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Chapter 1

Introduction and Objectives

Solution 1. (Probabilities of basic events)

In each case, the shaded region represents the (X1, X2) values satisfying the correspond-
ing inequalities. Since X1 and X2 are independent and uniformly distributed, the area of the
shaded region gives the probability of the inequality being satisfied. We use Pr {·} to denote the
probability of an event.

(a)

Pr

{
0 ≤ X1 −X2 ≤

1

3

}
=

1

2
− 1

2
×
(

2

3
× 2

3

)
=

5

18
.

X1

X2

(b)

Pr
{
X3

1 ≤ X2 ≤ X2
1

}
=

∫ 1

0

(x2 − x3) dx =

[
x3

3
− x4

4

]1

0

=
1

12
.
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X1

X2

(c)

Pr

{
X2 −X1 =

1

2

}
= 0.

X1

X2

(d)

Pr

{(
X1 −

1

2

)2

+

(
X2 −

1

2

)2

≤
(

1

2

)2
}

= π

(
1

2

)2

=
π

4
.

X1

X2
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(e) In this part we have

Pr

{(
X1 −

1

2

)2

+

(
X2 −

1

2

)2

≤
(

1

2

)2
∣∣∣∣∣ X1 ≥

1

4

}

=
Pr
{(
X1 − 1

2

)2
+
(
X2 − 1

2

)2 ≤ ( 1
2

)2
, X1 ≥ 1

4

}
Pr
{
X1 ≥ 1

4

}
=

π
6 +

√
3

16
3
4

.

It can easily be seen that the probability term in the numerator is equal to the area of the
shaded region in the figure below. We can divide the shaded area into two parts, triangular
and sub circular. It is easy to show that the angle of the triangle on the picture is 120◦

so the sub circular part consists of 2
3 of the circle area. So the sub circular part’s area is

2
3 π( 1

2 )2 = π
6 and the triangular part’s area is

√
3

16 . Summing the area of these two parts,
we reach the final result.

X1

X2

Solution 2. (Basic probabilities)

(a) First, we find the probability of the complement of the event, namely the probability of
drawing only black balls. This probability is equal to

Pr {All k balls are black} =

(
n
k

)(
m+n
k

) .
Therefore the probability of drawing at least one white ball is equal to

Pr {At least one ball is white} = 1−
(
n
k

)(
m+n
k

) .
(b) Define the following random variables

X =

{
0 if the chosen coin is fair,
1 otherwise,
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and

Y =


00 if both outcomes are tail,
01 if the first one is tail, the second one is head,
10 if the first one is head, the second one is tail,
11 if both outcomes are head.

So having these two random variables defined, we want to compute Pr {X = 0|Y = 11}. So
we can write

Pr {X = 0|Y = 11} =
Pr {Y = 11|X = 0}Pr {X = 0}

Pr {Y = 11}

=
1/4× 1/2

Pr {Y = 11}

=
1/8

Pr {Y = 11}
.

Then for Pr {Y = 11} we have

Pr {Y = 11} = Pr {X = 0} · Pr {Y = 11|X = 0}+ Pr {X = 1} · Pr {Y = 11|X = 1}
= 1/2× 1/4 + 1/2× 1

= 5/8.

So, finally we have

Pr {X = 0|Y = 11} =
1/8

5/8
=

1

5
.

Solution 3. (Conditional distribution)
The probability mass has been distributed uniformly on the upper triangular area according

to the shape below:

X

Y

(a) If X and Y were independent then the distribution of X would not depend on Y . This is
clearly not the case. In fact, the range of values taken by X is between 0 and Y .

(b) The integral of fX,Y (x, y) must be 1. Hence A× 1
2 = 1 and so A = 2.
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(c) We know that fY (y) dy = Pr {y < Y < y + dy}, but for a special y as can be seen from the
figure below, this probability mass is equal to A times the area of a rectangle with length y
and width dy when 0 ≤ y ≤ 1.

fY (y) =

{
2y 0 < y < 1,
0 otherwise.

Or more formally

fY (y) =

∫ 1

0

fX,Y (x, y) dx =

∫ y

0

2 dx = 2y.

X

Y

(d) Under the condition Y = y, the random variable X is uniformly distributed between 0 and
y and so f(y) = E [X|Y = y] = y

2 .

(e) f(Y ) is a function of Y so it is a random variable and we can compute its expected value.

E [f(Y )] =

∫ 1

0

f(y)fY (y) dy =

∫ 1

0

y2 dy =
1

3
.

(f) We compute E [X] using the definition.

E [X] =

∫∫
xfX,Y (x, y) dx dy =

∫ 1

0

[∫ y

0

2x dx

]
dy =

1

3
,

and it is seen that E [X] = E [E [X|Y ]]. This result, which holds in general, is named the
law of total expectation.

Solution 4. (Playing darts)

(a) X = ZX1 + (1− Z)X2.

(b) Note that E [X] = 0, because expectation is linear and Z is independent from X1 and X2.
Thus,

Var(X) = E
[
X2
]
− E[X]2

= E
[
X2
]

= E
[
X2|Z = 1

]
p+ E

[
X2|Z = 0

]
(1− p)

= pσ2
1 + (1− p)σ2

2 .
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X is not Gaussian. In fact X is not a linear combination of two Gaussians, it is rather a
mixture of two Gaussians. One can use the characteristic function to show rigorously that
X is not a Gaussian, but this is outside the scope of this class.

(c)

E [S] = p

∫ ∞
−∞
|x| 1

σ1

√
2π
e
− x2

2σ21 dx+ (1− p)
∫ ∞
−∞
|x| 1

σ2

√
2π
e
− x2

2σ22 dx

= 2p

∫ ∞
0

x
1

σ1

√
2π
e
− x2

2σ21 dx+ 2(1− p)
∫ ∞

0

x
1

σ2

√
2π
e
− x2

2σ22 dx.

With the change of variables u1 = x2

2σ2
1

and u2 = x2

2σ2
2

, we obtain

E [S] = 2p
σ1√
2π

∫ ∞
0

e−u1 du1 + 2(1− p) σ2√
2π

∫ ∞
0

e−u2 du2

=
2√
2π

[pσ1 + (1− p)σ2] .

Solution 5. (Uncorrelated vs. independent random variables)
Note:

• By definition, X and Y are uncorrelated if and only if

0 = cov(X,Y ) = E [(X − E [X])(Y − E [Y ])] = E [XY ]− E [X]E [Y ].

Hence cov(X,Y ) = 0 is equivalent to the the condition E [XY ] = E [X]E [Y ].

• X and Y are independent when fXY = fXfY .

(a) Assume that the random variables X and Y are independent. Then

E [XY ] =

∫∫
xyfX,Y (x, y) dx dy =

∫∫
xyfX(x)fY (y) dx dy

=

∫
xfX(x) dx

∫
yfY (y) dy = E [X]E [Y ],

where the second equality follows from the assumption that X and Y are independent.
Hence, if X and Y are independent, they are also uncorrelated.

(b) X and Y are obviously dependent. For example, X = 0 implies U = 0 and V = 0. Hence
it implies also Y = 0. The marginals of X and Y are

X =


0 with prob. 1

4 ,

1 with prob. 1
2 ,

2 with prob. 1
4 ,

Y =

{
0 with prob. 1

2 ,

1 with prob. 1
2 .
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The mean for X is E [X] = 1 and for Y it is E [Y ] = 1
2 . Finally, we have that

E [XY ] =

(
1

4
× 0× 0

)
+

(
1

4
× 1× 1

)
+

(
1

4
× 1× 1

)
+

(
1

4
× 0× 2

)
=

1

2
.

From the above we obtain

cov(X,Y ) = E [XY ]− E [X]E [Y ] = 0.

Therefore, we see that X and Y are uncorrelated, even though they are dependent.

Solution 6. (Monty Hall)

(a) Pr {A contains one million Swiss francs} = 1/3.

(b) Observe that B contains the money if and only if A does not contain the money, thus

Pr {B contains one million Swiss francs} = Pr {A contains nothing} = 2/3.

(c) A reasonable person will choose B since it has a larger probability of containing the money.
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Chapter 2

Receiver Design for Discrete-Time
Observations: First Layer

Solution 1. (Hypothesis testing: Uniform and uniform)

(a) Let l(y) be the number of 0’s in the sequence y.

PY |H(y|0) =
1

22k

PY |H(y|1) =

{
1

(2k
k )
, if l = k

0, otherwise

(b) The ML decision rule is:

PY |H(y|1)
Ĥ=1

R
Ĥ=0

PY |H(y|0)

Because 1

(2k
k )

> 1
22k for any value of k, the ML decision rule becomes

Ĥ =

{
0, if l(y) 6= k

1, if l(y) = k.

The single number needed is l(y), the number of 0’s in the sequence y.

(c) The decision rule that minimizes the error probability is the MAP rule:

PY |H(y|1)PH(1)
Ĥ=1

R
Ĥ=0

PY |H(y|0)PH(0).

The MAP decision rule gives Ĥ = 0 whenever l(y) 6= k. When l(y) = k:

Ĥ =

{
0, if

(2k
k )

22k ≥ PH(1)
PH(0)

1, otherwise.

13
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(d) Trivial solution: If PH(1) = 1 then Ĥ = 1 for all y (In this case, l(y) = k is guaranteed).
Similarly, if PH(0) = 1 then Ĥ = 0 for all y.

Now assume PH(1) 6= 1. Then there is a nonzero probability that l(y) 6= k, in which case
Ĥ = 0. The MAP decision rule always chooses Ĥ = 0 if(

2k
k

)
22k
≥ PH(1)

PH(0)
⇐⇒ PH(0) ≥

1

(2k
k )

1

(2k
k )

+ 1
22k

.

Solution 2. (The “Wetterfrosch”)

(a) A and B must be chosen such that the suggested functions become valid probability density

functions, i.e.
∫ 1

0
fY |H(y|i)dy = 1 for i = 0, 1. This yields A = 4/3 and B = 6/7. (A

quicker way is to draw the functions and find the area by looking at the drawings.)

(b) Let us first find the marginal of Y , i.e.

fY (y) = fY |H(y|0)PH(0) + fY |H(y|1)PH(1) = C −Dy,

where we find C = 23/21 and D = 4/21. Then, applying Bayes’ rule gives

PH|Y (0|y) =
fY |H(y|0)PH(0)

fY (y)
=

1

2

A− A
2 y

C −Dy
=

1

2

4/3− 2/3y

23/21− 4/21y
,

and similarly

PH|Y (1|y) =
fY |H(y|1)PH(1)

fY (y)
=

1

2

B + B
3 y

C −Dy
=

1

2

6/7 + 2/7y

23/21− 4/21y
.

(c) The threshold is where the two a posteriori probabilities are equal,

1

2

4/3− 2/3y

23/21− 4/21y
=

1

2

6/7 + 2/7y

23/21− 4/21y
,

or equivalently,

4/3− 2/3y = 6/7 + 2/7y.

The y that satisfies this equation is our threshold θ, thus θ = 0.5.

(d) The probability that we decide Ĥγ(y) = 1 when in reality H = 0 is just the probability that
y is larger than the threshold given that H = 0, which is

Pr {Y > γ|H = 0} =

∫ 1

γ

fY |H(y|0)dy =

∫ 1

γ

(
A− A

2
y

)
dy

= A(1− γ)− A

2

1− γ2

2

=
4(1− γ)

3
− 1− γ2

3
.
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y

PH|Y (i|y)

0 0.5 1

0.5

i = 1i = 0

(e) By analogy to the previous question,

Pr {Y < γ|H = 1} =

∫ γ

0

fY |H(y|1)dy =

∫ γ

0

(
B +

B

3
y

)
dy

= Bγ +
B

3

γ2

2

=
6γ

7
+
γ2

7
.

Pe(γ) = Pr {Y > γ|H = 0}PH(0) + Pr {Y < γ|H = 1}PH(1)

=
1

2

(
4(1− γ)

3
− 1− γ2

3
+

6γ

7
+
γ2

7

)
.

For γ = θ = 0.5, we find Pe(θ) = 0.44.

(f) To minimize Pe over γ, we take the derivative of Pe with respect to γ, i.e.

d

dγ
Pe(γ) =

1

2

(
−4

3
+

2γ

3
+

6

7
+

2γ

7

)
.

Setting this equal to zero, we find γ = 0.5. We observe that the value of γ which minimizes
Pe(γ) is equal to θ. This was expected, because the MAP decision rule minimizes the error
probability.

Solution 3. (Hypothesis testing in Laplacian noise)

(a) We find the following conditional densities for the observation Y under hypothesis H = 0
and H = 1, respectively:

fY |H(y|0) =
1

2
e−|y−a|

fY |H(y|1) =
1

2
e−|y+a|.



16 Chapter 2.

0.5

y
−a 0 a

fY |H(y|1) fY |H(y|0)

(b) Because the hypotheses are equally likely, the MAP rule is the same as the ML rule. There-
fore, the probability of error is minimized by the following decision rule:

fY |H(y|1)
Ĥ=1

R
Ĥ=0

fY |H(y|0).

From the picture of fY |H(y|0) and fY |H(y|1), we see immediately that the ML decision rule
decides for H = 0 when y > 0 and for H = 1 when y < 0.

(c)

Pe(0) = Pr{y < 0|H = 0} =

∫ 0

−∞
fY |H(y|0)dy

=

∫ 0

−∞

1

2
e−|y−a|dy =

∫ 0

−∞

1

2
e(y−a)dy

=
e−a

2
ey|0−∞ =

e−a

2
.

By symmetry, we find that

Pe(1) =
e−a

2
,

and thus,

Pe = Pe(0)PH(0) + Pe(1)PH(1) =
e−a

2
.

Solution 4. (Poisson parameter estimation)

(a) We can write the MAP decision rule in the following way:

PY |H(y|1)

PY |H(y|0)

Ĥ=1

R
Ĥ=0

PH(0)

PH(1)
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Plugging in, we find

λy1e
−λ1

λy0e
−λ0

Ĥ=1

R
Ĥ=0

p0

1− p0
,

and then (
λ1

λ0

)y Ĥ=1

R
Ĥ=0

p0

1− p0
eλ1−λ0

Taking logarithms on both sides does not change the direction of the inequalities, therefore

y log

(
λ1

λ0

) Ĥ=1

R
Ĥ=0

log

(
p0

1− p0
eλ1−λ0

)
Attention: the term log(λ1/λ0) can be negative, and if it is, then dividing by it involves
changing the direction of the inequality.

Suppose λ1 > λ0. Then, log(λ1/λ0) > 0, and the decision rule becomes

y
Ĥ=1

R
Ĥ=0

log
(

p0
1−p0 e

λ1−λ0

)
log
(
λ1

λ0

) def
= θ

(b) We compute

Pe(0) = Pr {Y > θ|H = 0} =

∞∑
y=dθe

PY |H(y|0)

= 1−
bθc∑
y=0

λy0
y!
e−λ0 ,

and by analogy

Pe(1) = Pr {Y < θ|H = 1} =

bθc∑
y=0

PY |H(y|1)

=

bθc∑
y=0

λy1
y!
e−λ1

Thus, the probability of error becomes

Pe = p0

1−
bθc∑
y=0

λy0
y!
e−λ0

+ (1− p0)

bθc∑
y=0

λy1
y!
e−λ1

Now, suppose that λ1 < λ0. Then, log(λ1/λ0) < 0, and we have to swap the inequality sign,
thus

y
Ĥ=0

R
Ĥ=1

log
(

p0
1−p0 e

λ1−λ0

)
log
(
λ1

λ0

) def
= θ
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The rest of the analysis goes along the same lines, and finally, we obtain

Pe = p0

bθc∑
y=0

λy0
y!
e−λ0 + (1− p0)

1−
bθc∑
y=0

λy1
y!
e−λ1


The case λ0 = λ1 yields log(λ1/λ0) = 0, so the decision rule becomes 0

Ĥ=1

R
Ĥ=0

θ, regardless of

y. Thus, we can exclude the case λ0 = λ1 from our discussion.

(c) Here, we are in the case λ1 > λ0, and we find θ ≈ 4.54. We thus evaluate

Pe =
1

3

(
1−

4∑
y=0

2y

y!
e−2

)
+

2

3

4∑
y=0

(
10y

y!
e−10

)
≈ 0.03705

(d) We find θ ≈ 7.5163

Pe =
1

3

(
1−

7∑
y=0

2y

y!
e−2

)
+

2

3

7∑
y=0

(
20y

y!
e−20

)
≈ 0.000885

The two Poisson distributions are much better separated than in (c); therefore, it becomes
considerably easier to distinguish them based on one single observation y.

Solution 5. (Lie detector)

(a) Let H ∈ {T, L}.

H = T (telling truth): fY |H(y|T ) = αe−αy, y ≥ 0

H = L (telling lie): fY |H(y|L) = βe−βy, y ≥ 0.

The MAP decision rule is

pβe−βy
Ĥ=L

R
Ĥ=T

(1− p)αe−αy.

After taking the logarithm, we obtain

−βy + ln(pβ)
Ĥ=L

R
Ĥ=T

−αy + ln((1− p)α).

Or, equivalently

y
Ĥ=T

R
Ĥ=L

1

α− β
ln

[
α

β

(1− p)
p

]
= θ
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(b)

PL|T =

∫ θ

0

αe−αydy = 1− e−αθ.

(c)

PT |L =

∫ ∞
θ

βe−βydy = e−βθ.

(d)

H = T : fY |H(y|T ) = αne−α(y1+...+yn) = αne−αz

H = L : fY |H(y|L) = βne−β(y1+...+yn) = βne−βz,

where Y is the random vector (Y1, ..., Yn) and where z =
∑n
i=1 yi. With this new definition,

the test becomes z
Ĥ=T

R
Ĥ=L

θ, with the new threshold θ = 1
α−β ln

[(
α
β

)n
(1−p)
p

]
.

PL|T =

∫ θ

0

fZ|H(z|T )dz,

where Z =
∑n
i=1 Yi and

fZ|H(z|T ) =
αn

(n− 1)!
z(n−1)e−αz.

This is the density of the Erlang distribution. Putting things together, we get

PL|T =

∫ θ

0

αn

(n− 1)!
z(n−1)e−αzdz.

Solution 6. (Fault detector)

H = 1 is the hypothesis that the box works properly and H = 0 the hypothesis that the box
fails.

(a) The MAP test is

fX|H(x|1)

PH(0)

Ĥ=1

R
Ĥ=0

fX|H(x|0)

PH(1)
.

If l(x) is the number of zeros in the sequence x,

fX|H(x|1) =

{
p16−l(1− p)l, if 0 ≤ l ≤ 16

0, otherwise

fX|H(x|0) =
1

216
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(b) By substituting l = 8, p = 0.25, PH(0) = 1
1025 and PH(1) = 1024

1025 in the decision rule, we
obtain

38

26

Ĥ=1

R
Ĥ=0

1,

therefore the hypothesis is Ĥ = 1 — the box works properly.

Solution 7. (Multiple choice exam)

(a) We have a binary hypothesis testing problem: The hypothesis H is the answer you will
select, and your decision will be based on the observation of ĤL and ĤR. Let H take value
1 if answer 1 is chosen, and value 2 if answer 2 is chosen. In this case, we can write the
MAP decision rule as follows:

Pr
{
H = 1|ĤL = 1, ĤR = 2

} Ĥ=1

R
Ĥ=2

Pr
{
H = 2|ĤL = 1, ĤR = 2

}
From the problem setting we know the priors Pr {H = 1} and Pr {H = 2}; we can also de-

termine the conditional probabilities Pr
{
ĤL = 1|H = 1

}
, Pr

{
ĤL = 1|H = 2

}
, Pr

{
ĤR = 2|H = 1

}
and Pr

{
ĤR = 2|H = 2

}
(we have Pr

{
ĤL = 1|H = 1

}
= 0.9 and Pr

{
ĤL = 1|H = 2

}
=

0.1). Introducing these quantities and using the Bayes rule we can formulate the MAP
decision rule as

Pr
{
ĤL = 1, ĤR = 2|H = 1

}
Pr {H = 1}

Pr
{
ĤL = 1, ĤR = 2

} Ĥ=1

R
Ĥ=2

Pr
{
ĤL = 1, ĤR = 2|H = 2

}
Pr {H = 2}

Pr
{
ĤL = 1, ĤR = 2

}
Now, assuming that the event {ĤL = 1} is independent of the event {ĤR = 2} and simpli-
fying the expression, we obtain

Pr
{
ĤL = 1|H = 1

}
Pr
{
ĤR = 2|H = 1

}
Pr {H = 1}

Ĥ=1

R
Ĥ=2

Pr
{
ĤL = 1|H = 2

}
Pr
{
ĤR = 2|H = 2

}
Pr {H = 2},

which is our final decision rule.

(b) Evaluating the previous decision rule, we have

0.9× 0.3× 0.25
Ĥ=1

R
Ĥ=2

0.1× 0.7× 0.75,

which gives

0.0675
Ĥ=1

R
Ĥ=2

0.0525

This implies that the answer Ĥ is equal to 1.
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Solution 8. (MAP decoding rule: Alternative derivation)

(a) The probability of error can be written as

Pe = PH(0)Pr {Y ∈ R1|H = 0}+ PH(1)Pr {Y ∈ R0|H = 1}

= PH(0)

∫
R1

fY |H(y|0)dy + PH(1)

∫
R0

fY |H(y|1)dy

= PH(0)

∫
R1

fY |H(y|0)dy + PH(1)

(
1−

∫
R1

fY |H(y|1)dy

)
= PH(1) +

∫
R1

(
PH(0)fY |H(y|0)− PH(1)fY |H(y|1)

)
dy, (2.1)

where the third equality follows from the hint∫
R0
⋃
R1

fY |H(y|1)dy =

∫
R0

fY |H(y|1)dy +

∫
R1

fY |H(y|1)dy = 1.

(b) Note that Pe is smallest if the second term
∫
R1

(
PH(0)fY |H(y|0)− PH(1)fY |H(y|1)

)
dy in

(2.1) is made as negative as possible. Note that the first term PH(1) in (2.1) is fixed and
does not depend on our choices for R0 and R1. The second term can be minimized if we
collect in R1 all y ∈ R that yield negative contribution, i.e. y ∈ R1 iff PH(0)fY |H(y|0) −
PH(1)fY |H(y|1) < 0.

Note: How does this approach compare to the one from the book? Conditioning is one of
the most important tricks to make progress in computing a probability. There are two random
variables involved, namely H and Y . In the notes we have conditioned on Y = y. Here we are
conditioning on H = i.

Solution 9. (Independent and identically distributed vs. first-order Markov)
An explanation regarding the title of this problem: independent and identically distributed

means that all Y1, . . . , Yk have the same probability mass function and are independent of each
other. First-order Markov means that Y1, . . . , Yk depend on each other in a particular way: the
probability mass function Yi depends on the value of Yi−1, but given the value of Yi−1, it is
independent of Y1, . . . , Yi−2. Thus, in this problem, we observe a binary sequence, and we want
to know whether it has been generated by an i.i.d. (independent and identically distributed)
source or by a first-order Markov source.

(a) Since the two hypotheses are equally likely, we find

PY |H(y|1)

PY |H(y|0)

Ĥ=1

R
Ĥ=0

PH(0)

PH(1)
= 1.

Plugging in, we obtain

1/2 · (1/4)l · (3/4)k−l−1

(1/2)k

Ĥ=1

R
Ĥ=0

1,

where l is the number of times the observed sequence changes either from zero to one or
from one to zero, i.e. the number of transitions in the observed sequence.
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(b) The sufficient statistic here is simply the number of transitions l; this entirely specifies the
likelihood ratio.

(c) In this case, the number of non-transitions is (k−l) = s, and the log-likelihood ratio becomes

log
1/2 · (1/4)k−s · (3/4)s−1

(1/2)k
= log

(1/4)k−s · (3/4)s−1

(1/2)k−1

= (k − s) log(1/4) + (s− 1) log(3/4)− (k − 1) log(1/2)

= s log
3/4

1/4
+ k log

1/4

1/2
+ log

1/2

3/4

= s log 3 + k log 1/2 + log 2/3.

Thus, in terms of this log-likelihood ratio, the decision rule becomes

s log 3 + k log 1/2 + log 2/3
Ĥ=1

R
Ĥ=0

0.

That is, we have to find the smallest possible s such that this expression becomes larger or
equal to zero. Therefore,

s ≥
⌈
k log 1/2 + log 2/3

log 1/3

⌉
.

Solution 10. (SIMO channel with Laplacian noise)

(a) Let the two hypotheses be H = 0 and H = 1 when c0 and c1 are transmitted, respectively.
The ML decision rule is

fY1Y2|H(y1, y2|1)
Ĥ=1

R
Ĥ=0

fY1Y2|H(y1, y2|0).

Because Z1 and Z2 are independent, we can write

1

2
e−|y1−1| 1

2
e−|y2−1|

Ĥ=1

R
Ĥ=0

1

2
e−|y1+1| 1

2
e−|y2+1|,

and, after taking the logarithm,

|y1 + 1|+ |y2 + 1|
Ĥ=1

R
Ĥ=0

|y1 − 1|+ |y2 − 1|.

(b) Because the hypotheses are equally likely and Z1 and Z2 have the same distribution, the
decision region for Ĥ = 0 contains the points closer to (−1,−1) and the decision region
for Ĥ = 1 contains the points closer to (1, 1). For this problem, the distance between the
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y1

y2

(1, 1)
(−1, 1)

(1,−1)
(−1,−1)

y

R?

R?

R1R1

R1

R0

R0 R0

Figure 2.1: Decision regions

points (y11, y12) and (y21, y22) is the Manhattan distance, |y11 − y21|+ |y12 − y22|, and not
the Euclidian distance.

Let us first consider the points above the line y2 = −y1 from Figure 2.1. It is easy to notice
that the points in the positive quadrant are closer to (1, 1) than to (−1,−1), therefore they
belong to R1 (Ĥ = 1). This is also true if {(y1 ≥ 0)∩(y2 ∈ (−1, 0))}, or if {(y2 ≥ 0)∩(y1 ∈
(−1, 0))}.

Similar reasoning can be applied to the points below the diagonal to determine R0.

The points for which {(y1 ≤ −1) ∩ (y2 ≥ 1)} or {(y1 ≥ 1) ∩ (y2 ≤ −1)} are equally
distanced to (−1,−1) and (1, 1), therefore they can belong to either R0 or R1 with the
same probability. This region is named R?.

(c) The two hypotheses are equally probable for the region R?. Therefore, we can split this region
in any way between the decision regions and have the same error probability. Because R1

is included in the region for which y2 > −y1 and R0 does not intersect the region for which
y2 > −y1, the error probability is minimized by deciding Ĥ = 1 if (y1 + y2) > 0.



24 Chapter 2.

(d)

Pe(0) = Pr {Y1 + Y2 > 0|H = 0}
= Pr {Z1 + Z2 − 2 > 0}

=

∫ ∞
2

e−w

4
(1 + w) dw

=
−e−w

4
(w + 2)

∣∣∞
2

= e−2.

By symmetry, and considering that the messages are equally likely, Pe(0) = Pe(1) = Pe.

Solution 11. (Q-Function on regions)

(a) One can see that the event {X ∈ Region} only depends on the first component X1. Hence,
we have

Pr {X ∈ Region} = Pr {(X1 ≥ −2) ∩ (X1 ≤ 1)}
= 1− Pr {(X1 < −2) ∪ (X1 > 1)}

= 1−Q
(

2

σ

)
−Q

(
1

σ

)
,

where the last equality is true because {X1 < −2} and {X1 > 1} are disjoint events.

(b) Because X1 and X2 are independent and have the same variance, rotating the vector X by
any angle around the origin does not change its distribution. Equivalently, we can rotate
the square region in Figure (b) by 45 degrees, and the probability of X being in the rotated
region is the same as for the original region. The new region is a square whose edges are
parallel to the axes of the coordinate system. The points where the edges of the square
intersect the axes are (

√
2, 0), (−

√
2, 0), (0,

√
2) and (0,−

√
2). Hence,

Pr {X ∈ Region} = Pr
{

(−
√

2 ≤ X1 ≤
√

2) ∩ (−
√

2 ≤ X2 ≤
√

2)
}

(1)
= Pr

{
−
√

2 ≤ X1 ≤
√

2
}2

=
[
1− Pr

{
(X1 < −

√
2) ∪ (X1 >

√
2)
}]2

=

[
1− 2Q

(√
2

σ

)]2

,

where (1) holds because X1 and X2 are independent and identically distributed.

(c) We solve this part in three different ways:

(i) First Solution: As in the previous part, we can rotate X such that one of its com-
ponents, say X1, is perpendicular to the straight line that delimits the shaded region.
Then, we need to know the shortest distance d of that line to the origin (the length
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of a segment that starts at (0, 0) and is perpendicular to the line). Using standard
trigonometric techniques, one finds that this length is d = 2√

5
. Then, it follows that

Pr {X ∈ Region} = Pr

{
X1 ≥

2√
5

}
= Q

(
2√
5σ

)
.

(ii) Second Solution: We are looking for the probability that X2 ≥ 1− 1
2X1, i.e., the prob-

ability that Z , X2 + 1
2X1−1 ≥ 0. But Z ∼ N (−1, 5

4σ
2). Hence, Pr {X ∈ Region} =

Pr {Z ≥ 0} = Q
(

2√
5σ

)
.

(iii) Third Solution: We project X = (X1, X2)T to the vector perpendicular to the line
that delimits the shaded region. The length of the projection is Z ∼ N (0, σ2). The

sought probability is Pr {Z ≥ d} = Q
(
d
σ

)
= Q

(
2√
5σ

)
, where d is the distance from

the delimiting line to the origin.

Solution 12. (Properties of the Q function)

(a)

FZ(z) =Pr {Z ≤ z} =

∫ z

−∞

1√
2π
e−

x2

2 dx

=

∫ ∞
−∞

1√
2π
e−

x2

2 dx−
∫ ∞
z

1√
2π
e−

x2

2 dx

=1−Q(z).

(b)

Q(0) =
1

2
,

because we have the same area on both sides of the Gaussian bell.

Q(−∞) = Pr {Z ≥ −∞} = 1.

Q(∞) = Pr {Z ≥ ∞} = 0.

(c) If we add Q(−x) and Q(x), we get 1. Refer to Figure 2.2.
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x

Q(x)

−x

Q(−x)

Figure 2.2: Identically shaded portions have the same area

(d) Consider the following integration by parts:

Q(α) =
1√
2π

∫ ∞
α

e−
x2

2 dx

=
1√
2π

∫ ∞
α

1

x
xe−

x2

2 dx

=
1√
2π

(
−e
− x22

x

∣∣∣∣∞
α

−
∫ ∞
α

1

x2
e−

x2

2 dx

)

=
1√
2π

(
e−

α2

2

α
−
∫ ∞
α

1

x2
e−

x2

2 dx

)
.

Since the integral on the last line is non-negative, we get an upper bound if we neglect that
term. That is the upper bound we are looking for. To obtain the lower bound, we increase
the integral by substituting 1

α2 for 1
x2 and then use the upper bound just derived. This gives

Q(α) ≥ 1√
2π

e−
α2

2

α
− 1

α2

∫ ∞
α

1√
2π
e−

x2

2 dx

≥ 1√
2π

e−
α2

2

α
− 1

α2

1√
2π

e−
α2

2

α

=
1√
2π

e−
α2

2

α

(
1− 1

α2

)
.

Note: The bound that we have proved is the well-known lower bound to Q(x). A slightly
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better but less known lower bound can be obtained the following way:

Q(α) ≥ 1√
2π

e−
α2

2

α
− 1

α2

∫ ∞
α

1√
2π
e−

x2

2 dx

=
1√
2π

e−
α2

2

α
− 1

α2
Q(α).

Therefore,

Q(α) ≥ 1√
2π
e−

α2

2
α2

α2 + 1
.

Solution 13. (16-PAM vs. 16-QAM)

(a) 16-PAM. Denote the additive white Gaussian noise process by Z. Thus, Z is zero-mean
Gaussian of variance σ2, and the observation Y is also Gaussian of variance σ2, but with
mean corresponding to the particular signal point that is being transmitted. If H is the
hypothesis and we label the signal points from left to right by 1, . . . , 16, then

Pe(1) = Pr {Y ≥ −7a|H = 1} = Pr
{
Z ≥ a

2

}
= Pr

{
Z

σ
≥ a

2σ

}
= Q

( a
2σ

)
.

By symmetry, Pe(1) = Pe(16).

Moreover,

Pe(2) = Pr {(Y ≤ −7a) ∪ (Y ≥ −6a)|H = 2}

= Pr
{(
Z ≤ −a

2

)
∪
(
Z ≥ a

2

)}
= 2Pr

{
Z ≥ a

2

}
= 2Q

( a
2σ

)
.

Again, by symmetry, Pe(i) = Pe(2), for i = 3, . . . , 15. Putting things together, we obtain

Pe =

16∑
i=1

PH(i)Pe(i) =

16∑
i=1

1

16
Pe(i)

=
1

16

(
2 ·Q

( a
2σ

)
+ 14 · 2Q

( a
2σ

))
=

15

8
Q
( a

2σ

)
.

16-QAM. Denote the additive white Gaussian noise process in the x1-direction by Z1 and in
the x2-direction by Z2. In our setup, both Z1 and Z2 are zero-mean Gaussian of variance
σ2. Label the signal points from left to right, top to bottom by 1, . . . , 16. Then, for the four
corner points, we find

Pe(1) = Pr {(Y1 ≥ −b) ∪ (Y2 ≤ b)|H = 1}.
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Notice that {Y1 ≥ −b} and {Y2 ≤ b} are not disjoint events, so

Pe(1) = Pr {Y1 ≥ −b|H = 1}+ Pr {Y2 ≤ b|H = 1} − Pr {(Y1 ≥ −b) ∩ (Y2 ≤ b)|H = 1}.

An alternative (and somewhat simpler) approach is to compute the probability of the correct
decision, Pc(1), and then determine Pe(1) = 1− Pc(1). Thus,

Pc(1) = Pr {(Y1 ≤ −b) ∩ (Y2 ≥ b)|H = 1}
= Pr {(Y1 ≤ −b|H = 1}Pr {Y2 ≥ b|H = 1}

= Pr

{
Z1 ≤

b

2

}
Pr

{
Z2 ≥ −

b

2

}
=

(
1−Q

(
b

2σ

))
Q

(
− b

2σ

)
=

(
1−Q

(
b

2σ

))2

.

For the points on the edges (i.e. numbers 2, 3, 5, 8, 9, 12, 14, 15), we find similarly

Pc(2) = Pr {(−b ≤ Y1 ≤ 0) ∩ (Y2 ≥ b)|H = 2}

= Pr

{
− b

2
≤ Z1 ≤

b

2

}
Pr

{
Z2 ≥ −

b

2

}
,

where

Pr

{
− b

2
≤ Z1 ≤

b

2

}
= 1− Pr

{(
Z1 ≤ −

b

2

)
∪
(
Z1 ≥

b

2

)}
= 1− 2Pr

{
Z1 ≥

b

2

}
= 1− 2Q

(
b

2σ

)
,

thus,

Pc(2) =

(
1− 2Q

(
b

2σ

))(
1−Q

(
b

2σ

))
.

Finally, for the four points in the middle, we obtain

Pc(6) = Pr {(−b ≤ Y1 ≤ 0) ∩ (0 ≤ Y2 ≤ b)|H = 6}

= Pr

{
− b

2
≤ Z1 ≤

b

2

}
Pr

{
− b

2
≤ Z2 ≤

b

2

}
=

(
1− 2Q

(
b

2σ

))2

.
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Putting things together, we find

Pc =

16∑
i=1

PH(i)Pc(i) =

16∑
i=1

1

16
Pc(i)

=
1

16

[
4

(
1−Q

(
b

2σ

))2

+ 8

(
1−Q

(
b

2σ

))(
1− 2Q

(
b

2σ

))

+ 4

(
1− 2Q

(
b

2σ

))2
]

= 1− 3Q

(
b

2σ

)
+

9

4

(
Q

(
b

2σ

))2

.

From here, we find Pe = 1− Pc, thus

Pe = 3Q

(
b

2σ

)
− 9

4

(
Q

(
b

2σ

))2

.

(b) 16-PAM. By symmetry, we only consider the positive signals to find

E = 2
1

16

((a
2

)2

+

(
3a

2

)2

+ . . .+

(
15a

2

)2
)

=
a2

32

(
1 + 32 + 52 + . . .+ 152

)
=

85a2

4
.

16-QAM. By symmetry, we only consider the first quadrant to find

E = 4
1

16

([(
b

2

)2

+

(
b

2

)2
]

+

[(
3b

2

)2

+

(
3b

2

)2
]

+ 2

[(
b

2

)2

+

(
3b

2

)2
])

=
b2

16
(1 + 1 + 9 + 9 + 2(1 + 9)) =

5b2

2
.

(c) 16-PAM. We find a/2 =
√
E/85, thus

Pe =
15

8
Q

(√
E

85σ2

)
.

16-QAM. We find b/2 =
√
E/10, thus

Pe = 3Q

(√
E

10σ2

)
− 9

4
Q2

(√
E

10σ2

)
.

Solution 14. (QPSK decision regions)
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Figure 2.3: Error probability vs. average signal energy for 16-PAM (solid) and 16-QAM
(dashed)

(a) If PH(i) is the same for all i, then the decision regions are given in Figure 2.4.

(b) The decision boundary between two hypotheses Ĥ = i and Ĥ = j is given by

||Y − ci||2 − ||Y − cj ||2 = 2σ2 ln
PH(i)

PH(j)
.

This is an affine plane perpendicular to the segment that joins ci to cj. If PH(i) > PH(j),
then the affine plane is shifted away from ci, to increase Ri. The decision regions for this
case are given in Figure 2.5.

(c) Define a new observarion Ỹ = (Y1, Y2/2). The new observation Ỹ is a sufficient statistic
because we can determine Y from Ỹ . Thus the receiver observes Ỹ = c̃i + Z̃, where c̃i =
(ci1, ci2/2) and Z̃ = (Z1, Z2/2). Note that in this new setup we have c̃0 = c0, c̃1 = c1/2,
c̃2 = c2, c̃3 = c3/2 and Z̃ ∼ N (0, σ2I2). The decision regions for this case are given in
Figure 2.6.

Solution 15. (Antenna array)
Since Z1 and Z2 don’t have the same variance, the noise is not white, and so we cannot

directly apply the results for discrete time AWGN channels which we are familiar with. A smart
way to solve this problem is to apply a transformation on Y = (Y1, Y2)T to get a sufficient
statistic Ỹ = (Ỹ1, Ỹ2)T that can be seen as the output of a discrete time AWGN channel.

Since Z1 and Z2 are independent and have variance σ2
1 and σ2

2 respectively,
Z1

σ1
and

Z2

σ2
are

independent and have variance 1. Thus,

(
Z1

σ1
,
Z2

σ2

)T

∼ N (0, I2) which is a white noise of power
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c2

c3

Ĥ = 0

Ĥ = 1

Ĥ = 2

Ĥ = 3

Figure 2.4: Decision regions for equally likely hypotheses

1. Therefore, if we define Ỹ = (Ỹ1, Ỹ2)T =

(
Y1

σ1
,
Y2

σ2

)T

and Z̃ = (Z̃1, Z̃2)T =

(
Z1

σ1
,
Z2

σ2

)T

,

we will have Ỹ = c̃0 + Z̃ if H = 0 and Ỹ = c̃1 + Z̃ if H = 1, where c̃0 =

(
A

σ1
,
A

σ2

)T

,

c̃1 =

(
− A
σ1
,− A

σ2

)T

and Z̃ ∼ N (0, I2). It is clear that Ỹ can be seen as the output of a discrete

time AWGN channel (with two observations), which is a situation we are familiar with and
know very well how to handle.

Another solution for the problem is to start from the basic principles, i.e., computing the
probability densities fY |H and probabilities PH|Y , then computing the decision regions and error
probabilities without relying on the results of discrete time AWGN channels.

We provide the two solutions here. While the second solution starts from the basic princi-
ples, the first one builds on results and intuitions that we have already developed.

First solution:

(a) Since Z̃ ∼ N (0, I2), the line that separates the two decision regions in the ỹ-plane is the
perpendicular bisector of the segment [c̃0 c̃1] (i.e, the line that has c̃0− c̃1 as a normal vector
and passes through the midpoint of c̃0 and c̃1 — which is the origin). Therefore, the MAP
decision regions in the ỹ-plane are given by
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y1
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c0

c1

c2

c3

Ĥ = 0

Ĥ = 1

Ĥ = 2

Ĥ = 3

Figure 2.5: Decision regions for hypotheses with different prior probabilities

〈ỹ, c̃0 − c̃1〉
Ĥ=0

R
Ĥ=1

0, or equivalently,

ỹ1
2A

σ1
+ ỹ2

2A

σ2

Ĥ=0

R
Ĥ=1

0,

ỹ1

σ1
+
ỹ2

σ2

Ĥ=0

R
Ĥ=1

0.

Now since ỹ1 =
y1

σ1
and ỹ2 =

y2

σ2
, the MAP decision regions in the y-plane are given by

y1

σ2
1

+
y2

σ2
2

Ĥ=0

R
Ĥ=1

0, or equivalently,

σ2
2y1 + σ2

1y2

Ĥ=0

R
Ĥ=1

0.
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Ĥ = 1

Ĥ = 2

Ĥ = 3

Figure 2.6: Decision regions for noise with different variance in each component

(b) When σ1 = 2σ2, the decision rule becomes

σ2
2y1 + 4σ2

2y2

Ĥ=0

R
Ĥ=1

0, or equivalently,

y2

Ĥ=0

R
Ĥ=1

−y1

4
.

The decision regions are sketched in Figure 2.7.

(c) We compute the probability of error based on Ỹ and Z̃. The distance between c̃0 and the
separator line is equal to

||c̃0|| = A

√
1

σ2
1

+
1

σ2
2

.

Since Z̃ ∼ N (0, I2), we have

Pe(0) = Q

(
A

√
1

σ2
1

+
1

σ2
2

)
.

Similarly, we have

Pe(1) = Q

(
A

√
1

σ2
1

+
1

σ2
2

)
.
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−A
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−A
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Ĥ = 0

y2 = − 1
4y1

Figure 2.7: Decision regions

Therefore,

Pe = Pe(0)PH(0) + Pe(1)PH(1) = Q

(
A

√
1

σ2
1

+
1

σ2
2

)
.

Second solution:

(a) We have

fY |H(y|0) =
1

2πσ1σ2
exp

[
− (y1 −A)2

2σ2
1

− (y2 −A)2

2σ2
2

]
fY |H(y|1) =

1

2πσ1σ2
exp

[
− (y1 +A)2

2σ2
1

− (y2 +A)2

2σ2
2

]
.

The MAP decision rule is

fY |H(y|1)

fY |H(y|0)

Ĥ=1

R
Ĥ=0

PH(0)

PH(1)
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or, by taking the logarithm,

ln

[
fY |H(y|1)

fY |H(y|0)

] Ĥ=1

R
Ĥ=0

ln

[
PH(0)

PH(1)

]
, or equivalently,

2Ay1

σ2
1

+
2Ay2

σ2
2

Ĥ=0

R
Ĥ=1

0,

σ2
2y1 + σ2

1y2

Ĥ=0

R
Ĥ=1

0.

(b) Refer to the first solution.

(c) We first determine the probability of error when H = 1:

Pe(1) = Pr
{
σ2

2Y1 + σ2
1Y2 > 0|H = 1

}
.

If H = 1, σ2
2Y1 + σ2

1Y2 = σ2
2(−A + Z1) + σ2

1(−A + Z2). We see immediately that this is
normally distributed, ∼ N (−A(σ2

2 + σ2
1), (σ4

2σ
2
1 + σ4

1σ
2
2)). Hence,

Pe(1) = Q

(
A(σ2

2 + σ2
1)√

σ4
2σ

2
1 + σ4

1σ
2
2

)

= Q

(
A

√
1

σ2
1

+
1

σ2
2

)
.

Similarly,

Pe(0) = Q

(
A

√
1

σ2
1

+
1

σ2
2

)
,

and

Pe = Pe(0)PH(0) + Pe(1)PH(1) = Q

(
A

√
1

σ2
1

+
1

σ2
2

)
.

Solution 16. (Multi-antenna receiver)

(a) We have a binary hypothesis testing problem with V as the observable:

if B = 1: V = 〈g, w〉+ 〈Z,w〉 = a+ Zt
if B = −1: V = −〈g, w〉+ 〈Z,w〉 = −a+ Zt,

where

Zt = 〈Z,w〉 ∼ N (0, σ2‖w‖2)

a = 〈g, w〉.
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The ML decision rule is

e
− |v−a|2

2σ2‖w‖2
B̂=1

R
B̂=−1

e
− |v+a|2

2σ2‖w‖2

If a > 0, this leads to

B̂ = 1 if v ≥ 0

B̂ = −1 if v < 0.

If a < 0, then the decision is reversed.

(b) By symmetry, and assuming that a > 0,

Pe(1) = Pe(−1) =

∫ ∞
a

1√
2πσ2‖w‖2

e
− |v−a|2

2σ2‖w‖2 dv = Q

(
|〈g, w〉|
σ‖w‖

)
.

Because the hypotheses are equiprobable, Pe = Q
(
|〈g,w〉|
σ‖w‖

)
.

The same result is obtained for a < 0.

(c)

Pe = Q

(
β‖g‖
σ

)
.

(d) βmax = 1, achieved when g and w are collinear. (This is the Cauchy-Schwarz inequality,
but it is obvious from a drawing of the two vectors.) βmin = 0, achieved when g and w are
orthogonal.

(e) Pe,min = Q
(
‖g‖
σ

)
, achieved when β is maximum.

By using Y instead of V , the ML rule becomes

−‖y − g‖
2

2σ2

B̂=1

R
B̂=−1

−‖y + g‖2

2σ2
,

and the error probability is

Pe = Q

(
‖g‖
σ

)
.

Therefore, we cannot reduce Pe,min by operating directly on the observation Y .

(f) If we let Ỹk = Yk
σk

= Bg̃k + Z̃tk then we are back to the original problem except that the kth

antenna gain is now g̃k = gk
σk

and the noise variance is 1.

Solution 17. (Signal constellation)
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x1

x2

0 b

R1 R2 R3

R4 R5 R6

a

Figure 2.8: Decision regions

(a) Label the signal points from left to right, top to bottom by 1, . . . , 6. The decision regions are
shown in Figure 2.8.

(b) Denote the additive white Gaussian noise process in the x1 direction by Z1 and in the x2

direction by Z2. In our setup, both Z1 and Z2 are zero-mean Gaussian of variance σ2. The
observations Y1 and Y2 are also Gaussian of variance σ2, but with mean corresponding to
the particular signal point that is being transmitted.

If we denote the hypothesis by H, for the four corner points (numbers 1, 3, 4 and 6), we
find

Pe(1) = Pr

{(
Y1 ≥ −

b

2

)
∪ (Y2 ≤ 0)|H = 1

}
.

To determine this, we first compute the probability of the correct decision, Pc(1), and then
determine Pe(1) = 1− Pc(1). Thus,

Pc(1) = Pr

{(
Y1 ≤ −

b

2

)
∩ (Y2 ≥ 0)|H = 1

}
= Pr

{
Y1 ≤ −

b

2
|H = 1

}
Pr {Y2 ≥ 0|H = 1}

= Pr

{
Z1 ≤

b

2

}
Pr {Z2 ≥ −a}

=

(
1−Q

(
b

2σ

))
Q
(
− a
σ

)
=

(
1−Q

(
b

2σ

))(
1−Q

( a
σ

))
.
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For the other two points (numbers 2 and 5), we obtain

Pc(2) = Pr

{(
− b

2
≤ Y1 ≤

b

2

)
∩ (Y2 ≥ 0)|H = 1

}
= Pr

{
− b

2
≤ Y1 ≤

b

2
|H = 1

}
Pr {Y2 ≥ 0|H = 1}

= Pr

{
− b

2
≤ Z1 ≤

b

2

}
Pr {Z2 ≥ −a}

=

(
1− 2Q

(
b

2σ

))(
1−Q

( a
σ

))
.

Putting things together, we find

Pc =

6∑
i=1

PH(i)Pc(i) =

6∑
i=1

1

6
Pc(i)

=
1

6

[
4

(
1−Q

(
b

2σ

))(
1−Q

( a
σ

))
+ 2

(
1− 2Q

(
b

2σ

))(
1−Q

( a
σ

))]
= 1− 4

3
Q

(
b

2σ

)
−Q

( a
σ

)
+

4

3
Q

(
b

2σ

)
Q
( a
σ

)
.

Therefore,

Pe = 1− Pc

=
4

3
Q

(
b

2σ

)
+Q

( a
σ

)
− 4

3
Q

(
b

2σ

)
Q
( a
σ

)
.

(c) The average energy per symbol is

E =
1

6

[
4(a2 + b2) + 2a2

]
= a2 +

2b2

3
.

Solution 18. (Hypothesis testing and fading)

(a) Our observation is Y = AX +Z. The conditional pdf of Y under the hypothesis H = 0 can
be computed in the following manner:

fY |H(y|0) = fY |H,A(y|0, 0)PA(0) + fY |H,A(y|0, 1)PA(1)

=
1

2
fZ(y) +

1

2
fZ(y + b)

=
1

2

1√
2πσ2

(
e−

y2

2σ2 + e−
(y+b)2

2σ2

)
.
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In the same way, we have

fY |H(y|1) =
1

2

1√
2πσ2

(
e−

y2

2σ2 + e−
(y−b)2

2σ2

)
.

Writing the ML decision rule in this case, we get

1

2

1√
2πσ2

(
e−

y2

2σ2 + e−
(y+b)2

2σ2

) Ĥ=0

R
Ĥ=1

1

2

1√
2πσ2

(
e−

y2

2σ2 + e−
(y−b)2

2σ2

)
,

which is equivalent to

e−
(y+b)2

2σ2

Ĥ=0

R
Ĥ=1

e−
(y−b)2

2σ2 , or, after taking the logarithm,

0
Ĥ=0

R
Ĥ=1

y.

Thus, we get a familiar problem and we see immediately that our ML rule decides for H = 0
when y ≤ 0 and for H = 1 when y > 0 (can be easily seen from Figure 2.9).

y

fY |H

0
−b b

R0 R1

0

0.1

0.2

0.3

0.4

Figure 2.9: Decision regions
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(b) By symmetry, we have

Pe = Pe(0) = Pe(1)

= Pr {y > 0|H = 0}

=

∫ ∞
0

fY |H(y|0) dy

=

∫ ∞
0

1

2

1√
2πσ2

(
e−

y2

2σ2 + e−
(y+b)2

2σ2

)
dy

=
1

2
Q (0) +

1

2
Q

(
b

σ

)
=

1

4
+

1

2
Q

(
b

σ

)
.

Solution 19. (MAP decoding regions)

(a) The resulting decision region is shown in Figure 2.10.

c0c1

c2

Figure 2.10: Decision region for ML

(b) As the probability of H = 2 increases, the corresponding region for H = 2 expands as well.
However, the boundary of the decision regions are still lines parallel to the corresponding
lines of the ML decision region. Moreover, as the probabilities of H = 0 and H = 1 remain
equal, the separating line between c0 and c1 does not change. The result is depicted in Figure
2.11. (The three separating planes have to meet in one point. To see why, first notice that
PH|Y (0|y) = PH|Y (1|y) on the plane separating the decoding region for H = 0 and H = 1.
Reasoning similarly, we see that where this plane meets the plane separating H = 1 and
H = 2, PH|Y (0|y) = PH|Y (1|y) = PH|Y (2|y). Hence the contact point is also on the plane
separating H = 0 and H = 2, namely where PH|Y (0|y) = PH|Y (2|y).)
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c0c1

c2

Figure 2.11: Decision region for MAP

(c) The MAP receiver considers both the initial probabilities (prior information) and the in-
formation received via the observations (posterior information). When the noise variance
increases, the prior information is more reliable than the posterior one. Thus, the “trend”
of the previous figure is further “amplified”. See Figure 2.12.

c0c1

c2

Figure 2.12: Decision region for MAP for higher noise variance

Solution 20. (Sufficient statistic)
If H = 0, we have Y2 = Z1Z2 = Y1Z2, and if H = 1, we have Y2 = −Z1Z2 = Y1Z2.

Therefore, Y2 = Y1Z2 in all cases. Now since Z2 is independent of H, we clearly have H →
Y1 → (Y1, Y1Z2). Hence, Y1 is a sufficient statistic.

Solution 21. (More on sufficient statistic)

(a) The MAP decoder Ĥ(y) is given by

Ĥ(y) = arg max
i
PY |H(y|i) =

{
0 if y = 0 or y = 1
1 if y = 2 or y = 3.
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T (Y ) takes two values with the conditional probabilities

PT |H(t|0) =

{
0.7 if t = 0
0.3 if t = 1

PT |H(t|1) =

{
0.3 if t = 0
0.7 if t = 1.

Therefore, the MAP decoder Ĥ(T (y)) is

Ĥ(T (y)) = arg max
i
PT (Y )|H(t|i) =

{
0 if t = 0 (y = 0 or y = 1)
1 if t = 1 (y = 2 or y = 3).

Hence, the two decoders are equivalent.

(b) We have

Pr {Y = 0|T (Y ) = 0, H = 0} =
Pr {Y = 0, T (Y ) = 0|H = 0}

Pr {T (Y ) = 0|H = 0}
=

0.4

0.7
=

4

7

and

Pr {Y = 0|T (Y ) = 0, H = 1} =
Pr {Y = 0, T (Y ) = 0|H = 1}

Pr {T (Y ) = 0|H = 1}
=

0.1

0.3
=

1

3
.

Thus Pr {Y = 0|T (Y ) = 0, H = 0} 6= Pr {Y = 0|T (Y ) = 0, H = 1}, hence H → T (Y )→ Y
is not true, although the MAP decoders are equivalent.

Solution 22. (Fisher–Neyman factorization theorem)

(a) The MAP decision rule can always be written as

Ĥ(y) = arg max
i
fY |H(y|i)PH(i)

= arg max
i
gi(T (y))h(y)PH(i)

= arg max
i
gi(T (y))PH(i).

The last step is valid because h(y) is a non-negative constant which is independent of i and
thus does not give any further information for our decision.

(b) Let us define the event B = {y : T (y) = t}. Then,

fY |H,T (Y )(y|i, t) =
fY,T (Y )|H(y, t|i)PH(i)

fT (Y )|H(t|i)PH(i)

=
Pr{Y = y, T (Y ) = t|H = i}

Pr{T (Y ) = t|H = i}
=
Pr{Y = y, Y ∈ B|H = i}

Pr{Y ∈ B|H = i}

=
fY |H(y|i)1B(y)∫
B fY |H(y|i)dy

.
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If fY |H(y|i) = gi(T (y))h(y), then

fY |H,T (Y )(y|i, t) =
gi(T (y))h(y)1B(y)∫
B gi(T (y))h(y)dy

=
gi(t)h(y)1B(y)

gi(t)
∫
B h(y)dy

=
h(y)1B(y)∫
B h(y)dy

.

Hence, we see that fY |H,T (Y )(y|i, t) does not depend on i, so H → T (Y )→ Y .

(c) Note that PYk|H(1|i) = pi, PYk|H(0|i) = 1− pi and

PY1,...,Yn|H(y1, . . . , yn|i) = PY1|H(y1|i) . . . PYn|H(yn|i).

Thus, we have

PY1,...,Yn|H(y1, . . . , yn|i) = pti(1− pi)
(n−t)

,

where t =
∑
k yk.

Choosing gi(t) = pti(1− pi)
(n−t)

and h(y) = 1, we see that PY1,...,Yn|H(y1, . . . , yn|i) fulfills
the condition in the question.

(d) Because Y1, . . . , Yn are independent,

fY1,...,Yn|H(y1, . . . , yn|i) =

n∏
k=1

1√
2π
e−

(yk−mi)
2

2

=
1

(2π)
n
2
e−
∑n
k=1

(yk−mi)
2

2

=
1

(2π)
n
2
e−

∑n
k=1 y

2
k

2 enmi(
1
n

∑n
k=1 yk −

mi
2 ).

Choosing gi(t) = enmi(t−
mi
2 ) and h(y1, . . . , yn) = 1

(2π)
n
2
e−

∑n
k=1 y

2
k

2 , we see that

fY1,...,Yn|H(y1, . . . , yn|i) = gi(T (y1, . . . , yn))h(y1, . . . , yn).

Hence the condition in the question is fulfilled.

Solution 23. (Irrelevance and operational irrelevance)

(a) By assumption, V and H are not independent. This means that PV |H(·|i) does depend on i.
Specifically, it means that for at least one k ∈ V and a pair i, j ∈ H, PV |H(k|i) 6= PV |H(k|j).
Without loss of generality, we can assume that PV |H(k|i) > PV |H(k|j). We know that
probabilities sum up to 1, i.e.

∑
m∈V PV |H(m|i) = 1 and

∑
m∈V PV |H(m|j) = 1. Since

PV |H(·|i) puts more probability on k ∈ V than on PV |H(·|j), there exists another symbol
l ∈ V for which PV |H(l|i) < PV |H(l|j).
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(b) Let i and j be as above and choose PH(i) = PH(j) = 1
2 and PH(l) = 0 for l 6= i, j.

Now suppose that we observe V = k. From the previous part of the problem we know that
PV |H(k|i) > PV |H(k|j) and so the MAP decision rule selects Ĥ = i. On the contrary, if

V = l, the MAP decision rule decides Ĥ = j. Hence, V affects the MAP decision rule.

(c) Now we have two observables, U and V , which take values in U and V respectively. We
know that the probabilistic relation H → U → V does not hold, which means that there
exists u? ∈ U such that H and V are dependent when U = u?. Now, given that U = u?, we
are back to the situation from the previous part of the problem. Therefore, conditioned on
U = u?, there exists a distribution of H for which V affects the decision.

Solution 24. (Antipodal signaling)

(a) Assume for instance that PH(0) = PH(1) = 1
2 . Then, the decision regions are:

R0 = {(y1, y2) : y2 < −y1},
R1 = {(y1, y2) : y2 ≥ −y1}.

If now, for instance, Y1 = a, then for values of Y2 that are larger than −a, we decide Ĥ = 1,
whereas for values of Y2 that are smaller than −a, we decide Ĥ = 0. Hence, we still need
Y2, and the knowledge of Y1 is not sufficient.

(b) A new constellation for which Y1 is a sufficient statistic is for instance

c̃0 = (−a, 0),

c̃1 = (a, 0).

Solution 25. (Is it a sufficient statistic?)

(a) An ML decoder is a minimum distance decoder in the AWGN channel. In this case the two
decoding regions are separated by the line y1 + y2 = 0. Hence the ML decoder decides as
follows:

Y1 + Y2

Ĥ=0

R
Ĥ=1

0.

So the answer is no.

(b) By the first hint, to prove H → (Y1 + Y2) → Y , it suffices to prove H → (Y1 + Y2) →
(Y1 + Y2, Y1 − Y2) or, equivalently, that H → (Y1 + Y2)→ (Y1 − Y2).

Since Y1 +Y2 and Y1−Y2 are orthogonal, knowing that Y1 +Y2 = a changes nothing to the
distribution of Y1 − Y2 = Z1 − Z2: It remains ∼ N (0, 2σ2), independently of the value of
H. Hence, we have the Markov chain H → (Y1 + Y2)→ (Y1 − Y2).
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Solution 26. (Union bound)
Let W ∼ N (0, σ2I2) be the zero mean Gaussian noise, where Z = W + c. Let A be the area

on the left of the vertical dividing line, and let B be the area below the slanted dividing line. The
boundary of A is at distance d1 = 2 from c, whereas the boundary of B is at distance d2 =

√
2

from c. Hence

Pr {Z ∈ A ∪ B} ≤ Pr {Z ∈ A}+ Pr {Z ∈ B} = Q

(
d1

σ

)
+Q

(
d2

σ

)
= Q

(
2

σ

)
+Q

(√
2

σ

)
.

Solution 27. (QAM with erasure)

P00 = Pr {(N1 ≥ −a) ∩ (N2 ≥ −a)}
= Pr {(N1 ≤ a)}Pr {(N2 ≤ a)}

=
[
1−Q

( a
σ

)]2
.

By symmetry:

P01 = P03 = Pr {(N1 ≤ −(2b− a)) ∩ (N2 ≥ −a)}
= Pr {N1 ≥ 2b− a}Pr {N2 ≤ a}

= Q

(
2b− a
σ

)[
1−Q

( a
σ

)]
.

P02 = Pr {(N1 ≤ −(2b− a)) ∩ (N2 ≤ −(2b− a))}
= Pr {N1 ≥ 2b− a}Pr {N2 ≥ 2b− a}

=

[
Q

(
2b− a
σ

)]2

.

P0δ = 1− Pr {(Y ∈ R0) ∪ (Y ∈ R1) ∪ (Y ∈ R2) ∪ (Y ∈ R3)|c0 was sent}
= 1− P00 − P01 − P02 − P03

= 1−
[
1−Q

( a
σ

)]2
− 2Q

(
2b− a
σ

)[
1−Q

( a
σ

)]
−
[
Q

(
2b− a
σ

)]2

= 1−
[
1−Q

( a
σ

)
+Q

(
2b− a
σ

)]2

.

Equivalently,

P0δ = Pr {(N1 ∈ [a, 2b− a]) ∪ (N2 ∈ [a, 2b− a])}
= Pr {N1 ∈ [a, 2b− a]}+ Pr {N2 ∈ [a, 2b− a]} − Pr {(N1 ∈ [a, 2b− a]) ∩ (N2 ∈ [a, 2b− a])}

= 2

[
Q
( a
σ

)
−Q

(
2b− a
σ

)]
−
[
Q
( a
σ

)
−Q

(
2b− a
σ

)]2

,

which gives the same result as before.
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Solution 28. (Repeat codes and Bhattacharyya bound)

(a) Let Xi = cH,i be the i-th symbol that was sent, i.e., Xi = 1 if H = 0 and Xi = −1 if H = 1.
We have:

PWi|Xi(1| − 1) = Pr{Yi > 0|H = 1} = Pr{−1 + Z > 0} = Q

(
1

σ

)
.

Similarly, we can show that PWi|Xi(−1| − 1) = 1 − Q
(

1

σ

)
, PWi|Xi(−1|1) = Q

(
1

σ

)
and

PWi|Xi(1|1) = 1−Q
(

1

σ

)
.

The overall system between Xi and Wi may be viewed as a channel with input 1 or −1
and output also 1 or −1. There is a certain probability ε (called transition or crossover

probability, and which is equal to Q

(
1

σ

)
in our case) that the channel converts 1 into −1

or vice versa. (see Figure 2.13.)

−1 −1

1 1

Xi Wi

1− ε

1− ε

ε

ε

Figure 2.13: Binary Symmetric Channel (BSC) with crossover probability ε

This particular channel is called the Binary Symmetric Channel. Various results can be
found easily from Figure 2.13. For instance, it is clear that if we put n consecutive 1’s into
the channel, the probability of getting, at the output, a particular sequence (w1, . . . , wn)
which contains exactly k 1’s is simply (1 − ε)kεn−k. Similarly, the probability of getting,
at the output, any sequence that contains exactly k 1’s is (nk )(1 − ε)kεn−k because there
are (nk ) distinct sequences with exactly k ones each, and every one of them has probability
(1− ε)kεn−k.

The MAP decision rule is

PW1...Wn|H(w1, . . . , wn|1)

PW1...Wn|H(w1, . . . , wn|0)

Ĥ=1

R
Ĥ=0

PH(0)

PH(1)
= 1 or,

εk(1− ε)n−k

(1− ε)kεn−k
=

(
ε

1− ε

)2k−n Ĥ=1

R
Ĥ=0

1.

The expression only depends on k, therefore the number of ones in the received sequence is
a sufficient statistic.
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Taking the logarithm, we obtain

(2k − n) log

(
ε

1− ε

) Ĥ=1

R
Ĥ=0

0.

Since ε < 1/2, log
(

ε
1−ε

)
< 0, and thus, when we divide by this term, the direction of the

inequality is changed. Using this, the decision rule can be written as

k
Ĥ=0

R
Ĥ=1

n

2
.

That is, the best decision rule is simply majority voting: if the majority of the received
values is 1, we decide for hypothesis H = 0 (i.e. the transmitted value was 1). If the
majority of the received values is −1, we decide for hypothesis H = 1 (i.e. the transmitted
value was −1).

(b) Let us assume that n is odd. Then,

Pe(0) = Pr {k < n/2|H = 0}

=

(n−1)/2∑
m=0

(nm)(1− ε)mεn−m.

By the symmetry of the problem, Pe(1) has the same value. Thus,

P̃e =

(n−1)/2∑
m=0

(nm)(1− ε)mεn−m.

If n is even, we introduce a slight asymmetry because the term for n/2 has to be assigned
to either H = 0 or H = 1.

Because this sum cannot be evaluated explicitly, in the following, we bound it using the
Bhattacharyya bound.

(c) The general formula for the Bhattacharyya bound is

P̃e ≤
∑
i

∑
j:j 6=i

√
PH(i)PH(j)

∫
w∈Rn

√
fW |H(w|i)fW |H(w|j) dw.

In our case, this becomes

P̃e ≤ 2
1

2

∑
w

√
PW |H(w|0)PW |H(w|1)

=
∑
w

√
(1− ε)k(w)εn−k(w) εk(w)(1− ε)n−k(w)

=
∑
w

√
εn(1− ε)n

= 2n
√
εn(1− ε)n.
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(d) Again, we assume that n is odd; note however that the case when n is even would not add
much insight. Figure 2.14 shows the error probabilities for various values of n (the plot was
created from the matlab program that follows).

n = 1:2:30;

sigma = 1;

Pe = qfunc(sqrt(n)/sigma);

epsilon = qfunc(1/sigma);

Pet = zeros(1, length(n));

for ic = 1:length(n),

for m = 0:(n(ic)-1)/2,

Pet(ic) = Pet(ic) + nchoosek(n(ic),m) * (1-epsilon)^m * epsilon^(n(ic)-m);

end;

end;

PetBhatt = (2*sqrt(epsilon*(1-epsilon))).^n;

semilogy(n, Pe, ’-o’, n, PetBhatt, ’-^’, n, Pet, ’-s’);

0 10 20 30 40

10−10

10−8

10−6

10−4

10−2

100

n

Pe

P̃e

P̃e,Bhatt

Figure 2.14: Error probability as a function of repetition length n

Solution 29. (Tighter union Bhattacharyya bound: Binary case)
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(a) From the definition of the decision region Ri,

Ri =
{
y : PH(i)fY |H(y|i) ≥ PH(j)fY |H(y|j)

}
i 6= j,

it is easy to see that in region R0

PH(0)fY |H(y|0) ≥ PH(1)fY |H(y|1)

and vice-versa. Thus we can write

Pe = PH(0)

∫
R1

fY |H(y|0) dy + PH(1)

∫
R0

fY |H(y|1) dy

=

∫
R1

min{PH(0)fY |H(y|0), PH(1)fY |H(y|1)} dy

+

∫
R0

min{PH(0)fY |H(y|0), PH(1)fY |H(y|1)} dy

=

∫
R0+R1

min{PH(0)fY |H(y|0), PH(1)fY |H(y|1)} dy

=

∫
y

min{PH(0)fY |H(y|0), PH(1)fY |H(y|1)} dy.

(b) Without loss of generality, let us assume that a ≤ b. Then
√
b/a ≥ 1 and min(a, b) = a ≤

a
√
b/a =

√
ab.

To show that for a, b ≥ 0,
√
ab ≤ a+b

2 , we proceed as follows. Let m = (a + b)/2 be the
midpoint of an imaginary segment of the real line that goes from a to b. Let d = (b− a)/2
be half the distance between a and b. Writing a and b in terms of m and d we obtain
ab = (m− d)(m+ d) = m2 − d2 ≤ m2, which is the desired result.

Considering this, we can write

Pe =

∫
y

min
{
PH(0)fY |H(y|0), PH(1)fY |H(y|1)

}
dy

≤
∫
y

√
PH(0)fY |H(y|0)PH(1)fY |H(y|1) dy

=
√
PH(0)PH(1)

∫
y

√
fY |H(y|0)fY |H(y|1) dy

≤ PH(0) + PH(1)

2

∫
y

√
fY |H(y|0)fY |H(y|1) dy

=
1

2

∫
y

√
fY |H(y|0)fY |H(y|1) dy.

(c) In the book, we upper bound Pe(i) individually instead of upperbounding the final result,
Pe =

∑
i PH(i)Pe(i). For the binary case, this is equivalent to
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Pe(0) =

∫
R1

fY |H(y|0) dy

=

∫
R1

min
{
fY |H(y|0), fY |H(y|1)

}
dy

≤
∫
R1

√
fY |H(y|0)fY |H(y|1) dy

≤
∫
y

√
fY |H(y|0)fY |H(y|1) dy.

The last step, which further loosens the bound, is necessary to find a bound of Pe(0) that
does not depend on R1. This “overbounding” is avoided in (b) by finding the bound over
the whole Pe.

Solution 30. (Tighter union Bhattacharyya bound: M -ary case)

(a)

Bj,i =

{
y : PH(i)fY |H(y|i) ≥ PH(j)fY |H(y|j), i < j

y : PH(i)fY |H(y|i) > PH(j)fY |H(y|j), i > j

Therefore,

Bcj,i =

{
y : PH(i)fY |H(y|i) < PH(j)fY |H(y|j), i < j

y : PH(i)fY |H(y|i) ≤ PH(j)fY |H(y|j), i > j,

which is the same as Bi,j.

(b) The probability of error is

Pe =
∑
i

∑
j 6=i

Pr {Y ∈ Rj |H = i}PH(i)

=
∑
i

∑
j>i

[Pr {Y ∈ Rj |H = i}PH(i) + Pr {Y ∈ Ri|H = j}PH(j)] ,

where Ri is the decision region for hypothesis i. Beause Rj ⊂ Bi,j and Ri ⊂ Bj,i, we can
write
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Pe ≤
∑
i

∑
j>i

[Pr {Y ∈ Bi,j |H = i}PH(i) + Pr {Y ∈ Bj,i|H = j}PH(j)]

=
∑
i

∑
j>i

[
Pr {Y ∈ Bi,j |H = i}PH(i) + Pr

{
Y ∈ Bci,j |H = j

}
PH(j)

]
=

∑
i

∑
j>i

[∫
Bi,j

fY |H(y|i)PH(i) dy +

∫
Bci,j

fY |H(y|j)PH(j) dy

]
(?)
=

∑
i

∑
j>i

[∫
Bi,j

min{fY |H(y|i)PH(i), fY |H(y|j)PH(j)} dy

+

∫
Bci,j

min{fY |H(y|i)PH(i), fY |H(y|j)PH(j)} dy

]

=
∑
i

∑
j>i

[∫
y

min{fY |H(y|i)PH(i), fY |H(y|j)PH(j)} dy
]
.

Relation (?) follows from the definition of Bi,j.

(c) Using the hint, we obtain

Pe ≤
∑
i

∑
j>i

[∫
y

√
fY |H(y|i)PH(i)fY |H(y|j)PH(j) dy

]

=
∑
i

∑
j>i

[√
PH(i)PH(j)

∫
y

√
fY |H(y|i)fY |H(y|j) dy

]

≤
∑
i

∑
j>i

[
PH(i) + PH(j)

2

∫
y

√
fY |H(y|i)fY |H(y|j) dy

]
.

Solution 31. (Applying the tight Bhattacharyya bound)

(a) Using the tight bhattacharyya bound, we get

Pe ≤ 1

2

∫
y

√
fY |H(y|0)fY |H(y|1) dy

=
1

2

∫
y

√
1√

2πσ2
exp

(
− (y + a)2

2σ2

)
1√

2πσ2
exp

(
− (y − a)2

2σ2

)
dy

=
1

2

∫
y

1√
2πσ2

√
exp

(
−y

2 + a2

σ2

)
dy

=
1

2
exp

(
− a2

2σ2

)∫
y

1√
2πσ2

exp

(
− y2

2σ2

)
dy

=
1

2
exp

(
− a2

2σ2

)
.
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(b) The above bound is the same as the one from the problem statement, which was obtained
working specifically with the expression for the Q-function. It is surprising that the Bhat-
tacharyya bound, which applies to arbitrary channels, yields the same result.

Solution 32. (Bhattacharyya bound for DMCs)

(a) Inequality (a) follows from the Bhattacharyya Bound.

Using the definition of DMC, it is straightforward to see that

PY |X(y|c0) =

n∏
i=1

PY |X(yi|c0,i) and

PY |X(y|c1) =

n∏
i=1

PY |X(yi|c1,i).

(b) follows by substituting the above values in (a).

Equality (c) is obtained by observing that
∑
y is the same as

∑
y1,...,yn

(the first one being
a vector notation for the sum over all possible y1, . . . , yn).

In (c), we see that we want the sum of all possible products. This is the same as summing
over each yi and taking the product of the resulting sum for all yi. This results in equality
(d). We obtain (e) by writing (d) in a more concise form.

When c0,i = c1,i,
√
PY |X(y|c0,i)PY |X(y|c1,i) = PY |X(y|c0,i). Therefore,∑
y

√
PY |X(y|c0,i)PY |X(y|c1,i) =

∑
y

PY |X(y|c0,i) = 1.

This does not affect the product, so we are only interested in the terms where c0,i 6= c1,i.
We form the product of all such sums where c0,i 6= c1,i. We then look out for terms where
c0,i = a and c1,i = b, a 6= b, and raise the sum to the appropriate power. (Eg. If we have
the product prpqrpqrr, we would write it as p3q2r4). Hence equality (f).

(b) For a binary input channel, we have only two source symbols X = {a, b}. Thus,

Pe ≤ zn(a,b)zn(b,a)

= zn(a,b)+n(b,a)

= zdH(c0,c1).

(c) The value of z is:

(i) For a binary input Gaussian channel,

z =

∫
y

√
fY |X(y|0)fY |X(y|1) dy

= exp

(
− E

2σ2

)
.
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(ii) For the Binary Symmetric Channel (BSC),

z =
√
Pr {y = 0|x = 0}Pr {y = 0|x = 1}+

√
Pr {y = 1|x = 0}Pr {y = 1|x = 1}

= 2
√
δ(1− δ).

(iii) For the Binary Erasure Channel (BEC),

z =
√
Pr {y = 0|x = 0}Pr {y = 0|x = 1}+

√
Pr {y = E|x = 0}Pr {y = E|x = 1}

+
√
Pr {y = 1|x = 0}Pr {y = 1|x = 1}

= 0 + δ + 0

= δ.

Solution 33. (Bhattacharyya bound and Laplacian noise)

The Bhattacharyya Bound for the binary case with equally likely hypotheses is

Pe ≤
∫
y

√
fY |H(y|0)fY |H(y|1) dy = B(a).

By replacing the density functions

fY |H(y|0) =
1

2
e−|y+a|

fY |H(y|1) =
1

2
e−|y−a|,

we obtain

B(a) =

∫ ∞
−∞

√
1

4
e−|y+a|e−|y−a| dy = T1 + T2 + T3,

T1 =

∫ −a
−∞

1

2

√
e(y+a)+(y−a) dy =

1

2

∫ −a
−∞

ey dy =
1

2
e−a

T2 =

∫ a

−a

1

2

√
e−(y+a)+(y−a) dy =

1

2

∫ a

−a
e−a = ae−a

T3 =

∫ −∞
a

1

2

√
e−(y+a)−(y−a) dy = T1.

Therefore, B(a) = (1 + a)e−a.

Solution 34. (Dice tossing)
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(a) Let H = 0 be the hypothesis for a fair dice, and H = 1 the hypothesis for a loaded dice.
Then,

PY |H(y|1) = (1/4)s(3/20)n−s, and

PY |H(y|0) = (1/6)n,

where s is the number of 6’s in the observed sequence.

The MAP decision rule is

PY |H(y|1)

PY |H(y|0)

Ĥ=1

R
Ĥ=0

PH(0)

PH(1)
= 1.

Plugging in, we obtain

(1/4)s · (3/20)n−s

(1/6)n

Ĥ=1

R
Ĥ=0

1.

By taking the logarithm, this becomes

n log
9

10
+ s log

5

3

Ĥ=1

R
Ĥ=0

0, or

s
Ĥ=1

R
Ĥ=0

n log 9
10

log 3
5

.

(b) The sufficient statistic here is simply s, the number of 6’s in the observed sequence.

(c) The Bhattacharyya bound can be found in three different ways.

First solution: Here we work with the observation Y = (Y1, . . . , Yn). We get

Pr {Y ∈ B0,1|H = 0} ≤
∑

y∈{1,2,...,6}n

√
PY |H(y|1)PY |H(y|0)

=
∑

y∈{1,2,...,6}n

√
(1/4)s(y) · (3/20)n−s(y) · (1/6)n

(a)
=

n∑
s=0

(
n

s

)
5n−s

√
(1/4)s · (3/20)n−s · (1/6)n

=
(√

5/8
)n n∑

s=0

(
n

s

)(√
1/15

)s
(b)
= (

√
5/8)n

(
1 +

√
1/15

)n
=

(√
5/8 +

√
1/24

)n
.

In (a) we use the fact that for every s ∈ {0, . . . , n}, there are
(
n
s

)
5n−s different sequences

in {1, . . . , 6}n that have s sixes. In (b) we use the hint given in the assignment. The same
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bound applies for H = 1. Hence,

Pe ≤ 1

2

(√
5

8
+

√
1

24

)n
+

1

2

(√
5

8
+

√
1

24

)n

=

(√
5

8
+

√
1

24

)n
.

Second solution: Here, we work with the observation Z = (Z1, . . . , Zn), where Zi is defined
as

Zi =

{
1 if Yi = 6
0 otherwise.

Note that the random variables Zi are i.i.d., all distributed like Z, where Z is a Bernoulli
random variable with Pr {Z = 1|H = 0} = 1/6 and Pr {Z = 1|H = 1} = 1/4.

The Bhattacharyya bound is

Pr {Z ∈ B0,1|H = 0} ≤
∑

z∈{0,1}n

√
PZ|H(z|1)PZ|H(z|0)

=
∑

z1∈{0,1}

∑
z2∈{0,1}

. . .
∑

zn∈{0,1}

n∏
i=1

√
PZ|H(zi|1)PZ|H(zi|0)

=

 ∑
z∈{0,1}

√
PZ|H(z|1)PZ|H(z|0)

n

=
(√

PZ|H(0|1)PZ|H(0|0) +
√
PZ|H(1|1)PZ|H(1|0)

)n
=

(√
(3/4) · (5/6) +

√
(1/4) · (1/6)

)n
=

(√
5/8 +

√
1/24

)n
.

Again, by symmetry, we find that

Pe ≤
(√

5/8 +
√

1/24
)n

.

Third solution: Here we work with the observation S, which is the number of sixes in Y =
(Y1, . . . , Yn). Note that when H = 0 (when the dice is fair), S has a binomial distribution
with parameters n and (1/6). On the other hand, when H = 1 (when the dice is loaded), S
has a binomial distribution with parameters n and (1/4). Hence, we obtain

Pr {S ∈ B0,1|H = 0} ≤
n∑
s=0

√
PS|H(s|1)PS|H(s|0)

=

n∑
s=0

√(
n

s

)
(1/4)s · (3/4)n−s ·

(
n

s

)
· (1/6)s · (5/6)n−s

= . . .

=
(√5

8
+

√
1

24

)n
,
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where all remaining steps are the same as in the first solution, when using Y . Again, by
symmetry, we find that

Pe ≤
(√

5/8 +
√

1/24
)n

.

Solution 35. (ML receiver and union bound for orthogonal signaling)

(a) The ML decision rule is

ĤML(y) = arg max
i
fY |H(y|i)

= arg max
i

1

(2πσ2)m/2
exp

(
−‖y − ci‖

2

2σ2

)
= arg min

i
‖y − ci‖.

Hence, the ML decision rule is a minimum distance decision rule.

(b)

‖ci − cj‖ =
√
E‖ei − ej‖

=
√

2E ,

where the second equality comes from the fact that ei and ej differ only in two positions,
where one is equal to 0 and the other is equal to 1.

(c) The upper bound for the error probability when H = i is

Pe(i) ≤
∑
j:j 6=i

Pr {Y ∈ Bi,j |H = i}

=
∑
j:j 6=i

∫
Bi,j

fY |H(y|i) dy

=
∑
j:j 6=i

Q

(
‖ci − cj‖

2σ

)

= (m− 1)Q

(√
2E

2σ

)
.

Solution 36. (Uniform polar to Cartesian)

(a) At first look it may seem that the probability is uniformly distributed over the disk, but in
the next part we will show that this is not true.
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(b) We know that R is uniformly distributed in [0, 1] and Φ is uniformly distributed in [0, 2π),
so we have fR(r) = 1 if 0 ≤ r ≤ 1 and fΦ(φ) = 1

2π if 0 ≤ φ < 2π.

As these two random variables are independent, we have

fR,Φ(r, φ) =

{
1

2π 0 ≤ r ≤ 1 and 0 ≤ φ < 2π

0 otherwise.

It can be easily shown that the Jacobian determinant is det J = r =
√
x2 + y2. Therefore,

the probability distribution in cartesian coordinates is

fX,Y (x, y) =
1

|det J |
fR,Φ(r, φ)

=

{
1

2π
√
x2+y2

x2 + y2 ≤ 1

0 otherwise.

(c) We see that the probability distribution is not distributed uniformly. This makes sense
because rings of equal width have the same probability but not the same area.

Solution 37. (Real-valued Gaussian random variables)

(a) We have to find the marginal of X when X and Y are jointly distributed as in the first
equation of this problem. The marginal of X is found by integrating fXY (x, y) over y, i.e.

fX(x) =

∫ ∞
−∞

fXY (x, y)dy

=

∫ ∞
−∞

1

2π
√
σ2
Xσ

2
Y − σ2

XY

exp

(
−1

2

σ2
Y x

2 + σ2
Xy

2 − 2σXY xy

σ2
Xσ

2
Y − σ2

XY

)
dy

=

∫ ∞
−∞

1

2πσXσY
√

1− ρ2
exp

(
− 1

2(1− ρ2)

(
x2

σ2
X

− 2ρxy

σXσY
+
y2

σ2
Y

))
dy,

where ρ = σXY
σXσY

.

We can rewrite

fX(x) =

∫ ∞
−∞

1

2πσXσY
√

1− ρ2
exp

(
− x2

2σ2
X

)
exp

(
− 1

2(1− ρ2)σ2
Y

(
y − ρσY x

σX

)2
)
dy

=
1√

2πσ2
X

exp

(
− x2

2σ2
X

)

×
∫ ∞
−∞

1√
2πσ2

y(1− ρ2)
exp

(
− 1

2(1− ρ2)σ2
Y

(
y − ρσY x

σX

)2
)
dy.
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The expression under the integral is a Gaussian density in the variable y, which integrates
to one. Therefore,

fX(x) =
1√

2πσ2
X

exp

(
− x2

2σ2
X

)
,

showing that X is a zero-mean Gaussian random variable with variance σ2
X . By symmetry,

the computations for Y are the same.

(b) For independent random variables,

fXY (x, y) = fX(x)fY (y)

=
1√

2πσ2
X

exp

(
− x2

2σ2
X

)
1√

2πσ2
Y

exp

(
− y2

2σ2
Y

)
=

1

2π
√
σ2
Xσ

2
Y

exp

(
−1

2

(
x2

σ2
X

+
y2

σ2
Y

))
.

Because X and Y are independent, σXY = 0. Thus, by setting Σ to be a diagonal matrix
with entries σ2

X and σ2
Y , we obtain the joint density function as in the problem statement.

(c) Let X ∼ N (0, 1) be a Gaussian variable. Let U be a variable that is 1 with probability 0.5
and −1 with probability 0.5. Then, Y = UX is not independent of X, but it is Gaussian.
X and Y are not jointly Gaussian (e.g. fX,Y (1, 2) = 0).

(d) Any linear combination of independent Gaussian random variables is a Gaussian random
variable. All we need to describe are the mean m and the variance σ2

Z of X + Y . They are
mZ = mX +mY = 0 and σ2

Z = σ2
X + σ2

Y . Hence

fX+Y (z) =
1√

2π(σ2
X + σ2

Y )
exp

(
− z2

2(σ2
X + σ2

Y )

)
.

Alternatively, we can compute fZ = fX+Y =
∫
fX(x)fY (z − x)dx.

Solution 38. (Correlation vs. independence)

(a) We have,

E [X] =

∫ ∞
−∞

xfX(x)dx =

∫ 1

−1

zfZ(z)dz =

∫ 1

−1

z
1

2
dz = 0,

E [Y ] =

∫ ∞
−∞

yfY (y)dy =

∫ 1

−1

z2fZ(z)dz =

∫ 1

−1

z2 1

2
dz =

1

3
,

E [XY ] =

∫ ∞
−∞

z3fZ(z)dz =

∫ 1

−1

z3 1

2
dz = 0.

The covariance between X and Y is,

Cov(X,Y ) = E [(X − E [X])(Y − E [Y ])] = E [XY ]− E [X]E [Y ] = 0.

Since Cov(X,Y ) = 0, X and Y are uncorrelated.
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(b) X and Y are not independent because Y = X2.

(c) Because X and Y are uncorrelated with variances σ2
X and σ2

Y respectively, the covariance
matrix Σ is,

Σ =

(
σ2
X 0
0 σ2

Y

)
.

The joint distribution of X and Y is given by,

fXY (x, y) =
1

2π
√

det Σ
exp

(
−1

2

(
x, y

)
Σ−1

(
x
y

))
=

1

2π
√
σ2
Xσ

2
Y

exp

(
− x2

2σ2
X

− y2

2σ2
Y

)
=

1

2π
√
σ2
Xσ

2
Y

exp

(
− x2

2σ2
X

)
exp

(
− y2

2σ2
Y

)
=

1√
2πσ2

X

exp

(
− x2

2σ2
X

)
1√

2πσ2
Y

exp

(
− y2

2σ2
Y

)
= fX(x)fY (y).

Since fXY (x, y) = fX(x)fY (y), X and Y are independent. In general for jointly Gaussian
random variables, uncorrelation implies independence.

Solution 39. (Data-storage channel)

(a) The density functions are a Gaussian centered at 0 and a Gaussian of larger variance
centered at 1. They intersect in two points, say y1 and y2 (y1 < y2). The decoding region
for Ĥ = 0 is R0 = [y1, y2]. This is depicted in Figure 2.15.

(b) Formally, R0 is the set of y for which

1√
2πσ2

0

e
− y2

2σ20 ≥ 1√
2πσ2

1

e
− (y−1)2

2σ21 .

Let us find the two points y1 and y2 for which equality holds. They are the solution to

(y − 1)2

2σ2
1

− y2

2σ2
0

= ln
σ0

σ1
.

Hence we are looking for the roots of ay2 + by + c for

a =
σ2

0 − σ2
1

2σ2
0σ

2
1

b = − 1

σ2
1

c =
1

2σ2
1

− ln
σ0

σ1
.
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Figure 2.15: Decision regions

The solution is y1,2 = −b±
√
b2−4ac

2a and, after a few steps, one obtains

y1,2 =
σ0

σ2
0 − σ2

1

[
σ0 ± σ1

√
1 + 2(σ2

0 − σ2
1) ln

σ0

σ1

]
.

Therefore, the optimal receiver decides Ĥ = 0 if y1 ≤ y ≤ y2, and Ĥ = 1 otherwise.

(c) The probability of error when H = 0 is

Pe(0) = 1−Q
(
y1

σ0

)
+Q

(
y2

σ0

)
and when H = 1 is

Pe(1) = Q

(
y1 − 1

σ1

)
−Q

(
y2 − 1

σ1

)
.

Therefore,

Pe =
1

2
[Pe(0) + Pe(1)].

Solution 40. (A simple multiple-access scheme)

(a) Because the prior probabilities are the same, the MAP and ML decision rules are the iden-
tical. The optimal decision rule is

Ĥ(y) = argmax
h1h2

fY |H1H2
(y|h1, h2) =

1√
2πσ2

exp

(
− (y − x1 − x2)2

2σ2

)
.

(b) For σ2 = 0, the signal for each hypothesis is
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Figure 2.16: Optimal decision regions

(c) The optimal decision regions are presented in Figure 2.16.

(d) Because of the symmetry, Pc(11) = Pc(00) and Pc(01) = Pc(10).

Pc(11) = Pr {Y ≤ −2|H1 = 1 ∩H2 = 1}
= Pr {Z ≤ 1}

= Q

(
− 1

σ

)
.

Pc(01) = Pr {−2 ≤ Y ≤ 0|H1 = 0 ∩H2 = 1}
= Pr {−1 ≤ Z ≤ 1}

= Q

(
− 1

σ

)
−Q

(
1

σ

)
.

Putting things together, we obtain

Pr
{
Ĥ1 = H1, Ĥ2 = H2

}
=

1

4
(Pc(00) + Pc(01) + Pc(10) + Pc(11))

= Q

(
− 1

σ

)
− 1

2
Q

(
1

σ

)
.

(e) The receiver decides Ĥ2 = 1 if y ≤ 0. Because of the symmetry, Pr
{
Ĥ2 = H2

}
=

PcH2(0) = PcH2(1).
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PcH2
(1) = Pr {H1 = 0}Pr {Y ≤ 0|H1 = 0 ∩H2 = 1}

+Pr {H1 = 1}Pr {Y ≤ 0|H1 = 1 ∩H2 = 1}

=
1

2
Pr {Z ≤ 1}+

1

2
Pr {Z ≤ 3}

=
1

2

(
Q

(
− 3

σ

)
+Q

(
− 1

σ

))
.

Solution 41. (Data-dependent noise)

(a) The optimal decision rule is

fY |H(y|1)
Ĥ=1

R
Ĥ=0

fY |H(y|0), or

1√
2πσ2

exp

(
− (y − 1)2

2σ2

) Ĥ=1

R
Ĥ=0

1√
2π

exp

(
− (y + 1)2

2

)
.

After taking the logarithm we obtain

0
Ĥ=1

R
Ĥ=0

(y − 1)2

2σ2
− (y + 1)2

2
+ lnσ

(b) If σ2 = e4, the equality sign is obtained for

y1 = −3e4 + 1

e4 − 1
y2 = 1.

The receiver decides Ĥ = 0 if y1 ≤ y ≤ y2, and Ĥ = 1 otherwise.

(c)

Pe(0) = Pr {Y < y1 ∪ Y > y2|H = 0}

=

∫ y1

−∞

1√
2π

exp

(
− (y + 1)2

2

)
dy +

∫ ∞
y2

1√
2π

exp

(
− (y + 1)2

2

)
dy

= 1−Q(y1 + 1) +Q(y2 + 1).

Pe(1) = Pr {y1 < Y < y2|H = 1}

=

∫ ∞
y1

1√
2πσ2

exp

(
− (y − 1)2

2σ2

)
dy −

∫ ∞
y2

1√
2πσ2

exp

(
− (y − 1)2

2σ2

)
dy

= Q

(
y1 − 1

σ

)
−Q

(
y2 − 1

σ

)
= Q

(
y1 − 1

e2

)
−Q

(
y2 − 1

e2

)
.
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Solution 42. (Correlated noise)

(a) Let Ẑ = BZ. The covariance matrix of Ẑ is

Σ̂ = BΣBT.

Using the hint, we set B = 1
4

(
2 0
−1 2

)
and obtain Σ̂ = ( 1 0

0 1 ).

Because it is obtained by a linear combination of zero-mean Gaussian random variables, the
vector Ẑ is also zero-mean Gaussian. Because its covariance matrix is the unity matrix, its
components are independent, and have variance equal to 1.

(b) For H = i, the covariance matrix of Ŷ is Σ̂, and the probability density function is

fŶ |H(ŷ|i) =
1

2π
√

det Σ̂
exp

(
−1

2
(y −Bci)TΣ̂−1(y −Bci)

)
=

1

2π
exp

(
−1

2
(y −Bci)T(y −Bci)

)
.

The hypothesis testing problem becomes

Ĥ(y) = arg max
i

1

2π
exp

(
−1

2
(y −Bci)T(y −Bci)

)
= arg min

i
(y −Bci)T(y −Bci)

= arg min
i
‖y − ĉi‖,

where ĉi = Bci.

The decision regions are depicted (qualitatively) in Figure 2.17.

(c) We determine the union bound for the probability of error. Recall that

Pe(i) ≤
∑
j:j 6=i

∫
Bi,j

fŶ |H(ŷ|i)dy.

For our problem, this becomes

Pe(i) ≤
∑
j:j 6=i

Q

(
‖ĉj − ĉi‖

2σ

)

=
∑
j:j 6=i

Q

(
‖ĉj − ĉi‖

2

)
.

The bound for the error probability is

Pe =
∑
i

PH(i)Pe(i)

≤
∑
i

1

4

∑
j:j 6=i

Q

(
‖ĉj − ĉi‖

2

)

=
1

2

∑
i

∑
j:j>i

Q

(
‖ĉj − ĉi‖

2

)
.
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Figure 2.17: Decision regions



Chapter 3

Receiver Design for
Continuous-Time AWGN Channels:
Second Layer

Solution 1. (Gram–Schmidt procedure on tuples)
We start by normalizing β1:

‖β1‖ =
√
〈β1, β1〉 =

√
3

ψ1 =
β1

‖β1‖
= (

1√
3
, 0,

1√
3
,

1√
3

).

We get the next basis vectors as follows:

〈ψ1, β2〉 =
√

3

φ2 = β2 −
√

3ψ1 = (1, 1,−1, 0)

‖φ2‖ =
√

3

ψ2 =
φ2

‖φ2‖
= (

1√
3
,

1√
3
,− 1√

3
, 0).

We compute

〈ψ1, β3〉 = 0

〈ψ2, β3〉 = 0.

Thus,

φ3 = β3 − 0ψ1 − 0ψ2 = (1, 0, 1,−2)

‖φ3‖ =
√

1 + 1 + 4 =
√

6

ψ3 =
φ3

‖φ3‖
= (

1√
6
, 0,

1√
6
,− 2√

6
).
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