SOLUTIONS MANUAL FOR PRINCIPLES OF SOLAR OF SOLAR ENGINEERING Third Edition

Philip D. Myers, Jr. Gunnar O. Tamm Sanjay Vijayaraghavan Peter E. Jenkins

SOLUTIONS MANUAL FOR PRINCIPLES OF SOLAR ENGINEERING Third Edition

Philip D. Myers, Jr. Gunnar O. Tamm Sanjay Vijayaraghavan Peter E. Jenkins

CRC Press is an imprint of the Taylor & Francis Group, an informa business

CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742

© 2015 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed on acid-free paper Version Date: 20150115

International Standard Book Number-13: 978-1-4665-6381-0 (Ancillary)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com

and the CRC Press Web site at http://www.crcpress.com

Chapter 1 Introduction to Solar Energy Conversion

1.1

The year	arly cap	oacity a	nd frac	tions ar	e tabula	ated be	OW.
Year	Renewable (tota1)	Solar	Biomass	Wind	Hydroelectic	Total capacity	Non-renewable
2011	20.1	0.2814	1.809	2.01	15.9996	100	79.9
2012	21.2803	0.4221	2.02608	2.5125	16.3196	102.4	81.1197
2013	22.689	0.63315	2.26921	3.14063	16.646	104.858	82.1686
2014	24.3959	0.94973	2.54151	3.92578	16.9789	107.374	82.9783
2015	26.4968	1.42459	2.8465	4.90723	17.3185	109.951	83.4544
2016	29.1238	2.13688	3.18808	6.13403	17.6649	112.59	83.4661
2017	32.4617	3.20532	3.57065	7.66754	18.0181	115.292	82.8305
2018	36.77	4.80798	3.99912	9.58443	18.3785	118.059	81.2891
2019	42.4176	7.21197	4.47902	11.9805	18.7461	120.893	78.475
2020	49.9311	10.818	5.0165	14.9757	19.121	123.794	73.8629
2021	60.0684	16.2269	5.61848	18.7196	19.5034	126.765	66.6966
2022	73.9261	24.3404	6.2927	23.3995	19.8935	129.807	55.8813
2023	93.0992	36.5106	7.04782	29.2493	20.2914	132.923	39.8236
2024	119.918	54.7659	7.89356	36.5617	20.6972	136.113	16.1946
2025	157.803	82.1489	8.84079	45.7021	21.1111	139.38	-18.423

It can be seen that renewables account for the entire electrical power capacity as of YR2025. The relative fractions of each renewable technology are as follows.

Solar	0.59
Biomass	0.06
Wind	0.33
Hydroelectric	0.15

1.2

Performing an analysis similar to that of Problem 1.1, we arrive at the following values:

a.	Renewables	1.00
b.	Solar	0.54

1.3

For example, the fractions for YR2015 are given below.

Solar	0.01296
Wind	0.04463
Biomass	0.02311
Hydroelectric	0.15751
C .1 .	

Actual data for the year in question can be obtained from a variety of sources (e.g., eia.gov). Reasons for deviations may include the assumption of constant escalation rates in both renewable capacity and total capacity. The escalation rate for solar in particular (50%) is likely too high in the long-term. Rapid growth may occur early on, but it should taper off at some point.

1.4

Assume the system is purchased in YR0, tax credit received in YR1. The cash flows and cumulative present value are tabulated below.

Therefore, the payback period is approximately 8 years.

1.5

Assume a discount rate of 5% for present worth calculations. The yearly cash flows for this system are tabulated below.

Year	Capital cost	0&M	Total costs (present value)	Electrical output (MWhe)	Output (MWhe, discounted)	Revenue	CF(present value)
0	37.5		37.5				-37.5
1	6.20834	0.15	6.05556	106575	101500	15.9863	9.1694381
2	6.20834	0.15	5.7672	106575	96666.7	16.7856	9.4577982
3	6.20834	0.15	5.49257	106575	92063.5	17.6248	9.7324268
4	6.20834	0.15	5.23102	106575	87679.5	18.5061	9.9939779
5	6.20834	0.15	4.98193	106575	83504.3	19.4314	10.243074
6	6.20834	0.15	4.74469	106575	79527.9	20.403	10.480309
7	6.20834	0.15	4.51875	106575	75740.9	21.4231	10.706246
8	6.20834	0.15	4.30357	106575	72134.2	22.4943	10.921425
9	6.20834	0.15	4.09864	106575	68699.2	23.619	11.126357
10	6.20834	0.15	3.90347	106575	65427.8	24.7999	11.321531
11	6.20834	0.15	3.71759	106575	62312.2	26.0399	11.50741
12	6.20834	0.15	3.54056	106575	59344.9	27.3419	11.684438
13	6.20834	0.15	3.37196	106575	56519	28.709	11.853037
14	6.20834	0.15	3.21139	106575	53827.6	30.1445	12.013606
15	6.20834	0.15	3.05847	106575	51264.4	31.6517	12.16653
16	6.20834	0.15	2.91283	106575	48823.2	33.2343	12.312171
17	6.20834	0.15	2.77412	106575	46498.3	34.896	12.450877
18	6.20834	0.15	2.64202	106575	44284.1	36.6408	12.582978
19	6.20834	0.15	2.51621	106575	42175.3	38.4728	12.708789
20	6.20834	0.15	2.39639	106575	40167	40.3965	12.828609
21	6.20834	0.15	2.28228	106575	38254.3	42.4163	12.942722
22	6.20834	0.15	2.1736	106575	36432.7	44.5371	13.051402
23	6.20834	0.15	2.07009	106575	34697.8	46.7639	13.154907
24	6.20834	0.15	1.97152	106575	33045.5	49.1021	13.253483
25	6.20834	0.15	1.87764	106575	31471.9	51.5573	13.347365
				ID		70/	

IRR 27% LCOE, \$/kWhe 0.085

1.6

New plant life is 20 years; assume a discount rate of 5% for PW calculations.

0 37.5 37.5 1 7.02123 0.15 6.82974 106575 101500 26.6438 18.545261 2 7.02123 0.15 6.50451 106575 92065.7 26.6438 18.545261 3 7.02123 0.15 6.19477 106575 92063.5 26.6438 16.821098 4 7.02123 0.15 5.89979 106575 87679.5 26.6438 16.221098 4 7.02123 0.15 5.61884 106575 83504.3 26.6438 15.257232 6 7.02123 0.15 5.35128 106575 75740.9 26.6438 13.838759 8 7.02123 0.15 4.85377 106575 6242.8 13.838759 8 7.02123 0.15 4.40251 106575 65427.8 26.6438 11.95444 10 7.02123 0.15 3.99321 106575 56519 26.6438 10.84033 13 7.02123 0.15 3.4	Year	Capital cost	O&M	Salvage	Total costs (present	Electrical output (MN	Output (MWhe, disco	Revenue	CF(present value)
1 7.02123 0.15 6.82974 106575 101500 26.6438 18.545261 2 7.02123 0.15 6.50451 106575 96666.7 26.6438 17.662153 3 7.02123 0.15 6.19477 106575 92063.5 26.6438 16.821098 4 7.02123 0.15 5.89979 106575 87679.5 26.6438 16.020093 5 7.02123 0.15 5.61884 106575 87504.3 26.6438 15.257232 6 7.02123 0.15 5.35128 106575 75740.9 26.6438 13.838759 7 7.02123 0.15 4.85377 106575 56212.2 26.6438 13.17977 9 7.02123 0.15 4.40251 106575 56227.8 26.6438 13.17977 9 7.02123 0.15 4.40251 106575 56247.8 26.6438 13.17977 9 7.02123 0.15 3.99321 106575 56327.8	0	37.5			37.5				-37.5
2 7.02123 0.15 6.50451 106575 96666.7 26.6438 17.662153 3 7.02123 0.15 6.19477 106575 92063.5 26.6438 16.821098 4 7.02123 0.15 5.89979 106575 87679.5 26.6438 16.821098 5 7.02123 0.15 5.61884 106575 83505.3 26.6438 15.257232 6 7.02123 0.15 5.35128 106575 75740.9 26.6438 13.838759 7 7.02123 0.15 4.85377 106575 5740.9 26.6438 13.17977 9 7.02123 0.15 4.62264 106575 68699.2 26.6438 13.17977 9 7.02123 0.15 4.40251 106575 65427.8 26.6438 11.95444 11 7.02123 0.15 3.99321 106575 56519 26.6438 10.84303 12 7.02123 0.15 3.62196 106575 56519	1	7.02123	0.15		6.82974	106575	101500	26.6438	18.545261
3 7.02123 0.15 6.19477 106575 92063.5 26.6438 16.821098 4 7.02123 0.15 5.89979 106575 87679.5 26.6438 16.020093 5 7.02123 0.15 5.61884 106575 87679.5 26.6438 16.020093 6 7.02123 0.15 5.61884 106575 7572.9 26.6438 15.257232 6 7.02123 0.15 5.09646 106575 75740.9 26.6438 13.838759 7 7.02123 0.15 4.85377 106575 72134.2 26.6438 13.17977 9 7.02123 0.15 4.40261 106575 68699.2 26.6438 12.552162 10 7.02123 0.15 4.40251 106575 63212.2 26.6438 11.95444 11 7.02123 0.15 3.99321 106575 56519 26.6438 10.84303 13 7.02123 0.15 3.62196 106575 55242.4	2	7.02123	0.15		6.50451	106575	96666.7	26.6438	17.662153
4 7.02123 0.15 5.89979 106575 87679.5 26.6438 16.020093 5 7.02123 0.15 5.61884 106575 83504.3 26.6438 15.257232 6 7.02123 0.15 5.35128 106575 79527.9 26.6438 14.530697 7 7.02123 0.15 5.09646 106575 75740.9 26.6438 13.838759 8 7.02123 0.15 4.85377 106575 626428 13.838759 9 7.02123 0.15 4.62264 106575 626428 12.552162 10 7.02123 0.15 4.40251 106575 62427.8 26.6438 11.35444 11 7.02123 0.15 3.99321 106575 56519 26.6438 10.84303 13 7.02123 0.15 3.80305 106575 55827.6 26.6438 10.84303 13 7.02123 0.15 3.262196 106575 53827.6 26.6438 10.84303 <td>3</td> <td>7.02123</td> <td>0.15</td> <td></td> <td>6.19477</td> <td>106575</td> <td>92063.5</td> <td>26.6438</td> <td>16.821098</td>	3	7.02123	0.15		6.19477	106575	92063.5	26.6438	16.821098
5 7.02123 0.15 5.61884 106575 83504.3 26.6438 15.257232 6 7.02123 0.15 5.35128 106575 79527.9 26.6438 14.530697 7 7.02123 0.15 5.09646 106575 75740.9 26.6438 13.838759 8 7.02123 0.15 4.85377 106575 52134.2 26.6438 13.17977 9 7.02123 0.15 4.62264 106575 65427.8 26.6438 13.17977 9 7.02123 0.15 4.40251 106575 65427.8 26.6438 11.95444 11 7.02123 0.15 4.19287 106575 56312.2 26.6438 10.326695 13 7.02123 0.15 3.99321 106575 56314.9 26.6438 10.326695 14 7.02123 0.15 3.80305 106575 58344.9 26.6438 10.326695 14 7.02123 0.15 3.249476 106575 5424.3<	4	7.02123	0.15		5.89979	106575	87679.5	26.6438	16.020093
6 7.02123 0.15 5.35128 106575 79527.9 26.6438 14.530697 7 7.02123 0.15 5.09646 106575 75740.9 26.6438 13.838759 8 7.02123 0.15 4.85377 106575 75740.9 26.6438 13.838759 9 7.02123 0.15 4.62264 106575 68699.2 26.6438 12.552162 10 7.02123 0.15 4.40251 106575 65427.8 26.6438 11.95444 11 7.02123 0.15 4.19287 106575 59344.9 26.6438 11.385181 12 7.02123 0.15 3.99321 106575 59344.9 26.6438 10.326695 14 7.02123 0.15 3.62196 106575 55827.6 26.6438 9.3869476 15 7.02123 0.15 3.42494 106575 51264.4 26.6438 9.3866168 16 7.02123 0.15 3.28522 106575 4823	5	7.02123	0.15		5.61884	106575	83504.3	26.6438	15.257232
7 7.02123 0.15 5.09646 106575 75740.9 26.6438 13.838759 8 7.02123 0.15 4.85377 106575 72134.2 26.6438 13.17977 9 7.02123 0.15 4.62264 106575 68699.2 26.6438 13.17977 9 7.02123 0.15 4.42264 106575 68699.2 26.6438 11.2552162 10 7.02123 0.15 4.40251 106575 62312.2 26.6438 11.95444 11 7.02123 0.15 3.99321 106575 56519 26.6438 10.84303 13 7.02123 0.15 3.62196 106575 53827.6 26.6438 10.826695 14 7.02123 0.15 3.42948 106575 53264.4 26.6438 9.3866168 16 7.02123 0.15 3.28522 106575 48823.2 26.6438 8.9205874 17 7.02123 0.15 3.12878 106575 4849.3 </td <td>6</td> <td>7.02123</td> <td>0.15</td> <td></td> <td>5.35128</td> <td>106575</td> <td>79527.9</td> <td>26.6438</td> <td>14.530697</td>	6	7.02123	0.15		5.35128	106575	79527.9	26.6438	14.530697
8 7.02123 0.15 4.85377 106575 72134.2 26.6438 13.17977 9 7.02123 0.15 4.62264 106575 68699.2 26.6438 12.552162 10 7.02123 0.15 4.40251 106575 68699.2 26.6438 12.552162 11 7.02123 0.15 4.40251 106575 65217.8 26.6438 11.95444 11 7.02123 0.15 4.19287 106575 52312.2 26.6438 10.84303 13 7.02123 0.15 3.99321 106575 55619 26.6438 10.84303 13 7.02123 0.15 3.62196 106575 55827.6 26.6438 10.826695 14 7.02123 0.15 3.44948 106575 5126.64438 9.3666168 15 7.02123 0.15 3.28522 106575 48823.2 26.6438 8.9205874 16 7.02123 0.15 3.12878 106575 46498.3 26.6	7	7.02123	0.15		5.09646	106575	75740.9	26.6438	13.838759
9 7.02123 0.15 4.62264 106575 68699.2 26.6438 12.552162 10 7.02123 0.15 4.40251 106575 65427.8 26.6438 11.95444 11 7.02123 0.15 4.19287 106575 65427.8 26.6438 11.95444 11 7.02123 0.15 4.19287 106575 59344.9 26.6438 10.84303 13 7.02123 0.15 3.93321 106575 59519 26.6438 10.84303 13 7.02123 0.15 3.80305 106575 58519 26.6438 10.326695 14 7.02123 0.15 3.62196 106575 51264.4 26.6438 9.3666168 15 7.02123 0.15 3.28522 106575 48823.2 26.6438 8.9205874 17 7.02123 0.15 3.12878 106575 44284.1 26.438 8.9912358 18 7.02123 0.15 2.97979 106575 42428.4 </td <td>8</td> <td>7.02123</td> <td>0.15</td> <td></td> <td>4.85377</td> <td>106575</td> <td>72134.2</td> <td>26.6438</td> <td>13.17977</td>	8	7.02123	0.15		4.85377	106575	72134.2	26.6438	13.17977
10 7.02123 0.15 4.40251 106575 65427.8 26.6438 11.95444 11 7.02123 0.15 4.19287 106575 62312.2 26.6438 11.385181 12 7.02123 0.15 3.99321 106575 59344.9 26.6438 10.386303 13 7.02123 0.15 3.80305 106575 58519 26.6438 10.326695 14 7.02123 0.15 3.62196 106575 53827.6 26.6438 9.33666168 15 7.02123 0.15 3.28522 106575 48823.2 26.6438 9.3666168 16 7.02123 0.15 3.28522 106575 48823.2 26.6438 8.9205874 17 7.02123 0.15 3.12878 106575 46498.3 26.6438 8.9912358 18 7.02123 0.15 2.97979 106575 44284.1 26.6438 7.0759388 20 7.02123 0.15 2.8379 106575 42	9	7.02123	0.15		4.62264	106575	68699.2	26.6438	12.552162
11 7.02123 0.15 4.19287 106575 62312.2 26.6438 11.385181 12 7.02123 0.15 3.99321 106575 59344.9 26.6438 10.386095 13 7.02123 0.15 3.80305 106575 558519 26.6438 10.326695 14 7.02123 0.15 3.62196 106575 53827.6 26.6438 9.3869476 15 7.02123 0.15 3.4948 106575 51264.4 26.6438 9.3666168 16 7.02123 0.15 3.28522 106575 48823.2 26.6438 8.9205874 17 7.02123 0.15 3.12878 106575 44849.3 26.6438 8.9205874 17 7.02123 0.15 2.97979 106575 44284.1 26.6438 8.9912358 18 7.02123 0.15 2.8379 106575 42175.3 26.6438 7.7059388 20 7.02123 0.15 2.8379 106575 421	10	7.02123	0.15		4.40251	106575	65427.8	26.6438	11.95444
12 7.02123 0.15 3.99321 106575 59344.9 26.6438 10.84303 13 7.02123 0.15 3.80305 106575 56519 26.6438 10.326695 14 7.02123 0.15 3.62196 106575 53827.6 26.6438 10.326695 15 7.02123 0.15 3.44948 106575 51264.4 26.6438 9.3666168 16 7.02123 0.15 3.28522 106575 48823.2 26.6438 8.9205874 17 7.02123 0.15 3.12878 106575 46498.3 26.6438 8.9205874 18 7.02123 0.15 2.97979 106575 46498.3 26.6438 8.0912358 19 7.02123 0.15 2.8379 106575 42175.3 26.6438 7.7059388 20 7.02123 0.15 2.8379 106575 42175.3 26.6438 7.7059388 20 7.02123 0.15 50 -16.142 106575 </td <td>11</td> <td>7.02123</td> <td>0.15</td> <td></td> <td>4.19287</td> <td>106575</td> <td>62312.2</td> <td>26.6438</td> <td>11.385181</td>	11	7.02123	0.15		4.19287	106575	62312.2	26.6438	11.385181
13 7.02123 0.15 3.80305 106575 56519 26.6438 10.326695 14 7.02123 0.15 3.62196 106575 53827.6 26.6438 9.8349476 15 7.02123 0.15 3.44948 106575 51264.4 26.6438 9.8349476 16 7.02123 0.15 3.28522 106575 48823.2 26.6438 8.9205874 17 7.02123 0.15 3.12878 106575 48428.3 26.6438 8.4957976 18 7.02123 0.15 2.97979 106575 44284.1 26.6438 8.0912358 19 7.02123 0.15 2.8379 106575 42175.3 26.6438 7.059388 20 7.02123 0.15 2.8379 106575 42175.3 26.6438 7.059388 20 7.02123 0.15 50 -16.142 106575 40167 26.6438 26.183464	12	7.02123	0.15		3.99321	106575	59344.9	26.6438	10.84303
14 7.02123 0.15 3.62196 106575 53827.6 26.6438 9.8349476 15 7.02123 0.15 3.44948 106575 51264.4 26.6438 9.3666168 16 7.02123 0.15 3.28522 106575 48823.2 26.6438 8.9205874 17 7.02123 0.15 3.12878 106575 44284.1 26.6438 8.4957976 18 7.02123 0.15 2.97979 106575 44284.1 26.6438 8.0912358 19 7.02123 0.15 2.8379 106575 42175.3 26.6438 7.059388 20 7.02123 0.15 2.8379 106575 42175.3 26.6438 7.059388 20 7.02123 0.15 50 -16.142 106575 40167 26.6438 26.183464	13	7.02123	0.15		3.80305	106575	56519	26.6438	10.326695
15 7.02123 0.15 3.44948 106575 51264.4 26.6438 9.3666168 16 7.02123 0.15 3.28522 106575 48823.2 26.6438 8.9205874 17 7.02123 0.15 3.12878 106575 46498.3 26.6438 8.4957976 18 7.02123 0.15 2.97979 106575 44284.1 26.6438 8.49912358 19 7.02123 0.15 2.8379 106575 42175.3 26.6438 7.7059388 20 7.02123 0.15 2.8379 106575 42175.3 26.6438 7.7059388 20 7.02123 0.15 50 -16.142 106575 40167 26.6438 26.183464	14	7.02123	0.15		3.62196	106575	53827.6	26.6438	9.8349476
16 7.02123 0.15 3.28522 106575 48823.2 26.6438 8.9205874 17 7.02123 0.15 3.12878 106575 46498.3 26.6438 8.4957976 18 7.02123 0.15 2.97979 106575 44284.1 26.6438 8.4951976 19 7.02123 0.15 2.97979 106575 44284.1 26.6438 8.0912358 19 7.02123 0.15 2.8379 106575 42175.3 26.6438 7.7059388 20 7.02123 0.15 2.8379 106575 40167 26.6438 26.183464	15	7.02123	0.15		3.44948	106575	51264.4	26.6438	9.3666168
17 7.02123 0.15 3.12878 106575 46498.3 26.6438 8.4957976 18 7.02123 0.15 2.97979 106575 44284.1 26.6438 8.0912358 19 7.02123 0.15 2.8379 106575 42175.3 26.6438 7.7059388 20 7.02123 0.15 50 -16.142 106575 40167 26.6438 26.183464	16	7.02123	0.15		3.28522	106575	48823.2	26.6438	8.9205874
18 7.02123 0.15 2.97979 106575 44284.1 26.6438 8.0912358 19 7.02123 0.15 2.8379 106575 42175.3 26.6438 7.7059388 20 7.02123 0.15 50 -16.142 106575 40167 26.6438 26.183464	17	7.02123	0.15		3.12878	106575	46498.3	26.6438	8.4957976
19 7.02123 0.15 2.8379 106575 42175.3 26.6438 7.7059388 20 7.02123 0.15 50 -16.142 106575 40167 26.6438 26.183464	18	7.02123	0.15		2.97979	106575	44284.1	26.6438	8.0912358
20 7.02123 0.15 50 -16.142 106575 40167 26.6438 26.183464	19	7.02123	0.15		2.8379	106575	42175.3	26.6438	7.7059388
	20	7.02123	0.15	50	-16.142	106575	40167	26.6438	26.183464

For \$50M salvage:

IRR 45% LCOE, \$/kWhe 0.081

Chapter 2 Fundamentals of Solar Radiation

2.1 a.

Begin with Equation (2.3), neglecting refractive effects.

$$E_{b\lambda} = \frac{C_1}{\left(e^{\frac{C_2}{\lambda T}} - 1\right)\lambda^5}$$

Take $E_{b\lambda}d\lambda$ (with $\tilde{\nu} = 1/\lambda$). Hence:
 $E_{b\lambda}d\lambda = \frac{C_1\tilde{\nu}^5 d\lambda}{\left(e^{\frac{C_2\tilde{\nu}}{T}} - 1\right)} = -\frac{C_1\tilde{\nu}^3 d\tilde{\nu}}{\left(e^{\frac{C_2\tilde{\nu}}{T}} - 1\right)} = -E_{b\tilde{\nu}}d\tilde{\nu}$
 $\therefore E_{b\tilde{\nu}} = \frac{C_1\tilde{\nu}^3}{\left(e^{\frac{C_2\tilde{\nu}}{T}} - 1\right)}$

b.

Differentiate the expression from part (a) with respect to wave number. Then, set the expression equal to zero. The resulting equation is:

$$3(e^{\frac{C_2\widetilde{\nu}}{T}} - 1) = \frac{C_2 e^{\frac{C_2\widetilde{\nu}}{T}}\widetilde{\nu}}{T}$$

This equation is transcendental in $\tilde{\nu}/T$. Solving numerically, we have:

$$\frac{\tilde{v}}{T} = 1.96 \text{ cm}^{-1}/\text{K}$$

2.2

From the problem statement, $L = 40.77^{\circ}$, solar time is 2:00PM, on October 1st (n = 274). The declination angle, δ_s , is obtained from Equation (2.23).

$$\delta_s = 23.45^\circ \sin\left[\frac{360(284+n)^\circ}{365}\right] = -4.22^\circ (-0.0736 \text{ rad})$$

To calculate the altitude angle, we need the hour angle, obtained from Equation (2.25).

$$h_s = \frac{15^\circ}{hr}$$
 (hours from solar noon) = 30°

The altitude angle is obtained from Equation (2.28).

 $\sin \alpha = \sin L \sin \delta_s + \cos L \cos \delta_s \cos h_s$ $\alpha = 37.3^{\circ} (0.651 \text{ rad})$

And the zenith angle immediately follows, according to Equation (2.24).

 $z = 90^{\circ} - \alpha = 52.7^{\circ}$ (0.920 rad) For this time / location, the sun will be south of the eastwest line, so $|a_s| \le 90^{\circ}$. Hence, the azimuth angle follows directly from Equation (2.29).

$$\sin a_s = \frac{\cos \delta_s \sin h_s}{\cos \alpha}$$
$$a_s = 38.8^{\circ} (0.678 \text{ rad})$$

(1) First, find the minimum normalized distance, d, for placement of the second collector. At solar noon, the profile angle is equal to the solar altitude angle, α_1 . From the geometry, we have the following relationships.

$$\tan \alpha_1 = \frac{h}{d}$$
$$\sin \beta = \frac{h}{w}$$

Here, h is the vertical height of the collector, and w is the arbitrary width. The normalized distance, d/w, is desired.

$$\frac{d}{w} = \frac{\sin\beta}{\tan\alpha_1}$$

The collector tilt angle, β , is known. The altitude angle follows from Equation (2.28). For Tampa, Florida, we have $L = 27.96^{\circ}$ N (Tampa International Airport); for December 21^{st} , $\delta_s = -23.45^{\circ}$.

$$\sin \alpha_1 = \sin L \sin \delta_s + \cos L \cos \delta_s \cos h_s$$
$$\alpha_1 = 38.6^\circ (0.673 \text{ rad})$$

Normalized distance:

$$\frac{d}{w} = \frac{\sin\beta}{\tan\alpha_1}$$

= 0.627 (meter separation per meter width)(2) Second, the percent shading at 9:00AM solar time is desired; this quantity would be the width shaded divided by the total collector width.

% shading =
$$\frac{w_s}{w}$$

In this case, the sun is not due south, so the profile angle, γ_2 , is needed, and it can be obtained from Equation 2.31. First, we need the new altitude angle ($h_s = -45^\circ$).

$$\sin \alpha_2 = \sin L \sin \delta_s + \cos L \cos \delta_s \cos h_s$$
$$\alpha_2 = 22.7^{\circ} (0.397 \text{ rad})$$

Next, the solar azimuth angle:

$$\sin a_s = \frac{\cos \delta_s \sin h_s}{\cos \alpha_2}$$
$$a_s = -44.7^\circ (-0.780 \text{ rad})$$

Finally, the profile angle is obtained.

$$\tan \gamma_2 = \sec a_s \tan \alpha$$

 $\gamma_2 = 30.5^{\circ} (0.532 \text{ rad})$

From the geometry and the law of sines, we arrive at the following relation.

$$\frac{\sin(\beta+\gamma_2)}{h/\sin\alpha_1} = \frac{\sin(\alpha_1-\gamma_2)}{w_s}$$

Simplifying:

$$\frac{w_s}{w} = \frac{\sin(\alpha_1 - \gamma_2)}{\sin(\beta + \gamma_2)} \frac{\sin\beta}{\sin\alpha_1}$$

= 0.129; i. e., 12.9% of the collector is shaded.

The location is not specified; the date (September 1^{st}) gives n = 244. The declination angle is obtained from Equation (2.23).

 $\delta_s = 7.72^{\circ} (0.135 \text{ rad})$

The sunrise / sunset times are obtained from Equation (2.30).

 $h_{ss}, h_{sr} = \pm \cos^{-1}(-\tan L \tan \delta_s)$

Solar sunrise and sunset times are found as follows [see Equation (2.25)].

Solar sunrise time = $12:00PM + h_{sr}\left(\frac{4\min}{\circ}\right)$ Solar sunset time = $12:00PM + h_{ss}\left(\frac{4\min}{\circ}\right)$

To convert to local time, Equation (2.26) is needed.

$$LST = \text{Solar time} - ET - (l_{st} - l_{local}) \left(\frac{4 \text{ min}}{\circ}\right)$$

Here, the equation of time, *ET*, is computed with Equation (2.27):

ET (in minutes)

$$= 9.87 \sin 2B - 7.53 \cos B - 1.5 \sin B$$
$$B = \frac{360(n-81)^{\circ}}{364}$$

For this date, September 1^{st} , ET is determined as follows.

 $B = 161.2^{\circ}$ ET = 0.626 min formation and the

Given the above information and the latitude of the specific location, sunrise / sunset times can be determined with Equations (2.30), (2.25), and (2.26).

2.5

The day numbers are set by the month (e.g., for January 15^{th} , n = 15); from the characteristic n for each month, a declination angle is obtained from Equation (2.23). The sunrise and sunset times are computed as in Problem 2.4. Given h_{ss} and h_{sr} , the bounds of the day in solar time are known. Data for hours in between these bounds are computed by first determining the hour angle [Equation (2.25)], then the altitude angle [Equation (2.28), with latitude angle, L, set by the location], and finally the zenith and azimuth angles [Equations (2.24) and (2.29), respectively]. If desired, the solar time for sunrise / sunset can be converted to local time using the procedure outlined in Problem 2.4.

2.6

The unit directional for the sun can be written in terms of an East-North-Vertical coordinate system.

 $\hat{s} = \cos \alpha \sin a_s \hat{E} + \cos \alpha \cos a_s \hat{N} - \sin \alpha \hat{V}$ Similarly for the panel normal,

$$\hat{p} = \cos(90 - \beta) \sin(-a_w) \hat{E}
- \cos(90 - \beta) \cos(-a_w) \hat{N}
+ \sin(90 - \beta) \hat{V}$$
The scalar product of the two is

$$\cos i = -\hat{s} \cdot \hat{p} = \cos \alpha \sin a_s \sin \beta \sin a_w
+ \cos \alpha \cos a_s \sin \beta \cos a_w
+ \sin \alpha \cos \beta$$
Combining terms and using a trigonometric identity:

$$\cos i = \cos \alpha \sin \beta \cos(a_s - a_w) + \sin \alpha \cos \beta$$

2.7

In the case of the tubular surface, the incidence angle is found as the angle between the sun's rays and a plane perpendicular to the cylinder's long axis. This is equivalent to modeling the incidence angle on a flat plate collector rotating about a titled axis. Using a procedure similar to that used in Problem 2.6: $\cos i$

 $= \sqrt{1 - \{\cos(\alpha + \beta) - \cos \alpha \cos \beta [1 - \cos(a_s - a_w)]\}^2}$ In the case of a titled axis in the north-south plane, $\cos i = \sqrt{1 - [\cos(\alpha + \beta) - \cos \alpha \cos \beta (1 - \cos a_s)]^2}$ Applying a trigonometric identity, we arrive at the following equation.

$$\cos i = (1 - [\cos \alpha \sin \beta - \sin \alpha \cos \beta - \cos \alpha \cos \beta (1 - \cos a_s)]^2)^{0.5}$$

From Figures 2.8 and 2.9:

 $\cos \alpha \cos a_s = \cos \delta_s \sin L \cos h_s - \sin \delta_s \cos L$ Using this expression in conjunction with Equation (2.28), and further applying a trigonometric identity, we arrive at the desired equation.

cos i

$$= \sqrt{1 - [\sin(\beta - L)\cos\delta_s\cos h_s + \cos(\beta - L)\sin\delta_s]^2}$$

2.8

On September 21st, the declination angle, δ_s , is zero (autumnal equinox). For solar noon, both the hour angle, h_s , and the solar azimuth angle, a_s , are zero. From Equation (2.28):

 $\alpha = 90 - L$ For Tampa, Florida, $L = 27.96^{\circ}$ N; hence, $\alpha = 62.0^{\circ}$ (1.08 rad). The zenith angle follows immediately [Equation (2.24)]. $z = 90 - \alpha = 28.0^{\circ}$ (0.488 rad) From Equation (2.48), the incidence angle is calculated ($\beta = 30^{\circ}$). $\cos i = \cos \alpha \sin \beta + \sin \alpha \cos \beta$ $i = 2.04^{\circ}$ (0.0356 rad) From the 2009 ASHRAE Handbook for Tampa

From the 2009 ASHRAE Handbook for Tampa International Airport [either taken directly or calculated according to Equations (2.43) and (2.44)]:

$$I_{b,N} = 836 \frac{W}{m^2}$$

$$I_{d,h} = 143 \frac{W}{m^2}$$

The beam radiation on the tilted surface is found as follows.

$$I_{b,c} = I_{b,N} \cos i = 835 \frac{W}{m^2}$$

The diffuse radiation on the tilted surface is then calculated.

$$I_{d,c} = I_{d,h} \cos^2 \frac{\beta}{2} = 133 \frac{W}{m^2}$$

Finally, the reflected radiation incident on the surface is calculated, using Equation (2.51) (assume a ground reflectance, ρ , of 0.2).

$$I_{r,c} = \rho \left(I_{b,N} \sin \alpha + I_{d,h} \right) \sin^2 \frac{\beta}{2} = 11.8 \frac{W}{m^2}$$
noming:

Summing:

$$I_c = 981 \frac{W}{m^2}$$

From Equation (2.27):

 $ET = 7.90 \min$

The local standard time would therefore be LST = 12:21 PM [Equation (2.26)]. Accounting for daylight savings (in effect in Tampa on this date), local daylight time would be LDT = 1:21 PM.

2.9

Horizontal extraterrestrial radiation is given as $I_h = I \sin \alpha$

The average value of this over one hour is

$$\int_{t=0}^{t+0.5hr} I \sin \alpha \, dt$$

$$I_{o,h} = \frac{1}{(t+0.5hr) - (t-0.5hr)}$$

or in terms of hour angles (rad),

$$I_{o,h} = \frac{12}{\pi} \int_{h_s - \pi/24}^{h_s + \pi/24} I \sin \alpha \, dh_s$$

I is approximated as constant for the day number according to Eq. (2.35), and so can be taken out of the integral. From Eq. (2.28) for the solar altitude,

 $\sin \alpha = \sin L \sin \delta_s + \cos L \cos \delta_s \cos h_s$ where the latitude is constant for the location and the solar declination is approximated as constant for the day number. Therefore the integral becomes

$$I_{o,h} = \frac{12}{\pi} I \left(\sin L \sin \delta_s \int_{h_s - \pi/24}^{h_s + \pi/24} dh_s + \cos L \cos \delta_s \int_{h_s - \pi/24}^{h_s + \pi/24} \cos h_s dh_s \right)$$

Solving the integral,

$$I_{o,h} = I(\sin L \sin \delta_s + 0.9971 \cos L \cos \delta_s \cos h_s)$$

\$\approx I \sin \alpha\$

The last equality holds to within less than one percent, depending on the magnitude of $\sin L \sin \delta_s$.

2.10

Sun-path diagrams for the two latitudes are found in Appendix 2. For geometry (a), point C will be shaded when the altitude is given according to Eq. (2.31) as $\tan 50^\circ = \sec a_s \tan \alpha$. For the limiting case of the sun at 40° east or west of south, the altitude angle is then 37.45°. For a noon sun, the altitude angle is 50°. The shadow map is plotted on the sun-path diagram for the 35° location. As shown, point C is shaded when the solar declination is greater than -5°, which occurs between early March and early October. For other times of the year, the map shows, for example, shading on winter solstice before 8:15 AM and after 3:45 PM solar time.

Shadow map for geometry (a), $35^{\circ}N$ latitude. For geometry (b), point C will be shaded at noon with the altitude angle greater than 45° . With the solar azimuth $\pm 60^{\circ}$ of south, the corner of the overhang is in line with the sun and point C. The altitude angle of interest here is 26.57°, from looking at the geometry. Finally at $\pm 90^{\circ}$ of south, the critical altitude angle is 30° .

Shadow map for geometry (b), 35°N latitude. For geometry (b), it is noted that during April, for example, point C is shaded in the morning before the sun reaches due east, then is in sunshine for about an hour until the overhang blocks the sun. The sun reappears on point C when it dips below the overhang in the afternoon, but disappears as it moves north of due west and behind the back wall. Point C is not shaded during the winter at all.

Shadow map for geometry (c), $35^{\circ}N$ latitude. For geometry (c), point C will not be shaded after the sun rises to within 30° of south, provided it remains south of west in the late afternoon also. The critical altitude angle right before -30° azimuth is 26.57°. At due east, shading will occur below 45°.

Shadow maps for the 40° latitude are similar and are not shown.

2.11

There will be no sunlight on point P until the solar noon. Then the altitude angle must be above 45°. At 60° west of south, the altitude angle of interest is 26.57°. Moving further west, the sun will shine on P provided it does not yet set. From the geometry, it will shine on P until it reaches due north. Note that the shadow map shown below is simply a rotation of the shadow map for Problem 2.10 (c), with point P in shadow in the morning.

2.12

The solar declinations are found with n = 172 and n = 355, respectively. Assuming solar time, the hour angles are found from Eq. (2.25). The solar altitude angles are found from Eq. (2.28). The solar azimuth angles are found from Eq. (2.29). For the south-facing collector, $a_w = 0$. Plug all the above angles into Eq. (2.48).

	Jun 21	Jun 21	Dec 21	Dec 21
	9 AM	noon	9 AM	noon
Declination	23.45°	23.45°	-23.45°	-23.45°
Hour angle	-45°	0°	-45°	0°
Solar altitude	48.8°	73.4°	14.0°	26.6°
Solar azimuth	-80.2°	0°	-41.9°	0°
Panel azimuth	0°	0°	0°	0°
Solar incidence	68.7°	53.4°	40.5°	6.6°

2.13 a.

Jun 21 Jun 21 Dec 21 Dec 21 9 AM noon 9 AM noon Declination 23.45° 23.45° -23.45° -23.45° -45° 0° -45° Hour angle 0° 48.8° 73.4° 14.0° 26.6° Solar altitude Solar azimuth -80.2° 0° -41.9° 0° 45° -45° -45° Panel azimuth -45° Solar incidence 40.3° 58.9° 6.7° 41.6°

Determine the angles with the same procedure as in 2.12, except $a_w = -45^\circ$.

b.

The procedure is similar to that in 2.12, but with the orientation N-S the incidence angle is determined by the equation derived in Problem 2.7.

C C		,		-			
	$+\cos(\beta-L)\sin\delta_s]^2\}^{0.5}$						
	Jun 21	Jun 21	Dec 21	Dec 21			
	9 AM	noon	9 AM	noon			
Declination	23.45°	23.45°	-23.45°	-23.45°			
Hour angle	-45°	0°	-45°	0°			
Solar altitude	48.8°	73.4°	14.0°	26.6°			
Solar azimuth	-80.2°	0°	-41.9°	0°			
Panel azimuth	0°	0°	0°	0°			
Solar incidence	42.0°	53.4°	1.2°	6.6°			
Panel azimuth Solar incidence	0° 42.0°	0° 53.4°	0° 1.2°	0° 6.6°			

$\cos i = \{1$	$-[\sin(\beta - \beta)]$	L) cos	$\delta_s \cos$	h_s
	. (0 1		1210

2.14

For a one term Fourier cosine series, we want the declination to be of the form

$$\delta(n) = a \cos\left(\frac{\pi}{L}n + \varphi\right) = a \cos\left(\frac{360}{365}n + \varphi\right)$$

where *n* is the day number and the period is 2L = 365 days. From the given data, the maximum declination occurs on June 21 as

 $\delta_{max} = \delta(172) = 23.45^\circ = a$

This must correspond to where the cosine term is equal to 1, such that

$$\frac{360}{365}n_{max} + \varphi = 0 \to \varphi = -n_{max}\frac{360}{365}$$

Thus the declination becomes

$$\delta(n) = 23.45 \cos\left(\frac{360}{365}n - 172\right)$$

or equivalently,

$$\delta(n) = -23.45 \cos\left(\frac{360}{365}n + 10.5\right)$$

2.15

In order to plot lines of constant declination on a plot similar to Fig. 2.10, we must write the declination in

terms of two polar coordinates, namely the solar azimuth and altitude angles. The solar altitude angle is from Eq. (2.28), and can be written in terms of the hour angle as

$$\cos h_s = \frac{\sin \alpha - \sin L \sin \delta_s}{\cos L \cos \delta_s}$$

The solar azimuth is given by Eq. (2.29), which can be rearranged as

$$\sin h_s = \frac{\sin a_s \cos \alpha}{\cos \delta_s}$$

Using the identity, $\sin^2 \theta + \cos^2 \theta = 1$, the hour angle is removed as a variable. The answer is then written as

$$\sin a_s = \pm \sqrt{\frac{(\cos L \cos \delta_s)^2 - (\sin \alpha - \sin L \sin \delta_s)^2}{(\cos L \cos \alpha)^2}}$$

There will be a unique plot for each latitude. For each declination, two solar azimuth angles will result for each solar altitude angle—i.e., one before (-) and one after (+) solar noon.

2.16

Referring to Fig. 2.11a,

 $\cos a = x/r$ $\tan \alpha = z/r$ $\tan \gamma = z/x$ Solving for z/x, $\tan \gamma = \sec a \tan \alpha$

2.17

Eq. (2.48), through some effort, can be written in terms of the hour angle and declination as

 $\cos i = \sin(L - \beta) \sin \delta_s + \cos(L - \beta) \cos \delta_s \cos h_s$ To get the average value of the function *cos i*, we integrate over the year (declination) and over the entire day (hour angle).

$$\cos i|_{avg} = \frac{2\int_{\delta_{s,min}}^{\delta_{s,max}} \int_{h_{s,min}}^{h_{s,max}} \cos i \, dh_s d\delta_s}{2(\delta - \delta +)(h - h)}$$

 $2(\delta_{s,max} - \delta_{s,min})(h_{s,max} - h_{s,min})$ The factor of 2 is there as the declination range is seen twice in the yearly movement. Recognizing that the minimum values are simply the negative of the maximum values, integration with respect to the hour angle yields

$$\cos i|_{avg} = \frac{1}{4\delta_{s,max}h_{s,max}} \int_{\delta_{s,min}}^{\delta_{s,max}} [\sin(L-\beta)\sin\delta_s + 2\cos(L-\beta)\cos\delta_s\sin h_{s,max}]d\delta_s$$

Completing the second integration,

$$\cos i|_{avg} = \frac{\cos(L-\beta)\sin\delta_{s,max}\sin h_{s,max}}{\delta_{s,max}h_{s,max}}$$

It should be noted that the average of the cosine of *i* does not yield the average *i*, but this is acceptable as we don't need the average *i*. We only want to find β for the minimum *i*, which coincides with the β for the maximum cosine of *i*. Since the maximum occurs at $\cos(L - \beta) = 1,$

$$\beta_{optimum} = L$$

Notes:

$$\beta_{optimum} = L$$

1. Integration in the range where the sun is not in view of the collector, or is below the horizon, would yield a meaningless average for the angle of incidence. However, the choice of range is not significant here as it cancels in finding the optimum β .

2.18

From Eq. (2.23), May 1, n = 121, $\delta_s = 14.9^\circ$ Dec 1, n = 335, $\delta_s = -22.1^\circ$ From Eq. (2.30), $h_{ss} = \cos^{-1}[-\tan L \tan \delta_s]$ May 1, $h_{ss} = 96.49^{\circ}$ Dec 1, $h_{ss} = 80.07^{\circ}$ With 15° per hour, sunsets are at May 1, Sunset time = 6.43hrs = 6:26 pmDec 1, Sunset time = 5.34hrs = 5:20 pm

2.19

From Eq. (2.27), Jun 10, n = 161, ET = 0.76 min Jan 10, n = 10, ET = -7.42 minFrom Eq. (2.26), on Jun 10, Solar Time = $9am + 0.76min + (105 - 107) \cdot 4min$ Solar Time = 8:53*am* Similarly for Jan 10, Solar Time = $10am - 7.42min + (105 - 107) \cdot 4min$ Solar Time = 9:45am

Notes:

1. Daylight savings time has the clocks ahead by an hour, such that LST is one hour behind Local Daylight Time.

2.20

Miami is at latitude 25.79 °N. For each month, Table A2.1 gives the average daily extraterrestrial horizontal insolation as

May,
$$\overline{H}_{o,h} = 11.04 \frac{kWh}{m^2 day} = 39.74 \frac{MJ}{m^2 day}$$

Oct, $\overline{H}_{o,h} = 8.125 \frac{kWh}{m^2 day} = 29.25 \frac{MJ}{m^2 day}$

Using the Angström-Page method, Table 2.4 gives a = 0.42 and b = 0.22 for Miami. Then from Eq. (2.52),

May,
$$\overline{H}_{h} = 37.51 \left(0.22 + 0.57 \frac{60}{100} \right) \frac{MJ}{m^{2} day}$$

= $21.9 \frac{MJ}{m^{2} day}$
Oct, $\overline{H}_{h} = 29.25 \left(0.22 + 0.57 \frac{70}{100} \right) \frac{MJ}{m^{2} day}$
= $18.1 \frac{MJ}{m^{2} day}$

To compare with the ASHRAE clear-sky model, we will need to calculate the radiation over the course of the day and integrate via quadrature. For May 15, τ_b and τ_d are 0.487 and 1.988, respectively (linear interpolation is used to find values for days other than the 21st days of each month). Instantaneous horizontal solar irradiance values are calculated from sunrise to noon, as tabulated below.

Time (hr)	$I_h (W/m^2)$
5.37	8.4
6	80.3
7	279.9
8	500.0
9	700.3
10	858.3
11	959.0
12	993.5

(The irradiance is nonzero at sunrise due to some diffuse radiation.) We calculate the daily total irradiance as

$$\overline{H}_h = 2 \cdot (3862.3Wh) = 27.8 \frac{MJ}{m^2 day}$$

(The factor of two accounts for the afternoon irradiance.) Similarly, for October (τ_b and τ_d of 0.435 and 2.225, respectively):

$$\overline{H}_h = 2 \cdot (2779.3Wh) = 20.0 \frac{MJ}{m^2 day}$$

The ASHRAE values are larger because they do not take into account weather events that can interfere with the sun's rays. The values are close to those of the Angström-Page method with 100% possible sunshine.

2.21

Eq. (2.55) is given as
$$\overline{z}$$

$$\frac{D_h}{\overline{H}_h} = 1.390 - 4.027\overline{K}_T + 5.531\overline{K}_T^2 - 3.108\,\overline{K}_T^3$$

Where from Eq. (2.50),

$$\overline{K}_T = \frac{H_h}{1394W/m^2}$$

Introduce a modified monthly clearness index to be

$$\overline{K}_T' = \frac{\overline{H}_h}{1366.1W/m^2}$$

Thus,

$$\overline{K}_T = \overline{K}'_T \frac{1366.1}{120.4} = 0.980 \overline{K}'_T$$

and with the new parameter, Eq. (2.55) becomes

 $\frac{\overline{D}_h}{\overline{H}_h} = 1.390 - 3.946\overline{K}_T' + 5.312\,\overline{K}_T'^2 - 2.925\,\overline{K}_T'^3$

2.22

The Denver ASHRAE clear-sky parameters are available for the 21st day of each month; by interpolation, we have τ_b and τ_d of 0.363 and 2.243, respectively, for September 9. Using the ASHRAE method, the diffuse and beam radiation values are tabulated below for each hour from sunrise to noon.

Time	Id	I _b
(hr)	(W/m^2)	(W/m^2)
5.37	12.0	0.0
6	21.9	2.6
7	71.9	145.8
8	100.0	357.3
9	118.2	558.5
10	129.8	719.7
11	136.4	823.1
12	138.6	858.7

It can be seen that the diffuse radiation at 9:30AM is approximately 124 W/m^2 , while the beam radiation is approximately 639 W/m^2 .

