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Chapter 1

Introduction and Objectives

Solution 1. (Probabilities of basic events)

In each case, the shaded region represents the (X1, X2) values satisfying the correspond-
ing inequalities. Since Xy and X5 are independent and uniformly distributed, the area of the
shaded region gives the probability of the inequality being satisfied. We use Pr{-} to denote the
probability of an event.

(a)

1 1 1
< — < \N=_"=2
Pr{0X1 X23} 5 2><

Xo

(b)

1
PT{Xi?’SX2§X12}=/ (xZ—xS)dq::[—
0
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X5

X1

(c)
Pr{X2 ~- X, = %} = 0.

Xo

X

(d)

X1



(e) In this part we have

It can easily be seen that the probability term in the numerator is equal to the area of the
shaded region in the figure below. We can divide the shaded area into two parts, triangular
and sub circular. It is easy to show that the angle of the triangle on the picture is 120°
so the sub circular part consists of % of the circle area. So the sub circular part’s area is

% W(%)Q = & and the triangular part’s area is ‘{—g. Summing the area of these two parts,

we reach the final result.

Xo

X1

Solution 2. (Basic probabilities)

(a) First, we find the probability of the complement of the event, namely the probability of
drawing only black balls. This probability is equal to

()
"

Pr{All k balls are black} =

—~

Therefore the probability of drawing at least one white ball is equal to
o white — 1 &)
Pr{ At least one ball is white} =1 — W

(b) Define the following random variables

0 if the chosen coin is fair,
X = .
1 otherwise,
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and
00 if both outcomes are tail,

01 if the first one is tail, the second one is head,
10 if the first one is head, the second one is tail,
11 if both outcomes are head.

So having these two random variables defined, we want to compute Pr{X = 0|Y = 11}. So
we can write

Pr{Y =11|X = 0}Pr{X =0}

PriX =0y =11} =

Pr{y =11}
1/4 x1/2
T Pr{y =11}
1/8
T Pr{y =11}

Then for Pr{Y =11} we have

Pr{Y =11} =Pr{X =0} - Pr{Y =111 X =0} + Pr{X =1} - Pr{Y =11|X =1}
=1/2x1/4+1/2x1
=5/8.

So, finally we have
1/8 1
Pr{iX=0Y =11} = = = —.
X =0y =11y = g

Solution 3. (Conditional distribution)
The probability mass has been distributed uniformly on the upper triangular area according
to the shape below:

Y

X

(a) If X and Y were independent then the distribution of X would not depend on Y. This is
clearly not the case. In fact, the range of values taken by X is between O and Y .

(b) The integral of fx vy (x,y) must be 1. Hence A x % =1 and so A = 2.



(c) We know that fy(y) dy = Pr{y <Y <y +dy}, but for a special y as can be seen from the
figure below, this probability mass is equal to A times the area of a rectangle with length y
and width dy when 0 <y < 1.

_J 2y O<y<1,
Frly) = { 0  otherwise.

Or more formally

1 y
fY(y):/O fxy(z,y) dx:/o 2 dx = 2y.

Y

X
(d) Under the condition Y =y, the random variable X is uniformly distributed between 0 and
y and so f(y) =E[X|Y =y] = 4.

(e) f(Y) is a function of Y so it is a random variable and we can compute its expected value.

1 1
B0 = [ 10 di= [ 4 dy =

(f) We compute E[X] using the definition.

//xfxyxy d:cdy—/ [/Onydx} dyz%7

and it is seen that E[X] E[X|Y]]. This result, which holds in general, is named the
law of total expectation.

Solution 4. (Playing darts)

(b) Note that E[X] = 0, because expectation is linear and Z is independent from X1 and Xo.
Thus,
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X is not Gaussian. In fact X is not a linear combination of two Gaussians, it is rather a
mixture of two Gaussians. One can use the characteristic function to show rigorously that

X is not a Gaussian, but this is outside the scope of this class.

(c)

22

[e%e] 1 22 [e'e]
E[S] = / T e 1 dr+ (1-— / T 2"2 dx
S)=p [ lel— ( p),m"@m

=2 T e 271 dx +2(1 — / T e 2dx.
p/o o1V 2T ( 2 0 ooV 2T
With the change of variables uy = “” 207 and ug = 2 , we obtain
E[S]=2p / U duy +2(1 - )— e~ duy
\ﬁ Ver Jo

= E@Ul—k(l—p)dz].

Solution 5. (Uncorrelated vs. independent random variables)
Note:

e By definition, X and Y are uncorrelated if and only if
O=cov(X,)V)=E[(X -EX]))(Y —E[Y])]=E[XY]-E[X]E[Y].
Hence cov(X,Y) = 0 is equivalent to the the condition E[XY]=E[X]E[Y].
e X andY are independent when fxy = fxfy.

(a) Assume that the random variables X andY are independent. Then

BxY) = [[aufxy (o) dody= [[outs @) do dy
=[x do [ufet) dy=EXEY,

where the second equality follows from the assumption that X and Y are independent.
Hence, if X and Y are independent, they are also uncorrelated.

(b) X and Y are obviously dependent. For example, X = 0 implies U =0 and V = 0. Hence
it implies also Y = 0. The marginals of X and Y are

0 with prob. %,
X =<1 with prob. %,
2 with prob. %,

v — 0 with prob.
)1 with prob.

N N[
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The mean for X is E[X] =1 and for Y it is E[Y] = 1. Finally, we have that

1 1 1 1 1
]E[XY]:(4><O><0>—|—<4x1x1)+(4x1x1>+<4x0x2):2.
From the above we obtain
cov(X,)Y)=E[XY]-E[X]E[Y] =0.

Therefore, we see that X andY are uncorrelated, even though they are dependent.

Solution 6. (Monty Hall)

(a) Pr{A contains one million Swiss francs} =1/3.
(b) Observe that B contains the money if and only if A does not contain the money, thus

Pr{B contains one million Swiss francs} = Pr{A contains nothing} = 2/3.

(c) A reasonable person will choose B since it has a larger probability of containing the money.
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Chapter 2

Receiver Design for Discrete-Time
Observations: First Layer

Solution 1. (Hypothesis testing: Uniform and uniform)

(a) Let i(y) be the number of 0’s in the sequence y.

1
Py u(yl0) =9k

1 .
s L=k
Py (ylt) =4 () |
0, otherwise
(b) The ML decision rule is:
H=1
Pyiu(yll) Z Pyiu(yl0)
H=0

Because (le) > 2% for any value of k, the ML decision rule becomes

o fo i £k
L ifl(y) =k

The single number needed is l(y), the number of 0’s in the sequence y.
(c) The decision rule that minimizes the error probability is the MAP rule:

A=1
Py (y|1) Py (1) = Py (y|0)Pg(0).
H=0

The MAP decision rule gives H = 0 whenever 1(y) # k. When l(y) = k:
A {0, if (&) > Pan

P (0)
1, otherwise.

13
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(d) Trivial solution: If Py (1) =1 then H =1 for all y (In this case, l(y) = k is guaranteed).
Similarly, if Py (0) =1 then H =0 for all y.
Now assume Py (1) # 1. Then there is a nonzero probability that I(y) # k, in which case
H =0. The MAP decision rule always chooses H = 0 if

2k 2k
(2%,3 > PHE(I)) = Pa(0) >

S

~—

Solution 2. (The “Wetterfrosch”)

(a) A and B must be chosen such that the suggested functions become valid probability density
functions, i.e. 1fYH yli)dy = 1 for i = 0,1. This yields A = 4/3 and B = 6/7. (A
0 /Y|
quicker way is to draw the functions and find the area by looking at the drawings.)

(b) Let us first find the marginal of Y, i.e.
() = frigWl0)Pu(0)+ fyu(y[1)Pu(1) = C — Dy,
where we find C = 23/21 and D = 4/21. Then, applying Bayes’ rule gives

fyim@l0)Pr(0) 1A-42y 1 4/3-2/3y

Py (0ly) = Fr(y) T 2C-Dy 223/21—4/21y’

and similarly

frp)Pu(l) 1B+Fy 1 6/7+2/Ty

Pryy (1]y) frly)  2C—Dy 223/21—4/21y

(c) The threshold is where the two a posteriori probabilities are equal,

1 4/3-2/3y 1 6/7+2/Ty
223/21 —4/21y  223/21 —4/21y’
or equivalently,
4/3-2/3y = 6/7+2/7y.

The y that satisfies this equation is our threshold 8, thus 6 = 0.5.

(d) The probability that we decide fL, (y) = 1 when in reality H = 0 is just the probability that
y is larger than the threshold given that H = 0, which is

1 1
Priveal =0y = [ prutioa= [ (a-Gv)a
vy Yy

Al—~2
AQ-) -5

41-7v) 1-79°
3 3
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Py (ily)
1=0 1=1
0.5 + 1
| ‘ Y
0 0.5 1
(e) By analogy to the previous question,
8! 8! B
Pri{Y <qlH =1} = fyiu(yll)dy = / (B + 3y> dy
0 0
B A?
= B —_—
T3
_ 6y
7 + 7

P.(v) Pr{Y >~|H =0}Py(0) + Pr{Y <~|H =1}Pg(1)
1/4d—y) 1-9* 6y 7
2( 3 5 Tt )

For v =0 = 0.5, we find P.(6) = 0.44.
(f) To minimize P, over ~y, we take the derivative of P. with respect to v, i.e.
d 1 4 2 6 2
Lp(y) = (—+7++7).
dy

Setting this equal to zero, we find v = 0.5. We observe that the value of v which minimizes
P.(v) is equal to 0. This was expected, because the MAP decision rule minimizes the error
probability.

Solution 3. (Hypothesis testing in Laplacian noise)

(a) We find the following conditional densities for the observation Y under hypothesis H = 0
and H =1, respectively:

1
fyia(yl0) = 567|y7a\

1
Friall) = Selvrel

2
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fy1a(yll) 0.5 Sy (y|0)

(b) Because the hypotheses are equally likely, the MAP rule is the same as the ML rule. There-
fore, the probability of error is minimized by the following decision rule:

H=1
Jya (Y1) z Jy 18 (y]0).
=0

From the picture of fyu(y|0) and fy g (y|1), we see immediately that the ML decision rule
decides for H =0 when y > 0 and for H =1 when y < 0.

(c)
0
PO = Priy<0 =0} = [ Futuiody
0 0
1 1
— Zelv—al g, — Zely—a)
[m 26 dy /700 26 dy
— i U e”*
5 e’|” o 57

By symmetry, we find that

and thus,

Solution 4. (Poisson parameter estimation)

(a) We can write the MAP decision rule in the following way:

Pyiu(yll) =1 Py(0)
Pyiu(ylo) =
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(b)

Plugging in, we find

)\?{e*Al Hgl Do
Yo—\ < 0
Ape~ro Ao Lo
and then
A=1
<)\1>y = Po e o
< _
Ao aoo L~ Po

Taking logarithms on both sides does not change the direction of the inequalities, therefore
A A=1
ylog (/\1> Z  log (1 Po eAl_k‘))
0 =0 — Po

Attention: the term log(A1/Xo) can be negative, and if it is, then dividing by it involves
changing the direction of the inequality.

Suppose \1 > Ng. Then, log(A1/Ao) > 0, and the decision rule becomes

PO A1—A
! log(l—Poel 0) def

0 log (i—;) -

H

<
AV

H

We compute

P.(0) = Pr{Y>0|H=0}= Y Pyu(yl0)
y=[0]
0] |y
= 1- 200
' )
y=0 v
and by analogy
9]
P.(1) = Pr{Y <0|H=1}=) Pruyl)
y=0
19]
y=0 '
Thus, the probability of error becomes
10] \Y 9] \Y
Peo= po (1= “pe™ | +(1-po))_ ‘g™
y=0 Y y=0 v

Now, suppose that Ay < A\g. Then, log(A1/Ao) < 0, and we have to swap the inequality sign,
thus

H

PO A1—A
0 log(l—Poe1 0) def

1 log (i—;) -

Ned
"AIV

H
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The rest of the analysis goes along the same lines, and finally, we obtain

[0] Yy L9] Yy

Y A
Po= oy e (1-) Mo
y=0 y=0
H=1
The case Ao = A1 yields log(A1/Xg) = 0, so the decision rule becomes 0 E 0, regardless of
=0

y. Thus, we can exclude the case A\g = A1 from our discussion.

(c) Here, we are in the case A1 > Ao, and we find 0 ~ 4.54. We thus evaluate

4

4
1 22?4 o QZ 10Y 1)

y=0

(d) We find 6 ~ 7.5163
1 Tov L\ 2N 200
P = § 1-— yE:O —y! e + § yEZO (y! e ) ~ 0.000885

The two Poisson distributions are much better separated than in (c); therefore, it becomnes
considerably easier to distinguish them based on one single observation y.

Solution 5. (Lie detector)
(a) Let H € {T,L}.

H = T (telling truth):  fy\g(y|T) = ae” Y, y >0
H L (telling lie):  fy\u(y|L) = Be PV 4y > 0.

The MAP decision rule is

H=L
pBe ™ 2 (1-placov.
H=T
After taking the logarithm, we obtain
H=L
—By+In(pB) Z —ay+In((1-pa).
H=T

Or, equivalently
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(b)

0
Prr = / ae”Wdy =1 — e 7.
0

(c)

o
Prip = / Be™Mdy = e~
0
(d)

H=T: fY|H(y|T) = ane_a(yl+---+yn) = e~ ¥

H=1L: fY|H(Z—!|L) _ ﬂnefﬁ(ler...ern) — ﬂneiﬁz,

where Y is the random vector (Y7,
H=T

n
the test becomes z z 0, with the new threshold 0 = alfﬁ In [(%) (17;))]‘
H=L

., Yy,) and where z = """ y;. With this new definition,

p

9
PL|T=/ fz1a(2|T)dz,
0

where Z =1 | 'Y; and
an
(n—1)!

This is the density of the Erlang distribution. Putting things together, we get

Z(nfl)efocz.

fZ|H(Z|T) =

0 n
Prr :/ aiz("_l)e_o‘zdz.

Solution 6. (Fault detector)

H =1 is the hypothesis that the box works properly and H = 0 the hypothesis that the box
fails.

(a) The MAP test is

fxi (1) P27 fx i (]0)

Pu(0) .=, Pu(l)

If l(x) is the number of zeros in the sequence x,

fxm(a|l) = {p16l(1 —p)h H0<I<I6

, otherwise

1
Ix 1 (2|0) = 216
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(b) By substituting | = 8, p = 0.25, Py(0) = 1o5z and Pu(1) = 1022 in the decision rule, we
obtain
g HZZI )
26 < ’
H=0

therefore the hypothesis is H =1 — the box works properly.

Solution 7. (Multiple choice exam)

(a) We have a binary hypothesis testing problem: The hypothesis H is the answer you will
select, and your decision will be based on the observation of H; and Hp. Let H take value
1 if answer 1 is chosen, and value 2 if answer 2 is chosen. In this case, we can write the
MAP decision rule as follows:

A=1

PT{H:I\ﬁL:I,ﬁR:Z} Pr{H:2|HL:1,HR:2}

ﬁ/\\\/
[N~}

From the problem setting we know the priors Pr{H =1} and Pr {H = 2}; we can also de-
termine the conditional probabilities Pr {ﬁL =1|H = 1}, Pr {ﬂL =1|H = 2}, Pr {ﬁR =2|H = 1}
and Pr {ﬂR =2|H = 2} (we have Pr {ﬁL =1|H = 1} = 0.9 and Pr {ﬁL =1|H = 2} =

0.1). Introducing these quantities and using the Bayes rule we can formulate the MAP
decision rule as

Pr {FIL = 1,Hp = 2|H = 1}Pr{H =1} A= Pr {FIL = 1,Hp =2|H = Q}Pr{H =2}
&

Pr {ﬁIL - 1,HR:2} P Pr {fIL - 1,HR:2}

Now, assuming that the event {Hy = 1} is independent of the event {Hp = 2} and simpli-
fying the expression, we obtain

H=1
Pr{ﬁL —1|H = 1}P7~ {HR —9|H = 1}Pr{H —1} 2
H=2
Pr {ﬁL —1|H = Z}Pr {FIR —9|H = Z}Pr{H =2},
which is our final decision rule.

(b) Evaluating the previous decision rule, we have

H=1

09x03x025 = 0.1x0.7x0.75,

A=2
which gives
H=1
0.0675 =  0.0525
A=2

This implies that the answer H is equal to 1.
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Solution 8. (MAP decoding rule: Alternative derivation)
(a) The probability of error can be written as

P, = Py(0) Pr{Y € Ry|H = 0} + Py (1) Pr{Y € Ro|H = 1}

— Py(0) /R Fyie(410)dy + Pr (1) /R Py (yl)dy

_ Py(0) fYH<yo>dy+PH<1><1— fY|H<y1>dy)

Rl 7?rl

— Pyu(1) + /R (P (0) fy 1 (510) — Prr(1) iy 11z (1) dy, (2.1)

where the third equality follows from the hint

/ fY\H(yll)dy:/ fY|H(y|1)dy+/ fyi(yl)dy = 1.
RoUR1 Ro R1

(b) Note that P, is smallest if the second term le (Pr(0) fy 1 (y]0) — P (1) fy (y[1)) dy in
(2.1) is made as negative as possible. Note that the first term Py (1) in (2.1) is fized and
does not depend on our choices for Rg and Ri. The second term can be minimized if we
collect in Ry all y € R that yield negative contribution, i.e. y € Ry iff Pu(0)fyu(y|0) —
Py (1) fyu(y[1) <O.

Note: How does this approach compare to the one from the book? Conditioning is one of
the most important tricks to make progress in computing a probability. There are two random
variables involved, namely H and Y. In the notes we have conditioned on'Y =vy. Here we are
conditioning on H = 1.

Solution 9. (Independent and identically distributed vs. first-order Markov)

An explanation regarding the title of this problem: independent and identically distributed
means that all Y1, ..., Yy have the same probability mass function and are independent of each
other. First-order Markov means that Y1, ..., Y. depend on each other in a particular way: the
probability mass function Y; depends on the value of Y;_1, but given the value of Y;_1, it is
independent of Y1, ...,Y;_o. Thus, in this problem, we observe a binary sequence, and we want
to know whether it has been generated by an i.i.d. (independent and identically distributed)
source or by a first-order Markov source.

(a) Since the two hypotheses are equally likely, we find

Prin(l) "t Pa(0) _
Py (yl|0) FI<:0 Py(1) .

Plugging in, we obtain

/2. (1/4) - @3/4 2
(172 iso

where | is the number of times the observed sequence changes either from zero to one or
from one to zero, i.e. the number of transitions in the observed sequence.
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(b) The sufficient statistic here is simply the number of transitions l; this entirely specifies the
likelihood ratio.

(¢) In this case, the number of non-transitions is (k—1) = s, and the log-likelihood ratio becomes

1/2- (19~ - (3/4)°"" (1/4)* - (3/4)°""
o (172 TP
= (k—s)log(1/4) + (s —1)log(3/4) — (k — 1) log(1/2)
= slogiﬁ+klog$+log;ﬁ

= slog3+klog1/2+log2/3.
Thus, in terms of this log-likelihood ratio, the decision rule becomes

1

mvf?

slog3 +klog1/2+1og2/3 0.

H=0

That is, we have to find the smallest possible s such that this expression becomes larger or
equal to zero. Therefore,

klog1/2 +1log2/3
log1/3

Solution 10. (SIMO channel with Laplacian noise)

(a) Let the two hypotheses be H = 0 and H = 1 when ¢y and c¢1 are transmitted, respectively.
The ML decision rule is
fI>:1
Iviva iz W1, 9211) 2 fyive e (v1,9210).
H=0

Because Z1 and Zs are independent, we can write

A=1
e R PR T [ S S TR oS
2 2 =< 2 2 ’
H=0
and, after taking the logarithm,
H=1
v+ 1+l + 11 2 Jyr — 1]+ [y2 — 1.
H=0

(b) Because the hypotheses are equally likely and Zy and Zy have the same distribution, the
decision region for H = 0 contains the points closer to (—=1,—1) and the decision region
for H =1 contains the points closer to (1,1). For this problem, the distance between the
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(c)

Y2
R
Y R R1
~1,1
( ) (1,1)
Ro
1
R
—1,—1)e
( ) (17_1)
Ro Ro
R~

Figure 2.1: Decision regions

points (y11,y12) and (ya21,Yya2) is the Manhattan distance, |y11 — y21| + |y12 — yo2!, and not
the Fuclidian distance.

Let us first consider the points above the line yo = —yy from Figure 2.1. It is easy to notice
that the points in the positive quadrant are closer to (1,1) than to (—1,—1), therefore they
belong to Ry (H =1). This is also true if {(y1 > 0)N(y2 € (—=1,0))}, or if {(y2 > 0)N(y1 €
(=1,0))}.

Similar reasoning can be applied to the points below the diagonal to determine Ry.

The points for which {(y1 < =1)N(y2 > D} or {(y1 > 1) N (y2 < —1)} are equally
distanced to (—1,—1) and (1,1), therefore they can belong to either Ro or Ri with the
same probability. This region is named Ro.

The two hypotheses are equally probable for the region R+. Therefore, we can split this region
i any way between the decision regions and have the same error probability. Because Rq
is included in the region for which yo > —y1 and Ry does not intersect the region for which
Yo > —y1, the error probability is minimized by deciding H=1 if (y1 +y2) > 0.
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(d)

P.(0) = Pr{Y,+Ys>O0|H=0}
= PT’{Zl+Z2*2>0}

—w

_ /2 Cm(1+w) du

—e™ v 0o —
= 1 (w—|—2)|2 =e 2

By symmetry, and considering that the messages are equally likely, P.(0) = P.(1) = P..

Solution 11. (Q-Function on regions)

(a) One can see that the event {X € Region} only depends on the first component X;. Hence,
we have

Pr{X € Region} Pr{(Xy>-2)Nn(X; <1)}

= l—PT{(Xl < —Q)U(Xl > 1)}

o))

where the last equality is true because { X1 < —2} and {X1 > 1} are disjoint events.

(b) Because X1 and X5 are independent and have the same variance, rotating the vector X by
any angle around the origin does mot change its distribution. FEquivalently, we can rotate
the square region in Figure (b) by 45 degrees, and the probability of X being in the rotated
region is the same as for the original region. The new region is a square whose edges are
parallel to the azxes of the coordinate system. The points where the edges of the square
intersect the azes are (v/2,0), (—v/2,0), (0,v/2) and (0, —/2). Hence,

Pr{X € Region} = Pr {(—\/5 <X <V2)N(—V2< Xy < \/ﬁ)}
Y opr{-vi<x < \/5}2
- [1_pr{(xl<—ﬁ)u(xl>¢§)}r

=

where (1) holds because X1 and Xy are independent and identically distributed.
(c) We solve this part in three different ways:

(i) First Solution: As in the previous part, we can rotate X such that one of its com-
ponents, say X1, is perpendicular to the straight line that delimits the shaded region.
Then, we need to know the shortest distance d of that line to the origin (the length
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of a segment that starts at (0,0) and is perpendicular to the line). Using standard

trigonometric techniques, one finds that this length is d = % Then, it follows that

2
Pr{X € Region} = Pr<X;>—
{ g } {1_\/5}

- o)

(i) Second Solution: We are looking for the probability that Xo > 1 — %Xl, i.e., the prob-
ability that Z £ Xo+1X1—1>0. But Z ~ N(—1,20?). Hence, Pr{X € Region} =

Pr{Zzo}:Q(ﬁ).

(iii) Third Solution: We project X = (X1, X2)" to the vector perpendicular to the line
that delimits the shaded region. The length of the projection is Z ~ N(0,02). The

sought probability is Pr{Z > d} = Q (g) =Q (%), where d is the distance from

the delimiting line to the origin.

Solution 12. (Properties of the @ function)

(¢)

Fy(z)=Pr{Z <z} = /Z %e*% dx
oo T
[e%s) 1 .2 e} 1 .2
:/_Oo me d:r—/z Ee dx
=1-Q(z).
(b)
Q) =5,

because we have the same area on both sides of the Gaussian bell.

Q(—o00) =Pr{Z > -0} =1.

Q(o0) = Pr{Z > oo} =0.

(c) If we add Q(—z) and Q(x), we get 1. Refer to Figure 2.2.
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27777
7 27 0272722272277777
W Yy Yy,

Figure 2.2: Identically shaded portions have the same area

(d) Consider the following integration by parts:

1 g2
Qo) = —/ e” 7 dx
27 Ja
1 >~ 1 z2
= —/ —xe” 2 dx
2 Jo T

Since the integral on the last line is non-negative, we get an upper bound if we neglect that
term. That is the upper bound we are looking for. To obtain the lower bound, we increase
the integral by substituting % for :%2 and then use the upper bound just derived. This gives

1 ez 1 [ 1
) > — ——e 2 dx
Qo) = 2r «@ CY2L V2T
2 2

Il
9~
3

ml
Q o
7 N\

—

|
Qw‘ —_
N———

Note: The bound that we have proved is the well-known lower bound to Q(x). A slightly
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better but less known lower bound can be obtained the following way:

2

1 e% 1 [> 1 22

) > — - — e 2 dx
Qla) 2 2r « a? J, Vor
1 e% 1
TV a2
Therefore,

1 a2 2

Qo) > ——e™ T

Solution 13. (16-PAM vs. 16-QAM)

(a) 16-PAM. Denote the additive white Gaussian noise process by Z. Thus, Z is zero-mean
Gaussian of variance o2, and the observation Y is also Gaussian of variance o2, but with
mean corresponding to the particular signal point that is being transmitted. If H is the
hypothesis and we label the signal points from left to right by 1,...,16, then

P(1) = Pr{YZ*7Q|H:1}:PT{Z2%}

- r{Z=l-0(5).

By symmetry, P.(1) = P.(16).

Moreover,
P.(2) = Pr{(Y <-7a)U(Y > —6a)|H =2}
a a a
B (O R I P
a
= 20(3,):
Again, by symmetry, P.(i) = P.(2), fori=3,...,15. Putting things together, we obtain
16 16
P. = ;PH@)Pe(z') = ; 5P
1 a a
= 5 (2re(s)r1(y))

15 a
= 50(z)
16-QAM. Denote the additive white Gaussian noise process in the x1-direction by Z1 and in
the xo-direction by Zs. In our setup, both Z1 and Zs are zero-mean Gaussian of variance

o?. Label the signal points from left to right, top to bottom by 1,...,16. Then, for the four
corner points, we find

P(1) = Pr{(vi>—b)U(Ya<b)H =1}.
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Notice that {Y1 > —b} and {Ys < b} are not disjoint events, so

P(1) = Pr{¥i>-blH =1} + Pr{Ys <blH =1} — Pr{(y; > —b) N (Y2 < b)|H = 1}.

An alternative (and somewhat simpler) approach is to compute the probability of the correct
decision, P.(1), and then determine P.(1) =1 — P.(1). Thus,

P.(1) = Pr{(1a

P.(2) = Pr{(-b<Y1<0)N (Y2 >b)|H =2}

where
(>3}
= 1-2Pri7Z; > -
2
b
= 1-2 —
(5
thus,

= ((2)) (-o(2))

Finally, for the four points in the middle, we obtain

P.(6) Pri(—b<Yi <0)N (0

<
b b b b
< < = —— < < -
P’I"{ 2_Z1 }P’I"{ 2_Z2_2

-2

(-2 (3)
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Putting things together, we find

16 16

From here, we find P, =1 — P., thus

no=()-5(e(2))

(b) 16-PAM. By symmetry, we only consider the positive signals to find

1 (/a\2  [3a\® 15a\ >
£ 2176 <<2) +<2) +...+(2) )
aj 85a2

— 2 2 2\ __
= 32(1+3 +5%4+...+15%) = 1

16-QAM. By symmetry, we only consider the first quadrant to find
1 AN 30\*  [3b)? b

= 47 —_ - - - -

2= ([0 )]G ()] |G

b? 502

+ +2

(c) 16-PAM. We find a/2 = /E/85, thus
15 &
Fe = 3@ (V 8502> '
16-QAM. We find b/2 = \/£/10, thus

I 9 £
P = 3Q<\/1002>4Q2<\/100—2>'

Solution 14. (QPSK decision regions)

)

30
2

)
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[ T T T T T |
100 | =
101 g E
a0 N
1072 v
| [— 16-PAM V]
10~4 E|--- 16-QAM L
£ I I | | | -

0 5 10 15 20

£/0%(dB)

Figure 2.3: Error probability vs. average signal energy for 16-PAM (solid) and 16-QAM
(dashed)

(a) If Py (i) is the same for all i, then the decision regions are given in Figure 2./.

(b) The decision boundary between two hypotheses H=iand H = j 1is given by

Pl
1Y = aill? = Y — ¢ = 202 220
Pu(j)
This is an affine plane perpendicular to the segment that joins ¢; to ¢;. If Py (i) > Pu(j),
then the affine plane is shifted away from c;, to increase R;. The decision regions for this
case are given in Figure 2.5.

(¢) Define a new observarion Y = (Y1,Y3/2). The new observation Y is a sufficient statistic
because we can determine Y from Y. Thus the receiver observes Y = ¢&; + Z, where ¢; =
(¢i1,¢i2/2) and 7= (Z1,Z5/2). Note that in this new setup we have ¢y = co, ¢1 = ¢1/2,
Co = co, C3 = ¢3/2 and Z ~ N(0,0%15). The decision regions for this case are given in
Figure 2.6.

Solution 15. (Antenna array)

Since Z1 and Zs don’t have the same variance, the noise is not white, and so we cannot
directly apply the results for discrete time AWGN channels which we are familiar with. A smart
way to solve this problem is to apply a transformation on Y = (Y1,Y2)T to get a sufficient
statistic Y = (Yl,Yg)T that can be seen as the output of a discrete time AWGN channel.

Z Z

Since Zy and Zy are independent and have variance o2 and 03 respectively, 2L and 22 are

g1 g9
VAR,

-
independent and have variance 1. Thus, < , > ~ N (0, Is) which is a white noise of power
g1 02
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Figure 2.4: Decision regions for equally likely hypotheses

. L v Yo\ T . L
1. Therefore, if we define Y = (Yl,YQ)T = (1,2> and Z = (Zl,Zg)T = (

g1 02

T
A Z2>
sy T )
g1 02

- . - . A ANT
we will have Y = ¢+ Z if H =0andY = ¢+ Z if H = 1, where ¢y = (,> ,
g1 09

A ANT N

¢ = (—, —) and Z ~ N (0, I3). It is clear that Y can be seen as the output of a discrete
g1 g9

time AWGN channel (with two observations), which is a situation we are familiar with and

know very well how to handle.

Another solution for the problem is to start from the basic principles, i.e., computing the
probability densities fy |y and probabilities Pyy, then computing the decision regions and error
probabilities without relying on the results of discrete time AWGN channels.

We provide the two solutions here. While the second solution starts from the basic princi-
ples, the first one builds on results and intuitions that we have already developed.

First solution:

(a) Since Z ~ N(0, 1), the line that separates the two decision regions in the §j-plane is the
perpendicular bisector of the segment [¢q €1] (i.e, the line that has ¢o— ¢, as a normal vector
and passes through the midpoint of ¢y and ¢, — which is the origin). Therefore, the MAP
decision regions in the y-plane are given by
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Figure 2.5: Decision regions for hypotheses with different prior probabilities

(9,E0 — €1)

_2A _ 24
Yi— +Yy2—
g1 g9

BB
o

H

Il
o

—

faey oo oo
i1 AIV l/\lv” 1AV

0, or equivalently,

0,

Now since y1 = un and o = y—z, the MAP decision regions in the y-plane are given by
o

1 g2

Y1 2
LH+%
o1 03

o3y1 + o7y

H

I
o

FAVE AV
(=

0, or equivalently,
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Y1

Figure 2.6: Decision regions for noise with different variance in each component

(b) When o1 = 209, the decision rule becomes

A=0
o3y1 + 4o3ys z 0, or equivalently,
H=1
H>:0 Y1
Y2 = *Z-
H=1

The decision regions are sketched in Figure 2.7.

(c) We compute the probability of error based on Y and Z. The distance between ¢, and the
separator line is equal to

1 1
Goll = Ay —= + —.
||COH (7% JrO’%

Since Z ~ N (0, I), we have

Similarly, we have
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Y2

Y2 = —i?ﬂ

Figure 2.7: Decision regions

Therefore,

Second solution:

(a) We have
_ 1 (y1 —A)?  (y2— A)?
fY‘H(yIO) o 2mo 09 eXp {_ 20% B 20%
1 (y1 +A)?  (y2+A)?°
1) = — _ )
fY‘H(yI ) 2mo 09 exp { 20% 20%

The MAP decision rule is

Frin(yl1) F=* Py (0)

Fria(l0) =, Pu(1)

=0
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or, by taking the logarithm,

fY|H(y|1)] A [PH«J)] :
In |=—FF= = In , or equivalently,
{fY|H(y|0) P Pr (1)
24y, 24y, HZO
71 92 g
A=0
o3Y1 + otys z 0.
A=1

(b) Refer to the first solution.

(c) We first determine the probability of error when H = 1:

P.(1) = Pr{o3Y1 +oiYs > 0|H = 1}.

If H =1, 031 +03Ys = 03(—A+ Z1) + o3 (—
normally distributed, ~ N'(—A(c3 + o}), (050

= (#

1 1
= A —_—
A\ )
Similarly,
1 1
PO0)=Q A=+,
(0) Q( = ﬂ;g)
and

Solution 16. (Multi-antenna receiver)

(a) We have a binary hypothesis testing problem with V as the observable:

9 >:a+Zt

if B=1: V—(g w) +(Z
w) + {(Z,w) = —a+ Zt,

where
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The ML decision rule is

lo—a2_ B=1 lv+al?
T202[wZ 2 o 202 w2
e 207wl E e 202wl
B=-1
If a > 0, this leads to
B=1ifv>0

B=—1ifv<0.
If a < 0, then the decision is reversed.

(b) By symmetry, and assuming that a > 0,

P =P() = [T ERE =g (L),

2ro?||w||? ofjwl]

Because the hypotheses are equiprobable, P, = Q (Kg’w)‘) )

aflw]

The same result is obtained for a < 0.

p = (%)

(d) Bmaz = 1, achieved when g and w are collinear. (This is the Cauchy-Schwarz inequality,
but it is obvious from a drawing of the two vectors.) Bmin = 0, achieved when g and w are
orthogonal.

(e) Pemin=0Q (H%ll)} achieved when B is mazimum.
By using Y instead of V', the ML rule becomes

My =gl = v+l

202 Bf ) 202 7

n-o(12))

Therefore, we cannot reduce Pe min by operating directly on the observation Y .

and the error probability is

(f) If we let Yy = Uy—i = B + Zy1, then we are back to the original problem except that the k'

antenna gain is now gy = g—’; and the noise variance is 1.

Solution 17. (Signal constellation)
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T
[ ] [ ] [ ]
R1 Ro Rs
a
0 b
Ry Rs Re

Figure 2.8: Decision regions

(a) Label the signal points from left to right, top to bottom by 1,...,6. The decision regions are

shown in Figure 2.8.

(b) Denote the additive white Gaussian noise process in the x1 direction by Z1 and in the xo

direction by Zs. In our setup, both Z1 and Zy are zero-mean Gaussian of variance o

2

The

observations Y1 and Yo are also Gaussian of variance o2, but with mean corresponding to
the particular signal point that is being transmitted.

If we denote the hypothesis by H, for the four corner points (numbers 1, 3, 4 and 6), we

find

P.(1)

Pr{(Yl > 127) U((Yz <0)|H = 1}.

To determine this, we first compute the probability of the correct decision, P.(1), and then

determine P.(1) =1 — P.(1).

P.(1)

Thus,

Pr{(Yl < —g) NYz>0)|H = 1}

Pr {Yl < —g|H = 1}Pr{Y2 >0|H =1}

P?"{Z1 < Z}PT{ZQ >

g
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For the other two points (numbers 2 and 5), we obtain

P.(2) Pr{<—2<Y1<g>ﬁ(Y2>0)|H:1}

= Pr{gnggng}Pr{YzZ(ﬂHl}
= Pr{—;SZlgg}Pr{ZQZ—a}
= (1-0(5)) (-2 (2))

Putting things together, we find

. iPHu)Pcu):géa@
= sli(i-e(5)) (-e(®) +2(1-20(5)) (-e(%)]
- 1-50(5) e (B)+50(5)e(3)

Therefore,

(¢) The average energy per symbol is

E = % [4(a® + b%) + 24?]

Solution 18. (Hypothesis testing and fading)

(a) Our observation is Y = AX + Z. The conditional pdf of Y under the hypothesis H =0 can
be computed in the following manner:

IyirWl0) = fyia,a(]0,0)Pa(0) + fym,a(y|0,1)Pa(1)

= T2l + 3 faly+)

1 1 <_%+ _(y+b>2)
— —_ (& 20 (& 2(7? .
2 V202
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In the same way, we have

fyia(y[l) =

1 _ _(y=b?
e 202 + e 202 .

Writing the ML decision rule in this case, we get

N =
[\
%
S)
)

which is equivalent to

H=0

_(y—b)?

_ (y+b)? . .
e 22 or, after taking the logarithm,

e 202

TAVE T A
[} —

Thus, we get a familiar problem and we see immediately that our ML rule decides for H =0
when y <0 and for H =1 when y > 0 (can be easily seen from Figure 2.9).

fyim
0.4

Ro Rl
0.3

0.2

0.1

Figure 2.9: Decision regions
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(b) By symmetry, we have

Pe

Pe(o) = Pe(]-)
Pr{y>0|H =0}

/ Fr 1 (810) dy
0
/oo 1 1 ( _ 1/22 n (y+172)2) d
— e 20 e 20
0o 2+2mc2 Y
1 /b
20 +30(2)

()

== N

1
2

Solution 19. (MAP decoding regions)

(a) The resulting decision region is shown in Figure 2.10.

Coe

Cie L X&)

Figure 2.10: Decision region for ML

(b) As the probability of H = 2 increases, the corresponding region for H = 2 expands as well.
However, the boundary of the decision regions are still lines parallel to the corresponding
lines of the ML decision region. Moreover, as the probabilities of H = 0 and H = 1 remain
equal, the separating line between cy and c1 does not change. The result is depicted in Figure
2.11. (The three separating planes have to meet in one point. To see why, first notice that
Py (0ly) = Pgy (1ly) on the plane separating the decoding region for H =0 and H = 1.
Reasoning similarly, we see that where this plane meets the plane separating H = 1 and
H =2, Pyy(Oly) = Puy(1ly) = Puy(2ly). Hence the contact point is also on the plane

separating H = 0 and H = 2, namely where Py)y (0ly) = Py (2]y).)
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Coe

Cie L X&)

Figure 2.11: Decision region for MAP

(¢) The MAP receiver considers both the initial probabilities (prior information) and the in-
formation received via the observations (posterior information). When the noise variance
increases, the prior information is more reliable than the posterior one. Thus, the “trend”
of the previous figure is further “amplified”. See Figure 2.12.

Coe

Cire [ X€0)

Figure 2.12: Decision region for MAP for higher noise variance

Solution 20. (Sufficient statistic)

If H =0, we have Yo = Z1Zs = Y175, and if H = 1, we have Yo = —Z17Zy = Y1Z5.
Therefore, Yo = Y1Z5 in all cases. Now since Zy is independent of H, we clearly have H —
Y1 — (Y1,Y12Z,). Hence, Y1 is a sufficient statistic.

Solution 21. (More on sufficient statistic)
(a) The MAP decoder H(y) is given by

. N_ [0 ify=00ry=1
H(y) = argmzaxpy\H(ym - { 1 ify=2o0ry=3.
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T(Y) takes two values with the conditional probabilities
07 ift=0 [ 03 ft=0
Prin (t0) _{ 03 ift=1 Prin (1) _{ 0.7 ift=1.
Therefore, the MAP decoder H(T(y)) is

A) = agmax Proyutl) = { § 020 P20

Hence, the two decoders are equivalent.

(b) We have
- o g PriY=0T()=0[H =0} 04 4
Priy =0Ty =00 =00 ="p 7w —om -0y 07 7
and
_ oo Pr{iY=0T(Y)=0H=1} 01 1
Pr{Yy =0T(Y)=0,H=1} = Pr{T(Y) = 01 = 1} =03°3

Thus Pr{Y =0T (Y)=0,H=0}#Pr{Y =0|T(Y)=0,H =1}, hence H - T(Y) - Y
s not true, although the MAP decoders are equivalent.

Solution 22. (Fisher-Neyman factorization theorem)

(a) The MAP decision rule can always be written as

H(y) = argmax fy|u (y|i) P (i)
= argmax g;(T'(y))h(y) Pr (i)

= argmax g;(T'(y)) Pr (i)

The last step is valid because h(y) is a non-negative constant which is independent of i and
thus does not give any further information for our decision.

(b) Let us define the event B = {y:T(y) =t}. Then,

, fy.ron) (Y, i) Pr (3)
P vl = =g P
_ Pr{Y =y, T(Y)=tlH=1i} Pr{Y =yY cB|H =i}
- P{T(Y)=tlH=i} Pr{Y cB|H=1}
Iy (yli)1s(y)
g Iy (yli)dy
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If fy1u(yli) = 9:(T(y))h(y), then
gi(T(y))h(y)1
Prmron it = fBgAT v)h(y)dy
M
th(y
() 5(y)
fB dy

Hence, we see that fy|m rv)(yli,t) does not depend on i, so H - T(Y) =Y.

h(y)1s(y)

)
(

(c) Note that Py, g (1|i) = pi, Py, |z (0]i) = 1 —p; and

Py, . v 5, Unli) = Py, g (W1li) - .. Py, g (Ynli)-

Thus, we have

Py, vzt Wn, - s ynli) = pL(1 = pi) "7

)

where t =Y, Yg.

Choosing g;(t) = pt(1 —pi)("_t) and h(y) = 1, we see that Py, . v, |gy1,- - Ynlt) fulfills
the condition in the question.

(d) Because Y1,...,Y, are independent,

n
_ (yp=—my)* m;)
le ..... Yn|H(y17~-~7yn H
k:l
= 1 o e Ek 1 S 7”L>
(2m)2
=+ 1)n o E (A T - %)
2m)2
. Zh=1 y%
Choosing g;(t) = enmi(t=3") gnd h(y1,-.yn) = e” " 2, we see that

(2m) 2
iy HWL - Unlt) = 6 (T (Y1, - Yn)) R Y1y - - Yn)-

Hence the condition in the question is fulfilled.

Solution 23. (Irrelevance and operational irrelevance)

(a) By assumption, V and H are not independent. This means that Py g (-|i) does depend on i.
Specifically, it means that for at least one k € V and a pairi,j € H, Py g (k|i) # Py (k7).
Without loss of generality, we can assume that Py g(kli) > Py g(klj). We know that
probabilities sum up to 1, i.e. >\, Pyig(ml|i) = 1 and 3\, Pyig(m|j) = 1. Since
Py (-]i) puts more probability on k € V than on Pyg(-|j), there evists another symbol
leVy fO?” which Pv|H(l|’L) < PV|H(Z|J)
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(b) Let i and j be as above and choose Py (i) = Py(j) = & and Py(l) = 0 for I # i,j.
Now suppose that we observe V.= k. From the previous part of the problem we know that

Py (kli) > Py p(klj) and so the MAP decision rule selects H =i. On the contrary, if
V =1, the MAP decision rule decides H= j. Hence, V affects the MAP decision rule.

(¢) Now we have two observables, U and V', which take values in U and V respectively. We
know that the probabilistic relation H — U — V does not hold, which means that there
exists w* € U such that H and V' are dependent when U = u*. Now, given that U = u*, we
are back to the situation from the previous part of the problem. Therefore, conditioned on
U = u*, there exists a distribution of H for which V affects the decision.

Solution 24. (Antipodal signaling)

(a) Assume for instance that Pg(0) = Pg (1) = . Then, the decision regions are:

2
Ro = {(W1,92) v < -},
Ri = {(1,92) :y2 > -}

If now, for instance, Y1 = a, then for values of Y that are larger than —a, we decide H= 1,
whereas for values of Ya that are smaller than —a, we decide H = 0. Hence, we still need
Y5, and the knowledge of Y1 is not sufficient.

(b) A new constellation for which Y1 is a sufficient statistic is for instance

o = (7&,0)7
51 = (G,,O).

Solution 25. (Is it a sufficient statistic?)

(a) An ML decoder is a minimum distance decoder in the AWGN channel. In this case the two
decoding regions are separated by the line y1 + yo = 0. Hence the ML decoder decides as
follows:

H=0
Vi+Ys 2 0.
H=1

So the answer is no.
(b) By the first hint, to prove H — (Y1 + Y2) — Y, it suffices to prove H — (Y1 + Y3) —
(Y1 4+ Y5, Y1 — Y2) or, equivalently, that H — (Y1 +Y3) — (Y1 — Y3).

Since Y1+ Ys and Y1 — Yy are orthogonal, knowing that Y1 + Yo = a changes nothing to the
distribution of Y1 — Yo = Z1 — Zo: It remains ~ N(0,202), independently of the value of
H. Hence, we have the Markov chain H — (Y1 + Ys) — (Y1 — Ya).
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Solution 26. (Union bound)
Let W ~ N(0,0213) be the zero mean Gaussian noise, where Z = W +c. Let A be the area
on the left of the vertical dividing line, and let B be the area below the slanted dividing line. The

boundary of A is at distance di = 2 from c, whereas the boundary of B is at distance dy = /2
from c. Hence

Pr{ZEAUB}SPT{ZEA}—FPT{ZEB}:Q(C?) +Q<d;> :Q(i) +Q<\f>.

Solution 27. (QAM with erasure)

Poo = Pr{(N1 > —a)N (N2 > —a)}
= Pr{(N1 <a)}Pr{(N2 <a)}
=[-e Q)]

By symmetry:

Py = Pys = PT{(Nl < —(2b — (l)) N (NQ > —(l)}
= Pr{N; >2b—a}Pr{Ns; <a}

“o(22%) [-e(2).

P02 = PT{(Nl S 7(21)7 a)) N (N2 S 7(21)7 CL))}
= Pr{Ny > 2b—a}Pr{Ny >2b—a}

)

Pys=1—-Pr{{Y e Ro)U(Y e R1)U (Y € R2) U (Y € R3)|co was sent}
=1— Py — Por — Po2 — Pos3

- f-e (@) - (252 -a(2)] - [o (252
() ee ()

Equivalently,
Pys = Pr{(Ny € [a,2b—a]) U (N3 € [a,2b—a])}
= Pr{N; € [a,2b—a]} + Pr{Ns € [a,2b — a]} — Pr{(Ny € [a,2b —a]) N (N2 € [a,2b — a])}

—2fe(®) e ()] [e(®) e (2]

which gives the same result as before.
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Solution 28. (Repeat codes and Bhattacharyya bound)

(a) Let X; = cp; be the i-th symbol that was sent, i.e., X; =1 if H=0and X; = -1 if H =1.
We have:

1
Puyx,(1] = 1) = Pr{Y; > 0|H =1} = Pr{-1+Z >0} = Q <0> .
o 1 1
Similarly, we can show that Py, x,(=1] —1) =1-@Q (), Py, x,(—=1]1) = Q () and
o o

Pwixim):l—@(i).

The overall system between X; and W; may be viewed as a channel with input 1 or —1
and output also 1 or —1. There is a certain probability € (called transition or crossover

1
probability, and which is equal to Q () in our case) that the channel converts 1 into —1
o

or vice versa. (see Figure 2.13.)

1—c¢
-1 -1
€
Xz W'L’
€
1 1
1—c¢

Figure 2.13: Binary Symmetric Channel (BSC) with crossover probability e

This particular channel is called the Binary Symmetric Channel. Various results can be
found easily from Figure 2.13. For instance, it is clear that if we put n consecutive 1°s into
the channel, the probability of getting, at the output, a particular sequence (w1, ..., wy)
which contains ezactly k 1’s is simply (1 — €)*e"=*. Similarly, the probability of getting,
at the output, any sequence that contains evactly k 1’s is (2)(1 — €)¥e" =% because there
are (}) distinct sequences with exactly k ones each, and every one of them has probability
(1 — e)ken—k,

The MAP decision rule is

P, wo i (wi, - well) P20 Py(0)
PW1...Wn\H(w17"'7w7L|O) A<: PH(I)

(1 —e)nFk e \ ~
= 2 1.

(1 —¢)ken—F 1—e¢

The expression only depends on k, therefore the number of ones in the received sequence is
a sufficient statistic.
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(b)

(c)

Taking the logarithm, we obtain

€ I:I>=1
2k —n)1 — ] = 0
(1) %

H=0

Since € < 1/2, log (1;) < 0, and thus, when we divide by this term, the direction of the

inequality is changed. Using this, the decision rule can be written as

A=0

k

AV
SIE

A=1

That is, the best decision rule is simply majority voting: if the majority of the received
values is 1, we decide for hypothesis H = 0 (i.e. the transmitted value was 1). If the
majority of the received values is —1, we decide for hypothesis H =1 (i.e. the transmitted
value was —1).

Let us assume that n is odd. Then,

P.(0) = Pr{k<n/2|H =0}
(n—1)/2
=Y @ gre
m=0

By the symmetry of the problem, P.(1) has the same value. Thus,
Po= > ()A—eme

If n is even, we introduce a slight asymmetry because the term for n/2 has to be assigned
to either H =0 or H = 1.

Because this sum cannot be evaluated explicitly, in the following, we bound it using the
Bhattacharyya bound.

The general formula for the Bhattacharyya bound is

Pt Y VPRPA0) [ [ fwinCwli Sy () de

i jijFEi

In our case, this becomes

P < 25 3\ Rra 0 P (wlt)

= Z \/(1 — €)k(w)gn—k(w) ¢h(w)(] — ¢)n—k(w)
=S Ve=ar
= /e o
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(d) Again, we assume that n is odd; note however that the case when n is even would not add
much insight. Figure 2.14 shows the error probabilities for various values of n (the plot was
created from the matlab program that follows).

n = 1:2:30;
sigma = 1;

Pe = gfunc(sqrt(n)/sigma);
epsilon = qfunc(1l/sigma);
Pet = zeros(1l, length(n));
for ic = 1:length(n),
for m = 0:(n(ic)-1)/2,
Pet(ic) = Pet(ic) + nchoosek(n(ic),m) * (l-epsilon)”m * epsilon”(n(ic)-m);
end;
end;
PetBhatt = (2*sqrt(epsilon*(1l-epsilon))). n;

semilogy(n, Pe, ’-o’, n, PetBhatt, ’-"’, n, Pet, ’-s’);

—— P, s

100 |

—— ZE%

Y

e,Bhatt

0 10 20 30 40
n

Figure 2.14: Error probability as a function of repetition length n

Solution 29. (Tighter union Bhattacharyya bound: Binary case)
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(a) From the definition of the decision region R;,

Ri ={y: Pu(i)fyiuWli) = Pu() fyiuWli)} i#J,

it is easy to see that in region Ry

Py (0) fy1m(y[0) > Pr (1) fya(y/1)

and vice-versa. Thus we can write

P, PH(O)/R Jy 1 (y|0) dy-i-PH(l)/R fyia(yll) dy

A min{ Py (0) fy|z(|0), P (1) fy 1 (y|1)} dy

+ min{ Py (0) fy |z (y]0), Pu (1) fya(y|1)} dy
- / min{ Py (0) fy|uz(¥|0), Pa (1) fy|u(y|1)} dy
Ro+R1

= /min{PH(O)fY|H(y|0)aPH(I)fY|H(y‘1)} dy.

(b) Without loss of generality, let us assume that a < b. Then y/b/a > 1 and min(a,b) = a <
av/b/a = \/ab.

To show that for a,b > 0,vab < %2, we proceed as follows. Let m = (a + b)/2 be the
midpoint of an imaginary segment of the real line that goes from a tob. Let d = (b—a)/2
be half the distance between a and b. Writing a and b in terms of m and d we obtain
ab = (m —d)(m + d) = m? — d*> < m?, which is the desired result.

Considering this, we can write

P, = / min { P (0) fy 7 (510), Per (1) fsr (w[1) ) dy

IN

/ /P (©) fy1a (w10)Par (1) s (w1 dy
PH(O)PH(l)/\/fY\H(y\O)an(yU) dy
PO 2 [\ o) o)

= 5 [ ol

IN

(¢) In the book, we upper bound P.(i) individually instead of upperbounding the final result,
P, =3, Py(i)P.(i). For the binary case, this is equivalent to
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P(0) = /R P (410) dy

_ / min { fy 2 (y10), fy 1 (y1)} dy

1

< /R1 \/leH(y|O)fY|H(y|1) dy

< [ VIO a6 dy

The last step, which further loosens the bound, is necessary to find a bound of P.(0) that
does not depend on Ry. This “overbounding” is avoided in (b) by finding the bound over
the whole P,.

Solution 30. (Tighter union Bhattacharyya bound: M-ary case)

(a)
BV Pu (@) fy\u(yli) > Pa () fyia(yli), i<j
Py Pu() fyir i) > Pu (i) fyia (yli), >

Therefore,

¢ _ y: Pr(i) fyigli) < Pa(i) fyigli), i<j
y: Pu(i) fyia(li) < Pa(i) fyiali), >,

which is the same as B; ;.

(b) The probability of error is

P = > Y Pr{Y e Rj|H = i}Py(i)
i g
= Y N [Pr{Y e Ry|H = i}Py(i) + Pr{Y € Ri|H = j} Py (j)],

i j>i

where R; is the decision region for hypothesis i. Beause R; C B; ; and R; C Bj,;, we can
write



P, < ZZ [Pr{Y € B;;|H = i}Py(i) + Pr{Y € B;;|H = j} Py (j)]
= > N [Pri{Y €Bi;|H = i}Py(i) + Pr{Y € B ;|H = j} Pu(j)]

i J>1

2.

i J>i

)y l [, il P 01 P )Y

i J>i

/fMM%dw/MMMMW

—
*

+/' min{ fy g (y|) Pu (i), fy1a (yl5) Pr ()} dy]

= 2.2 [ / min fy | (41) P (0). fy 1 (017) Pra (7)) dy}

i g>i
Relation (%) follows from the definition of B, ;.

(¢) Using the hint, we obtain

o< SX | [ Il Pat ol Pati) d
= SN |VEROPAT) [ Bl i) ]
< ZZ P()+PH/\/JCY\H (wl2) fya (ylg) dy}

Solution 31. (Applying the tight Bhattacharyya bound)
(a) Using the tight bhattacharyya bound, we get

3 |\ i) ol1) dy

P

IN

. N SR PR YT N (R P
[ o (-y o)

( 20) 2m2 P (_52) w

(o

N |

t\')\»—l N)\»—l

3
\_/
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(b) The above bound is the same as the one from the problem statement, which was obtained
working specifically with the expression for the Q-function. It is surprising that the Bhat-
tacharyya bound, which applies to arbitrary channels, yields the same result.

Solution 32. (Bhattacharyya bound for DMCs)

(a) Inequality (a) follows from the Bhattacharyya Bound.
Using the definition of DMC, it is straightforward to see that

Pyix(yleo) = []Pvix(wilcos) and
i=1

Py x(yler) = HPY|X(Z/2'|C1,¢).
=1

(b) follows by substituting the above values in (a).

Equality (c) is obtained by observing that 3_ is the same as 3, . = (the first one being
a vector notation for the sum over all possible y1,...,yn).

In (c), we see that we want the sum of all possible products. This is the same as summing
over each y; and taking the product of the resulting sum for all y;. This results in equality
(d). We obtain (e) by writing (d) in a more concise form.

When CO,i = Cl,i; \/Py‘X(y|Coy7;)Py|X(y|Cl,i) = Py|X(y|Coﬁi). Therefore,

Z \/Py\x (ylco,i) Pyx (yler,q) ZPY|X Yleo:) =

This does not affect the product, so we are only interested in the terms where co; # c1,.
We form the product of all such sums where co; # c1,;. We then look out for terms where
co; = a and ¢1; = b,a # b, and raise the sum to the appropriate power. (Eg. If we have
the product prpgrpgrr, we would write it as p>q*r*). Hence equality (f).

(b) For a binary input channel, we have only two source symbols X = {a,b}. Thus,

P, < Zn(a,b)zn(b,a)
LM(a.b)+n(b,a)

— ydu(coser)

(¢) The value of z is:

(i) For a binary input Gaussian channel,

= [T i) dy

E
= exp| — ﬁ .
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(i) For the Binary Symmetric Channel (BSC),

\/Pr{y=0|x =0}Pr{y =0z =1} + \/Pr{y =1z =0}Pr{y =1jz =1}
= 2./6(1—9).

(i) For the Binary Erasure Channel (BEC),

VPr{y=0z=0}Pr{y=0/z=1}++/Pr{y=Elz =0}Pr{y = Ejz =1}
+ \/Pr{y:1|x:O}Pr{y:1|x:1}

= 04+6+0

= 0.

A =

Solution 33. (Bhattacharyya bound and Laplacian noise)
The Bhattacharyya Bound for the binary case with equally likely hypotheses is

P2 [\ B0 ol1) dy = Bl
By replacing the density functions
Frin(410) = 5o~
fyia(yll) = %6_‘3’_“"

we obtain

o)
1
B(a) — / Ze“lﬁ“ﬂe‘k‘/_a‘ dy = T1 + T2 + T37
—o0

T —/_alx/ rat—a) ¢ —1/_a Y dy = Le—o
S A LY B

oo
a

T :/ % e~ (yta)t(y—a) gy = %/ e =aqae ®

—a

—0 1
T3 = / 5 e_(y"!‘a)_(y_a) dy = Tl'

Therefore, B(a) = (14 a)e™“.

Solution 34. (Dice tossing)
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(a) Let H = 0 be the hypothesis for a fair dice, and H = 1 the hypothesis for a loaded dice.
Then,

Pyig(y[l) = (1/4)%(3/20)"*, and
Py g (yl0) = (1/6)",

where s is the number of 6’s in the observed sequence.
The MAP decision rule is

Pyip(yll) "Z' Py(0) 1
> o = =1.
Prig(ylo)  ,=, Pu(l)
Plugging in, we obtain
(/4 - (3/20=
n < .
(1/6) =
By taking the logarithm, this becomes
A=1
nlog%—i—slogg z 0, or
=0
H=1 plog =
5 < log 2
H=0 g5

(b) The sufficient statistic here is simply s, the number of 6’s in the observed sequence.

(¢) The Bhattacharyya bound can be found in three different ways.
First solution: Here we work with the observation Y = (Y1,...,Y,). We get

Pr{YeBuH=0} < S \/Pra@)Pru(0)
ye{l,2,....6}"
- Y a6
ye{l,2,....6}"
QY ()5 G gy

- (VR (1) (Vi)
9 (R (1+v1/15)
= (VB+ Vi)

In (a) we use the fact that for every s € {0,...,n}, there are (2)5"75 different sequences
in {1,...,6}" that have s sizes. In (b) we use the hint given in the assignment. The same
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bound applies for H = 1. Hence,

e 3 () ()
- (Vi)

Second solution: Here, we work with the observation Z = (Z1, ..., Z,), where Z; is defined
as
7 _ 1 ifY;=6
"7l 0 otherwise.

Note that the random variables Z; are i.i.d., all distributed like Z, where Z is a Bernoulli
random variable with Pr{Z =1|H =0} =1/6 and Pr{Z =1H =1} =1/4.
The Bhattacharyya bound is

Pr{Z e By |H=0} < > \/PZ|H(Z\1)PZ\H(Z|O)
z€{0,1}™

Z Z Z H\/PZ\H(ZiH)PZlH(Zi'O)

21€{0,1} z2€{0,1} 2n€{0,1} i=1

n

PZ|H(2\1)PZ\H(2|0)
z€{0 1}

(/P O P11 (010) + \/Paa (1) P21 (110))
( (3/4) - (5/6) + /(1/4) - 1/6))
(vVo/s+ Vif2d)".

Again, by symmetry, we find that
P.< (Vo/s+ \/1/24)71

Third solution: Here we work with the observation S, which is the number of sizes in' Y =
(Y1,...,Y,). Note that when H = 0 (when the dice is fair), S has a binomial distribution
with parameters n and (1/6). On the other hand, when H =1 (when the dice is loaded), S
has a binomial distribution with parameters n and (1/4). Hence, we obtain

Pr{Se By |H=0 < Z \/PS‘H(S|1)PS‘H(S|0)

= 3y () (7)o

- e
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where all remaining steps are the same as in the first solution, when using Y. Again, by

symmetry, we find that
p.< (Vo/s+ \/1/24)".

Solution 35. (ML receiver and union bound for orthogonal signaling)
(a) The ML decision rule is

Hyp(y) = arg max Ty (yli)

— argmax Lo (MGl
i (27r02)m/2 202

= argmin|ly — ¢].

Hence, the ML decision rule is a minimum distance decision rule.
(b)

lei — el = VElei—e|
— V€,

where the second equality comes from the fact that e; and e; differ only in two positions,
where one is equal to 0 and the other is equal to 1.

(¢) The upper bound for the error probability when H =1 is

Po(i) < Y Pr{Y eB;|H=i}
Jrji

= X [ fvmtali) dy

i
_ lei — ¢
= Z Q (%J>

g
- (“F)

Solution 36. (Uniform polar to Cartesian)

(a) At first look it may seem that the probability is uniformly distributed over the disk, but in
the next part we will show that this is not true.
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(b) We know that R is uniformly distributed in [0, 1] and @ is uniformly distributed in [0, 27),
so we have fr(r)=1if0<r<1 andﬁp(qﬁ): 5= if 0 < ¢ < 27,

27

As these two random variables are independent, we have

L 0<r<1land0<¢<2rm

fR,‘i’(T’ d)) = { 27

0 otherwise.

It can be easily shown that the Jacobian determinant is det J = r = /22 + y2. Therefore,
the probability distribution in cartesian coordinates is

1
fx,y(a?,y) = mf}%;b(ﬁ ?)
1 2 2 <
o +y° <
0 otherwise.

(c) We see that the probability distribution is not distributed uniformly. This makes sense
because Tings of equal width have the same probability but not the same area.

Solution 37. (Real-valued Gaussian random variables)

(a) We have to find the marginal of X when X and Y are jointly distributed as in the first
equation of this problem. The marginal of X is found by integrating fxy (x,y) overy, i.e.

oo
/ fxy(z,y)dy
— 00
& 1 lota? +o%y? — 20xyzy
- 7 5 2 P73 2 2
—00 2T/ 0% 0y — 0%y ooy — 0%y
Y
o2
9y

o (o 2.,
= exp ( —5— (= — :
oo 2mOx Oy /1 — p? 2(1—p?) \0% oxoy Y

where p = X,

fx(x)

We can rewrite
o0 1 x? ) 1 ( payx)2
x) = exp| —=—5 |exp | — - d
Ix(@) [oo 2roxoyy/1— p? ( 20% ( 2(1 - p?)oy Y ox Y
1 ( x? )
- exp -
\/27r(7§( P 20?{

2
1 oy T
/ exp YRV <y—p Y ) dy.
,/27r02 1—p - p?)oy ox
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(b)

(d)

The expression under the integral is a Gaussian density in the variable y, which integrates

to one. Therefore,
1 x?
fx(z) = exp ( ) ;

\/27‘(0'%( 203(
showing that X is a zero-mean Gaussian random variable with variance c% . By symmetry,
the computations for' Y are the same.

For independent random variables,

fxv(z,y) = fx(@)fy(y)
1 x? 1 y?
\/2mo% P <_%§(> V2moi P (_%%)

—————exp| = (5 +F5 | |-

27‘(’\/0'%(0'%/ 2 0'3( o %,

Because X and Y are independent, cxy = 0. Thus, by setting ¥ to be a diagonal matriz
with entries 0% and o2, we obtain the joint density function as in the problem statement.

Let X ~ N(0,1) be a Gaussian variable. Let U be a variable that is 1 with probability 0.5
and —1 with probability 0.5. Then, Y = UX is not independent of X, but it is Gaussian.
X and Y are not jointly Gaussian (e.g. fxy(1,2)=0).

Any linear combination of independent Gaussian random variables is a Gaussian random
variable. All we need to describe are the mean m and the variance o3 of X +Y. They are
myz =mx +my =0 and O'2Z = og( —|—U§/. Hence

z

1 2
fxiv(z) = mexp (‘2(o—§(+o—§/)) }

Alternatively, we can compute fz = fxiv = [ fx(2)fy(z — z)dx.

Solution 38. (Correlation vs. independence)

(¢)

We have,

IEI[X]:/Oo xfx(m)dx:/llzfz(z)dz:/l z%dz:O,

—0o0 — -1

oo 1 1
E[Y] :/ yfy(y)dyzﬁlefz(z)dz:/ zzédz: é

o) 1 1
E[XY] = / 2 fz(2)dz = / z3§dz =0.
—oo -1

The covariance between X and 'Y is,
Couo(X,)Y)=E[X-E[X])(Y —E[Y])]=E[XY]-E[X]E[Y]=0.

Since Cov(X,Y) =0, X and Y are uncorrelated.
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(b) X andY are not independent because Y = X2.

(¢) Because X and Y are uncorrelated with variances 0% and o3 respectively, the covariance

matrix X 18,
v 0% 0
0 032, '
The joint distribution of X and Y is given by,

fXY(:Cay) = W%GXP <;( o )271 < i >)

2

552
27r oXcrY 20y

2
ex (- oo
Ox
$2 2
a 27r UXUY ( U§(>exp( U)

2
1 2 Y y2
\/Rexp( 2 3{) 27r0y ( 20%)
= fx@)fy ().

Since fxy(z,y) = fx(z)fy(y), X and Y are independent. In general for jointly Gaussian
random variables, uncorrelation implies independence.

Solution 39. (Data-storage channel)

(a) The density functions are a Gaussian centered at 0 and a Gaussian of larger variance
centered at 1. They intersect in two points, say y1 and ys (y1 < y2). The decoding region
for H=10 is Ro = [y1,y=2]. This is depicted in Figure 2.15.

(b) Formally, Ry is the set of y for which

1 _ v 1 _(w-1?
20 e 207

e >
/2703 T \/27o?
Let us find the two points y1 and yo for which equality holds. They are the solution to

(y—1)? _yi_l
20% 200 o1

o

Hence we are looking for the roots of ay® + by + ¢ for

op —of
2080%
1
b=-—
01
1 ago
c —In—
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0.6 -

0.3r

0.1r J
0 L L L 1 L L

-5 -4 -3 -2 -1 0 1 2 3 4 5)

Figure 2.15: Decision regions

The solution is Y12 = —bkvbi—dac Vzlf% and, after a few steps, one obtains
oo g0

= ——— |oog+oi/1+2(c2—02)In— |.
Y1,2 Ug—af [ 0 1\/ ( 0 1) o1

Therefore, the optimal receiver decides H=0 ifyn <y <wyo, and H =1 otherwise.

(c) The probability of error when H =0 is

ro=1-a(2)o(2)

and when H =1 1is

Therefore,

Solution 40. (A simple multiple-access scheme)

(a) Because the prior probabilities are the same, the MAP and ML decision rules are the iden-
tical. The optimal decision rule is

. B B 1 (y — x1 — 22)?
H(y) = a?‘gglrﬁffymlfzz (ylh1, ha) = oz P ( gz )

(b) For 0% =0, the signal for each hypothesis is
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H,Hy 00 | 01

10 | 11

X=X1+Xo| 3 | -1

Roo

Figure 2.16: Optimal decision regions

(¢) The optimal decision regions are presented in Figure 2.16.

(d) Because of the symmetry, P.(11) = P,(00) and P.(01) = P.(10).

P.(11) = Pr{Y <-2/H =1NH,=1}

= Pr{z<1}

o)

P.(01) = Pr{—2<Y <O0|H, =0NH,=1}

= Pr{-1<Z<1}

°(5)-(;

Putting things together, we obtain

1

)

Pr {ﬁl =Hy, Hy = Hz} = 7 (P(00) + Pe(01) + P(10) + P.(11))

4

- o(2)-10(0)

(e) The receiver decides Hy, =1 if y < 0. Because of the symmetry, Pr{flg :Hg}

PCH2 (O) = PCHz(l)'
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Pou,(1) = Pr{H; =0}Pr{Y <0|H, =0NH, =1}
+Pr{H, =1}Pr{Y <0|H; =1NH, =1}

_ %PT{Z§1}+%PT{Z§3}
el e(2)

Solution 41. (Data-dependent noise)
(a) The optimal decision rule is

H

Il
—

fY\H(yll) fY\H(y|O)7 or

» A

Il
-

AIV

1 1)?
exp <_(y+)) .
0 V2m 2
After taking the logarithm we obtain

P Vel VN Uk Ve
< 202 2
H=0

1 (y—1\ ~
eXp| —————5—
\/27(0'2 20'2 ~

H

(b) If 0® = e*, the equality sign is obtained for

et +1

o= et —1

Y2 = 1.
The receiver decides H = 0 ifyn <y <wys, and H =1 otherwise.
(c)
P.(0) = Pr{Y <y UY >y|H =0}
CE| (y+1)2) /OO 1 ( (y+1)2)
——exp | — dy + ——exp | — d
/_Oo o p( 5 v e 5 y
1-Q(y1 +1) + Qy2 + 1).

P.(1) = Pr{y <Y <y,|H=1}
Y ! (y—1)? > 1 (y—1)?
=y Vamr P ( 202 >dy e VZno? T ( 202 )dy
_ Q(’yl—l)_Q<yz—1)
g g
-1 -1
Q(yle2 )_Q(y2e2 )
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Solution 42. (Correlated noise)

(a)

(b)

(c)

Let Z = BZ. The covariance matriz of Z is
3 = BB
Using the hint, we set B= 7 (_19) and obtain S=(19).

Because it is obtained by a linear combination of zero-mean Gaussian random variables, the
vector Z is also zero-mean Gaussian. Because its covariance matriz is the unity matriz, its
components are independent, and have variance equal to 1.

For H =i, the covariance matriz of Y is f], and the probability density function is

fyp@li) = S —— (—1(y — Be)"S 7 (y - Bci)>

2nV det 2 2
1 1
~ oo (5B - Be)).
The hypothesis testing problem becomes
1 1
H(y) = argmax— exp (—(y — Bey) T (y — Bcl-)>
i 27 2
= argmin(y — Be;)' (y — Be;)
7
= argmin[ly — ¢,
(2

where ¢; = Be;.

The decision regions are depicted (qualitatively) in Figure 2.17.
We determine the union bound for the probability of error. Recall that

For our problem, this becomes

Pe(i) < Z Q (”éj C7||>
Jiii 20
- o)

P, = Y Pu(i)P.(i)

IN
N
| =
O
7 N
>
[\
£
N
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Figure 2.17: Decision regions



Chapter 3

Receiver Design for
Continuous-Time AWGN Channels:
Second Layer

Solution 1. (Gram-Schmidt procedure on tuples)
We start by normalizing By :

181l = V/(B1, 1) = V3
AL L L
LT IRV MV AR
We get the next basis vectors as follows:
(Y1, B2) = V3
¢o = Bo — V3¢ = (1,1,-1,0)
=l = V3
o)) 1 1 1
=—=(—7x ——,0).
1/}2 H¢2H ( 37 37 \/57 )
We compute
(¥1,03) =0
<1/}2763> =0.

Thus,

¢3 = /))3 - O,(/)l - 0’(/}2 = (1a05 17_2)

sl = VITTT = V6
_ % _ L, L

11)3 (\/6’0,\/6’

b 2,
lesll (i
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