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Chapter 1

1.1 (i) An experiment whose outcome is uncertain. (ii) The set of all possible outcomes. (iii)
A set of outcomes. (iv) A random variable assigns numerical values to the outcomes
of a random experiment.

1.2 (i) Roll four dices. (ii) Ω = {1111, 1112, . . . , 6665, 6666}. (iii) Event: {5555}. (iv) Let
X denote the number of fives in four dice rolls. Then X is the random variable. The
desired probability is P (X = 4).

1.3 (i) Choosing toppings. (ii) Let a, b, c denote pineapple, peppers, and pepperoni, re-
spectively. Then Ω = {Ø, a, b, c, ab, ac, bc, abc}. (iii) Event: {ab, ac, bc}. (iv) Let X be
the number of toppings. Then X is the random variable. The desired probability is
P (X = 2).

1.4 (i) Playing Angry Birds until you win. (ii) Let W denote winning, and L denote losing.
Then Ω = {W,LW,LLW, . . .}. (iii) Event: {X < 1000}, where X is the number of
times you play before you win. (iv) X is the random variable. The desired probability
is P (X < 1000).

1.5 (i) Harvesting 1000 tomatoes. (ii) Ω is the set of all 1000-element of sequences consisting
of B′s (bad) and G′s (good). (iii) Event: {X ≤ 5}, where X is the number of bad
tomatoes. (iv) X is the random variable. The desired probability is P (X ≤ 5).

1.6 (a) {13, 22, 31};
(b) {36, 45, 54, 63};
(c) {13, 23, 33, 43, 53, 63};
(d) {11, 22, 33, 44, 55, 66};
(e) {31, 41, 51, 52, 61, 62}.

1.7 (a) {R = 0};
(b) {R = 1, B = 2};
(c) {R+B = 4};
(d) {R = 2B}.

1.8 Let B denote a boy and G denote a girl. Then Ω = {G,BG,BBG, . . . BBBBBB}.
The random variable is the number of boys.

1.9 P (ω1) = 24
41 ; P (ω2) = 12

41 ; P (ω3) = 4
41 ; P (ω4) = 1

41 .

1.10 Must have p+ p2 + p = 1. Solve p2 + 2p = 1. Since p ≥ 0, p =
√

2− 1 = 0.414.

1.11 (a) P (A) ≥ 0, since P1(A) ≥ 0 and P1(A) ≥ 0. (b)∑
ω

P (ω) =
∑
ω

P1(ω) + P2(ω)

2

=
1

2

(∑
ω

P1(ω) +
∑
ω

P2(ω)

)

=
1

2
(1 + 1) = 1.
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(c) ∑
ω∈A

P (ω) =
∑
ω∈A

P1(ω) + P2(ω)

2

=
1

2

(∑
ω∈A

P1(ω) +
∑
ω∈A

P2(ω)

)

=
1

2
(P1(A) + P2(A)) = P (A).

1.12 ∑
ω

P (ω) =
∑
ω

a1P1(ω) + a2P2(ω) + · · ·+ akPk(ω)

= a1

∑
ω

P1(ω) + a2

∑
ω

P2(ω) + · · ·+ ak
∑
ω

Pk(ω)

= a1 + a2 + · · ·+ ak.

Thus a1 + a2 + · · ·+ ak = 1.

1.13 ∑
ω

Q(ω) =
∑
ω

[P (ω)]2

= [P (a)]2 + [P (b)]2 = 1.

Solve p2 + (1− p)2 = 1. Then p = 0 or 1.

1.14 (a) The number of ways to select a president is 10. The number of ways to select Tom
to be the president is 1. Thus the desired probability is 1/10. (b) The number of ways
to select a president and a treasurer is 10 × 9 = 90. The number of ways to select
Brenda to be the president and Liz to be the treasurer is 1. The desired probability is
1/90.

1.15 The number of 6-element sequences with first two elements H and last two elements
T is 22 = 4. The number of 6-element sequences of H’s and T ’s is 26 = 64. Thus the
desired probability is 4/64 = 1/16.

1.16 (a) 1
262+263+264+265 = 8.093× 10−8;

(b) 264

262+263+264+265 = 0.037;

(c) 26+2×262+263

262+263+264+265 = 0.0015;

(d) 1− 252+253+254+255

262+263+264+265 = 0.171.

1.17 (a) 6/65 = 1/64 = 1.286× 10−4;
(b) 1− (5/6)5 = 0.598;
(c) 6×5···×2

65 = 0.0926.

1.18 (a) 3×19×18
20×19×18 = 0.15;

(b) 6×18
20×19×18 = 0.0079;

(c) 6
20×19×18 = 4.386× 10−4.
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1.19 There are k! orderings of which one is in increasing order. Thus, 1/k!.

1.20 (a) 0.2; (b) 0.2; (c) 0.6.

1.21 (a) 0.9; (b) 0; (c) 0.1; (d) 0.9.

1.22 We know
P (A ∪B) = P (A) + P (B)− P (AB) = 0.6

and P (A ∪Bc) = P (A) + P (Bc)− P (ABc) = 0.8.

Solving for P (A) gives P (A) = 0.4.

1.23 (i) Ac = {X < 2 or X > 4}; (ii) Bc = {X < 4}; (iii) AB = {X = 4};
(iv) A ∪B = {X ≥ 2}.

1.24 (i) 34
101 = 0.337; (ii) 12

101 = 0.119.

1.25 We know

P (A ∪B ∪ C) + P (A ∪B ∪ C)c = P (A ∪B ∪ C) + P (AcBcCc) = 1

Given P (AcBcCc) = 0, if follows that P (A ∪B ∪ C) = 1.
We also know

P (A ∪B ∪ C) = P (ABcCc) + P (AcBCc) + P (AcBcC)

+ P (AB) + P (BC) + P (AC)− 2P (ABC) = 1.

Given
P (ABC) = P (ABcCc) = P (AcBCc) = P (AcBcC) = 0.

Then P (BC) + P (AB) + P (AC) = 1.

Thus P (B) = P (AcBCc) + P (AB) + P (BC)− P (ABC) = 0.8.

1.26 (a) h; (b) a+ c+ f ; (c) d+ e+ b; (d) g; (e) 1− h; (f) b+ d+ e+ g; (g) a+ c+ f + h;
(h) 1− g.

1.27 (i) 1/8; (ii) 5/8; (iii) 1/8.

1.28 P (X = k) = (2k − 1)/36 for k = 1, . . . , 6.

1.29 (a) Ω = {(1, 1), (1, 5), (1, 10), (1, 25), (5, 1), . . . , (25, 25)}.
(b) P (X = 1) = 1/16; P (X = 5) = 3/16; P (X = 10) = 5/16; P (X = 25) = 7/16.
(c) P (Judith > Joe) = P ({(5, 1), (10, 5), (10, 1), (25, 10), (25, 5), (25, 1)}) = 3/8.

1.30 P (At least one 2) = 1− P (No 2’s) = 1− (3/4)5 = 0.7627.

1.31 (a) Use geometric series fomular,

∞∑
k=0

Q(k) =

∞∑
k=0

2

3k+1
=

2

3

(
1

1− 1/3

)
= 1.

(b) P (X > 2) = 1− P (X ≤ 2) = 1− 2
3 −

2
9 −

2
27 = 1/27.

1.32 c = e−3 = 0.498.
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1.33 (a) A ∪B ∪ C
(b) AcBCc

(c) ABcCc ∪AcBCc ∪AcBcC ∪AcBcCc
(d) ABC
(e) AcBcCc.

1.34 (a) p/(1− p) = 1/16. Thus, 1− p = 16/17. (b) p/(1− p) = 2/9 so p = 2/11.

1.35 1− (1/5 + 1/4 + 1/3) + (1/10 + 1/10 + 1/10) = 31/60.

1.36 (a) P (A ∪ B ∪ C) = 0.95; (b) P (ABcCc ∪ AcBCc ∪ AcBcC ∪ AcBcCc) = 0.5; (c)
P (ABC) = 0.05; (d) P (AcBcCc) = 0.05; (e) P (ABCc∪ABcC∪AcBcC∪ABC) = 0.5;
(f) P ((ABC)c) = 0.95.

1.37 By inclusion-exclusion as in Example 1.20:

P (D4 ∪D7 ∪D10) = P (D4) + P (D7) + P (D10)

− P (D28)− P (D20)− P (D70) + P (D140)

=
1

5000
[1250 + 714 + 500− 178− 250− 71 + 35] =

2

5
.

1.38 (a) By inclusion exclusion: 1/4 + 1/4− 1/16 = 3/16.

(b) By inclusion-exclusion: 1/4 + 1/4 + 1/4− (1/16 + 1/16 + 1/16) + 1/64 = 37/64.

1.39 Let C = ABc ∪AcB.
We have

P (A ∪B) = P (ABc ∪AcB ∪AB) = P (C) + P (AB);

P (A ∪B) = P (A) + P (B)− P (AB)

Solving for P(C) gives the result.

1.40 Let D = ABcCc ∪ AcBcC ∪ ABcCc be the event that exactly one event occurs. We
have

P (A ∪B ∪ C) = P (D) + P (ABCc) + P (ABcC) + P (AcBC) + P (ABC)

= P (D) + (P (AB) + P (AC) + P (BC)− 3P (ABC)) + P (ABC).

Also,

P (A ∪B ∪ C) = P (A) + P (B) + P (C)− P (AB)− P (AC)− P (BC) + P (ABC).

Solving for P(D) gives the result.

1.41 n <- 10000

simlist <- vector(length=n)

for (i in 1:n): {

trial <- sample(0:1, 4, replace=TRUE)

success <- if (sum(trial) == 1) 1 else 0

simlist[i] <-success

}

mean(simlist)
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1.42 simdivis<- function() {

num <- sample(1:5000, 1)

if(num%%4==0 || num%%7==0 || num%%10==0) 1 else 0

}

simlist <- replicate(1000, simdivis())

mean(simlist)

1.43 n <- 10000

simlist <- vector(length=n)

for (i in 1:n): {

trial <- sample(1:6, 2, replace=TRUE)

success <- if (sum(trial) >= 8) 1 else 0

simlist[i] <-success

}

mean(simlist)

1.44 n <- 10000

simlist <- vector(length=n)

for (i in 1:n): {

trial <- sample(1:4, 1, replace=TRUE)

success <- if (trial >= 2) 1 else 0

simlist[i] <-success

}

mean(simlist)

Chapter 2

2.2 We know
P (AB) = P (A|B)P (B) = (0.5)(0.3) = 0.15.

Thus, P (A ∪B) = P (A) + P (B)− P (AB) = 0.3 + 0.3− 0.15 = 0.45.

2.3

P (A|B) =
P (AB)

P (B)
=
P (A) + P (B)− P (AB)

P (B)
=

2p1 − p2

p1
.

2.4 (a)

P (HHH|First coin is H) =
P (HHH and First coin is H)

P (First coin is H)

=
P (HHH)

P (First coin is H)
=

1/8

1/2
= 1/4.

(b)

P (HHH|One of the coins is H) =
P (HHH and one of the coins is H)

P (One coin is H)

=
P (HHH)

P (One coin is H)
=

1/8

7/8
=

1

7
.
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2.5 (a) 0; (b) 1; (c) P (A)/P (B); (d) 1.

2.6 (1) We know

P (A > B|A = 3) =
P (A > B and A = 3)

P (A = 3)
= 1/3,

P (A > B|A = 5) =
P (A > B and A = 5)

P (A = 5)
= 2/3,

P (A > B|A = 7) =
P (A > B and A = 7)

P (A = 7)
= 2/3.

Then

P (A > B) = P (A > B|A = 3)P (A = 3)

+ P (A > B|A = 5)P (A = 5)

+ P (A > B|A = 5)P (A = 5) = 5/9,

which is greater than 1/2.

(2) Similarly,

P (B > C) =P (B > C|B = 2)P (B = 2)

+ P (B > C|B = 4)P (B = 4)

+ P (B > C|B = 9)P (B = 9) = 5/9.

And

P (C > A) =P (C > A|C = 1)P (C = 1)

+ P (C > A|C = 6)P (C = 6)

+ P (C > A|C = 8)P (C = 8) = 5/9.

2.7 (a) False.

(b) True.

P (A|B) + P (Ac|B) =
P (AB)

P (B)
+
P (AcB)

P (B)

=
P (AB) + P (AcB)

P (B)
= 1.

2.8

P (C-H-A-N-C-E) =

(
6

15

)(
3

14

)(
3

13

)(
3

12

)(
5

11

)(
3

10

)
=

27

40040
= 0.000674.

2.9 The desired probability is 4 times the probability of a flush in one particular suit. This
gives

4

(
13

52

)(
12

51

)(
11

50

)(
10

49

)(
9

48

)
= 0.001981.
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W

1/3

2/3

R

W

2/5

W

1/5

R

3/5

R

4/5

WW

2/15

WR

3/15

RW

2/15

RR

8/15

2.10 By the tree diagram, the probability that the final ball is white is 2/15+2/15 = 4/15.

2.11 (a) p1 = P (AB|A) = P (AB)/P (A); (b) p2 = P (AB|A∪B) = P (AB)/P (A∪B), since
AB ⊆ A ∪B.

(c) Since P (A) ≤ P (A ∪B),

p1 =
P (AB)

P (A)
≥ P (AB)

P (A ∪B)
= p2.

2.12

P (ABC) = P (B|AC)P (AC) = P (B|AC)P (C|A)P (A)

= (1− P (Bc|AC))P (C|A)P (A) = (2/3)(1/4)(1/2) =
1

12
.

2.13

P (A ∪B|C) =
P ((A ∪B)C)

P (C)
=
P (AC ∪BC)

P (C)

=
P (AC)

P (C)
+
P (BC)

P (C)
− P (ABC)

P (C)

= P (A|C) + P (B|C)− P (AB|C).

2.14 We want

P (B) = 1−
k−1∏
i=1

(
1− i

687

)
≥ 0.5.

For k = 31, P (B) = 0.497; for k = 32, P (B) = 0.520. Thus k = 32.

2.15 Apply the “birthday problem” with 5,000 “days” and 100 “people in the room.” The
desired probability is 1− 5000×4999···×4901

5000×5000···×5000 = 0.63088.

2.16 (a) Let H be the event that the selected card is a heart. Let M be the event that the
missing card is heart.

P (H) = P (H|M)P (M) + P (H|M c)P (M c)

=

(
12

51

)(
1

4

)
+

(
13

51

)(
3

4

)
=

1

4
.
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(b) The selected card is equally likely to be one of the four suits. Thus P (H) = 1/4.

2.17 (i)

W

1/3

2/3

R

W

2/5

W

1/5

R

3/5

R

4/5

WW

2/15

WR

3/15

RW

2/15

RR

8/15

The probability that Gummi Bears is chosen is 3/10 + 1/6 = 7/15.

(ii) Let G be the event that Gummi Bears is chosen. Let A be the event that the first
bag is chosen and B be the event that the second bag is chosen.

P (G) = P (G|A)P (A) + P (G|B)P (B)

=

(
3

5

)(
1

2

)
+

(
2

6

)(
1

2

)
= 7/15 = 0.467.

2.18 (b)

P (A) = P (A|B1)P (B1) + P (A|B2)P (B2) + P (A|B3)P (B3) + P (A|B4)P (B4)

= (1)

(
1

16

)
+

(
6

9

)(
9

16

)
+

(
2

5

)(
5

16

)
+ 0 =

9

16
.

2.19

P (A|Bc) =
P (ABc)

P (Bc)
=
P (A)− P (AB)

1− P (B)
.

2.20 After adding a white counter there are three equally likely states: (i) The bag initially
contains a black counter B1. A white counter W2 is put into the bag and W2 is picked
at the first draw; (ii) The bag initially contains a white counter W1. A white counter
W2 is put into the bag and W2 is picked at the first draw; and (iii) The bag initially
contains a white counter W1. A white counter W2 is put into the bag and W1 is picked
at the first draw. Thus the probability that the second draw is a white counter is 2/3.

2.22 Let A be the event that HH first occurs, B be the event that HT first occurs, H be
the event that the first coin flip is a head, and T be the event that the first coin flip
is a tail. Then,

P (B) = P (B|H)P (H) + P (B|T )P (T ) =

(
1

2

)(
1

2

)
+ P (B)

1

2
.

That is, P (B) = 1/2.
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2.23 Let A be the event that the youth is a smoker. Let B be the event that at least one
parent is a smoker. We are given P (A) = 0.2, P (B) = 0.3, and P (A|B) = 0.35. Then

P (A|Bc) =
P (ABc)

P (Bc)
=
P (A)− P (AB)

1− P (B)
=
P (A)− P (A|B)P (B)

1− P (B)

=
0.2− (0.35)(0.3)

0.7
=

19

140
= 0.136.

2.24 Let B be the event that a woman has breast cancer, + be the event that a mammogram
gives a positive result, and − be the event that a mammogram gives a negative result.
We are given P (B) = 0.0238, P (+|B) = 0.85, and P (+|Bc) = 0.05. By Bayes
Formula,

P (B|+) =
P (+|B)P (B)

P (+|B)P (B) + P (+|Bc)P (Bc)

=
(0.85)(0.0238)

(0.85)(0.0238) + (0.05)(0.9762)
= 0.293.

2.25 Let L be the event that a person is a liar, + be the event that a polygraph test
concludes lying, and − be the event that a polygraph test concludes not lying.

We know
P (−|Lc) = 0.9 and P (+|L) = 0.9.

(a) Given P (L) = 0.05,

Thus

P (L|+) =
P (+|L)P (L)

P (+|L)P (L) + P (+|Lc)P (Lc)

=
P (+|L)P (L)

P (+|L)P (L) + (1− P (−|Lc))P (Lc)

= 0.321.

(b) Want P (L|+) ≥ 0.8.

From (a), we know

P (L|+) =
P (+|L)P (L)

P (+|L)P (L) + (1− P (−|Lc))P (Lc)
≥ 0.8.

Since P (+|L) = P (−|Lc), solving for P (+|L), we get P (+|L) ≥ 0.987. The polygraph
must be 98.7% reliable.

2.26 Let B be the event that the cab is blue. Let b be the event that a witness asserts the
cab is blue.

Given P (b|B) = P (bc|Bc) = 0.8 and P (B) = 0.05,
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Thus

P (B|b) =
P (b|B)P (B)

P (b|B)P (B) + P (b|Bc)P (Bc)

=
P (b|B)P (B)

P (b|B)P (B) + (1− P (bc|Bc))P (Bc)

= 0.174.

2.27 Let A be the event that the fair die is chosen, B be the event that the die with all 5′s
is chosen, and C be the event that the die with three 5′s and three 4′s is chosen.

P (A|5) =
P (5|A)P (A)

P (5|A)P (A) + P (5|B)P (B) + P (5|C)P (C)

=
(1/6)(1/3)

(1/6)(1/3) + (1)(1/3) + (1/2)(1/3)
=

1/18

10/18
=

1

10
.

2.28 (a)

n <- 10000

simlist <- vector(length=n)

for (i in 1:n){

trial <- sample(1:365, 23, replace=T)

success <- if (2\%in\% table(trial)) 1 else 0

simlist[i] <- success

}

mean(simlist)

(b) k = 47, (c) 0.967, (d) k = 28.

2.29 n <- 1000

simlist1 <- vector(length=n)

simlist2 <- vector(length=n)

simlist3 <- vector(length=n)

for (i in 1:n){

trialA <- sample(c(3,3,5,5,7,7), 1, replace=T)

trialB <- sample(c(2,2,4,4,9,9), 1, replace=T)

trialC <- sample(c(1,1,6,6,8,8), 1, replace=T)

success1 <- if (trialA >trialB) 1 else 0

success2 <- if (trialB >trialC) 1 else 0

success3 <- if (trialC >trialA) 1 else 0

simlist1[i] <-success1

simlist2[i] <-success2

simlist3[i] <-success3

}

mean(simlist1); mean(simlist2); mean(simlist3)

2.30 n <- 1000

envelopes <- c("A", "B", "C", "D")
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noswitchwin<-vector(length=n)

switchwin<-vector(length=n)

for (i in 1:n){

win <- sample(envelopes,1)

pick <- sample(envelopes,1)

remove <- sample(envelopes[which(envelopes!= pick

& envelopes!= win)], 2)

switchyes <- envelopes[which(envelopes!= pick&envelopes!=

remove[1]&envelopes!= remove[2])]

noswitch <- if (pick==win) 1 else 0

switch <- if (switchyes==win) 1 else 0

noswitchwin[i] <- noswitch

switchwin[i] <- switch

}

mean(noswitchwin); mean(switchwin)

After I choose an envelope, the probability that it contains the bill is 1/4. The prob-
ability that the bill is in one of the other three envelopes is 3/4. After two empty
envelopes are removed, the probability that my envelope contains the bill has not
changed, so the probability that the one on the table contains the bill is 3/4. Thus I
should switch.

Chapter 3

3.1

P (AcBc) = 1− P (A ∪B) = 1− P (A)− P (B) + P (AB)

= P (Ac)− P (B) + P (A)P (B) = P (Ac)− P (B)(1− P (A))

= P (Ac)− P (B)P (Ac) = P (Ac)P (Bc).

Thus Ac and Bc are independent.

3.2 (a) P (ABC) = P (A)P (B)P (C) = (1/3)(1/4)(1/5) = 1/60.

(b) P (A or B or C) = 1− P (AcBcCc) = 1− P (Ac)P (Bc)P (Cc) = 3/5.

(c) P (AB|C) = P (AB) = P (A)P (B) = 1/12.

(d) P (B|AC) = P (B) = 1/4.

(e)

P (ABcCc ∪AcBCc ∪AcBcC ∪AcBcCc)
= P (ABcCc) + P (AcBCc) + P (AcBcC)

+ P (AcBcCc) = P (A)P (Bc)P (Cc) + P (Ac)P (B)P (Cc)

+ P (Ac)P (Bc)P (C) + P (Ac)P (Bc)P (Cc) = 5/6.

3.3 Let B denote the event that a tree is infected with bark disease and R denote the event
that a tree is infected with root rot.
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