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Kinematics in One Dimension 
 

 

Of all the intellectual hurdles which the human mind has confronted and has overcome in 
the last fifteen hundred years, the one which seems to me to have been the most amazing in 
character and the most stupendous in the scope of its consequences is the one relating to 
the problem of motion. 

 
Herbert Butterfield—The Origins of Modern Science  

 
Recommended class days: 3 minimum, 4 preferred 

Background Information 
Chapter 2 is a large and difficult chapter. Although to physicists the chapter says nothing more than 
v = dx/dt and a = dv/dt, these are symbolic expressions for difficult, abstract concepts. Student ideas 
about force and motion are largely non-Newtonian, and they cannot begin to grasp Newton’s laws 
without first coming to a better conceptual understanding of motion. 

As Butterfield notes in the above quote, the “problem of motion” was an immense 
intellectual hurdle. Galileo was perhaps the first to understand what it means to quantify 
observations about nature and to apply mathematical analysis to those observations. He was also 
the first to recognize the need to separate the how of motion—kinematics—from the why of 
motion—dynamics. These are very difficult ideas, and we should not be surprised that kinematics 
is also an immense intellectual hurdle for students. 

Student difficulties with kinematics have been well researched (Trowbridge and 
McDermott, 1980 and 1981; Rosenquist and McDermott, 1987; McDermott et al., 1987, Thornton 
and Sokoloff, 1990). Arons (1990) gives an excellent summary and makes many useful suggestions 
for teaching kinematics. Student difficulties can be placed in several categories. 

Difficulties with concepts: Students have a rather undifferentiated view of motion, without 
clear distinctions between position, velocity, and acceleration. Chapter 1 will have given them a 
start at making these distinctions, but they’ll need additional practice. 
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In one study, illustrated in the figure above, students were shown two balls on tracks. Ball 

A is released from rest and rolls down an incline while ball B rolls horizontally at constant speed. 
Ball B overtakes ball A near the beginning, as the motion diagram shows, but later ball A overtakes 
ball B. Students were asked to identify the time or times (if any) at which the two balls have the 
same speed. Prior to instruction, roughly half the students in a calculus-based physics class identify 
frames 2 and 4, when the balls have equal positions, as being times when they have equal speeds. 

Similarly (see references for details), students often identify situations in which two 
objects have the same velocity as indicating that the objects have the same acceleration. Confusion 
of velocity and acceleration is particularly pronounced at a turning point, where a majority of 
students think that the acceleration is zero. McDermott and her co-workers found that roughly 80% 
of students beginning calculus-based physics make errors when asked to identify or compare 
accelerations, and that the error rate was still roughly 60% after conventional instruction. Thornton 
and Sokoloff (1990) report very similar pre-instruction and post-instruction error rates for students’ 
abilities to interpret graphs of velocity and acceleration versus time. 

In addition: 

• Students have a very difficult time with the idea of instantaneous quantities. 
• Students are often confused by the significance of positive and negative signs, 

especially for velocity and acceleration. Many students interpret positive and negative 
accelerations as always meaning that the object is speeding up or slowing down. This 
seems to be an especially difficult idea to change. 

Difficulties with graphs: Nearly all students can graph a set of data or can read a value from a 
graph. Their difficulties are with interpreting information presented graphically. In particular: 

• Many students don’t know the meaning of “Graph a-versus-b.” They graph the first 
quantity on the horizontal axis, ending up with the two axes reversed. 

• Many students think that the slope of a straight-line graph is found from y/x (using any 
point on the graph) rather than / .y xΔ Δ   

• Students don’t recognize that a slope has units or how to determine those units. 
• Many students don’t understand the idea of the “slope at a point” on a curvilinear 

graph. They cannot readily compare the slopes at different points. 
• Very few students are familiar with the idea of “area under a curve.” Even students who 

have already started calculus, and who “know” that an integral can be understood as an 
area, have little or no idea how to use this information if presented with an actual curve. 

• Many students interpret “slope of a curve” or “area under a curve” literally, as the 
graph is drawn, rather than with reference to the scales and units along the axes. To 
them, a line drawn at 45° always has a slope of 1 (no units), and they may answer an 
area-under-the-curve question with “about three square inches.” 

• Students don’t recognize that an “area under the curve” has units or how the units of an 
“area” can be something other than area units. We tell them, “Distance traveled is the area 
under the v-versus-t curve.” But distance is a length? How can a length equal an area? 

A recitation hour spent interpreting and using graphs is an hour well spent for all students. 
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Difficulties relating graphs to motion: Nearly all students have a very difficult time relating 
the physical ideas of motion to a graphical representation of motion. If students observe a 
motion—a ball rolling down an incline, for example—and are then asked to draw an x-versus-t 
graph, many will draw a picture of the motion as they saw it. Confusion between graphs and 
pictures underlies many of the difficulties of relating graphs to motion. 

Part of the difficulty is that we measure position along a horizontal axis (for horizontal 
motion), but then we graph the position on a vertical axis. This choice is never explained, as it 
seems obvious to physicists, but it’s a confusing issue for students who aren’t sure what a function 
is or how graphs are interpreted. 

Confusion between position and velocity, and difficulty 
interpreting slopes, is seen with a simple example. Here is a graph that 
shows the motion of two objects A and B. Students are asked: 
Do A and B ever have the same speed? If so, at what time? A significant 
fraction will answer that A and B have the same speed at t = 2 s, confusing 
a common height with common slope. 

In another exercise, students are shown the following position-versus-time graph and 
asked at which lettered point or points is the object moving fastest, at rest, slowing down, etc. 
Students initially have difficulty with such exercises because they can’t interpret the meaning of the 
graph. Fortunately, most students can master questions similar to these with a small amount of 
instruction and practice. 

 

 
 

A much more difficult problem for most students, and one that takes more practice, is 
changing from one type of graph to another. For example, students might be given the x-versus-t 
graph shown below on the left and asked to draw the corresponding vx-versus-t graph. When first 
presented with such a problem, almost no students can generate the correct velocity graph shown 
on the right. Many feel that a “conservation of shape” law applies and redraw the position graph— 
perhaps translated up or down—as a velocity graph. They need a careful explanation, through 
several examples, of how the slope of the position graph becomes the value of the velocity graph at 
the same t. Changing from a velocity graph back to a position graph is even more difficult. 

 

 
 

These examples require giving physical meaning to the 
slope of and area under curves, but they are still somewhat 
removed from the actual situation in which the motion occurs. 
To tie all aspects of a student’s understanding of kinematics 
together, McDermott and her group presented students with 
situations of a ball rolling along a series of level and inclined tracks. The students are then asked to 
draw x-versus-t, vx-versus-t, and ax-versus-t graphs of the motion, with the graphs stacked vertically 
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so that a vertical line connects equal values of t on each of the three graphs. Students in a 
conventional physics class were presented—after kinematics instruction—with the simple track 
shown in the figure. Only 1 student of 118 gave a completely correct response. Many students draw 
wildly incorrect graphs for questions like these, indicating an inability to translate from a 
visualization of the motion to a graphical description of the motion. 
Difficulties with terminology: Arons (1990) has written about student difficulties with the term 
per. Many students have difficulty giving a verbal explanation of what “20 meters per second” 
means—especially for an instantaneous velocity that is only “20 meters per second” for “an 
instant.” Students will often say things such as “acceleration is delta v over delta t,” but they 
frequently don’t use the word “over” in the sense of a ratio but rather to mean “during the interval.” 

Another difficult terminology issue for students is our use of the words initial and final. 
Sometimes we use initial to mean the initial conditions with which the problem starts, and final 
refers to the end of the problem. But then we use Δx = xfinal – xinitial and Δv = vfinal – vinitial when we’re 
looking at how position and velocity change over small intervals Δt. Students often don’t recognize 
the distinction between these uses. 

Finally, students often don’t make the same assumptions we do about the beginning and 
ending points of a problem. We interpret “Bob throws a ball at 20 m/s...” as a problem that starts 
with Bob releasing the ball. Students often want to include his throw as part of the problem. 
Similarly, a question to “find the final speed of a ball dropped from a height of 10 m” will get many 
answers of “zero,” because that really is the final speed. These are not insurmountable issues, but 
you need to be aware that students don’t always interpret a problem statement as a physicist would. 
Difficulties with mathematics: Many students, especially if they are starting calculus 
concurrently, are not sure what a function is. They don’t really understand the notation x(t) or our 
discussion of “position as a function of time.” A not insignificant fraction of students interpret x(t) 
as meaning x times t, as it would in an expression such as a(b + c). Instructors need to give explicit 
attention to this issue. 

Students are easily confused with changes in notation. Math courses tend to work with 
functions y(x), with x the independent variable. This includes graphing y-versus-x and taking 
derivatives dy/dx. In physics, we use functions x(t), with x the dependent variable. We make 
x-versus-t graphs and take derivatives dx/dt. Despite how trivial this seems, instructors should be 
aware that many students are confused by the different notation and need assistance with this. 

Finally, students at this stage often lack an operational understanding of differentials and 
integrals. They’re not perturbed by writing expressions such as dx = x2, in which they equate an 
infinitesimal to a finite expression. When faced with an integral such as ,vdt∫  students are likely to 
pull the v out of the integral, as if it were as constant, rather than recognize that v is an implicit 
function of t. Physics can help them solidify their understanding and use of calculus, but you should 
be cautious about assuming that students have a working knowledge of calculus. 

Student Learning Objectives 
• To differentiate clearly between the concepts of position, velocity, and acceleration. 
• The interpret kinematic graphs. 
• To translate kinematic information between verbal, pictorial, graphical, and algebraic 

representations. 
• To learn the basic ideas of calculus (differentiation and integration) and to utilize these 

ideas both symbolically and graphically. 
• To understand free-fall motion. 
• To begin the development of a robust problem-solving strategy. 
• To solve quantitative kinematics problems and to interpret the results. 
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Pedagogical Approach 
This chapter treats one-dimensional motion only. Although the basic kinematic quantities x, vx,  
and ax (or y, vy, and ay) are components of vectors, a full discussion of vectors is not needed for 
one-dimensional motion. Indeed, the term component is not introduced until Chapter 3. The major 
issue is whether each of these quantities is positive or negative, and that only depends on whether 
the vector , ,  or r v ar r r  points in the positive or the negative direction. This is easily determined with 
a motion diagram. Tactics Box 1.4 summarized the signs of these quantities, but students made 
minimal use of this information in Chapter 1. They now need practice associating a verbal 
description of the motion with the proper signs, especially for acceleration. 

Note: In this textbook, v v= r  is the magnitude of the velocity vector, or speed, and a a= r  is the 
magnitude of the acceleration. Component of vectors, such as vx or ay, always use explicit x- and 
y-subscripts. Not surprisingly, students can easily be confused by the rather common practice in 
one-dimensional motion of using v both for velocity (a signed quantity) and for speed. 

We want students to recognize vertical motion, horizontal motion, and even motion along 
an incline as just variations of “one-dimensional motion.” Consequently, the text often uses a 
generic symbol s to represent position. Examples then use x for horizontal motion and y for vertical 
motion, but instructors are encouraged to use s when writing kinematic equations that don’t refer to 
a specific situation or direction. 

This chapter introduced two important models: uniform motion and motion with constant 
acceleration. It’s important to emphasize—especially when working example problems—where 
you’re making simplifying assumptions. Few objects exhibit true uniform motion or constant 
acceleration, but it’s often reasonable to model their motion this way. Not many students are 
familiar with the crucial role that assumptions and modeling play in physics, so it’s important to be 
explicit about this rather than hoping that students will pick it up on their own. 

A major goal of this chapter is to provide both the conceptual foundations of kinematics 
and a systematic approach to analyzing problems. To this end, the text emphasizes multiple 
representations of knowledge. In particular, motion has the following descriptions: 

• Verbal, as presented in typical end-of-chapter problems. 
• Pictorial, including (1) motion diagrams and (2) a sketch showing beginning and 

ending points as well as coordinates and symbols. 
• Graphical, as shown in position-, velocity-, and acceleration-versus-time graphs. 
• Mathematical, through the relevant equations of kinematics. 

To acquire an accurate, intuitive sense of motion, students must learn to move back and forth 
between these different representations. Much of this chapter is focused on learning the different 
representations of kinematic knowledge. 

The connection between motion diagrams and graphs is strongly emphasized. Students 
learned motion diagrams in Chapter 1, and they should now be able to draw a correct motion 
diagram for nearly any one-dimensional motion. This is a good intermediate stage in the process of 
interpreting a verbal description of motion. Students can see where velocities are big or small and 
where the motion speeds up or slows down. As they proceed into the less familiar territory of 
drawing graphs, you can keep calling their attention to whether or not the graph is consistent with 
the motion diagram. This approach is particularly useful for establishing correct signs. 

The ultimate goal, of course, is for students to be able to work kinematics problems. There 
is now good evidence that initial attention to these conceptual issues leads students to become 
better problem solvers. 
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Using Class Time 
A minimum of three days is needed to cover this chapter if students are to have an adequate 
opportunity to practice the many ideas. A fourth day of additional practice problem solving can 
really help to cement these important ideas that will be used throughout the course. The fourth day 
is highly recommended if your students are starting calculus concurrently with physics. 

Day 1: The Chapter Preview introduces the “Looking Back” feature that recommends specific 
previous sections for review. New to the 4th edition, Looking Back references are also given in the 
body of the text on an as-needed basis; examples are in Signs and Units on p. 44. It’s worth calling 
attention to this feature and recommending its use. Although it seems like extra work, suggest to 
students that a brief review will actually save them time by making the current chapter easier to 
understand. 

Chapter 2 is the first serious test of an instructor’s intent to use an active-learning teaching 
style. The temptation to start lecturing about slopes and derivatives is strong, but I urge you to jump 
right in with questions and problems for the students to work on. You can make the necessary 
points about slopes, derivatives, and other matters as you go over the answers and underlying 
reasoning of the questions. 

A particularly important point to make as you go along is the role of Δ. Students tend to 
make no distinction between position and displacement (x and Δx) or between velocity and change 
of velocity (v and Δv). Half-remembered formulas from high school, such as v = d/t, are often more 
hindrance than help for coming to a solid understanding of kinematics. Even many college texts 
don’t distinguish between t, an instant of time, and Δt, an interval of time. Equations such as x = 
x0 + vxt are actually using t to represent an interval, not an instant. This text consistently uses 
expressions such as x = x0 + vxΔt to make the meaning of symbols clear. 

Kinematics gets off to a faster start if students have already had the opportunity to measure 
the motion of their own bodies in a microcomputer-based laboratory. Otherwise, it’s good to start 
with a number of examples in which you ask students to draw a position-versus-time graph for an 
object they see moving, then draw the corresponding velocity-versus-time graph. 

It’s good to establish a coordinate system across the front of the class, with a well-defined 
origin and with the “x-axis” pointing to the students’ right. Ask a student to start at the origin, then 
walk across the room (left to right) at constant speed. Have the students first draw a motion 
diagram, then an x-vs-t graph, and finally a vx-vs-t graph. This will give you an opportunity to talk 
about slopes and to note that the velocity vectors in the motion diagram are all equal length, 
pointing to the right. Then repeat the process, with the student 

• walking right to left at constant speed, ending at the origin. 
• starting at a negative value of x, then walking to the right (or left) at constant speed. 

These will provide an opportunity to discuss the role of signs for both x and vx. 
Next have a student, starting at the origin, slowly speed up until moving very fast at the far 

side of the room. (At this time, it’s best to talk about speeding up and slowing down rather than to 
introduce the term acceleration.) Again, use motion diagrams, position graphs, and velocity graphs 
to illustrate the idea of instantaneous velocity. (For simplicity, consider the position graph to be 
parabolic and the velocity graph to be linear.) A good analogy is to ask what a speedometer would 
read at different points in the motion, if the student were carrying one. 

Finally, have a student start very slowly on the far side of the room, gradually speed up 
while moving to the left, and reach the origin at top speed. Students find this one much more 
difficult, especially the proper shape of the position-versus-time graph. Focusing on the motion 
diagram helps. Time permitting, you can also demonstrate slowing down. 
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Once students seem to have the basic idea, the two questions shown above are effective. 

For each, the issue is whether A and B ever have the same speed, and if so, when? Students who 
haven’t practiced graph interpretation tend to confuse the crossing points (equal position) with 
points of equal speeds. The practice they’ve just completed should have most of them thinking 
about slopes, so error rates shouldn’t be too high, but this exercise reinforces the message and 
catches a few more who are still confusing height with slope. 

Another good question to pose is shown in the figure at the right. 
First, ask students to give a verbal description of the motion. Then, ask 
them to rank in order the speeds at points A, B, and C, from fastest to 
slowest. Finally, ask them to draw a velocity-versus-time graph—with a 
proper numerical scale. Computing the slope at B will prove to be difficult 
for many students. 

The following exercise illustrates the meaning of per, and it is a 
prelude to a similar acceleration exercise on day 2. 

A train is moving at a steady 30 m/s. At t = 0 s, the engine passes a signal light at x = 0 m. 
Without using any formulas, find the engine’s position at t = 1 s. Also at t = 2 s and t = 3 s. 

The objective is for students to realize the meaning of “30 meters per second” to be that “x 
increases by 30 meters during each second.” The position increases by 30 m during the first 
second, to x1 = 30 m, by 30 m more during the next second, to x2 = 60 m, and so on. Some students 
will find this so obvious as to be trivial, but others will find this a difficult way to reason. 

Have students graph both position and velocity for the train, then call their attention to the 
fact that the displacement Δx is exactly the same as the area under the velocity curve. The constant- 
velocity equation s = s0 + vsΔt is merely giving algebraic expression to their observation that 

Δs = area under the velocity-versus-time curve. 

You can direct them to the text for a proof that the graphical result Δs = area is true for any velocity, 
not just constant velocity. But Δs = vsΔt applies only to constant velocity since vs × Δt is clearly the 
area of the rectangle under a horizontal line. 

For a nonconstant velocity, you can give them a graph like the one 
shown on the left and ask them to find—using the graph, not a kinematics 
equation—the position at t = 1, 2, 3, 4, and 5 s. Then have them draw a 
position-versus-time graph. Now they’ve practiced going forward, from 
position to velocity, and backward, from velocity to position. 

 

Day 2: An excellent exercise to start day 2, and review the ideas of day 1, is the following exercise 
taken from the Student Workbook: 

Trucker Bob starts the day 120 miles west of Denver. He drives east for 3 hours at a steady 
60 miles/hour before stopping for his coffee break. Draw a position-versus-time graph for Bob, 
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including appropriate numerical scales along both axes. Let Denver be located at x = 0 and 
assume that the x-axis points to the east. 

Although this seems straightforward, I’ve found that only a small fraction of students can draw an 
appropriate graph. Seeing the types of errors they make and responding to their questions and 
concerns can lead into an excellent class discussion about the graphical representation of motion. 

It’s then a good opportunity for an example problem that requires all the steps in the 
problem-solving strategy. Encourage students to use a Dynamics Worksheet from the back of the 
Student Workbook as they work along with you. The Workbook has only a few sample worksheets; 
more copies can be downloaded via the “Resources” tab in the textbook’s Instructor Resource 
Center (www.pearsonhighered.com/educator/catalog/index.page) or from the textbook’s Instructor 
Resource Area in MasteringPhysics® (www.masteringphysics.com). If you intend to use 
worksheets—highly recommended for developing problem-solving skills—either have students 
photocopy more, download and print worksheets for them, or provide them with the PDF to print 
their own. A good first problem might be. 

Sally opens her parachute at an altitude of 1500 m. She then descends slowly to earth at a steady 
speed of 5 m/s. How long does it take her to touch down? 

The goal is to illustrate the problem-solving strategy, hence the problem itself is so simple that all 
students can easily do the numerical part. Start with a pictorial representation that establishes a 
coordinate system and defines symbols. Then draw a motion diagram. Finally—and for the first 
time—use the Mathematical Representation section of the worksheet to solve the problem. Call 
attention to the fact that all the symbols used in the mathematical solution, such as y0 or t1, were 
identified and defined in the pictorial representation. End by having them assess whether or not the 
result is “reasonable.” 

Note: Physicists often like to use a coordinate system for vertical-motion problems with the y-axis 
pointing down. This avoids a few negative signs. However, many students find this more confusing 
than helpful. The text consistently uses an upward-pointing y-axis for kinematics, matching the 
coordinate system we’ll need later for gravitational potential energy. 

After spending about a day and a half on velocity, it’s time to explore acceleration. To set 
the stage, toss a ball straight up and down a few times. First ask about the velocity. As the ball rises, 
is vy positive, negative, or zero? As it falls? Then focus on the turning point at the top. Nearly all 
students will now agree that vy = 0 at the top, but it allows you to reinforce the idea of an 
instantaneous velocity. This is a good place to define a turning point and note that the instantaneous 
velocity is always zero at a turning point. 

Then ask if the acceleration at the top point is positive, negative, or zero. After giving them 
a minute to think about it, and perhaps discuss it with a neighbor, ask for a show of hands (or make 
this a clicker question). In nearly all classes, a large majority thinks that the acceleration is zero. 

Note: An especially important aspect of having students make a prediction is that they now have a 
vested interest in the outcome. This is a much better learning experience than simply seeing you 
demonstrate and explain something. 

Rather than directly discussing the answer, tell the class you’re going to let the question be 
answered experimentally, but that you’ll need to build up to it in several steps. Then turn to a 
demonstration of a ball or a cart rolling down a small incline in the positive x-direction. It’s 
important to keep the speed slow so students can observe that the velocity increases continuously. 
(It’s best to start with the object moving to the right, so that vx is positive.) An ultrasonic motion 
detector (at the top of the ramp) interfaced to a computer is an especially useful tool for showing 
that the velocity is increasing linearly with time. 

On day 1, students associated velocity with a changing position and found that velocity is 
the slope of the position graph. Now, by analogy, you can associate acceleration with a changing 
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velocity and the slope of the velocity graph. Remind students that they can judge velocity fairly 
easily when observing an object, but that it’s much more difficult to judge acceleration. That’s why 
the motion diagrams and graphical tools are so important. 

After rolling the ball or cart down and making graphs, roll it up the same incline, now 
moving in the negative x-direction, but catch it at the top before it reverses. Although many 
students will now recognize that this is a negative vx that “increases” toward zero as it slows, you’ll 
want to be quite explicit about the reasoning for those students who are still struggling with the 
proper signs. After you’ve drawn position and velocity graphs (or had them produced by the 
computer), ask them if the acceleration ax is positive, negative, or zero. Although you’ve just talked 
about the fact that acceleration is the slope of the velocity graph, and they’re looking at a velocity 
graph, a large fraction of the class is likely to respond that the acceleration is negative because of 
their belief that positive and negative accelerations mean speeding up and slowing down. 

You can use the slope of the velocity graph to draw an acceleration graph, appeal to the 
logical argument that vx is becoming more positive as the object slows, and use motion diagrams to 
show that ar  points in the positive x-direction. It’s worthwhile to look for two or three other 
opportunities to have students consider the sign of the acceleration in situations where their 
speeding up/slowing down reasoning will fail. This is not a belief that is quickly or easily changed. 

Finally, roll the object up the incline and let it roll back down. Note that the turning point is 
just like the turning point of the ball you had tossed in the air, and that now you’re ready to answer 
the question. This is very nicely done with a motion detector by measuring the velocity and seeing 
that it linearly increases from negative to positive values, passing through zero (the turning point) 
with no change of slope. (Actually, carts on a track often do have a small change of slope due to the 
friction force changing direction. You’ll need to explain this, but you can easily note that the slope 
never becomes zero.) An acceleration graph then shows that the acceleration is uniform throughout 
the entire motion, with nothing to distinguish the turning point. You’ll also want to note that the 
object wouldn’t be able to move away from the turning point if both vx and ax were zero. 

Motion detectors are especially good for showing that objects fall with a constant 
acceleration and that the acceleration is independent of the mass. You can show the mass 
independence with carts of different mass on an incline. (First ask them to predict whether the 
acceleration of a heavier cart will be less than, greater than, or equal to the mass of a lighter cart.) 

You can also demonstrate free fall with a motion detector placed face up on the floor or on 
the lecture table if you build a protective cage around the probe. Dropping a ball onto the probe is 
easy. With a little more care, you can toss a ball upward over the probe and follow the motion up 
and down. Without a motion detector, there’s not enough time in lecture to make the measurements 
that would be required to demonstrate that free-fall motion is one of constant acceleration, so 
you’re forced to assert this without proof. 

Students, for some reason, have a strong tendency to call g by the name “gravity.” It is 
worth emphasizing that g is “the free-fall acceleration” and requiring them to use the term 
correctly. You’ll also want to emphasize that g is always a positive value. The acceleration is 
negative, given by ay = –g, but g itself is positive. 

Day 3: Two full days have been used on conceptual and graphical topics. Although this seems an 
inefficient use of time, since you’re ultimately going to test students on their problem-solving skill, 
these two days are extremely important for building the conceptual foundations that underlie good 
problem-solving ability. Most students cannot move beyond simple plug-and-chug problems until 
they develop a better conceptual understanding of motion. 

But now that the conceptual foundations have been laid, it’s time to start kinematics 
problems. Deriving kinematics equations is not an effective use of class time; students should have 
read the derivations in the textbook. However, you can use examples to reinforce the textbook 
derivations. A good exercise is to tell students that a jet plane accelerates at 3 m/s2 during take-off, 
then ask them without using any equations or their calculators the plane’s velocity at t = 1, 2, 3, and 
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4 s. You want them to reason that 3 m/s2 = (3 m/s) per second, so the velocity increases by 3 m/s 
every second. (This is analogous to the 30 m/s train exercise on day 1.) The velocity graph is linear, 
and you can then use area under the curve to find (and graph) the position at t = 1, 2, 3, and 4 s. You 
want students to recognize that 21

2 ( )ss a tΔ = Δ  for constant acceleration can be understood from the 
geometry of the graphs, that it’s not “just” a result derived from calculus. 

Here are four good examples. In working them, I encourage you to use the full step-by-step 
approach of the Dynamics Worksheets and to be very explicit about all the small steps in your 
reasoning. In other words, think out loud about the various assumptions that are being made and the 
reasons for your choices. These problems are so second nature to an experienced physicist that 
we’re usually not aware of our assumptions or reasoning, but this “hidden problem solving” is the 
information most needed by beginners. 

Example 1: Bob throws a ball straight up at 20 m/s, releasing the ball 1.5 m above the ground. 
What is the maximum height of the ball? What is the ball’s impact speed as it hits the ground? 

Example 2: A ball is released at a height of 1.0 m on a frictionless 30° slope. At the bottom, it 
turns smoothly onto a 60° slope going back up. What maximum height does it reach on the right 
side? (This is a two-part problem. Most students will be surprised that the answer is 1.0 m, and this 
gives you an opportunity to say a few initial words about energy.) 

 

 
 

Example 3: A sprinter accelerates at 2.5 m/s2 until reaching his top speed of 15 m/s. He then 
continues to run at top speed. How long does it take him to run the 100-m dash? (It’s worth 
including a graphical analysis with this problem.) 

Example 4: Ball A rolls along a frictionless, horizontal surface at a speed of 1.0 m/s. Ball B is 
released from rest at the top of a 2.0-m-long, 10° ramp at the exact instant ball A passes by. Will B 
overtake A before reaching the bottom of the ramp? If so, at what position? (The answer is yes at 
x = 1.193 m. This problem is considerably more difficult and allows you to point out that a simple 
plug-and-chug approach will not succeed. Students really do need the pictorial representation and 
good conceptual understanding of the motion in order to devise a strategy for solving it. Before 
doing the mathematics, it’s worth sketching position graphs and showing that you’re trying to find 
where the two graphs intersect.) 

 

 
 

At some point, after starting calculations, you’ll want to discuss significant figures. Most 
students are aware of these rules, except perhaps for subtle points such as whether a 0 is significant 
or not, but likely they’ve never been required to follow them. We all know the students who write 
down ten digits from their calculator display. An equally serious problem is the student who keeps 
his or her calculator set to display two decimal points, leading them to give the one-significant- 
figure answer 0.02 when computing 2.87/123. It’s worth urging students to keep their calculator set 
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in scientific notation mode, with two decimal places, so as to always be displaying three significant 
figures. 

I think it’s counterproductive to be overly rigid on significant figures. Although I 
emphasize that two or three significant figures is usually appropriate, depending on the information 
in the problem, I’m willing to accept up to four. I’m more concerned with getting students to 
recognize that less than two or more than four is clearly inappropriate. I try to enforce proper usage 
with an automatic one-point deduction on homework problems and an automatic two-point 
deduction on exam problems for improper significant figures. Alas, even with repeated penalties it 
is hard to get some students to pay attention to significant figures. 

Day 4: A fourth day, if you have one, allows more practice problem solving. You can take the time 
to allow students to work in small groups rather than your presenting the solution as a worked 
example. Problems with turning points and with accelerations opposite in sign from what students 
might guess are well worthwhile. Problems involving two moving objects are particularly 
challenging because they can’t be solved by equation hunting. 

Another good exercise for day 4 is to have students work through several examples similar 
to those on pages 53–54 of balls rolling along multi-segment tracks. These exercises require 
students to visualize the motion and to relate it to graphs. Most students find these difficult, even 
after the exercises of days 1 and 2. But quite a few “get it” after a few such examples, and their 
ability to relate visualized motion to graphs suddenly takes a quantum leap. 

Most instructors will want to cover Section 2.7 on instantaneous acceleration, but this is an 
optional section that is easily omitted if you’re pressed for time. Instantaneous acceleration isn’t 
seen again until simple harmonic motion, and by then students will be farther along in calculus and 
will know (or readily accept) that instantaneous acceleration is the time-derivative of velocity. 

 
Sample Exam Questions 

These questions cover the material of Chapters 1–2. If you’ve been having students do homework 
on the Dynamics Worksheets, you’ll probably want to require their use on the quantitative 
problems on an exam. These are not “kinematics problems,” for which borrowing unassigned 
Chapter 2 homework problems is recommended, but problems to assess whether students are 
acquiring a more sophisticated understanding of motion. 
1. A ball released from rest rolls down a ramp, across a horizontal floor, and up the other side. 
 Draw a complete motion diagram of the ball until it reaches its highest point on the right side. 
 

 
 
2. Mike falls out of a tree and lands on a trampoline. The trampoline sags 2 feet before launching 

Mike back into the air. At the very bottom, where the sag is the greatest, is Mike’s acceleration 
upward, downward, or zero? Use the tools that you’ve learned in these first chapters to give a 
convincing explanation of your answer. 

 

 
 
3. Is it possible for an object with a negative acceleration to be speeding up? If so, give an explicit 

example. If not, explain why not. 
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4. The figure below shows a ball rolling along a smooth frictionless track. Each segment of the 
track is straight, and the ball can move from segment to segment with no loss of speed. The ball 
starts from the left edge with an initial velocity v0s that is large enough to make it over the top. 

 Draw position-, velocity-, and acceleration-versus-time graphs for the ball until it rolls off the 
right edge of the track. (Position s is measured along the track.) Your three graphs should have 
the same time scale. 

 

 
 
 (It’s good on a question like this to supply them with three empty sets of axes stacked one 

above the other.) 
5. Draw the position graph and the acceleration graph that go with the velocity graph shown 

below. The initial position is x0 = –2.0 m. 
 

 
 
6. An object moving horizontally has the acceleration-versus-time graph shown below. At t = 0 s, 

the object has x0 = 0 m. and velocity v0x = 10 m/s. 
 

 
 

a. Draw a velocity-versus-time graph for the object. Include a numerical scale on the vertical 
axis. 

b. Draw a motion diagram of the object’s motion. 
c. Write a description of a real object for which this is a realistic motion. 


