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CHAPTER  2
Exercise Solutions

Exercise 2.1 
(a)	
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(b)			

	 is the estimated slope of the fitted line.


			



	 is the estimated value of  when ; it is the intercept of the fitted line.


(c)	
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Exercise 2.1 (continued)

	

	

	

	

	

	

 (e)	
[image: ]
Figure xr2.1 Observations and fitted line


(f)	See figure above. The fitted line passes through the point of the means, .







(g)	Given , , , and , we have  


(h) 		


(i)		



(j)	 and  

Exercise 2.2
(a)			


[image: ]
Figure xr2.2(a) Sketch of solution
(b)			


			  [image: ] 
Figure xr2.2(b) Sketch of solution
Exercise 2.2 (continued)
(c)			


			             
(d)			






			
			 

Exercise 2.3
(a)	The observations on y and x and the estimated least-squares line are graphed in part (b).  The line drawn for part (a) will depend on each student’s subjective choice about the position of the line.  We show the least squares fitted line.

[image: ]
Figure xr2.3(a) Observations and line through data

 (b)	Preliminary calculations yield:

			
	The least squares estimates are:

				

				
[image: ]
Figure xr2.3(b) Observations and fitted line



Exercise 2.3 (continued)


 (c)			and 
			

	The predicted value for y at  is

				




	We observe that . That is, the predicted value at the sample mean  is the sample mean of the dependent variable. This implies that the least-squares estimated line passes through the point . This point is at the intersection of the two dashed lines plotted on the graph in part (b) .


 (d)	The values of the least squares residuals, computed from , are:
	
	

	

	


	1
	6
	1.71429

	2
	4
	−2.57143

	3
	11
	2.14286

	4
	9
	−2.14286

	5
	13
	−0.42857

	6
	17
	1.28571





(e)		Their sum is  and their sum of squares is 


(f) 	
				
				

Exercise 2.4

(a)	If  the simple linear regression model becomes

				
	


(b)	Graphically, setting  implies the mean of the simple linear regression model  passes through the origin (0, 0).


(c)	To save on subscript notation we set   The sum of squares function becomes

				
[image: ]

Figure xr2.4(a) Sum of squares for 


	The minimum of this function is approximately 25 and occurs at approximately  The significance of this value is that it is the least-squares estimate.

(d)	To find the value of  that minimizes  we obtain

				
	Setting this derivative equal to zero, we have


				    or     


Exercise 2.4 (Continued)
	Thus, the least-squares estimate is

				
	which agrees with the approximate value of 2.7 that we obtained geometrically.

(e)	
			[image: ]
Figure xr2.4(b) Observations and fitted line


	The fitted regression line is plotted in Figure xr2.4 (b). Note that the point  does not lie on the fitted line in this instance.


(f)	The least squares residuals, obtained from  are:



					



					


	Their sum is   Note this value is not equal to zero as it was for 


(g)		
			
	

Exercise 2.5
(a)	The consultant’s report implies that the least squares estimates satisfy the following two equations


			


			

	Solving these two equations yields



			     

	Therefore, the estimated regression used by the consultant is:


			

[image: ]
Figure xr2.5 Fitted regression line and mean

	


Exercise 2.6


(a)	The intercept estimate  is an estimate of the number of sodas sold when the temperature is 0 degrees Fahrenheit.  A common problem when interpreting the estimated intercept is that we often do not have any data points near . If we have no observations in the region where temperature is 0, then the estimated relationship may not be a good approximation to reality in that region.  Clearly, it is impossible to sell 240 sodas and so this estimate should not be accepted as a sensible one.
	

	The slope estimate  is an estimate of the increase in sodas sold when temperature increases by 1 Fahrenheit degree.  This estimate does make sense.  One would expect the number of sodas sold to increase as temperature increases.

(b)	If temperature is 80F, the predicted number of sodas sold is


			


(c)	If no sodas are sold,  and



			    or   	
	
	Thus, she predicts no sodas will be sold below 12F.

(d)	A graph of the estimated regression line:
[image: ]
Figure xr2.6 Fitted regression line


Exercise 2.7
(a)	Since

				
	it follows that

				
	

(b)	The standard error for  is 

[bookmark: _Hlk508695727]					
	Also, 

					
	Thus,

				 


(c)	The value  suggests that a 1% increase in the percentage of the population with a bachelor’s degree or more will lead to an increase of $1028.96 in the mean income per capita.


(d)			


(e)	Since , we have

				
	
(f)	For Georgia

			

Exercise 2.8
(a)	The sample means from the two data parts are


	 and 


	Using these values, we find  and . The fitted line is shown in Figure xr2.8.
[image: ]
Figure xr2.8 Fitted regression line and mean


 (b)	The values of the residuals, computed from, are:
	
	
	
	
	
	

	1
	6
	6
	1
	1

	2
	4
	4
	−3
	−6

	3
	11
	11
	2
	6

	4
	9
	9
	−2
	−8

	5
	13
	13
	0
	0

	6
	17
	17
	2
	12






	The required sums are , 


Exercise 2.8 (continued)
(c) The least squares estimates are

				

				


	For the least squares residuals , .


(d)	The sum of squared residuals from the mean regression is . The sum of the least squares residuals is . The least squares estimator is designed to provide the smallest value.



Exercise 2.9

(a)	

	

	

	Similarly, . Then

	
	Finally,

	

	We have shown that conditional on x the estimator  is unbiased.

 (b)	Use the law of iterated expectations. 
	Because the estimator is conditionally unbiased it is unconditionally unbiased also.

 (c)	





Similarly, . So that




Exercise 2.9(c) (continued)


We know that  is larger than the variance of the least squares estimator because  is a linear estimator. To show this note that




Where  and 


Furthermore  is an unbiased estimator. From the Gauss-Markov theorem we know that the least squares estimator is the “best” linear unbiased estimator, the one with the smallest variance. Therefore, we know that  is larger than the variance of the least squares estimator.




Exercise 2.10

(a)	If  the model reduces to

				
	



(b)	Graphically, setting  implies the regression model is a horizontal line when plotted against  at the height .

(c)	

	
[image: ]
Figure xr2.10 Sum of squares for 


	The minimum appears to be at    

(d)	To find the minimum, we find the value of  such that the slope of the sum of squares function is zero.

				
	Solving, we find

				        

	To ensure that this is a minimum the second derivative must be positive.  as long as N > 0, so that we have at least one data point. 


Exercise 2.10 (Continued)
 (e)		The least-squares estimate is

				
	It is the same given the accurate graph.



(f)		Since . The sum of squared residuals from the least squares regression including the explanatory variable is . We are able to “fit” the model to the data much better by including the explanatory variable.



Exercise 2.11
(a)	We estimate that each additional $100 per month income is associated with an additional 52 cents per person expenditure, on average, on food away from home. If monthly income is zero, we estimate that household will spend an average of $13.77 per person on food away from home.
					

(b)	. We predict that household with $2000 per month income will spend on average $24.17 per person on food away from home.


(c)	In this linear relationship, the elasticity is . We estimate that a 1% increase in income will increase expected food expenditure by 0.43% per person.
					

(d)	In this log-linear relationship, the elasticity is .

(e)		

	


	It is increasing at an increasing rate. This is shown on Figure xr2.11. Also, the second derivative, the rate of change of the first derivative is . A positive second derivative means that the function is increasing at an increasing rate for all values of x.


[image: ]
Figure xr2.11 Log-linear plot

 (f)	The number of zeros is 2334 – 2005 = 329. The reason for the reduction in the number of observations is that the logarithm of zero is undefined and creates a missing data value. The software throws out the row of data when it encounters a missing value when doing its calculations.

[bookmark: _Hlk491264807]Exercise 2.12
(a)	The model estimates for the two values of x are

													
	We estimate that a household without an advanced degree holder will spend on average $44.96 per month on food away per person. We estimate that a household with an advanced degree holder will spend on average $75.37 per month on food away per person. The coefficient on x is the difference between the average expenditures per month on food away for households with an advanced degree holder and households without an advanced degree holder. The intercept is the average expenditure per month on food away for a household without an advanced degree holder.

(b)	In this sample, for households with a member having an advanced degree, their average expenditure on food away from home is $75.37 per person.

(c)	In this sample, for households without a member having an advanced degree, their average expenditure on food away from home is $44.96 per person.



Exercise 2.13
(a)	We estimate that each additional 1000 FTE students increase real total academic cost per student by $266, holding all else constant. The intercept suggests if there were no students the real total academic cost per student would be $14,656. This is meaningless in the pure sense because there are no universities with zero students. However, it is true that many of the costs of a university, related to research and the functioning of hospitals, etc., carry on and are “fixed costs” with respect to student population.
											

(b)	. We predict the total cost per student at LSU in 2011 to be $21,403.


(c)	The least squares residual for LSU is . The regression prediction is too high, an over-prediction of $687.70.


(d)	The least squares regression passes through the point of the means, so that . The average ACA is $20,732.98 for these 141 universities.



Exercise 2.14



(a)	The elasticity at a point on the fitted regression line is . We are given the estimate of the slope and the mean wage in the non-urban area. The fitted least squares line passes through the point of the means, so that. The elasticity at the means is then .
											





(b)	We are given the mean level of EDUC. Therefore . The elasticity is then . The variance of the elasticity is . The standard error of the elasticity is then . The standard error of the estimated slope is 0.16, so the standard error of the elasticity is .




(c)	For the urban area . Given EDUC = 12 the predicted wage is . Given EDUC = 16 the predicted wage is . 



	For the non-urban area, . Given EDUC = 12 the predicted wage is . Given EDUC = 16 the predicted wage is .

Exercise 2.15 
(a)	The EZ estimator can be written as 

				
	where  


				,   ,   and   k3 = k4 = ... = kN = 0

	Thus,  is a linear estimator.

(b)	Taking expectations yields

				
	Thus, bEZ is an unbiased estimator.

(c)	The variance is given by

				

			             



(d)	If , then 

Exercise 2.15 (continued)
(e)	To convince E.Z. Stuff that var(b2) < var(bEZ), we need to show that


				    or that    
	Consider

			
	Thus, we need to show that

				
	or that

				
	or that

				

	This last inequality clearly holds.  Thus,  is not as good as the least squares estimator. Rather than prove the result directly, as we have done above, we could also refer Professor E.Z. Stuff to the Gauss Markov theorem.


Exercise 2.16





(a)	The model is a simple regression model because it can be written as  where , ,  and . 
(b)	The estimates are in the table below
	
	Firm
	GE
	IBM
	FORD
	MSFT
	DIS
	XOM

	
b1 = 
	−0.000959
(0.00442)
	0.00605
(0.00483)
	0.00378
(0.0102)
	0.00325
(0.00604)
	0.00105
(0.00468)
	0.00528
(0.00354)

	

	1.148
(0.0895)
	0.977
(0.0978)
	1.662
(0.207)
	1.202
(0.122)
	1.012
(0.0946)
	0.457
(0.0716)

	N
	180
	180
	180
	180
	180
	180

	Standard errors in parentheses




 	The stocks Ford, GE, and Microsoft are relatively aggressive with Ford being the most aggressive with a beta value of . The others are relatively defensive with Exxon-Mobil being the most defensive with a beta value of .

(c)	All estimates of the are close to zero and are therefore consistent with finance theory. The fitted regression line and data scatter for Microsoft are plotted in Figure xr2.15.
[image: ]
Fig. xr2.15 Scatter plot of Microsoft and market rate



(d)	The estimates for  given  are as follows.
	Firm
	GE
	IBM
	FORD
	MSFT
	DIS
	XOM

	

	1.147
(0.0891)
	0.984
(0.0978)
	1.667
(0.206)
	1.206
(0.122)
	1.013
(0.0942)
	0.463
(0.0717)

	Standard errors in parentheses



	The restriction j = 0 has led to small changes in the ; it has not changed the aggressive or defensive nature of the stock.   


Exercise 2.17
(a)	
[image: ]
Figure xr2.17(a) Price (in $1,000s) against square feet for houses (in 100s)
(b)	The fitted linear relationship is


	We estimate that an additional 100 square feet of living area will increase the expected home price by $13,402.94 holding all else constant. The estimated intercept −115.4236 would imply that a house with zero square feet has an expected price of $−115,423.60. This estimate is not meaningful in this example. The reason is that there are no data values with a house size near zero.
[image: ]
Figure xr2.17(b) Observations and fitted line


Exercise 2.17 (continued)
(c)	The fitted quadratic model is



[bookmark: _Hlk508796309]	The marginal effect is . For a house with 2000 square feet of living area the estimated marginal effect is 2(0.1845)20 = 7.3808. We estimate that an additional 100 square feet of living area for a 2000 square foot home will increase the expected home price by $7,380.80 holding all else constant.			
(d)
[image: ]
Figure xr2.17(d) Observations and quadratic fitted line
(e)	The estimated elasticity is


	For a 2000 square foot house, we estimate that a 1% increase in house size will increase expected price by 0.882%, holding all else fixed.
(f)	The residual plots are
[image: ][image: ]
Figures xr2.17(f) Residuals from linear and quadratic relations
Exercise 2.17(f) (continued)
	In both models, the residual patterns do not appear random. The variation in the residuals increases as SQFT increases, suggesting that the homoskedasticity assumption may be violated.
(g)		The sum of square residuals linear relationship is 5,262,846.9. The sum of square residuals for the quadratic relationship is 4,222,356.3. In this case the quadratic model has the lower SSE. The lower SSE means that the data values are closer to the fitted line for the quadratic model than for the linear model.



Exercise 2.18


(a)	The histograms for PRICE and  are below. The distribution of PRICE is skewed with a long tail to the right. The distribution of  is more symmetrical
[image: ][image: ]
	Figures xr2.18(a) Histograms for PRICE and ln(PRICE)
(b)	The estimated log-linear model is



	The estimated slope can be interpreted as telling us that a 100 square foot increase in house size increases predicted price by approximately 3.6%, holding all else fixed. The estimated intercept tells us little as is. But  suggests that the predicted price of a zero square foot house is $80,953. This estimate has little meaning because in the sample there are no houses with zero square feet of living area.
	For a 2000 square foot house the predicted price is

				
	The estimated slope is

				

Exercise 2.18 (continued)
	The predicted price of a house with 2000 square feet of living area is $166,460.10. We estimate that 100 square foot size increase for a house with 2000 square feet of living area will increase price by $6,000, holding all else fixed. This is the slope of the tangent line in the figure below.
[image: ]
Figure xr2.18(b) Observations and log-linear fitted line

(c)	The residual plot is shown below. The residual plot is a little hard to interpret because there are few very large homes in the sample. The variation in the residuals appears to diminish as house size increases, but that interpretation should not be carried too far.
[image: ]
Figure xr2.18(c) Residuals from log-linear relation

(d)	The summary statistics show that there are 189 houses close to LSU and 311 houses not close to LSU in the sample. The mean house price is $10,000 larger for homes close to LSU, and the homes close to LSU are slightly smaller, by about 100 square feet. The range of the data is smaller for the homes close to LSU, and the standard deviation for those homes is half the standard deviation of homes not close to LSU.


Exercise 2.18 (continued)	
	
	CLOSE = 1
	CLOSE = 0

	STATS
	PRICE
	SQFT
	PRICE
	SQFT

	N
	189
	189
	311
	311

	mean
	256.6298
	26.59011
	246.3518
	27.70267

	sd
	108.5878
	8.735512
	200.3505
	11.05563

	min
	110
	10
	50
	10

	max
	900
	59.73
	1370
	91.67



(e)	The estimates for the two sub-samples are
	
	
	C
	SQFT
	N
	SSE

	CLOSE = 1
	Coeff
	4.7637
	0.0269
	189
	14.2563

	
	Std. err.
	(0.0645)
	(0.0023)
	
	

	CLOSE = 0
	Coeff
	4.2019
	0.0402
	311
	36.6591

	
	Std. err.
	(0.0528)
	(0.0018)
	
	



	For homes close to LSU we estimate that an additional 100 square feet of living space will increase predicted price by about 2.69% and for homes not close to LSU about 4.02%.
(f)	Assumption SR1 implies that the data are drawn from the same population. So the question is, are homes close to LSU and homes not close to LSU in the same population? Based on our limited sample, and using just a simple, one variable, regression model it is difficult to be very specific. The estimated regression coefficients for the sub-samples are different, the question we will be able to address later is “Are they significantly different.” Just looking at the magnitudes is not a statistical test.




Exercise 2.19
(a)	
[image: ]
			Figure xr2.19(a)  Scatter plot of selling price and living area
(b)	The estimated linear relationship is


	We estimate that an additional 100 square feet of living area will increase the expected home price by $9,893.40 holding all else constant. The estimated intercept −35.9664 would imply that a house with zero square feet has an expected price of $−35,966.40. This estimate is not meaningful in this example. The reason is that there are no data values with a house size near zero.
[image: ]
Figure xr2.19(b) Fitted linear relation


Exercise 2.19 (continued)
(c)	The estimated quadratic equation is


	The marginal effect is . For a house with 1500 square feet of living area the estimated marginal effect is 2(0.2278)15 = 6.834. We estimate that an additional 100 square feet of living area for a 1500 square foot home will increase the expected home price by $6,834 holding all else constant.

(d)	
[image: ]
Figure xr2.19(d) Fitted linear and quadratic relations
	The sum of squared residuals for the linear relation is SSE = 1,879,826.9948. For the quadratic model the sum of squared residuals is SSE = 1,795,092.2112. In this instance, the sum of squared residuals is smaller for the quadratic model, one indicator of a better fit.

(e)	If the quadratic model is in fact “true,” then the results and interpretations we obtain for the linear relationship are incorrect, and may be misleading.


Exercise 2.20
(a)	The estimates are reported in the table below. Of the 1200 homes in the sample, 69 are on large lots. None of the estimated intercepts has a useful interpretation because no houses in the samples have near zero living area. The estimated slope coefficients suggest that for houses on large lots, a 100 square foot increase in house size will increase expected price by $9,763.20, holding all else fixed. For houses not on large lots the estimate is $9,289.70, about $500 less than for houses on large lots. The full sample estimate is $9,893.40, which is between the estimates for homes on large lots and not on large lots.
	
	
	C
	LIVAREA
	N
	SSE

	LGELOT = 1
	Coeff
	5.0199
	9.7632
	69
	490972.8

	
	Std. err.
	(25.6709)
	(1.0014)
	
	

	LGELOT = 0
	Coeff
	−28.7476
	9.2897
	1131
	1271831.3

	
	Std. err.
	(3.1374)
	(0.1884)
	
	

	All
	Coeff
	−35.9664
	9.8934
	1200
	1879827.0

	
	Std. err.
	(3.3085)
	(0.1912)
	
	




(b)	The estimates are reported in the table below. Of the 1200 homes in the sample, 69 are on large lots. None of the estimated intercepts has a useful interpretation because no houses in the samples have near zero living area. The estimated coefficients of  are somewhat different for houses on large lots and those not on large lots.
	
	
	C
	LIVAREA
	N
	SSE

	LGELOT = 1
	Coeff
	120.7025
	0.1728
	69
	538400.4

	
	Std. err.
	(16.6150)
	(0.0192)
	
	

	LGELOT = 0
	Coeff
	52.2575
	0.2368
	1131
	1128980.3

	
	Std. err.
	(1.5431)
	(0.0044)
	
	

	All
	Coeff
	56.4572
	0.2278
	1200
	1795092.2

	
	Std. err.
	(1.6955)
	(0.0043)
	
	




To evaluate the differences, it is useful to calculate the slope, . For homes with 2000 square feet of living area the estimated slopes are
Large lots: 6.91128; Not Large lots: 9.471073; All lots: 9.112585
That is, we estimate that for a 2000 square foot home, 100 more square feet of living area, the expected price will increase by $6,911 for homes on large lots, $9,471 for homes not on large lots, and $9,113 based on all lots. The difference between the marginal effect of house size on house price for large lots and not large lots is substantial. The estimate using all the data is close to the estimate on lots that are not large because most of the data comes from such lots.



Exercise 2.20 (continued)
(c)	




In this model  is the expected price of houses not on large lots, and  is the expected price of houses on large lots. Inserting the estimates, we obtain


That is, the expect price of houses on lots that are not large is $117,948.70 and the expected price of houses on large lots is $234,242.80. The expected price on large lots is about twice the expected price of houses on lots that are not large.
(d)	Assumption SR1 requires that the data pairs in the sample are from the same population. If there are substantial differences between homes on lots and those not on large lots then SR1 will be violated meaning that estimation results on a pooled sample are not reliable. The result in part (c) indicates that there may be large differences between homes on these types of lots. What will be of interest later, in Chapter 3, is whether the difference is statistically significant.



Exercise 2.21
(a)	



	We estimate that a house that is new, AGE = 0, will have expected price $152,614.40. We estimate that each additional year of age will reduce expected price by $981.20, other things held constant. The expected selling price for a 30-year-old house is .  
(b)	
[image: ]
Figure xr2.21(b) Observations and linear fitted line
	The data show an inverse relationship between house prices and age. The data on newer houses is not as close to the fitted regression line as the data for older homes.
(c)	


We estimate that each additional year of age reduces expected price by about 0.75%, holding all else constant.  


Exercise 2.21 (continued)
 (d)	
[image: ]
Figure xr2.21(c) Observations and log-linear fitted line
	The fitted log-linear model is not too much different than the fitted linear relationship.

(e)	The expected selling price of a house that is 30 years old is . This is about $13,000 less than the prediction based on the linear relationship.


(f)	Based on the plots and visual fit of the estimated regression lines it is difficult to choose between the two models. For the estimated linear relationship . For the log-linear model . The sum of squared differences between the data and fitted values is smaller for the estimated linear relationship, by a small margin. This is one way to measure how well a model fits the data. In this case, based on fit alone, we might choose the linear relationship rather than the log-linear relationship.


Exercise 2.22

[bookmark: MTBlankEqn](a)	The regression model is . Under the model assumptions





	Thus  is the expected total score in regular sized classes, and  is the expected total score in small classes. The difference  is an estimate of the difference in performance in small and regular sized classes. The model estimates are given in Table xr2-22a, Model (1).
	Table xr2-22a
	
	
	
	

	
	
	C
	SMALL
	N
	SSE

	(1)  TOTALSCORE
	Coeff
	916.4417
	12.1753
	775
	4300389

	
	Std. err.
	(3.6746)
	(5.3692)
	
	

	(2)  READSCORE
	Coeff
	432.6650
	6.9245
	775
	705200

	
	Std. err.
	(1.4881)
	(2.1743)
	
	

	(3)  MATHSCORE
	Coeff
	483.7767
	5.2508
	775
	1910009

	
	Std. err.
	(2.4489)
	(3.5783)
	
	



	The estimated equation using a sample of small and regular classes (where AIDE = 0) is

				

	Comparing a sample of small and regular classes, we find students in regular classes achieve an average total score of 916.442 while students in small classes achieve an average of . This is a 1.33% increase. This result suggests that small classes have a positive impact on learning, as measured by higher totals of all achievement test scores.
(b)	The estimated equations using a sample of small and regular classes are given in Table xr2-22a as Models (2) and (3)

				

				
	Students in regular classes achieve an average reading score of 432.7 while students in small classes achieve an average of 439.6. This is a 1.60% increase. In math students in regular classes achieve an average score of 483.77 while students in small classes achieve an average of 489.0. This is a 1.08% increase. These results suggests that small class sizes also have a positive impact on learning math and reading.


Exercise 2.22 (continued)
(c)	The estimated equations using a sample of regular classes and regular classes with a full-time teacher aide (when SMALL = 0) are given in Table xr2-22b
	Table xr2-22b
	
	
	
	

	
	
	C
	AIDE
	N
	SSE

	(4) TOTALSCORE
	Coeff
	916.4417
	4.3065
	837
	4356550

	
	Std. err.
	(3.5586)
	(4.9940)
	
	

	(5)  READSCORE
	Coeff
	432.6650
	2.8714
	837
	733335

	
	Std. err.
	(1.4600)
	(2.0489)
	
	

	(6)  MATHSCORE
	Coeff
	483.7767
	1.4351
	837
	1907234

	
	Std. err.
	(2.3546)
	(3.3043)
	
	




				
	Students in regular classes without a teacher aide achieve an average total score of 916.4 while students in regular classes with a teacher aide achieve an average total score of 920.7. This is an increase of 0.47%. These results suggest that having a full-time teacher aide has a small impact on learning outcomes as measured by totals of all achievement test scores.
(d)	The estimated equations using a sample of regular classes and regular classes with a full-time teacher aide are

				

				
	The effect of having a teacher aide on learning is 0.66% for reading and 0.30% for math. These increases are smaller than the increases provided by smaller classes.


Exercise 2.23
(a)	
[image: ]
Figure xr2.23(a) Vote against Growth
	There appears to be a positive association between VOTE and GROWTH.

(b)	The estimated equation for 1916 to 2012 is

				
		The coefficient 0.9639 suggests that for a 1 percentage point increase in a favorable growth rate of GDP in the 3 quarters before the election there is an estimated increase in the share of votes of the democratic party of 0.9639 percentage points.  
	We estimate, based on the fitted regression intercept, that that the Democratic party’s expected vote is 48.62% when the growth rate in GDP is zero.  This suggests that when there is no real GDP growth, the Democratic party is expected to lose the popular vote. A graph of the fitted line and data is shown in the following figure.
[image: ]
Figure xr2.23(a) Vote vs Growth fitted


Exercise 2.23 (continued)

(c)	In 2016 the actual growth rate in GDP was 0.97% and the predicted expected vote in favor of the Democratic party was , or 49.55%. The actual popular vote in favor of the Democratic party was 50.82%.
 (d)	The figure below shows a plot of VOTE against INFLATION. It is difficult to see if there is positive or inverse relationship.
[image: ]
Figure xr2.23(d) Vote against Inflat
(e)	The estimated equation (plotted in the figure below) is

				
We estimate that a 1 percentage point increase in inflation during the party’s first 15 quarters increases the share of Democratic party’s vote by 0.2616 percentage points. The estimated intercept suggests that when inflation is at 0% for that party’s first 15 quarters, the expected share of votes won by the Democratic party is 49.6%.
[image: ]
Figure xr2.23(e) Vote vs Inflat fitted

Exercise 2.23 (continued)

(f)	The actual inflation value in the 2016 election was 1.42%. The predicted vote in favor of the Democratic candidate (Clinton) was , or 49.99%.



Exercise 2.24
 (a)	The histogram shows a very skewed distribution
[image: ]
Figure xr2.24(a) Histogram of real hammer price
	The sample mean, based on 422 works that sold is $78,682. But the 25th, 50th and 75th percentiles are $2,125, $13,408 and $46,102 respectively; all less than the mean which is inflated due to some extreme values. The two largest values are $3,559,910 and $3,560,247.
(b)	
[image: ]
Figure xr2.24(b) Histogram of ln(real hammer price)

	 is not “bell shaped” but it is hardly skewed at all (skewness close to zero). It has been “regularized” by the transformation. This is not necessary for regression, but as you will see in Chapter 3 having data closer to normal makes analysis nice.


Exercise 2.24 (continued)
(c)	
[image: ]
Figure xr2.24(c) Observations and log-linear fitted line

	The data scatter shows a positive association between  and the age of the painting. The fitted OLS regression line passes through the center of the data, as it is designed to do.
(d)	

				
		We estimate that each additional year of age increases predicted hammer price by about 2%, other factors held constant.  
(e)	








		In this model, the expected  is  during non-recession and is  in a recession. The estimated regression function during a recession is . We estimate that during a non-recessionary period the average hammer price is $12,867, using , and during a recession we predict the average price to be $4,539, using , more than a 50% reduction.  


Exercise 2.25
(a)	
[image: ]
Figure xr2.25(a) Histogram of foodaway
	The mean of the 1200 observations is 49.27, the 25th, 50th and 75th percentiles are 12.04, 32.56 and 67.60. The histogram figure shows a very skewed distribution, with a mean that is larger than the median. 50% of households spend $32.56 per person or less during a quarter.
(b)	Households with a member with an advanced degree spend an average of about $25 more per person than households with a member with a college degree, but not advanced degree. Households with a member with a college degree, but not advanced degree, spend an average of about $9 more per person than households with no members with a college or advanced degree. 
	
	
	N
	Mean
	Median

	ADVANCED = 1
	257
	73.15
	48.15

	COLLEGE = 1
	369
	48.60
	36.11

	NONE
	574
	39.01
	26.02





Exercise 2.25 (continued)
 (c)	
[image: ]
Figure xr2.25(c) Histogram of ln(foodaway)
	The histogram of ln(FOODAWAY) is much less skewed. There are 178 fewer values of ln(FOODAWAY) because 178 households reported spending $0 on food away from home per person, and ln(0) is undefined. It creates a “missing value” which software cannot use in the regression. If any variable has a missing value in either yi or xi the entire observation is deleted from regression calculations.
(d)	The estimated model is

				
We estimate that each additional $100 household income increases food away expenditures per person of about 0.69%, other factors held constant.

(e)	
[image: ]
Figure xr2.25(e) Observations and log-linear fitted line
	The plot shows a positive association between ln(FOODAWAY) and INCOMEs.
Exercise 2.25 (continued)
 (f)	
[image: ]
Figure xr2.25(f) Residuals vs. income
	The OLS residuals do appear randomly distributed with no obvious patterns. There are fewer observations at higher incomes, so there is more “white space.”



Exercise 2.26
(a)	

				
	We estimate that a household with zero income in the past quarter will spend an average of $13.71 per member on food away from home. This estimate should not be taken too seriously because there are no households with income near zero in the sample. We estimate that each additional $100 household income increases expected food expenditure away from home by 49 cents, holding other factors fixed.  
(b)	
[image: ]
Figure xr2.25(e) Observations and log-linear fitted line
	The residuals do not appear randomly distributed. There is a “spray” pattern with a concentration of observations along the lower edge.
(c)	

				
		We estimate that the expected per person expenditure for households with no advanced degree holder is $42.76. We estimate that the expected per person expenditure for households with an advanced degree holder is $73.15, which is $30.39 higher.  
(d)	The sample means for the two groups are shown below. The mean of the observations with ADVANCED = 0 is the estimated intercept in (c), and the estimated mean of the observations with ADVANCED = 1 is $30.39 higher, the estimated coefficient of advanced in part (c). 
	
	
	N
	Mean

	ADVANCED = 1
	257
	73.15494

	ADVANCED = 0
	943
	42.76161





Exercise 2.27
(a)	
[image: ]
Figure xr2.27(a) Motel_pct vs. 100relprice
	There seems to be an inverse association between relative price and occupancy rate.
(b)	

				
		Based economic reasoning we anticipate a negative coefficient for RELPRICE. The slope estimate is interpreted as saying, the expected model occupancy rate falls by 1.22% given a 1% increase in relative price, other factors held constant.  


Exercise 2.27 (continued)
 (c)	
[image: ]
Figure xr2.27(c) OLS residuals
	The residuals are scattered about zero for the first 16 observations but for observations 17-23 all but one of the residuals is negative. This suggests that the occupancy rate was lower than predicted by the regression model for these dates. Randomly scattered time series residuals should not have strings of consecutive observations with the same sign.
(d)	

				
		We estimate that during the non-repair period the expected occupancy rate is 79.35%. During the repair period, the expected occupancy rate is estimated to fall by 13.24%, other things held constant, to 66.11%.  


Exercise 2.28
(a)	
[image: ]
	variable
	N
	mean
	median
	min
	max
	skewness
	kurtosis

	WAGE
	1200
	23.64
	19.3
	3.94
	221.1
	2.9594
	27.5787


Figure xr2.28(a1) Histogram and statistics for WAGE
	The observations for WAGE are skewed to the right indicating that most of the observations lie between the hourly wages of 5 to 50, and that there is a smaller proportion of observations with an hourly wage greater than 50. Half of the sample earns an hourly wage of more than $19.30 per hour, with the average being $23.64 per hour. The maximum earned in this sample is $221.10 per hour and the least earned in this sample is $3.94 per hour.

[image: ]
	variable
	N
	mean
	median
	min
	max
	skewness
	kurtosis

	EDUC
	1200
	14.20
	14
	0
	21
	−.45625
	4.95745


Figure xr2.28(a2) Histogram and statistics for EDUC
	307 people had 12 years of education, implying that they finished their education at the end of high school. There are a few observations at less than 12, representing those who did not complete high school. The spike at 16 years describes those 304 who completed a 4-year college degree, while those at 18 and 21 years represent a master’s degree, and further education such as a PhD, respectively. Spikes at 13 and 14 years are people who had one or two years at college.
Exercise 2.28 (continued)
(b)	The estimated model is

							
The coefficient 2.3968 represents the estimated increase in the expected hourly wage rate for an extra year of education.  The coefficient −10.4 represents the estimated wage rate of a worker with no years of education. It should not be considered meaningful as it is not possible to have a negative hourly wage rate.
(c)	
[image: ]
Figure xr2.28(c) Residuals from linear wage model
	The residuals are plotted against education in Figure xr2.28(c).  There is a pattern evident; as EDUC increases, the magnitude of the residuals also increases, suggesting that the error variance is larger for larger values of EDUC—a violation of assumption SR3. If the assumptions SR1-SR5 hold, there should not be any patterns evident in the residuals.
(b)	The estimated model equations, including the one from part (b), are given in Table xr2-28
	Table xr2-28

	
	
	
	C
	EDUC
	N
	SSE

	part (b)
	all
	Coeff
Std. err.
	−10.4000
(1.9624)
	2.3968
(0.1354)
	1200
	220062.3

	part (c)
	male
	Coeff
Std. err.
	−8.2849
(2.6738)
	2.3785
(0.1881)
	672
	144901.4

	
	female
	Coeff
Std. err.
	−16.6028
(2.7837)
	2.6595
(0.1876)
	528
	69610.5

	
	white
	Coeff
Std. err.
	−10.4747
(2.0806)
	2.4178
(0.1430)
	1095
	207901.2

	
	black
	Coeff
Std. err.
	−6.2541
(5.5539)
	1.9233
(0.3983)
	105
	11369.7



	The white equation is obtained from those workers who are neither black nor Asian.  From the results, we can see that an extra year of education increases the expected wage rate of a white worker more than it does for a black worker. And an extra year of education increases the expected wage rate of a female worker more than it does for a male worker.
Exercise 2.28 (continued)
 (e)	The estimated quadratic equation is


	The marginal effect is . For a person with 12 years of education, the estimated marginal effect of an additional year of education on expected wage is 2(0.0891)(12) = 2.1392. That is, an additional year of education for a person with 12 years of education is expected to increase wage by $2.14. For a person with 16 years of education, the marginal effect of an additional year of education is 2(0.0891)(16) = 2.8523. An additional year of education for a person with 16 years of education is expected to increase wage by $2.85. The linear model in (b) suggested that an additional year of education is expected to increase wage by $2.40 regardless of the number of years of education attained. That is, the rate of change was constant. The quadratic model suggests that the effect of an additional year of education on wage increases with the level of education already attained.

(f)	
[image: ]
Figure xr2.28(f) Quadratic and linear equations for wage on education
The quadratic model appears to fit the data slightly better than the linear equation, especially at lower levels of education.


Exercise 2.29
(a)	
[image: ]
	variable
	N
	mean
	median
	min
	max
	skewness
	kurtosis

	ln(WAGE)
	1200
	2.9994
	2.9601
	1.3712
	5.3986
	0.2306
	2.6846


Figure xr2.29(a) Histogram and statistics for ln(WAGE)
	The histogram shows the distribution of ln(WAGE) to be almost symmetrical. Note that the mean and median are similar, which is not the case for skewed distributions. The skewness coefficient is not quite zero. Similarly, the kurtosis is not quite three, as it should be for a normal distribution.
(b)	The OLS estimates are

				
	We estimate that each additional year of education predicts a 9.87% higher wage, all else held constant.



(c)	The antilogarithm is . For someone with 12 years of education the predicted value is  and for someone with 16 years of education it is . 


(d)	The marginal effect in the log-linear model , ignoring the error term, is . For individuals with 12 and 16 years of education, respectively, these values are $1.5948 and $2.3673. These are the estimated marginal effects of education on expected wage in this log-linear model. 


Exercise 2.29 (continued)
(e)	
[image: ]
Figure xr2.29(e) Observations with linear and loglinear fitted lines
	The log-linear model fits the data better at low levels of education.

(f)	A more objective measure of fit is . For the log-linear model this value is 228,573.5 and for the linear model 220,062.3. Based on this measure the linear model fits the data better than the linear model. 



Exercise 2.30
(a)	
	variable
	N
	mean
	p50
	min
	max
	skewness
	kurtosis
	p10
	p90

	AMOUNT
	1000
	24.46
	20.8
	1.4
	110.3
	2.018
	8.458
	7.994
	45.7

	FICO
	1000
	686
	688.5
	500
	809
	−0.4233
	2.713
	596.5
	767

	RATE
	1000
	6.024
	6.25
	1.25
	14.4
	0.2543
	3.454
	3.125
	8.387

	TERM30
	1000
	0.853
	1
	0
	1
	−1.994
	4.975
	0
	1



	The average amount borrowed is $244,600. The 90th percentile FICO score is 767. The median interest rate paid was 6.25%. 85.3% of the loans were for 30 years.

 (b)	The empirical distribution of the loan amount is skewed with a long tail to the right. The empirical distribution for ln(AMOUNT) is less noticeably skewed. The skewness coefficient is −0.6341 and kurtosis is 4.3028 so the distribution is far from normal. The FICO score ranges from 500 to 800 and has a bit of left skew. The loan rate is “bi-modal” (two modes) with the most common rates about 3.1% and 6.5%. 
[image: ][image: ]
[image: ][image: ]
	Figures xr2.30(b) Histograms


Exercise 2.30 (continued)
 (c)	


		For each additional point on the FICO score we predict loan amount will increase by $429, holding other factors fixed.  


		For each additional point on the FICO score we predict loan amount will increase by 0.08%, holding other factors fixed.  

 (d)	


		For each one percent increase in the mortgage rate we predict the amount borrowed will fall by $18,306 other factors held constant.  


		For each one percent increase in the mortgage rate we predict the amount borrowed will fall by 12.11%, other factors held constant.  
(e)	


		There are 853 loans with 30-year terms, and the average borrowed is $255,976.40. For the 147 loans of something other than 30-year terms the average borrowed is $178,400.80. In the regression model, the estimated intercept is the average amount borrowed when TERM30 = 0. The estimated coefficient of TERM30 is the difference between the amounts borrowed when TERM30 = 0 and when TERM30 = 1.  
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Figure xr2.19b Fitted linear relation
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Figure xr2.19d Fitted linear and quadratic
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Figure xr2.21b Observations and linear fitted line
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Figure xr2.21d Observations and log-linear fitted line
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Figure xr2.23b Vote vs Growth fitted
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Figure xr2.24c Observations and log-linear fitted line
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Figure xr2.25e Observations and log-linear fitted line
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