SOLUTIONS MANUAL FOR PRINCIPLES OF STRUCTURAL DESIGN

Wood, Steel, and Concrete SECOND EDITION

by

Ram S. Gupta

SOLUTIONS MANUAL FOR PRINCIPLES OF STRUCTURAL DESIGN

Wood, Steel, and Concrete SECOND EDITION

by

Ram S. Gupta

CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742

© 2014 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed on acid-free paper Version Date: 20140220

International Standard Book Number-13: 978-1-4665-5234-0 (Ancillary)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at

http://www.crcpress.com

CHAPTER 1

Joists 1.1

1. Thoutary area $f = \frac{24}{1} \times 1 = 2 f^2/f$

2. Design load = 60(2) = 120 lbs/A Beam

4. Design load = 60(13) = 780 lbs/ft

1.2

Beam GH

1. Tributary area (= 7.5 x 1 = 7.5 x 1 = 7.5 x 1

2. Load/F+, W = 100 (7.5) = 750 lbs/F+

3. Reaction at G = 0:75(25) = 9.375K

Beam EF

A. Uniformly distributed load

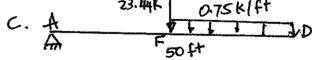
1. Tributary area/f4 = 12.5x1 = 12.5 ff/f4

2. Load /ft w = 100(125) = 1250 lbs/ft

B. Concentrated Load =

1,2 Contd.

Girder AD

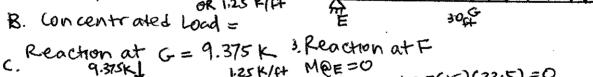

A. Uniform load

1. Tributary area = 7.5x1=7.5ft/f4

3. Tributary area/ft = (6+7) x1 = 13 p2/ft 2. Load on FD = 100 (7.5) = 750 165/ft

B. Concentrated load at F =

Reaction at F=23.44K


1.3

Beam GH NO loading

Beam EF Load only from GF

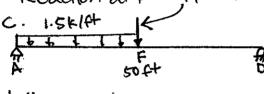
1. Tributary area = $12.5 \times 1 = 12.5 + 12.5 = 12.5 + 12.5 = 12.5$

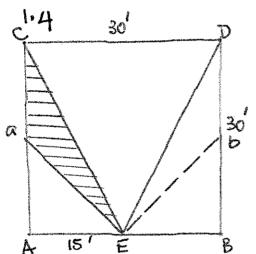
2. Load /ft = 100 (12.5) = 1250 lbs/ft or 1.25,K/Ft

Fy (30) - 1.25(15)(22.5) =0 Fy = 14.063K

D Reaction at F $F_y = \frac{1.25(30) + 9.375}{2} = 23.44 \text{ K}$

1.25 K/F+


1.3 Contd Gurder AD


A: Uniform load only from AF

1. Tributary area = 15x1=15fP/ft

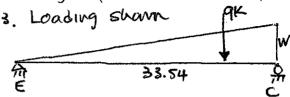
2. Load /ct = 100(15) = 1500 lbs/ft or 1.5 E/ft

B. Concentrated Load = Reaction at F = ,14.063 K

A. Tributary areas are shown above

1. Total area ACE or BDE = $\frac{1}{2}$ (50) (30) = 225 Fl^2

2. Load on ACE or BDE = 80(225) = 18000 lbs or 18 K


3. Area A & E or C Ea = \frac{1}{2}(225) = 112.5 A2

4. Load on AaE or CEa =80(112.5) = 9000 lbsor9K 1.4 Contd.

B. Beam CE or DE

1. Triangular load from CaE = 18-9= 9K

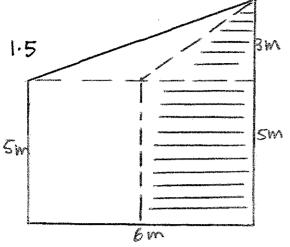
2. Length of CE or DE = 33.54 A

4. Area of load diagram = \frac{1}{2} (W)(33.54) = 16.77 W

5. Equating them I and 4 16.77W = 9 or W = 0.537 k/ff

6. Reaction at E M@c=0

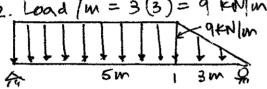
 $Ey(33.94) - 9(\frac{1}{3} \times 33.524) = 0$ Ey = 3K


C. Groder AB 6k W 30 ft B

1. Area of each treangular load = \frac{1}{2} (15) W=7.5 W

2 Trangular Load from AQE = 9 K (from Step A(4))

3. Equating 1 and 2 W= 1.2 = /Pt


4. Concentrated load = 3+3 = 6K

A. Trangular load 1. Area = { (3)(3)= 4.5ft2 2. Load = 3(4.5) = 13.5KN 3. With a triangular load w at end area of load dragsam $=\frac{1}{2}(3)W=1.5W$

4. Equating (2) and (3) 1.5W= 13.5 W= 9FN/m

B. Rectargular Load 1. Tributary area/m = 3x1=3 m2/m 2. Load /m = 3(3) = 9 KN/m

1.6

1. Tributary area of column $(12+14')(20+20) = 260 \text{ ft}^2$

2. Unit load = 60 psf (assumed)

Pu = 60(260) = 15600 lbs

Pu= 中写み 15600 = (0.8) (4000) A or A = 4.88 in

5. Size of a square col. h=JA = J4.88 = 2:2 in.

1.7 1. Factored Load Pu= 1.2 D+1.6L = 1.2(10)+1.6(20)=44K 2. lu= \$FJA 44= (6A) (36) A or A = 1.36 m.2 3. $\frac{\pi}{4}d^2 = 1.36$ d= 1.32 m.

1.8

1. Factored uniform load Wu=1.2(400)+1.6(1000) = 2080 lbs/ft or 2.08 K/ft = 234 ft-k or 2808 In-k

3. Mu = + Fy S 2808 = (OA)(50) S or S= 62.4 m.2 4. $S = \frac{1}{6} (b) (2b)^2 = 62.4$ ~ b = 4.53 m. d = 9.06 m.

Use 5 x 10 m.

1,9

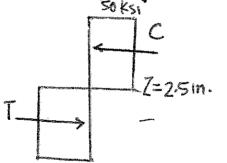
1. From Prob 1.1 Wu=780 lbs/A+ 2. Mu = 780 (20)2 = 39000 ft-165 or 46800 in 165

3. 46800 = 0.9 (4000) S or S = 130 m.3 $4. = (6)(36)^2 = 130$ b = 4.42 in., d=13.26 in Use 41/2 In. x 13/2 In.

1.10 Elastic capacity
1.
$$I = \frac{1}{12}bh^3 = \frac{1}{12}(2)(5)^3 = 20.83 \text{ m}$$

2.
$$S = \frac{T}{C} = \frac{20.83}{2.5} = 8.33 \text{ in.}^3$$

$$\frac{2.5}{3.} \text{ Me} = 6.5 = 50(833)$$


$$50 \text{ ks I} = 416.67 \text{ in.-k}$$

$$Z = \frac{2}{3}(5) = 3.33 \text{ in }.$$

4.
$$C=T=\overline{c}A=\frac{1}{2}(50)(2\times2.5)$$

= 125 K

5.
$$M_E = Cz = (125)(3.33)$$

= 416.67 in.- K or

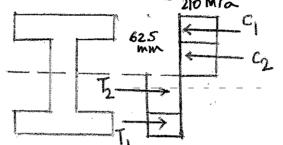
Plastic capacity

1.
$$C = T = 6A = (50)(2 \times 2.5)$$

= 250 K

2
- Mp = $CZ = (250)(2.5)$
= 625 In.-K

$$= 625 \text{ in.-K}$$
Shape Factor = $\frac{MP}{ME} = \frac{625}{416.67} = 1.5$


1.11

Elastre capacity

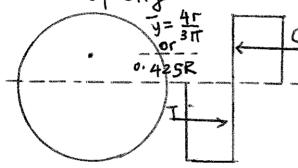
1.
$$I = I_{out} - I_{inside}$$
 3
= $\frac{1}{12} (75 \times 10^3) (125 \times 10^3)$ 3
- $\frac{1}{12} (50 \times 10^3) (75 \times 10^3)$ = 10.45×10^6 m⁴

2.
$$S = \frac{I}{C} = \frac{10.45 \times 10^6}{62.5 \times 10^3} = 0.167 \times 10^{-3}$$

Plastic capacity 210 MPa

$$I.C_{1} = (210 \times 10^{6})(75 \times 10^{3})(25 \times 10^{3})$$

$$= 393.75 \times 10^{3} \text{ N}$$

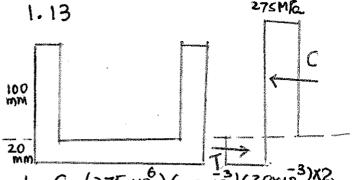

4.
$$C_2 = (210 \times 10^6) (25 \times 10^5) (37.5 \times 10^6)$$

= 196.875 × 10³ N

1.11 Contd. 3
7.
$$MP_3 = MP_1 = 19.69 \times 10 \text{ Nm}$$

8. $MP_4 = MP_2 = 3.69 \times 10 \text{ Nm}$
9. $MP_4 = MP_2 = 46.76 \times 10 \text{ Nm}$
Shape factor = $\frac{MP}{ME} = \frac{46.76 \times 10^3}{35.07 \times 10^3}$
= 1.33

Elastic capacity


1.
$$S = \frac{17}{32}d^3 = \frac{17}{32}(10)^3 = 98.125 \text{ in.}$$

Plastic capacity

1.
$$(=6A = (2000)(\frac{\pi}{8}d^2)$$

= $(2000)(\frac{\pi}{8}x_{10}) = 78500 \text{ lbs}$

2 Distance to na (top part) = 0.425 R = 0.425 (5) = 2.12 m.

C=(275x10)(100x103)(20x103)x2 = 1100 x 103N

2. Distance to na (top part) =50 X10-3

4 = (275x16) (200x10) (200x10) = 1100 x 103 N

5. Distance to n.a. (bottom) = 10 x 10-3

7. Mp= IMp = 66000 Nm

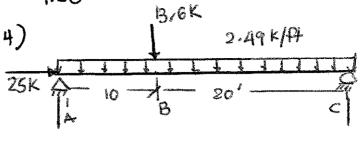
1.14
Elastic theory
1.
$$Sz \frac{Mu}{6} = \frac{2000(12)}{210000} = 2.4 \text{ m}.$$

2. S= = (0.6d) d = 2.4 or d = 2.88 in. b= 0.6 (2.88)= 1.73 \$ 2in.

Plastic theory

1.
$$Z = \frac{M_u}{6} = 2.4 \text{ in.}^3$$

2 $Z = \frac{1}{4} (0.6d) d^2 = 2.4$


or $d = 2.52 \text{ in.}$
 $b = 0.6(2.52) = 1.51 \times 1.5 \text{ in.}$

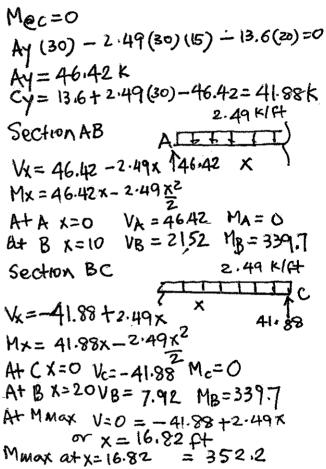
Elastic theory

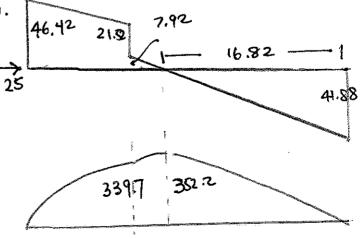

1. S = 2.4 in. 3 (from Prob. 1.14)

2 $S = \frac{11}{32} d^3 = 2.4$ d = 2.9 in. 5.3 in.

Plastic theory

1.20




1.
$$C = T = 6A = 6(\frac{17}{2}T)$$

2. $Z = 2(\frac{4r}{311}) = \frac{8r}{311}$

$$3. M_{p} = C_{Z} = 6 \left(\frac{\pi r^{2}}{2} \right) \left(\frac{8r}{3\pi} \right)$$

$$= \frac{4r}{3} 6 \text{ or } 1.33 \, r^{3} 6 \text{ Mx} = 41.88 \, x - 2.49 \, x^{2}$$

$$0e^{-1} = \frac{MP}{1.336} = \frac{2000(18)}{1.33(10000)}$$

Ħ	1	1	ĸ

# 1.16		
DL on horizontal Projection	10/cos 15	10.35
Seismic Load on Hori. Proj.	2/cos 15	2.07
Roof live load, Lr		20.00
Wind load, vertical		15.00
Snow load		30.00
1. 1.4D	14.49	
2. 1.2D+1.6L+0.5(Lr or S)	27.42	
3. 1.2D+1.6(Lr or S)+.5L or .5W	67.92	
4. 1.2D+W+.5L+.5(Lr or S)	42.42	
5. 1.2D+Ev+Eh+0.5L+0.2S	20.49	***
6. 0.9D+W	24.32	
7. 0.9D-Ev+Eh	7.25	

ì

# 1.17						
Dead load, k/ft (D)	1.15					
Live load, k/ft (L)	1.85					
Wind load, horiz., k, Wh	15.00			,		
Earthquake, horz., k, Eh	20.00					
Earthquake, vert., k/ft, Ev	0.30				•	
1. $w_{\mu} = 1.4D$	1.61					
2. wu=1.2D +1.6L + 0.5(Lr or S)	4.34					
3. This has following two cases						
3a. 1.2D+1.6(Lr or S) + 0.5L						
Source	D, k/ft	Lr or S	L, k/ft	Combinatio	n -	
Load	1.15		1.85			
Load factor	1.20	1.60	0.50			
Vertical factored load	1.38	0.00	0.93	2.31		
3b. 1.2D+1.6(Lr os S)+0.5W						
Source	D, k/ft	Lr or S	W, k	Combinatio	n	
Load	1.15		15.00			
Load factor	1.20	1.60	0.50			•
Vertical load	1.38	0.00		1.38		
Horizontal load			7.50	7.50		
4. 1.2D+1.0W+0.5L+0.5(Lr or S)						
Source	D, k/ft	L, k/ft	W, k	Lr or S	Combinatio	n
Load	1.15	1.85	15.00	0.00		
Load factor	1.20	0.50	1.00	0.50		
Vertical load	1.38	0.93	,	0.00	2.31	
Horizontal load			15.00		15.00	
5. 1.2D+Ev+Eh+0.5L+0.2S						
Source	D, k/ft	L, k/ft	Ev, k/ft	Eh, k	S, k/ft	Combinatic
Load	1.15	1.85	0.30	20.00	0.00	
Load factor	1.20	0.50	1.00	1.00	0.20	
Vertical load	1.38	0.93	0.30		0.00	2.61
Horizontal load				20.00		20.00
6. 0.9D+1W						
Source	D, k/ft	W, k	Combinati	on		
Load	1.15	15.00				
Load factor	0.90	1.00				
Vertical load	1.04		1.04			
Horizontal load		15.00	15.00	1		•
7. 0.9D+Eh-Ev						
Source	D, k/ft	Eh, K	Ev, k/ft	Combinatio	on	
Load	1.15					
Load factor	0.90					
Vertical load	1.04		-0.30			
Horizontal load		20.00		20.00		

;

# 1.18	Uniform,k/ft	k/ft Conc., k	~					
Dead load, k/ft (D)		1.20	8.00					
Live load, k/ft (L)		2.10					•	
Wind load, horiz., k, Wh			18.00					
Earthquake, horz., k, Eh			25.00					
Earthquake, vert., k/ft, Ev		0.00						
Snow load, S			20.00					
Roof Live load, Lr			15.00					
1. $w_u = 1.4D$		1.68						·
Source	D, k/ft	D, ƙ						n.
Load		1.20	8.00					
Load factor		1.40	1.40					
Vertical factored load		1.68	11.20					
2. $wu=1.2D +1.6L + 0.5(Lr \text{ or } S)$,
Source	D, k/ft	D, k	L,	L, k/ft	Lr or S, k		Combined	Combined
	uniform	conc.					Uniformk/ft	Conc., k
Load	-	1.20	8.00	2.10		20.00		
Load factor		1.20	1.20	1.60		0.50		
Vertical factored load		1.44	9.60	3.36		10.00	4.80	19.60
3. This has following two cases								
3a. 1.2D+1.6(Lr or S) + 0.5L								
Source	D, k/ft	D, k	ļ	Lr or S, k	L, k/ft		Combined	Combined
	uniform	conc.	8	conc.	uniform		uniform k/ft	conc., k
Load		1.20	8.00	20.00		2.10		
Load factor		1.20	1.20	1.60		0.50		
Vertical factored load		1.44	9.60	32.00	-	1.05	2.49	41.60
3b. 1.2D+1.6(Lr os S)+0.5W								
Source	D, k/ft	D, k	ב	LrorS	W, K		Combined	Combined
	uniform	conc.	8	conc.	conc.		uniform, k/ft	conc., k
Load		1.20	8.00	20.00		18.00		
Load factor		1.20	1.20	1.60		0.50		
Vertical load		1.44	9.60	32,00			1.44	41.60
Horizontal load			•			9.00		00.6

4. 1.2D+1.0W+0.5L+0.5(Lr or S)

Source	D, k/ft	D, k	L, k/ft	t W, k	~	Lr or S, k		Combined	Combined	
	uniform	conc	uniform	rm conc.	Ğ.	conc.	unif	uniform k/ft	conc., k	
Load		1.20	8.00	2.10	18.00		20.00			
Load factor		1.20	1.20	0.50	1.00	0	0.50			
Vertical load		1.44	09'6	1.05			10.00	2.49	19.60	
Horizontal load			*		18.00	0			18.00	-
5. 1.2D+Ev+Eh+0.5L+0.2S										
Source	D, k/ft	D, k	L, k/ft		Ev, k/ft	Eh, k	s, k		Combined	Combined
	uniform	conc.	uniform	rm		conc.	Conc., k	c., k	uniform,k/ft	conc., k
Load		1.20	8.00	2.10	0.00		25.00	20.00		
Load factor		1.20	1.20	0.50	1.00	0	1.00	0.20		
Vertical load		1.44	9.60	1.05	0.00	0		4.00	2.49	9 13.60
Horizontal load							25.00			25.00
6. 0.9D+1W										÷
Source	D, k/ft	D, k	W, k		Combined	Combined	pe			
	uniform	conc.	conc.		uniform, k/ft	con. K				
Load		1.20	8.00	18.00						
Load factor		06.0	0.90	1.00						
Vertical load		1.08	7.20		1.08	8	7.20			
Horizontal load				18.00			18.00			
7. 0.9D+Eh-Ev										
Source	D, k/ft	D, k	Eh, K		Ev, k/ft	Combined		Combined		
	uniform	conc.	conc.		uniform	uniform,k/ft		conc., k		
Load		1.20	8.00	25.00	0.00	0				
Load factor		06.0	0.00	1.00	-1.00	0			S an	
Vertical load		1.08	7.20		00.00	0	1.08	7.20	0	
Horizontal load				25.00	·		·	0.00	0	

Load cases (2), (4) and (5) to be evaluated

# 1.19	Uniform,k/ft	k/ft Conc., k						
Dead load, k/ft (D)	_	1.80	12.00					
Live load, k/ft (L)		3.15						
Wind load, horiz., k, Wh			27.00					
Earthquake, horz., k, Eh			37.50					
Earthquake, vert., k/ft, Ev		0.00						
Snow load, S			30.00					
Roof Live load, Lr								
1. $w_u = 1.4D$		2.52						
Source	D, k/ft	D, k						
Load		1.80	12.00					
Load factor		1.40	1.40					
Vertical factored load		2.52	16.80				-	
2. $wu=1.2D+1.6L+0.5(Lr \text{ or S})$								
Source	D, k/ft	D, k		L, k/ft	Lr or S, k		Combined	Combined
	uniform	conc.					Uniformk/ft	Conc., k
Load		1.80	12.00	3.15		30.00		
Load factor		1.20	1.20	1.60		0.50		•
Vertical factored load		2.16	14.40	5.04		15.00	7.20	29.40
3. This has following two cases								
3a. 1.2D+1.6(Lr or S) + 0.5L								
Source	D, k/ft	D, k	_	Lr or S, k	L, k/ft		Combined	Combined
	uniform	conc.		conc.	uniform		uniform k/ft	conc., k
Load		1.80	12.00	30.00		3.15		
Load factor		1.20	1.20	1.60		0.50		
Vertical factored load		2.16	14.40	48.00		1.58	3.74	62.40
3b. 1.2D+1.6(Lr os S)+0.5W								-
Source	D, k/ft	D, k	_	Lr or S	W, k		Combined	Combined
	uniform	conc.	Ü	conc.	conc.		uniform, k/ft	conc., k
Load		1.80	12.00	30.00		27.00		
Load factor		1.20	1.20	1.60		0.50		
Vertical load		2.16	14.40	48.00			2.16	
Horizontal load						13.50		13.50
4, 1.2D+1.0W+0.5L+0.5(Lr or S)								

#1.19 Gontd.

Source	D, k/ft	D, K	Ļ	L, k/ft	W, k	Lr or S, k		Combined	Combined	
	uniform	conc	m	⊑	conc.	conc.	. .	uniform k/ft	conc., k	
Load		1.80	12.00	3.15	2	27.00	30.00			
Load factor		1.20	1.20	0.50		1.00	0.50			
Vertical load		2.16	14.40	1.58			15.00	3.74	4 29.40	
Horizontal load					7	27.00			27.00	
5. 1.2D+Ev+Eh+0.5L+0.2S										
Source	D, k/ft	D, k		L, k/ft I	Ev, k/ft	Eh, k	S	S, k	Combined	Combined
	uniform	conc.		uniform		conc.	O	Conc., k	uniform,k/ft	conc., k
Load		1.80	12.00	3.15		0.00	37.50	30.00	0	
Load factor		1.20	1.20	0.50		1.00	1.00	0:20	0	
Vertical load		2.16	14.40	1.58		0.00		6.00	0 3.74	20.40
Horizontal load							37.50			37.50
6. 0.9D+1W										
Source	D, k/ft	D, k	`M	W, k	Combined	d Combined	ined			
	uniform	conc.		conc.	uniform, k/ft	k/ft con. K			* -	
Load			12.00	27.00						
Load factor		06.0	06.0	1.00						
Vertical load		1.62	10.80			1.62	10.80			
Horizontal load				27.00			27.00			
7. 0.9D+Eh-Ev										
Source	D, k/ft	D, k	프	Eh, K	Ev, k/ft	Combined		Combined		
	uniform	conc.		conc.	uniform	unifor	uniform,k/ft o	conc., k		
Load		1.80	12.00	37.50		00'0				
Load factor		06.0	06.0	1.00		-1.00				
Vertical load		1.62	10.80			00.00	1.62	10.80	02	
Horizontal load				37.50				0.00	0	

Load cases (2), (4) and (5) to be evaluated

A. Distribution of weight

1. First floor = 10 (1000) = 370.37 K

2. Second floor = 9 (1000)= 333,33 K

3. Third Floor = 8 (1000) = 296.30 K

B. Notional lateral force at each floor simultaneously

1. Fx @ first floor =0.01(370.37) = 3.7 K

2. Fx@ second fl = 0.01(33333)=3.33 K

3. FX@ Hurd F1. = 0.01 (296.30)=2.96K

1.23

- 1. Tributary area of wall at first floor/per foot wall length $= \frac{10}{2} = 5 ft^2/pt$
- 2. Weight of first floor tributary Wall = 40(5) = 200 lbs/ft

3 Notional honzontal force at first floor = 0.2(200) = 40 lbs/ft

- 4. Tribulary wall area at second floor /ft = 10+9= 9.5 ft/ft
- 5. Wegut of second floor trib. Wall = 40(9.5) = 380 lbs/ft
- 6. Notional horizontal force at second floor= 0.2(380)=76 lbs/ft
- 7. Tributary Wall area at third floor = 9+8 = 8.5 ft2/ft
- 8. Weight of third floor trib. Wall = 40(8.5) = 340 lbs/ft
- 9. Notional horizontal force at third floor = 0.2(340)=68 lbs/ft

1.24

Dr=1 K/6+ + r=5 k/6+

Assumed factored Loads

Reactions = 3(40)/2=60 K

Notional force = 0.05(60)

= 3 K.

ш	~		4
₩	7	_	

	•				
#2.1					
#Z.J.	psf				
Hardwood	μ31 4				
Plywood	3				
Framing	2.6				•
Ceiling supports	0.5				
Gypsum wallboard	5				
Total	15.1	·			
#2.2					-
1. Concrete slab/unit area					
1 ft x 1ft x 1/12 ft x 150 pcf	12.5				
2. Framing DL adjustment					
Load@ 4 in. OC, i.e 3 sect/ft	2.6				
Load/section	2.6/3				
At 3 in. OC, # sections/ft	4	2.47			
Load of 4 sec/ft @ 3 in OC	4*2.6/3 =	3.47			
~3. Floor DL		*			
Concrete slab	12.5				
Plywood	3				
Framing	3.47				
Ceiling supports	0.5				
Gypsum wallboard	5				
Total	24.47				
#2.3					
1. L _o , psf	40				
2. Tribuary area = 20 x 17.5	350				
3. For interior beam, K _{IL}	2				
4. $K_{LL}A_T = 2*350$	700				
5. K = 0.25 + <u>15</u>	0.82				
√700					,
$LL = k L_0 = 0.82*40$	32.68				
# 7 /					
# 2.4 1. Basic LL for office	50				
2. A _T = 40*40	1600				
3. For interior column K _{LL}	4				
4. K _{LL} A _T	6400				
5. K = 0.25 + <u>15</u>	_				
√6400	0.44 Use i	min	0.5		
LL = 50*0.5	250				
				ì	
					•

•

```
# 2.5
1. For gymnasium Lo. psf
                                        100.00
2. A_T = 50 \times 20
                                       1000.00
                                           4.00
3. K_{LL}
4. K_{LL}A_T
                                       4000.00
5. K = 0.25 + 15
                                           0.49 Use min
                                                                     0.50
               √4000
                                          50.00
LL = 100*0.5
# 2.6
1. K<sub>LL</sub>
                                           1.00
2. A_T = 50x20
                                       1000.00
                                       1000.00
4. K<sub>LL</sub>A<sub>T</sub>
5. K = 0.25 + <u>15</u>
               √1000
                                           0.72
                                          72.00
LL = 100*0.72
# 2.7
1. Office from 2 floors Lo, psf
                                        100.00
2. A_T = 40x40
                                       1600.00
                                           4.00
3. K<sub>LL</sub>
4. K<sub>LL</sub>A<sub>T</sub>
                                       6400.00
5. K = 0.25 + <u>15</u>
                                                              two floors
               √6400
                                           0.44 > 0.4 for
                                          44.00
6. LL = 100*0.44
7. Alternative LL
 0.7(L_1 + L_2 + L_3 +
                      )=0.7*100
                                          70.00 ← Controls
# 2.8
1. Total load = 30+25+20 psf
                                          75.00
2. A_T = 25x30
                                        750.00
3. K<sub>LL</sub>
                                           2.00
4. K_{LL}A_T
                                       1500.00
5. K = 0.25 + 15
               √1500
                                           0.64
6. LL = 75*0.64
                                          48.00
7. Alternative LL
 0.7(L_1 + L_2 + L_3 +
0.7(30+25+20)
                                          52.50 ←Controls
8. Min LL = Max on a floor = 30
```

1.33 122.325	
•	
100.00	
1000.00	
2.00	
2000.00	
0.585	
58.54	
FO F4	
102.81	
20.00	
32.23	
20.31	
203.10	
1.00	
0.82	
16.39	
	D4 1
	R1 =1
0.82	
16.44	
	100.00 1000.00 2.00 2000.00 0.585 58.54 58.54 29.27 15.00 102.81 20.00 32.23 20.31 203.10 1.00 0.82 16.39 20.00 32.23 20.31 81.22 <200 ft ² 1.00

2.13

 Roof live load L₀, psf 	20	
2. Roof angle θ= tan-1 (1/2)	26.57	
3. Horizontal dist = W	15	
4. $A_T = 15*40$	600	
5. $R1 = 1.2 - 0.001 * A_T$	0.6	
6. $R2 = 1.2 - 0.6* tan\theta$	0.90	
7. $L_r = R1*R2*L_0$	10.80 < 12 psf	Use 12
8. Minimum roof live load	12.00 psf	
# 2.14		
1. Roof live load L ₀ , psf	20.00	
2. Roof angle θ = tan-1 (1/2)	26.57	-
3. Horizontal wall dist = W	7.50	
4. $A_T = 7.5*40$	300.00	
5. $R1 = 1.2 - 0.001 * A_T$	0.90	

0.90

16.20

2.15

6. $R2 = 1.2 - 0.6*tan\theta$

7. $L_r = R1*R2*L_0$

Special roof live load are not reduced by roof live load reductions R1 and R2. However, these will be reduced by the provisions of floor live loads

1. For garden roof L _o , psf	100.00
2. $A_T = 250$	250.00
3. K _{LL}	4.00
4. K _{LL} A _T	1000.00
5. K = 0.25 + <u>15</u>	
√1000	0.724
L = 100*0.72	72.43

SNOW LOADS COMPUTATIONS	#3.1			
Balanced Snow Loads				
DATA:			÷	-
Ground snow load, p_g		20		
Flat snow load for upper roof if separately given p_f	-	•		
Roof slope, degree		2.38	,	
Eve to ridge width, W		130		
For drift, higher roof length, L_u		,		
For drift, lower roof length, L_L				
For drift, difference of roofs elev.				
For Unbalanced, prismatic/light gauge rafters				
For drift, are structures separated?				
Separation horizontal distance				
Separation vertical distance				-
For sliding, upper roof slippery				
For sliding, are structures separated?			•	
Separation horizontal distance				
Separation vertical distance				
Importance Factor				
Type of structure	ordinary			
I		1		
Thermal Factor				
Hot/warm/ventilated/cold or unheated	ventilated			
C_t		1.1		
Exposure Factor				
Terrain	suburban			
Fully exp/partially exp/shelter	partial			
C_{e}		1		
Roof Slope Factor	_			
Slippery/other	other			
C_s		1		
COMPUTATIONS				
Check for Low slope				
Is low-slope applies? $\theta < 15$	Yes	0.0		
Minimum snow load, pm		20		
Balanced Snow Load		15.4		
Rain on snow check	* 7			
$p_g \le 20$	Yes			
$\theta < W/50$	Yes			
Rain surcharge applies	TRU			
Rain on Snow Surcharge		5		
Balance Snow Load+Rain-on-snow, if applicable		20.4		
Controlling Balanced OR Min. Load		20.4		

SNOW LOADS COMPUTATIONS	#3.2
Balanced Snow Loads	
DATA:	
	20
Ground snow load, p_g	
Flat snow load for upper roof if separately given p_j	
Roof slope, degree	2.38
Eve to ridge width, W	30
For drift, higher roof length, L_u	
For drift, lower roof length, L_L	
For drift, difference of roofs elev.	
For Unbalanced, prismatic/light gauge rafters	*
For drift, are structures separated?	
Separation horizontal distance	,
Separation vertical distance	
For sliding, upper roof slippery	
For sliding, are structures separated?	
Separation horizontal distance	
Separation vertical distance	•
Importance Factor	
Type of structure	ordinary
I	1
Thermal Factor	
Hot/warm/ventilated/cold or unheated	ventilated
C_t	1.1
Exposure Factor	
Terrain	suburban
Fully exp/partially exp/shelter	partial
C_{e}	1
Roof Slope Factor	
Slippery/other	other
C_s	1
COMPUTATIONS:	
Check for Low slope	
Is low-slope applies? $\theta < 15$	Yes
Minimum snow load, pm	20
Balanced Snow Load	15.4
Rain on snow check	
	Yes
$p_g \le 20$	No
$\theta < W/50$	FALSE
Rain surcharge applies	()
Rain on Snow Lord+Pain on snow if applicable	15.4
Balance Snow Load+Rain-on-snow, if applicable	20
Controlling Balanced OR Min. Load	20

SNOW LOADS COMPUTATIONS	#3.3				
Balanced Snow Loads				•	
DATA:					
Ground snow load, p_g		30			٠
Flat snow load for upper roof if separately given p	f				
Roof slope, degree	1:	5.64			
Eve to ridge width, W	•	25			
For drift, higher roof length, L_u					
For drift, lower roof length, L_L					
For drift, difference of roofs elev.	_				
For Unbalanced, prismatic/light gauge rafters					
For drift, are structures separated?					
Separation horizontal distance					
Separation vertical distance					
For sliding, upper roof slippery					
For sliding, are structures separated?					
Separation horizontal distance					
Separation vertical distance					
Importance Factor					
Type of structure	ordinary				
I		1			
Thermal Factor					
Hot/warm/ventilated/cold or unheated	heated	al			
C_t		1			
Exposure Factor	_		•	,	
Terrain	urban				
Fully exp/partially exp/shelter	shltered				
$C_{\it e}$		1.2			
Roof Slope Factor				•	
Slippery/other	other				
C_s		1			
COMPUTATIONS:					
Check for Low slope	# ************************************				
Is low-slope applies? θ < 15	No				
Minimum snow load, pm	Not applic				
Balanced Snow Load		25.2			
Rain on snow check					
$p_g \le 20$	No				
$\theta < W/50$	No	_			
Rain surcharge applies	FALS	_			
Rain on Snow Surcharge		0			
Balance Snow Load+Rain-on-snow, if applicable		25.2			
Controlling Balanced OR Min. Load		25.2		n.	

SNOW LOADS COMPUTATIONS Balanced Snow Loads	#3.4
DATA:	
Ground snow load, p_g	25
Flat snow load for upper roof if separately given	
	11.305
Roof slope, degree	20
Eve to ridge width, W	20
For drift, higher roof length, L_u	
For drift, lower roof length, L_L	
For drift, difference of roofs elev.	-
For Unbalanced, prismatic/light gauge rafters	
For drift, are structures separated?	
Separation horizontal distance	
Separation vertical distance	
For sliding, upper roof slippery	
For sliding, are structures separated?	
Separation horizontal distance	
Separation vertical distance	
Importance Factor	
Type of structure	High occupancy
$oldsymbol{I}$.	1.1
Thermal Factor	·
Hot/warm/ventilated/cold or unheated	Ventilated
C_{t}	1.1
Exposure Factor	
Terrain	urban
Fully exp/partially exp/shelter	Fully exposed
C_{e}	0.9
Roof Slope Fáctor	
Slippery/other	other
C_s	1
COMPUTATIONS:	
Check for Low slope	
Is low-slope applies? θ < 15	Yes
Minimum snow load, pm	22
Balanced Snow Load	19.06
Rain on snow check	17.00
	No
$p_g \le 20$	
$\theta < W/50$	No
Rain surcharge applies	FALSE
Rain on Snow Surcharge	0
Balance Snow Load+Rain-on-snow,if applicable	
Controlling Balanced OR Min. Load	22

SNOW LOADS COMPUTATIONS Balanced Snow Loads DATA:	#3.5	
Ground snow load, p_g		20
Flat snow load for upper roof if separately given p_f		
	2	.38
Roof slope, degree Eve to ridge width, W		130
For drift, higher roof length, L_u	•	100
For drift, lower roof length, L_L		
For drift, difference of roofs elev.	-	
For Unbalanced, prismatic/light gauge rafters	yes	
For drift, are structures separated?		
Separation horizontal distance Separation vertical distance		
For sliding, upper roof slippery	v	
For sliding, are structures separated?		
Separation horizontal distance		
Separation vertical distance		
Importance Factor		
Type of structure	ordinary	
I	-	1
Thermal Factor		
Hot/warm/ventilated/cold or unheated	ventilated	
C_{t}		1.1
Exposure Factor		
Terrain	suburban	
Fully exp/partially exp/shelter	partial	
C_{e}		1
Roof Slope Factor		
Slippery/other	other	
C_s		1
COMPUTATIONS		
Check for Low slope		
Is low-slope applies? $\theta < 15$	Yes	
Minimum snow load, pm		20
Balanced Snow Load	1	15.4
Rain on snow check		
$p_g \le 20$	Yes	
$\theta < W/50$	Yes	
Rain surcharge applies	TRUE	
Rain on Snow Surcharge		5
Balance Snow Load+Rain-on-snow, if applicable		20.4
Controlling Balanced OR Min. Load	2	20.4

SNOW LOADS COMPUTATIONS	#3.6		
Balanced Snow Loads	,,,,,,,		
DATA:			
Ground snow load, p_g		20	
Flat snow load for upper roof if separately given p_f	r		
Roof slope, degree		2.38	
Eve to ridge width, W		30	
For drift, higher roof length, L_u			
For drift, lower roof length, L_L			
For drift, difference of roofs elev.		-	
For Unbalanced, prismatic/light gauge rafters			
For drift, are structures separated?		-	
Separation horizontal distance			
Separation vertical distance			
For sliding, upper roof slippery			
For sliding, are structures separated?			
Separation horizontal distance			
Separation vertical distance			
Importance Factor Type of structure	ordinary		
I	Ordinary	1	
Thermal Factor		_	
Hot/warm/ventilated/cold or unheated	ventilated	1	
C_t		1.1	
•			
Exposure Factor Terrain	suburban		
Fully exp/partially exp/shelter	partial		
C_e	Puzzu	1	
_		-	
Roof Slope Factor Slippery/other	other		
~ -	Othor	1	
C_s		ı	
COMPUTATIONS:			
Check for Low slope	Yes	,	
Is low-slope applies? $\theta < 15$	1 65	20	
Minimum snow load, pm Balanced Snow Load		15.4	
Rain on snow check		15.1	
	Yes		
$p_g \le 20$			
$\theta < W/50$	No FALS	TP	
Rain surcharge applies	i'AL	3E 0	
Rain on Snow Surcharge		15.4	
Balance Snow Load+Rain-on-snow, if applicable		20	
Controlling Balanced OR Min. Load		20	

	*,					
•	•	•				
SNOW LOADS COMPUTATIONS	#3.7					
Balanced Snow Loads	11.517				4	
DATA:		-				
		30				
Ground snow load, p_g		50				
Flat snow load for upper roof if separately given p_f		- <u>.</u>				
Roof slope, degree	1	5.64		-		
Eve to ridge width, W		25				
For drift, higher roof length, L_u						
For drift, lower roof length, L_L						
For drift, difference of roofs elev.		-				
For Unbalanced, prismatic/light gauge rafters	yes					
For drift, are structures separated?						
Separation horizontal distance						
Separation vertical distance						
For sliding, upper roof slippery				•		
For sliding, are structures separated?						
Separation horizontal distance						
Separation vertical distance						
Importance Factor						
Type of structure	ordinary					
I		1				
Thermal Factor						
Hot/warm/ventilated/cold or unheated	heated					
C_t	•	1				
Exposure Factor						
Terrain	urban					
Fully exp/partially exp/shelter	shltered					
$C_{\it e}$		1.2				
Roof Slope Factor						
Slippery/other	other					
C_s		1				
COMPUTATIONS:			•			
Check for Low slope		**************************************				
Is low-slope applies? $\theta < 15$	No					
Minimum snow load, pm	Not applic	able				
Balanced Snow Load		25.2				
Rain on snow check						
$p_g \le 20$	No					
$\theta < W/50$	No					
Rain surcharge applies	FALS	Е				
Rain on Snow Surcharge		0				
Balance Snow Load+Rain-on-snow, if applicable		25.2				
Controlling Balanced OR Min. Load	i	25.2				
COMMONING MANAGED OF ASSETS FORM						

	U2. 0			
SNOW LOADS COMPUTATIONS	#3.8			
Balanced Snow Loads	3			
DATA:	25			
Ground snow load, p_g	25			
Flat snow load for upper roof if separately given p	•	•		
Roof slope, degree	11.305			
Eve to ridge width, W	. 20			
For drift, higher roof length, L_u				
For drift, lower roof length, L_L				
For drift, difference of roofs elev.				
For Unbalanced, prismatic/light gauge rafters	yes			
For drift, are structures separated?				
Separation horizontal distance				
Separation vertical distance				
For sliding, upper roof slippery				
For sliding, are structures separated?				
Separation horizontal distance				
Separation vertical distance				
Importance Factor				
Type of structure	High occupancy			
I	1.1			
Thermal Factor				
Hot/warm/ventilated/cold or unheated	Ventilated			
C_t	1.1		,	•
Exposure Factor				
Terrain	urban			
Fully exp/partially exp/shelter	Fully exposed			
C_{e}	0.9			
Roof Slope Factor				
Slippery/other	other			
C_s	1			
COMPUTATIONS:				
Check for Low slope				
Is low-slope applies? $\theta < 15$	Yes			
Minimum snow load, pm	22			
Balanced Snow Load	19.06			
Rain on snow check				
$p_g \le 20$	No			
$\theta < W/50$	No			
Rain surcharge applies	FALSE			
Rain on Snow Surcharge	0			
Balance Snow Load+Rain-on-snow,if applicable	19.0575			÷
Controlling Balanced OR Min. Load	22			•

SNOW LOADS COMPUTATIONS	#3.9	
Balanced Snow Loads DATA:		
	-30	
Ground snow load, pg		
Flat snow load for upper roof if separately given p_f		
Roof slope, degree	22.61 30	
Eve to ridge width, W		
For drift, higher roof length, L_u	100	
For drift, lower roof length, L_L	100	•
For drift, difference of roofs elev.	_ 5	
For Unbalanced, prismatic/light gauge rafters	yes	
For drift, are structures separated?	No	
Separation horizontal distance	•	
Separation vertical distance		
For sliding, upper roof slippery		
For sliding, are structures separated?		•
Separation horizontal distance		•
Separation vertical distance	•	
Importance Factor		
Type of structure	storage	
	0.8	
Thermal Factor	unheated	·
Hot/warm/ventilated/cold or unheated	1.2	
C_t	1 • W	
Exposure Factor	an an acreatury	
Terrain	open country	due to upper
Fully exp/partially exp/shelter	partial	due to upper
C_{e}	1	
Roof Slope Factor	1'	
Slippery/other	slippery	
C_s	0.86	
COMPUTATIONS:		
Check for Low slope	. Т. Т	
Is low-slope applies? $\theta < 15$	No	
Minimum snow load, pm	Not applicable 17.34	
Balanced Snow Load	17.54	
Rain on snow check	NT.	
$p_g \le 20$	No	
$\theta < W/50$	No	
Rain surcharge applies	FALSE	
Rain on Snow Surcharge	0	
Balance Snow Load+Rain-on-snow, if applicable	17.34	
Controlling Balanced OR Min. Load	17.34	•

		·
•		
SNOW LOADS COMPUTATIONS	#3.10	
Balanced Snow Loads		
DATA:		
Ground snow load, p_g	30	
Flat snow load for upper roof if separately given p	f	
Roof slope, degree	22.61	
Eve to ridge width, W	30	
For drift, higher roof length, L_u	100	
For drift, lower roof length, L_L	100	
For drift, difference of roofs elev.	3	
For Unbalanced, prismatic/light gauge rafters	yes	
For drift, are structures separated?	No	
Separation horizontal distance		
Separation vertical distance	ř	
For sliding, upper roof slippery		,
For sliding, are structures separated?		
Separation horizontal distance		
Separation vertical distance		
Importance Factor	ctorage	
Type of structure	storage 0.8	
Thermal Factor	0.0	
Hot/warm/ventilated/cold or unheated	unheated	
C_{t}	1.2	
Exposure Factor		
Terrain	open country	
Fully exp/partially exp/shelter	partial	due to upper
C_e	. 1	
Roof Slope Factor		
Slippery/other	slippery	
C_s	0.86	•
COMPUTATIONS:		
Check for Low slope		
Is low-slope applies? $\theta < 15$	No	
Minimum snow load, pm	Not applicable	
Balanced Snow Load	17.34	
Rain on snow check		
$p_g \le 20$	No	
$\theta < W/50$	No	
Rain surcharge applies	FALSE	
Rain on Snow Surcharge	0	
Balance Snow Load+Rain-on-snow,if applicable	17.34	;
Controlling Balanced OR Min. Load	17.34	

SNOW LOADS COMPUTATIONS Balanced Snow Loads	#3.11	
DATA:	•	
Ground snow load, p_g	30	
Flat snow load for upper roof if separately given p	f_{-1}	
Roof slope, degree	0	·
Eve to ridge width, W	30	
For drift, higher roof length, L_u	70	
For drift, lower roof length, L_L	60	
For drift, difference of roofs elev.	5	
For Unbalanced, prismatic/light gauge rafters	yes	
For drift, are structures separated?	No	
Separation horizontal distance		
Separation vertical distance		
For sliding, upper roof slippery		
For sliding, are structures separated?		
Separation horizontal distance		
Separation vertical distance		
Importance Factor		
Type of structure	storage	
I_{\perp} .	0.8	
Thermal Factor		
Hot/warm/ventilated/cold or unheated	unheated	
C_t	1.2	
Exposure Factor	•	
Terrain	open country	
Fully exp/partially exp/shelter	partial	due to upper
.C _e	1 .	
Roof Slope Factor		
Slippery/other	slippery	·
\hat{C}_s	1	
COMPUTATIONS:		
Check for Low slope		· •
Is low-slope applies? $\theta < 15$	Yes	
Minimum snow load, pm	16	
Balanced Snow Load	20.16	
Rain on snow check		
$p_g \le 20$	No	-
$\theta < W/50$	Yes	
Rain surcharge applies	FALSE	
Rain on Snow Surcharge	0	
Balance Snow Load+Rain-on-snow,if applicable	20.16	: !
Controlling Balanced OR Min. Load	20.16	

-

	<i>#</i> 2.12	
SNOW LOADS COMPUTATIONS	#3.12	
Balanced Snow Loads		
DATA:	20	
Ground snow load, p_g	30	
Flat snow load for upper roof if separately given p_f		
Roof slope, degree	22.61	
Eve to ridge width, W	30	
For drift, higher roof length, L_u	100	
For drift, lower roof length, L_L	100	
For drift, difference of roofs elev-	5	
For Unbalanced, prismatic/light gauge rafters	yes	
For drift, are structures separated?	yes	•
For drift, Separation horizontal distance	15	
For drift, Separation vertical distance	5	-
For sliding, upper roof slippery		
For sliding, are structures separated?		
Separation horizontal distance		
Separation vertical distance		
Importance Factor		
Type of structure	storage	
I	0.8	
Thermal Factor		
Hot/warm/ventilated/cold or unheated	unheated	
C_t	1.2	
Exposure Factor		
Terrain	open country	
Fully exp/partially exp/shelter	partial	due to upper
$C_{\it e}$	1	
Roof Slope Factor		
Slippery/other	slippery	
C_s	0.86	
COMPUTATIONS:		
Check for Low slope		
Is low-slope applies? $\theta < 15$	No	
Minimum snow load, pm	Not applicable	
Balanced Snow Load	17.34	
Rain on snow check		•
$p_g \le 20$	No	
$\theta < W/50$	No	
Rain surcharge applies	FALSE	
Rain on Snow Surcharge	0	
Balance Snow Load+Rain-on-snow, if applicable	17.34	
Controlling Balanced OR Min. Load	17.34	

SNOW LOADS COMPUTATIONS Balanced Snow Loads DATA:	#3.13		
Ground snow load, p_g		30	
Flat snow load for upper roof if separately given p_f	.	٠.	
Roof slope, degree		0	-
Eve to ridge width, W		30	
For drift, higher roof length, L_u		70	
For drift, lower roof length, L_L		60	
For drift, difference of roofs elev.		5	-
For Unbalanced, prismatic/light gauge rafters	yes		
For drift, are structures separated?	yes		
For drift, Separation horizontal distance		10	
For drift, Separation vertical distance		5	
For sliding, upper roof slippery			
For sliding, are structures separated?			
Separation horizontal distance			
Separation vertical distance			
Importance Factor	ataraaa		
Type of structure	storage	0.8	
I Thermal Factor		0.0	
Hot/warm/ventilated/cold or unheated	unheated		
C_t	umoutou	1.2	
-		1.2	
Exposure Factor Terrain	open cou	ntrv	
Fully exp/partially exp/shelter	partial		due to upper
C_e	P	1	. 11
Roof Slope Factor			
Slippery/other	slippery		
C_s	py-PP3	0.86	
COMPUTATIONS:			
Check for Low slope			_
Is low-slope applies? $\theta < 15$	Yes		
Minimum snow load, pm		16	
Balanced Snow Load		17.34	
Rain on snow check		-	
$p_g \le 20$	No		
$\theta < W/50$	Yes		
Rain surcharge applies	FALS	SE	
Rain on Snow Surcharge		0	
Balance Snow Load+Rain-on-snow, if applicable		17.34	
Controlling Balanced OR Min. Load		17.34	

#3,14 sliding snow load

Flat snow load, p_f	18.9	
Controlling angle	2.38	
Sliding Snow Load Applicable	TRUE	See below
Skip the following steps if	B3 is No	
Upper roof W	35	
Sliding Snow Load, $S_{L, psf}$	17.64	
Distributed on length	15	
Sliding snow load/ft	264.6	
SLIDING ON SEPARATED	STRUCT	
Separation dist $s < 15$	FALSE	
Vertical dist $h > \text{horiz. dis } s$	FALSE	
Sliding case applies?	FALSE	
Sliding load, S_L , psf	0	
Distrubuted on length	0	
Sliding snow load, pounds/ft	0	

#3.15

SLIDING SNOW LOAD

Flat snow load, p_f	23.1	
Controlling angle	9.5	
Sliding Snow Load Applicable	TRUE	See below
Skip the following steps if	B3 is No	
Upper roof W	50	
Sliding Snow Load, S _{L, psf}	30.8	
Distributed on length	15	
Sliding snow load, pounds/ft	462	
SLIDING ON SEPARATED	STRUCT	
Separation dist $s < 15$	FALSE	
Vertical dist $h > $ horiz. dis s	FALSE	
Sliding case applies?	FALSE	
Sliding load, S_L , psf	0	
Distrubuted on max length	. 0	ı
Sliding snow load, pounds/ft	0	l ·

#3.16 SLIDING SNOW LOAD

Flat snow load, p_f	12.6	
Controlling angle	9.5	•
Sliding Snow Load Applicable	TRUE	See below
Skip the following steps if	B3 is No	
Upper roof W	20	
Sliding Snow Load, S _{L, psf}	6.72	
Distributed on max length	12	
Sliding snow load, pounds/ft	80.64	
SLIDING ON SEPARATED	STRUCT	
Separation dist $s < 15$	FALSE	
Vertical dist $h > $ horiz. dis s	FALSE	
Sliding case applies?	FALSE	
Sliding load, S_L , psf	0	
Distrubuted on max length	0	
Sliding snow load, pounds/ft	0	

3,17 SLIDING SNOW LOAD

Flat snow load, p_f	23.1
Controlling angle	9.5
Sliding Snow Load Applicable	FALSE $sL=0$
Skip the following steps if	B3 is No
Upper roof W	50
Sliding Snow Load, $S_{L, psf}$	0
Distributed on max length	15
Sliding snow load, pounds/ft	0
SLIDING ON SEPARATED	STRUCT
Separation dist $s < 15$	TRUE
Vertical dist $h > $ horiz. dis s	TRUE
Sliding case applies?	TRUE
Sliding load, S_L , psf	30.8
Distrubuted on max length	13
Sliding snow load, pounds/ft	400.4

寺 3,18 SLIDING SNOW LOAD

Flat snow load, p_f	12.6	
Controlling angle	9.5	
Sliding Snow Load Applicable	FALSE	sL=0
Skip the following steps if	B3 is No	
Upper roof W	20	
Sliding Snow Load, S _{L, psf}	0	
Distributed on length	12	
Sliding snow load, pounds/ft	0	
SLIDING ON SEPARATED	STRUCT	
Separation dist $s < 15$	TRUE	-
Vertical dist $h > $ horiz. dis s	TRUE	
Sliding case applies?	TRUE	
Sliding load, S_L , psf	6.72	
Distrubuted on max length	12	
Sliding snow load, pounds/ft	80.64	

#4.5
IWFRS
\geq
OLOADS
WIND I

Parameters						-
Length	100					
Width	50					
First floor height	0					
Second floor height	14					
Roof slope, degree	15.64 Roofht	of ht	7.00			*
Basic wind speed, mph	140					
Wind speed data: Write on sheet 4	4					
Risk Category	standard		-			
Exposure Factor					-	
Exposure category	В					
Mean roof height	17.50					
٧	,		•			
Topographic Factor, K_{zt}						
DATA TRANSFERRED FROM INTERPOLATOR ON SHEET 4	INTERPOLATO	R ON SHEET	۲4			
Horizontal pressures for slope θ	A B	Ö	Ω			
Standard design values, p s 30	39.51	-12.71	26.35	-7.26		
Vertical pressures for slope θ	田田	Ö	H			
Standard design values, ps30	-37.30	-24.60	-26.00	-18.74		
* For Longitudinal direction roof angle to be taken zero	angle to be taken	zero			-	
FOR ZERO ROOF ANGLE	A C	田	щ	IJ	Н	
Standard design values, ps30	31.10	20.60	-37.30	-21.20	-26.00	-16.40
$h = \text{mean ht or eave ht if } \theta < 10$	17.50					
End zone dimension, a	5					
Net wind pressure, p_s	$1 p_{s30}$	0				

Transverse Wind Direction	#4.5Cont	-1.3					
A. Horizontal Force Roof Level	Zone	Height	Height Width Area		$p_s = p30 \lambda k \text{Load}$, lbs	Load, 1bs	
End wall	А	14	10	10 140.00	39.512	5531.68	
End roof	В	7.00	10	70.02	0.000	0.00	
Interior wall	C	14	90	1260.00	26.346	33195.46	
Interior roof	Д	7.00	90	630.17	0.000	0.00	
TOTAL				2100.19		38727.14	
If Pressures in Zone B and D are negative treat to be zero	negative tı	reat to be ze	ıro				
B. Horizontal Second Floor Level Zone	Zone	Height	Height Width Area	Area p	$ps=p30\lambda K$ Load, 1bs	Load, 1bs	
End wall	А	00'0	0.00 10.00	0.00	39.51	00'0	
Interior wall	C	0.00	90.00	0.00	26.35	0.00	
TOTAL				0.00		0.00	
C. Vertical Force on Roof	Zone	Length	Width	Length Width Area $p_s = p30 \text{ At Load, 1bs}$,=p30 Ak	Load, Ibs	
End Windward	Щ	25.00	10.00	10.00 250.00	-37.30	-37.30 -9325.00	
Interior Windward	Ŋ	25.00		90.00 2250.00	-26.00	-26.00 -58500.00	
TOTAL Windward						-67825.00	
End Leeward	ഥ	25.00		10.00 250.00	-24.60	-24.60 -6151.20	
Interior Leeward	Н	25.00	90.00	2250.00	-18.74	18.74 -42166.80	
TOTAL Leeward						-48318.00	

^{*} Minimum wind force is 16 psf X area on zones A, and C + 8 psf X area on B and D

D. Minimum Wind Force*

and zero on zones E, F, G, and H

Applicable wind force: Following two cases for maximum effect (1) Combined items A, B, and C

⁽²⁾ Minimum Force at item D