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capacity. The escalation rate for solar in particular (50%)

Chapter 1 is likel high in the | id h
: : is likely too high in the long-term. Rapid growth may
Introduction to Solar Energy Conversion . _
gy occur early on, but it should taper off at some point.
11 14
The yearly capacity and fractions are tabulated below. Assume the system is purchased in YRO, tax credit
received in YR1. The cash flows and cumulative present
s value are tabulated below.
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2011 20.1] 0.2814 1.809 2.01] 15.9996 100 79.9 - = 0?7:’ g
2012| 21.2803| 0.4221| 2.02608| 2.5125| 16.3196 102.4| 81.1197 é'i § 8 é’,’ ;‘E
2013| 22.689| 0.63315| 2.26921| 3.14063| 16.646| 104.858| 82.1686 & I ;’ § S §
2014| 24.3959| 0.94973| 2.54151| 3.92578| 16.9789| 107.374] 82.9783 N g iy S ) ) S
2015| 26.4968| 1.42459| 2.8465| 4.90723| 17.3185| 109.951| 83.4544 0 4000 -4000 -4000 -4000
2016| 29.1238| 2.13688| 3.18808| 6.13403| 17.6649| 112.59| 83.4661
2017| 32.4617| 3.20532| 3.57065| 7.66754| 18.0181| 115.292| 82.8305 1 1200 450 1650} 1571.43] -2428.6
2018 36.77| 4.80798| 3.99912| 9.58443| 18.3785| 118.059| 81.2891 2 450 450] 408.163| -2020.4
2019| 42.4176| 7.21197| 4.47902] 11.9805| 18.7461] 120.893] 78.475 3 450 450| 388.727| -1631.7
2020] 49.9311| 10.818| 5.0165| 14.9757 19.121| 123.794| 73.8629 4 450 450| 370.216| -1261.5
2021| 60.0684| 16.2269| 5.61848| 18.7196| 19.5034| 126.765| 66.6966 5 450 450| 352.587| -908.88
2022| 73.9261| 24.3404| 6.2927| 23.3995| 19.8935| 129.807| 55.8813 6 450 450| 335.797| -573.08
2023| 93.0992| 36.5106| 7.04782| 29.2493| 20.2914| 132.923| 39.8236 7 450 450] 319.807] -253.27
2024| 119.918| 54.7659| 7.89356| 36.5617| 20.6972| 136.113| 16.1946
2025] 157.803] 82.1489] 8.84079] 45.7021] 21.1111] 139.38] -18.423 8 __450 450] 304.578] 51.3029
Therefore, the payback period is approximately 8 years.
It can be seen that renewables account for the entire 15
electrical power capacity as of YR2025. The relative :
fractions of each renewable technology are as follows. .
Sol g9y 0.59 Assume a discount rate of 5% for present worth
(_) ar : calculations. The yearly cash flows for this system are
Biomass 0.06 tabulated below.
Wind 0.33
Hydroelectric 0.15
1.2

Performing an analysis similar to that of Problem 1.1,
we arrive at the following values:

a. Renewables 1.00
b. Solar 0.54
1.3
For example, the fractions for YR2015 are given below.
Solar 0.01296
Wind 0.04463
Biomass 0.02311

Hydroelectric 0.15751
Actual data for the year in question can be obtained from
a variety of sources (e.g., eia.gov). Reasons for
deviations may include the assumption of constant
escalation rates in both renewable capacity and total
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0 375 37.5 -37.5
1| 6.20834 0.15| 6.05556| 106575| 101500/ 15.9863| 9.1694381
2| 6.20834 0.15| 5.7672| 106575| 96666.7| 16.7856| 9.4577982
3| 6.20834 0.15| 5.49257| 106575| 92063.5| 17.6248| 9.7324268
4| 6.20834 0.15| 5.23102| 106575| 87679.5| 18.5061| 9.9939779
5| 6.20834 0.15[ 4.98193| 106575| 83504.3| 19.4314| 10.243074
6| 6.20834 0.15| 4.74469| 106575| 79527.9| 20.403| 10.480309
7| 6.20834 0.15| 4.51875| 106575| 75740.9| 21.4231| 10.706246
8| 6.20834 0.15| 4.30357| 106575| 72134.2| 22.4943| 10.921425
9| 6.20834 0.15| 4.09864| 106575| 68699.2| 23.619| 11.126357
10| 6.20834 0.15| 3.90347| 106575| 65427.8| 24.7999| 11.321531
11| 6.20834 0.15| 3.71759| 106575| 62312.2| 26.0399 11.50741
12| 6.20834 0.15| 3.54056| 106575| 59344.9| 27.3419| 11.684438
13| 6.20834 0.15| 3.37196| 106575 56519 28.709| 11.853037
14| 6.20834 0.15( 3.21139| 106575| 53827.6| 30.1445| 12.013606
15| 6.20834 0.15| 3.05847| 106575| 51264.4| 31.6517 12.16653
16| 6.20834 0.15| 2.91283| 106575| 48823.2| 33.2343| 12.312171
17| 6.20834 0.15| 2.77412| 106575| 46498.3| 34.896| 12.450877
18| 6.20834 0.15| 2.64202| 106575| 44284.1| 36.6408| 12.582978
19| 6.20834 0.15| 2.51621| 106575| 42175.3| 38.4728| 12.708789
20| 6.20834 0.15| 2.39639| 106575 40167| 40.3965| 12.828609
21| 6.20834 0.15| 2.28228| 106575| 38254.3| 42.4163| 12.942722
22| 6.20834 0.15| 2.1736| 106575| 36432.7| 44.5371| 13.051402
23| 6.20834 0.15[ 2.07009| 106575| 34697.8| 46.7639| 13.154907
24| 6.20834 0.15| 1.97152| 106575| 33045.5| 49.1021| 13.253483
25| 6.20834 0.15| 1.87764| 106575| 31471.9| 51.5573| 13.347365
IRR 27%
LCOE, $/kWhe 0.085

1.6

New plant life is 20 years; assume a discount rate of 5%

for PW calculations.
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1| 7.02123 0.15 6.82974| 106575| 101500( 26.6438| 18.545261
2| 7.02123 0.15; 6.50451| 106575| 96666.7 26.6438| 17.662153
3| 7.02123 0.15 6.19477| 106575| 92063.5| 26.6438| 16.821098
4| 7.02123 0.15] 5.89979| 106575| 87679.5 26.6438| 16.020093
5[ 7.02123 0.15 5.61884( 106575| 83504.3| 26.6438| 15.257232
6| 7.02123 0.15] 5.35128| 106575| 79527.9| 26.6438| 14.530697
7| 7.02123 0.15; 5.09646| 106575| 75740.9| 26.6438| 13.838759
8| 7.02123 0.15 4.85377| 106575| 72134.2| 26.6438 13.17977
9| 7.02123 0.15] 4.62264| 106575| 68699.2| 26.6438| 12.552162
10{ 7.02123 0.15 4.40251| 106575| 65427.8| 26.6438 11.95444
11| 7.02123 0.15] 4.19287| 106575| 62312.2| 26.6438| 11.385181
12| 7.02123 0.15 3.99321( 106575[ 59344.9| 26.6438 10.84303
13| 7.02123 0.15] 3.80305| 106575| 56519| 26.6438| 10.326695
14| 7.02123 0.15, 3.62196| 106575| 53827.6| 26.6438| 9.8349476
15[ 7.02123 0.15 3.44948| 106575| 51264.4| 26.6438| 9.3666168
16| 7.02123 0.15; 3.28522| 106575| 48823.2| 26.6438| 8.9205874
17| 7.02123 0.15 3.12878| 106575| 46498.3| 26.6438| 8.4957976
18| 7.02123 0.15] 2.97979| 106575| 44284.1| 26.6438| 8.0912358
19| 7.02123 0.15 2.8379| 106575| 42175.3| 26.6438| 7.7059388
20| 7.02123 0.15] 50| -16.142| 106575| 40167| 26.6438| 26.183464
For $50M salvage:
IRR 45%
LCOE, $/kWhe 0.081




Chapter 2
Fundamentals of Solar Radiation
2.1
a.
Begin with Equation (2.3), neglecting refractive effects.

G
G
(eﬁ — 1) A5

Take E;;dA (with ¥ = 1/1). Hence:

Epy =

C,7°dA C,73dv _
Eb;tdl = ﬁ = — @ = —Eb’ﬁdv
(F-0) ()
C, 3

Eb? - C,v
(7 1)
b

Differentiate the expression from part (a) with respect to
wave number. Then, set the expression equal to zero.
The resulting equation is:

~

This equation is transcendental in ¥/T. Solving
numerically, we have:

=196cm™ /K

| <2

2.2

From the problem statement, L = 40.77°, solar time is
2:00PM, on October 1* (n = 274). The declination angle,
ds, IS obtained from Equation (2.23).
. . |360(284 + n)°
&g = 23.45°sin [T
= —4.22° (—=0.0736 rad)

To calculate the altitude angle, we need the hour angle,
obtained from Equation (2.25).

hg = T (hours from solar noon) = 30°

The altitude angle is obtained from Equation (2.28).
sina = sin L sin 65 + cos L cos & cos hg
a = 37.3°(0.651 rad)
And the zenith angle immediately follows, according to
Equation (2.24).
z=90°—a =52.7°(0.920 rad)

For this time / location, the sun will be south of the east-
west line, so |ag| < 90°. Hence, the azimuth angle
follows directly from Equation (2.29).
i cos §; sin hg
sinagg = ———

cosa
a; = 38.8°(0.678 rad)

2.3

(1) First, find the minimum normalized distance, d, for
placement of the second collector. At solar noon, the
profile angle is equal to the solar altitude angle, a;.
From the geometry, we have the following relationships.
h
tana, = 7
_ h
sinff = "
Here, h is the vertical height of the collector, and w is
the arbitrary width. The normalized distance, d/w, is
desired.
d sinf

w  tan aq
The collector tilt angle, 8, is known. The altitude angle
follows from Equation (2.28). For Tampa, Florida, we
have L = 27.96°N (Tampa International Airport); for
December 21%, 5, = —23.45°.
sina; = sinL sin &5 + cos L cos & cos hg
a; = 38.6° (0.673 rad)
Normalized distance:
d sinf

w  tan ay

= 0.627 (meter separation per meter width)
(2) Second, the percent shading at 9:00AM solar time is
desired; this quantity would be the width shaded divided
by the total collector width.

. WS
% shading = W

In this case, the sun is not due south, so the profile angle,
¥, IS needed, and it can be obtained from Equation 2.31.
First, we need the new altitude angle (hy = —45°).
sina, = sin L sin §g + cos L cos &5 cos hy
a, = 22.7°(0.397 rad)
Next, the solar azimuth angle:
_ cos d, sin hg
singg = ——
cos a,
as; = —44.7° (—0.780 rad)
Finally, the profile angle is obtained.
tany, = secagtana
¥, = 30.5° (0.532 rad)
From the geometry and the law of sines, we arrive at the
following relation.
sin(B +v2) _ sin(a; —y,)
h/sina; Wy

Simplifying:
ws _sin(a; —y;) sinf
w  sin(B +y,) sinay
= 0.129;i.e.,12.9% of the collector is shaded.




2.4

The location is not specified; the date (September 1°*)
gives n = 244. The declination angle is obtained from
Equation (2.23).
8 = 7.72° (0.135 rad)

The sunrise / sunset times are obtained from Equation
(2.30).

hes, hge = + cos™!(—tanL tan &)
Solar sunrise and sunset times are found as follows [see
Equation (2.25)].

4 min
Solar sunrise time = 12: 00PM + hg, (T)

4 min
Solar sunset time = 12: 00PM + hg, ( - )

To convert to local time, Equation (2.26) is needed.
4 min
LST = Solar time — ET — (ls; — Lipcar) (—)

[e]

Here, the equation of time, ET, is computed with
Equation (2.27):
ET (in minutes)
=9.87sin2B — 7.53 cosB — 1.5sinB
360(n — 81)°
B 364
For this date, September 1%, ET is determined as
follows.
B =161.2°
ET = 0.626 min
Given the above information and the latitude of the
specific location, sunrise / sunset times can be
determined with Equations (2.30), (2.25), and (2.26).

2.5

The day numbers are set by the month (e.qg., for January
15" n = 15); from the characteristic n for each month,
a declination angle is obtained from Equation (2.23).
The sunrise and sunset times are computed as in
Problem 2.4. Given hg, and hg,., the bounds of the day in
solar time are known. Data for hours in between these
bounds are computed by first determining the hour angle
[Equation (2.25)], then the altitude angle [Equation
(2.28), with latitude angle, L, set by the location], and
finally the zenith and azimuth angles [Equations (2.24)
and (2.29), respectively]. If desired, the solar time for
sunrise / sunset can be converted to local time using the
procedure outlined in Problem 2.4.

2.6

The unit directional for the sun can be written in terms
of an East-North-Vertical coordinate system.

§=cosasinagE + cosacosag N —sina V
Similarly for the panel normal,

p = cos(90 — B) sin(—a,,) E
— c0s(90 — B) cos(—a,,) N
+sin(90 — )V
The scalar product of the two is
cosi = —§-p = cosasinag sin fsina,,
+ cos a cos a, sin B cos a,,
+ sina cosf§
Combining terms and using a trigonometric identity:
cosi = cosa sinf cos(as — a,,) + sina cos B

2.7

In the case of the tubular surface, the incidence angle is
found as the angle between the sun’s rays and a plane
perpendicular to the cylinder’s long axis. This is
equivalent to modeling the incidence angle on a flat plate
collector rotating about a titled axis. Using a procedure
similar to that used in Problem 2.6:
cosi
= \/1 —{cos(a + B) — cosa cos B [1 — cos(as — a,,)]}?
In the case of a titled axis in the north-south plane,
cosi = \/1 — [cos(a + B) — cosa cos B (1 — cos ay)]?
Applying a trigonometric identity, we arrive at the
following equation.

cosi = (1 —[cosasinf —sinacosf

—cosacos B (1— cosay)]

From Figures 2.8 and 2.9:

cos a cos ag = cos § sin L cos hy — sin & cos L
Using this expression in conjunction with Equation
(2.28), and further applying a trigonometric identity, we
arrive at the desired equation.
cosi

= /1 —[sin(8 — L) cos & cos hg + cos(B — L) sin &2

2)0.5

2.8

On September 21%, the declination angle, d;, is zero
(autumnal equinox). For solar noon, both the hour angle,
hg, and the solar azimuth angle, ag, are zero. From
Equation (2.28):
a=90-1L

For Tampa, Florida, L = 27.96°N; hence, a =
62.0° (1.08 rad).
The zenith angle follows immediately [Equation (2.24)].

z =90 — a = 28.0°(0.488 rad)
From Equation (2.48), the incidence angle is calculated
(B = 30°).

cosi =cosasinf + sina cosf

i = 2.04° (0.0356 rad)

From the 2009 ASHRAE Handbook for Tampa
International Airport [either taken directly or calculated
according to Equations (2.43) and (2.44)]:

W
Ion = 836—;



Id,h = 143 W

The beam radiation on the tilted surface is found as
follows.

2
The diffuse radiation on the tilted surface is then
calculated.

Ipc = Ippycosi= 835m—

Iyc =1Ian coszg = 133W
Finally, the reflected radiation incident on the surface is
calculated, using Equation (2.51) (assume a ground
reflectance, p, of 0.2).
Le=p(Ipysina+1gy) sinzg = 11'8W
Summing:
w
e =981—
From Equation (2.27):
ET = 7.90 min
The local standard time would therefore be LST =
12: 21PM [Equation (2.26)]. Accounting for daylight

savings (in effect in Tampa on this date), local daylight
time would be LDT = 1: 21PM.

2.9

Horizontal extraterrestrial radiation is given as
Iy, =1Isina
The average value of this over one hour is

t+0.5hr , .
Jiosny I Sinadt

lon =T 0.5hr) (t — 0.5hr)
or in terms of hour angles (rad),
hg+m/24
12
Iop =— f I'sina dhg
& hs—1/24
| is approximated as constant for the day number
according to Eq. (2.35), and so can be taken out of the
integral. From Eqg. (2.28) for the solar altitude,
sina = sin L sin §; + cos L cos &, cos hg
where the latitude is constant for the location and the
solar declination is approximated as constant for the day

number. Therefore the integral becomes
hg+m/24

12
Iop = ?I sin L sin &g f dhy

hg—m/24
hs+m/24

cos h dhy
hg—m/24

+ cos L cos &g

Solving the integral,
I, = I(sinLsindg + 0.9971 cos L cos 85 cos hy)

~ [sina

The last equality holds to within less than one percent,
depending on the magnitude of sin L sin §;.

2.10

Sun-path diagrams for the two latitudes are found in
Appendix 2. For geometry (a), point C will be shaded
when the altitude is given according to Eq. (2.31) as
tan 50° = seca, tan . For the limiting case of the sun
at 40° east or west of south, the altitude angle is then
37.45°. For a noon sun, the altitude angle is 50°. The
shadow map is plotted on the sun-path diagram for the
35° location. As shown, point C is shaded when the solar
declination is greater than -5°, which occurs between
early March and early October. For other times of the
year, the map shows, for example, shading on winter
solstice before 8:15 AM and after 3:45 PM solar time.

30 WA 0

Decli-
nation
423 27

) 25

Shadow map for geometry (a), 35°N latitude.
For geometry (b), point C will be shaded at noon with
the altitude angle greater than 45°. With the solar
azimuth % 60° of south, the corner of the overhang is in
line with the sun and point C. The altitude angle of
interest here is 26.57°, from looking at the geometry.
Finally at + 90° of south, the critical altitude angle is 30°.
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Shadow map for geometry (b), 35°N latitude.
For geometry (b), it is noted that during April, for
example, point C is shaded in the morning before the sun
reaches due east, then is in sunshine for about an hour
until the overhang blocks the sun. The sun reappears on
point C when it dips below the overhang in the
afternoon, but disappears as it moves north of due west
and behind the back wall. Point C is not shaded during
the winter at all.
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Shadow maps for the 40° latitude are similar and are not
shown.

2.11

There will be no sunlight on point P until the solar noon.
Then the altitude angle must be above 45°. At

60° west of south, the altitude angle of interest is 26.57°.
Moving further west, the sun will shine on P provided it
does not yet set. From the geometry, it will shine on P
until it reaches due north. Note that the shadow map
shown below is simply a rotation of the shadow map for

Problem 2.10 (c), with point P in shadow in the morning.
950 NORTH 10

Decli-

. ® F—"160 +20-"
190 goure 170 =15°

(d) i

212

The solar declinations are found with n =172 and n

= 355, respectively. Assuming solar time, the hour
angles are found from Eq. (2.25). The solar altitude
angles are found from Eq. (2.28). The solar azimuth
angles are found from Eq. (2.29). For the south-facing
collector, a,, = 0. Plug all the above angles into Eq.
(2.48).

Jun21 PJun?21 |Dec?21 |Dec?1
9 AM noon 9 AM noon

Shadow map for geometry (c), 35°N latitude.
For geometry (c), point C will not be shaded after the
sun rises to within 30° of south, provided it remains
south of west in the late afternoon also. The critical
altitude angle right before -30° azimuth is
26.57°. At due east, shading will occur below 45°.

Declination 23.45° [23.45° |-23.45° |-23.45°
Hour angle -450 0° -45° 0°
Solar altitude 48.8° 73.4° 14.0° 26.6°
Solar azimuth -80.2° |0° -41.9°  |0°
Panel azimuth 0° 0° 0° 0°

Solar incidence 68.7° 53.4° 40.5° 6.6°




2.13

a.

Determine the angles with the same procedure as in
2.12, except a,, = —45°.

Jun21 Jun21 |Dec?21 |Dec?21
9 AM noon 9 AM noon

Declination 23.45° [23.45° |-23.45° |-23.45°
Hour angle -45° 0° -45° 0°
Solar altitude 48.8° 73.4° 14.0° 26.6°
Solar azimuth -80.2° |0° -41.9°  |0°
Panel azimuth -450 -450 -450° -450°

Solar incidence 40.3° 58.9° 6.7° 41.6°

b.
The procedure is similar to that in 2.12, but with the
orientation N-S the incidence angle is determined by the
equation derived in Problem 2.7.
cosi = {1 — [sin(B — L) cos &, cos hy
+ cos(B — L) sin §,]%}°>

Jun21 Jun21 |Dec2l [Dec?l
9 AM noon 9 AM noon

Declination 23.45° 23.45° |-23.45° |-23.45°
Hour angle -45° 0° -45° 0°
Solar altitude 48.8° 73.4° 14.0° 26.6°
Solar azimuth -80.2° |0° -41.9°  |0°
Panel azimuth 0° 0° 0° 0°

Solar incidence 42.0° 53.4° 1.20 6.6°

2.14

For a one term Fourier cosine series, we want the
declination to be of the form
6(n) = acos (En + (p) = acos (36011 + (p)
L 365

where n is the day number and the period is 2L =
365 days. From the given data, the maximum declination
occurs on June 21 as

Smax = 6(172) = 23.45° = a
This must correspond to where the cosine term is equal

to 1, such that
360 360
365nmax+(p_0_>(p nmax%

Thus the declination becomes
360
6(n) = 23.45cos (—n - 172)

_ 365
or equivalently,

5(n) = —23.45 (360 +105)
n)= . COoS 365n .

2.15

In order to plot lines of constant declination on a plot
similar to Fig. 2.10, we must write the declination in

terms of two polar coordinates, namely the solar azimuth

and altitude angles. The solar altitude angle is from Eq.

(2.28), and can be written in terms of the hour angle as
sin ¢ — sin L sin

cos hy =
s cos L cos &

The solar azimuth is given by Eq. (2.29), which can be
rearranged as
inh. = sSinas cos a
S s = T s s
Using the identity, sin? 8 + cos? 8 = 1, the hour angle
is removed as a variable. The answer is then written as

_ (cos L cos 85)? — (sina — sin L sin §)?
sinag = +

(cos L cos a)?

There will be a unique plot for each latitude. For each
declination, two solar azimuth angles will result for each
solar altitude angle—i.e., one before (-) and one after (+)
solar noon.

2.16

Referring to Fig. 2.11a,
cosa=x/r
tana = z/r
tany = z/x

Solving for z/x,
tany = secatana

2.17

Eq. (2.48), through some effort, can be written in terms
of the hour angle and declination as

cosi = sin(L — B) sin 65 + cos(L — ) cos &, cos h
To get the average value of the function cos i, we
integrate over the year (declination) and over the entire
day (hour angle).

2f65m“x fhsm“" cosidhgdég

55 min smin
2(6s,max 5s,mln) (hs,max - hs,min)
The factor of 2 is there as the declination range is seen
twice in the yearly movement. Recognizing that the
minimum values are simply the negative of the
maximum values, integration with respect to the hour
angle yields

oS i|gpg =

65 max

f [sm(L B) sin &
+ 2cos(L — ﬁ) cos &, sin hs,max]d(SS

Completing the second integration,

cos(L — B) sin 85 mayx Sin Ag pax

cosi|
avg 465 max S max

cosi| =
e 6s,max hs,max

It should be noted that the average of the cosine of i does
not yield the average i, but this is acceptable as we don’t

need the average i. We only want to find g for the



minimum i, which coincides with the g for the
maximum cosine of i. Since the maximum occurs at
cos(L—p) =1,

ﬁoptimum =L
Notes:
1. Integration in the range where the sun is not in view
of the collector, or is below the horizon, would yield a
meaningless average for the angle of incidence.
However, the choice of range is not significant here as it
cancels in finding the optimum g.

2.18

From Eq. (2.23),
May 1,n = 121, 8, = 14.9°
Dec1,n = 335,48, = —22.1°
From Eg. (2.30),
hgs = cos™[—tan L tan &;]
May 1, hgs = 96.49°
Dec 1, kg = 80.07°
With 15° per hour, sunsets are at
May 1, Sunset time = 6.43hrs = 6:26 pm
Dec 1, Sunset time = 5.34hrs = 5:20 pm

2.19

From Eq. (2.27),
Jun10,n = 161,ET = 0.76 min
Jan10,n = 10, ET = —7.42 min
From Eg. (2.26), on Jun 10,
Solar Time = 9am + 0.76min + (105 — 107) - 4min
Solar Time = 8: 53am
Similarly for Jan 10,
Solar Time = 10am — 7.42min + (105 — 107) - 4min
Solar Time = 9: 45am
Notes:
1. Daylight savings time has the clocks ahead by an
hour, such that LST is one hour behind Local Daylight
Time.

2.20

Miami is at latitude 25.79 °N. For each month, Table
A2.1 gives the average daily extraterrestrial horizontal
insolation as

May, H,, = 11.04 kWh = 39.74 M
4y fop = 13 m2day = m2day

Oct,H,, = 8.125 kWh =29.25 M
b o = O m2day 7" m2day
Using the Angstrom-Page method, Table 2.4 gives a
=0.42 and b = 0.22 for Miami. Then from Eq. (2.52),

Mj

_ 60
May, A =37.51(0.22 0.57_)_
i * m?day

100
M

=219
m2day

Oct, H 29.25(0.22 + 0.57 70 M
€6 Hh = 29 ( ce+ 0. 100) m2day
M]

m2day
To compare with the ASHRAE clear-sky model, we will
need to calculate the radiation over the course of the day
and integrate via quadrature. For May 15, t;, and 7, are
0.487 and 1.988, respectively (linear interpolation is
used to find values for days other than the 21 days of
each month). Instantaneous horizontal solar irradiance
values are calculated from sunrise to noon, as tabulated
below.

=18.1

Time (hr) 1, (W/m?)

5.37 8.4

6 80.3

7 279.9

8 500.0

9 700.3

10 858.3

11 959.0

12 993.5

(The irradiance is nonzero at sunrise due to some
diffuse radiation.) We calculate the daily total irradiance

as
H, =2-(3862.3Wh) = 27.8 M
h— ' """ m2day
(The factor of two accounts for the afternoon irradiance.)
Similarly, for October (z;, and 7, of 0.435 and 2.225,

respectively):
_ MJ
Hy =2-(2779.3Wh) = 20.0 —
m4day
The ASHRAE values are larger because they do not take
into account weather events that can interfere with the

sun’s rays. The values are close to those of the
Angstrom-Page method with 100% possible sunshine.

221

Eq. (2.55) is given as

Dn _ 7 72 73
o 1.390 — 4.027Kr + 5.531K; — 3.108 K7

h
Where from Eq. (2.50),
Ry = —
T ™ 1394W /m?
Introduce a modified monthly clearness index to be



—_, H,
Kf=———
1366.1W /m?
Thus,
_ _ 1 _
— !/ — 12
Kr = Kt =35, = 0.980Kr

and with the new parameter, Eq. (2.55) becomes

& _ _ 7l 2 _ '3
== 1.390 — 3.946K}. + 5312 Kf? — 2.925 K7

h

2.22

The Denver ASHRAE clear-sky parameters are available
for the 21% day of each month; by interpolation, we have
T and 74 of 0.363 and 2.243, respectively, for
September 9. Using the ASHRAE method, the diffuse
and beam radiation values are tabulated below for each
hour from sunrise to noon.

Time l4 Iy
(hr) (W/m?) | (W/m?)
5.37 12.0 0.0
6 21.9 2.6
7 71.9 145.8
100.0 357.3

9 118.2 558.5
10 129.8 719.7
11 136.4 823.1
12 138.6 858.7

It can be seen that the diffuse radiation at 9:30AM is
approximately 124 W/m?, while the beam radiation is

approximately 639 W/m?.,

2.23

% ) i
Triirad s Jl,!_,f;_,.-'.r,r;;;,‘J;.ﬂ_q_.-.r.r.?f,f’.fr'f.f.r"fﬁ.f.?!.f
1

From the law of sines,
D b

sinf  siny

Further reduce with

b= Lsinf
to obtain the result:
L sin?
D =— A
siny
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