2.
o Property of least square residuals, e = 0.
« Dividing by n — 2 makes s? unbiased.

¢ Two points determine a line.

e With n observations, there are n — 2 “free” observations that contribute to
the variability.

Is the Model Useful?: Some Basic Summary Measures
ANOVA Table

Define 5
1 .2 Error SS
2 _ : N\ — _
s_n_zg(y,—y,) _ﬁ_MSE.
and
ANOVA Table

Source Sum of Squares  df  Mean Square

Regression Regression SS 1 Regression MS

Error Error SS n—-2 MSE

Total Total SS n—1

The ANOVA table is merely a bookkeeping device used to keep track
of the sources of variability.
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Is the Model Useful?: Some Basic Summary Measures

Example. Wisconsin Lottery Sales

ANOVA Table
Source Sum of Squares df Mean Square
Regression 2,527,165,015 1 2,527,165,015
Error 690,116,755 48 14,377,432
Total 3,217,281,770 49

From this table, you can check that R?> = 78.5% and s = 3,792.
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Properties of Regression Coefficient Estimators
Weighted Sums

The least squares estimates can be expressed as weighted sum of the
responses.
Define the weights

Xi— X

W= =
" s2(n—1)

The sum of x-deviations (x; — X) is zero, we see that > , w; = 0.
The slope estimate is

n n
S
by=r> = X, =S wilyi-y) =) wy.
1= (n_1)32§(/ X)(yi—Y) ; i(Yi—Y) ; iYi
A similar result holds for the intercept estimate (with different weights)
There exists central limit theorems for weighted sums, so that we may treat
by and by as approximately normal, even if y is not normally distributed.




Properties of Regression Coefficient Estimators

Properties of Regression Coefficients

Properties of Regression Coefficient Estimators

Standard Errors

Regression coefficients are unbiased.
By the linearity of expectations and Assumption F1, we have

n n n
E by = ZWIEYI Zﬁoni+ﬁ1 ZWiXi = b1.
i=1 i—1 i—1

Some easy algebra also shows that
o Here, the sum >_7 | wix; =

(2= 0] S (6 X %= [0 -] L (6% = 1.
o XiLywi=1/(s(n-1)).
e By Assumption F4, we have
n 5 0_2
Varby = > wiVary, = —.
! ; ’ " s3(n—1)

The standard error of by, the estimated standard deviation of by, is

defined as s

svn—1

e As nbecomes larger, se(by) becomes smaller.
e As s becomes smaller, se(b1) becomes smaller.
e As sy increases, then se(b1) becomes smaller.

se(by) =
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Statistical Inference

Is the Explanatory Variable Important?: The t-Test

e Logic: If 31 = 0, then the model is E y = 5y + . That is, it contains
no Xx.

e Is Hy :731 = 0 valid? We respond to this question by looking at the
test statistic

) estimator — hypothesized value of parameter
l — ratio =

standard error of the estimator

e For the case of Hy : 51 = 0, we examine {(by) = by/se(by).

e Under Assumptions F1-F5 and Hp, the distribution of {(by) follows
a t-distribution with df = n — 2 degrees of freedom.
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Example. Wisconsin Lottery Sales

e The residual standard deviation is s = 3,792.
e The x-standard deviation is s, = 11,098.

e Thus, the standard error of the slope is
se(by) =3792/(11098/50 — 1) = 0.0488.

e The slope estimate is by = 0.647.
e Thus, the t-statistic is t(b;) = 0.647/0.0488 = 13.4.

¢ We interpret this by saying that the slope is 13.4 standard errors
above zero.

¢ For the hypothesis test, the 97.5th percentile from a t-distribution
with df = 50 — 2 = 48 degrees of freedom is 45 9. 975 = 2.011.

e Because |13.4| > 2.011, we reject Hp : 51 = 0 in favor of the
alternative that 51 # 0.
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Statistical Inference
The t-test

Table: Decision-Making Procedures for Testing Hy : 51 = d

Alternative Hypothesis (H;) Procedure: Reject Hyp in favor of H; if

61 >d t—ratio > th_21_q-
61 <d t—ratio < —th_21_q-
B #d |t — ratio| > th 21 a/2-

Notes: The significance level is a. Here, t,_2 1_. is the (1-a)th percentile
from the t -distribution using df = n — 2 degrees of freedom.

Table: Probability Values for Testing Hy : 51 = d

Alternative
Hypothesis (Hz) G >d 61 <d G1#d
p-value Pr(t,_2> > t — ratio) Pr(t,—o < t — ratio) Pr(|t,_2| > |t — ratio|)
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Statistical Inference
Interpretations of the t-ratio

e If r =0, then by = 0 and t(b1) = 0. No correlation, no relationship.
e The correlation between y and x, r = r(x, y) is the same as
between y and y, say r(x,y).
e Because r is location and scale invariant (assuming that
?:bo+b1xand by > 0.
e It turns out (Ex 2.13) that R? = r?.

e Further, one can check that (Ex 2.16)

Hby) = vn—2——

1-r2
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Statistical Inference
Confidence Intervals

e by is our point estimator of the true, unknown slope f;.
e How reliable is it? The standard error gives us some idea.

e (b1 — (1) /se(bq) follows a t-distribution with n — 2 degrees of
freedom.
e From this, we have a 100(1 — «)% confidence interval for the slope

B
by £ tn—2,1—a/2 Se(b1).

e Wisconsin lottery sales example:
e An approximate 95% confidence interval for the slope is

0.647 +(2.011)(.0488) = (0.549,0.745).
e An approximate 90% confidence interval for the slope is

0.647 + (1.677)(.0488) = (0.565,0.729).

Basic Linear Regression
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Statistical Inference
Prediction Intervals

¢ Prediction is an important task for actuaries

e Suppose that | know that the population of a zip code is
x* =10,000, what is my prediction of sales? How good is it?

e We want to predict y* = 5y + S1x* + ¢
e Our point prediction is y* = by + by x*
e The prediction error is

* Tk * *
y'=y' = Po—bo+ (B —b1)x" + E_
TV -
prediction error = error in estimating the + deviation of the additional

regression line at x response from its mean
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Statistical Inference
Prediction Intervals

e It can be shown that the standard error of the prediction is

1 (x*—x)>?
se(pred) = s4[1+ -+ ——.
(pred) \/ Jrn+(n—1)s,"}
e As x* becomes farther from X, se(pred) increases
e Thus, a 100(1 — «)% prediction interval at x* is

V' & th o 1_q/2 Se(pred)

e Wisconsin lottery sales example:
e Point prediction - y*= 470.8 + 0.647 (10000) = 6,941.
e The standard error of this prediction is

1 (10,000 —9,311)?
50 ' (50 — 1)(11,098)2
e The 95% prediction interval is

6,941 + (2.011)(3,836) = 6,941 £ 7,710 = (—769, 14,651).

= 3,836.

se(pred) = 3, 792\/1 +
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Building a Better Model: Residual Analysis

Diagnostic Checking

e Diagnostic Checking. Process of matching the modeling
assumptions with the data and use any mismatch to specify a
better model.

e Like when you go to a doctor and he or she performs diagnostic
routines to check your health
o We will begin with the error representation and use residuals as
approximations of the errors/disturbances
¢ Residual Analysis. If the residuals are related to a variable or
display any other recognizable pattern, then we should be able to
take advantage of this information and improve our model
specification.
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Building a Better Model: Residual Analysis

Model Misspecification Issues

e Lack of Independence. There may exist relationships among the
deviations {¢;} so that they are no longer independent.

e Heteroscedasticity. Assumption E3 that indicates that all observations
have a common (although unknown) variability, known as
homoscedasticity. Heteroscedascity is the term used when the variability
varies by observation.

¢ Relationships between Model Deviations and Explanatory Variables.
If an explanatory variable has the ability to help explain the deviation ¢,
the one should be able to use this information to better predict y.

¢ Nonnormal Distributions. If the distribution of the deviation represents a
serious departure from approximate normality, then the usual inference
procedures are no longer valid.

¢ Unusual Points. Individual observations may have a large effect on the
regression model fit, meaning that the results may be sensitive to the
impact to behavior of a single observation.

Frees (Regression Modeling)
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Building a Better Model: Residual Analysis
Unusual Points

e Because regression estimates are weighted averages, some
observations are more important than others.

e An observation that is unusual in the vertical direction is called an
outlier.

o To detect outliers, we will use standardized residuals, essentially
residuals divided by s

e An observation that is unusual in the horizontal directional is
called a high leverage point.

¢ An observation may be both an outlier and a high leverage point.

Frees (Regression Modeling) Basic Linear Regression




Building a Better Model: Residual Analysis

The Effect of Outliers and High Leverage Points

Building a Better Model: Residual Analysis

The Effect of Outliers and High Leverage Points

Table: 19 Base Points Plus Three Types of Unusual Observations

Variables 19 Base Points A B C
X 15 17 20 22 25 25 27 29 30 35|34 95 095
y 30 25 35 30 31 36 32 39 40 40| 80 80 25
X 38 42 43 46 40 51 51 52 55
y 42 41 48 42 51 51 51 48 53

9 4
8 o oA oB
7 4
6 -
y 5 o m%o
44 ® 0900
3 4 o Oo&
. o oC
T T T T T T
0 2 4 6 8 10
X
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Table: Results from Four Regressions

Data bo b1 S R2(%) t(b1 )
19 Base Points 1.869 0.611 0.288 89.0 11.71
19 Base Points + A | 1.750 0.693 0.846 53.7 4.57
19 Base Points + B | 1.775 0.640 0.285 94.7 18.01
19 Base Points + C | 3.356 0.155 0.865 10.3 1.44

The 19 base points show a high R?, s = 0.29.

With outlier A, the R? drops from 89% to 53.7%.

An outlier, “unusual in the y-value,” depends on the x-value.

With B, the regression line provides a better fit.

Point B is not an outlier, but it is a high leverage point.

Point C is an outlier and a high leverage point. The R? coefficient drops
from 89% to 10%.

e Many do not believe that 1 point in 20 can have such a dramatic effect on
the regression fit.
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Building a Better Model: Residual Analysis

Example. Wisconsin Lottery Sales

Table: Regression Results with and without Kenosha

Data by b s R*(%) t(by)
With Kenosha 469.7 0.647 3,792 78,5 13.26
Without Kenosha | -43.5 0.662 2,728 88.3 18.82
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Figure: Scatter plot of SALES versus POP, with the outlier corresponding to Kenosha
marked.

Example. Wisconsin Lottery Sales
One point can change the appearance of the whole distribution.

Sample Quantiles Sample Quantiles
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Figure: qq Plots of Wisconsin Lottery Residuals. The left-hand panel is based on all
50 points. The right-hand panel is based on 49 points, residuals from a regression
after removing Kenosha.




Application: Capital Asset Pricing Model

Application: Capital Asset Pricing Model

e Consider monthly returns over the five year period from January,
1986 to December, 1990, inclusive.

e y = security returns from the Lincoln National Insurance
Corporation as the dependent variable

e x = market returns from the index of the Standard & Poor’s 500
Index.

Table: Summary Statistics of 60 Monthly Observations

Mean Median Standard Minimum Maximum
Deviation
LINCOLN | 0.0051 0.0075 0.0859 -0.2803 0.3147
MARKET | 0.0074 0.0142 0.0525 -0.2205 0.1275

Source: Center for Research on Security Prices, University of Chicago
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e Scatter plots of the returns versus time are called time series plots.

e A quick glance at the horizontal axis reveals that this unusual point is in
October, 1987, the time of the well-known market crash.

e We also see two outliers in 1990

Monthly Return
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0.1 4
Q
0.0
-0.1

-0.2

-03

1986 1987 1988 1989 1990 1991

Year
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Application: Capital Asset Pricing Model

Regression

e The estimated regression is LINCOLN = —0.00214 + 0.973MARKET.

e The resulting estimated standard error, s = 0.0696 is lower than the standard
deviation of Lincoln’s returns, s, = 0.0859.

e Further, t(by) = 5.64, which is significantly large.

e One disappointing aspect is that the statistic R?> = 35.4%

LINCOLN
0.4 o

0.3 4

0.2 4

MARKET

Figure: Scatterplot of Lincoln’s return versus the S&P 500 Index return. The
regression line is superimposed, enabling us to identify the market crash and
two outliers.
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Application: Capital Asset Pricing Model

Sensitivity Analysis

¢ Without the market crash, the estimated regression is

LINCOLN = —0.00181 + 0.956 MARKET

with R2 = 26.4%, t(by) = 4.52, s = 0.0702 and s, = 0.0811.
« The important point is that the R? decreased when omitting this
unusual point.

e The outliers were due to some unfounded rumors in the market
that made Lincoln’s price drop one month and subsequently
recover.

¢ Should the unusual points be left in the analysis? Tough question
that does not have a right or wrong answer. Your only mistake
would be not paying attention to these points!
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