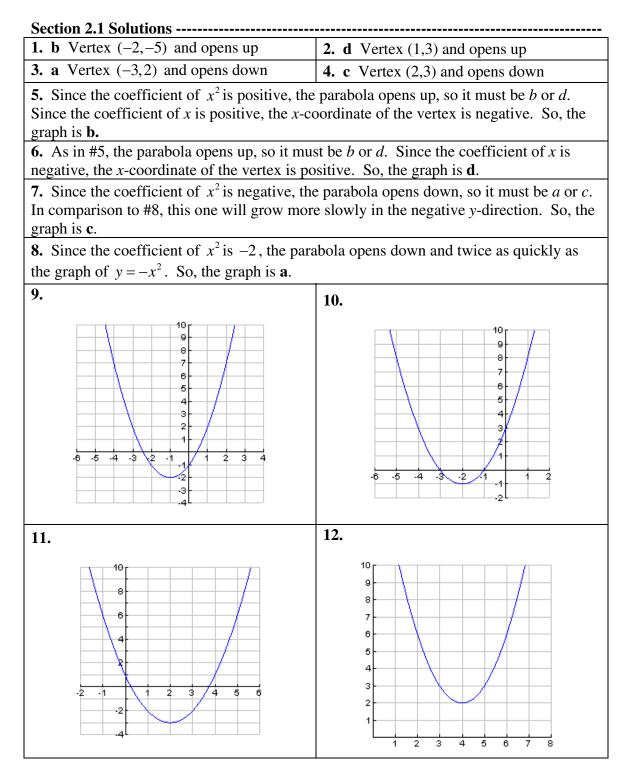
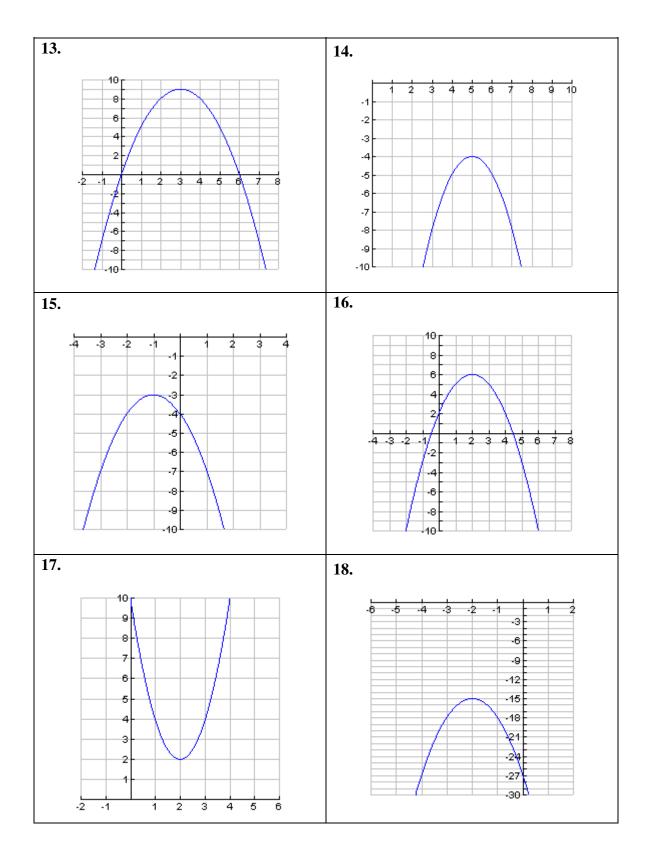
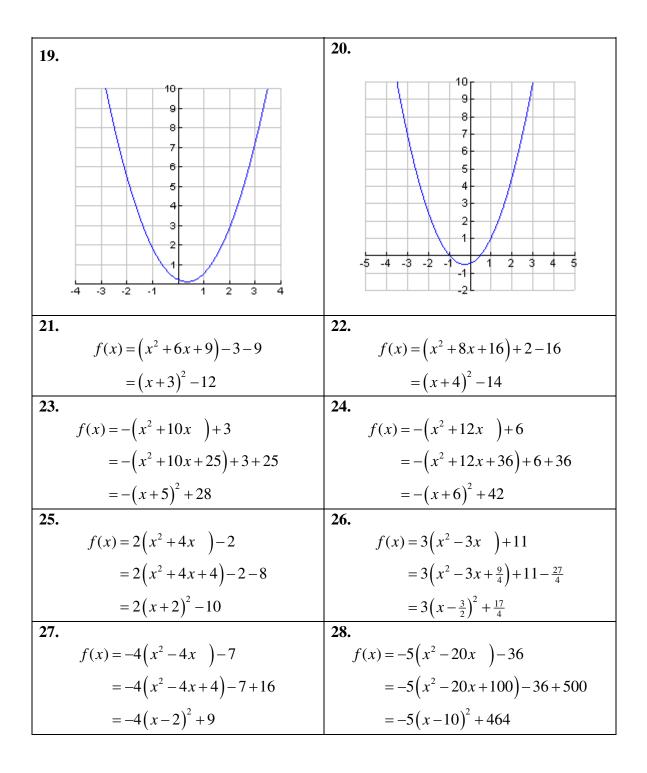
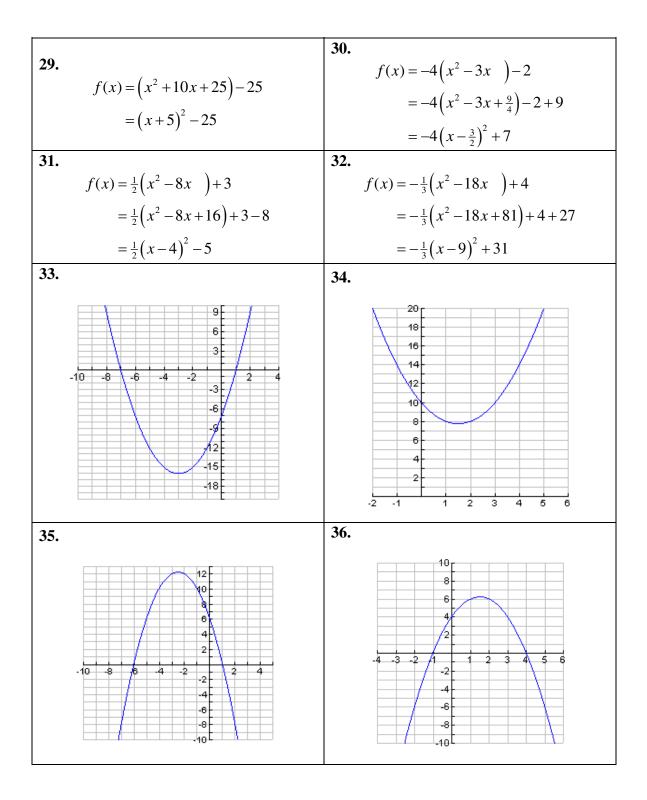
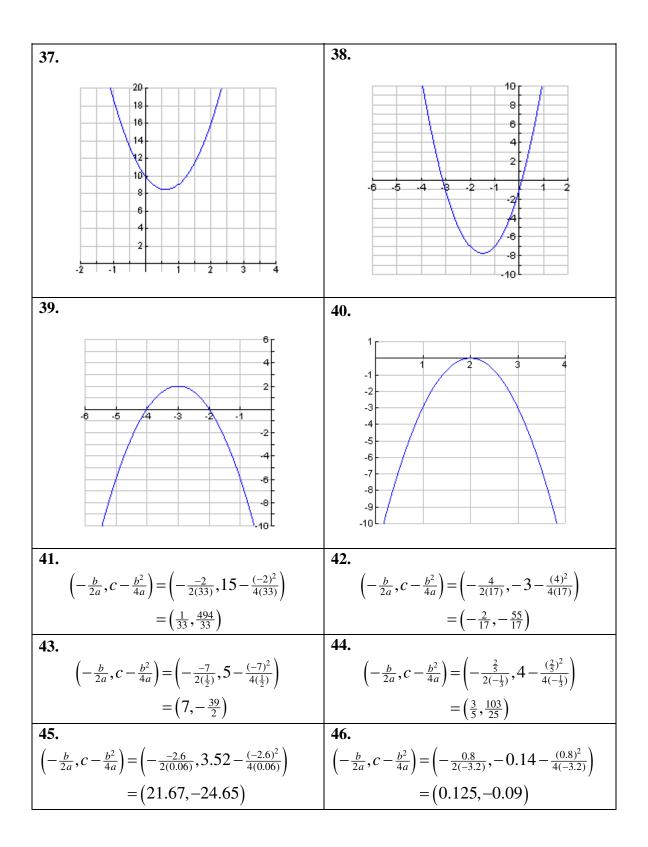
CHAPTER 2











47. Since the vertex is $(-1, 4)$, the	48. Since the vertex is $(2, -3)$, the
function has the form $y = a(x+1)^2 + 4$.	function has the form $y = a(x-2)^2 - 3$.
To find a , use the fact that the point (0,2) is on the graph:	To find a , use the fact that the point (0,1) is on the graph:
$2 = a(0+1)^2 + 4$	$1 = a(0-2)^2 - 3$
-2 = a	1 = 4a - 3
So, the function is $y = -2(x+1)^2 + 4$.	1 = a
	So, the function is $y = (x-2)^2 - 3$.
49. Since the vertex is (2,5), the function	50. Since the vertex is (1,3), the function
has the form $y = a(x-2)^2 + 5$. To find a,	has the form $y = a(x-1)^2 + 3$. To find a,
use the fact that the point $(3,0)$ is on the	use the fact that the point $(-2,0)$ is on the
graph:	graph:
$0 = a(3-2)^2 + 5$	$0 = a(-2-1)^2 + 3$
-5 = a	0 = 9a + 3
So, the function is $y = -5(x-2)^2 + 5$.	$-\frac{1}{3}=a$
	So, the function is $y = -\frac{1}{3}(x-1)^2 + 3$.
51. Since the vertex is $(-1, -3)$, the	52. Since the vertex is $(0, -2)$, the
function has the form $y = a(x+1)^2 - 3$. To	function has the form $y = a(x-0)^2 - 2$.
find <i>a</i> , use the fact that the point $(-4, 2)$ is	To find a , use the fact that the point (3,10)
on the graph:	is on the graph:
$2 = a(-4+1)^2 - 3$	$10 = a(3-0)^2 - 2$
2 = 9a - 3	10 = 9a - 2
$\frac{5}{9} = a$	$\frac{12}{9} = \frac{4}{3} = a$
So, the function is $y = \frac{5}{9}(x+1)^2 - 3$.	So, the function is $y = \frac{4}{3}(x-0)^2 - 2$.
53. Since the vertex is $(-2, -4)$, the	54. Since the vertex is (5,4), the function
function has the form $y = a(x+2)^2 - 4$.	has the form $y = a(x-5)^2 + 4$. To find a,
To find <i>a</i> , use the fact that the point $(-1,6)$	use the fact that the point $(2,-5)$ is on the
is on the graph:	graph:
$6 = a(-1+2)^2 - 4$	$-5 = a(2-5)^2 + 4$
6 = a - 4	-5 = 9a + 4
10 = a	-1 = a
So, the function is $y = 10(x+2)^2 - 4$.	So, the function is $y = -(x-5)^2 + 4$.

56. Since the vertex is $\left(-\frac{5}{6}, \frac{2}{3}\right)$, the **55.** Since the vertex is $(\frac{1}{2}, \frac{-3}{4})$, the function function has the form $y = a(x + \frac{5}{6})^2 + \frac{2}{3}$. has the form $y = a(x - \frac{1}{2})^2 - \frac{3}{4}$. To find a, To find a, use the fact that the point (0,0)use the fact that the point $(\frac{3}{4}, 0)$ is on the is on the graph: graph: $0 = a(0 + \frac{5}{6})^2 + \frac{2}{3}$ $0 = a(\frac{3}{4} - \frac{1}{2})^2 - \frac{3}{4}$ $0 = \frac{25}{36}a + \frac{2}{3}$ $0 = \frac{1}{16}a - \frac{3}{4}$ $-\frac{24}{25} = a$ 12 = aSo, the function is $y = -\frac{24}{25}(x + \frac{5}{6})^2 + \frac{2}{3}$. So, the function is $y = 12(x - \frac{1}{2})^2 - \frac{3}{4}$. 57. Completing the square will enable you to identify the vertex of the parabola, which is precisely where the maximum occurs. $P(x) = -0.0001(x^2 - 700,000x) + 12,500$ $= -0.0001 (x^{2} - 700,000x + 350,000^{2}) + 12,500 + 12,250,000$ $= -0.0001(x - 350,000)^{2} + 12,262,500$ **a.** Maximum profit occurs when 350,000 units are sold. **b.** The maximum profit is P(350,000) = \$12,262,500. 58. Completing the square will enable you to identify the vertex of the parabola, which is precisely where the minimum occurs. $P(x) = 0.5x^2 - 20x + 1,600$ $= 0.5(x^2 - 40x) + 1,600$ $= 0.5(x^2 - 40x + 400) + 1,600 - 200$ $= 0.5(x-20)^{2}+1,400$ **a.** Minimum profit occurs when x = 20, which corresponds to when 20,000 units are sold.

b. The minimum profit is P(20) = 1,400 hundred dollars, which corresponds to \$140,000.

59. Complete the square to identify the vertex. Since the coefficient of t^2 is negative, W(t) will be increasing to the left of the vertex and decreasing to the right of it.

$$W(t) = -\frac{2}{3} \left(t^2 - \frac{39}{10} t \right) + \frac{433}{5}$$
$$= -\frac{2}{3} \left(t^2 - \frac{39}{10} t + \left(\frac{39}{20} \right)^2 \right) + \frac{433}{5} + \frac{2}{3} \left(\frac{39}{20} \right)^2$$
$$= -\frac{2}{3} \left(t - \frac{39}{20} \right)^2 + \frac{17,827}{200}$$

So, gaining weight through most of January 2010 and then losing weight during the second to eighteenth months, namely Feb 2010 to June 2011.

60. The maximum weight of the *y*-coordinate of the vertex and is $\frac{17,827}{200} \approx 89 \text{ kg}$.

61. a. The maximum occurs at the vertex, which is (-5, 40). So, the maximum height is 120 feet.

b. If the height of the ball is assumed to be zero when the ball is kicked, and is zero when it lands, then we need to simply compute the *x*-intercepts of h and determine the distance between them. To this end, solve

$$0 = -\frac{8}{125}(x+5)^2 + 40 \implies \underbrace{40\left(\frac{125}{8}\right)}_{=625} = (x+5)^2 \implies \pm 25 = x+5 \implies x = -30,20$$

So, the distance the ball covers is 50 yards.

62. a. The maximum occurs at the vertex, which is (30, 50). So, the maximum height is $\overline{150 \text{ feet}} = 50 \text{ yards}$.

b. If the height of the ball is assumed to be zero when the ball is kicked, and is zero when it lands, then we need to simply compute the *x*-intercepts of h and determine the distance between them. To this end, solve

$$0 = -\frac{5}{40}(x - 30)^2 + 50 \implies \underbrace{50\left(\frac{40}{5}\right)}_{=400} = (x - 30)^2 \implies \pm 20 = x - 30 \implies x = 10,50$$

So, the distance the ball covers is 40 yards.

63. Let x =length and y =width.

The total amount of fence is given by: 4x + 3y = 10,000 so that $y = \frac{10,000 - 4x}{3}$ (1).

The combined area of the two identical pens is 2xy. Substituting (1) in for y, we see that the area is described by the function:

$$A(x) = 2x \left(\frac{10,000 - 4x}{3}\right) = -\frac{8}{3}x^2 + \frac{20,000}{3}x$$

Since this parabola opens downward (since the coefficient of x^2 is negative), the maximum occurs at the *x*-coordinate of the vertex, namely

$$x = -\frac{b}{2a} = \frac{-\frac{20,000}{3}}{2\left(-\frac{8}{3}\right)} = 1250$$

The corresponding width of the pen (from (1)) is $y = \frac{10,000 - 4(1250)}{3} \approx 1666.67$ So, each of the two pens would have area $\boxed{\cong 2,083,333 \text{ sq. ft.}}$ **64.** Let x =length of one of the four pastures, y =width of one of the four pastures. The total amount of fence is given by: 8x + 5y = 30,000 so that $y = \frac{30,000 - 8x}{5}$ (1). The combined area of the four identical pastures is 4xy. Substituting (1) in for y, we see that the area is described by the function: $A(x) = 4x \left(\frac{30,000 - 8x}{5}\right) = -\frac{32}{5}x^2 + 24,000x$ Since this parabola opens downward (since the coefficient of x^2 is negative), the maximum occurs at the x-coordinate of the vertex, namely $x = -\frac{b}{2a} = \frac{-24,000}{2\left(-\frac{32}{5}\right)} = 1875$ The corresponding width of the pen (from (1)) is $y = \frac{30,000 - 8(1875)}{5} = 3000$ So, each of the four pastures would have area 5,625,000 sq. ft. 65. a. Completing the square on h yields **b.** Solve h(t) = 0. $h(t) = -16(t^2 - 2t) + 100$ $-16(t-1)^{2}+116=0$ $(t-1)^2 = \frac{116}{16}$ $= -16(t^2 - 2t + 1) + 100 + 16$ $t - 1 = \pm \sqrt{\frac{116}{16}}$ $= -16(t-1)^{2} + 116$ So, it takes 1 second to reach maximum $t = 1 \pm \sqrt{\frac{116}{16}}$ height of 116 ft. Since time must be positive, we conclude that the rock hits the water after about $t = 1 + \sqrt{\frac{116}{16}} \cong 3.69$ seconds (assuming the time started at t = 0). **c.** The rock is above the cliff between 0 and 2 seconds (0 < t < 2).

66. Solve $-16t^2 + 1200t = 0$: 67. $A(x) = -0.0003 (x^2 - 31,000x) - 46,075$ $-16t^{2} + 1200t = 0$ t(-16t + 1200) = 0 $= -0.0003 (x - 15, 500)^{2} - 46,075 + 72,075$ t = 0.75 $= -0.0003(x - 15,500)^{2} + 26,000$ So, the person has 75 seconds to get Also, we need the *x*-intercepts to determine the out of the way of the bullet. horizontal distance. Observe $-0.0003(x-15,500)^{2}+26,000=20,000$ $(x-15,500)^2 = \frac{6,000}{0.0003} \approx 20,000,000$ $x - 15,500 \approx \pm 4472.14$ $x \approx 15,500 \pm 4472.14$ = 11,027.86 and 19,972.14 So, the maximum altitude is 26,000 ft. over a horizontal distance of 8,944 ft. 68. a. Since the vertex is (50,30), the function has the form $y = a(x-50)^2 + 30$. To find a, use the fact that the point (70,25) is on the graph: $25 = a(75-50)^2 + 30$ -5 = 400a so that -0.0125 = aSo, the function is $y(x) = -0.0125(x-50)^2 + 30$. **b.** Since $y(90) = -0.0125(90 - 50)^2 + 30 = 10$, you would expect 10 mpg. **69.** First, completing the square yields P(x) = (100 - x)x - 1000 - 20x $= -x^{2} + 80x - 1000 = -(x^{2} - 80x) - 1000 = -(x^{2} - 80x + 1600) - 1000 + 1600$ $=-(x-40)^{2}+600$ Now, solve $-(x-40)^2 + 600 = 0$: $-(x-40)^2+600=0$ $(x-40)^2 = 600$ $x-40 = \pm \sqrt{600}$ so that $x = 40 \pm \sqrt{600} \approx 15.5, 64.5$ So, 15 to 16 units to break even, or 64 or 65 units to break even. 70. Using #81, we see that the maximum profit occurs at the y-coordinate of the vertex, namely \$600.

71. a. We are given that the vertex is (h,k) = (225, 400), that (50, 93.75) is on the graph, and that the graph opens down (a < 0) since the peak occurs at the vertex. We need to find a such that the equation governing the situation is $y = a(t - 225)^2 + 400$. (1) To do this, we use the fact that (50, 93.75) satisfies (1): $93.75 = a(50 - 225)^2 + 400 \implies a = -0.01$ Thus, the equation is $y = -0.01(t - 225)^2 + 400$. **b.** We must find the value(s) of t for which $0 = -0.01(t - 225)^2 + 400$. To this end, $0 = -0.01(t - 225)^2 + 400 \implies (t - 225)^2 = 40,000$ $\Rightarrow t-225 = \pm \sqrt{40,000} = \pm 200$ \Rightarrow t = 225 ± 200 = 25,425 So, it takes 425 minutes for the drug to be eliminated from the bloodstream. 72. a. We know that the points (70, 20) and (50, 25) lie on this line. Hence, the slope is $m = \frac{25-20}{50-70} = -\frac{1}{4}$. Using point-slope form, the price function is: $p-20 = -\frac{1}{4}(x-70) \implies p(x) = -\frac{1}{4}x + \frac{75}{2}$ **b.** $R(x) = xp(x) = -\frac{1}{4}x^2 + \frac{75}{2}x$ c. The maximum revenue occurs at the vertex of R(x). Completing the square yields $-\frac{1}{4}x^{2} + \frac{75}{2}x = -\frac{1}{4}(x^{2} - 150x)$ $=-\frac{1}{4}(x^2-150x+5,625)+\frac{5,625}{4}$ $=-\frac{1}{4}(x-75)^2+\frac{5,625}{4}$ The vertex is $(75, \frac{5,625}{4})$. So, he needs to wash 75 cars in order to maximize revenue. **d.** To maximize revenue, he should charge $p(x) = -\frac{1}{4}(75) + \frac{75}{2} = \frac{75}{4} = |\$18.75|$. **73.** <u>Step 2 is wrong</u>: Vertex is (-3, -1)<u>Step 4 is wrong</u>: The x-intercepts are (-2,0), (-4,0). So, should graph $y = (x+3)^2 - 1$. **75.** True. $f(x) = a(x-h)^2 + k$, so that 74. Step 3 is wrong: $f(9) = a(9-2)^2 - 3 = 0$ $f(0) = ah^2 + k.$ 49a - 3 = 076. False. Consider $f(x) = -1 - \overline{x^2}$. $a = \frac{3}{40}$ So, $f(x) = \frac{3}{49}(x-2)^2 - 3$. **78.** True. Consider $f(x) = x^2 - 1$. 77. False. The graph would not pass the vertical line test in such case, and hence wouldn't define a function.

79. Completing the square yields $f(x) = ax^2 + bx + c$ $=a\left(x^{2}+\frac{b}{a}x\right)+c$ $= a\left(x^{2} + \frac{b}{a}x + \left(\frac{b}{2a}\right)^{2}\right) + c - a\left(\frac{b}{2a}\right)^{2}$ $= a\left(x + \frac{b}{2a}\right)^{2} + c - \frac{b^{2}}{4a} = a\left(x + \frac{b}{2a}\right)^{2} + \frac{4ac - b^{2}}{4a}$ So, the vertex is $\left(-\frac{b}{2a}, c - \frac{b^2}{4a}\right)$. Observe that $f\left(-\frac{b}{2a}\right) = a \underbrace{\left(-\frac{b}{2a} + \frac{b}{2a}\right)^2}_{a} + c - \frac{b^2}{4a} = c - \frac{b^2}{4a}$. 80. Given that $\overline{f(x) = a(x-h)^2 + k}$, we have: <u>y-intercept</u>: $a(0-h)^2 + k = ah^2 + k$, so that the y-intercept is $(0, ah^2 + k)$. x-intercepts: Solve $a(x-h)^2 + k = 0$. $a(x-h)^2 + k = 0$ $(x-h)^2 = -\frac{k}{2}$ $x-h=\pm\sqrt{-\frac{k}{a}}$ $x = h \pm \sqrt{-\frac{k}{a}}$ So, the *x*-intercepts are $\left(h + \sqrt{-\frac{k}{a}}, 0\right), \left(h - \sqrt{-\frac{k}{a}}, 0\right)$. **81.** a. Let x = width of rectangular pasture, y = length of rectangular pasture. Then, the total amount of fence is described by 2x + 2y = 1000 (so that y = 500 - x**(1)**). The area of the pasture is xy. Substituting in (1) yields $x(500 - x) = -x^2 + 500x$. The maximum area occurs at the y-coordinate of the vertex (since the coefficient of x^2 is negative); in this case this value is $c - \frac{b^2}{4a} = 0 - \frac{500^2}{4(-1)} = 62,500$. So the maximum area is 62,500 sq. ft. **b.** Let x = radius of circular pasture. Then, the total amount of fence is described by $2\pi x = 1000$ (so that $x = \frac{1000}{2\pi} = \frac{500}{\pi}$ (2)). The area of the pasture is πx^2 , which in this case must be (by (2)) $\pi \left(\frac{500}{\pi}\right)^2 = \frac{500^2}{\pi}$. So, the area of the pasture must be approximately 79,577 sq. ft.

82. Let x = number of increases in room rate. Then, the monthly income for the hotel is $I(x) = (90+5x)(600-10x) = -50x^2 + 2100x + 54,000$

Completing the square then yields

$$-50x^{2} + 2100x + 54,000 = -50(x^{2} - 42x) + 54,000$$
$$= -50(x^{2} - 42x + 441) + 54,000 + 22,050$$
$$= -50(x - 21)^{2} + 76,050$$

Since the coefficient of x^2 is negative, the maximum income must be \$76,050, which occurs when there are 21 increases in room rate (i.e., at the vertex). Hence, the room rate that yields the maximum profit is 90+21(5) = \$195.

83. Observe that

$$\frac{1}{x+11} + \frac{1}{x+4} = \frac{25}{144}$$
$$\frac{x+4+x+11}{(x+11)(x+4)} = \frac{25}{144}$$
$$144(2x+15) = 25(x+11)(x+4)$$
$$288x+2160 = 25x^2+375x+1100$$
$$25x^2+87x-1060 = 0$$
$$x = \frac{-87\pm\sqrt{87^2+4(25)(1060)}}{2(25)} = 5, -8.48$$

Since speed cannot be negative, we conclude that x = 5.

84. Let W= original width and L = original length

After reduction by 25%, the new width and length are:

.25W = new width .25L = new length = W (0.25W)(0.25L) = 26 (0.25W)(W)= 36 $0.25 W^2 = 36$ $W^2 = 144$ W = 12Since W = 0.25L then 0.25L = 12 or ¹/₄ L = 12 or L =48. 85.

$$4(x-0)^{2} + 9(y^{2} - 4y) = 0$$

$$4(x-0)^{2} + 9(y^{2} - 4y + 4) = 36$$

$$4(x-0)^{2} + 9(y-2)^{2} = 36$$

$$\frac{(x-0)^{2}}{9} + \frac{(y-2)^{2}}{4} = 1$$
 ellipse

86.

$$x^{2} - 2x - 4y^{2} + 16y = 19$$

$$(x^{2} - 2x + 1) - 4(y^{2} - 4y + 4) = 19 + 1 - 16$$

$$(x - 1)^{2} - 4(y - 2)^{2} = 4$$

$$\frac{(x - 1)^{2}}{4} - (y - 2)^{2} = 1$$
 hyperbola

87.

$$x^{2} + 6x = 20y - 5$$

$$x^{2} + 6x + 9 = 20y - 5 + 9$$

$$(x + 3)^{2} = 20y + 4$$

$$(x + 3)^{2} = 20(y + \frac{1}{5}) \text{ parabola}$$

88.

$$x^{2} - 6x + 4y^{2} + 40y = -105$$

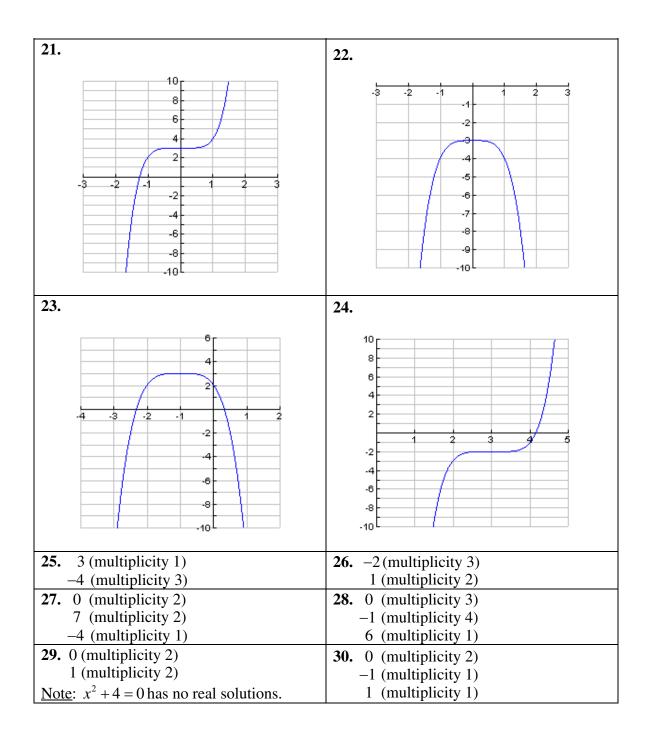
$$(x^{2} - 6x + 9) + 4(y^{2} + 10y + 25) = -105 + 9 + 100$$

$$(x - 3)^{2} + 4(y + 5)^{2} = 4$$

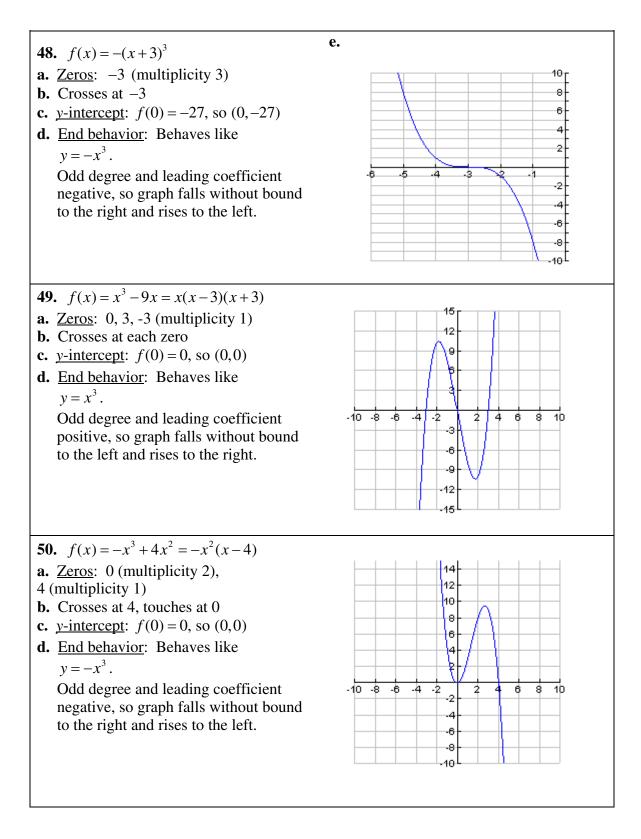
$$\frac{(x - 3)^{2}}{4} + (y + 5)^{2} = 1 \text{ ellipse}$$

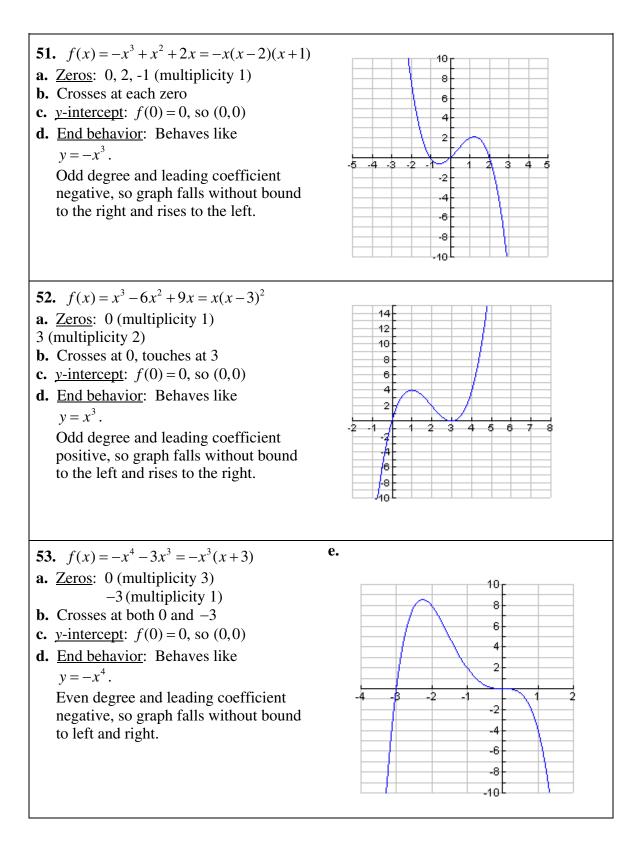
Section 2.2 Solutions	
1. Polynomial with degree 5	2. Polynomial with degree 6
3. Polynomial with degree 7	4. Polynomial with degree 9
5. Not a polynomial (due to the term $x^{\frac{1}{2}}$)	6. Not a polynomial (due to the term $x^{\frac{1}{2}}$)
7. Not a polynomial (due to the term $x^{\frac{1}{3}}$)	8. Not a polynomial (due to the term $\frac{2}{3x}$)
9. Not a polynomial (due to the terms $\frac{1}{x}, \frac{1}{x^2}$)	10. Polynomial with degree 2
11. h linear function	12. g Parabola that opens down
13. b Parabola that opens up	14. f Note that
	$-2x^{3}+4x^{2}-6x=-2x(x^{2}-2x+3)$. Since
	$x^2 - 2x + 3$ is a parabola opening up with vertex (1,2), it has no real roots. So, this polynomial has only 1 <i>x</i> -intercept at which it crosses.
15. e $x^3 - x^2 = x^2(x-1)$ So, there are	16. d Note that
two <i>x</i> -intercepts: the graph is tangent at 0	$2x^{4} - 18x^{2} = 2x^{2}(x^{2} - 9) = 2x^{2}(x - 3)(x + 3)$
and crosses at 1.	There are three x-intercepts $(0, 3, -3)$ and it crosses at each of them.
17. c $-x^4 + 5x^3 = -x^3(x-5)$ So, there	18. a $x^5 - 5x^3 + 4x = x(x^4 - 5x^2 + 4)$
are two <i>x</i> -intercepts (0, 5) and the graph crosses at each of them.	$=x(x^2-4)(x^2-1)$
	= x(x-1)(x+1)(x-2)(x+2)
	So, there are five x-intercepts $(0, 1, 2, -1, $
	-2) and the graph crosses at each of them.
19.	20.

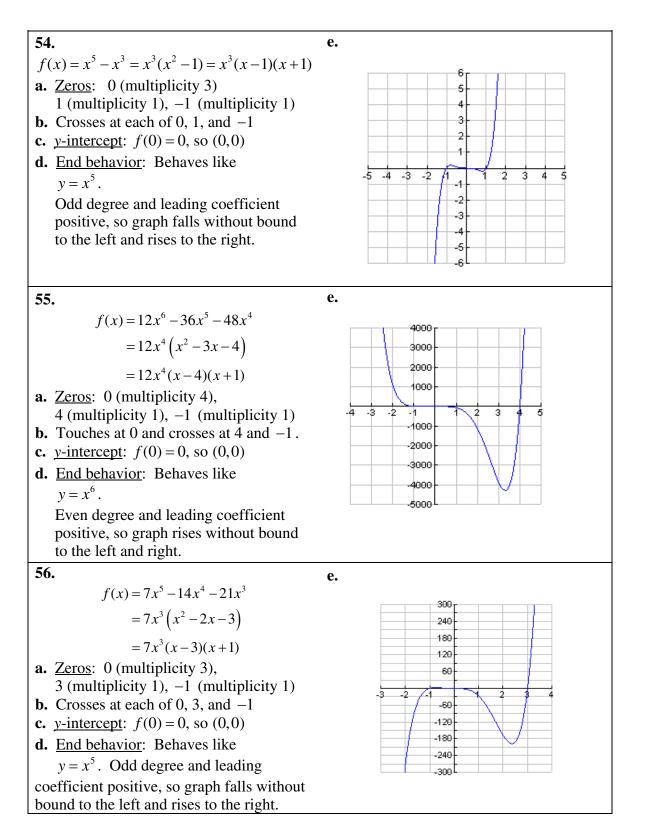
Section 2.2 Solutions ------



31.	32.
$8x^3 + 6x^2 - 27x = x(8x^2 + 6x - 27)$	$2x^4 + 5x^3 - 3x^2 = x^2 \left(2x^2 + 5x - 3\right)$
=x(2x-3)(4x+9)	$=x^{2}(2x-1)(x+3)$
So, the zeros are:	So, the zeros are:
0 (multiplicity 1)	0 (multiplicity 2)
$\frac{3}{2}$ (multiplicity 1)	$\frac{1}{2}$ (multiplicity 1)
$-\frac{9}{4}$ (multiplicity 1)	-3 (multiplicity 1)
33. $P(x) = x(x+3)(x-1)(x-2)$	34. $P(x) = x(x+2)(x-2)$
35. $P(x) = x(x+5)(x+3)(x-2)(x-6)$	36. $P(x) = x(x-1)(x-3)(x-5)(x-10)$
37.	38.
P(x) = (2x+1)(3x-2)(4x-3)	P(x) = x(4x+3)(3x+1)(2x-1)
39.	40.
$P(x) = \left(x - (1 - \sqrt{2})\right) \left(x - (1 + \sqrt{2})\right)$	$P(x) = \left(x - (1 - \sqrt{3})\right) \left(x - (1 + \sqrt{3})\right)$
$=x^{2}-2x-1$	$= x^2 - 2x - 2$
$= x^{2} - 2x - 1$ 41. $P(x) = x^{2}(x+2)^{3}$	$= x^{2} - 2x - 2$ 42. $P(x) = (x+4)^{2}(x-5)^{3}$
43. $P(x) = (x+3)^2(x-7)^5$	44. $P(x) = x(x-10)^3$
45. $P(x) = x^2(x+1)(x+\sqrt{3})^2(x-\sqrt{3})^2$	46. $P(x) = x(x-1)^2(x+\sqrt{5})^2(x-\sqrt{5})^2$
47. $f(x) = (x-2)^3$	е.
a. <u>Zeros</u> : 2 (multiplicity 3)	10 r
b. Crosses at 2	8
c. <u>y-intercept</u> : $f(0) = -8$, so $(0, -8)$	8
d. End behavior: Behaves like	4
$y = x^3$.	2
Odd degree and leading coefficient	
positive, so graph falls without bound	-2 -1 1 2 3 4 5 6
to the left and rises to the right.	-4-
	-6
	-8



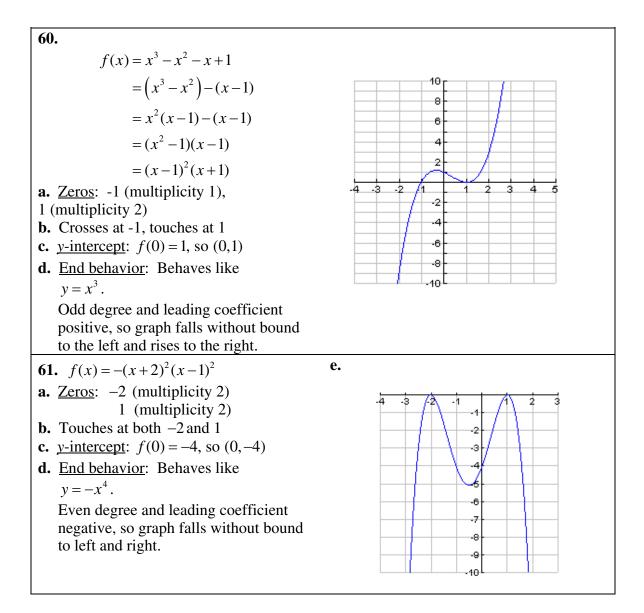


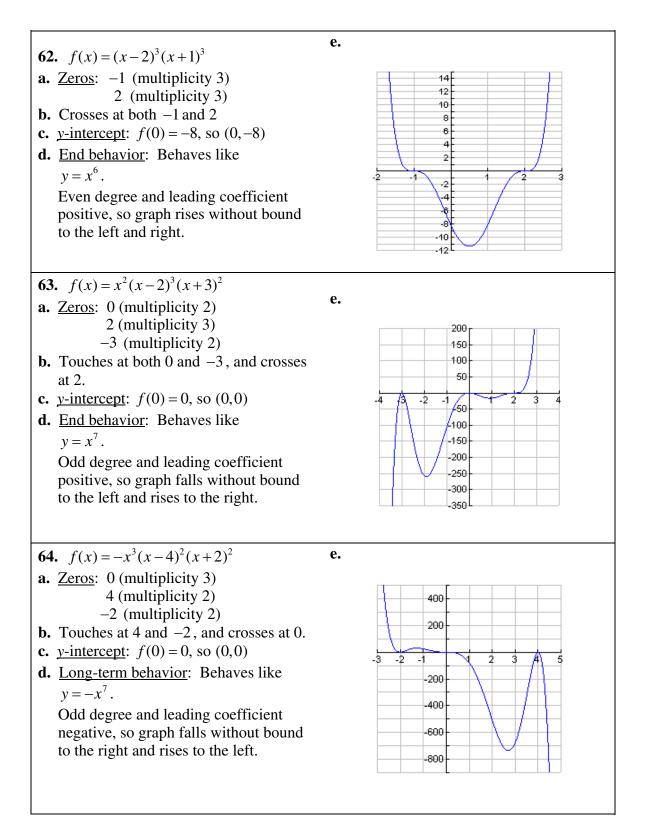


57.

$$f(x) = 2x^{3} - 6x^{4} - 8x^{3}$$

$$= 2x^{3}(x-4)(x+1)$$
a. Zeros: 0 (multiplicity 3),
4(multiplicity 1), -1 (multiplicity 1)
b. Crosses at each zero
c. y-intercept: f(0) = 0, so (0,0)
d. End behavior: Behaves like
 $y = x^{5}$. Odd degree and leading
coefficient positive, so graph falls without
bound to the left and rises to the right.
58.
 $f(x) = -5x^{4} + 10x^{3} - 5x^{2} = -5x^{2}(x-1)^{2}$
a. Zeros: 0 (multiplicity 2)
1 (multiplicity 2)
b. Touches at each zero
c. y-intercept: f(0) = 0, so (0,0)
d. End behavior: Behaves like
 $y = -x^{4}$.
Even degree and leading coefficient
negative, so graph falls without bound
to left and right.
59.
 $f(x) = x^{3} - x^{2} - 4x + 4$
 $= (x^{3} - x^{2}) - 4(x-1)$
 $= x^{2}(x-1) - 4(x-1)$
 $= (x-2)(x+2)(x-1)$
a. Zeros: 1, 2, -2 (multiplicity 1)
b. Crosses at each zero
c. y-intercept: f(0) = 4, so (0,4)
d. End behavior: Behaves like
 $y = x^{3}$.
Odd degree and leading coefficient
negative, so graph falls without bound
to left and right.
59.
 $f(x) = x^{3} - x^{2} - 4x + 4$
 $= (x^{3} - x^{2}) - 4(x-1)$
 $= (x-2)(x+2)(x-1)$
a. Zeros: 1, 2, -2 (multiplicity 1)
b. Crosses at each zero
c. y-intercept: f(0) = 4, so (0,4)
d. End behavior: Behaves like
 $y = x^{3}$.
Odd degree and leading coefficient
positive, so graph falls without bound
to the left and rises to the right.





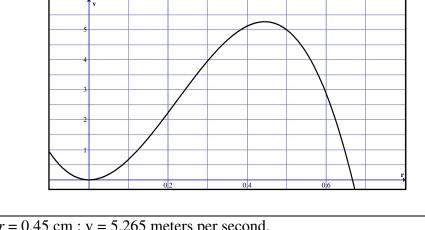
65. a. <u>zeros</u> : -3 (multiplicity 1) -1 (multiplicity 2) 2 (multiplicity 1) b. <u>degree of polynomial</u> : even c. <u>sign of leading coefficient</u> : negative d. <u>y-intercept</u> : (0,6) e. $f(x) = -(x+1)^2(x-2)(x+3)$.	66. a. \underline{zeros} : -2 (multiplicity 1) 2 (multiplicity 2) 0 (multiplicity 1) b. $\underline{degree \ of \ polynomial}$: even c. $\underline{sign \ of \ leading \ coefficient}$: positive d. \underline{y} -intercept: (0,0) e. $f(x) = x(x+2)(x-2)^2$.
67. a. <u>zeros</u> : 0 (multiplicity 2) -2 (multiplicity 2) $\frac{3}{2}$ (multiplicity 1) b. <u>degree of polynomial</u> : odd c. <u>sign of leading coefficient</u> : positive d. <u>y-intercept</u> : (0,0) e. $f(x) = x^2(2x-3)(x+2)^2$.	68. a. <u>zeros</u> : -3 (multiplicity 1) 0 (multiplicity 1) $-\frac{3}{2}$ (multiplicity 1) 1 (multiplicity 2) b. <u>degree of polynomial</u> : odd c. <u>sign of leading coefficient</u> : negative d. <u>y-intercept</u> : (0,0) e. $f(x) = -x(2x+3)(x+3)(x-1)^2$.
69. a. Revenue for the company is increasing when advertising costs are less than \$400,000. Revenue for the company is decreasing when advertising costs are between	

\$400,000. Revenue for the company is decreasing when advertising costs are between \$400,000 and \$600,000.

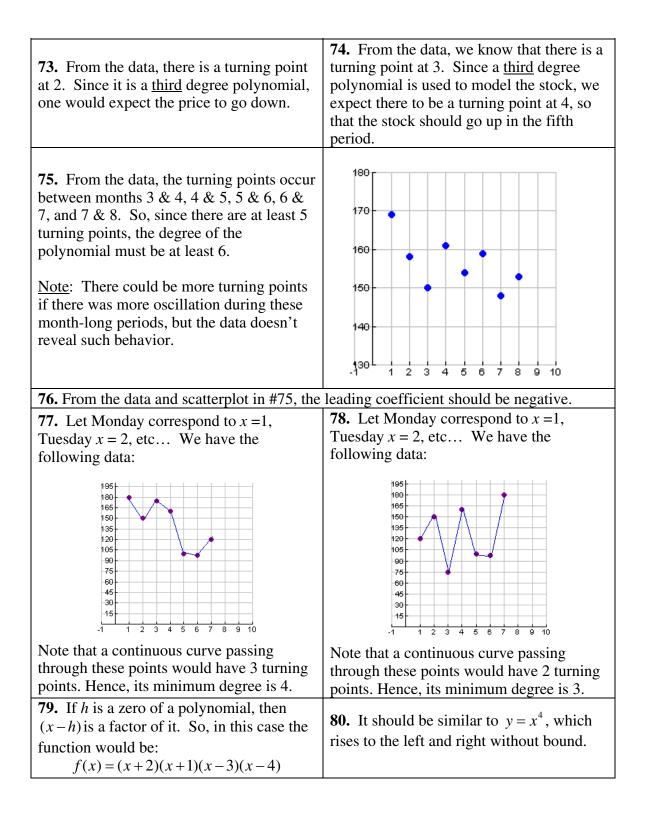
b. The zeros of the revenue function occur when \$0 and \$600,000 are spent on advertising. When either \$0 or \$600,000 is spent on advertising the company's revenue is \$0.

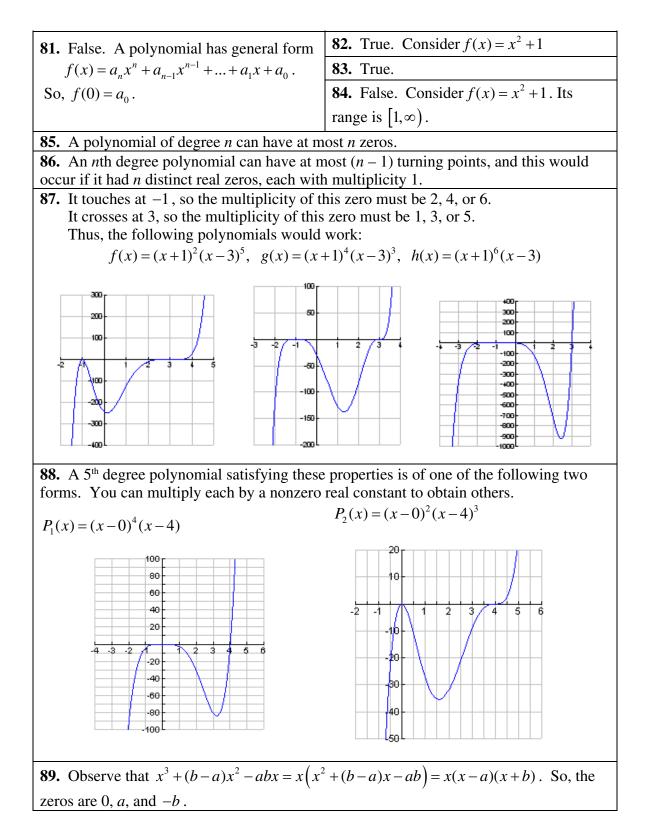
70. The company's maximum revenue is \$32,000,000 when \$400,000 is spent on advertising.

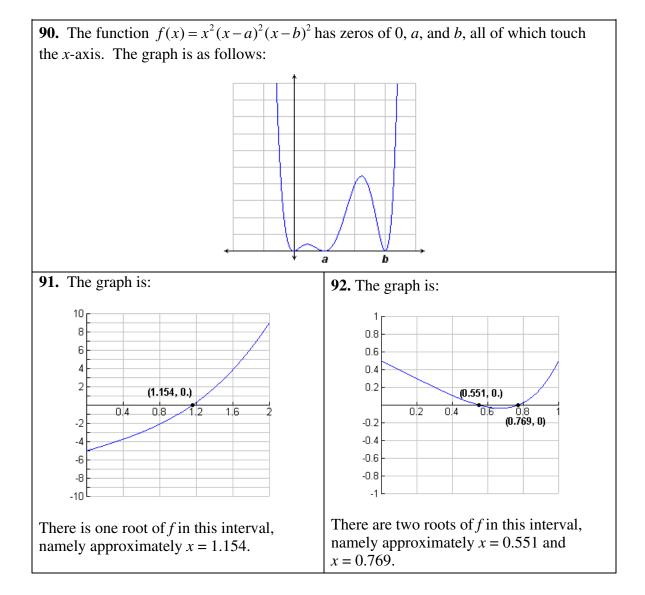
71. The velocity of air in the trachea is increasing when the radius of the trachea is between 0 and 0.45 cm and decreasing when the radius of the trachea is between 0 and 0.65 cm.

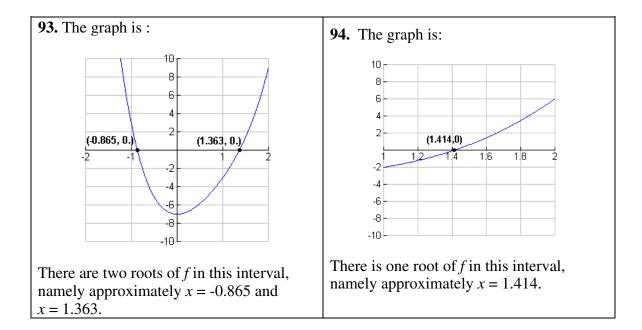


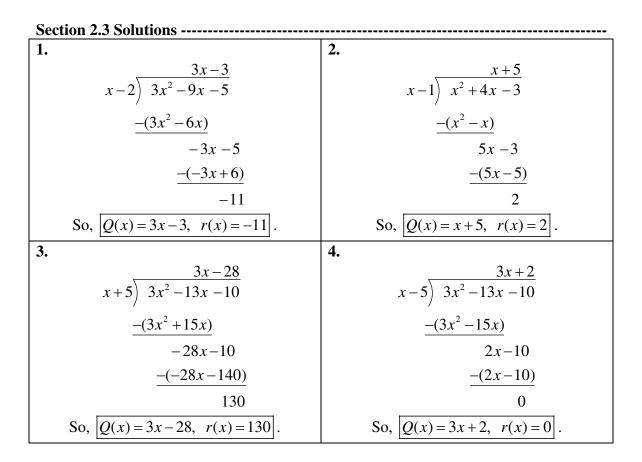
72. r = 0.45 cm; v = 5.265 meters per second.











5.	6.
x-4	x+2
$\frac{x-4}{x+4} \xrightarrow{x+4} x^2 + 0x - 4$	$\frac{x+2}{x-2} x^2+0x-9$
$-(x^2+4x)$	$-(x^2-2x)$
-4x-4	2x-9
-(-4x-16)	$\underline{-(2x-4)}$
12	-5
So, $Q(x) = x - 4$, $r(x) = 12$.	So, $Q(x) = x + 2$, $r(x) = -5$.
7.	8.
$3x+5 \overline{)9x^2+0x-25}$	$\begin{array}{r} 5x-5\\ x+1 \end{array}$
$3x-5)$ $9x^2+0x-25$	$(x+1)$ $(5x^2+0x-3)$
$-(9x^2-15x)$	$-(5x^2+5x)$
15x - 25	-5x-3
-(15x-25)	-(-5x-5)
0	2
So, $Q(x) = 3x + 5$, $r(x) = 0$.	So, $Q(x) = 5x - 5$, $r(x) = 2$.
9.	10.
2x-3	$\frac{4x^2 - 6x + 9}{2x + 3} = 8x^3 + 0x^2 + 0x + 27$
$2x+3\overline{\smash{\big)}\ 4x^2+0x-9}$	$2x+3$) $8x^{3}+0x^{2}+0x+27$
$-(4x^2+6x)$	$\frac{-(8x^3+12x^2)}{2}$
-6x-9	$-12x^{2}+0x$
-(-6x-9)	$-(-12x^2-18x)$
0	$\frac{18x+27}{18x+27}$
So, $Q(x) = 2x - 3$, $r(x) = 0$.	-(18x+27)
	0
	So, $Q(x) = 4x^2 - 6x + 9$, $r(x) = 0$.

11.	12.
$4x^2 + 4x + 1$	
$\frac{4x^2 + 4x + 1}{3x + 2}$ $3x + 2 \overline{) 12x^3 + 20x^2 + 11x + 2}$	$ \begin{array}{r} $
$-(12x^3+8x^2)$	$-(12x^3+6x^2)$
$12x^2 + 11x$	$14x^2 + 11x$
$-(12x^2+8x)$	$\frac{-(14x^2+7x)}{2}$
3x+2	4x + 2
-(3x+2)	-(4x+2)
0	0
So, $Q(x) = 4x^2 + 4x + 1$, $r(x) = 0$.	So, $Q(x) = 6x^2 + 7x + 2$, $r(x) = 0$.
13.	14.
$ \begin{array}{r} 2x^2 - x - \frac{1}{2} \\ 2x + 1 \overline{\smash{\big)}} 4x^3 + 0x^2 - 2x + 7 \end{array} $	$\begin{array}{r} -2x^3 - \frac{4}{3}x^2 - \frac{2}{9}x - \frac{4}{27} \\ -3x + 2 \overline{\right) \ 6x^4 + 0x^3 - 2x^2 + 0x + 5} \end{array}$
$-(4x^3+2x^2)$	$-(6x^4-4x^3)$
$-2x^2-2x$	$\frac{4x^3-2x^2}{4x^2-2x^2}$
$\underline{-(-2x^2-x)}$	$-(4x^3-\frac{8}{3}x^2)$
- <i>x</i> +7	$\frac{\frac{2}{3}x^2}{1-x^2} + 0x$
$\frac{-(-x-\frac{1}{2})}{x}$	$-(\frac{2}{3}x^2-\frac{4}{9}x)$
	$\frac{4}{9}x+5$
So, $Q(x) = 2x^2 - x - \frac{1}{2}, r(x) = \frac{15}{2}$.	$\frac{-(\frac{4}{9}x-\frac{8}{27})}{1}$
	So,
	$\boxed{Q(x) = -2x^3 - \frac{4}{3}x^2 - \frac{2}{9}x - \frac{4}{27}, \ r(x) = \frac{143}{27}}.$
15.	16.
$\frac{4x^2 - 10x - 6}{x - \frac{1}{2} 4x^3 - 12x^2 - x + 3}$	$\frac{12x^2 + 12x + 3}{x + \frac{1}{3} (12x^3 + 16x^2 + 7x + 1)}$
$-(4x^3-2x^2)$	$-(12x^3+4x^2)$
$-10x^2-x$	$12x^2 + 7x$
$-(-10x^2+5x)$	$-(12x^2+4x)$
-6x+3	3x+1
-(-6x+3)	-(3x+1)
0	0
So, $Q(x) = 4x^2 - 10x - 6$, $r(x) = 0$.	So, $Q(x) = 12x^2 + 12x + 3$, $r(x) = 0$.

17.

$$\frac{-2x^{2}-3x-9}{x^{3}-3x^{2}+0x+1)-2x^{5}+3x^{4}+0x^{3}-2x^{2}+0x+0}$$

$$\frac{-(-2x^{5}+6x^{4}+0x^{3}-2x^{2})}{-3x^{4}+0x^{3}+0x^{2}+0x}$$

$$\frac{-(-3x^{4}+9x^{3}+0x^{2}-3x)}{-9x^{3}+0x^{2}+3x+0}$$

$$\frac{-(-9x^{3}+27x^{2}+0x-9)}{-27x^{2}+3x+9}$$
So, $Q(x) = -2x^{2}-3x-9$, $r(x) = -27x^{2}+3x+9$.

18.

$$\frac{-3x^{2} + 0x + \frac{7}{3}}{3x^{4} + 0x^{3} + 0x^{2} - 2x + 1} - 9x^{6} + 0x^{5} + 7x^{4} - 2x^{3} + 0x^{2} + 0x + 5}$$

$$\frac{-(-9x^{6} + 0x^{5} + 0x^{4} + 6x^{3} - 3x^{2})}{7x^{4} - 8x^{3} + 3x^{2} + 0x + 5}$$

$$\frac{-(7x^{4} + 0x^{3} + 0x^{2} - \frac{14}{3}x + \frac{7}{3})}{-8x^{3} + 3x^{2} + \frac{14}{3}x + \frac{8}{3}}$$
So, $\boxed{Q(x) = -3x^{2} + \frac{7}{3}, r(x) = -8x^{3} + 3x^{2} + \frac{14}{3}x + \frac{8}{3}}$
19.
$$x^{2} + 0x - 1 \sqrt{x^{4} + 0x^{3} + 0x^{2} + 0x - 1}$$

$$\frac{-(x^{4} + 0x^{3} - x^{2})}{x^{2} + 0x - 1}$$

$$\frac{-(x^{4} + 0x^{3} - x^{2})}{x^{2} + 0x - 1}$$

$$\frac{-(x^{2} + 0x - 1)}{0}$$
So, $\boxed{Q(x) = x^{2} + 1, r(x) = 0}$.
So, $\boxed{Q(x) = x^{2} + 1, r(x) = 0}$.

21.	22.
$x^2 + x + \frac{1}{6}$	$\frac{x^2 + 0x - 1}{4x^2 + 0x - 9 \sqrt{4x^4 + 0x^3 - 13x^2 + 0x + 9}}$
$6x^{2} + x - 2 \overline{\smash{\big)}} 6x^{4} + 7x^{3} + 0x^{2} - 22x + 40$	$4x^{2}+0x-9$ $4x^{4}+0x^{3}-13x^{2}+0x+9$
$\frac{-(6x^4+x^3-2x^2)}{2}$	$\frac{-(4x^4+0x^3-9x^2)}{2}$
$6x^3 + 2x^2 - 22x$	$-4x^2 + 0x + 9$
$-(6x^3+x^2-2x)$	$-(-4x^2+0x+9)$
$x^2 - 20x + 40$	0
$\frac{-(x^2+\frac{1}{6}x-\frac{1}{3})}{-(x^2+\frac{1}{6}x-\frac{1}{3})}$	So, $Q(x) = x^2 - 1$, $r(x) = 0$.
$-\frac{121}{6}x + \frac{121}{3}$	
So, $Q(x) = x^2 + x + \frac{1}{6}$, $r(x) = -\frac{121}{6}x + \frac{121}{3}$.	
23.	24.
-2 3 7 2	-5 2 7 -15
$\frac{-6 -2}{3 - 1 - 0}$	$\frac{-10 15}{2 -3 0}$
So, $Q(x) = 3x + 1$, $r(x) = 0$.	So, $Q(x) = 2x - 3$, $r(x) = 0$.
25.	26.
<u>-1</u> 7 -3 5	<u>2</u> 4 1 1
-7 10	8 18
7 -10 15	4 9 19
So, $Q(x) = 7x - 10$, $r(x) = 15$.	So, $Q(x) = 4x + 9$, $r(x) = 19$.
27.	28.
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\frac{2}{-1} 0 3 -2 0$	
So, $Q(x) = -x^3 + 3x - 2$, $r(x) = 0$.	So, $Q(x) = x^2 + 4x + 4$, $r(x) = 0$.
29.	30.
	<u>-3</u> 1 0 0 0 9
1 11	$-3 \ 9 \ -27 \ 81$
1 -1 1 -1 2	$1 - 3 \ 9 - 27 \ 90$
So, $Q(x) = x^3 - x^2 + x - 1$, $r(x) = 2$.	So, $Q(x) = x^3 - 3x^2 + 9x - 27$, $r(x) = 90$.

31.	32.
<u>-2</u> 1 0 0 0 -16	3 1 0 0 0 -81
-2 4 -8 16	3 9 27 81
$\overline{1 - 2 - 4 - 8 - 0}$	1 3 9 27 0
So, $Q(x) = x^3 - 2x^2 + 4x - 8$, $r(x) = 0$.	So, $Q(x) = x^3 + 3x^2 + 9x + 27$, $r(x) = 0$.
33.	34.
$\frac{-\frac{1}{2}}{2}$ 2 -5 -1 1	$\frac{-\frac{1}{3}}{3}$ 3 -8 0 1
<u> </u>	
2 -6 2 0	3 -9 3 0
So, $Q(x) = 2x^2 - 6x + 2$, $r(x) = 0$.	So, $Q(x) = 3x^2 - 9x + 3$, $r(x) = 0$.
35.	36.
$\frac{2}{3}$ 2 -3 7 0 -4	$\frac{3}{4}$ 3 1 0 2 -3
$\frac{\frac{4}{3} - \frac{10}{9} - \frac{106}{27} - \frac{212}{81}}{\frac{212}{81}}$	
$2 -\frac{5}{3} -\frac{53}{9} -\frac{106}{27} -\frac{112}{81}$	$3 \frac{13}{4} \frac{39}{16} \frac{245}{64} -\frac{33}{256}$
So,	So,
$Q(x) = 2x^3 - \frac{5}{3}x^2 + \frac{53}{9}x + \frac{106}{27}, r(x) = -\frac{112}{81}.$	$Q(x) = 3x^3 + \frac{13}{4}x^2 + \frac{39}{16}x + \frac{245}{64}, r(x) = -\frac{33}{256}$
37.	38.
-1.5 2 9 -9 -81 -81	-0.8 5 -1 6 8
-3 -9 27 81	-4 4 -8
2 6 -18 -54 0	5 - 5 10 0
So, $Q(x) = 2x^3 + 6x^2 - 18x - 54$, $r(x) = 0$.	So, $Q(x) = 5x^2 - 5x + 10$, $r(x) = 0$.
39.	40.
1 1 0 0 - 8 0 3 0 1	-1 1 4 0 -2 0 0 7
1 1 1 -7 -7 -4 -4	-1 -3 3 -1 1 -1
1 1 1 -7 -7 -4 -4 -3	1 3 -3 1 -1 1 6
So,	So,
$Q(x) = x^{6} + x^{5} + x^{4} - 7x^{3} - 7x^{2} - 4x - 4,$	$Q(x) = x^5 + 3x^4 - 3x^3 + x^2 - x + 1,$
r(x) = -3	r(x) = 6

41.	
$\sqrt{5}$ 1 0 -49 0	-25 0 1225
$\sqrt{5}$ 5 $-44\sqrt{5}$	$-220 - 245\sqrt{5} - 1225$
	$-245 - 245\sqrt{5} = 0$
	$\frac{1}{4\sqrt{5}x^2 - 245x - 245\sqrt{5}}, r(x) = 0$
	$\frac{1}{10000000000000000000000000000000000$
42.	
$\sqrt{3}$ 1 0 -4 0	
$\sqrt{3}$ 3 $-\sqrt{3}$	$3 -3 -12\sqrt{3} -36$
	$-12 - 12\sqrt{3} = 0$
So $Q(x) = x^5 + \sqrt{3}x^4 - x^3 - x^4$	$\sqrt{3}x^2 - 12x - 12\sqrt{3}, r(x) = 0$.
43.	44.
$\begin{array}{c} 2x-7\\ 3x-1 \end{array} 6x^2 - 23x + 7 \end{array}$	$\frac{3x+2}{2x-1) 6x^2+x-2}$
$\frac{-(6x^2-2x)}{2}$	$\frac{-(6x^2-3x)}{2}$
-21x+7	4x - 2
-(-21x+7)	$\underline{-(4x-2)}$
0	0
So, $Q(x) = 2x - 7$, $r(x) = 0$.	So, $Q(x) = 3x + 2$ $r(x) = 0$.
45.	46.
<u>1</u> 1 -1 -9 9	<u>-2</u> 1 2 -6 -12
1 0 -9	-2 0 12
1 0 -9 0	1 0 -6 0
So, $Q(x) = x^2 - 9$, $r(x) = 0$.	So, $Q(x) = x^2 - 6$, $r(x) = 0$.

47.	48.
$\frac{x+6}{x^2+0x-1} x^3+6x^2-2x-5$	$\frac{3x^2 - 3x + 5}{x^3 + x^2 - x + 1)3x^5 + 0x^4 - x^3 + 2x^2 + 0x - 1}$ $-(3x^5 + 3x^4 - 3x^3 + 3x^2)$
$\frac{-(x^3+0x-x)}{2}$	$\frac{-3x^4 + 2x^3 - x^2 + 0x}{-3x^4 + 2x^3 - x^2 + 0x}$
$6x^2 - x - 5$	$-(-3x^4 - 3x^3 + 3x^2 - 3x)$
$\frac{-(6x^2+0x-6)}{2}$	$\frac{(5x^{2} + 5x^{2} + 3x)}{5x^{3} - 4x^{2} + 3x - 1}$
-x+1	$-(5x^{3}+5x^{2}-5x+5)$
So, $Q(x) = x + 6$, $r(x) = -x + 1$.	$\frac{-(3x + 3x - 3x + 3)}{-9x^2 + 8x - 6}$
	-9x + 8x - 6 So,
	$Q(x) = 3x^2 - 3x + 5, r(x) = -9x^2 + 8x - 6$
10	
49. $x^4 - 2x^3 - 4x + 7$	50.
$\frac{x^4 - 2x^3 - 4x + 7}{x^2 + 0x + 1 x^6 - 2x^5 + x^4 - 6x^3 + 7x^2 - 4x + 7}$	$\frac{x^4 - x^3 + x - 1}{x^2 + x + 1}$
$-(x^6+0x^5+x^4)$	$-(x^6 + x^5 + x^4)$
$-2x^5+0x^4-6x^3$	$-x^5 - x^4 + 0x^3$
$-(-2x^5+0x^4-2x^3)$	
$-4x^3 + 7x^2 - 4x$	$\frac{-(-x^5-x^4-x^3)}{(x^2-x^2)^2}$
$-(-4x^3 + 0x^2 - 4x)$	$x^3 + 0x^2 + 0x$
	$\frac{-(x^3+x^2+x)}{x^3+x^2+x}$
$7x^2 + 0x + 7$	$-x^2 - x - 1$
$-(7x^2+0x+7)$	$-(-x^2-x-1)$
0	
So, $Q(x) = x^4 - 2x^3 - 4x + 7$, $r(x) = 0$	So, $Q(x) = x^4 - x^3 + x - 1$, $r(x) = 0$
51.	52.
<u>2</u> 1 0 4 2 0 -1	-5 1 0 -1 3 -10
2 4 16 36 72	-5 25 -120 585
1 2 8 18 36 71	1 -5 24 -117 575
So,	So,
$Q(x) = x^4 + 2x^3 + 8x^2 + 18x + 36,$	$\boxed{Q(x) = x^3 - 5x^2 + 24x - 117, \ r(x) = 575}.$
r(x) = 71 .	

53.	54.
$\frac{x^{2} + 0x + 1}{x^{2} + 0x - 1 x^{4} + 0x^{3} + 0x^{2} + 0x - 25}$	$x^{2} + 0x - 2 \overline{\smash{\big)} x^{3} + 0x^{2} + 0x - 8}$
$\frac{-(x^4+0x^3-x^2)}{2}$	$-(x^3+0x^2-2x)$
$x^{2} + 0x - 25$	2x - 8
$-(x^2+0x-1)$	So, $Q(x) = x$, $r(x) = 2x - 8$.
-24	
So, $Q(x) = x^2 + 1$, $r(x) = -24$.	
55.	56.
1 1 0 0 0 0 0 -1	3 1 0 0 0 0 0 -27
	3 9 27 81 243 729
1 1 1 1 1 1 1 0	1 3 9 27 81 243 702
So,	So,
$Q(x) = x^{6} + x^{5} + x^{4} + x^{3} + x^{2} + x + 1,$ r(x) = 0	$Q(x) = x^5 + 3x^4 + 9x^3 + 27x^2 + 81x + 243,$ r(x) = 702

57. Area = length \times width. So, solving for width, we see that width = Area \div length. So, we have:

$$3x^{2} + 2x + 1$$

$$2x^{2} + 0x - 1)\overline{6x^{4} + 4x^{3} - x^{2} - 2x - 1}$$

$$-(6x^{4} + 0x^{3} - 3x^{2})$$

$$4x^{3} + 2x^{2} - 2x$$

$$-(4x^{3} + 0x^{2} - 2x)$$

$$2x^{2} + 0x - 1$$

$$-(2x^{2} + 0x - 1)$$

$$0$$
Thus, the width (in terms of x) is $3x^{2} + 2x + 1$ feet].

58. Volume = (Area of base) \times height. So, solving for height, we see that height = Volume \div (Area of base). So, we have:

$$\begin{array}{r} 5x^{4} + 4x^{3} - x^{2} - 2x - 1 \overline{\smash{\big)}} 18x^{5} + 18x^{4} + x^{3} - 7x^{2} - 5x - 1} \\ \underline{-(18x^{5} + 12x^{4} - 3x^{3} - 6x^{2} - 3x)} \\ 6x^{4} + 4x^{3} - x^{2} - 2x - 1} \\ \underline{-(6x^{4} + 4x^{3} - x^{2} - 2x - 1)} \\ 0\end{array}$$

So, the height (in terms of *x*) is 3x+1 feet.

59. Distance = Rate × Time. So, solving for Time, we have: Time = Distance ÷ Rate. So, we calculate $(x^3 + 60x^2 + x + 60) \div (x + 60)$ using synthetic division:

So, the time is $x^2 + 1$ hours.

60. Distance = Rate × Time. So, solving for Rate, we have: Rate = Distance ÷ Time. So, we calculate $(-x^2 - 5x + 50) \div (5 - x)$ using long division:

$$\frac{x+10}{-x+5) - x^2 - 5x + 50} \\
\frac{-(-x^2 + 5x)}{-10x + 50} \\
\frac{-(-10x + 50)}{0}$$

So, the rate is x + 10 yards per second62. The zero of the divisor is used in
synthetic division. So, 2 should replace
-2 as the divisor.63. Forgot the "0" placeholder.64. Cannot use synthetic division with a
quadratic divisor. Use long division
instead.65. True.66. False. For instance,
 $(x^3 - x^2 + x - 1) \div (x - 1) = x^2 + 1.$

67. False. Only use when the divisor has degree 1.	68. True.
69. False. For example, $\frac{x+2}{x+1} \neq 1$.	70. True.
71. $\begin{array}{c c} \underline{-b} & 1 & 2b-a & b^2-2ab & -ab^2 \\ & \underline{-b} & -b^2+ab & ab^2 \\ \hline 1 & b-a & -ab & 0 \\ \end{array}$ Since the remainder is 0 upon using synthetic division, YES, $(x+b)$ is a factor of $x^3 + (2b-a)x^2 + (b^2-2ab)x - ab^2$.	72. <u>-b</u> 1 0 $b^2 - a^2$ 0 $-a^2b^2$ <u>$-b$ b^2 $-2b^3 + a^2b$ $2b^4 - a^2b^2$</u> <u>$1 - b$ $2b^2 - a^2 - 2b^3 + a^2b$ $2b^4 - 2a^2b^2$</u> Since the remainder is not 0 upon using synthetic division, NO, $(x + b)$ is not a factor of the given polynomial, <u>unless</u> b = 0, in which case the above simplifies to saying $x - 0$ is a factor of $x^4 - a^2x^2$.
73. $ x^{n} - 1 \overline{\smash{\big)} x^{3n} + x^{2n} - x^{n} - 1} \\ \underline{-(x^{3n} - x^{2n})} \\ 2x^{2n} - x^{n} \\ \underline{-(2x^{2n} - 2x^{n})} \\ x^{n} - 1 \\ \underline{-(x^{n} - 1)} \\ 0 $ So, $\overline{Q(x) = x^{2n} + 2x^{n} + 1, r(x) = 0}$	74. First, we rewrite the polynomial in a more familiar form using the substitution $y = x^n$. Doing so yields $x^{3n} + 5x^{2n} + 8x^n + 4 = y^3 + 5y^2 + 8y + 4$. Now, apply synthetic division: <u>-1 </u> 1 5 8 4 <u>$-1 - 4 - 4$</u> 1 4 4 0 Thus, $y^3 + 5y^2 + 8y + 4 = (y+1)(y^2 + 4y + 4)$ $= (y+1)(y+2)^2$. Going back to the original polynomial, this says: $x^{3n} + 5x^{2n} + 8x^n + 4 = (x^n + 1)(x^n + 2)^2$.
75. Using synthetic division gives us: $ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	76. Using synthetic division gives us: <u>3</u> 5 2 -3 0 <u>15 51 144</u> <u>5 17 48 144</u>
So, $\frac{2x^2 - x}{x + 2} = (2x - 5) + \frac{10}{x + 2}$.	So, $\frac{5x^3 + 2x^2 - 3x}{x - 3} = \left(5x^2 + 17x + 48\right) + \frac{144}{x - 3}$

77.

$$\frac{2x^{2}-2x+3}{x^{2}+x+1)2x^{4}+0x^{3}+3x^{2}+0x+6} - \frac{-(2x^{4}+2x^{3}+2x^{2})}{-2x^{3}+x^{2}+0x} - \frac{-(2x^{3}-2x^{2}-2x)}{3x^{2}+2x+6} - \frac{-(3x^{2}+3x+3)}{-(-2x^{3}+x^{2}+3x+3)} - \frac{-(3x^{2}+3x+3)}{-x+3} - \frac{-(3x^{2}+3x+3)}{-x+3} - \frac{-(3x^{2}+3x+3)}{-x+3} - \frac{-(3x^{3}-3x^{2}-14x+30)}{-x+3} - \frac{-(3x^{5}+3x^{4}+15x^{3})}{-3x^{4}-17x^{3}+x^{2}} - \frac{-(-3x^{4}-3x^{3}+15x^{2})}{-14x^{3}+16x^{2}+x} - \frac{-(-14x^{3}-14x^{2}-70x)}{30x^{2}+71x-6} - \frac{-(30x^{2}+30x+150)}{-(30x^{2}+30x+150)} - \frac{-(30x^{2}+30x+150)}{-41x-156}$$

So,
$$\frac{3x^5 - 2x^3 + x^2 + x - 6}{x^2 + x + 5} = (3x^3 - 3x^2 - 14x + 30) + \frac{41x - 156}{x^2 + x + 5}$$

Section 2.4 Solutions		
1.	2.	
<u>1</u> 1 0 -13 12	<u>3</u> 1 3 -10 -24	
1 1 -12	3 18 24	
1 1 -12 0	1 6 8 0	
So,	So,	
$P(x) = (x-1)(x^2 + x - 12)$	$P(x) = (x-3)(x^2+6x+8)$	
=(x-1)(x+4)(x-3)	=(x-3)(x+4)(x+2)	
The zeros are 1, 3 and -4 .	The zeros are 3, -2 and -4 .	
3.	4.	
$\frac{1}{2}$ 2 1 -13 6	$-\frac{1}{3}$ 3 -14 7 4	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-1 5 -4	
2 2 -12 0	3 -15 12 0	
So,	So,	
$P(x) = (x - \frac{1}{2})(2x^2 + 2x - 12)$	$P(x) = (x + \frac{1}{3})(3x^2 - 15x + 12)$	
$=2(x-\frac{1}{2})(x^2+x-6)$	$=3(x+\frac{1}{3})(x^2-5x+4)$	
$= 2(x - \frac{1}{2})(x + 3)(x - 2)$	$= 3(x + \frac{1}{3})(x - 4)(x - 1)$	
=(2x-1)(x+3)(x-2)	= (3x+1)(x-4)(x-1)	
The zeros are $\frac{1}{2}$, -3 and 2.	The zeros are 1, 4 and $-\frac{1}{3}$.	
5. Since -3 and 5 are both zeros, we know that $(x+3)$ and $(x-5)$ are factors of $P(x)$		
and hence, must divide $P(x)$ evenly. (<u>Note</u> : $(x+3)(x-5) = x^2 - 2x - 15$.)		
$x^{2} - 2x - 15 \overline{\smash{\big)} x^{4} - 2x^{3} - 11x^{2} - 8x - 60}$		
$-(x^4-2x^3-15x^2)$		
$4x^2-8x-60$		
$-(4x^2-8x-60)$		
0		
So, $P(x) = (x^2 + 4)(x^2 - 2x - 15) = \boxed{(x^2 + 4)(x - 5)(x + 3)}$. The real zeros are 5 and -3.		

6. Since -1 and 2 are both zeros, we know that (x+1) and (x-2) are factors of P(x)and hence, must divide P(x) evenly. (Note: $(x+1)(x-2) = x^2 - x - 2$.) $\frac{x^2+9}{x^2-x-2)x^4-x^3+7x^2-9x-18}$ $\frac{-(x^4 - x^3 - 2x^2)}{9x^2 - 9x - 18}$ $\frac{-(9x^2-9x-18)}{0}$ So, $P(x) = (x^2 + 9)(x^2 - x - 2) = (x^2 + 9)(x - 2)(x + 1)$. The real zeros are 2 and -1. 7. Since -3 and 1 are both zeros, we know that (x+3) and (x-1) are factors of P(x)and hence, must divide P(x) evenly. (Note: $(x+3)(x-1) = x^2 + 2x - 3$.) $\frac{x^2 - 2x + 2}{x^2 + 2x - 3 x^4 + 0x^3 - 5x^2 + 10x - 6}$ $\frac{-(x^4+2x^3-3x^2)}{-2x^3-2x^2+10x}$ $-(-2x^3-4x^2+6x)$ $2x^2 + 4x - 6$ $\frac{-(2x^2+4x-6)}{0}$ So, $P(x) = (x^2 + 2x - 3)(x^2 - 2x + 2) = (x - 1)(x + 3)(x^2 - 2x + 2)$. The real zeros are 1 and -3. 8. Since -2 and 4 are both zeros, we know that (x+2) and (x-4) are factors of P(x)and hence, must divide P(x) evenly. (Note: $(x+2)(x-4) = x^2 - 2x - 8$.) $\frac{x^2 - 2x + 5}{x^2 - 2x - 8 x^4 - 4x^3 + x^2 + 6x - 40}$ $\frac{-(x^4 - 2x^3 - 8x^2)}{-2x^3 + 9x^2 + 6x}$ $-(-2x^3+4x^2+16x)$ $5x^2 - 10x - 40$ $\frac{-(5x^2-10x-40)}{2}$ So, $P(x) = (x^2 - 2x + 5)(x^2 - 2x - 8) = (x^2 - 2x + 5)(x - 4)(x + 2)$. The real zeros are

4 and -2.

9.	10.	
	1 1 4 -2 -12 9	
-2 -8 -10 -4	1 5 3 -9	
$-2 $ $\overline{1 4 5 2 0}$	1 1 5 3 -9 0	
	—	
<u> </u>		
1 2 1 0	1 6 9 0	
So, $P(x) = (x + 2)^2 (x^2 + 2) + 1 + (x + 2)^2 (x + 1)^2$	So, $P(x) = (1)^2 (x^2 + (x + 0)) + (1)^2 (x + 2)^2$	
$P(x) = (x+2)^{2}(x^{2}+2x+1) = (x+2)^{2}(x+1)^{2}$	$P(x) = (x-1)^2 (x^2 + 6x + 9) = (x-1)^2 (x+3)^2$	
The zeros are -2 and -1 , both with	The zeros are -3 and 1, both with	
multiplicity 2.	multiplicity 2.	
11.	12.	
Factors of 4: $\pm 1, \pm 2, \pm 4$	Factors of 4: $\pm 1, \pm 2, \pm 4$	
Factors of 1: ± 1	Factors of $-1: \pm 1$	
Possible rational zeros: $\pm 1, \pm 2, \pm 4$	Possible rational zeros: $\pm 1, \pm 2, \pm 4$	
13.	14.	
Factors of 12: $\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 12$	Factors of 9: $\pm 1, \pm 3, \pm 9$	
Factors of 1: ±1 Possible rational zeros:	Factors of 1: ± 1 Possible rational zeros: ± 1 ± 2 ± 0	
$\begin{array}{c} \pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 12 \end{array}$	Possible rational zeros: $\pm 1, \pm 3, \pm 9$	
15.	16.	
Factors of 8: $\pm 1, \pm 2, \pm 4, \pm 8$	Factors of $-10: \pm 1, \pm 2, \pm 5, \pm 10$	
Factors of 2: $\pm 1, \pm 2$	Factors of 3: $\pm 1, \pm 3$	
Possible rational zeros:	Possible rational zeros:	
$\pm \frac{1}{2}, \pm 1, \pm 2, \pm 4, \pm 8$	$\pm 1, \pm 2, \pm 5, \pm 10, \pm \frac{1}{3}, \pm \frac{2}{3}, \pm \frac{5}{3}, \pm \frac{10}{3}$	
17.	18.	
Factors of -20 :	Factors of $-21: \pm 1, \pm 3, \pm 7, \pm 21$	
$\pm 1, \pm 2, \pm 4, \pm 5, \pm 10, \pm 20$	Factors of 4: $\pm 1, \pm 2, \pm 4$	
Factors of 5: $\pm 1, \pm 5$	Possible rational zeros:	
Possible rational zeros:	$\pm 1, \pm 3, \pm 7, \pm 21, \pm \frac{1}{2}, \pm \frac{1}{4}, \pm \frac{3}{2},$	
$\pm 1, \pm 2, \pm 4, \pm 5, \pm 10, \pm 20, \pm \frac{1}{5}, \pm \frac{2}{5}, \pm \frac{4}{5}$	$\pm \frac{7}{2}, \pm \frac{21}{2}, \pm \frac{3}{4}, \pm \frac{7}{4}, \pm \frac{21}{4}$	
19.		
Factors of 8: $\pm 1, \pm 2, \pm 4, \pm 8$		
Factors of 1: ±1		
Possible rational zeros: $\pm 1, \pm 2, \pm 4, \pm 8$		
Testing: $P(1) = P(-1) = P(2) = P(-4) = 0$		

20.	
Factors of 3: $\pm 1, \pm 3$	
Factors of 1: ± 1	
Possible rational zeros: $\pm 1, \pm 3$	
Testing: $P(1) = P(-1) = P(-3) = 0$	
21.	
Factors of $-3: \pm 1, \pm 3$	
Factors of 2: $\pm 1, \pm 2$	
Possible rational zeros: $\pm 1, \pm 3, \pm \frac{1}{2}, \pm \frac{3}{2}$	
Testing: $P(1) = P(3) = P(\frac{1}{2}) = 0$	
22. Factors of $-8: \pm 1, \pm 2, \pm 4, \pm 8$ Factors of 3: $\pm 1, \pm 3$	
Possible rational zeros: $\pm 1, \pm 2, \pm 4, \pm 8, \pm$	$\frac{1}{2}, \pm \frac{2}{2}, \pm \frac{4}{2}, \pm \frac{8}{2}$
Testing: $P(-2) = P(4) = P(-\frac{1}{3}) = 0$	3 ' 3 ' 3 ' 3
23. Number of sign variations for $P(x)$: 1 P(-x) = P(x), so Number of sign variations for $P(-x)$: 1 Since $P(x)$ is degree 4, there are 4 zeros, the real ones of which are classified to the right:	Positive Real ZerosNegative Real Zeros11
24. Number of sign variations for $P(x)$: 0 P(-x) = P(x), so Number of sign variations for $P(-x)$: 0 Since $P(x)$ is degree 4, there are 4 zeros, the real ones of which are classified to the right:	Positive Real ZerosNegative Real Zeros00

Number of sign variations for P(x): 1

 $P(-x) = (-x)^5 - 1 = -x^5 - 1$, so Number of sign variations for P(-x): 0 Since P(x) is degree 5, there are 5 zeros, the real ones of which are classified to the right:

26.

Number of sign variations for P(x): 0

 $P(-x) = -x^5 + 1$, so

Number of sign variations for P(-x): 1 Since P(x) is degree 5, there are 5 zeros, the real ones of which are classified to the right:

27.

Number of sign variations for P(x): 2

 $P(-x) = -x^5 + 3x^3 + x + 2$, so

Number of sign variations for P(-x): 1 Since P(x) is degree 5, there are 5 zeros, the real ones of which are classified to the right:

28.

Number of sign variations for P(x): 1

P(-x) = P(x), so

Number of sign variations for P(-x): 1 Since P(x) is degree 4, there are 4 zeros, the real ones of which are classified to the right:

Positive	Negative
Real Zeros	Real Zeros
1	0

Positive	Negative
Real Zeros	Real Zeros
Ο	1

Positive Real Zeros	Negative Real Zeros
2	1
0	1

Positive Deal Zerra	Negative
Real Zeros	Real Zeros
1	1

29. Number of sign variations for $P(x)$: 1 $P(-x) = -9x^7 - 2x^5 + x^3 + x$, so Number of sign variations for $P(-x)$: 1 Since $P(x)$ is degree 7, there are 7 zeros. But, 0 is also a zero. So, we classify the remaining real zeros to the right:	Positive Real Zeros 1	Negative Real Zeros 1
30. Number of sign variations for $P(x)$: 3 $P(-x) = -16x^7 - 3x^4 - 2x - 1$, so Number of sign variations for $P(-x)$: 0 Since $P(x)$ is degree 7, there are 7 zeros, the real ones of which are classified to the right:	Positive Real Zeros 3 1	Negative Real Zeros 0 0
31. Number of sign variations for $P(x)$: 2 P(-x) = P(x), so Number of sign variations for $P(-x)$: 2 Since $P(x)$ is degree 6, there are 6 zeros, the real ones of which are classified to the right:	Positive Real Zeros20200	Negative Real Zeros 2 0 0
32. Number of sign variations for $P(x)$: 1 $P(-x) = -7x^6 - 5x^4 - x^2 - 2x + 1$, so Number of sign variations for $P(-x)$: 1 Since $P(x)$ is degree 6, there are 6 zeros, the real ones of which are classified to the right:	Positive Real Zeros	Negative Real Zeros 1
33. Number of sign variations for $P(x)$: 4 $P(-x) = -3x^4 - 2x^3 - 4x^2 - x - 11$, so Number of sign variations for $P(-x)$: 0 Since $P(x)$ is degree 4, there are 4 zeros, the real ones of which are classified to the right.	Positive Real Zeros 4 2 0	Negative Real Zeros 0 0 0

right:

34.
Number of sign variations for $P(x)$: 2
$P(-x) = 2x^4 + 3x^3 + 7x^2 - 3x + 2$, so
Number of sign variations for $P(-x): 2$
Since $P(x)$ is degree 4, there are 4 zeros,
the real ones of which classified to the
right:

a. Number of sign variations for P(x): 0

 $P(-x) = -x^3 + 6x^2 - 11x + 6$, so

Number of sign variations for P(-x): 3 Since P(x) is degree 3, there are zeros, the real ones of which are classified as:

Positive Real Zeros	Negative Real Zeros
0	3
0	1

36.

a. Number of sign variations for P(x): 3

 $P(-x) = -x^3 - 6x^2 - 11x - 6$, so

Number of sign variations for P(-x): 0Since P(x) is degree 3, there are 3 zeros, the real ones of which are classified as:

Positive Real Zeros	Negative Real Zeros
3	0
1	0

Positive Real Zeros	Negative Real Zeros
2	2
2	0
0	2
0	0

b. Factors of 6: ±1, ±2, ±3, ±6
Factors of 1: ±1
Possible rational zeros: ±1, ±2, ±3, ±6

c. Note that P(-1) = P(-2) = P(-3) = 0. So, the rational zeros are -1, -2, -3. These are the only zeros since *P* has degree 3.

d. P(x) = (x+1)(x+2)(x+3)

b. Factors of -6: ±1, ±2, ±3, ±6
Factors of 1: ±1
Possible rational zeros: ±1, ±2, ±3, ±6

c. Note that P(1) = P(2) = P(3) = 0. So, the rational zeros are 1,2,3. These are the only zeros since *P* has degree 3.

d.
$$P(x) = (x-1)(x-2)(x-3)$$

a. Number of sign variations for P(x): 2 $P(-x) = -x^3 - 7x^2 + x + 7$, so Number of sign variations for P(-x): 1

Since P(x) is degree 3, there are 3 zeros, the real ones of which are classified as:

Positive Real Zeros	Negative Real Zeros
2	1
0	1

38.

a. Number of sign variations for P(x): 2 $P(-x) = -x^3 - 5x^2 + 4x + 20$, so Number of sign variations for P(-x): 1 Since P(x) is degree 3, there are 3 zeros,

the real ones of which are classified as:

Positive Real Zeros	Negative Real Zeros
2	1
0	1

39.

a. Number of sign variations for P(x): 1

 $P(-x) = x^4 - 6x^3 + 3x^2 + 10x$, so

Number of sign variations for P(-x): 2 Since P(x) is degree 4, there are 4 zeros, one of which is 0. We classify the remaining real zeros below:

Positive Real Zeros	Negative Real Zeros
1	2
1	0

b. Factors of 7: ±1, ±7
Factors of 1: ±1
Possible rational zeros: ±1, ±7

c. Note that P(-1) = P(1) = P(7) = 0. So, the rational zeros are -1, 1, 7. These are the only zeros since *P* has degree 3.

d.
$$P(x) = (x+1)(x-1)(x-7)$$

b. Factors of 20: $\pm 1, \pm 2, \pm 4, \pm 5, \pm 10, \pm 20$ Factors of 1: ± 1 Possible rational zeros: $\pm 1, \pm 2, \pm 4, \pm 5, \pm 10, \pm 20$

c. Note that P(-2) = P(2) = P(5) = 0. So, the rational zeros are -2, 2, 5. These are the only zeros since *P* has degree 3.

d.
$$P(x) = (x+2)(x-2)(x-5)$$

b. $P(x) = x(x^3 + 6x^2 + 3x - 10)$ We list the possible nonzero rational zeros below: Factors of $-10: \pm 1, \pm 2, \pm 5, \pm 10$ Factors of 1: ± 1 Possible rational zeros: $\pm 1, \pm 2, \pm 5, \pm 10$ **c.** Note that P(0) = P(1) = P(-2) = P(-5) = 0. So, the rational zeros are 0, 1, -2, -5. These are the only zeros since *P* has degree 4. **d.** P(x) = x(x-1)(x+2)(x+5)

a. Number of sign variations for P(x): 2

 $P(-x) = x^4 + x^3 - 14x^2 - 24x$, so Number of sign variations for P(-x): 1 Since P(x) is degree 4, there are 4 zeros, one of which is 0. We classify the remaining real zeros below:

Positive Real Zeros	Negative Real Zeros
2	1
0	1

41.

a. Number of sign variations for P(x): 4 $P(-x) = x^4 + 7x^3 + 27x^2 + 47x + 26$, so Number of sign variations for P(-x): 0 Since P(x) is degree 4, there are 4 zeros, the real ones of which are classified as:

Positive Real Zeros	Negative Real Zeros
4	0
2	0
0	0

b. Factors of 26: $\pm 1, \pm 2, \pm 13, \pm 26$ Factors of 1: ± 1 Possible rational zeros: $\pm 1, \pm 2, \pm 13, \pm 26$ **b.** $P(x) = x(x^3 - x^2 - 14x + 24)$ We list the possible nonzero rational zeros below: Factors of 24: $\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 8, \pm 12, \pm 24$ Factors of 1: ± 1 Possible rational zeros: $\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 8, \pm 12, \pm 24$ **c.** Note that P(0) = P(-4) = P(2) = P(3) = 0. So, the rational zeros are 0, -4, 2, 3. These are the only zeros since *P* has degree 4. **d.** P(x) = x(x+4)(x-2)(x-3)

c. Note that P(1) = P(2) = 0. After testing the others, it is found that the only rational zeros are 1, 2. So, we at least know that $(x-1)(x-2) = x^2 - 3x + 2$ divides P(x) evenly. To find the remaining zeros, we long divide:

$$\frac{x^{2}-4x+13}{x^{2}-3x+2)x^{4}-7x^{3}+27x^{2}-47x+26} \\
\frac{-(x^{4}-3x^{3}+2x^{2})}{-4x^{3}+25x^{2}-47x} \\
\frac{-(-4x^{3}+12x^{2}-8x)}{13x^{2}-39x+26} \\
\frac{-(13x^{2}-39x+26)}{0} \\
\frac{-(13x^{2}-39x+26)}{0$$

Since $x^2 - 4x + 13$ is irreducible, the real zeros are 1 and 2.

d. $P(x) = (x-1)(x-2)(x^2-4x+13)$

a. Number of sign variations for P(x): 3 $P(-x) = x^4 + 5x^3 + 5x^2 - 25x - 26$, so Number of sign variations for P(-x): 1 Since P(x) is degree 4, there are 4 zeros, the real ones of which are classified as:

Positive Real Zeros	Negative Real Zeros
3	1
1	1

b. Factors of $-26: \pm 1, \pm 2, \pm 13, \pm 26$ Factors of 1: ± 1 Possible rational zeros: $\pm 1, \pm 2, \pm 13, \pm 26$

43.

a. Number of sign variations for P(x): 2 $P(-x) = -10x^3 - 7x^2 + 4x + 1$, so Number of sign variations for P(-x): 1 Since P(x) is degree 3, there are 3 zeros, the real ones of which are classified as:

Positive	Negative
Real Zeros	Real Zeros
2	1
0	1

c. Note that P(1) = P(-2) = 0. After testing the others, it is found that the only rational zeros are 1, -2. So, we at least know that $(x-1)(x+2) = x^2 + x - 2$ divides P(x) evenly. To find the remaining zeros, we long divide:

$$\frac{x^{2}-6x+13}{x^{2}+x-2)x^{4}-5x^{3}+5x^{2}+25x-26} \\
\frac{-(x^{4}+x^{3}-2x^{2})}{-6x^{3}+7x^{2}+25x} \\
\frac{-(-6x^{3}-6x^{2}+12x)}{13x^{2}+13x-26} \\
\frac{-(13x^{2}+13x-26)}{0}$$

Since $x^2 - 6x + 13$ is irreducible, the real zeros are 1 and -2. **d.** $P(x) = (x-1)(x+2)(x^2 - 6x + 13)$

b. Factors of 1: ± 1 Factors of 10: $\pm 1, \pm 2, \pm 5, \pm 10$ Possible rational zeros: $\pm 1, \pm \frac{1}{2}, \pm \frac{1}{5}, \pm \frac{1}{10}$ **c.** Note that $P(1) = P(-\frac{1}{2}) = P(\frac{1}{5}) = 0$. So, the rational zeros are $1, -\frac{1}{2}, \frac{1}{5}$. These are the only zeros since *P* has degree 3. **d.** P(x) = (x-1)(2x+1)(5x-1)

44. a. Number of sign variations for $P(x)$: 3 $P(-x) = -12x^3 - 13x^2 - 2x - 1$, so Number of sign variations for $P(-x)$: 0 Since $P(x)$ is degree 3, there are 3 zeros, the real ones of which are classified as: $\frac{Positive \ Negative}{Real \ Zeros} \ \frac{3}{2} \ 0 \ 1 \ 0$ b. Factors of -1: ± 1 Factors of 12: $\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 12$ Possible rational zeros: $\pm 1, \pm \frac{1}{2}, \pm \frac{1}{3}, \pm \frac{1}{4}, \pm \frac{1}{6}, \pm \frac{1}{12}$	c. After testing, we conclude that the only rational zero is 1. To determine the other zeros, we use synthetic division: $1 12 -13 2 -1 \frac{12 -1 1}{12 -1 1 0}$ Since $12x^2 - x + 1$ is irreducible, there are no other rational zeros. d. $P(x) = (x-1)(12x^2 - x + 1)$
45. a. Number of sign variations for $P(x)$: 1 $P(-x) = -6x^3 + 17x^2 - x - 10$, so Number of sign variations for $P(-x)$: 2 Since $P(x)$ is degree 3, there are 3 zeros, the real ones of which are classified as: Positive Negative	b. Factors of $-10: \pm 1, \pm 2, \pm 5, \pm 10$ Factors of 6: $\pm 1, \pm 2, \pm 3, \pm 6$ Possible rational zeros: $\pm 1, \pm 2, \pm 5, \pm 10, \pm \frac{1}{2}, \pm \frac{1}{3}, \pm \frac{1}{6}, \pm \frac{2}{3}, \pm \frac{5}{2}, \pm \frac{5}{3}, \pm \frac{5}{6}, \pm \frac{10}{3}$ c. Note that $P(-1) = P(-\frac{5}{2}) = P(\frac{2}{3}) = 0$. So, the rational zeros are $-1, -\frac{5}{2}, \frac{2}{3}$. These are the only zeros since <i>P</i> has degree 3
Real ZerosReal Zeros1210	are the only zeros since <i>P</i> has degree 3. P(x) = (x+1)(2x+5)(3x-2) d. $= 6(x+1)(x+\frac{5}{2})(x-\frac{2}{3})$
46. a. Number of sign variations for $P(x)$: 1 $P(-x) = -6x^3 + x^2 + 5x - 2$, so Number of sign variations for $P(-x)$: 2 Since $P(x)$ is degree 3, there are 3 zeros, the real ones of which are classified as: Positive Negative Real Zeros Real Zeros 1 2 1 0	b. Factors of $-2: \pm 1, \pm 2$ Factors of 6: $\pm 1, \pm 2, \pm 3, \pm 6$ Possible rational zeros: $\pm 1, \pm 2, \pm \frac{1}{2}, \pm \frac{1}{3}, \pm \frac{1}{6}, \pm \frac{2}{3}$ c. Note that $P(1) = P(-\frac{1}{2}) = P(-\frac{2}{3}) = 0$. So, the rational zeros are $1, -\frac{1}{2}, -\frac{2}{3}$. These are the only zeros since <i>P</i> has degree 3. P(x) = (x-1)(3x+2)(2x+1) d. $= 6(x-1)(x+\frac{2}{3})(x+\frac{1}{2})$

a. Number of sign variations for P(x): 4 $P(-x) = x^4 + 2x^3 + 5x^2 + 8x + 4$, so

Number of sign variations for P(-x): 0Since P(x) is degree 4, there are 4 zeros, the real ones of which are classified as:

Positive Real Zeros	Negative Real Zeros
4	0
2	0
0	0

b. Factors of 4: ±1, ±2, ±4
Factors of 1: ±1
Possible rational zeros: ±1, ±2, ±4

48.

a. Number of sign variations for P(x): 0 $P(-x) = x^4 - 2x^3 + 10x^2 - 18x + 9$, so Number of sign variations for P(-x): 4 Since P(x) is degree 4, there are 4 zeros, the real ones of which are classified as:

Positive Real Zeros	Negative Real Zeros
0	4
0	2
0	0

b. Factors of 9: ±1, ±3, ±9
Factors of 1: ±1
Possible rational zeros: ±1, ±3, ±9

c. Note that P(1) = 0. After testing the others, it is found that the only rational zeros is 1. Hence, by **a**, 1 must have multiplicity 2 or 4. So, we know that at least $(x-1)^2 = x^2 - 2x + 1$ divides P(x) evenly. To find the remaining zeros, we long divide:

$$\begin{array}{r} x^{2} + 4 \\
 x^{2} - 2x + 1 \overline{\smash{\big)}} x^{4} - 2x^{3} + 5x^{2} - 8x + 4 \\
 \underline{-(x^{4} - 2x^{3} + x^{2})} \\
 4x^{2} - 8x + 4 \\
 \underline{-(4x^{2} - 8x + 4)} \\
 0
 \end{array}$$

Since $x^2 + 4$ is irreducible, the only real zero is 1 (multiplicity 2).

d.
$$P(x) = (x-1)^2(x^2+4)$$

c. Note that P(-1) = 0. After testing the others, it is found that the only rational zero is -1. Hence, by **a**, -1 must have at least multiplicity 2. So, we know that $(x+1)^2 = x^2 + 2x + 1$ divides P(x) evenly. To find the remaining zeros, we long divide:

$$\begin{array}{r} x^{2} + 9 \\ x^{2} + 2x + 1 \overline{\smash{\big)}} x^{4} + 2x^{3} + 10x^{2} + 18x + 9 \\ \hline -(x^{4} + 2x^{3} + x^{2}) \\ 9x^{2} + 18x + 9 \\ \hline -(9x^{2} + 18x + 9) \\ \hline 0 \end{array}$$

Since $x^2 + 9$ is irreducible, the only real zero is -1 (multiplicity 2). **d.** $P(x) = (x+1)^2(x^2+9)$

a. Number of sign variations for P(x): 1 P(-x) = P(x), so

Number of sign variations for P(-x): 1 Since P(x) is degree 6, there are 6 zeros, the real ones of which are classified as:

Positive	Negative
Real Zeros	Real Zeros
1	1

b. Factors of -36:

 $\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 9, \pm 12, \pm 18, \pm 36$ Factors of 1: ± 1 Possible rational zeros:

 $\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 9, \pm 12, \pm 18, \pm 36$

c. Note that P(-1) = P(1) = 0. From **a**,

there can be no other rational zeros for *P*.

50.

a. Number of sign variations for P(x): 2

 $P(-x) = x^4 + x^3 - 16x^2 + 16$, so Number of sign variations for P(-x): 2 Since P(x) is degree 4, there are 4 zeros, the real ones of which are classified as:

Positive	Negative
Real Zeros	Real Zeros
2	2
2	0
0	2
0	0

b. Factors of 16: $\pm 1, \pm 2, \pm 4, \pm 8, \pm 16$ Factors of 1: ± 1 Possible rational zeros: $\pm 1, \pm 2, \pm 4, \pm 8, \pm 16$

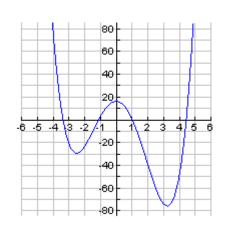
c. Note that P(1) = 0. After testing, we conclude that the only rational zero is 1. The best we can do is estimate the remaining zeros graphically:

We know that $(x+1)(x-1) = x^2 - 1$ divides P(x) evenly. To find the remaining zeros, we long divide:

$$\frac{x^{4} + 13x^{2} + 36}{x^{2} - 1 x^{6} + 0x^{5} + 12x^{4} + 0x^{3} + 23x^{2} + 0x - 36} \\
\frac{-(x^{6} + 0x^{5} - x^{4})}{13x^{4} + 0x^{3} + 23x^{2}} \\
\frac{-(13x^{4} + 0x^{3} - 13x^{2})}{36x^{2} + 0x - 36} \\
\frac{-(36x^{2} + 0x - 36)}{0}$$

Observe that

 $x^4 + 13x^2 + 36 = (x^2 + 9)(x^2 + 4)$, both of which are irreducible. So, the real zeros are: -1 and 1 **d.** $P(x) = (x+1)(x-1)(x^2+9)(x^2+4)$



From the graph, we see that the other real zeros are approximately

-3.35026, -1.07838, and 4.42864.

d. An approximate factorization of P(x) is: P(x) = (x-1)(x+3.35026)(x+1.07838)(x-4.42864)

a. Number of sign variations for P(x): 4 $P(-x) = 4x^4 + 20x^3 + 37x^2 + 24x + 5$,

so

Number of sign variations for P(-x): 0Since P(x) is degree 4, there are 4 zeros, the real ones of which are classified as:

Positive Real Zeros	Negative Real Zeros
4	0
2	0
0	0

b. Factors of 5: $\pm 1, \pm 5$ Factors of 4: $\pm 1, \pm 2, \pm 4$ Possible rational zeros: $\pm 1, \pm 5, \pm \frac{1}{2}, \pm \frac{1}{4}, \pm \frac{5}{2}, \pm \frac{5}{4}$

52.

a. Number of sign variations for P(x): 2 $P(-x) = 4x^4 + 8x^3 + 7x^2 - 30x + 50$, so Number of sign variations for P(-x): 2 Since P(x) is degree 4, there are 4 zeros, the real ones of which are classified as:

Positive Real Zeros	Negative Real Zeros
2	2
0	2
0	0
2	0

b. Factors of 50:

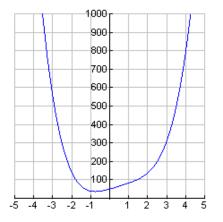
 $\pm 1, \pm 2, \pm 5, \pm 10, \pm 25, \pm 50$ Factors of 4: $\pm 1, \pm 2, \pm 4$ Possible rational zeros: $\pm 1, \pm 2, \pm 5, \pm 10, \pm 25, \pm 50,$ $\pm \frac{1}{2}, \pm \frac{5}{2}, \pm \frac{25}{2}, \pm \frac{1}{4}, \pm \frac{5}{4}, \pm \frac{25}{4}$ **c.** Note that $P(\frac{1}{2}) = 0$. After testing, we conclude that there the only rational zero is $\frac{1}{2}$, which has multiplicity 2 or 4. So, we know that at least $(x - \frac{1}{2})^2$ divides P(x) evenly:

d. So,

$$P(x) = (x - \frac{1}{2})^2 (4x^2 - 16x + 20)$$

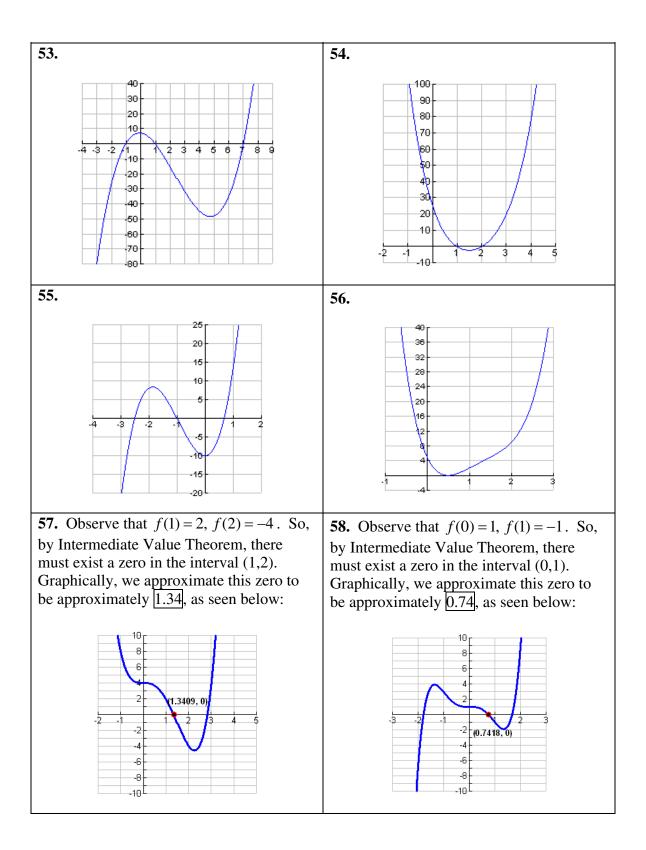
= 4(x - $\frac{1}{2}$)²(x² - 4x + 5)
= (2x - 1)²(x² - 4x + 5)

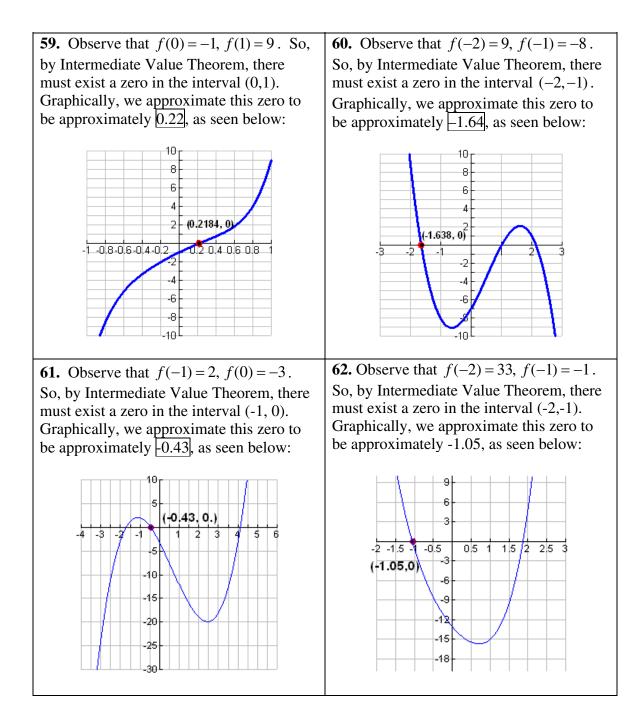
c. After testing, we conclude that there are no rational zeros. The best we can do is graph the polynomial to locate any real zeros:

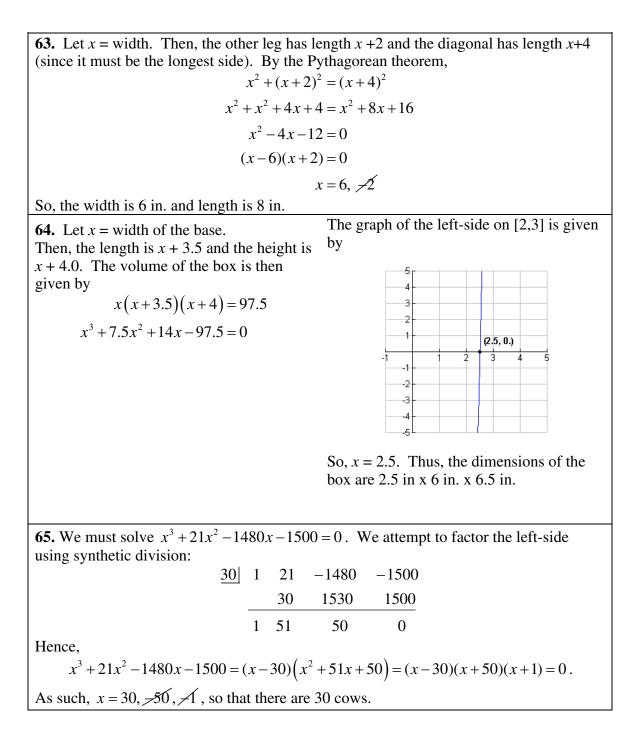


As seen from the graph, there are no real zeros.

d. An accurate factorization of P(x) is not possible since we don't have values for the zeros.







66. We must solve $2x^4 - 7x^3 + 3x^2 + 8x - 4 = 0$. We attempt to factor the left-side using synthetic division: 2 2 -7 3 $\frac{4}{2}$ $\frac{2}{-2}$ Hence, $2x^4 - 7x^3 + 3x^2 + 8x - 4 = (x - 2)^2 (2x^2 + x - 1) = (x - 2)^2 (2x - 1)(x + 1) = 0.$ As such, x = 2, $\frac{1}{2}$, $\neq 1$. So, there are 2 loaves. **67**. P(x) = xp(x) - C(x)= x(28 - 0.0002x) - (20x + 1,500) $= 28 x - 0.0002 x^{2} - 20 x - 1.500$ $= -0.0002x^{2} + 8x - 1.500$ By Descartes Rule of Signs, there are either 0 or 2 positive real zeros. **68.** Solve P(x) = 0. $-0.0002x^{2} + 8x - 1,500 = 0$ $x^2 - 40,000x + 7,500,000 = 0$ (cleared the fractions) $x = \frac{40,000 \pm \sqrt{40,000^2 - 4(7,500,000)}}{2(1)}$ ≈188 or 39,812 The break even points are 188 and 39, 812 units. When fewer than 188 units or more than 39,812 units are produced and sold, profit is negative- money is lost. When the number of units being produced and sold is between 188 and 39,812 a profit is being made on the product. **69.** Solve C(t) = 0. $15.4 - 0.05t^2 = 0$ $1,540-5t^2=0$ $5(308 - t^2) = 0$

$$t = \pm \sqrt{308} \approx 17.55$$
 hours

So, it takes about 18 hours to eliminate the drug from the bloodstream.

70. Solve $C(t) = 0$.			
$60 - 0.75t^2 = 0$			
		$6,000-75t^2=0$	0
		$75(80-t^2) = 0$)
		t = z	$\pm\sqrt{80} \approx 9$ hours
So, it takes abo	out 9 hours to e	eliminate the dr	ug from the bloodstream.
71. It is true that one can get 5 negative zeros here, but there may be just 1 or 3.		U U	72. Use 2, not -2.
Positive Real Zeros	Negative Real Zeros		73. True
0	5		74. False. Consider $f(x) = x^2 + 1$. There
0	3		are no real zeros.
75. False. For	r instance, $f(x)$	$x = (x^2 + 1)(x^2 +$	(+2) cannot be factored over the reals.
76. False. The there could be		bility, but if the	e are 2 or more such sign changes, then
			only one <i>x</i> -intercept.
78. False. For 6.	r instance, $f(x)$	$(x-1)^2(x-1)^2$	$(x-4)^2$ has three <i>x</i> -intercepts, but degree
79.			
	_		(ab+ac+bc) - abc
		а	$\frac{-ab-ac}{bc} = \frac{abc}{0}$
	1	-b-c	bc 0
So, $P(x) = (x-a)(x^2 - (b+c)x + bc) = (x-a)(x-b)(x-c)$. So, the other zeros are <i>b</i> , <i>c</i> .			
80.			
	<u>a</u> 1		(ab+bc-ac) abc
$a \qquad ab-ac \qquad -abc$			
1 $b-c$ $-bc$ 0			
So, $P(x) = (x-a)(x^2 + (b-c)x - bc) = (x-a)(x+b)(x-c)$. So, the other zeros are -b, c.			

81. First, note that

$$\underline{b} \quad 1 \quad -(a+b) \quad (ab-c^2) \quad (a+b)c^2 \quad -abc^2 \\ \underline{b \quad -ab \quad -bc^2 \quad abc^2} \\ 1 \quad -a \quad -c^2 \quad ac^2 \quad 0$$

At this point, the possible rational zeros are a, c, and -c. Continuing the synthetic division yields

$$\underline{a} \begin{vmatrix} 1 & -a & -c^2 & ac^2 \\ a & 0 & -ac^2 \\ \hline 1 & 0 & -c^2 \\ \end{vmatrix}$$

Thus, we see that

$$P(x) = (x-b)(x-a)(x^2-c^2) = (x-b)(x-a)(x-c)(x+c).$$

So, the other three zeros are a, c, and -c.

82. The possible rational zeros are $\pm a, \pm b$. Using synthetic division yields

<u>a</u> 1	2(b-a)	$a^2-4ab+b^2$	2ab(a-b)	a^2b^2
	а	$2ab-a^2$	ab^2-2a^2b	$-a^{2}b^{2}$
<u>a</u> 1	1 2b-a	b^2-2ab	$-ab^2$	0
	а	2ab	ab^2	
1	2 <i>b</i>	b^2	0	

Thus, we see that

$$P(x) = (x-a)^{2} \left(x^{2} + 2bx + b^{2}\right) = (x-a)^{2} (x+b)^{2}.$$

So, the other zeros are *a*, -*b* (multiplicity 2). **83.** The possible rational zeros of $f(x) = x^3 - 4x^2 - 7x + 10$ are $\pm 1, \pm 2, \pm 5, \pm 10$. Using synthetic division yields:

$$1 1 - 4 - 7$$

 $1 - 3$

10

So, $f(x) = (x-1)(x^2 - 3x - 10) = (x-1)(x-5)(x+2)$ and the zeros are 1, 5, -2. The graph of *f* is above the *x*-axis on the set: $(-2,1) \cup (5,\infty)$.

84. Factors of 8: $\pm 1, \pm 2, \pm 4, \pm 8$ Factors of 6: $\pm 1, \pm 2, \pm 3, \pm 6$		
Possible rational zeros: $\pm 1, \pm 2, \pm 4, \pm 8, \pm \frac{1}{2}, \pm \frac{1}{3}, \pm \frac{1}{6}, \pm \frac{2}{3}, \pm \frac{4}{3}, \pm \frac{8}{3}$		
Using synthetic division yields:		
-1 6 -13 -11 8		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
6 -19 8 0		
So,		
$f(x) = (x+1)(6x^2 - 19x + 8) = (x+1)(3x-8)(2x-1),$		
and the zeros are $-1, \frac{8}{3}, \frac{1}{2}$.		
The graph of f is above the x-axis on the set: $(-1, \frac{1}{2}) \cup (\frac{8}{3}, \infty)$.		
85. Factors of -6: $\pm 1, \pm 2, \pm 3, \pm 6$ Factors of -2: $\pm 1, \pm 2$		
Possible rational zeros: $\pm 1, \pm 2, \pm 3, \pm 6, \pm \frac{1}{2}, \pm \frac{3}{2}$		
Using synthetic division yields:		
3 -2 5 7 -10 -6		
-6 -3 12 6		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$\frac{1 0 -2}{-2 0 4}$		
-2 0 4		
So,		
$f(x) = (x-3)(x+\frac{1}{2})(-2x^2+4) = -2(x-3)(x+\frac{1}{2})(x^2-2) = -2(x-3)(x+\frac{1}{2})(x-\sqrt{2})(x+\sqrt{2}),$		
and the zeros are $-\frac{1}{2}$, $3, \pm \sqrt{2}$.		
The graph of <i>f</i> is above the <i>x</i> -axis on the set: $\left(-\sqrt{2}, -\frac{1}{2}\right) \cup \left(\sqrt{2}, 3\right)$.		
86. Factors of -8: ± 1 , ± 2 , ± 4 , ± 8 Factors of -3: ± 1 , ± 3		
Possible rational zeros: $\pm 1, \pm 2, \pm 4, \pm 8, \pm \frac{1}{3}, \pm \frac{2}{3}, \pm \frac{4}{3}, \pm \frac{8}{3}$		
Using synthetic division yields:		
$\underline{4}$ -3 14 -11 14 -8		
-12 8 -12 8		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$\frac{-2 0 -2}{-3 0 -3}$		
-3 0 -3		
So, $f(x) = (x-4)(x-\frac{2}{3})(-3x^2-3) = -3(x-4)(x-\frac{2}{3})(x^2+1)$ and the real zeros are 4, $\frac{2}{3}$.		
The graph of <i>f</i> is above the <i>x</i> -axis on the set: $\left(\frac{2}{3}, 4\right)$.		

Section 2.5 Solutions	
1. $P(x) = (x+2i)(x-2i)$. Zeros are $\pm 2i$.	2. $P(x) = (x+3i)(x-3i)$. Zeros are $\pm 3i$
3. Note that the zeros are	4. Note that the zeros are
$x^2 - 2x + 2 = 0 \implies$	$x^2 - 4x + 5 = 0 \implies$
$x = \frac{2 \pm \sqrt{4 - 4(2)}}{2} = \frac{2 \pm 2i}{2} = 1 \pm i$	$x = \frac{4 \pm \sqrt{16 - 4(5)}}{2} = \frac{4 \pm 2i}{2} = 2 \pm i$
So, $P(x) = (x - (1 - i))(x - (1 + i))$.	So, $P(x) = (x - (2 - i))(x - (2 + i))$.
5. Observe that	6. Observe that
$P(x) = \left(x^2 - 4\right)\left(x^2 + 4\right)$	$P(x) = \left(x^2 - 9\right)\left(x^2 + 9\right)$
= (x-2)(x+2)(x-2i)(x+2i)	=(x-3)(x+3)(x-3i)(x+3i)
So, the zeros are $\pm 2, \pm 2i$.	So, the zeros are ± 3 , $\pm 3i$.
7. Observe that	8. Observe that
$P(x) = (x^2 - 5)(x^2 + 5)$	$P(x) = (x^2 - 3)(x^2 + 3)$
$= \left(x - \sqrt{5}\right) \left(x + \sqrt{5}\right) \left(x - i\sqrt{5}\right) \left(x + i\sqrt{5}\right)$	$= \left(x - \sqrt{3}\right) \left(x + \sqrt{3}\right) \left(x - i\sqrt{3}\right) \left(x + i\sqrt{3}\right)$
So, the zeros are $\pm\sqrt{5}$, $\pm i\sqrt{5}$.	So, the zeros are $\pm\sqrt{3}, \pm i\sqrt{3}$.
9. If <i>i</i> is a zero, then so is its conjugate – <i>i</i> . Since $P(x)$ has degree 3, this is the only missing zero.	10. If $-i$ is a zero, then so is its conjugate <i>i</i> . Since $P(x)$ has degree 3, this is the only missing zero.
11. Since $2i$ and $3-i$ are zeros, so are their conjugates $-2i$ and $3+i$, respectively. Since $P(x)$ has degree 4, these are the only missing zeros.	12. Since $3i$ and $2+i$ are zeros, so are their conjugates $-3i$ and $2-i$, respectively. Since $P(x)$ has degree 4, these are the only missing zeros.
13. Since $1-3i$ and $2+5i$ are zeros, so are their conjugates $1+3i$ and $2-5i$, respectively. Since $P(x)$ has degree 6 and 0 is a zero with multiplicity 2, these are the only missing zeros.	14. Since $1-5i$ and $2+3i$ are zeros, so are their conjugates $1+5i$ and $2-3i$, respectively. Since $P(x)$ has degree 6 and -2 is a zero with multiplicity 2, these are the only missing zeros.
15. Since $-i$ and $1-i$ are zeros, so are their conjugates i and $1+i$, respectively. Since $1-i$ has multiplicity 2, so does its conjugate. Since $P(x)$ has degree 6, these are the only missing zeros.	16. Since $2i$ and $1+i$ are zeros, so are their conjugates $-2i$ and $1-i$, respectively. Since $1+i$ has multiplicity 2, so does its conjugate. Since $P(x)$ has degree 6, these are the only missing zeros.

Section 2.5 Solutions ------

17. Let $P(x)$ be the desired polynomial. Since 0 is a zero of P , x is a factor of P . Also, since $1 \pm 2i$ is a conjugate pair, the following must divide into $P(x)$ evenly: $(x-(1-2i))(x-(1+2i)) = x^2 - 2x + 5$ So, $P(x)$ is given by $x(x^2-2x+5) = x^3 - 2x^2 + 5x$. 19. Let $P(x)$ be the desired polynomial. Since 1 is a zero of P , $x - 1$ is a factor of P . Also, since $1 \pm 5i$ is a conjugate pair, the following must divide into $P(x)$ evenly: $(x-(1-5i))(x-(1+5i)) = x^2 - 2x + 26$ So, $P(x)$ is given by $(x-1)(x^2-2x+26) = x^3 - 3x^2 + 28x - 26$	18. Let $P(x)$ be the desired polynomial. Since 0 is a zero of P , x is a factor of P . Also, since $2 \pm i$ is a conjugate pair, the following must divide into $P(x)$ evenly: $(x-(2-i))(x-(2+i)) = x^2 - 4x + 5$ So, $P(x)$ is given by $x(x^2-4x+5) = x^3 - 4x^2 + 5x$. 20. Let $P(x)$ be the desired polynomial. Since 2 is a zero of P , $x - 2$ is a factor of P . Also, since $4 \pm i$ is a conjugate pair, the following must divide into $P(x)$ evenly: $(x-(4-i))(x-(4+i)) = x^2 - 8x + 17$ So, $P(x)$ is given by $(x-2)(x^2-8x+17) = x^3 - 10x^2 + 33x - 34$.
21. Let $P(x)$ be the desired polynomial. Since $1 \pm i$ is a conjugate pair, the following must divide into $P(x)$ evenly: $(x-(1-i))(x-(1+i)) = x^2 - 2x + 2$ Also, since $\pm 3i$ is a conjugate pair, the following must divide into $P(x)$ evenly: $(x-3i)(x+3i) = x^2 + 9$ So, $P(x)$ is given by $(x^2+9)(x^2-2x+2) =$ $x^4-2x^3+11x^2-18x+18$	22. Let $P(x)$ be the desired polynomial. Since $\pm i$ is a conjugate pair, the following must divide into $P(x)$ evenly: $(x-i)(x+i) = x^2 + 1$ Also, since $1\pm 2i$ is a conjugate pair, the following must divide into $P(x)$ evenly: $(x-(1-2i))(x-(1+2i)) = x^2 - 2x + 5$ So, $P(x)$ is given by $(x^2+1)(x^2-2x+5) = x^4 - 2x^3 + 6x^2 - 2x + 5$
23. Since $-2i$ is a zero of $P(x)$, so is its conjugate $2i$. As such, $(x-2i)(x+2i) = x^2 + 4$ divides $P(x)$ evenly. Indeed, observe that	24. Since $3i$ is a zero of $P(x)$, so is its conjugate $-3i$. As such, $(x-3i)(x+3i) = x^2 + 9$ divides $P(x)$ evenly. Indeed, observe that

$\frac{x^2 - 2x - 15}{x^2 + 0x + 4} \overline{x^4 - 2x^3 - 11x^2 - 8x - 60}$	$\frac{x^2 - x - 2}{x^2 + 0x + 9} \overline{x^4 - x^3 + 7x^2 - 9x - 18}$
$-(x^4+0x^3+4x^2)$	$-(x^4+0x^3+9x^2)$
$-2x^3-15x^2-8x$	$-x^3-2x^2-9x$
$\frac{-(-2x^3+0x^2-8x)}{2}$	$\frac{-(-x^3+0x^2-9x)}{2}$
$-15x^2-60$	$-2x^2-18$
$-(-15x^2-60)$	$-(-2x^2-18)$
0	0
So,	So,
$P(x) = (x - 2i)(x + 2i)(x^2 - 2x - 15)$	$P(x) = (x-3i)(x+3i)(x^2 - x - 2)$
= (x-2i)(x+2i)(x-5)(x+3)	= (x-3i)(x+3i)(x-2)(x+1)
So, the zeros are $\pm 2i$, -3 , 5 .	So, the zeros are $\pm 3i$, -1 , 2.
25. Since <i>i</i> is a zero of $P(x)$, so is its	26. Since $-2i$ is a zero of $P(x)$, so is its
conjugate - <i>i</i> . As such, $(x-i)(x+i) =$	conjugate 2 <i>i</i> . As such, $(x-2i)(x+2i) =$
x^{2} +1 divides $P(x)$ evenly. Indeed,	x^{2} + 4 divides $P(x)$ evenly. Indeed, observe
observe that	that
$x^2 - 4x + 3$	$x^2 - x - 2$
$\frac{x^2 - 4x + 3}{x^2 + 0x + 1} \overline{x^4 - 4x^3 + 4x^2 - 4x + 3}$	$\frac{x^2 - x - 2}{x^2 + 0x + 4} \overline{x^4 - x^3 + 2x^2 - 4x - 8}$
$-(x^4+0x^3+x^2)$	$\frac{-(x^4+0x^3+4x^2)}{2}$
$-4x^3+3x^2-4x$	$-x^3-2x^2-4x$
$-(-4x^3+0x^2-4x)$	$-(-x^3+0x^2-4x)$
$3x^2 + 3$	$-2x^2-8$
$-(3x^2+3)$	$\frac{-(-2x^2-8)}{2}$
0	0
So,	So,
$P(x) = (x-i)(x+i)(x^2-4x+3)$	$P(x) = (x-2i)(x+2i)(x^2-x-2)$
=(x-i)(x+i)(x-3)(x-1)	=(x-2i)(x+2i)(x-2)(x+1)
So, the zeros are $\pm i$, 1, 3.	So, the zeros are $\pm 2i$, -1 , 2 .
, , . , . , . , . , . , . , .	
27. Since $-3i$ is a zero of $P(x)$, so is its	28. Since $5i$ is a zero of $P(x)$, so is its
conjugate 3 <i>i</i> . As such, $(x-3i)(x+3i) =$	conjugate -5 <i>i</i> . As such, $(x-5i)(x+5i) =$
x^{2} +9 divides $P(x)$ evenly. Indeed,	x^{2} + 25 divides $P(x)$ evenly. Indeed,
observe that	observe that
L	1

$\frac{x^{2} - 2x + 1}{x^{2} + 0x + 9} \frac{x^{2} - 2x^{2} + 10x^{2} - 18x + 9}{-2x^{3} + x^{2} - 18x} \frac{-(x^{4} + 0x^{3} + 9x^{2})}{-2x^{3} + x^{2} - 18x} \frac{-(-2x^{3} + 0x^{2} - 18x)}{x^{2} + 9} \frac{-(x^{4} + 0x^{3} + 25x^{2})}{-3x^{2} - 4x^{2} - 75x} \frac{-(-3x^{3} + 0x^{2} - 75x)}{-4x^{2} - 100} \frac{-(x^{4} + 0x^{3} + 25x^{2})}{-3x^{2} - 4x^{2} - 75x} \frac{-(-3x^{3} + 0x^{2} - 75x)}{-4x^{2} - 100} \frac{-(-4x^{2} - 100)}{0}$ So, $P(x) = (x - 3i)(x + 3i)(x - 1)^{2}$ So, the zeros are $\pm 3i$ and 1 (multiplicity 2). 29. Since $1 + i$ is a zero of $P(x)$, so is its conjugate $1 - i$. As such, $(x - (1 + i))(x - (1 - i)) = x^{2} - 2x + 2$ divides P(x) evenly. Indeed, observe that $\frac{-(x^{4} - 2x^{3} + 2x^{2})}{2x^{2} - 11x^{2} + 18x} \frac{-(2x^{3} - 4x^{2} + 4x)}{-7x^{2} + 14x - 14} \frac{-(-2x^{3} + 4x^{2} + 16x - 40)}{0} \frac{-(-4x^{2} - 10x)}{-2x^{3} - 4x^{2} + 6x} \frac{-(2x^{3} - 4x^{2} + 4x)}{-7x^{2} + 14x - 14} \frac{-(-2x^{3} + 4x^{2} - 10x)}{-2x^{3} - 4x^{2} + 6x} \frac{-(-2x^{3} + 4x^{2} - 10x)}{-2x^{3} - 4x^{2} + 6x} \frac{-(-2x^{3} + 4x^{2} - 10x)}{-2x^{3} - 4x^{2} + 6x} \frac{-(-2x^{3} + 4x^{2} - 10x)}{-2x^{3} - 4x^{2} + 6x} \frac{-(-2x^{3} + 4x^{2} - 10x)}{-2x^{3} - 4x^{2} + 6x} \frac{-(-2x^{3} + 4x^{2} - 10x)}{-2x^{3} - 4x^{2} + 6x} \frac{-(-2x^{3} + 4x^{2} - 10x)}{-2x^{3} - 4x^{2} + 6x} \frac{-(-2x^{3} + 4x^{2} - 10x)}{-2x^{3} - 4x^{2} + 6x} \frac{-(-2x^{3} + 4x^{2} - 10x)}{-2x^{3} - 4x^{2} + 6x} \frac{-(-2x^{3} + 4x^{2} - 10x)}{-2x^{3} - 4x^{2} + 6x} \frac{-(-2x^{3} + 4x^{2} - 10x)}{-2x^{3} - 4x^{2} + 6x} \frac{-(-2x^{3} + 4x^{2} - 10x)}{-2x^{3} - 4x^{2} + 6x} \frac{-(-2x^{3} + 4x^{2} - 10x)}{-2x^{3} - 4x^{2} + 6x} \frac{-(-2x^{3} + 4x^{2} - 10x)}{-2x^{3} - 4x^{2} + 6x} \frac{-(-2x^{3} + 4x^{2} - 10x)}{-2x^{3} - 4x^{2} + 6x} \frac{-(-2x^{3} + 4x^{2} - 10x)}{-2x^{3} - 4x^{2} + 6x} \frac{-(-2x^{3} + 4x^{2} - 10x)}{-2x^{3} - 4x^{2} + 6x} \frac{-(-2x^{3} + 4x^{2} - 10x)}{-2x^{3} - 4x^{2} + 6x} \frac{-(-2x^{3} + 4x^{2} - 10x)}{-2x^{3} - 4x^{2} - 10x} \frac{-(-4x^{2} - 10x)}{-2$		
$\frac{-(x^{4} + 0x^{3} + 9x^{2})}{-2x^{3} + x^{2} - 18x}$ $\frac{-(-2x^{3} + 0x^{2} - 18x)}{x^{2} + 9}$ $\frac{-(x^{2} + 9)}{0}$ So, $P(x) = (x - 3i)(x + 3i)(x^{2} - 2x + 1)$ $= (x - 3i)(x + 3i)(x^{2} - 2x + 1)$ $= (x - 3i)(x + 3i)(x^{2} - 2x + 1)$ $= (x - 3i)(x + 3i)(x^{-1})^{2}$ So, the zeros are $\pm 3i$ and 1 (multiplicity 2). 29. Since 1+ <i>i</i> is a zero of $P(x)$, so is its conjugate 1 - <i>i</i> . As such, $(x - (1+i))(x - (1-i)) = x^{2} - 2x + 2$ divides $P(x) = (x - 1x^{2} + 18x)$ $\frac{-(x^{4} - 2x^{3} + 2x^{2})}{2x^{3} - 11x^{2} + 18x}$ $\frac{-(2x^{3} - 4x^{2} + 4x)}{-7x^{2} + 14x - 14}$ $\frac{-(x^{4} - 2x^{3} + 2x^{2})}{2x^{3} - 11x^{2} + 18x}$ $\frac{-(2x^{3} - 4x^{2} + 4x)}{-7x^{2} + 14x - 14}$ $\frac{-(-2x^{3} + 4x^{2} - 10x)}{0}$ Now, we find the roots of $x^{2} + 2x - 7$: $x = \frac{-2 \pm \sqrt{4 - 4(-7)}}{2} = -1 \pm 2\sqrt{2}$ So, $P(x) = (x - (1+2i))(x - (1-2i))(x - 4)(x + 2)$ So, the zeros are $1 \pm 2i$, 2, 4. So, $P(x) = (x - (1+2i))(x - (1-2i))(x - 4)(x + 2)$ So, the zeros are $1 \pm 2i$, 2, 4.	$\frac{x^2 - 2x + 1}{x^2 + 0x + 9}x^4 - 2x^3 + 10x^2 - 18x + 9$	$\frac{x^2 - 3x - 4}{x^2 + 0x + 25 x^4 - 3x^3 + 21x^2 - 75x - 100}$
$\frac{-(-2x^{3} + 0x^{2} - 18x)}{x^{2} + 9}$ $\frac{-(-2x^{3} + 0x^{2} - 18x)}{x^{2} + 9}$ $\frac{-(-x^{2} + 9)}{0}$ So, $P(x) = (x - 3i)(x + 3i)(x^{2} - 2x + 1)$ $= (x - 3i)(x + 3i)(x - 1)^{2}$ So, the zeros are $\pm 3i$ and 1 (multiplicity 2). 29. Since 1 + <i>i</i> is a zero of <i>P</i> (<i>x</i>), so is its conjugate 1 - <i>i</i> . As such, $(x - (1 + i))(x - (1 - i)) = x^{2} - 2x + 2$ divides P(x) evenly. Indeed, observe that $\frac{-(x^{4} - 2x^{3} + 2x^{2})}{2x^{3} - 11x^{2} + 18x}$ $\frac{-(2x^{3} - 4x^{2} + 4x)}{-7x^{2} + 14x - 14}$ $\frac{-(-7x^{2} + 14x - 14)}{-7x^{2} + 14x - 14}$ $\frac{-(-7x^{2} + 14x - 14)}{-(-7x^{2} + 14x - 14)}$ Now, we find the roots of $x^{2} + 2x - 7$: $x = \frac{-2 \pm \sqrt{4 - 4(-7)}}{2} = -1 \pm 2\sqrt{2}$ So, $P(x) = (x - (1 + i))(x - (1 - i)).$ $(x - (-1 - 2\sqrt{2}))(x - (-1 + 2\sqrt{2}))$	$-(x^4+0x^3+9x^2)$	
$\frac{-(-2x^{2} + 0x^{2} - 10x)}{x^{2} + 9}$ $\frac{-(x^{2} + 9)}{0}$ So, $P(x) = (x - 3i)(x + 3i)(x^{2} - 2x + 1)$ $= (x - 3i)(x + 3i)(x^{-1})^{2}$ So, the zeros are $\pm 3i$ and 1 (multiplicity 2). 29. Since 1 + <i>i</i> is a zero of $P(x)$, so is its conjugate 1 - <i>i</i> . As such, $(x - (1 + i))(x - (1 - i)) = x^{2} - 2x + 2$ divides P(x) evenly. Indeed, observe that $\frac{-(x^{4} - 2x^{3} + 2x^{2})}{2x^{3} - 11x^{2} + 18x}$ $\frac{-(2x^{3} - 4x^{2} + 4x)}{-7x^{2} + 14x - 14}$ $\frac{-(-7x^{2} + 14x - 14)}{-7x^{2} + 14x - 14}$ $\frac{-(-7x^{2} + 14x - 14)}{-7x^{2} + 14x - 14}$ $\frac{-(-2x^{3} + 4x^{2} - 7)}{2} = -1 \pm 2\sqrt{2}$ So, $P(x) = (x - (1 + i))(x - (1 - i)) \cdot$ $(x - (-1 - 2\sqrt{2}))(x - (-1 + 2\sqrt{2}))$ $x = \frac{-2 \pm \sqrt{4 - 4(-7)}}{2} = -1 \pm 2\sqrt{2}$ $x = \frac{-2 \pm \sqrt{4 - 4(-7)}}{2} = -\frac{-2 \pm \sqrt{4 - 4(-7)}}{2} = --2$	$-2x^3 + x^2 - 18x$	$-3x^3-4x^2-75x$
$\frac{-(x^{2}+9)}{0}$ So, $P(x) = (x-3i)(x+3i)(x^{2}-2x+1)$ $= (x-3i)(x+3i)(x-1)^{2}$ So, the zeros are $\pm 3i$ and 1 (multiplicity 2). 29. Since 1+ <i>i</i> is a zero of <i>P</i> (<i>x</i>), so is its conjugate 1- <i>i</i> . As such, $(x-(1+i))(x-(1-i)) = x^{2}-2x+2$ divides <i>P</i> (<i>x</i>) evenly. Indeed, observe that $\frac{x^{2}+2x-7}{x^{2}-2x+2\sqrt{x^{4}}+0x^{3}-9x^{2}+18x-14}$ $\frac{-(x^{4}-2x^{3}+2x^{2})}{2x^{3}-11x^{2}+18x}$ $\frac{-(2x^{3}-4x^{2}+4x)}{-7x^{2}+14x-14}$ $\frac{-(-7x^{2}+14x-14)}{0}$ Now, we find the roots of $x^{2}+2x-7$: $x = \frac{-2\pm\sqrt{4-4(-7)}}{2} = -1\pm 2\sqrt{2}$ So, <i>P</i> (<i>x</i>) = (<i>x</i> -(1+ <i>i</i>))(<i>x</i> -(1- <i>i</i>)). $(x-(-1-2\sqrt{2}))(x-(-1+2\sqrt{2}))$	$-(-2x^3+0x^2-18x)$	$\frac{-(-3x^3+0x^2-75x)}{-(-3x^2-75x)}$
$\frac{(x+2)}{0}$ So, $P(x) = (x-3i)(x+3i)(x^{2}-2x+1)$ $= (x-3i)(x+3i)(x-1)^{2}$ So, the zeros are $\pm 3i$ and 1 (multiplicity 2). 29. Since 1+ <i>i</i> is a zero of $P(x)$, so is its conjugate 1- <i>i</i> . As such, $(x-(1+i))(x-(1-i)) = x^{2}-2x+2$ divides $P(x) = (x-1)(x+5i)(x-4)(x+1)$ So, the zeros are $\pm 5i, -1, 4$. 30. Since 1-2 <i>i</i> is a zero of $P(x)$, so is its conjugate 1+2 <i>i</i> . As such, $(x-(1+2i))(x-(1-2i)) = x^{2}-2x+5$ divides $P(x) = (x-1)(x^{4}-4x^{3}-9x^{2}+18x-14)$ $\frac{-(x^{4}-2x^{3}+2x^{2})}{2x^{3}-11x^{2}+18x}$ $\frac{-(2x^{3}-4x^{2}+4x)}{-7x^{2}+14x-14}$ $\frac{-(-7x^{2}+14x-14)}{0}$ Now, we find the roots of $x^{2}+2x-7$: $x = \frac{-2\pm\sqrt{4-4(-7)}}{2} = -1\pm 2\sqrt{2}$ So, $P(x) = (x-(1+2i))(x-(1-2i))(x-4)(x+2)$ So, the zeros are $1\pm 2i, -2, 4$.	$x^2 + 9$	$-4x^2-100$
$\begin{array}{c} \hline 0 \\ \text{So,} \\ P(x) = (x-3i)(x+3i)(x^2-2x+1) \\ = (x-3i)(x+3i)(x-1)^2 \\ \text{So, the zeros are} \\ \pm 3i \text{ and 1 (multiplicity 2).} \\ \hline 29. \text{ Since } 1+i \text{ is a zero of } P(x), \text{ so is its} \\ \text{conjugate } 1-i. \text{ As such,} \\ (x-(1+i))(x-(1-i)) = x^2-2x+2 \text{ divides} \\ P(x) \text{ evenly. Indeed, observe that} \\ \hline x^2-2x+2\sqrt{x^4+0x^3-9x^2+18x-14} \\ \hline -\frac{-(x^4-2x^3+2x^2)}{2x^3-11x^2+18x} \\ \hline -\frac{-(2x^3-4x^2+4x)}{-7x^2+14x-14} \\ \hline -\frac{(-7x^2+14x-14)}{0} \\ \text{Now, we find the roots of } x^2+2x-7: \\ x = \frac{-2\pm\sqrt{4-4(-7)}}{2} = -1\pm 2\sqrt{2} \\ \hline \text{So,} \\ P(x) = (x-(1+i))(x-(1-i)) \cdot \\ (x-(-1-2\sqrt{2}))(x-(-1+2\sqrt{2})) \end{array} \right) = 0 \\ \hline 0 \\ \hline \end{array}$	$-(x^2+9)$	$\frac{-(-4x^2-100)}{2}$
So, $P(x) = (x-3i)(x+3i)(x^{2}-2x+1) = (x-3i)(x+3i)(x-1)^{2}$ So, the zeros are $\pm 3i$ and 1 (multiplicity 2). 29. Since 1+ <i>i</i> is a zero of $P(x)$, so is its conjugate 1 - <i>i</i> . As such, $(x-(1+i))(x-(1-i)) = x^{2}-2x+2$ divides P(x) evenly. Indeed, observe that $x^{2}-2x+2\sqrt{x^{4}+0x^{3}-9x^{2}+18x-14}$ $\frac{-(x^{4}-2x^{3}+2x^{2})}{2x^{3}-11x^{2}+18x}$ $\frac{-(2x^{3}-4x^{2}+4x)}{-7x^{2}+14x-14}$ $\frac{-(-7x^{2}+14x-14)}{0}$ Now, we find the roots of $x^{2}+2x-7$: $x = \frac{-2\pm\sqrt{4-4(-7)}}{2} = -1\pm 2\sqrt{2}$ So, $P(x) = (x-(1+i))(x-(1-i)) \cdot$ $(x-(1-2\sqrt{2}))(x-(1-2\sqrt{2}))$		*
$P(x) = (x - 3i)(x + 3i)(x^{2} - 2x + 1)$ $= (x - 3i)(x + 3i)(x - 1)^{2}$ So, the zeros are $\pm 3i$ and 1 (multiplicity 2). 29. Since 1+ <i>i</i> is a zero of <i>P</i> (<i>x</i>), so is its conjugate 1- <i>i</i> . As such, $(x - (1+i))(x - (1-i)) = x^{2} - 2x + 2$ divides <i>P</i> (<i>x</i>) evenly. Indeed, observe that $\frac{x^{2} - 2x + 2\sqrt{x^{4} - 4x^{3} - 9x^{2} + 18x - 14}}{2x^{2} - 2x + 2\sqrt{x^{4} - 4x^{2} + 2x^{2}}}$ $\frac{-(x^{4} - 2x^{3} + 2x^{2})}{2x^{3} - 11x^{2} + 18x}$ $\frac{-(2x^{3} - 4x^{2} + 4x)}{-7x^{2} + 14x - 14}$ $\frac{-(-7x^{2} + 14x - 14)}{0}$ Now, we find the roots of $x^{2} + 2x - 7$: $x = \frac{-2 \pm \sqrt{4 - 4(-7)}}{2} = -1 \pm 2\sqrt{2}$ So, <i>P</i> (<i>x</i>) = (<i>x</i> - (1+ <i>i</i>))(<i>x</i> - (1- <i>i</i>)). $(x - (1 - 2\sqrt{2}))(x - (-1 + 2\sqrt{2}))$	So	
$= (x-3i)(x+3i)(x-1)^{2}$ So, the zeros are $\pm 3i$ and 1 (multiplicity 2). 29. Since 1+ <i>i</i> is a zero of $P(x)$, so is its conjugate 1 - <i>i</i> . As such, $(x-(1+i))(x-(1-i)) = x^{2}-2x+2$ divides P(x) evenly. Indeed, observe that $x^{2}-2x+2)\overline{x^{4}+0x^{3}-9x^{2}+18x-14}$ $\frac{-(x^{4}-2x^{3}+2x^{2})}{2x^{3}-11x^{2}+18x}$ $\frac{-(2x^{3}-4x^{2}+4x)}{-7x^{2}+14x-14}$ $\frac{-(-7x^{2}+14x-14)}{0}$ Now, we find the roots of $x^{2}+2x-7$: $x = \frac{-2\pm\sqrt{4-4(-7)}}{2} = -1\pm 2\sqrt{2}$ So, P(x) = (x-(1+i))(x-(1-i)). $(x-(1-2\sqrt{2}))(x-(-1+2\sqrt{2}))$ x = (x-5i)(x+5i)(x-4)(x+1) So, the zeros are $\pm 5i$, -1 , 4 . So, the zeros of $P(x)$, so is its conjugate 1 + 2 <i>i</i> . As such, $(x-(1+2i))(x-(1-2i)) = x^{2}-2x+5$ divides P(x) evenly. Indeed, observe that $\frac{-(x^{4}-2x^{3}+5x^{2})}{-2x^{3}-4x^{2}+6x-40}$ $\frac{-(-8x^{2}+16x-40)}{-(-8x^{2}+16x-40)}$ $\frac{-(-8x^{2}+16x-40)}{0}$ So, P(x) = (x-(1+2i))(x-(1-2i))(x-4)(x+2) So, the zeros are $1\pm 2i$, -2 , 4 .		$P(x) = (x-5i)(x+5i)(x^2-3x-4)$
So, the zeros are $\pm 3i$ and 1 (multiplicity 2). 29. Since 1+ <i>i</i> is a zero of $P(x)$, so is its conjugate 1 - <i>i</i> . As such, $(x-(1+i))(x-(1-i)) = x^2 - 2x + 2$ divides P(x) evenly. Indeed, observe that $x^2 - 2x + 2\sqrt{x^4 + 0x^3 - 9x^2 + 18x - 14}$ $\frac{-(x^4 - 2x^3 + 2x^2)}{2x^3 - 11x^2 + 18x}$ $\frac{-(2x^3 - 4x^2 + 4x)}{-7x^2 + 14x - 14}$ $\frac{-(-7x^2 + 14x - 14)}{0}$ Now, we find the roots of $x^2 + 2x - 7$: $x = \frac{-2 \pm \sqrt{4 - 4(-7)}}{2} = -1 \pm 2\sqrt{2}$ So, $P(x) = (x - (1+i))(x - (1-i)) \cdot$ $(x - (-1 - 2\sqrt{2}))(x - (-1 + 2\sqrt{2}))$ So, the zeros are $\pm 5i$, -1 , 4. So, the zeros are $\pm 5i$, -1 , 4. So, the zeros are $\pm 5i$, -1 , 4. So, the zeros are $\pm 5i$, -1 , 4. So, the zeros are $\pm 5i$, -1 , 4. So, the zeros are $\pm 5i$, -1 , 4. So, the zeros are $\pm 5i$, -1 , 4. So, the zeros are $\pm 5i$, -1 , 4. So, the zeros are $\pm 5i$, -1 , 4. So, the zeros are $\pm 5i$, -1 , 4. So, the zeros are $\pm 5i$, -1 , 4. So, the zeros are $\pm 5i$, -1 , 4. So, the zeros are $\pm 2i$, $-2, 4$. So, the zeros are $\pm 2i$, $-2, 4$. So, the zeros are $\pm 2i$, $-2, 4$. So, the zeros are $\pm 2i$, $-2, 4$.		= (x-5i)(x+5i)(x-4)(x+1)
$\begin{array}{r llllllllllllllllllllllllllllllllllll$		So, the zeros are $\pm 5i$, -1 , 4 .
conjugate $1 - i$. As such, $(x - (1+i))(x - (1-i)) = x^2 - 2x + 2$ divides P(x) evenly. Indeed, observe that $x^2 - 2x + 2\sqrt{x^4 + 0x^3 - 9x^2 + 18x - 14}$ $\frac{-(x^4 - 2x^3 + 2x^2)}{2x^3 - 11x^2 + 18x}$ $\frac{-(2x^3 - 4x^2 + 4x)}{-7x^2 + 14x - 14}$ $\frac{-(-7x^2 + 14x - 14)}{0}$ Now, we find the roots of $x^2 + 2x - 7$: $x = \frac{-2 \pm \sqrt{4 - 4(-7)}}{2} = -1 \pm 2\sqrt{2}$ So, $P(x) = (x - (1+i))(x - (1-i)) \cdot$ $(x - (-1 - 2\sqrt{2}))(x - (-1 + 2\sqrt{2}))$ $(x - (-1 - 2\sqrt{2}))(x - (-1 + 2\sqrt{2}))$		
$\begin{array}{l} (x-(1+i))(x-(1-i)) = x^2 - 2x + 2 \text{ divides} \\ P(x) \text{ evenly. Indeed, observe that} \\ x^2 - 2x + 2 \overline{\smash{\big)}x^4 + 0x^3 - 9x^2 + 18x - 14} \\ \underline{x^2 - 2x + 2} \overline{\smash{\big)}x^4 + 0x^3 - 9x^2 + 18x - 14} \\ \underline{-(x^4 - 2x^3 + 2x^2)} \\ 2x^3 - 11x^2 + 18x \\ \underline{-(2x^3 - 4x^2 + 4x)} \\ -7x^2 + 14x - 14 \\ \underline{-(-7x^2 + 14x - 14)} \\ 0 \\ \text{Now, we find the roots of } x^2 + 2x - 7 : \\ x = \frac{-2 \pm \sqrt{4 - 4(-7)}}{2} = -1 \pm 2\sqrt{2} \\ \text{So,} \\ P(x) = (x - (1+i))(x - (1-i)) \cdot \\ (x - (-1 - 2\sqrt{2}))(x - (-1 + 2\sqrt{2})) \end{array}$	29. Since $1+i$ is a zero of $P(x)$, so is its	30. Since $1 - 2i$ is a zero of $P(x)$, so is its
$\begin{array}{l} (x-(1+i))(x-(1-i)) = x^2 - 2x + 2 \text{ divides} \\ P(x) \text{ evenly. Indeed, observe that} \\ x^2 - 2x + 2 \overline{\smash{\big)}x^4 + 0x^3 - 9x^2 + 18x - 14} \\ \underline{x^2 - 2x + 2} \overline{\smash{\big)}x^4 + 0x^3 - 9x^2 + 18x - 14} \\ \underline{-(x^4 - 2x^3 + 2x^2)} \\ 2x^3 - 11x^2 + 18x \\ \underline{-(2x^3 - 4x^2 + 4x)} \\ -7x^2 + 14x - 14 \\ \underline{-(-7x^2 + 14x - 14)} \\ 0 \\ \text{Now, we find the roots of } x^2 + 2x - 7 : \\ x = \frac{-2 \pm \sqrt{4 - 4(-7)}}{2} = -1 \pm 2\sqrt{2} \\ \text{So,} \\ P(x) = (x - (1+i))(x - (1-i)) \cdot \\ (x - (-1 - 2\sqrt{2}))(x - (-1 + 2\sqrt{2})) \end{array}$	conjugate $1 - i$. As such,	conjugate $1 + 2i$. As such,
$\frac{x^{2}-2x+2}{x^{2}-2x+2}\frac{x^{2}+2x-7}{x^{4}+0x^{3}-9x^{2}+18x-14}$ $\frac{-(x^{4}-2x^{3}+2x^{2})}{2x^{3}-11x^{2}+18x}$ $\frac{-(2x^{3}-4x^{2}+4x)}{-7x^{2}+14x-14}$ $\frac{-(-7x^{2}+14x-14)}{0}$ Now, we find the roots of $x^{2}+2x-7$: $x = \frac{-2\pm\sqrt{4-4(-7)}}{2} = -1\pm 2\sqrt{2}$ So, $P(x) = (x-(1+i))(x-(1-i)) \cdot$ $(x-(-1-2\sqrt{2}))(x-(-1+2\sqrt{2}))$ $x = \frac{-2\pm\sqrt{2}}{2}(x-(-1+2\sqrt{2}))(x-(-1+2\sqrt{2}))$ $x = \frac{-2\pm\sqrt{2}}{2}(x-(-1+2\sqrt{2}))(x-(-1+2\sqrt{2}))$	$(x-(1+i))(x-(1-i)) = x^2 - 2x + 2$ divides	$(x - (1+2i))(x - (1-2i)) = x^2 - 2x + 5$ divides
$\frac{-(x^{4}-2x^{3}+2x^{2})}{2x^{3}-11x^{2}+18x}$ $\frac{-(2x^{3}-4x^{2}+4x)}{-7x^{2}+14x-14}$ $\frac{-(-7x^{2}+14x-14)}{0}$ Now, we find the roots of $x^{2}+2x-7$: $x = \frac{-2\pm\sqrt{4-4(-7)}}{2} = -1\pm2\sqrt{2}$ So, $P(x) = (x-(1+i))(x-(1-i)) \cdot$ $(x-(-1-2\sqrt{2}))(x-(-1+2\sqrt{2}))$ $\frac{-(x^{4}-2x^{3}+5x^{2})}{-2x^{3}-4x^{2}+6x}$ $\frac{-(-2x^{3}+4x^{2}-10x)}{-8x^{2}+16x-40}$ $\frac{-(-8x^{2}+16x-40)}{0}$ So, $P(x) = (x-(1+2i))(x-(1-2i))(x-4)(x+2)$ So, the zeros are $1\pm 2i, -2, 4$.	P(x) evenly. Indeed, observe that	P(x) evenly. Indeed, observe that
$\frac{-(x^{4}-2x^{3}+2x^{2})}{2x^{3}-11x^{2}+18x}$ $\frac{-(2x^{3}-4x^{2}+4x)}{-7x^{2}+14x-14}$ $\frac{-(-7x^{2}+14x-14)}{0}$ Now, we find the roots of $x^{2}+2x-7$: $x = \frac{-2\pm\sqrt{4-4(-7)}}{2} = -1\pm2\sqrt{2}$ So, $P(x) = (x-(1+i))(x-(1-i)) \cdot$ $(x-(-1-2\sqrt{2}))(x-(-1+2\sqrt{2}))$ $\frac{-(x^{4}-2x^{3}+5x^{2})}{-2x^{3}-4x^{2}+6x}$ $\frac{-(-2x^{3}+4x^{2}-10x)}{-8x^{2}+16x-40}$ $\frac{-(-8x^{2}+16x-40)}{0}$ So, $P(x) = (x-(1+2i))(x-(1-2i))(x-4)(x+2)$ So, the zeros are $1\pm 2i, -2, 4$.	$x^2 + 2x - 7$	$x^2 - 2x - 8$
$\frac{2x^{3}-11x^{2}+18x}{2x^{3}-4x^{2}+4x)} - \frac{-(2x^{3}-4x^{2}+4x)}{-7x^{2}+14x-14} - \frac{-(-7x^{2}+14x-14)}{0} - \frac{-(-7x^{2}+14x-14)}{0} - \frac{-(-8x^{2}+16x-40)}{0} - -(-8x^{2$	$x^{2}-2x+2)x^{4}+0x^{3}-9x^{2}+18x-14$	$x^2 - 2x + 5)x^4 - 4x^3 + x^2 + 6x - 40$
$\frac{-(2x^{3}-4x^{2}+4x)}{-7x^{2}+14x-14}$ $\frac{-(-7x^{2}+14x-14)}{0}$ Now, we find the roots of $x^{2}+2x-7$: $x = \frac{-2\pm\sqrt{4-4(-7)}}{2} = -1\pm 2\sqrt{2}$ So, $P(x) = (x - (1+i))(x - (1-i)) \cdot (x - (1-2\sqrt{2}))(x - (-1+2\sqrt{2})))$ So the zeros are $1\pm 2i, -2, 4$.	$-(x^4-2x^3+2x^2)$	$-(x^4-2x^3+5x^2)$
$ \frac{-7x^{2} + 14x - 14}{-(-7x^{2} + 14x - 14)} = -8x^{2} + 16x - 40 = -(-8x^{2} + 16x - 40) = 0 $ Now, we find the roots of $x^{2} + 2x - 7$: $ x = \frac{-2 \pm \sqrt{4 - 4(-7)}}{2} = -1 \pm 2\sqrt{2} $ So, $ P(x) = (x - (1 + i))(x - (1 - i)) \cdot (x - (1 - 2\sqrt{2}))(x - (-1 + 2\sqrt{2}))) = (x - (1 - 2\sqrt{2}))(x - (-1 + 2\sqrt{2})) $ So, the zeros are $1 \pm 2i, -2, 4$.	$2x^3 - 11x^2 + 18x$	$-2x^3-4x^2+6x$
$\frac{-(-7x^{2} + 14x - 14)}{0}$ Now, we find the roots of $x^{2} + 2x - 7$: $x = \frac{-2 \pm \sqrt{4 - 4(-7)}}{2} = -1 \pm 2\sqrt{2}$ So, $P(x) = (x - (1 + i))(x - (1 - i)) \cdot (x - (1 - 2\sqrt{2}))(x - (-1 + 2\sqrt{2}))$ So, the zeros are $1 \pm 2i, -2, 4$. So, the zeros are $1 \pm 2i, -2, 4$.	$-(2x^3-4x^2+4x)$	$-(-2x^3+4x^2-10x)$
$ \begin{array}{c} \hline 0\\ \text{Now, we find the roots of } x^2 + 2x - 7:\\ x = \frac{-2 \pm \sqrt{4 - 4(-7)}}{2} = -1 \pm 2\sqrt{2}\\ \text{So,}\\ P(x) = (x - (1 + i))(x - (1 - i)) \cdot\\ (x - (-1 - 2\sqrt{2}))(x - (-1 + 2\sqrt{2})) \end{array} $ $ \begin{array}{c} \hline 0\\ \text{So,}\\ P(x) = (x - (1 + 2i))(x - (1 - 2i))(x - 4)(x + 2)\\ \text{So, the zeros are } 1 \pm 2i, -2, 4.\\ \end{array} $	$-7x^2 + 14x - 14$	$-8x^2+16x-40$
Now, we find the roots of $x^2 + 2x - 7$: $x = \frac{-2 \pm \sqrt{4 - 4(-7)}}{2} = -1 \pm 2\sqrt{2}$ So, $P(x) = (x - (1 + i))(x - (1 - i)) \cdot (x - (-1 - 2\sqrt{2}))(x - (-1 + 2\sqrt{2}))$ So, the zeros are $1 \pm 2i, -2, 4$.	$-(-7x^2+14x-14)$	$-(-8x^2+16x-40)$
$x = \frac{-2 \pm \sqrt{4 - 4(-7)}}{2} = -1 \pm 2\sqrt{2}$ So, $P(x) = (x - (1 + i))(x - (1 - i)) \cdot (x - (-1 - 2\sqrt{2}))(x - (-1 + 2\sqrt{2}))$ $(x - (-1 - 2\sqrt{2}))(x - (-1 + 2\sqrt{2}))$	0	0
$x = \frac{-2 \pm \sqrt{4 - 4(-7)}}{2} = -1 \pm 2\sqrt{2}$ So, $P(x) = (x - (1+i))(x - (1-i)) \cdot (x - (-1 - 2\sqrt{2}))(x - (-1 + 2\sqrt{2}))$ So, the zeros are $1 \pm 2i, -2, 4$.	Now, we find the roots of $x^2 + 2x - 7$:	· · · · · · · · · · · · · · · · · · ·
So, $P(x) = (x - (1+i))(x - (1-i)) \cdot (x - (-1 - 2\sqrt{2}))(x - (-1 + 2\sqrt{2}))$	$x = \frac{-2 \pm \sqrt{4 - 4(-7)}}{2} = -1 \pm 2\sqrt{2}$	
$P(x) = (x - (1 + i))(x - (1 - i)) \cdot (x - (-1 - 2\sqrt{2}))(x - (-1 + 2\sqrt{2}))$		
So, the zeros are $1 \pm i$, $-1 \pm 2\sqrt{2}$.	$(x - (-1 - 2\sqrt{2}))(x - (-1 + 2\sqrt{2}))$	
	So, the zeros are $1 \pm i$, $-1 \pm 2\sqrt{2}$.	

31. Since 3 - *i* is a zero of P(x), so is its **32.** Since 2+i is a zero of P(x), so is its conjugate 3 + i. As such, conjugate 2- *i*. As such, $(x-(3+i))(x-(3-i)) = x^2-6x+10$ $(x-(2+i))(x-(2-i)) = x^2-4x+5$ divides P(x) evenly. Indeed, observe that divides P(x) evenly. Indeed, observe that $\frac{x^2 - 1}{x^2 - 4x + 5 x^4 - 4x^3 + 4x^2 + 4x - 5}$ $\frac{x^2 - 4}{x^2 - 6x + 10} \overline{x^4 - 6x^3 + 6x^2 + 24x - 40}$ $\frac{-(x^4 - 4x^3 + 5x^2)}{-x^2 + 4x - 5}$ $\frac{-(x^4-6x^3+10x^2)}{-4x^2+24x-40}$ $\frac{-(-x^2+4x-5)}{2}$ $\frac{-(-4x^2+24x-40)}{2}$ So. So. P(x) = (x - (2 + i))(x - (2 - i))(x - 1)(x + 1)P(x) = (x - (3 + i))(x - (3 - i))(x - 2)(x + 2)So, the zeros are $2 \pm i, \pm 1$. So, the zeros are $3 \pm i, \pm 2$. **34.** Since 3+i is a zero of P(x), so is its **33.** Since 2-*i* is a zero of P(x), so is its conjugate 2+i. As such, conjugate 3-i. As such, $(x-(2+i))(x-(2-i)) = x^2-4x+5$ $(x-(3+i))(x-(3-i)) = x^2-6x+10$ divides divides P(x) evenly. Indeed, observe P(x) evenly. Indeed, observe that $\frac{x^2 - x - 2}{x^2 - 6x + 10} \overline{x^4 - 7x^3 + 14x^2 + 2x - 20}$ that $\frac{x^2 - 5x + 4}{x^2 - 4x + 5 x^4 - 9x^3 + 29x^2 - 41x + 20}$ $-(x^4-6x^3+10x^2)$ $\frac{-(x^4-4x^3+5x^2)}{2}$ $-x^{3}+4x^{2}+2x$ $-5x^3 + 24x^2 - 41x$ $-(-x^3+6x^2-10x)$ $-(-5x^3+20x^2-25x)$ $-2x^{2}+12x-20$ $4x^2 - 16x + 20$ $-(-2x^2+12x-20)$ $-(4x^2-16x+20)$ 0 So. So. P(x) = (x - (3 + i))(x - (3 - i))(x - 2)(x + 1)P(x) = (x - (2 + i))(x - (2 - i))(x - 1)(x - 4)So, the zeros are $3 \pm i$, -1, 2. So, the zeros are $2 \pm i$, 1, 4.

35.	36.
$x^{3} - x^{2} + 9x - 9 = (x^{3} - x^{2}) + 9(x - 1)$	$x^{3}-2x^{2}+4x-8 = (x^{3}-2x^{2})+4(x-2)$
$= x^{2}(x-1) + 9(x-1)$	$= x^{2}(x-2) + 4(x-2)$
$= \left(x^2 + 9\right)(x - 1)$	$= \left(x^2 + 4\right)(x - 2)$
=(x+3i)(x-3i)(x-1)	=(x+2i)(x-2i)(x-2)
37.	38.
$x^{3}-5x^{2}+x-5=(x^{3}-5x^{2})+(x-5)$	$x^{3} - 7x^{2} + x - 7 = (x^{3} - 7x^{2}) + (x - 7)$
$=x^2(x-5)+(x-5)$	$=x^{2}(x-7)+(x-7)$
$= (x^2 + 1)(x - 5)$	$=(x^{2}+1)(x-7)$
=(x+i)(x-i)(x-5)	=(x+i)(x-i)(x-7)
39. $x^{3} + x^{2} + 4x + 4 = (x^{3} + x^{2}) + 4(x+1)$ $= x^{2}(x+1) + 4(x+1)$ $= (x^{2} + 4)(x+1)$ $= (x+2i)(x-2i)(x+1)$	40. Consider $P(x) = x^3 + x^2 - 2$. By the Rational Zero Theorem, the only possible rational roots are $\pm 1, \pm 2$. Note that $\frac{1}{2} 1 1 0 -2$ $\frac{1 2 2}{1 2 2 0}$ So, $P(x) = (x-1)(x^2+2x+2)$. Now, we find the roots of $x^2 + 2x + 2$: $x = \frac{-2 \pm \sqrt{4-4(2)}}{2} = -1 \pm i$ So, $P(x) = (x-1)(x - (-1+i))(x - (-1-i))$.
41. Consider $P(x) = x^3 - x^2 - 18$. By the Rational Zero Theorem, the only possible rational roots are $\pm 1, \pm 2, \pm 3, \pm 6, \pm 9, \pm 18$. Note that	42. Consider $P(x) = x^4 - 2x^3 - 2x^2 - 2x - 3$. By the Rational Zero Theorem, the only possible rational roots are $\pm 1, \pm 3$. Note that

$3 1 -1 0 -18$ $3 6 18$ $3 6 18$ $1 2 6 0$ So, $P(x) = (x-3)(x^2+2x+6)$. Now, we find the roots of x^2+2x+6 : $x = \frac{-2 \pm \sqrt{4-4(6)}}{2} = -1 \pm i\sqrt{5}$ So, $P(x) = (x-3)(x - (-1 + i\sqrt{5}))(x - (-1 - i\sqrt{5})).$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
43. Consider	44. Consider $P(x) = x^4 - x^3 + 7x^2 - 9x - 18$.
$P(x) = x^{4} - 2x^{3} - 11x^{2} - 8x - 60.$ By the Rational Zero Theorem, the only possible rational roots are $\pm 1, \pm 2, \pm 3, \pm 4, \pm 5, \pm 6,$ $\pm 10, \pm 12, \pm 15, \pm 20, \pm 30, \pm 60.$ Note that $\underline{-3} 1 -2 -11 -8 -60$ $\underline{-3 15 -12 60}$ 1 -5 4 -20 0 So, $P(x) = (x+3) \left(x^{3} - 5x^{2} + 4x - 20 \right)$ $= (x+3) \left[x^{2}(x-5) + 4(x-5) \right].$ $= (x+3) \left(x^{2} + 4 \right) (x-5)$ = (x+3)(x-5)(x+2i)(x-2i)	By the Rational Zero Theorem, the only possible rational roots are $\pm 1, \pm 2, \pm 3, \pm 6, \pm 9, \pm 18$. Note that -1 1 -1 7 -9 -18 -1 2 -9 18 1 -2 9 -18 0 So, $P(x) = (x+1)(x^3 - 2x^2 + 9x - 18)$ $= (x+1)[x^2(x-2) + 9(x-2)]$ $= (x+1)(x^2 + 9)(x-2)$ = (x+1)(x-2)(x+3i)(x-3i)
45. Consider $P(x) = x^4 - 4x^3 - x^2 - 16x - 20$. By the Rational Zero Theorem, the only possible rational roots are	46. Consider $P(x) = x^4 - 3x^3 + 11x^2 - 27x + 18$. By the Rational Zero Theorem, the only possible rational roots are
possible rational roots are $\pm 1, \pm 2, \pm 4, \pm 5, \pm 10, \pm 20$ Note that	possible rational roots are $\pm 1, \pm 2, \pm 3, \pm 6, \pm 9, \pm 18$ Note that

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
= (x+1)(x-5)(x+2i)(x-2i)	= (x-1)(x-2)(x+3i)(x-3i)
47. Consider $P(x) = x^4 - 7x^3 + 27x^2 - 47x + 26$.	48. Consider $P(x) = x^4 - 5x^3 + 5x^2 + 25x - 26$.
P(x) = x - 7x + 27x - 47x + 26. By the Rational Zero Theorem, the only possible rational roots are $\pm 1, \pm 2, \pm 13, \pm 26$	$P(x) = x^{2} - 5x^{2} + 5x^{2} + 25x - 26.$ By the Rational Zero Theorem, the only possible rational roots are $\pm 1, \pm 2, \pm 13, \pm 26$
Note that	Note that
<u>1</u> <u>1</u> <u>-7</u> <u>27</u> <u>-47</u> <u>26</u>	<u>1</u> 1 -5 5 25 -26
1 - 6 - 21 - 26	1 -4 1 26
2 1 - 6 21 - 26 0	-2 1 -4 1 26 0
226	
1 -4 13 0	1 - 6 13 0
So, $P(x) = (x-1)(x-2)(x^2-4x+13)$.	So, $P(x) = (x-1)(x+2)(x^2-6x+13)$.
Next, we find the roots of $x^2 - 4x + 13$:	Next, we find the roots of $x^2 - 6x + 13$:
$x = \frac{4 \pm \sqrt{16 - 4(13)}}{2} = 2 \pm 3i$	$x = \frac{6 \pm \sqrt{36 - 4(13)}}{2} = 3 \pm 2i$
So, P(x) = (x-1)(x-2)(x-(2-3i))(x-(2+3i))	So, P(x) = (x-1)(x+2)(x-(3-2i))(x-(3+2i))
49. Consider	50. Consider
$P(x) = -x^4 - 3x^3 + x^2 + 13x + 10.$	$P(x) = -x^4 - x^3 + 12x^2 + 26x + 24.$
By the Rational Zero Theorem, the only possible rational roots are	By the Rational Zero Theorem, the only possible rational roots are
$\pm 1, \pm 2, \pm 5, \pm 10$	$\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 8, \pm 12, \pm 24$
Note that	Note that

-1 1 3 -1 -13 -10	<u>-3</u> 1 1 -12 -26 -24
-1 -2 3 10	-3 6 18 24
<u>2</u> 1 2 -3 -10 0	4 1 -2 -6 -8 0
2 8 10	4 8 8
1 4 5 0	1 2 2 0
So, $P(x) = -(x+1)(x-2)(x^2+4x+5)$.	So, $P(x) = -(x+3)(x-4)(x^2+2x+2)$.
Next, we find the roots of $x^2 + 4x + 5$:	Next, we find the roots of $x^2 + 2x + 2$:
$-4 \pm \sqrt{16 - 4(5)}$	$x = \frac{-2 \pm \sqrt{4 - 4(2)}}{2} = -1 \pm i$
$x = \frac{-4 \pm \sqrt{16 - 4(5)}}{2} = -2 \pm i$	$x = \frac{1}{2} = -1 \pm i$
So,	So,
P(x) = -(x+1)(x-2)(x-(-2-i))(x-(-2+i))	P(x) = -(x+3)(x-4)(x-(-1-i))(x-(-1+i))
51. Consider	52. Consider
$P(x) = x^4 - 2x^3 + 5x^2 - 8x + 4.$	$P(x) = x^4 + 2x^3 + 10x^2 + 18x + 9.$
By the Rational Zero Theorem, the only	By the Rational Zero Theorem, the only
possible rational roots are $\pm 1, \pm 2, \pm 4$.	possible rational roots are $\pm 1, \pm 3, \pm 9$. Note
Note that $1 1 - 2 - 5 - 8 - 4$	that $-1 1 2 10 18 9$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
So, $P(x) = (x-1)(x^3 - x^2 + 4x - 4)$	So, $P(x) = (x+1)(x^3 + x^2 + 9x + 9)$
$= (x-1) \left[x^{2}(x-1) + 4(x-1) \right]$	$= (x+1) \left[x^{2}(x+1) + 9(x+1) \right]$
$= (x-1)(x^{2}+4)(x-1)$	$= (x+1)(x^{2}+9)(x+1)$
$=(x-1)^{2}(x+2i)(x-2i)$	$=(x+1)^{2}(x+3i)(x-3i)$
53. Consider	54. Consider
$P(x) = x^6 + 12x^4 + 23x^2 - 36.$	$P(x) = x^{6} - 2x^{5} + 9x^{4} - 16x^{3} + 24x^{2} - 32x + 16.$
By the Rational Zero Theorem, the only	By the Rational Zero Theorem, the only
possible rational roots are $\pm 1, \pm 2, \pm 4, \pm 6, \pm 9, \pm 18, \pm 36$	possible rational roots are $\pm 1, \pm 2, \pm 4, \pm 8, \pm 16$
Note that $1, \pm 2, \pm 4, \pm 0, \pm 9, \pm 10, \pm 50$	Note that $(1, 2, 2, 1, 20, 210)$

<u>1</u> 1 0 12 0 23 0 -36	<u>1</u> 1 -2 9 -16 24 -32 16
1 1 13 13 36 36	1 -1 8 -8 16 -16
-1 1 1 13 13 36 36 0	1 1 - 1 8 - 8 16 - 16 0
-1 0 -13 0 -36	
So,	So,
$P(x) = (x-1)(x+1)(x^4+13x^2+36)$	$P(x) = (x-1)^2 \left(x^4 + 8x^2 + 16 \right)$
$= (x-1)(x+1)(x^{2}+4)(x^{2}+9)$	$=(x-1)^2(x^2+4)^2$
= (x-1)(x+1)(x-2i)(x+2i)(x-3i)(x+3i)	
	$= (x-1)^{2} (x-2i)^{2} (x+2i)^{2}$
55. Consider	56. Consider
$P(x) = 4x^4 - 20x^3 + 37x^2 - 24x + 5.$	$P(x) = 4x^4 - 44x^3 + 145x^2 - 114x + 26.$
By the Rational Zero Theorem, the only	By the Rational Zero Theorem, the only
possible rational roots are	possible rational roots are
$\pm 1, \pm 5, \pm \frac{1}{2}, \pm \frac{5}{2}, \pm \frac{1}{4}, \pm \frac{5}{4}$	$\pm 1, \pm 2, \pm \frac{1}{2}, \pm \frac{13}{2}, \pm \frac{13}{4}, \pm 13, \pm 26$
Note that	Note that
$\frac{1}{2}$ 4 -20 37 -24 5	$\frac{1}{2}$ 4 -44 145 -114 26
2 -9 14 -5	2 -21 62 -26
$\frac{1}{2}$ 4 -18 28 -10 0	$\frac{1}{2}$ 4 -42 124 -52 0
2 -8 10	2 -20 52
4 -16 20 0	4 -40 104 0
So, $P(x) = 4(x - \frac{1}{2})^2(x^2 - 4x + 5).$	So, $P(x) = (x - \frac{1}{2})^2 (4x^2 - 40x + 104)$
Next, we find the roots of $x^2 - 4x + 5$:	$=4(x-\frac{1}{2})^{2}(x^{2}-10x+26).$
$x = \frac{4 \pm \sqrt{16 - 4(5)}}{2} = 2 \pm i$	Next, we find the roots of $x^2 - 10x + 26$:
2	
So, $(1 + 1)^2$	$x = \frac{10 \pm \sqrt{100 - 4(26)}}{2} = 5 \pm i$
$P(x) = 4\left(x - \frac{1}{2}\right)^2 (x - (2 - i))(x - (2 + i))$	So, $P(x) = 4(x - \frac{1}{2})^2 (x - (5 - i))(x - (5 + i))$
$= (2x-1)^{2}(x-(2-i))(x-(2+i))$	
57. Consider	58. Consider
$P(x) = 3x^5 - 2x^4 + 9x^3 - 6x^2 - 12x + 8.$	$P(x) = 2x^5 - 5x^4 + 4x^3 - 26x^2 + 50x - 25.$
By the Rational Zero Theorem, the only	By the Rational Zero Theorem, the only
possible rational roots are	possible rational roots are

$\pm 1, \pm 2, \pm 4, \pm 8, \pm \frac{1}{3}, \pm \frac{2}{3}, \pm \frac{4}{3}, \pm \frac{8}{3}$	$\pm 1, \pm 5, \pm 25, \pm \frac{1}{2}, \pm \frac{5}{2}, \pm \frac{25}{2}$	
Note that	Note that	
<u>-1</u> 3 -2 9 -6 -12 8	1 2 -5 4 -26 50 -25	
-3 5 -14 20 -8	2 -3 1 -25 25	
$1 \overline{3 - 5 14 - 20 8 0}$	$1 \boxed{\begin{array}{ccccccccccccccccccccccccccccccccccc$	
	—	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	2 4 10 0	
So,	So, $P(x) = (x-1)^2 (x-\frac{5}{2})(2x^2+4x+10)$	
$P(x) = (x-1)(x+1)(x-\frac{2}{3})(3x^2+12)$	$= (x-1)^2 (2x-5)(x^2+2x+5)$	
= (x-1)(x+1)(3x-2)(x-2i)(x+2i)	Next, we find the roots of $x^2 + 2x + 5$:	
	$x = \frac{-2 \pm \sqrt{4 - 4(5)}}{2} = -1 \pm 2i$	
	$x = \frac{1}{2} = -1 \pm 2i$	
	So,	
	$P(x) = (x-1)^{2}(2x-5)(x+1-2i)(x+1+2i).$	
59. Yes. In such case, $P(x)$ never	60. No. In such case, $P(x)$ never touches the	
touches the x-axis (since crossing it would require $P(x)$ to have a real react)	x-axis (since crossing it would require $P(x)$	
would require $P(x)$ to have a real root) and is always above it since the leading	to have a real root) and is always below it	
coefficient is positive, indicating that the	since the leading coefficient is negative. So, never have a positive profit.	
end behavior should resemble that of		
$y = x^{2n}$, for some positive integer <i>n</i> . So,		
profit is always positive and increasing.		
61. No. In such case, it crosses the <i>x</i> -	62. Yes. In such case, it crosses the <i>x</i> -axis	
axis and looks like $y = -x^3$. So, profit is	and looks like $y = x^3$. So, profit is	
decreasing.	increasing.	
63. Since the profit function is a third-degree polynomial we know that the function has		
three zeros and at most two turning points. Looking at the graph we can see there is one		
real zero where $t \le 0$. There are no real zeros when $t > 0$, therefore the other two zeros must be complex conjugates. Therefore, the company always has a profit greater than		
approximately 5.1 million dollars and, in fact, the profit will increase towards infinity as		
<i>t</i> increases.		
64. Since the profit function is a fourth-degree polynomial with a negative leading we		
know the function has four zeros and at most three turning points. The end behavior is		
towards negative infinity because of the negative leading coefficient of an even degree polynomial and there will be two real zeros; one where $t \le 0$ and one where $t \ge 6$. The		
polynomial and there will be two real zeros	s; one where $t \le 0$ and one where $t \ge 6$. The	

remaining two zeros are a complex conjugate pair. Therefore, the company will have profits of greater than approximately 5.1 million dollars during the first six months. Sometime later ($t \ge 6$) the company's profit will be zero. Then the company will start losing money and, in fact, the profit will decrease towards negative infinity as time increases.

65. Since the concentration function is a third degree polynomial, we know the function has three zeros and at most two turning points. Looking at the graph we can see there will be one real zero at some time $t \ge 8$. The remaining zeros are a pair of complex conjugates. Therefore, the concentration of the drug in the blood stream will decrease to zero as the hours go by. Note that the concentration will not approach negative infinity since concentration is a non-negative quantity.

66. Since the concentration function is a fourth degree polynomial, we know the function has four zeros. The negative leading coefficient indicates negative end behavior (opening down). Since the function opens down there is a real zero for $t \le 0$ and there will be a real zero for $t \ge 8$. Note that the concentration will not approach negative infinity since concentration is a non-negative quantity.

negative mining since concentration is a non-negative	e qualitity.	
67. Step 2 is an error. In general, the additive	68. Possible rational roots include	
inverse of a real root need not be a root. This is	$\pm \frac{1}{2}$ from the Rational Zero	
being confused with the fact that complex roots	theorem.	
occur in conjugate pairs.		
69. False. For example, consider	70. False. Complex zeros do not	
P(x) = (x-1)(x+3). Note that 1 is a zero of P, but	correspond to x-intercepts.	
-1 is not.		
71. True. It has <i>n</i> complex zeros.	72. True.	
73. No. Complex zeros occur in conjugate pairs.	74. Yes. For example,	
So, the collection of complex solutions contribute	$P(x) = x^2 + 4$ has zeros $\pm 2i$, both	
an even number of zeros, thereby requiring there to	of which are imaginary.	
be at least one real zero.		
75. Since <i>bi</i> is a zero of multiplicity 3, its	76. Since $a + bi$ is a zero of	
conjugate - <i>bi</i> is also a zero of multiplicity 3.	multiplicity 2, its conjugate $a-bi$	
Hence,	is also a zero of multiplicity 2.	
$P(x) = (x - bi)^3 (x + bi)^3$	Hence,	
$= \left[(x - bi)(x + bi) \right]^3$	$P(x) = \left(x - (a + bi)\right)^2 \left(x - (a - bi)\right)^2$	
$= \left(x^2 + b^2\right)^3$	$= \left[\left(x - (a + bi) \right) \left(x - (a - bi) \right) \right]^2$	
$= x^6 + 3b^2x^4 + 3b^4x^2 + b^6$	$=x^2-2ax+(a^2+b^2)$	
77. Since <i>ai</i> is a zero with multiplicity 2 and <i>bi</i> is a zero, it follows that their conjugates		

—ai and *—bi* satisfy the same conditions, so that $(x^2 + a^2)^2$ and $(x^2 + b^2)$ are factors. These must divide P(x) evenly. Hence, a 6th degree polynomial satisfying these conditions is:

$$P(x) = (x^{2} + a^{2})^{2} (x^{2} + b^{2}) = (x^{4} + 2a^{2}x^{2} + a^{4}) (x^{2} + b^{2}) = x^{6} + (2a^{2} + b^{2})x^{4} + \underbrace{(a^{4} + 2a^{2}b^{2})}_{=a^{2}(a^{2} + 2b^{2})} x^{2} + b^{2}a^{4}$$

78. Since ai and bi are both zeros, it follows that their conjugates -ai and -bi are also. So, $(x^2 + a^2)$ and $(x^2 + b^2)$ are factors. These must divide P(x) evenly. Hence, a polynomial with minimal degree satisfying these conditions is $P(x) = (x^{2} + a^{2})(x^{2} + b^{2}) = x^{4} + (a^{2} + b^{2})x^{2} + a^{2}b^{2}.$ **79.** The possible rational zeros are ± 1 . Using synthetic division yields -1 1 1 1 1 $\frac{-1 \ 0 \ -1}{1 \ 0 \ 1 \ 0}$ **a.**) Factoring over the complex numbers yields $f(x) = (x+1)(x^2+1) = (x+1)(x-i)(x+i)$. **b.**) Factoring over the real numbers yields $f(x) = (x+1)(x^2+1)$. 80. The possible rational zeros are ± 1 , ± 2 , ± 13 , ± 26 . Using synthetic division yields 2|1-6 21-26 $\frac{2 - 8 26}{1 - 4 13 0}$ **a.**) Observe that $x^2 - 4x + 13 = 0 \implies x = \frac{4\pm\sqrt{16-4(13)}}{2} = 2\pm 3i$. So, factoring over the complex numbers yields f(x) = (x-2)(x-2-3i)(x-2+3i). **b.**) Factoring over the real numbers yields $f(x) = (x-2)(x^2-4x+13)$. 81. a.) Factoring over the complex numbers yields $f(x) = (x^{2} + 4)(x^{2} + 1) = (x + 2i)(x - 2i)(x + i)(x - i).$ **b.**) Factoring over the real numbers yields $f(x) = (x^2 + 4)(x^2 + 1)$. 82. The possible rational zeros are ± 1 , ± 2 , ± 3 , ± 6 , ± 9 , ± 18 . Using synthetic division yields -2 -7 18 3 1 -18<u>3 3 -12 18</u> <u>-3</u> 1 1 -4 6 -3 6 -6

2

1

-2

a.) Observe that $x^2 - 2x + 2 = 0 \implies x = \frac{2 \pm \sqrt{4 - 4(2)}}{2} = 1 \pm i$. So, factoring over the	
complex numbers yields $f(x) = (x-3)(x+3)(x-1-i)(x-1+i)$.	
b.) Factoring over the real numbers yields $f(x) = (x-3)(x+3)(x^2-2x+2)$.	

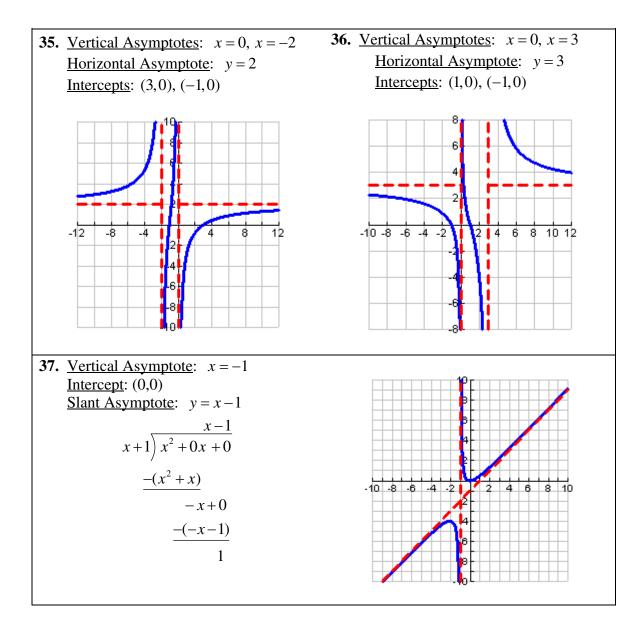
Section 2.6 Solutions	
1. Note that $x^2 + x - 12 = (x+4)(x-3)$.	2. Note that $x^2 + 2x - 3 = (x+3)(x-1)$.
<u>Domain</u> : $(-\infty, -4) \cup (-4, 3) \cup (3, \infty)$	<u>Domain</u> : $(-\infty, -3) \cup (-3, 1) \cup (1, \infty)$
3 Note that $x \neq \pm 2$. So,	4. Note that $x \neq \pm 7$. So,
Domain: $(-\infty, -2) \cup (-2, 2) \cup (2, \infty)$	<u>Domain</u> : $(-\infty, -7) \cup (-7, 7) \cup (7, \infty)$
5. Note that $x^2 + 16$ is never zero.	6. Note that $x^2 + 9$ is never zero.
Domain: $(-\infty,\infty)$	<u>Domain</u> : $(-\infty,\infty)$
7. Note that $2(x^2 - x - 6) = 2(x - 3)(x + 2)$.	8. Note that $x^2 - x - 6 = (x - 3)(x + 2)$.
<u>Domain</u> : $(-\infty, -2) \cup (-2, 3) \cup (3, \infty)$	<u>Domain</u> : $(-\infty, -2) \cup (-2, 3) \cup (3, \infty)$
9. <u>Vertical Asymptote</u> : x+2=0, so $x = -2$ is the VA. <u>Horizontal Asymptote</u> : Since the degree of the numerator is less than degree of the denominator, y=0 is the HA.	10. <u>Vertical Asymptote</u> : 5-x=0, so $x=5$ is the VA. <u>Horizontal Asymptote</u> : Since the degree of the numerator is less than degree of the denominator, y=0 is the HA.
11. <u>Vertical Asymptote</u> : x+5=0, so $x=-5$ is the VA. <u>Horizontal Asymptote</u> : Since the degree of the numerator is greater than degree of the denominator, there is no HA.	12. <u>Vertical Asymptote</u> : $2x-7=0$, so $x = \frac{7}{2}$ is the VA. <u>Horizontal Asymptote</u> : Since the degree of the numerator is greater than degree of the denominator, there is no HA.
13. <u>Vertical Asymptote</u> : $6x^2 + 5x - 4 = (2x - 1)(3x + 4) = 0$, so $x = \frac{1}{2}$, $x = -\frac{4}{3}$ are the VAs. Horizontal Asymptote:	14. <u>Vertical Asymptote</u> : $3x^2 - 5x - 2 = (3x + 1)(x - 2) = 0$, so $x = 2$, $x = -\frac{1}{3}$ are the VAs. <u>Horizontal Asymptote</u> :
<u>Horizontal Asymptote</u> : Since the degree of the numerator is greater than degree of the denominator, there is no HA.	Since the degree of the numerator equals the degree of the denominator, $y = \frac{6}{3} = 2$ is the HA.

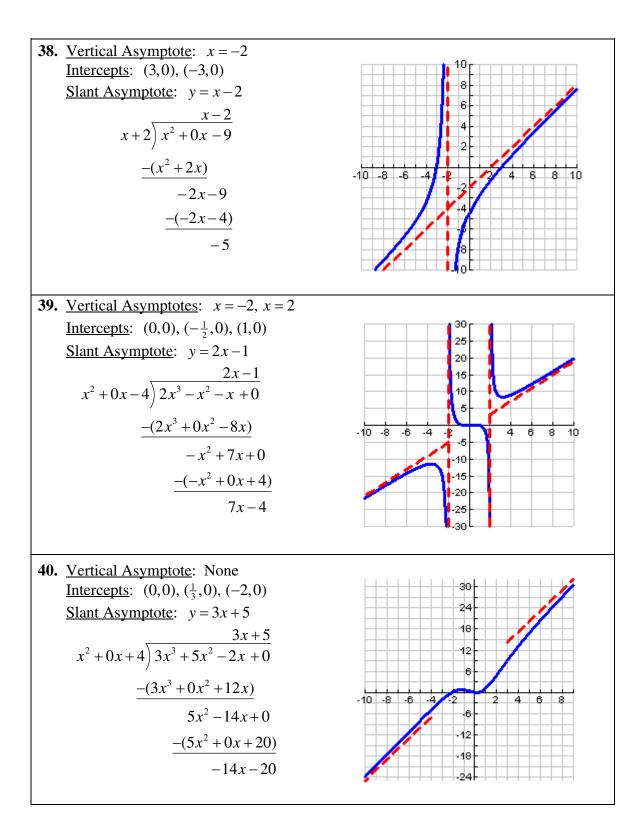
16. <u>Vertical Asymptote</u>: 15. Vertical Asymptote: (2x-1) = 0, so $x^2 + \frac{1}{9}$ is never 0, so there is no VA. $x = \frac{1}{2}$ is the VA. Horizontal Asymptote: Horizontal Asymptote: Since the degree of the numerator Since the degree of the numerator is equals the degree of the denominator, greater than degree of the $y = \frac{1}{3}$ is the HA. denominator, there is no HA. 17. To find the slant asymptote, we use **18.** To find the slant asymptote, we use synthetic division: synthetic division: _4 1 10 25 3 1 9 20 ____4 ___24 3 36 1 6 1 1 12 56 So, the slant asymptote is y = x + 6. So, the slant asymptote is y = x + 12. **20.** To find the slant asymptote, we use **19.** To find the slant asymptote, we use long division: synthetic division: $\frac{3x+7}{x^2-x-30}\overline{)3x^3+4x^2-6x+1}$ 14 7 5 2 10 120 $-(3x^3-3x^2-90x)$ 2 24 127 So, the slant asymptote is y = 2x + 24. $7x^2 + 84x + 1$ $-(7x^2-7x-210)$ 91x + 211So, the slant asymptote is y = 3x + 7. **21.** To find the slant asymptote, we use long division: $\frac{4x + \frac{11}{2}}{2x^3 - x^2 + 3x - 1} 8x^4 + 7x^3 + 0x^2 + 2x - 5$ $\frac{-(8x^4 - 4x^3 + 12x^2 - 4x)}{(8x^4 - 4x^3 + 12x^2 - 4x)}$ $11x^3 - 12x^2 + 6x - 5$ $\underbrace{-(11x^3 - \frac{11}{2}x^2 + \frac{33}{2}x - \frac{11}{2})}_{= -\frac{11}{2}}$ $-\frac{13}{2}x^2 - \frac{21}{2}x + \frac{1}{2}$

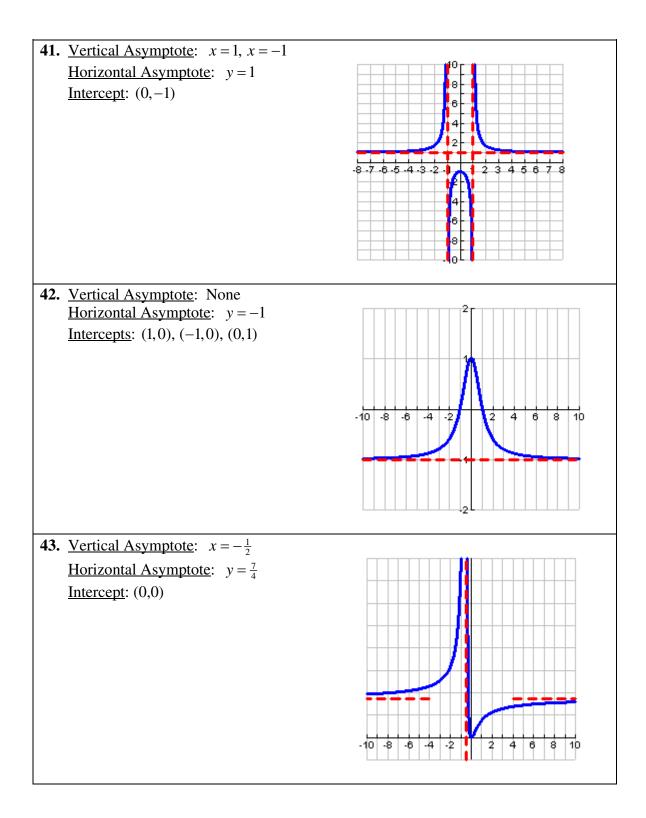
So, the slant asymptote is $y = 4x + \frac{11}{2}$.

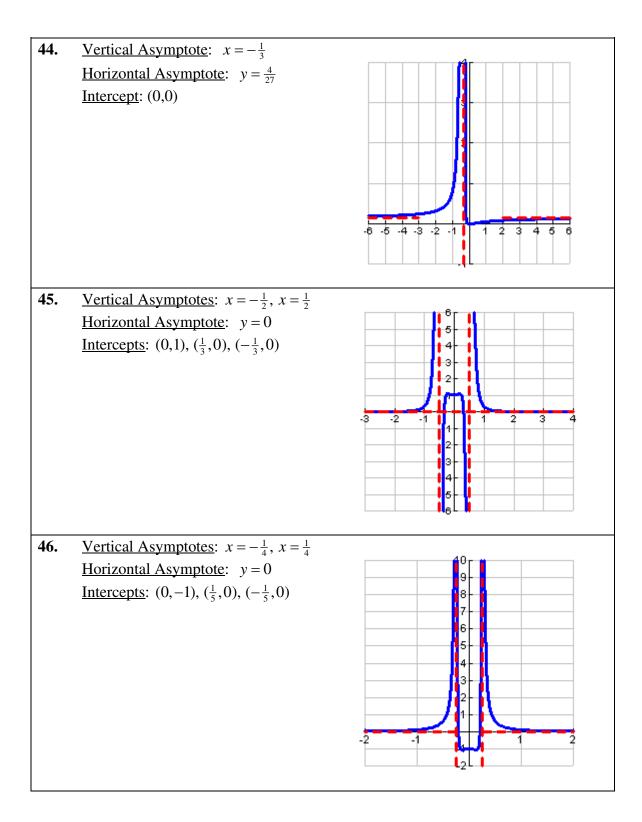
22. To find the slant asymptote, we use long	g division:
	2 <i>x</i>
$x^{5} + 0x^{4} + 0x^{3} + 0x^{2} + 0x - 1) 2x$	$x^{6} + 0x^{5} + 0x^{4} + 0x^{3} + 0x^{2} + 0x + 1$
$-(2x^6)$	$5^{5} + 0x^{5} + 0x^{4} + 0x^{3} + 0x^{2} - 2x$
	2x + 1
So, the slant asymptote is $y = 2x$.	
23. b <u>Vertical Asymptote</u> : $x = 4$	24. d <u>Vertical Asymptote</u> : $x = 4$
<u>Horizontal Asymptote</u> : $y = 0$	<u>Horizontal Asymptote</u> : $y = 3$
25. a <u>Vertical Asymptotes</u> : $x = 2, x = -2$	26. f Vertical Asymptote: None
Horizontal Asymptote: $y = 3$	<u>Horizontal Asymptote</u> : $y = -3$
$\frac{11011201101713911p1000}{y-5}$	Graph never goes above the <i>x</i> -axis
27. e <u>Vertical Asymptotes</u> : $x = 2, x = -2$	28. c <u>Vertical Asymptote</u> : $x = -4$
<u>Horizontal Asymptote</u> : $y = -3$	Horizontal Asymptote: None
29. <u>Vertical Asymptote</u> : $x = -1$	30. <u>Vertical Asymptote</u> : $x = 2$
Horizontal Asymptote: $y = 0$	<u>Horizontal Asymptote</u> : $y = 0$
-10 + 2 + 2 + 4 + 6 + 10 + 10 + 10 + 10 + 10 + 10 + 10	

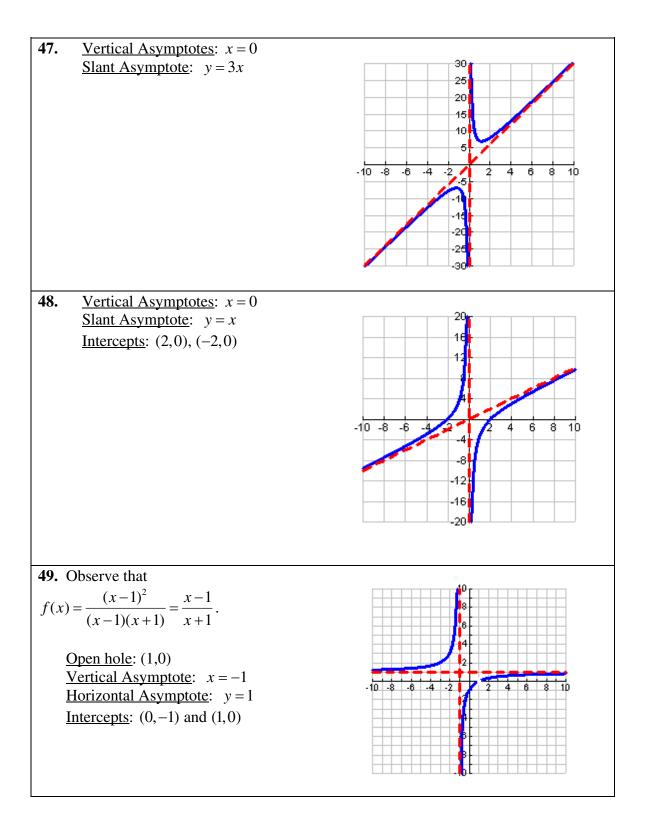


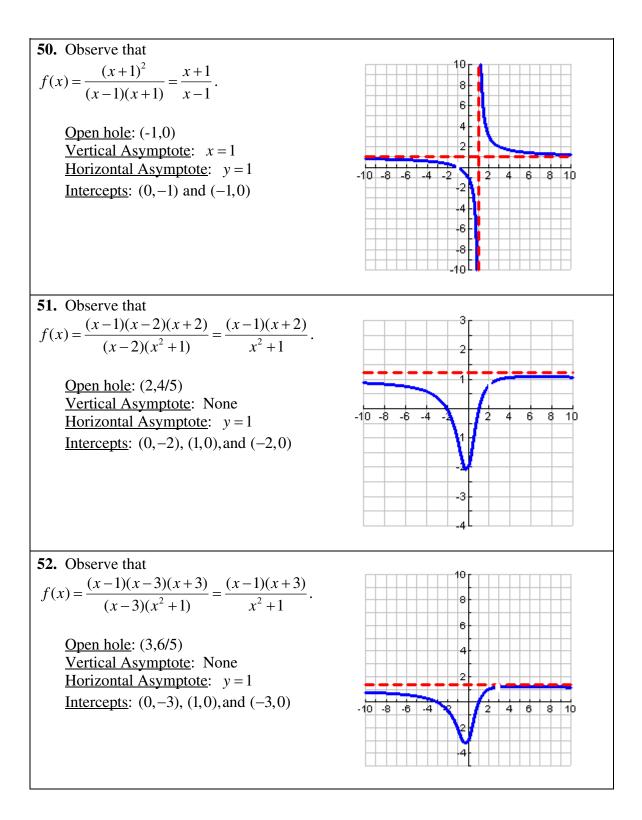


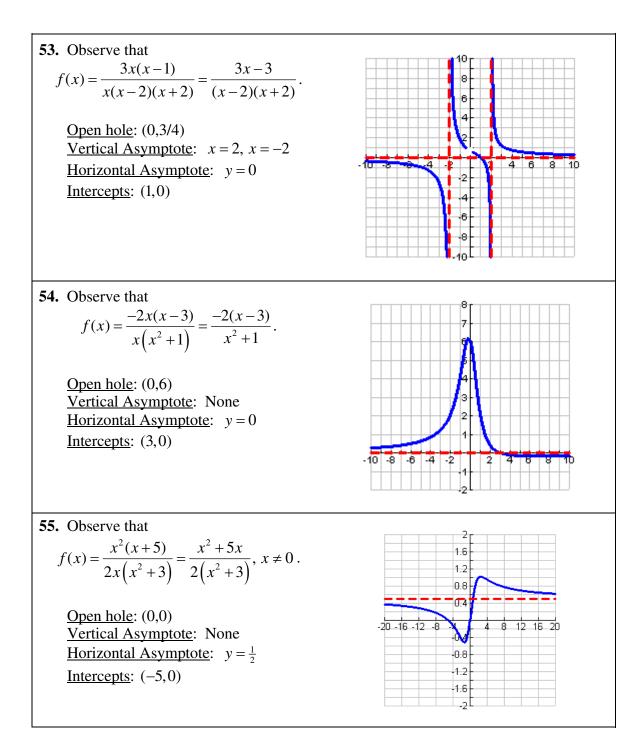


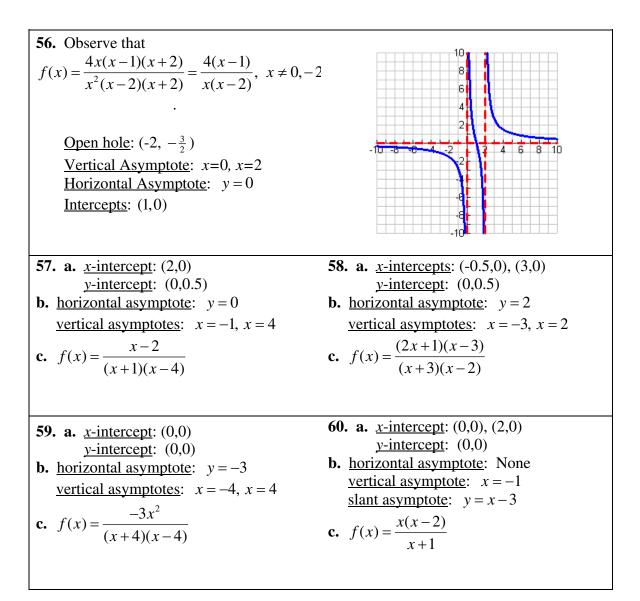












61. a.) $n(4) = 4500$	62. a.) $r(8) = 3.01$, so about 3%.
b.) Observe that	b.) $r(20) = 3.60$, so about 3.6%
$\frac{9500t - 2000}{4+t} = 5500$ $9500t - 2000 = 5500(4+t)$ $4000t = 24,000$ $t = 6 \text{ months}$ c.) $n(t)$ gets closer to 9500 as t gets larger. So, the number of infected people stabilizes around 9500.	c.) The graph of $r(x) = \frac{4x^2}{x^2 + 2x + 5}$ is:
2(1) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Observe that the graph increases towards 4% as x gets large.
63. a. $C(1) = \frac{2(1)}{1^2 + 100} = \frac{2}{101} \cong 0.0198$	64. a. $C(\frac{1}{2}) \cong 0.0124$
b. Since 1 hour = 60 minutes, we have $C(60) = \frac{2(60)}{60^2 + 100} \cong 0.0324$.	b. $C(1) \cong 0.0243$ c. $C(4) \cong 0.0714$
c. Since 5 hours = 300 minutes, we have $C(300) = \frac{2(300)}{300^2 + 100} \cong 0.0067.$ d. The horizontal asymptote is $y = 0$. So, after several days, <i>C</i> is approximately 0.	d. Even though the values temporarily get larger, eventually they decrease toward 0. So, the horizontal asymptote is $y = 0$. So, after several days, <i>C</i> is approximately 0.
65. a. $N(0) = 52$ wpm	66. $N(3) \cong 78$, $N(16) \cong 267$
b. $N(12) \cong 107 \text{wpm}$	The horizontal asymptote is $y = 600$. So,
c. Since 3 years = 36 months, $N(36) \cong 120$ wpm	expect to remember at most 600 names.
d. The horizontal asymptote is $y = 130$.	
So, expect to type approximately 130 wpm as time goes on.	

67. Solve for *x*:

$$\frac{-x^{3} + 10x^{2}}{x} = 16$$

-x² + 10x - 16 = 0
(x - 8)(x - 2) = 0 \implies x = 2,8

So, must sell either 2,000 or 8,000 units to get this average profict. This yields an average value of \$16 per unit.

68. Solve for *x*:

$$\frac{-x^3 + 10x^2}{x} = 25$$
$$-x^2 + 10x - 25 = 0$$
$$(x - 5)^2 = 0 \implies x = 10$$

So, must sell 5,000 units to get this average profict. This yields an average value of \$25 per unit.

5

69. $C(15) = \frac{22(14)}{15^2 + 1} + 24 \approx 25.4 \text{ mcg/mL}.$

The times *t* for which this concentration is achieved are found by solving C(t) = 25.4, as follows:

$$\frac{22(t-1)}{t^2+1} + 24 = 25.4$$

$$22(t-1) - 1.4(t^2+1) = 0$$

$$1.4t^2 - 22t + 23.4 = 0$$

$$t = \frac{22 \pm \sqrt{22^2 - 4(1.4)(23.4)}}{2(1.4)} \approx 1,15$$

So, there are two times, 1 hours and 15 hours, after taking the medication at which the concentration of the drug in the bloodstream is approximately 25.4 mcg/mL. The first time, approximately 1 hour, occurs as the concentration of the drug is increasing to a level high enough that the body will be able to maintain a concentration of approximately 25 mcg/mL throughout the day. The second time, approximately 15 hours, occurs many hours later in the day as the concentration of the medication in the bloodstream drops.

70. The times *t* for which this concentration is achieved are found by solving C(t) = 25, as follows:

$$\frac{22(t-1)}{t^2+1} + 24 = 25$$

$$22(t-1) - (t^2+1) = 0$$

$$t^2 - 22t + 23 = 0$$

$$t = \frac{22 \pm \sqrt{22^2 - 4(1)(23)}}{2(1)} \approx 1.40, \ 21$$

The concentration of the drug in the bloodstream is 25 mcg/mL approximately 21 hours after taking the medication. After 24 hours the concentration of the medication in the bloodstream has dropped to 24.9 mcg/mL. As the drug becomes inert during the 25th hour this concentration will drop to 0 mcg/mL. Thus it is important to take the next dose 24 hours after the previous does so that as the previous dose becomes inert the new dose has time to build up the concentration of the drug in the bloodstream. At the end of the 25th hour the previous dose will no longer be in the patient's system but the new dose will provide a concentration of 24 mcg/mL.

71. $f(x) = \frac{x-1}{x^2-1} = \frac{x-1}{(x-1)(x+1)} = \frac{1}{x+1}$ with a hole at $x = 1$. So, $x = 1$ is not a vertical asymptote.	72. "Degree of numerator = Degree of denominator -1 " is not the criterion for the existence of an oblique asymptote. In this case, there is a horizontal asymptote, namely $y = 0$, but no oblique asymptote.
73. True. The only way to have a slant asymptote is for the degree of the numerator to be greater than the degree of the denominator (by 1). In such case, there is no horizontal asymptote.	74. False. Consider $f(x) = \frac{1}{(x-2)(x+2)}$. The vertical asymptotes are $x = -2$, $x = 2$.
75. False. This would require the denominator to equal 0, causing the function to be undefined.	76. True. Intersections with neither of these types of asymptotes creates a division by 0.
77. <u>Vertical Asymptotes</u> : $x = c, x = -d$ <u>Horizontal Asymptote</u> : $y = 1$	78. There are no vertical asymptotes since $x^2 + a^2 \neq 0$. The horizontal asymptote is $y = 3$. (Note: The actual values of <i>a</i> and <i>b</i> do not impact this result.)
79. Two such possibilities are: $y = \frac{4x^2}{(x+3)(x-1)}$ and $y = \frac{4x^5}{(x+3)^3(x-1)^2}$	80. $f(x) = \frac{x-3}{x^2+1}$ is such a function.

81. There are many different answers. Here is one approach.

Since there is an oblique asymptote, the degree of the numerator equals 1 + degree of the denominator. We are also given that f(0) = 1, f(-1) = 0.

The denominator cannot be linear since it <u>would</u> then have a vertical asymptote. So, it must be at least quadratic. Note that $x^2 + a^2 \neq 0$, for any $a \neq 0$.

Guided by these observations, we assume the general form of f is: $f(x) = \frac{x^3 + K}{x^2 + a^2}$.

(Note that y=x is, in fact, an oblique asymptote for *f*.)

We must find values of K and a using the two points on the curve – this leads to the following system:

$$\begin{cases} f(0) = \frac{K}{a^2} = 1 \implies K = a^2 \\ f(-1) = \frac{-1+K}{1+a^2} = 0 \implies K = 1 \end{cases}$$

From this system, we see that K = 1 and $a = \pm 1$. Thus, one function that works is $f(x) = \frac{x^3+1}{x^2+1}$.

82. There are many different answers. Here is one approach. Since x = -3, x = 1 are vertical asymptotes, the denominator has factors (x+3)(x-1).

Further, since y=3x is an oblique asymptote for *f*, we know it has form:

$$f(x) = \frac{3x^3 + K}{a(x+3)(x-1)}$$

We must determine values of K and a that satisfy f(0) = 2, f(2) = 0. This leads to the system:

$$\begin{cases} f(0) = \frac{K}{-3a} = 2 \implies K = -6a \\ f(2) = \frac{24+k}{5a} = 0 \implies K = -24 \end{cases}$$

From this system, we see that K = -24 and a = 4.

Thus, one function that works is $f(x) = \frac{3x^3 - 24}{4(x+3)(x-1)}$

83. We must factor the denominator. Observe that the possible rational zeros are: $\pm 1, \pm 2, \pm 5, \pm 10$. Using synthetic division yields

So, $x^3 - 2x^2 - 13x - 10 = (x+2)(x+1)(x-5)$. None of these factors cancels with one in the numerator. So, the vertical asymptotes are x = -2, x = -1, x = 5. So, the integral of *f* exists on [0,3].

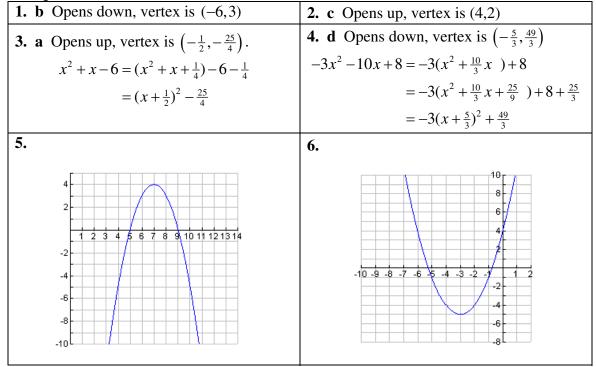
84. We must factor the denominator. Observe that the possible rational zeros are: $\pm 1, \pm 2, \pm 5, \pm 10, \pm 25, \pm 50$. Using synthetic division yields

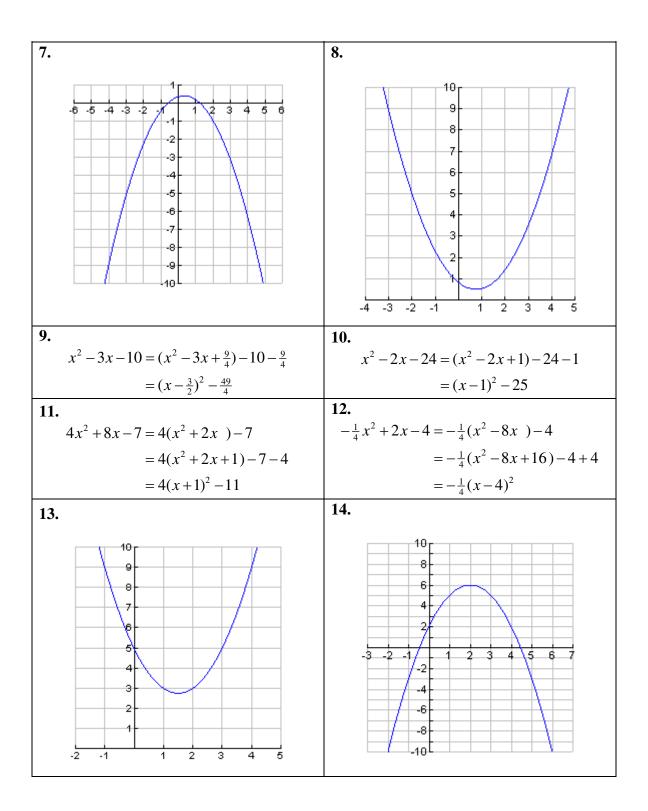
So, $x^3 + 2x^2 - 25x - 50 = (x - 5)(x + 5)(x - 2)$. None of these factors cancels with one in the numerator. So, the vertical asymptotes are x = -5, x = 2, x = 5. So, the integral of *f* might not exist on [-3,2].

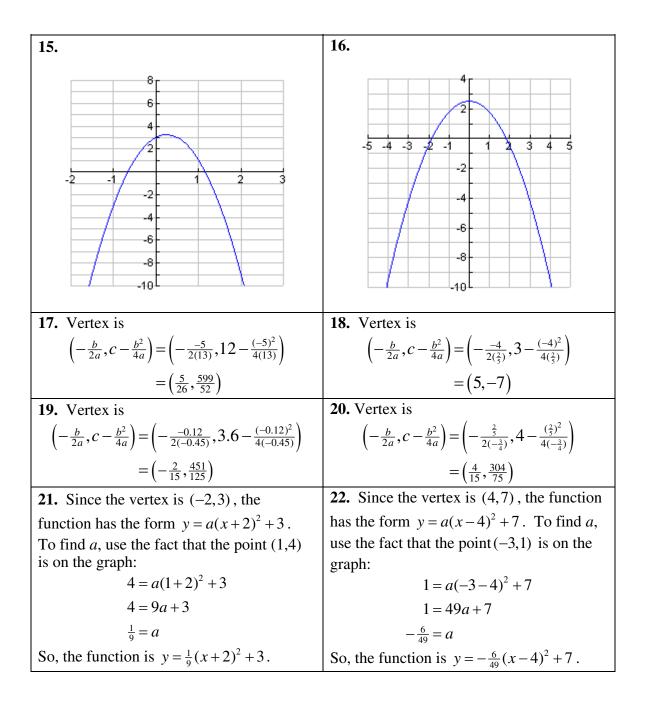
85. Note that the denominator factors as $6x^2 - x - 2 = (3x - 2)(2x + 1)$. Neither of these factors cancels with one in the numerator. So, the vertical asymptotes are $x = \frac{2}{3}, x = -\frac{1}{2}$. So, the integral of *f* might not exist on [-2,0].

86. Observe that $f(x) = \frac{2x(3-x)}{x(x^2+1)} = \frac{2(3-x)}{x^2+1}$, which has no vertical asymptotes. Hence, the integral of *f* exists on [-1,1].

Chapter 2 Review Solutions -----



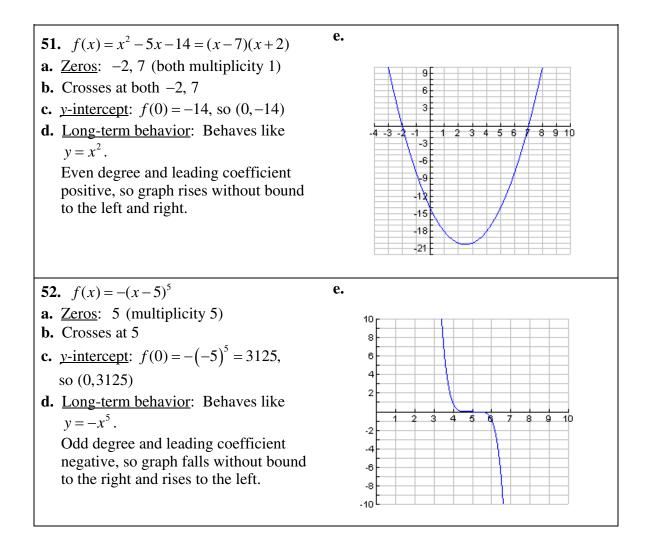




23. Since the vertex is (2.7, 3.4), the	24. Since the vertex is $\left(-\frac{5}{2}, \frac{7}{4}\right)$, the
function has the form $y = a(x-2.7)^2 + 3.4$.	function has the form $y = a(x + \frac{5}{2})^2 + \frac{7}{4}$.
To find <i>a</i> , use the fact that the point (3.2, 4.8) is on the graph: $4.8 = a(3.2 - 2.7)^2 + 3.4$ 4.8 = 0.25a + 3.4 5.6 = a	To find <i>a</i> , use the fact that the point $(\frac{1}{2}, \frac{3}{5})$ is on the graph: $\frac{3}{5} = a(\frac{1}{2} + \frac{5}{2})^2 + \frac{7}{4}$ $\frac{3}{5} = 9a + \frac{7}{4}$
So, the function is $y = 5.6(x - 2.7)^2 + 3.4$.	$-\frac{23}{180} = a$
	So, the function is $y = -\frac{23}{180}(x + \frac{5}{2})^2 + \frac{7}{4}$.
25. a. $P(x) = R(x) - C(x)$ $= (-2x^{2} + 12x - 12) - (\frac{1}{3}x + 2)$ $= -2x^{2} + \frac{35}{3}x - 14$ b. Solve $P(x) = 0$. $-2x^{2} + \frac{35}{3}x - 14 = 0$ $-2(x^{2} - \frac{35}{6}x) - 14 = 0$ $-2(x^{2} - \frac{35}{6}x + \frac{1225}{144}) - 14 + \frac{1225}{72} = 0$ $-2(x - \frac{35}{12})^{2} + \frac{217}{72} = 0$ $(x - \frac{35}{12})^{2} = \frac{217}{144}$ $x = \frac{35}{12} \pm \sqrt{\frac{217}{12}}$ $= \frac{35 \pm \sqrt{217}}{12}$ $= 4.1442433, 1.68909$	c. d. The range is approximately (1.6891, 4.144), which corresponds to where the graph is above the <i>x</i> -axis.
26. Area is $A(x) = (2x - 4)(x + 7) = 2x^2 + 10x - 28$	27. Area is $A(x) = \frac{1}{2}(x+2)(4-x) = -\frac{1}{2}(x^2-2x) + 4$
	$= -\frac{1}{2}(x^2 - 2x + 1) + 4 + \frac{1}{2}$
	$= -\frac{1}{2}(x-1)^2 + \frac{9}{2}$
	Note that $A(x)$ has a maximum at $x = 1$
	(since its graph is a parabola that opens down). The corresponding dimensions are both base and height are 3 units.

28. a.	b. Solve $h(t) = 0$:
$h(t) = -12(t^2 - \frac{20}{3}t)$	t(-12t + 80) = 0
$= -12(t^2 - \frac{20}{3}t + \frac{100}{9}) + 12\left(\frac{100}{9}\right)$	$t = 0, \frac{80}{12} \cong 6.67$
$= -12(t - \frac{10}{3})^2 + \frac{400}{3}$	So, after approximately 6.7 seconds, it will
So, the maximum height is approximately 133.33 units.	hit the ground.
29. Polynomial with degree 6	30. Polynomial with degree 5
31. Not a polynomial (due to the term $x^{\frac{1}{4}}$)	32. Polynomial with degree 3
33. d linear	34. b Parabola opens down
35. a 4 th degree polynomial, looks like	36. c 7 th degree polynomial, looks like
$y = x^4$ for x very large.	$y = x^7$ for x very large.
37. Reflect the graph of x^7 over the <i>x</i> -axis	38. Shift the graph of x^3 to the right 3 units.
$ \begin{array}{r} 10 \\ 8 \\ 6 \\ 4 \\ 2 \\ -2 \\ -2 \\ -2 \\ -4 \\ -6 \\ -8 \\ -10 \\ \end{array} $	$ \begin{array}{c} 10 \\ 8 \\ 6 \\ 4 \\ 2 \\ -2 \\ -4 \\ -6 \\ -8 \\ -10 \\ \end{array} $

39. Shift the graph of x^4 down 2 units.	40. Shift the graph of x^5 left 7 units, then reflect over the <i>x</i> -axis, and then move down 6 units and.
41. 6 (multiplicity 5)	42. 0 (multiplicity 1)
-4 (multiplicity 2)	2 (multiplicity 3)
	-5 (multiplicity 1) 44.
43. $x^5 - 13x^3 + 36x = x(x^2 - 9)(x^2 - 4)$	44. $4.2x^4 - 2.6x^2 \cong 4.2x^2 \left(x^2 - 0.619047\right)$
= x(x+3)(x-3)(x+2)(x-2)	=4.2x(x-0.786795)(x+0.786795)
So, the zeros are $0, -2, 2, 3, -3$, all with	So, the zeros are approximately:
multiplicity 1.	0 (multiplicity 2)
	0.786795, -0.786795 (multiplicity 1)
45. $x(x+3)(x-4)$	46. $(x-2)(x-4)(x-6)(x+8)$
47. $x(x+\frac{2}{5})(x-\frac{3}{4}) = x(5x+2)(4x-3)$	48. $(x - (2 - \sqrt{5}))(x - (2 + \sqrt{5}))$
49.	50. $(x-3)^2 x^3 (x+1)^2$
$(x+2)^2(x-3)^2 =$	
$x^4 - 2x^3 - 11x^2 + 12x + 36$	



53. $f(x) = 6x^7 + 3x^5 - x^2 + x - 4$ **a.** <u>Zeros</u>: We first try to apply the Rational Root Test:

Factors of $-4: \pm 1, \pm 2, \pm 4$ Factors of 6: $\pm 1, \pm 2, \pm 3, \pm 6$ Possible rational zeros:

 $\pm 1, \pm 2, \pm 4, \pm \frac{1}{2}, \pm \frac{1}{3}, \pm \frac{2}{3}, \pm \frac{4}{3}, \pm \frac{1}{6}$

Unfortunately, it can be shown that none of these are zeros of f. To get a feel for the possible number of irrational and complex root, we apply Descartes' Rule of Signs:

Number of sign variations for f(x): 3

 $f(-x) = -6x^7 - 3x^5 - x^2 - x - 4$, so

Number of sign variations for f(-x): 0Since f(x) is degree 7, there are 7 zeros, classified as:

Positive Real Zeros	Negative Real Zeros	Imaginary Zeros
3	0	4
1	0	6

Need to actually graph the polynomial to determine the approximate zeros. From **e.**, we see there is a zero at approximately (0.8748,0) with multiplicity 1.

54. $f(x) = -x^4(3x+6)^3(x-7)^3$ a. Zeros: 0 (multiplicity 4)

> -2 (multiplicity 3) 7 (multiplicity 3)

b. Touches at 0, and crosses at both -2, 7

c. <u>*y*-intercept</u>: f(0) = 0, so (0,0)

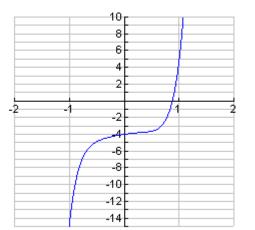
d. <u>Long-term behavior</u>: Behaves like $y = -x^{10}$.

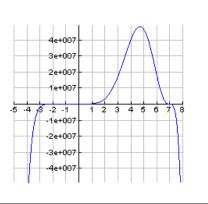
Even degree and leading coefficient negative, so graph falls without bound to the right and left. **b.** From the analysis in part **a**, we know the graph crosses at its only real zero.

- **c.** <u>*y*-intercept</u>: f(0) = -4, so (0, -4)
- **d.** <u>Long-term behavior</u>: Behaves like $y = x^7$.

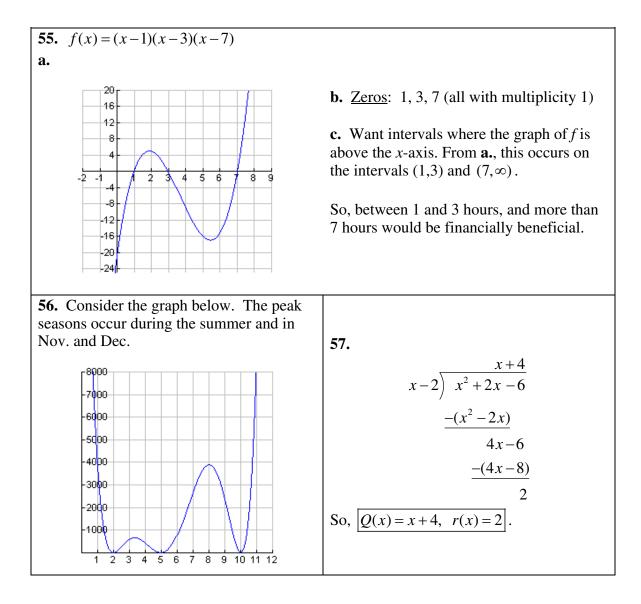
Odd degree and leading coefficient positive, so graph falls without bound to the left and rises to the right.

e.





e.



58.	59.
	$2x^3 - 4x^2 - 2x - \frac{7}{2}$
$2x-3\overline{\smash{\big)}\ 2x^2-5x-1}$	$2x-4\overline{\smash{\big)}\ 4x^4-16x^3+12x^2+x-9}$
$-(2x^2-3x)$	$-(4x^4-8x^3)$
-2x-1	$-8x^3+12x^2$
-(-2x+3)	$-(-8x^3+16x^2)$
	$-4x^2+x$
So, $Q(x) = x - 1$, $r(x) = -4$.	$\underline{-(-4x^2+8x)}$
	-7x-9
	-(-7x+14)
	-23
	So,
	$Q(x) = 2x^3 - 4x^2 - 2x - \frac{7}{2}, \ r(x) = -23$
60.	61.
$\frac{-2x^{2}+2x-2}{2x^{2}+x-4) - 4x^{4}+2x^{3}+6x^{2}-x+2}$	-2 1 4 5 -2 -8
$2x^{2} + x - 4$ $-4x^{2} + 2x^{2} + 6x^{2} - x + 2$	8
$\frac{-(-4x^4 - 2x^3 + 8x^2)}{(-4x^4 - 2x^3 + 8x^2)}$	1 2 1 -4 0
$4x^3 - 2x^2 - x$	So, $Q(x) = x^3 + 2x^2 + x - 4$, $r(x) = 0$.
$-(4x^3+2x^2-8x)$	
$-4x^2+7x+2$	
$-(-4x^2-2x+8)$	
9 <i>x</i> -6	
So, $Q(x) = -2x^2 + 2x - 2$, $r(x) = 9x - 6$.	
62.	
<u>-2</u> 1 0	
	4 12
	-6 15
So, $Q(x) = x^2 - 2x - 6$, $r(x) = 15$.	

63.	
<u>-8</u> 1 0 0 0	0 0 -64
-8 64 -512 40	096 - 32,768 262,144
1 -8 64 -512 40	096 - 32,768 262,080
So, $Q(x) = x^5 - 8x^4 + 64x^3 - 512x^2 + 4096x^4$	
64.	
$\frac{3}{4}$ 2 4 -2	0 7 5
$\frac{3}{2}$ $\frac{33}{8}$	$\frac{51}{32} \frac{153}{128} \frac{3147}{512}$
$2 \frac{11}{2} \frac{17}{8}$	$\frac{51}{32}$ $\frac{1049}{128}$ $\frac{5707}{512}$
So, $Q(x) = 2x^4 + \frac{11}{2}x^3 + \frac{17}{8}x^2 + \frac{51}{32}x + \frac{1049}{128}$, $r(x) = \frac{1}{32}x^4 + \frac{10}{128}x^4 + \frac{10}{128}x^$	$(x) = \frac{5707}{512}$.
65.	66.
x+3	3 1 2 -5 4 2
$5x^{2} - 7x + 3 \overline{) 5x^{3} + 8x^{2} - 22x + 1}$	3 15 30 102
$-(5x^3-7x^2+3x)$	1 5 10 34 104
$15x^2 - 25x + 1$	So, $Q(x) = x^3 + 5x^2 + 10x + 34$, $r(x) = 104$.
$-(15x^2-21x+9)$	
-4x-8	
So, $Q(x) = x+3$, $r(x) = -4x-8$.	
67.	68.
<u>-1</u> 1 -4 2 -8	x-5
-1 5 -7	$\frac{x-5}{x^2+0x+4} x^3-5x^2+4x-20$
1 -5 7 -15	$\frac{-(x^3+0x^2+4x)}{2}$
So, $Q(x) = x^2 - 5x + 7$, $r(x) = -15$.	$-5x^2+0x-20$
	$-(-5x^2+0x-20)$
	0
	So, $Q(x) = x - 5$, $r(x) = 0$.

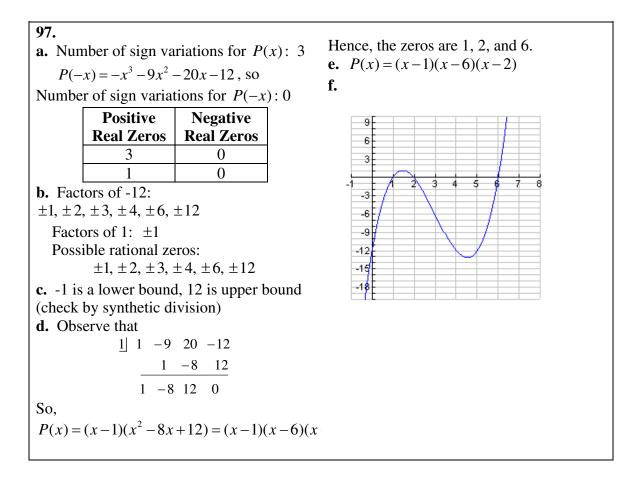
69. Area = length \times width. So, solving for length, we see that length = Area \div width. So, in this case,		
length = $\frac{6x^4 - 8x^3 - 10x^2 + 12x - 16}{2x - 4} = \frac{3x^4 - 4x^3 - 5x^2 + 6x - 8}{x - 2}$.		
We compute this quotient using synthetic di		
2 3 - 4 - 2		
6	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	
3 2	-1 4 0	
Thus, the length (in terms of x) is $3x^3 + 2x^2 - x + 4$ feet.		
70. Let $x = width$ (= length) of corner square. Then, the dimensions of the box formed are: width = $10-2x$ length = $15-2x$ height = x Thus, the volume of the box is given by V(x) = x(10-2x)(15-2x). 72. 1 6 1 0 -7 1 -1 6 7 7 0 1 6 7 7 0 1 0 So, $f(1) = 0$.	71. <u>-2</u> 6 1 0 -7 1 -1 <u>-12 22 -44 102 -206</u> 6 -11 22 -51 103 -207 So, $f(-2) = -207$. 73. <u>1</u> 1 2 0 -3 <u>1 3 3</u> 1 3 3 0 So, $g(1) = 0$.	
74. <u>-1</u> 1 2 0 -3 <u>-1 -1 1</u> 1 1 -1 -2 So, $g(-1) = -2$.	75. $P(-3) = (-3)^3 - 5(-3)^2 + 4(-3) + 2 = -82$. So, it is not a zero. 76. $P(-2) = P(2) = 0$ Yes, they are zeros.	

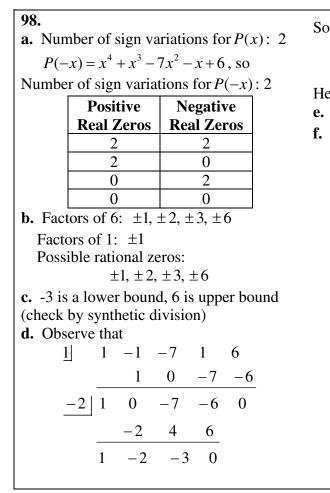
77. $P(1) = 2(1)^4 - 2(1) = 0$ Yes, it is a zero.	78. $P(4) = (4)^4 - 2(4)^3 - 8(4) = 96$ No, it is not a zero.
79. $P(x) = x(x^3 - 6x^2 + 32)$ Observe that since -2 is a zero, synthetic division yields: <u>-2 </u> 1 -6 0 32 <u>-2 16 -32</u> 1 -8 16 0 So, $P(x) = x(x+2)(x^2 - 8x + 16)$ $= x(x+2)(x-4)^2$.	80. Observe that since 3 is a zero, synthetic division yields: <u>3</u> 1 -7 0 36 <u>3 -12 -36</u> <u>1 -4 -12 0</u> So, $P(x) = (x-3)(x^2-4x-12)$ = (x-3)(x-6)(x+2).
81. $P(x) = x^2 (x^3 - x^2 - 8x + 12)$ We need to factor $x^3 - x^2 - 8x + 12$. To do so, we begin by applying the Rational Root Test: Factors of 12: $\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 12$ Factors of 1: ± 1 Possible rational zeros: $\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 12$ Observe that both -3 (multiplicity 1) and 2 (multiplicity 2) are zeros. So, $P(x) = x^2 (x+3)(x-2)^2$.	82. $P(x) = x^4 - 32x^2 - 144 = (x^2 - 36)(x^2 + 4)$ = $(x - 6)(x + 6)(x - 2i)(x + 2i)$ 83. Number of sign variations for $P(x)$: 1 $P(-x) = x^4 - 3x^3 - 16$, so Number of sign variations for $P(-x)$: 1 $\boxed{\frac{Positive Real Zeros}{1}}$

84.	85	85.			
Number of sign variations t	for $P(x)$: 1 Nu	Number of sign variations for $P(x)$: 5			: 5
$P(-x) = -x^5 - 6x^3 + 4x$	c-2, so	$P(-x) = -x^9 + 2x^7 + x^4 + 3x^3 - 2x - 1$, so			
Number of sign variations	for $P(-x): 2$ Nu	Number of sign variations for $P(-x)$: 2			
	gative l Zeros		Positive eal Zeros	Negative Real Zeros	
1	2		5	2	
1	0		5	0	
			3	2	
			3	0 2	
			1	0	
86.	87		T	0	
Real ZerosReal313111	for $P(-x): 2$ Points	$P(-x): 2$ Possible rational zeros: $\pm 1, \pm 2, \pm 3, \pm 6$ ive			
89. 90. Factors of 64: $\pm 1, \pm 2, \pm 4, \pm 8, \pm 16, \pm 32, \pm 64$ Factors of 2: $\pm 1, \pm 2$ Factors of 2: $\pm 1, \pm 2$ Possible rational zeros: $\pm 1, \pm 2, \pm 4, \pm 8, \pm 16, \pm 32, \pm 64, \pm \frac{1}{2}$		$,\pm\frac{1}{4}$			

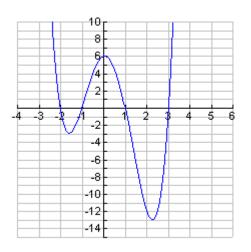
91.	02			
Factors of 1: ± 1	92. Factors of 3: ±1, ±3			
Factors of 2: $\pm 1, \pm 2$				
,	Factors of 12: $\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 12$			
Possible rational zeros: $\pm 1, \pm \frac{1}{2}$	Possible rational zeros:			
	$\pm 1, \pm \frac{1}{2}, \pm \frac{1}{3}, \pm \frac{1}{4}, \pm \frac{1}{6}, \pm \frac{1}{12}, \pm 3, \pm \frac{3}{2}, \pm \frac{3}{4}$			
The only rational zero is $\frac{1}{2}$.				
	The rational zeros are $-\frac{3}{2}, \frac{1}{3}, \frac{1}{2}$.			
93.				
Factors of $-16: \pm 1, \pm 2, \pm 4, \pm 8, \pm 16$				
Factors of 1: ± 1				
Possible rational zeros:				
$\pm 1, \pm 2, \pm 1$	$4, \pm 8, \pm 16$			
The rational zeros are 1, 2, 4, and -2 .				
94.				
Factors of $-2: \pm 1, \pm 2$	10			
Factors of 24:	8			
$\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 8, \pm 12, \pm 24$	6			
Possible rational zeros:				
$\pm 1, \pm \frac{1}{2}, \pm \frac{1}{3}, \pm \frac{1}{4}, \pm \frac{1}{6}, \pm \frac{1}{8}, \pm \frac{1}{12}, \pm \frac{1}{24}, \pm 2, \pm \frac{2}{3}$	4			
, 2, 3, 4, 6, 8, 12, 24, , 3	2			
There are no rational zeros. Indeed, see	-0.769265 0.723653			
the graph to the right:	-2 -1 1 2			
and Braker to and training				
	-4			

95. e. Not possible to accurately factor since **a.** Number of sign variations for P(x): 1 we do not have the zeros. $P(-x) = -x^3 - 3x - 5$, so f. Number of sign variations for P(-x): 020Since P(x) is degree 3, there are 3 zeros, 16 the real ones of which are classified as: 12 8 Positive Negative **Real Zeros Real Zeros** 1.15417 0 1 -Þ. 2 **b.** Factors of -5: $\pm 1, \pm 5$ -8 Factors of 1: ± 1 -12 Possible rational zeros: $\pm 1, \pm 5$ -16 **c.** -1 is a lower bound, 5 is an upper 20 bound **d.** There are no rational zeros. 96. Hence, the zeros are -4, 1, and 2. **a.** Number of sign variations for P(x): 1 e. P(x) = (x-2)(x+4)(x+1) $P(-x) = -x^3 + 3x^2 + 6x - 8$, so f. Number of sign variations for P(-x): 2 Positive Negative 12**Real Zeros Real Zeros** 1 0 9 1 2 6 **b.** Factors of -8: $\pm 1, \pm 2, \pm 4, \pm 8$ 3 Factors of 1: ± 1 -6 -5 -8 Possible rational zeros: $\pm 1, \pm 2, \pm 4, \pm 8$ з З **c.** -8 is a lower bound, 4 is upper bound (check by synthetic division) -9 **d.** Observe that 2 | 1 3 - 6 - 8-12 -15 2 10 8 1 5 4 0 So,





 $P(x) = (x-1)(x+2)(x^2-2x-3)$ = (x-1)(x+2)(x-3)(x+1) Hence, the zeros are -2, -1, 1, and 3. e. P(x) = (x-1)(x+2)(x-3)(x+1)f.

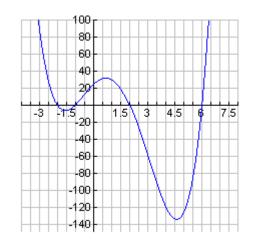


99.							
a. Number of sign variations for $P(x)$: 2							
P(-	$P(-x) = x^4 + 5x^3 - 10x^2 - 20x + 24$, so						
Numbe	r of sig	gn vari	ations	for P(-x): 2		
	Pos	sitive	N	egativ	e		
	Real	Zeros	Rea	al Zer	os		
		0		0			
		0		2 2			
		2		2			
		2		0			
b. Fact	tors of	24:					
±1,	$\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 8, \pm 12, \pm 24$						
Facto	Factors of 1: ± 1						
Possible rational zeros:							
$\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 8, \pm 12, \pm 24$							
c. -3 is a lower bound, 8 is an upper bound							
(check by synthetic division)							
d. Observe that							
2	1	-5	-10	20	24		
		2	-6	-32	-24		
_	1 1	-3	-16	-12	0		
		-1	4	12			
	1	-4	-12	0			

So,

$$P(x) = (x-2)(x+1)(x^2 - 4x + 12)$$

= (x-2)(x+1)(x+2)(x-6)
Hence, the zeros are -2, -1, 2, and 6.
e. $P(x) = (x-2)(x+1)(x+2)(x-6)$
f.

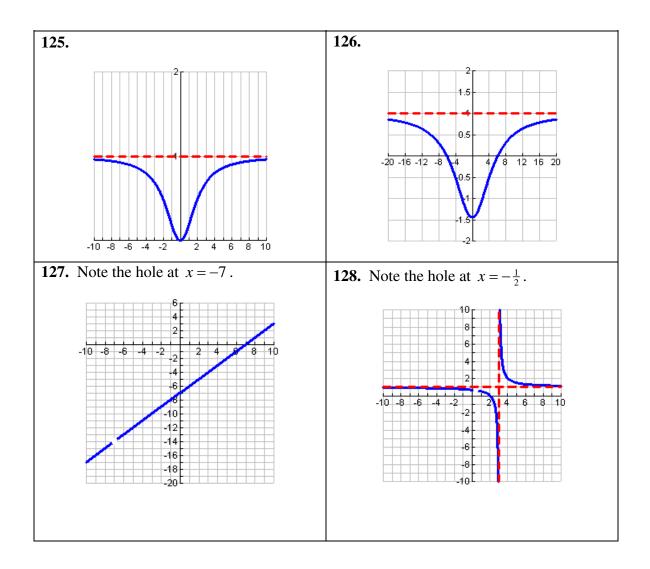


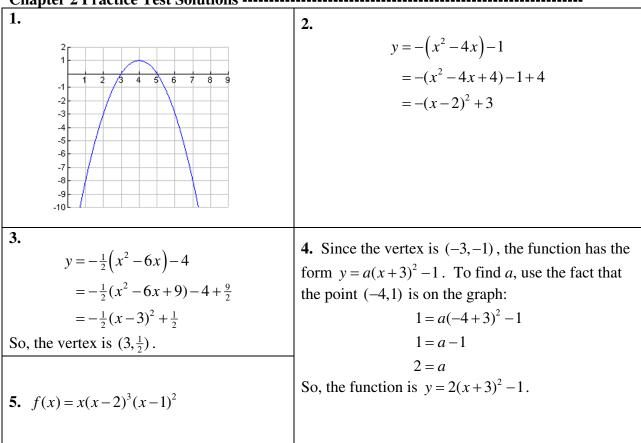
100.	2 1 0 -3 -6 8	
a. Number of sign variations for $P(x)$: 2	$\underline{\begin{array}{ccccccccccccccccccccccccccccccccccc$	
$P(-x) = -x^5 + 3x^3 - 6x^2 - 8x$, so	1 1 2 1 - 4 0	
Number of sign variations for $P(-x)$: 2		
Since $P(x)$ is degree 5, there are 5 zeros.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Also note that 0 is a zero of P		
Positive Negative	So, $P(x) = x(x-1)(x-2)(x^2+3x+4)$	
Real Zeros Real Zeros	Now, solve $x^2 + 3x + 4 = 0$ using the	
2 2	quadratic formula: $x = \frac{-3\pm\sqrt{9-16}}{2} = \frac{-3\pm i\sqrt{7}}{2}$ So,	
2 0 2	$P(x) = x(x-1)(x-2)(x-(\frac{-3+i\sqrt{7}}{2}))(x-(\frac{-3-i\sqrt{7}}{2}))$	
$\begin{array}{c ccc} 0 & 2 \\ \hline 0 & 0 \\ \end{array}$	f.	
b. $P(x) = x(x^4 - 3x^2 - 6x + 8)$		
Factors of 8: ± 1 , ± 2 , ± 4 , ± 8	6	
Factors of 1: ± 1 Page ible rational zeroes $\pm 1 \pm 2 \pm 4 \pm 8$	4	
Possible rational zeros: ± 1 , ± 2 , ± 4 , ± 8	2	
 c2 is a lower bound. d. The rational zeros are 0, 1, 2. 		
e. From d., we know that $x(x-1)(x-2)$	-4	
divides $P(x)$ evenly. We use synthetic	-6	
division using 1 and 2 to determine the		
quotient $P(x) \div x(x-1)(x-2)$:	/10L	
101. $P(x) = x^2 + 25 = (x - 5i)(x + 5i)$	102. $P(x) = x^2 + 16 = (x - 4i)(x + 4i)$	
103. Note that the zeros are	104. Note that the zeros are	
$x^2 - 2x + 5 = 0 \implies$	$x^2 + 4x + 5 = 0 \implies$	
$x = \frac{2 \pm \sqrt{4 - 4(5)}}{2} = \frac{2 \pm 4i}{2} = 1 \pm 2i$	$x = \frac{-4 \pm \sqrt{16 - 4(5)}}{2} = \frac{-4 \pm 2i}{2} = -2 \pm i$	
So, $P(x) = (x - (1 - 2i))(x - (1 + 2i))$.	So, $P(x) = (x - (-2 - i))(x - (-2 + i))$.	
105. Since $-2i$ and $3+i$ are zeros, so are	106. Since $3i$ and $2-i$ are zeros, so are	
their conjugates $2i$ and $3-i$, respectively.	their conjugates $-3i$ and $2+i$,	
Since $P(x)$ has degree 4, these are the only	respectively. Since $P(x)$ has degree 4,	
missing zeros.	these are the only missing zeros.	
107. Since <i>i</i> is a zero, then so is its a zero of $i = 100$	108. Since $2i$ is a zero, then so is its	
conjugate $-i$. Also, since $2 - i$ is a zero of multiplicity 2, then its conjugate $2 + i$ is	conjugate $-2i$. Also, since $1 - i$ is a zero of multiplicity 2, then its conjugate $1 + i$ is	
also a zero of multiplicity 2. These are all	also a zero of multiplicity 2. These are all	
of the zeros.	of the zeros.	

100 Since is a zero of $P(x)$ so is its	
109. Since <i>i</i> is a zero of $P(x)$, so is its conjugate <i>i</i> . As such	110. Since 2- <i>i</i> is a zero of $P(x)$, so is its
conjugate - <i>i</i> . As such, ($n = i(n + i) = n^2 + 1$ divides $B(n)$ evenly	conjugate 2+ <i>i</i> . As such,
$(x-i)(x+i) = x^2 + 1$ divides $P(x)$ evenly.	(x - (2 + i))(x - (2 - i)) = x2 - 4x + 5
Indeed, observe that $\frac{2}{2}$ 2 4	divides $P(x)$ evenly. Indeed, observe that
$\frac{x^2 - 3x - 4}{x^2 + 0x + 1 x^4 - 3x^3 - 3x^2 - 3x - 4}$	$x^2 - 4$
	$\frac{x^2 - 4}{x^2 - 4x + 5} \overline{x^4 - 4x^3 + x^2 + 16x - 20}$
$\frac{-(x^4 + 0x^3 + x^2)}{(x^4 + 0x^3 + x^2)}$	
$-3x^3-4x^2-3x$	$\frac{-(x^4-4x^3+5x^2)}{2}$
$-(-3x^3+0x^2-3x)$	$-4x^2 + 16x - 20$
$-4x^2+0x-4$	$\frac{-(-4x^2+16x-20)}{-(-4x^2+16x-20)}$
	0
$\underline{-(-4x^2+0x-4)}$	So,
0	P(x) = (x - (2 + i))(x - (2 - i))(x - 2)(x + 2).
So, $\mathcal{D}(x) = \mathcal{D}(x) + \mathcal{D}(x)$	
$P(x) = (x-i)(x+i)(x^2 - 3x - 4)$	
=(x-i)(x+i)(x-4)(x+1)	
111. Since $-3i$ is a zero of $P(x)$, so is its	112. Since $1+i$ is a zero of $P(x)$, so is its
conjugate 3 <i>i</i> . As such,	conjugate 1- <i>i</i> . As such,
$(x-3i)(x+3i) = x^2 + 9$ divides $P(x)$	$(x-(1+i))(x-(1-i)) = x^2 - 2x + 2$ divides
evenly. Indeed, observe that	P(x) evenly. Indeed, observe that
$x^2 - 2x + 2$	
$\frac{x^2 - 2x + 2}{x^2 + 0x + 9 x^4 - 2x^3 + 11x^2 - 18x + 18}$	$\frac{x^2 + 2x - 3}{x^2 - 2x + 2x - 3}$
$\frac{-(x^4+0x^3+9x^2)}{2}$	$-(x^4-2x^3+2x^2)$
$-2x^3+2x^2-18x$	$\frac{2x^3 - 7x^2}{2x^3 - 7x^2} + 10x$
$-(-2x^3+0x^2-18x)$	
$\frac{2x^2 + 0x + 18}{2x^2 + 0x + 18}$	$\frac{-(2x^3-4x^2+4x)}{2}$
	$-3x^2+6x-6$
$-(2x^2+0x+18)$	$-(-3x^2+6x-6)$
0	0
Next, we find the roots of $x^2 - 2x + 2$:	So,
$x = \frac{2 \pm \sqrt{4 - 4(2)}}{2} = 1 \pm i$	P(x) = (x - (1 + i))(x - (1 - i))(x - 1)(x + 3).
$x = \frac{1}{2} = 1 \pm i$	
So,	
P(x) = (x-3i)(x+3i)(x-(1+i))(x-(1-i)).	

113.	114.
$P(x) = x^{4} - 81 = (x^{2} - 9)(x^{2} + 9)$	$P(x) = x^{3} - 6x^{2} + 12x = x(x^{2} - 6x + 12)$
=(x-3)(x+3)(x-3i)(x+3i)	We need to find the roots of $x^2 - 6x + 12$:
	$x = \frac{6 \pm \sqrt{36 - 4(12)}}{2} = 3 \pm i\sqrt{3}$
	So, $P(x) = x(x - (3 + i\sqrt{3}))(x - (3 - i\sqrt{3}))$.
115. $x^3 - x^2 + 4x - 4 = x^2(x-1) + 4(x-1) = 0$	$(x^{2}+4)(x-1) = (x-2i)(x+2i)(x-1)$
116. $P(x) = x^4 - 5x^3 + 12x^2 - 2x - 20$ Factors of -20: $\pm 1, \pm 2, \pm 4, \pm 5, \pm 10, \pm 20$ Factors of 1: ± 1 Possible rational zeros: $\pm 1, \pm 2, \pm 4, \pm 5, \pm 10, \pm 20$ -1 1 -5 12 -2 -20 -1 6 -18 20 2 1 -6 18 -20 0 $\frac{2 - 8 20}{1 - 6 18 - 20 0}$ So, $P(x) = (x+1)(x-2)(x^2 - 4x + 10)$. Next, we find the roots of $x^2 - 4x + 10$: $x = \frac{4 \pm \sqrt{16 - 4(10)}}{2} = 2 \pm i\sqrt{6}$ So, $P(x) = (x+1)(x-2)(x - (2 + i\sqrt{6}))(x - (2 - i\sqrt{6}))$.	 117. Vertical Asymptote: x = -2 <u>Horizontal Asymptote</u>: Since the degree of the numerator equals the degree of the denominator, y = -1 is the HA. 118. Vertical Asymptote: x = 1 <u>Horizontal Asymptote</u>: Since the degree of the numerator is less than degree of the denominator, y = 0 is the HA.

119. Vertical Asymptote: $x = -1$ Slant Asymptote: $y = 4x - 4$ To find the slant asymptote, we use long division: $ \frac{4x - 4}{x + 1} \overline{\smash{\big)}\ 4x^2 + 0x + 0} $ $ \frac{-(4x^2 + 4x)}{-4x + 0} $ $ \frac{-(-4x - 4)}{4} $ No horizontal asymptote	120. <u>Vertical Asymptote</u> : None since $x^2 + 9 \neq 0$ <u>Horizontal Asymptote</u> : Since the degree of the numerator equals the degree of the denominator, y = 3 is the HA.
121. No vertical asymptotes, Horizontal asymptote: $y = 2$	122. vertical asymptotes: $x = -5$ Horizontal asymptote: None Slant asymptote: $y = -2x + 13$, as seen by the result of this synthetic division:
123.	124.

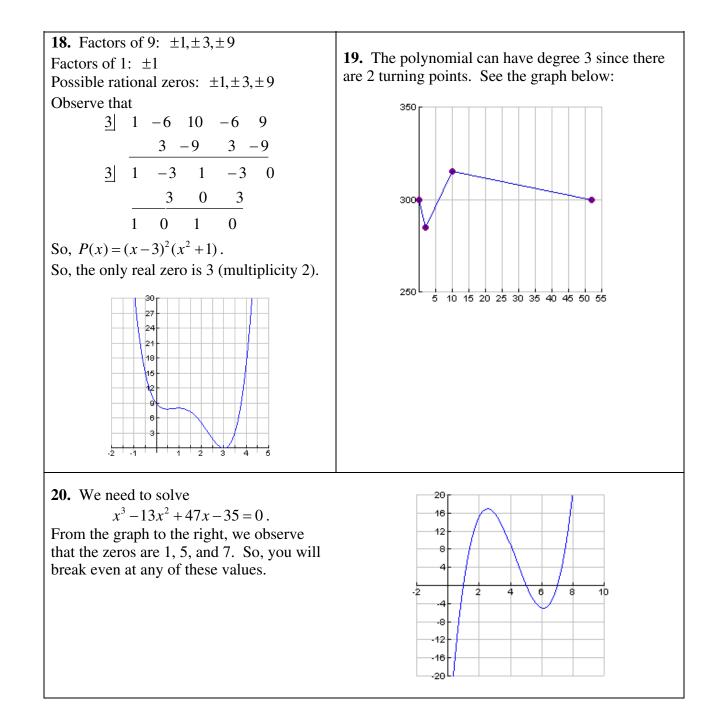


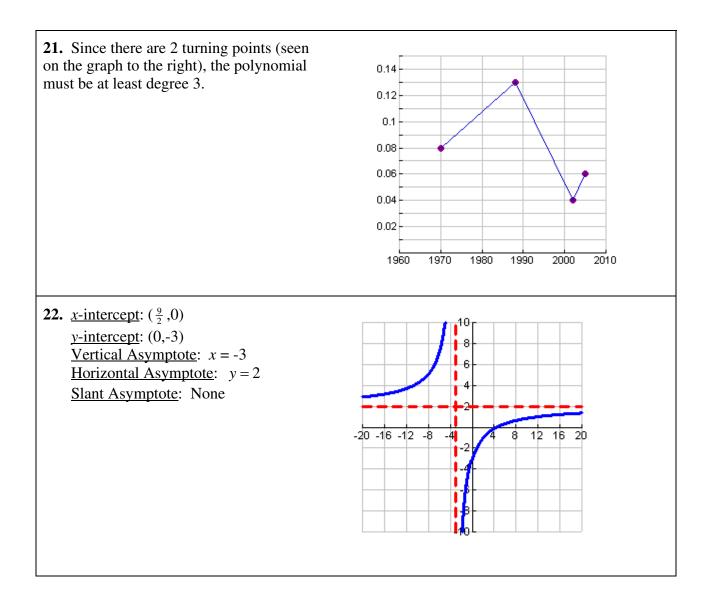


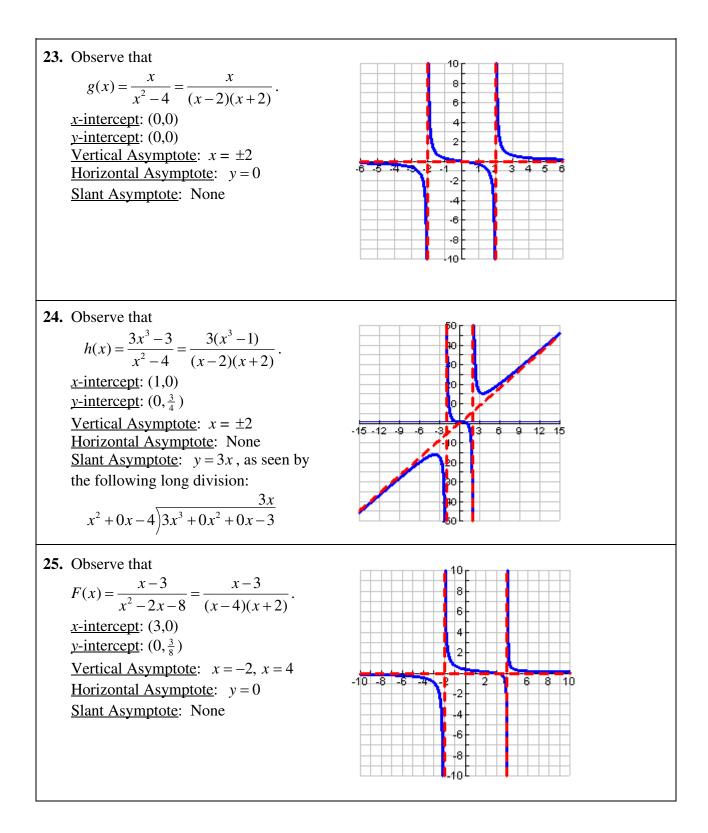
Chapter 2 Practice Test Solutions ------

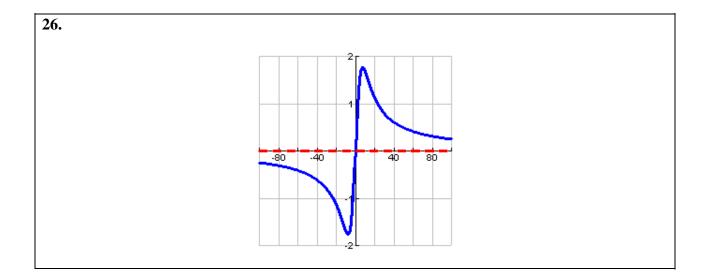
6. $f(x) = x(x^3 + 6x^2 - 7)$ **b.** Crosses at all four zeros. **c.** <u>*y*-intercept</u>: f(0) = 0, so (0,0)a. Zeros: Certainly, 0 is a zero. To find d. Long-term behavior: Behaves like the remaining three, we first try to apply $y = x^4$. Even degree and leading coefficient the Rational Root Test: positive, so graph rises without bound to the left Factors of -7: $\pm 1, \pm 7$ and right. Factors of 1: ± 1 e. Possible rational zeros: $\pm 1, \pm 7$ Observe that 1 is a zero. So, using synthetic division, we compute the 80 quotient $(x^3 + 6x^2 - 7) \div (x - 1)$: 60 40 1 1 6 0 -7 20 -5 2 3 -4 -2/-1 20 40 So, $f(x) = x(x-1)(x^2 + 7x + 7)$. Now, we 60 solve $x^2 + 7x + 7 = 0$ using the quadratic 86 formula: $x = \frac{-7 \pm \sqrt{49 - 4(7)}}{2} = \frac{-7 \pm \sqrt{21}}{2}$ So, there are four distinct *x*-intercepts. 7. $\frac{-2x^2 - 2x - \frac{11}{2}}{2x^2 - 3x + 1) - 4x^4 + 2x^3 - 7x^2 + 5x - 2}$ $\frac{-(-4x^4+6x^3-2x^2)}{-4x^3-5x^2+5x}$ $\frac{-(-4x^3+6x^2-2x)}{-11x^2+7x-2}$ $\frac{-(-11x^2 + \frac{33}{2}x - \frac{11}{2})}{-(-11x^2 + \frac{33}{2}x - \frac{11}{2})}$ $-\frac{19}{2}x+\frac{7}{2}$ So, $Q(x) = -2x^2 - 2x - \frac{11}{2}$, $r(x) = -\frac{19}{2}x + \frac{7}{2}$.

13. Yes, a complex zero cannot be an <i>x</i> -intercept.	14. Number of sign variations for $P(x)$: 4 $P(-x) = -3x^5 + 2x^4 + 3x^3 + 2x^2 + x + 1$, so Number of sign variations for $P(-x)$: 1 Since $P(x)$ is degree 5, there are 5 zeros that we classify as:			
	Positive Real Zeros	Negative Real Zeros	Imaginary Zeros	
	4	1	0	
	2	1	2	
15.	0	1	4	
Factors of 12: ± 1 , ± 2 , ± 3 , ± 4 , ± 6 , ± 12 F Possible rational zeros: ± 1 , ± 2 , ± 3 , ± 4 , ± 6				
16. $P(x) = -x^3 + 4x = -x(x-2)(x+2)$ Zeros are $0, \pm 2$.	$P(x) = 2x^{3} - 3x^{2} + 8x - 12$ = $x^{2}(2x - 3) + 4(2x - 3)$ = $(x^{2} + 4)(2x - 3)$ = $(x + 2i)(x - 2i)(2x - 3)$			
	The only real i namely $\pm 2i$.	zero is $\frac{3}{2}$, the	other two are o	complex,
		20 15 10 5 .2 -1 -5 10 10 10 10 20	2 3 4	









Chapter 2 Cumulative Review			
1.	2.		
$f(2) = 8 - \frac{1}{\sqrt{4}} = \frac{15}{2}$	$f(1) = 0^4 - \sqrt{5} = -\sqrt{5}$		
$f(-1) = -4 - \frac{1}{\sqrt{1}} = -5$	$f(3) = 2^4 - \sqrt{9} = 13$		
$f(1+h) = 4(1+h) - \frac{1}{\sqrt{1+h+2}} = 4 + 4h - \frac{1}{\sqrt{h+3}}$	$f(x+h) = (x+h-1)^4 - \sqrt{2x+2h+3}$		
$f(-x) = -4x - \frac{1}{\sqrt{-x+2}} = -4x - \frac{1}{\sqrt{2-x}}$			
3. Note that $f(x) = \frac{3x-5}{-(x+2)(x-1)}$.			
$f(-3) = \frac{-14}{-(-1)(-1)}$	$f(-3) = \frac{-14}{-(-1)(-4)} = \frac{7}{2}$		
$f(0) = \frac{-5}{-(2)(-5)}$	$f(0) = \frac{-5}{-(2)(-1)} = -\frac{5}{2}$		
$f(4) = \frac{7}{-(6)(3)} = -\frac{7}{18}$			
f(1) is undefined			
4.			
$\frac{f(x+h) - f(x)}{h} = \frac{\left[4\left(x+h\right)^3 - 3\left(x+h\right)^2 + 5\right] - \left[4x^3 - 3x^2 + 5\right]}{h}$			
h = h			
$=\frac{4\left[x^{3}+3x^{2}h+3xh^{2}+h^{3}\right]-3x^{2}-6xh-3h^{2}+5-4x^{3}+3x^{2}+5}{4x^{3}+3x^{2}+5}$			
- h			
$=\frac{h(12x^{2}+12xh+4h^{2}-6x-3h)}{h}=\boxed{12x^{2}+12xh+4h^{2}-6x-3h}$			

5.		
$\int f(x+h) - f(x)$	$\left[\sqrt{x+h} - \frac{1}{\left(x+h\right)^2}\right] - \left[\sqrt{x} - \frac{1}{\left(x+h\right)^2}\right]$	$\frac{-\frac{1}{x^2}}{\frac{1}{x^2}} = \frac{\sqrt{x+h} - \sqrt{x}}{h} - \frac{\frac{1}{(x+h)^2} - \frac{1}{x^2}}{h}$
h	$h = \frac{1}{h}$	= $=$ h h
	$\sqrt{x+h} - \sqrt{x} \sqrt{x+h} + \sqrt{x}$	$x^{2} - (x+h)^{2}$ $x+h-x$ $x^{2} - x^{2} - 2xh - h^{2}$
	=	$-\frac{x^2 - (x+h)^2}{hx^2(x+h)^2} = \frac{x+h-x}{h\left(\sqrt{x+h} + \sqrt{x}\right)} - \frac{x^2 - x^2 - 2xh - h^2}{hx^2(x+h)^2}$
	$=\frac{1}{\sqrt{x+h}+\sqrt{x}}+\frac{2x+h}{x^{2}(x+h)^{2}}$	
6.	$\sqrt{\lambda + n} + \sqrt{\lambda} \qquad \lambda (\lambda + n)$	
0.	f(-5)	=0, f(0)=0,
	f(3)	$=3(3)+3^2=18$
	f(4)	$=3(4)+4^2=28$
	v v v	$= 2(5) - 5^3 = 115$
	<i>J</i> (<i>c</i>)	
7.		The graph of f is:
Domain	$(-\infty,10)\cup(10,\infty)$	y ¹⁰ –
Range	$[0,\infty)$	y 9
Increasing	(3,8)	6 5 -
Decreasing	$(-\infty,3)\cup(10,\infty)$	4 - 3 -
Constant	(8,10)	
		$\begin{array}{c} 1 \\ -2 \\ -2 \\ -1 \\ 0 \\ 1 \\ -2 \\ -1 \\ 0 \\ 1 \\ 2 \\ -1 \\ 0 \\ 1 \\ 2 \\ -1 \\ -2 \\ -1 \\ 0 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 $
8.		The graph of f is:
Domain	$(-\infty, 14]$	y ⁶⁰
Range	$\left[-6,\infty ight)$	50 -
Increasing	(-5,10)	
Decreasing	$(-\infty, -5) \cup (10, 14)$	20
Constant	None	
		1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 X

9. $\frac{y(9) - y(5)}{9 - 5} = \frac{\frac{2(9)}{9^2 + 3} - \frac{2(5)}{5^2 + 3}}{4} = \frac{\frac{18}{84} - \frac{10}{28}}{4} = \boxed{-\frac{1}{28}}$	10. Need $6x - 7 \ge 0$, so that $x \ge \frac{7}{6}$. So, the domain is $\left[\frac{7}{6}, \infty\right)$.
11. Observe that $g(-x) = \sqrt{-x+10} \neq g(x)$ $-g(-x) = -\sqrt{-x+10} \neq g(x)$ So, neither.	12. Shift the graph of $y = x^2$ left 1 unit, then reflect over the <i>x</i> -axis, and then move up 2 units.
13. Translate the graph of $y = \sqrt{x}$ to the right 1 unit and then up 3 units.	14. $f(g(x)) = \left(\sqrt{x+2}\right)^2 - 3 = x+2-3 = x-1$ Domain: $[-2,\infty)$ 15. $f(-1) = 7 - 2(-1)^2 = 5$ $g(f(-1)) = 2(5) - 10 = 0$
16. To find the inverse, switch the x and y and solve for y: $x = (y-4)^2 + 2 \implies x-2 = (y-4)^2 \implies y = 4 \pm \sqrt{x-2}$ Since we are assuming $y \ge 4$, use the positive root above. So, $f^{-1}(x) = 4 + \sqrt{x-2}$, $x \ge 2$. 17. Since the vertex is (-2,3), the equation so far is $f(x) = a(x+2)^2 + 3$. Use (-1,4) to find a: $4 = a(-1+2)^2 + 3 = a+3 \implies a = 1$ (multiplicity 1)	
So, $f(x) = (x+2)^2 + 3$.	

19. Observe that	20. Observe that
$\underbrace{4x^2 + 4x + 1}_{4x^2 + 4x + 1}$	3 2 3 -11 6
$\frac{4x^2 + 4x + 1}{-5x + 3 - 20x^3 - 8x^2 + 7x - 5}$	6 27 48
$-(-20x^3+12x^2)$	2 9 16 54
$-20x^2 + 7x$	So, $Q(x) = 2x^2 + 9x + 16$, $r(x) = 54$.
$\frac{-(-20x^2+12x)}{-(-20x^2+12x)}$	
-5x-5	
$\frac{-(-5x+3)}{2}$	
-8	
So, $Q(x) = 4x^2 + 4x + 1$, $r(x) = -8$	
21. $P(x) = 12x^3 + 29x^2 + 7x - 6$	22. Since 5 is a zero, we know that $x - 5$
Factors of -6: $\pm 1, \pm 2, \pm 3, \pm 6$	divides $P(x)$ evenly. So,
Factors of 12: $\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 12$	<u>5</u> 2 -3 -32 -15
Possible rational zeros:	10 35 15
$\pm 1, \pm 2, \pm 3, \pm 6, \pm \frac{1}{2}, \pm \frac{1}{3},$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\pm \frac{1}{4}, \pm \frac{1}{6}, \pm \frac{1}{12}, \pm \frac{2}{3}, \pm \frac{3}{2}, \pm \frac{3}{4}, \pm \frac{1}{4}$	So,
Note that	$P(x) = (x-5)(2x^2+7x+3)$
<u>-2</u> 12 29 7 -6	=(x-5)(2x+1)(x+3)
-24 -10 6	So, the zeros are $-3, -\frac{1}{2}, 5$.
12 5 -3 0	
So, $P(x) = (x+2)(12x^2+5x-3)$	
= (x+2)(4x+3)(3x-1)	
So, the zeros are $-2, -\frac{3}{4}, \frac{1}{3}$.	

