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1 Introduction and objectives

Solution 1. (Probabilities of basic events)

In each case, the shaded region represents the (X1, Xo) values satisfying the correspond-
ing inequalities. Since X1 and X5 are independent and uniformly distributed, the area of
the shaded region gives the probability of the inequality being satisfied. We use Pr{-} to
denote the probability of an event.
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(e) In this part we have

b)) < ()

It can easily be seen that the probability term in the numerator is equal to the area of
the shaded region in the figure below. We can divide the shaded area into two parts,
triangular and sub circular. It is easy to show that the angle of the triangle on the
picture is 120° so the sub circular part consists 0f§ of the circle area. So the sub
circular part’s area is % 7'('(%)2 = % and the triangular part’s area is \1/—65. Summing the
area of these two parts, we reach the final result.

X
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Solution 2. (Basic probabilities)



(a) First, we find the probability of the complement of the event, namely the probability of
drawing only black balls. This probability is equal to
()

(")
Therefore the probability of drawing at least one white ball is equal to
(i)

(")

Pr{All k balls are black} =

Pr{At least one ball is white} =1 —

(b) Define the following random variables

0 if the chosen coin is fair,

X = .
1 otherwise,

and

00 if both outcomes are tail,

01 uf the first one is tail, the second one is head,

10 if the first one is head, the second one is tail,

11 if both outcomes are head.

Y —

So having these two random variables defined, we want to compute Pr{X = 0|Y = 11}.
So we can write

Pr{Y =11|X =0}Pr{X =0}

Pri{X =0y =11} =

Pr{Y =11}
_1/4x1)/2
- Pr{y =11}
18
C Pr{y =11}

Then for Pr{Y =11} we have
Pr{Y =11} =Pr{X =0}-Pr{Y =11|X =0} + Pr{X =1} - Pr{Y =11|X =1}
=1/2x1/4+1/2x1
= 5/8.
So, finally we have
1/8 1

Solution 3. (Conditional distribution)
The probability mass has been distributed uniformly on the upper triangular area accord-
ing to the shape below:

Y




(a) If X andY were independent then the distribution of X would not depend on'Y . This
is clearly not the case. In fact, the range of values taken by X is between 0 and Y.

(b) The integral of fxy(x,y) must be 1. Hence Ax 5 =1 and so A = 2.

(c) We know that fy(y) dy = Pr{y <Y <y+dy}, but for a special y as can be seen from
the figure below, this probability mass is equal to A times the area of a rectangle with
length y and width dy when 0 <y < 1.

2y O<y<1,
Fr(y) = { 0  otherwise.

Or more formally

1 Yy
Jy(y) :/o fX,Y(fE»y) dx :/0 2 dr =2y.

Y

X

(d) Under the condition Y =y, the random variable X is uniformly distributed between 0
and y and so f(y) =E[X|Y =y] =14.

(e) f(Y) is a function of Y so it is a random variable and we can compute its expected
value.

E[f(Y)] = / F@) v () dy = / 2y =

(f) We compute E[X] using the definition.

E[X]://xfx,y(x,y) dx dy:/ol l/oyzx dx} dy:%,

and it is seen that E[X]| = E [E [X|Y]]. This result, which holds in general, is named
the law of total expectation.

Solution 4. (Playing darts)

(a) X =ZX, + (1 - 2)X,.



(b) Note that E[X]| = 0, because expectation is linear and Z is independent from X, and
Xy5. Thus,

=E[X?] -
=E [X?]
=E[X*Z=1]p+E[X?*Z=0](1-p)
= poi + (1 —p)os.

Var(X E[X

’ti

X is not Gaussian. In fact X is not a linear combination of two Gaussians, it is rather
a mixture of two Gaussians. One can use the characteristic function to show rigorously
that X is not a Gaussian, but this is outside the scope of this class.

(c)

22 z?

E[S] = / T e 2t dr+ (1 — / T e 2% dx
[S] p_oollalm (1-p) _OOIIUQ\/%

e’} 1 —LZQ 0 1 —LQQ
=2 / r———¢ 291 dx +2(1 — / T e 272 dx.
P 0 o1V 2w ( P) 0 o9V 21

. . 2 2 .
With the change of variables u; = 2$T§ and uy = 2%%, we obtain

09 o —us
e du
) V2T /0 ?

E[S] =2p 7 e du; +2(1—p

V27 Jo
= \/% [poy + (1 —p)os].

Solution 5. (Uncorrelated vs. independent random variables)
Note:

e By definition, X and Y are uncorrelated if and only if
O=cov(X,Y)=E[(X -EX)(Y-E[Y)]=E[XY]-E[X]E[Y].
Hence cov(X,Y) = 0 is equivalent to the the condition E[XY]| =E[X]E[Y].
e X and Y are independent when fxy = fxfy.

(a) Assume that the random variables X and Y are independent. Then
E[XY] = / / ryfxy(v,y) dv dy = / / vy fx(x) fy (y) do dy
~ [osxt@) o [ utviy) dy =B XIE]

where the second equality follows from the assumption that X and Y are independent.
Hence, if X and Y are independent, they are also uncorrelated.



(b) X and Y are obviously dependent. For example, X = 0 implies U = 0 and V = 0.
Hence it implies also Y = 0. The marginals of X and Y are

0 with prob. }1,
X =<1 with prob. %,
2 with prob. }1,

v _ 0 with prob.
1 with prob.

N N|=

The mean for X is E[X] =1 and forY it is E[Y] = % Finally, we have that

1 1 1 1 1
IE[XY]:(ZXOXO)+(Zx1x1)+<zx1x1)+(1x0x2):5.
From the above we obtain
cov(X,Y)=E[XY]-E[X]E[Y] = 0.

Therefore, we see that X and Y are uncorrelated, even though they are dependent.

Solution 6. (Monty Hall)

(a) Pr{A contains one million Swiss francs} = 1/3.

(b) Observe that B contains the money if and only if A does not contain the money, thus

Pr{B contains one million Swiss francs} = Pr{A contains nothing} = 2/3.

(c) A reasonable person will choose B since it has a larger probability of containing the

money.



2 Receiver design for discrete-time observations: First
layer

Solution 1. (Hypothesis testing: Uniform and uniform)

(a) Let l(y) be the number of 0’s in the sequence y.

1
Py (y|0) =5
— ifl=k
Pty =17
0, otherwise
(b) The ML decision rule is:
H=1
PY|H(?J|1) z PY|H(y|O)
H=0

Because ﬁ > 22% for any value of k, the ML decision rule becomes
k

L ifl(y) =k
The single number needed is l(y), the number of 0’s in the sequence y.
(c) The decision rule that minimizes the error probability is the MAP rule:
H=1
Py (y[1)Pa(1) ; Py (y]0) P (0).

H=0

The MAP decision rule gives H = 0 whenever I(y) # k. When I(y) = k:

—

2k
o Joo s
1,  otherwise.

(d) Trivial solution: If Pyr(1) =1 then H=1forally (In this case, [(y) = k is guaranteed).
Similarly, if Py(0) =1 then H =0 for all y.

Now assume Py(1) # 1. Then there is a nonzero probability that l(y) # k, in which
case H =0. The MAP decision rule always chooses H = 0 if

‘H

|

2k)
k

) Pull) gy BT

(0) @‘1‘2%

+

Solution 2. (The “Wetterfrosch”)



(a) A and B must be chosen such that the suggested functions become valid probability
density functions, i.e. fol fyia(yli)dy = 1 for i = 0,1. This yields A = 4/3 and
B =6/7. (A quicker way is to draw the functions and find the area by looking at the
drawings.)

(b) Let us first find the marginal of Y, i.e.
fr) = frul0)Pu(0) + fyiu(y[l)Pu(l) = C — Dy,
where we find C' = 23/21 and D = 4/21. Then, applying Bayes’ rule gives

fray0)Pu(0) 1A—Fy 1 4/3—2/3y

Py (0y) = Fr(v) T 2C—Dy 223/21—4/21y’

and similarly

fraDPua(l) 1B+5y 1 6/T+2/Ty
fy(y) 20 —Dy  223/21 —4/21y’

PH|Y<1|y)

(c) The threshold is where the two a posteriori probabilities are equal,

1 4/3-2/3y 1 6/7T+2/7y

223/21 —4/21y  223/21 —4/21y’

or equivalently,
4/3 -2/3y = 6/7+2/Ty.

The y that satisfies this equation is our threshold 0, thus 8 = 0.5.

PH\Y(“Z/)

0.5 T

(d) The probability that we decide ﬁy(y) = 1 when in reality H = 0 is just the probability
that y 1s larger than the threshold given that H = 0, which is

ProY >A[H =0} = / Fyn(y10)dy = / (A - éy) dy

9
Al —~2
(1—-7) 55
A1l =) 172
N 3 3

10



(e) By analogy to the previous question,

v <ol =1 = [ pentinar= [ (5+50)a

P.(y) = Pr{Y >~|H=0}Py(0)+ Pr{Y <~v|H =1}Pg(1)
1 <4(1—7) B 1—72+6_7+12>‘

2 3 3 77

For v =60 =0.5, we find P.(0) = 0.44.

(f) To minimize P, over ~y, we take the derivative of P, with respect to =y, i.e.

d 1 4  2v 6 2y
&0 = 5( 5*?*%*7)'

Setting this equal to zero, we find v = 0.5. We observe that the value of v which
minimizes P.() is equal to 0. This was expected, because the MAP decision rule
minimaizes the error probability.

Solution 3. (Hypothesis testing in Laplacian noise)

(a) We find the following conditional densities for the observation Y wunder hypothesis
H =0 and H = 1, respectively:

1

Frin(yl0) = Se7
Primllt) = gehe
frm(ylt) 051 Jyu(y|0)
i i y
—a 0 a

(b) Because the hypotheses are equally likely, the MAP rule is the same as the ML rule.
Therefore, the probability of error is minimized by the following decision rule:

H=1
fY|H(?/| 1) z leH(y|0)-
H=0

From the picture of fya(y|0) and fya(y|1), we see immediately that the ML decision
rule decides for H =0 when y > 0 and for H =1 when y < 0.

11



(c)

P0) = Pr{y<O[H =0} = / Fr i (y]0)dy

0 0
1 1
— 2o ly=al g, — Zoy—a)
/_Oo 26 dy /_Oo 26 dy

T B
5 e’ 7
By symmetry, we find that
6*04
P.(1) = ,
m =5
and thus,
e—a
P. = P.(0)Py(0)+ P.(1)Pg(1) = 5

Solution 4. (Poisson parameter estimation)

(a) We can write the MAP decision rule in the following way:

Pyiu(yll) =" Py(0)

Py (yl0) .=, Pu(1)
Plugging in, we find

e ™M H>:1 Do

Yy __ )
Aje—2o ﬁ<:0 1—1po

()\1 > y H
Ao a
Taking logarithms on both sides does not change the direction of the inequalities, there-

fore
A H=1 P B
ylog ()\—1) = log (1_—06A1 Ao)
0 H=0 Do

Attention: the term log(A1/Ao) can be negative, and if it is, then dividing by it involves
changing the direction of the inequality.

and then

1

DPo M=o
1 —po

AIV

0

Suppose Ay > XNg. Then, log(A1/No) > 0, and the decision rule becomes

A1 —N\
! log <%€ ' 0) def
= 40
e

12

H

<
AIV

H



(b) We compute

P.(0) = Pr{Y >0|H=0}= Y Pyu(yl0)
y=[0]
16]

yloo

and by analogy

0]
P.(1) = Pr{Y <0|H=1}=> Pyu(yll)
y=0
6]

)\y
_ Z M M
y

|
— !

Thus, the probability of error becomes

1] A 2 2\

_ B 20 - _ _1

P. = po|1 Dyl "L+ —po)) "

y=0
Now, suppose that Ay < Xg. Then, log(A1/ o) < 0, and we have to swap the inequality
sign, thus
FI>:0 1og< Po ’\1*’\0> ot
y = = 40

1 log (/\—(1)>

The rest of the analysis goes along the same lines, and finally, we obtain

H

0] vy 16)

A Y
P. = po)y, y_?ew +(1—po) [ 1= Se™

|
y=0 7" v

H=1

The case \g = A1 yields log(A1/Ao) = 0, so the decision rule becomes 0 z 0, regardless

=0
of y. Thus, we can exclude the case \g = Ay from our discussion.

(c) Here, we are in the case \y > Xg, and we find 6 ~ 4.54. We thus evaluate

4 4
1 Z 2V 2 Z 10V 10

y=0
(d) We find 0 ~ 7.5163
1 T L) 2. 20V,
P = 3 1_256 +§Z(?e )z0.000885

The two Poisson distributions are much better separated than in (c); therefore, it be-
comes considerably easier to distinguish them based on one single observation y.

13



Solution 5. (Lie detector)
(a) Let H € {T,L}.

H = T (telling truth):  fyia(y|T) =ae ™, y >0
H = L (telling lie):  fyu(y|L) = Be ™, y > 0.

The MAP decision rule is

H=L
pBe P ; (1 —p)ae™ .
H=T

After taking the logarithm, we obtain

H=L
—By+In(pf) = —ay+hn((1—pa).

H=T

Or, equivalently

e au—m}
= In |— =0
yﬁiLOZ—/B n|:6 P

(b)
0
Prir = / ae”Ydy=1— e,
0

(c) N
Prio= [ pe Py =,
(4

(d)

H=T: fyu(ylT)=a"e o = gre=

H=L: frulylL)=pre bt m — guer

where Y is the random wvector (Y1,...,Y,) and where z = " y;. With this new
H=T

definition, the test becomes z = 0, with the new threshold = a5 In [(%) —(1;]7)]-
H=L

0
Prr = / fz1m(2[T)dz,
0
where Z =" | Y; and

(n—1)!

n—1) —az

J21u(2|T) = PP

This is the density of the Erlang distribution. Putting things together, we get

0 a” (n—1)
) _ n—1),—azj,
LT /0v (n — 1)' z (& z

14



Solution 6. (Fault detector)
H =1 is the hypothesis that the box works properly and H = 0 the hypothesis that the
box fails.

(a) The MAP test is

Ixa(z[1) szl fX\H(-iE|O)'

Pu(0) = Pu(l)

If l(x) is the number of zeros in the sequence x,

Py (@]l) = {pm_l(l -, Y0<1<16

0, otherwise
1
fxu(2]0) = 316
(b) By substituting | = 8, p = 0.25, Py(0) = 155 and Py(1) = 152 in the decision rule,
we obtain
38 f=1
=z
26 <
H=0

therefore the hypothesis is H =1 — the box works properly.

Solution 7. (Multiple choice exam)

(a) We have a binary hypothesis testing problem: The hypothesis H is the answer you will
select, and your decision will be based on the observation of H; and Hy. Let H take
value 1 if answer 1 is chosen, and value 2 if answer 2 is chosen. In this case, we can
write the MAP decision rule as follows:

1

Pr {H —1|H;, =1,Hr = 2}

AV

Pr{]—] —9lH, =1,Hp = 2}

From the problem setting we know the priors Pr{H =1} and Pr{H = 2}; we can
also determine the conditional probabilities Pr {fIL =1|H = 1}, Pr {ﬁL =1|H = 2},

PT{]:IR =2|H = 1} and Pr {I:IR =2|H = 2} (we have Pr {I:IL =1/H = 1} = 0.9
and Pr {ﬁL =1|H = 2} = 0.1). Introducing these quantities and using the Bayes

rule we can formulate the MAP decision rule as

Pr {lf[L —1,Hp=2\H= 1}Pr{H =1} Az Pr {ﬁL —1,Hp=2\H = Z}Pr (H =2}

Pr{ﬁLzl,ﬁR:2} ﬁ<:2 Pr{ﬁLzl,ﬁR:2}

Now, assuming that the event {H, = 1} is independent of the event {Hp = 2} and
simplifying the expression, we obtain

A=1
Pr {HL —1|H = 1}Pr {HR —9|H = 1}PT{H —1} =

Pr {ﬁfL —1|H = Z}Pr {ﬁR —9|H = Z}Pr (H :H2:}2

which is our final decision rule.

15



(b) Evaluating the previous decision rule, we have
H=
09%03x025 = 0.1x0.7x0.75,
which gives

>
0.0675 = 0.0525

This implies that the answer H is equal to 1.

Solution 8. (MAP decoding rule: Alternative derivation)
(a) The probability of error can be written as
Pe:PH(O)PT{Y€R1|HIO}+PH(1)PT{YER()’HI 1}

= Py(0) [ frip@l0)dy + Pu(1) | fria(yll)dy

R1 Ro
= Pu(0) [ fria(yl0)dy + Pu() (1 - fy.H<y11>dy)
R1 R1
= Py(1) + /R (P (0) fy1 (y]0) — Py (1) fyyu(y]1)) dy, (1)

where the third equality follows from the hint

/ fyia(yll)dy = fria(y[1)dy + fri(y|l)dy = 1.
RoUR1 Ro R1

(b) Note that P, is smallest if the second term le (Pr(0) fy 1 (y]0) — Py (1) fyu(y[1)) dy
in (1) is made as negative as possible. Note that the first term Py (1) in (1) is fized and
does not depend on our choices for Ry and Ry. The second term can be minimized if we
collect in Ry ally € R that yield negative contribution, i.e. y € Ry iff Py (0) fyu(y|0)—
P (1) fym(y[1) < 0.

Note: How does this approach compare to the one from the book? Conditioning is one
of the most important tricks to make progress in computing a probability. There are two
random variables involved, namely H and Y . In the notes we have conditioned on Y = y.
Here we are conditioning on H = 1.

Solution 9. (Independent and identically distributed vs. first-order Markov)

An explanation regarding the title of this problem: independent and identically dis-
tributed means that all Y1, ..., Y, have the same probability mass function and are indepen-
dent of each other. First-order Markov means that Y1, ...,Y) depend on each other in a
particular way: the probability mass function Y; depends on the value of Y;_1, but given the
value of Y;_1, it is independent of Yi,...,Y; 5. Thus, in this problem, we observe a binary
sequence, and we want to know whether it has been generated by an i.i.d. (independent and
identically distributed) source or by a first-order Markov source.

16



(a) Since the two hypotheses are equally likely, we find

Prin(yll) =" Pu(0)

= =1.
<
Pouyl0) =, Pull)
Plugging in, we obtain
12 (/) (3/0kt 2
k < ’
1/2) =

where | is the number of times the observed sequence changes either from zero to one
or from one to zero, i.e. the number of transitions in the observed sequence.

(b) The sufficient statistic here is simply the number of transitions l; this entirely specifies
the likelihood ratio.

(c¢) In this case, the number of non-transitions is (k — 1) = s, and the log-likelihood ratio

becomes
1/2 . (1/4)k—s . (3/4)8—1 B (1/4)k—s . (3/4)5_1
log (1/2)F = log 21
= (k—s)log(1/4) + (s — 1)log(3/4) — (k — 1) log(1/2)
3/4 1/4 1/2
= Slogl/—4+klog1/—2+1og3_/4

= slog3+ klogl/2+log2/3.
Thus, in terms of this log-likelihood ratio, the decision rule becomes

A=1
slog3+ klog1/2 +log2/3 ; 0.
A=0
That is, we have to find the smallest possible s such that this expression becomes larger
or equal to zero. Therefore,

. > klog1/2 +log2/3
- log1/3 '

Solution 10. (SIMO channel with Laplacian noise)

(a) Let the two hypotheses be H = 0 and H = 1 when ¢y and ¢, are transmitted, respectively.
The ML decision rule is

A=1
fY1Y2|H(y17 Y2|1) z leYle(Z/b Y2(0).
A=0

Because Z1 and Zy are independent, we can write

AH=1
Low-nd -1 > Lyl

- —ly2+1
2¢ 2f <9 p¢
H=0
and, after taking the logarithm,
H=1
o+ 1+ e+ 1 2y — 1]+ [y — 1.
H=0

17



(b) Because the hypotheses are equally likely and Zy and Zy have the same distribution, the

(c)

decision region for H = 0 contains the points closer to (—1, —1) and the decision region
for H =1 contains the points closer to (1,1). For this problem, the distance between
the points (y11,y12) and (Ya1,Yy2e) is the Manhattan distance, |y11 — yo1| + Y12 — Yool,
and not the FEuclidian distance.

Let us first consider the points above the line yo = —y1 from Figure 1. It is easy to
notice that the points in the positive quadrant are closer to (1,1) than to (—1,—1),
therefore they belong to Ry (H = 1). This is also true if {(1n > 0) N (2 € (—1,0))},
orif {(y2 > 0) N (1 € (—1,0))}.

Y2
R
Y R R4
—-1,1
( ) (L)
Ro
Y1
R4
—1,—1)e
( ) (17 _1)
Ro Ro
R~

Figure 1: Decision regions

Similar reasoning can be applied to the points below the diagonal to determine Ry.

The points for which {(yn < —=1)N(y2 > 1)} or {(xn > 1) N (y2 < —1)} are equally
distanced to (—1,—1) and (1,1), therefore they can belong to either Ry or Ry with the
same probability. This region is named R-.

The two hypotheses are equally probable for the region R+. Therefore, we can split this
region in any way between the decision regions and have the same error probability.
Because Ry is included in the region for which yo > —y; and Ry does not intersect
the region for which ys > —yy1, the error probability is minimized by deciding H=1 if
(y1 +52) > 0.

18



(d)

P0) = Pr{Yi+Y,>0H =0}
PT{Z1+ZQ—2>0}

—w

—€ 0o _
= —7 (w+2)|, =

By symmetry, and considering that the messages are equally likely, P.(0) = P.(1) = P,.

Solution 11. (Q-Function on regions)

(a) One can see that the event {X € Region} only depends on the first component X.
Hence, we have

Pr{X € Region} = Pr{(X;>-2)Nn(X;<1)}
= 1-Pr{(X1i<-2)U(X; >1)}

2 1
o o
where the last equality is true because {X; < —2} and {X; > 1} are disjoint events.

(b) Because X; and Xy are independent and have the same variance, rotating the vector X
by any angle around the origin does not change its distribution. Equivalently, we can
rotate the square region in Figure (b) by 45 degrees, and the probability of X being in the
rotated region is the same as for the original region. The new region is a square whose
edges are parallel to the axes of the coordinate system. The points where the edges of

the square intersect the aves are (v/2,0), (—v/2,0), (0,4/2) and (0, —/2). Hence,
Pr{X € Region} = Pr {(—\/5 <X <V2)N(—V2< X, < \/5)}

Pr{ivi<x <vi}

1-Pr{x < VDU > ﬁ)}r

()

where (1) holds because X1 and Xy are independent and identically distributed.

—
—
~

(c) We solve this part in three different ways:

(i) First Solution: As in the previous part, we can rotate X such that one of its
components, say X1, is perpendicular to the straight line that delimits the shaded
region. Then, we need to know the shortest distance d of that line to the origin
(the length of a segment that starts at (0,0) and is perpendicular to the line).

19



Using standard trigonometric techniques, one finds that this length is d = \%
Then, 1t follows that

2
Pri{X € Region} = Pr<X;,>—
{ g } {1_\/5}

o)

(71) Second Solution: We are looking for the probability that Xy > 1 — %Xl, i.€.,
the probability that Z £ X, + %Xl —1>0. But Z ~ N(—l,%az). Hence,
Pr{X € Region} = Pr{Z >0} =Q <ﬁ>

(iii) Third Solution: We project X = (X1, X2)" to the vector perpendicular to the
line that delimits the shaded region. The length of the projection is Z ~ N (0, 0?).
The sought probability is Pr{Z > d} = Q (g) =Q (i> , where d is the distance

V50
from the delimiting line to the origin.

Solution 12. (Properties of the @ function)
(a)

2
_xT_
e 2 dx

Fz(2) :PT{ZSZ}:/_Z L
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[ gt
= e 2 dr — ——e 2 dx
o V2T . V2m
=1 —-Q(z).

(b)
1

because we have the same area on both sides of the Gaussian bell.
Q(—o0) = Pr{Z > —o0} = 1.
Q(o0) = Pr{Z > o0} = 0.
(c) If we add Q(—x) and Q(x), we get 1. Refer to Figure 2.

(d) Consider the following integration by parts:
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