PREFACE

This Instructor’ s Solutions Manual provides answers and worked-out solutions to all end of
chapter questions and problems from chapters 1 — 15 of Physics: Principles with Applications,
6th Edition, by Douglas C. Giancoli. At the end of the manual are grids that correlate the 5th
edition questions and problems to the 6th edition questions and problems.

We formulated the solutions so that they are, in most cases, useful both for the student and the
instructor. Accordingly, some solutions may seem to have more algebra than necessary for the
instructor. Other solutions may seem to take bigger steps than a student would normally take:
e.g. ssimply quoting the solutions from a quadratic equation instead of explicitly solving for them.
There has been an emphasis on agebraic solutions, with the substitution of values given asa
very last step in most cases. We feel that this helps to keep the physics of the problem foremost
in the solution, rather than the numeric evaluation.

Much effort has been put into having clear problem statements, reasonable values, pedagogically
sound solutions, and accurate answers/solutions for all of the questions and problems. Working
with us was ateam of three additional solvers— David Curott (University of North Alabama),
Bryan Long (Columbia State Community College), and Rich Louie (Pacific Lutheran
University). Between the five solvers we had either 3 or 4 complete solutions for every question
and problem. From those solutions we uncovered questions about the wording of the problems,
style of the possible solutions, reasonableness of the values and framework of the questions and
problems, and then consulted with one another and Doug Giancoli until we reached what we feel
is both a good statement and a good solution for each question and problem from the text.

Many people have been involved in the production of this manual. We especially thank Doug
Giancoli for his helpful conversations. Christian Botting and Karen Karlin at Prentice Hall have
been helpful, encouraging, and patient as we have turned our thoughts into amanual. And the
solutions from David Curott, Bryan Long, and Rich Louie were often thought-provoking and
always appreciated. We also acknowledge the benefit of having solutions from the previous
edition, prepared by Irv Miller.

Even with all the assistance we have had, the final responsibility for the content of this manual is
ours. We would appreciate being notified via e-mail of any errors that are discovered. We hope
that you will find this presentation of answers and solutions useful.

Bob Davis (rbdavis@taylor.edu)
Upland, IN

J. Erik Hendrickson (hendrije@uwec.edu)
Eau Claire, WI
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CHAPTER 1. Introduction, M easurement, Estimating

Answersto Questions

(@) Fundamental standards should be accessible, invariable, indestructible, and reproducible. A
particular person’s foot would not be very accessible, since the person could not be at more than
one place at atime. The standard would be somewhat invariable if the person were an adult, but
even then, due to swelling or injury, the length of the standard foot could change. The standard
would not be indestructible — the foot would not last forever. The standard could be
reproducible — tracings or plaster casts could be made as secondary standards.

(b) If any person’sfoot were to be used as a standard, “ standard” would vary significantly
depending on the person whose foot happened to be used most recently for a measurement. The
standard would be very accessible, because wherever a measurement was needed, it would be
very easy to find someone with feet. The standard would be extremely variable — perhaps by a
factor of 2. That also renders the standard as not reproducible, because there could be many
reproductions that were quite different from each other. The standard would be almost
indestructible in that there is essentialy alimitless supply of feet to be used.

There are various ways to ater the signs. The number of meters could be expressed in one
significant figure, as “900 m (3000 ft)”. Or, the number of feet could be expressed with the same
precision as the number of meters, as 914 m (2999 ft)". The signs could also be moved to different
locations, where the number of meters was more exact. For example, if asign was placed where the
elevation was really 1000 m to the nearest meter, then the sign could read “ 1000 m (3280 ft)”.

Including more digits in an answer does not necessarily increase its accuracy. The accuracy of an
answer is determined by the accuracy of the physical measurement on which the answer is based. If
you draw acircle, measure its diameter to be 168 mm and its circumference to be 527 mm, their
guotient, representing m, is 3.136904762. The last seven digits are meaningless — they imply a
greater accuracy than is possible with the measurements.

The problem is that the precision of the two measurements are quite different. It would be more
appropriate to give the metric distance as 11 km, so that the numbers are given to about the same
precision (nearest mile or nearest km).

A measurement must be measured against a scale, and the units provide that scale. Units must be
specified or the answer is meaningless — the answer could mean a variety of quantities, and could be
interpreted in avariety of ways. Some units are understood, such as when you ask someone how old
they are. You assume their answer isin years. But if you ask someone how long it will be until they
are done with their task, and they answer “five’, does that mean five minutes or five hours or five
days? If you arein an international airport, and you ask the price of some object, what does the
answer “ten” mean? Ten dollars, or ten pounds, or ten marks, or ten euros?

If thejar isrectangular, for example, you could count the number of marbles along each dimension,
and then multiply those three numbers together for an estimate of the total number of marbles. If the
jariscylindrical, you could count the marbles in one cross section, and then multiply by the number
of layers of marbles. Another approach would be to estimate the volume of one marble. If we
assume that the marbles are stacked such that their centers are all on vertical and horizontal lines,
then each marble would require a cube of edge 2R, or avolume of 8R?, where R is the radius of a
marble. The number of marbles would then be the volume of the container divided by 8R°.
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Chapter 1 Introduction, Measurement, Estimating

7. Theresult should be written as 8.32 cm. The factor of 2 used to convert radius to diameter is exact —
it has no uncertainty, and so does not change the number of significant figures.

8. sin30.0° =0.500

9. Sincethe size of large eggs can vary by 10%, the random large egg used in arecipe has a size with
an uncertainty of about +5%. Thusthe amount of the other ingredients can also vary by about +5%
and not adversely affect the recipe.

10. In estimating the number of car mechanics, the assumptions and estimates needed are:
the population of the city
the number of cars per person in the city
the number of cars that a mechanic can repair in aday
the number of days that a mechanic worksin ayear
the number of times that a car is taken to a mechanic, per year
We estimate that thereis 1 car for every 2 people, that a mechanic can repair 3 cars per day, that a
mechanic works 250 days a year, and that a car needs to be repaired twice per year.

(@) For San Francisco, we estimate the population at one million people. The number of mechanics
isfound by the following calculation.

5 repairs
(1x10°people) — = L Lmechanic | _ 350 mechanicy
2 people 1car 250 workdays 4_repairs
workday

(b) For Upland, Indiana, the population is about 4000. The number of mechanicsisfound by a
similar calculation, and would be|5 mechanics|. There are actually two repair shops in Upland,
employing atotal of 6 mechanics.

Solutionsto Problems

(a) 14 billion years=|1.4x10"years

(b) (14x10°y)(3156x10'¢1y)=

2. (a) 214 3 significant figures

(b) 8160 |4 significant figures

(c0 7.03 3 significant figures

(d) 0.03 1 significant figure

(e) 0.0086 |2 significant figures

(H 3236 4 significant figures

(9) 8700 2 significant figures
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Giancoli Physics: Principles with Applications, 6" Edition

3. (a) 1156=[1.156x10
() 218=[218<10]
(© 00068=[6.8x107
(d) 27.635
(& 0.219=[219x10"
(f  444=[4.44x10°

4. (a) 869x10° =
(b) 9.1x10° =
(c) 8.8x10'=|0.88
(d) 4.76x10° =[476]
(6) 3.62x10° =

5. Theuncertainty istaken to be 0.01 m.

. 0.01m
% uncertainty = 157 x100% =
m

. 0.25m
% uncertainty = 7 x100% =
m

0.2s

7. (@) % uncertainty = x100% =
S

0.2s

(b) % uncertainty = = % 100% =
S

. 2
(©) % uncertainty = :Soos «100% = [0.07%
S

8. Toadd valueswith significant figures, adjust all values to be added so that their exponents are all the
same.

9.2x10°s+8.3x10"s+0.008x10°s = 9.2x 10’ s+ 83x10°s+ 8x10°s = (9.2 + 83+ 8) x10’s

~100x10°s = [L.00x10°]

When adding, keep the least accurate value, and so keep to the “ones’ place in the parentheses.

9. (2.079 x 10 m) (0.082 X 10’1) = . When multiplying, the result should have as many digits as
the number with the least number of significant digits used in the calculation.

10. To find the approximate uncertainty in the area, calculate the area for the specified radius, the
minimum radius, and the maximum radius. Subtract the extreme areas. The uncertainty in the area

isthen half this variation in area. The uncertainty in the radiusis assumed to be 0.1x10%cm.
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Chapter 1

11.

Introduction, Measurement, Estimating

Aot = T = 7(38x10°cm)” = 45x10°cm?
A, =12, = 7(3.7x10°cm)’ = 4.30x10°cm’
A =712, = 7(3.9x10°cm)’ = 4.78x10°cm?

A=1(A, - A, )=%(478x10°cm’ — 4.30x10°cm” ) = 0.24x10°cm’

Thus the area should be quoted as | A=(4.5+0.2)x10°cm’

To find the approximate uncertainty in the volume, calculate the volume for the specified radius, the
minimum radius, and the maximum radius. Subtract the extreme volumes. The uncertainty in the
volumeisthen half thisvariation in volume.

Voo = 4 e = 27(2.86 )’ = 9.80x10'm’
=47r3 =47(277 m)’ =8.903x10'm’
2.95m)’ =10.754x10'm’

(
3
AV =4(V,, -V, ) =4(10.754x10'm’ - 8.903x10'm’ ) = 0.926x 10" m’

AV 0923x10'm’

x100 = 0.09444 = (9%

The percent uncertainty is

 0.80x10'm°

specified
12. (a) 286.6mm 286.6x10°m
(b) 85uV 85x10°V
(c0 760 mg 760x10°kg 0.000 760 kg| (if last zero is significant)
(d) 60.0ps 60.0x10 s |0.000 000 000 0600 s
(e) 22.5fm 22.5x10°m [0.000 000 000 000 022 5 m|
() 250gigavolts  2.5x10°volts 2,500,000, 000 volts|
13. (a) 1x10°volts 1 megavolt| =1 Mvolt
(b) 2x10°meters =2um
(©) 6x10°days 6 kilodays| = 6 kdays
(d) 18x10%bucks =18 hbucks
(e) 8x10°pieces 8 nanopieces| = 8 npieces
14. (a) Assuming aheight of 5 feet 10 inches, then 5'10" = (70in)(1m/39.37in) =[1.8 m
(b) Assuming aweight of 165 Ibs, then (165 Ibs)(0.456 kg/1 Ib) =|75.2 kg

Technically, pounds and mass measure two separate properties. To make this conversion, we
have to assume that we are at a location where the acceleration due to gravity is 9.8 m/s”.
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Giancoli Physics: Principles with Applications, 6" Edition

(8) 93 million miles = (93x10° miles) (1610 m/1 mile) = [L5x10"m]

16.

17.

18.

19.

20.

21.

22

(b) 1.5x10"m =150x10°m =150 gigameters| or 1.5x10"m = 0.15x10"m = [0.15 terameters

(@) 1ft*=(1ft*)(1yd/3ft)" =[0.111yd"
() 1m’=(1m*)(3.28ft/1m)’ =108 1]

Use the speed of the airplane to convert the travel distance into atime.

100 km( 1h j(saoo sj _

950 km 1h

(@ 10x10°m=(1.0x10""m)(39.37 inflm) =
® (oam)| | LI [0 G aon]

100 cm )\ 1.0x10"°m

To add values with significant figures, adjust all values to be added so that their units are all the
same.

1.80 M+142.5 cm +5.34x10° zm =1.80 m+1.425 m+0.534 m = 3.759 m =
When adding, the final result isto be no more accurate than the least accurate number used.
In this case, that is the first measurement, which is accurate to the hundredths place.

@) (1k/h)(%lmij= 0.621mi/h
m

3.28ft/s

3.28 ftj ~

(b) (1m/s)( ™

© (1km/ h)(lgiomm j ( 3610?) s) =10.278m/s

Onemileis 1.61x10°m. Itis110 m longer than a 1500-m race. The percentage differenceis

11
Om . 100%=[7.3%]
m

(@ 1001y =(2.998x10° m/s)(3.156x10"s) =
5
(b) (1.00 Iy)(9.462><101 mj( 1AU jz

1.00ly 1.50x10"m

1AU 3600 s
c) (2.998x10°m/s =|7.20AU/h
© ( /)(1.50><1011mj( 1hr j /
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Chapter 1 Introduction, Measurement, Estimating

The surface area of asphereisfound by A= 4zr? = 4z(d/2)" = zd®.

@ Ay~ - #(248:20 ) - BT

2 2 2
(b) AEarth — ”Déanh — DEmh — REmh — 638)( 106 m — 134
A\/Ioon ”Dz D I:\)Moon 174X106m

Moon Moon

24. (a) 2800=2.8x10° ~1x10° =
(b) 86.30x10° =8.630x10° ~10x10° = |10
(©) 0.0076=7.6x10" ~10x107 =
(d) 15.0x10° =15x10° ~1x10° =
25. Thetextbook is approximately 20 cm deep and 4 cm wide. With books on both sides of a shelf, with

alittle extra space, the shelf would need to be about 50 cm deep. If theaisleis 1.5 meter wide, then
about 1/4 of the floor space is covered by shelving. The number of books on asingle shelf level is

1 book
(0.25m)(0.04 m)
of books stored is as follows.

(8.75x104 %j(&a shelves) ~[7x10° books].
evi

then 1(3500m” )( ] = 8.75x10*books. With 8 shelves of books, the total number

26. The distance across the United States is about 3000 miles.

(3000 mi ) (1 km/0.621 mi ) (1 hr/10 km) ~

Of coursg, it would take more time on the clock for the runner to run across the U.S. The runner
could obviously not run for 500 hours non-stop. |If they could run for 5 hours a day, then it would
take about 100 days for them to cross the country.

An NCAA-regulation football field is 360 feet long (including the end zones) and 160 feet wide,
which is about 110 meters by 50 meters, or 5,500 m?. The mower has a cutting width of 0.5 meters.
Thus the distance to be walked is

d- Area  5500m’
width  05m
At aspeed of 1 km/hr, then it will take about to mow the field.

=11000 m =11 km

28. A commonly accepted measure is that a person should drink eight 8-0z. glasses of water each day.
That is about 2 quarts, or 2 liters of water per day. Then approximate the lifetime as 70 years.

(70y)(365 d/1y)(2L/1d)~[5x10"1]

29. Consider the body to be a cylinder, about 170 cm tall, and about 12 cm in cross-sectional radius (a
30-inch waist). The volume of acylinder is given by the area of the cross section times the height.

V = zr?h = 7(12 cm)’ (170 cm) = 9x10°cm® ~
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Giancoli Physics: Principles with Applications, 6" Edition

30.

31.

32.

33.

35.

Estimate one side of a house to be about 40 feet long, and about 10 feet high. Then the wall area of
that particular wall is 400 ft%. There would perhaps be 4 windows in that wall, each about 3 ft wide
and 4 feet tall, so 12 ft* per window, or about 50 ft> of window per wall. Thus the percentage of wall

2

. . 50 ft ,
areathat iswindow areais P x100=12.5%. Thus arough estimate would be |10% —15%| of

the house' s outside wall area.

Assume that the tires last for 5 years, and so thereis a tread wearing of 0.2 cm/year. Assume the
average tire has aradius of 40 cm, and awidth of 10 cm. Thus the volume of rubber that is
becoming pollution each year from onetire is the surface area of the tire, times the thickness per year
that iswearing. Also assume that there are 150,000,000 automobiles in the country — approximately
one automobile for every two people. So the mass wear per year is given by

Mass ) (Surface areaj Thickness wear
year tire year

j(densi ty of rubber ) (# of tires)

=[27(0.4 m)(0.1m)](0.002 m/y)(1200kg/m")(600,000,000 tires)

=|4x10°kg/y

For the equation v = At® — Bt , the units of At® must be the same asthe unitsof v. So the unitsof A

must be the same as the units of v/t3 , Which would be |di stance/ time*|. Also, the unitsof Bt must

be the same asthe unitsof V. So the unitsof B must be the same as the units of v/t , which would

be |distance/time?|.

(@) Thequantity vt* has unitsof (m/s) (sz) = m.s, which do not match with the units of meters

for x. The quantity 2at has units (m/ s*)(s) = m/s, which also do not match with the units of

meters for x. Thus this equation |cannot be correct| .

(b) The quantity v,t hasunitsof (m/s)(s)=m, and +at* has units of (m/sz)(sz) =m. Thus,

since each term has units of meters, this equation :

(©) Thequantity v,t hasunitsof (m/s)(s)=m, and 2at* has units of (m/sz)(sz) =m. Thus,

since each term has units of meters, this equation :

. 2m = ,
The percentage accuracy is leOO% =1x10"°%| . The distance of 20,000,000 m needs to
X m

be diistinguishable from 20,000,002 m, which means that [8 significant figured are needed in the
distance measurements.

Multiply the number of chips per wafer times the number of wafers that can be made fro a cylinder.

(100 chmsj( 1wafer) 300.mm _ 150,000 chlps
wafer /\ 0.60 mm /\ 1 cylinder cylinder
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Chapter 1 Introduction, Measurement, Estimating

. 3.156x10's -
36. (a) #of secondsin1.00Yy: 1.00y=(1.00y) )" 3.16x10’s
y
A 10’ 1x10°
(b) # of nanosecondsin 1.00y: 1.00y = (1.00 y)(3 5?( 0 SJ( ><10 nsj =13.16x10"ns
y s
(c) #of yearsin1.00s: 1.00 s=(1.00 s) (1—yj =13.17x10%y
3.156x10’s

37. Assume that the alveoli are spherical, and that the volume of atypical human lung is about 2 liters,
which is.002 m’. The diameter can be found from the volume of asphere, £7r°.

3
3 zd

Lord zfﬂ(d/Z)

3

= 13 .
(3x108);zd—;:2x103m3 N d:{me} - [2x10"m|

3x10° 7

10°'m? \(3.28ft)°( 1
38. 1hectare=(1hectare)( m J( J( xre )z

lhectare )\ 1m 4x10*ft?

10k 1 proton or neutron
39. (a) .g P — =[10*protons or neutrons
1 bacterium 107'kg
10k 1 proton or neutron

(b) 0 kg proto (:7 eutron | _ 10" protons or neutrons
1 DNA molecule 10°'kg
10%k 1 proton or neutron

(© g P — =|10” protons or neutrons
1 human 10°"kg
10"k 1 proton or neutron

(d) g D ~ =[10* protons or neutrons
1 galaxy 107'kg

40. There are about 300,000,000 people in the United States. Assume that half of them have cars, that
they each drive 12,000 miles per year, and their cars get 20 miles per gallon of gasoline.

(3><108people) 1 automobile \( 12,000 mi (1gallo.njz
2 people ly 20 mi

1x10" galons/y

41. Approximate the gumball machine as arectangular box with a square cross-sectional area. In
counting gumballs across the bottom, there are about 10 in arow. Thus we estimate that one layer
contains about 100 gumballs. In counting vertically, we see that there are bout 15 rows. Thuswe

estimate that there are about |[1500 gumballs| in the machine.
42. The volume of water used by the people can be calculated as follows:

3
( 4x10° people) 1200 L/day \( 365 day )( 1000 cm ( 15km
4 people ly 1L 10° cm

3
) = 4.4x10° km®[y
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Giancoli Physics: Principles with Applications, 6" Edition

The depth of water is found by dividing the volume by the area.

V  4.4x10°km® k 10°
do—r -2 Zn /Y | 8.76x10° 2 cm =8.76cm/y ~[9cm/y
A 50 km y 1km

43. The volume of asphereisgivenby V =£zr®. For our 1-ton rock, we can calculate the volume to be

3
V< (1T)(2000 ij 1ft
1T 186 Ib

Then the radiusis found by

vs [3(108f)]"
d=2r = 2(4%] - 2{(4—)} _274%t~[31t
JT JT

] =10.8 ft°.

44, To calculate the mass of water, we need to find the volume of water, and then convert the volume to

mass.
5 2 -3
10°cm 10 kg](lton}z A1 o

1km 1cm® )\ 10°kg
To find the number of gallons, convert the volume to gallons.
10°cm ) 1L 1
(4x10" k)| 2222 | (1.0 om) [ —== 3}( ga j: 1x10°gdl
1km 1x10°cm” J\ 3.78 L

(4x101 km? )

N—"

(1.0cm

45. A pencil has adiameter of about 0.7 cm. If held about 0.75 m from the eye, it can just block out the
Moon. Theratio of pencil diameter to arm length is the same as the ratio of Moon diameter to Moon

distance. From the diagram, we have the following ratios.
Pencil

Penci

Distance
Moon

Distance

Pencil diameter ~ Moon diameter
Pencil distance  Moon distance

. pencil diameter . 7x10°m .
Moon diametef = ———  ( Moon distance) = ———( 3.8x10°km ) -3500 km
pencil distance ( ) 0.75m ( )

46. The person walks 4kmy/h , 10 hours each day. The radius of the Earth is about 6380 km, and the
distance around the world at the equator is the circumference, 2zR_,,,. We assume that the person
can “walk on water”, and so ignore the existence of the oceans.

27(6380 km)(ﬂj (ﬂj -[1x10° d
akm)\10h
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Chapter 1 Introduction, Measurement, Estimating

47. A cubit isabout a half of ameter, by measuring several people’ s forearms. Thus the dimensions of
Noah's ark would be [150 m long , 25 m wide, 15 m high|. The volume of the ark is found by

multiplying the three dimensions.
V = (150 m)(25 m)(15 m) = 5.625x10'm* ~

48. The volume of the oil will be the area times the thickness. Theareais zr” = z(d/2)”, and so

3
y 1OOOCm3( 1m j
—2(df2)°t > d=2)—=2 10em/ _[3x10° m].
at 7(2x10%m)
49. Consider the diagram shown. L isthe distance she walks upstream, which is about 120
yards. Find the distance across the river from the diagram.
d
tan 60° =T d = Ltan60° = (120 yd) tan 60° =|210 yd d
ft : 0
1yd 1ft L

8 1
50. [—Sj (—y) «100% = |3% 10 °%

1y )\ 3.156x10's

r.3

The volume of asphereisfound by V = 4

Moon = R; :% 174><106 ) = 2.2:|.><1019m3
RE

Vewn 37 REanh 6.38x10°m ’ _ 493
View 27R F;Wm 1.74x10°m o
Thus it would take about 3] Moons to create avolume equal to that of the Earth.

o 10
52. (a) 10A= (10Aj(100 j(llorlm):
m

1A

10
(b) 10A-= 1OA (10 m](llfm j:1.0x105fm

0®m
(c0 1.0m= 10m {

=[1.0x10" A

=[9.5x10% ,&

(d 10ly= 10|)

9.46x10°m )| 1A
1ly 10m
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Giancoli Physics: Principles with Applications, 6" Edition

53. (a) Notethat sin15.0° =0.259 and sin15.5° = 0.267.
AB 0.5° Asing 8x10°
— |100= 100=|3% 100 = 100 =|3%
( 0 j (15.0‘)} ( sing j ( 0.259] Ex
(b) Notethat sin75.0° =0.966 and sin75.5° = 0.968.

A 5° As 2x10°
(—9j100=[7055 j100= ( S'ngjloo{ ;926 j100=

0 ° sing
A consequence of thisresult is that when using a protractor, and you have afixed uncertainty in the

angle (£0.5° in this case), you should measure the angles from areference line that gives alarge
angle measurement rather than asmall one. Note above that the angles around 75° had only a0.2%
error insin @, while the angles around 15° had a 3% error in sin 6.

54. Utilize the fact that walking totally around the Earth along the meridian would trace out acircle
whose full 360° would equal the circumference of the Earth.

(1minute)( N J(Zﬁ(6.38x103km)J(0.621mj:

60 minute 360° 1km
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CHAPTER 2: Describing Motion: Kinematicsin One Dimension

Answersto Questions

A car speedometer measures only speed. It does not give any information about the direction, and so
does not measure velocity.

2. By definition, if an object has a constant vel ocity, then both the object's speed and its direction of
motion are constant. Therefore the object CANNOT have avarying speed if its velocity is constant.

3. When an object moves with constant velocity, its average velocity over any timeinterval is exactly
equal to itsinstantaneous velocity at all times

4. For both cars, the time elapsed is the distance traveled divided by the
average velocity. Since both carstravel the same distance, the car "A"
with the larger average velocity will have the smaller elapsed time.
Consider this scenario. Assume that one car has a constant
acceleration down the track. Then a graph of its speed versustime I time t,
would look likeline"A" on the first graph. The shaded area of the
graph represents the distance traveled, and the graph is plotted to
such atime that the shaded area represents the length of the track.
The time for this car to finish theraceislabeled "t;".

Now let the second car have amuch smaller acceleration initialy, but vV
with an increasing acceleration. A graph of its velocity,
superimposed on the above graph and labeled "B", might look like
the second diagram.

It is seen that at the time t; when the first car finished the race, the
second car is going faster than the first car, because the heavy lineis
“higher” on the graph than the line representing the first car.
However, the area under the "B" line (the distance that the second
car hastraveled) is smaller than the shaded area, and so isless than
the full track length. For the area under the "B" line to be the same
asthe area under the "A" line, the graph would need to look like the
third diagram, indicating alonger time for the second car to finish
the race.

5. Thereisno general relationship between the magnitude of speed and the magnitude of acceleration.
For example, one object may have alarge but constant speed. The acceleration of that object isthen
0. Another object may have a small speed but be gaining speed, and therefore have a positive
acceleration. So in this case the object with the greater speed has the |esser acceleration.

Or consider two objects that are dropped from rest at different times. If we ignore air resistance,
then the object dropped first will always have a greater speed than the object dropped second, but
both will have the same acceleration of 9.80 m/s”,

6. Theacceleration of both the motorcycle and the bicycle are the same, since the same change in
velocity occurred during the same time interval.

If you do afurther calculation, you will find that the distance traveled by the motorcycle during the
acceleration is 17 times the distance traveled by the bicycle.
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10.

11.

12.

13.

15.

If an object is traveling to the north but slowing down, it has a northward velocity and a southward
acceleration.

The velocity of an object can be negative when its acceleration is positive. If we define the positive
direction to be to the right, then an object traveling to the left that is having a reduction in speed will
have a negative velocity with a positive acceleration.

If again we define the positive direction to be to the right, then an object traveling to the right that is
having areduction in speed will have a positive velocity and a negative acceleration.

If north is defined as the positive direction, then an object traveling to the south and increasing in
speed has both a negative velocity and a negative acceleration. Or, if up is defined as the positive
direction, then an object falling due to gravity has both a negative velocity and a negative
acceleration.

If the two cars emerge side by side, then the one moving faster is passing the other one. Thus car A
ispassing car B. With the acceleration data given for the problem, the ensuing motion would be that
car A would pull away from car B for atime, but eventually car B would catch up to and pass car A.

Assume that north is the positive direction. If a car is moving south and gaining speed at an
increasing rate, then the acceleration will be getting larger in magnitude. However, since the
acceleration is directed southwards, the acceleration is negative, and is getting more negative. That
is a decreasing acceleration as the speed increases.

Another example would be an object falling WITH air resistance. Asthe object fals, it gains speed,
the air resistance increases. Asthe air resistance increases, the acceleration of the falling object
decreases, and it gains speed less quickly the longer it falls.

Assuming that the catcher catches the ball at the same height at which it |eft the bat, then the ball will
be traveling with a speed of 120 km/h when caught. Thisis proven in problem 41.

Asafreely falling object speeds up, its acceleration due to gravity staysthe same. If air resistanceis
considered, then the acceleration of the object is due to both gravity and air resistance. The tota
acceleration gets smaller as the object speeds up, until the object reaches aterminal velocity, at
which timeitstotal acceleration iszero. Thereafter its speed remains constant.

To estimate the height, throw the ball upward and time the flight from throwing to catching. Then,
ignoring air resistance, the time of rising would be half of the time of flight. With that "half" time,
assuming that the origin is at the top of the path and that downward is positive, knowing that the ball
started from the top of the path with a speed of 0, use the equation y =+ gt? with that time and the
acceleration due to gravity to find the distance that the ball fell. With the same "half" time, we know
that at the top of the path, the speed is 0. Taking the upward direction as positive, use the equation
v=y,+at — O0=v,—-gt — v, =gt tofindthethrowing speed.

The average speed is NOT 80 km/h. Since the two distances traveled were the same, the times of
travel were unequal. Thetimeto travel from A to B at 70 km/h is longer than the timeto travel from
B to C at 90 km/h. Thus we cannot simply average the speed numbers. To find the average speed,
we need to calculate (total distance) / (total time). We assume the distance from A to B and the
distance from B to C are both d km. Thetimeto travel adistance d withaspeedvist=d/v.
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Chapter 2 Describing Motion: Kinematicsin One Dimension

16.

17.

18.

19.

20.

21.

22

V= Oyg + o = (d km)+(d km) = 78.75km/h . The average speed is 78.75 km/h.
te + o d km d km

+
70km/h ~ 90km/h

The sounds will not occur at equal time intervals because the longer any particular nut falls, the
faster it will be going. With equal distances between nuts, each successive nut, having fallen a
longer time when its predecessor reaches the plate, will have a higher average velocity and thus
travel the inter-nut distance in shorter periods of time. Thus the sounds will occur with smaller and
smaller intervals between sounds.

To hear the sounds at equal intervals, the nuts would have to betied at distances corresponding to
equal timeintervals. Since for each nut the distance of fall and time of fall are related by d, =4 gt?,

assumethat d, =1gt’. If wewant t, =2t ,t, =3t ,t, =4t , -, then d, =2g(2t,)" = 4d,,
d,=29g(3;,) =9d,, d, =+g(4t,)" =16d,, etc.

The elevator moving from the second floor to the fifth floor is NOT an example of constant
acceleration. The elevator accelerates upward each time it starts to move, and it accelerates
downward each time it stops.

Ignoring air resistance, arock falling from acliff would have a constant acceleration. (If air
resistance isincluded, then the acceleration will be decreasing asthe rock falls)) A dishresting on a
table has an acceleration of 0, so the acceleration is constant.

Asan object rises WITH air resistance, the acceleration is larger in magnitude than g, because both
gravity and air resistance will be causing a downward acceleration. Asthe object FALLS with air

resistance, the acceleration will be smaller in magnitude than g, because gravity and resistance will
be opposing each other. Because of the smaller accel eration being applied over the same distance,

the return speed will be slower than the launch speed.

If an object is at the instant of reversing direction (like an object thrown upward, at the top of its
path), it instantaneously has a zero velocity and a non-zero acceleration at the sametime. A person
at the exact bottom of a“bungee” cord plunge aso has an instantaneous velocity of zero but a non-
zero (upward) acceleration at the same time.

An object moving with a constant velocity has a non-zero velocity and a zero acceleration at the
sametime. So acar driving at constant speed on a straight, level roadway would meet this condition.

The object starts with a constant velocity in the positive direction. At about t = 17 s, when the object
isat the 5 meter position, it begins to gain speed — it has a positive acceleration. At about t = 27 s,
when the object is at about the 12 m position, it beginsto slow down — it has a negative acceleration.
The object instantaneously stops at about t = 37 s, reaching its maximum distance from the origin of
20 m. The object then reverses direction, gaining speed while moving backwards. At aboutt =47 s,
when the object is again at about the 12 m position, the object starts to slow down, and appearsto
stopatt =50s, 10 m from the starting point.

Initially, the object movesin the positive direction with a constant acceleration, until about t =45 s,
when it has avelocity of about 37 m/sin the positive direction. The acceleration then decreases,
reaching an instantaneous acceleration of 0 at about t = 50 s, when the object has its maximum speed
of about 38 m/s. The object then begins to slow down, but continues to move in the positive
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direction. The object stops moving at t = 90 sand stays at rest until about t = 108 s. Then the object
begins to moveto the right again, at first with alarge acceleration, and then alesser acceleration. At
the end of the recorded mation, the object is still moving to the right and gaining speed.

Solutionsto Problems

1

The average speed is given by:
V =d/At = 235 km/3.25 h =[72.3km/h|.

The time of travel can be found by rearranging the average speed eguation.
V =d/At - At =d/V = (15 km)/(25km/h) =|0.60 h| = 36 min

The distance of travel (displacement) can be found by rearranging the average speed equation. Also
note that the units of the velocity and the time are not the same, so the speed units will be converted.

d 1lh
V=——>d=VAt =(110km/h)| —— |(2.0s =0.061km=-61m
Y At_> Y ( / )(BGOOSJ( )

(@) 35mi/h=(35mi/h)(1.61km/mi)=|56km/h
(b) 35mi/h=(35mi/h)(1610m/mi)(1 h/3600 s) = [16m/s
(c) 35mi/h=(35mi/h)(5280ft/mi)(1h/3600s) = |51ft/s

N AX -42cm-34 -7.6
The average velocity isgivenby Vv = X cm on_ °m_ —2.50m/s .
At 6.1s-3.0s 3.1s

o Ax 85cm-34 5.1

The average velocity is given by V:—X: om cm _220m_ 0.780m/s .
At 45s-(-2.0s) 6.5s
|The average speed cannot be calcul ated.] To calculate the average speed, we would need to know the

actual distance traveled, and it is not given.

Thetimefor thefirst part of thetrip is calculated from the initial speed and the first distance.
avespeed, =V, =i—>At1 =i=M=1.37 h =82 min
Aty v, 95 km/h
The time for the second part of thetrip istherefore
At, = At —At, =3.33h-1.37 h=1.96 h =118 min
The distance for the second part of the trip is calculated from the average speed for that part of the
trip and the time for that part of the trip.

ave speed, = v, = f—tz — d, = v,At, =(65km/h)(1.96h) = 127.5 km = 1.3x10°km

2

(a) Thetotal distanceisthen d., =d, +d, =130 km+127.5 km = 257.5 km ~ |2.6x10° km
(b) The average speed is NOT the average of the two speeds. Use the definition of average speed.
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10.

11.

12.

d 257.5k
avespeedzﬁzmz 77km/h
At 3.33h

total

The speed of sound isintimated in the problem as 1 mile per 5 seconds. The speed is calculated by:
speed = dlstance:(lmlj(mlo mj: 300m79].

time 5s Imi

Note that only 1 significant figureis given, (5 sec), and so only 1 significant figureisjustified in the
result.

The distance traveled is 2.0 miles (8 lapsx 0.25mi/lap) . The displacement is 0 because the ending
point is the same as the starting point.

2.0mi 2mi 161 Imi
(@) Average speed = i= Om_l = ml_ ( 6 O_mj[ mlnj: 4.3m/s
At 12.5min 12.5min 1Imi 60 s

(b) Averagevelocity = V = Ax/At =[0m/s

The distance traveled is 116 km+4 (116 km) = 174 km , and the displacement is
116 km—4(116 km) =58 km. Thetotal timeis14.0s+4.8s=18.8s.

d 174 m
a) Averagespeed = — = =]9.26m/s
@ agesp At 188s /
AX 58 m
b) Averagevelocity =V =—= =13.1m/s
(b) « y At 18.8s /

Since the locomotives have the same speed, they each travel half the distance, 4.25 km. Find the
time of travel from the average speed.

d d 4.25km 60 min
avespeed =v=— > At =—=——=0.0447 h =2.68min;-2.7min
® At v 95 km/h ( 1h j

Both objects will have the same time of travel. If the truck travels a distance d then the distance

truck !
the car travelswill be d_, =d,, +110 m. Using the equation for average speed, V = d/At, solve
for time, and equate the two times.

dtruck dcar dtruck dtruck +110 m
At T e— T e— =
Vo V. 75km/h 88 km/h
75km/h
Solving for d,,, gives d,, =(110 m) ( /h) =634.6m.

(88km/h—75km/h)
Thetime of travel is

d 4 i .
At = S =[ 634.6 m j(GO m'nj:oso?? min = 30.46 s=|3.0x10" .

v, 75000 m/h 1h

Vtruck
d, (6346m+110m (60 min
88000 m/h 1h

Also notethat At =

j =0.5077 min =30.46 s.

—
VCar

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rightsreserved. This material is protected under all copyright laws as they
currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the
publisher.

16



Giancoli Physics: Principles with Applications, 6" Edition

13.

14.

15.

ALTERNATE SOLUTION:
The speed of the car relative to the truck is 88 km/h - 75 km/h =13 km/h. In the reference frame
of the truck, the car must travel 110 m to catch it.

UL (3600 s

~13km/h{ 1h

J =3046s

The average speed for each segment of thetripisgivenby V = % S0 At = g for each segment.

v
. d 3100k
For the first segment, At =—== =K 3.924 h.
¥ 790 km/h
d 2800 km
For the second segment, At, =—%=————=2828h.
¥V, 990 km/h

Thus the total timeis At_ = At +At, =3.924 h+2.828 h = 6.752 h ~[6.8 h] .

The average speed of the plane for the entire trip is
d B 3100 km + 2800 km B

tot

At 6.752 h

tot

V:

873.8~|8.7x10" km/h|.

The distance traveled is 500 km (250 km outgoing, 250 km return, keep 2 significant figures). The
displacement (Ax) is 0 because the ending point is the same as the starting point.

(@) Tofind the average speed, we need the distance traveled (500 km) and the total time elapsed.

. . . d d, 250 km .
During the outgoing portion, v = —- and so At, = —= = 2.632 h. During the return
At

vV 95km/h

1

portion, V, = —, and 0 At, =—*
A V., 55km/h

d d 250 km . . . .
2 = =4545h. Thusthetotal time, including lunch, is
t2

d 500 km
At =At +At,, +At, =8177 h. Average speed = —2-= -

o At 8177h

total

61km/h|.

(b) Average velocity = [V = Ax/At =0

The average speed of soundisgivenby V = d/At , and so the time for the sound to travel from the

end of the lane back to the bowler is At = d = 165m = 4.85x10%s. Thusthetimefor the

=y 340 m/s

ball to travel from the bowler to the end of the laneis given by

At = At —At,,, =250 s—4.85x107s= 2.4515s. And so the speed of the ball is:
- d 16.5m

Vi, = = =16.73m/s|.
= At, 24515s /

ball

16. The average acceleration is given by

1m/s
- Av_ 95km/h—Okm/h _ (95km/h)[3.6km/hj

At 6.2s 6.2s

= 4.3m/s2 .

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rightsreserved. This material is protected under al copyright laws as they
currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the
publisher.

17



Chapter 2 Describing Motion: Kinematicsin One Dimension

17. (a) The average acceleration of the sprinter is @ = Av_ 10.0m/s—00m/s = 7.41m/s2 .
At 1.35s
1k 3600 s’
() &= (7.41m/52)( m j( S) — [9.60x10* km/h?
1000 m 1lh

: . A
The time can be found from the average acceleration, a = =
im/s

At
30km/h
Av  110km/h-80km/h ( / )£3.6km/hj
N _ _
a 1.6m/s’ 1.6m/s’

19. Theinitia velocity of the car isthe average speed of the car before it accelerates.
V=—="——=22m/s=y,

0

Thefinal speedis v=0, and thetimeto stopis4.0s. Use Eq. 2-11ato find the acceleration.
v=y,+at —

gV Vo 0—22m/s: _5_5m/sz z(_5_5m/52)(1_9j= -0.56 g's

t 40s 9.80m/s’
20. To estimate the velocity, find the average velocity over Table of Calculations
each timeinterval, and assume that the car had that velocity | t(9 x(m) te v(ms t(d ams)
at the midpoint of thetimeinterval. To estimate the 000 000 000 000  oeo  og
) : : : 0125 044
acceleration, find the average acceleration over each time 025 ol 025 384
interval, and assume that the car had that acceleration at the ' ' 0375 140 ' '
midpoint of the time interval. A sample of each calculation 050 046 050  4.00
is shown. 0.625 2.40
0.75 1.06 0.75 448
From 2.00 sto 2.50 s, for average velocity: 0875 382
100 194 106 491
~ 250s+2.00s 595 125 536
md = ~e0S 150 462 150 500
1.75 7.86
Ax 13.79m-855m 524 m 200 855 200 524
V=—— = =10.48m/s 225 1048
At 250s-2.00s 0.50s 250 13.79 250 532
From 2.25 sto 2.75 s, for average acceleration: 275 1314
3.00 20.36 3.00 5.52
_22554275S_, 5 325 1590
mid 2 350 28.31 350 556
375 1868
AV _ 13.14m/s-10.48m/s _ 266 m/s _5.30m/s | 400 3 400 55
At 2.755-225s 0.50s 425 2144
450 48.37 450 4.84
475 23.86
500 60.30 500 412
525 2592
550 73.26 550 376
575 27.80
6.00 87.16
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21.

22

23.

24,

25,

S

Graph of the velocity Graph of the acceleration
6
30 .
25 + //—/\
& 4
~ 20 %
E 151 E 3
> 10 A c 2
54 1
0 ‘ ‘ 0 : : : : :
0 1 2 3 4 5 6 0 1 2 3 4 5 6
t(s) t (s)
- L v-v, 25m/s-13m/s
By definition, the acceleration is a = L= / / = [2.0m/s?].

6.0s
The distance of travel can be found from Eq. 2-11b.

X=X, =Vt +4at’ = (13m/s)(6.0s)+%(2.0m/s’)(6.0's)° =[114 m]

The acceleration can be found from Eg. (2-11c).

2 2 _ 2
_ Vv 0 (23m/s) Neyrya)
2(x-x%,)  2(85m)

Vi=v, +2a(x-%) — a

Assume that the plane starts from rest. The runway distance isfound by solving Eq. 2-11c for
X=X, .

2 2 2
VoV 2a(xox) o x-x =Lt B 0 pear

2a  2(30m/s)

The sprinter starts from rest. The average acceleration is found from Eq. 2-11c.
2_v?  (11.5m/s)’ -0
V=V, +2a(x-%) — a= v /s) = 4.408m/s* ~ |4.41m/<?|.
2(x-%)  2(15.0m)
The elapsed time is found by solving Eq. 2-11afor time.

Vv tat (Vv _11.5m/s—0:

a  4.408m/s’

The words “slowing down uniformly” implies that the car has a constant acceleration. The distance
of travel isfound form combining Egs. 2-7 and 2-8.

X = otV :(Zl.Om/Z+Om/sj(6_oo sec)z.

2

Thefinal velocity of the car is zero. Theinitia velocity isfound from Eg. 2-11c with v=0 and
solving for v,.

V=V +2a(x-%) — voz\/vz—Za(x—xo)=\/0—2(—7.00m/sz)(92m)= 36m/s
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27.

28.

29.

30.

Thefinal velocity of the driver iszero. The acceleration isfound from Eg. 2-11c with v=0 and
solving for a.

o-| (85kmyn)[ —LM/S_
V-V 3.6km/h , —
S - = —348.4m/s? ~|-35x10° m/s
2(x-x,) 2(0.80 m)

. ~3.484x10* m/s’
Converting to "g's": a= =
onvertingto "g's': a (9.8m/82)/g

The origin isthe location of the car at the beginning of the reaction time. Theinitial speed of the car
1

s (95km/h)| —/S_

3.6km/h

the equation for motion at constant velocity: X, = V,t, =(26.39m/s)(1.0 s) = 26.39 m. Thisis

now the starting location for the application of the brakes. In each case, the final speed isO.
(&) Solve Eg. 2-11c for thefinal location.

2 2 —(26. 2
Vi=Vv.+2a(x-x%,) — x=x0+V % _ 26,30 m+ 2 (26.39m/s) =113 m]

-3649's|.

] =26.39 m/ s. Thelocation where the brakes are applied is found from

2a 2(-4.0m/s?)
(b) Solve Eg. 2-11c for the final location with the second acceleration.
2 _\2 0—(26.39m/s)’
)= x, + LYo _ 2630 m+ 2 /) _[7om
2a 2(-8.0m/s)

The origin isthe location of the car at the beginning of the reaction time. The location where the
brakes are applied is found from the equation for motion at constant velocity: x, = v,t,

Thisisthe starting location for the application of the brakes. Solve Eq. 2-11c for the final location of

thecar, with v=0.

V2—V2 2
— 0 _ 0
X—X0+ a —VOtR—Z

The critical condition isthat the total distance covered by the passing car and the approaching car
must be less than 400 m so that they do not collide. The passing car has atotal displacement
composed of severa individual parts. These are: i) the 10 m of clear room at the rear of the truck, ii)
the 20 m length of the truck, iii) the 10 m of clear room at the front of the truck, and iv) the distance

the truck travels. Since the truck travels at a speed of V = 25m/s, the truck will have a
displacement of AX, . = (25 m/s)t . Thusthe total displacement of the car during passing is
AX o =40m+(25m/s)t.

passing
car

To express the motion of the car, we choose the origin to be at the location of the passing car when
the decision to passis made. For the passing car, we have an initial velocity of v, = 25 m/s and an

accelerationof a=1.0 m/s2 . Find Ax_ . from Eq. 2-11b.
AXpang = %, = %, = Vot +2at = (25m/s)t +4(1.0m/s*)t’
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31

Set the two expressionsfor Ax_. - equal to each other in order to find the time required to pass.
40m+(25m/s)t,.. =(25m/s)t  +4(1L0m/s" )2 — 40m=21(1L0m/s* )2, —

t =+/80s"=89%s

pass

Calculate the displacements of the two cars during thistime.
AX iy =40M+(25m/s)(8.94 s) = 264 m

passing
car

=V t=(25m/s)(8.94s)=224m

Xapproachi ng approaching
car car

Thus the two cars together have covered atotal distance of 488 m, which is more than allowed.
| The car should not pass)|

During the final part of the race, the runner must have a displacement of 1100 min atime of 180 s (3
min). Assume that the starting speed for the final part is the same as the average speed thus far.
d 8900 m

Average speed = — = ———— =5.494m/s =,
wEP At (27x60) s /=Y,

The runner will accomplish this by accelerating from speed v, to speed v for t seconds, covering a
distance d, , and then running at a constant speed of v for (180—t) seconds, covering adistance d.,.
We have these relationships:

v=v, +at d, =vt+Lat® d, =v(180-t)=(v, +at)(180-t)

1100 m=d, +d, =vt+%at®+ (v, +at)(180-t) — 1100 m=180v, +180at-%at* —

1100 m = (180 s)(5.494m/s) + (180 5)(0.2m/s’ )t - 4(0.2m/s’ )t*

0.1t*>-36t+111=0 t=357s,3.11s
Sincewe must have t <180 s, the solutionist =3.1s.

The car'sinitial speed is v, = (45km/h)(3:3r|?—/sj ~125m/s.
.OKM

Casel: trying to stop. The constraint is, with the braking deceleration of the car (a =-5.8 m/ sz) ,

can the car stop in a28 m displacement? The 2.0 seconds has no relation to this part of the problem.
Using equation (2-11c), the distance traveled during braking is

vi-v2  0-(125m/s)’
(X_ XO) = = 2
2a  2(-58m/s?)
Casell: crossing theintersection. The constraint is, with the acceleration of the car
a= (65 km/h — 45km/ hj Lm/s =0.9259 m/ s” |, can she get through the intersection
6.0s 3.6km/h

(travel 43 meters) in the 2.0 seconds before the light turns red? Using equation (2.11b), the distance
traveled during the 2.0 secis

(x-x,)=Vt++at” =(12.5m/s)(2.0 5) +%(0.927m/s*)(2.0s)" =26.9 m.

=135m |She can stop thecar in time.l

|She should stop.l
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33.

35.

37.

Choose downward to be the positive direction, and take y, = O at the top of the cliff. Theinitial
velocity is v, = 0, and the acceleration is a = 9.80 m/s2 . The displacement is found from equation
(2-11b), with x replaced by .

Y=Y, +vt+iat® - y-0=0+1(980m/s*)(325s)° — y=[5L8m]

Choose downward to be the positive direction. Theinitial velocity is v, = 0, the final velocity is

V= (85km/h)(%£;h

found by solving Eqg. 2-11afor thetime.

Vey, +at - t:V—VO _ 23.61m/s—0:
a

9.80m/s”

j = 23.61m/s, and the acceleration is a = 9.80 m/s2 . Thetime can be

Choose downward to be the positive direction, and take y, = O to be at the top of the Empire State

Building. Theinitial velocity is v, = 0, and the acceleration is a = 9.80 m/s2 :
(&) The elapsed time can be found from Eq. 2-11b, with x replaced by y.

[2y /2(380 m) 589
_ :Vt+iat2 > t=, |—= —:88063z 888
y yo 0 2 a 980m/32 -

(b) Thefinal velocity can be found from equation (2-114).
V=V, +at=0+(9.80m/s*)(8.806 s) =86 m/s

Choose upward to be the positive direction, and take y, = 0 to be at the height where the ball was

hit. For the upward path, v, = 22 m/s, v =0 at thetop of the path, and a = -9.80 m/s2 .
(&) The displacement can be found from Eq. 2-11c, with x replaced by y .
VZ -V 0 0-(22m/s)’

0

vi=Vv:+2a(y- > y=y + =0+—————=|25m
o +23(y=%,) Y 2(-9.80m/s%)
(b) Thetime of flight can be found from Eq. 2-11b, with x replaced by y , using a displacement of 0
for the displacement of the ball returning to the height from which it was hit.
2v, 2(22m/s)
=y, +vt+iat’=0 — t(v,+<at)=0 - t=0,t=—2=———""+=[455
Y= Yol (vo+at) ~a  -9.80m/s’
Theresult of t = 0 sisthe time for the original displacement of zero (when the ball was hit), and
theresult of t = 4.5 sisthe timeto return to the original displacement. Thusthe answer ist =
4.5 seconds.

Choose upward to be the positive direction, and take y, = O to be the height from which the ball

was thrown. The accelerationis a =-9.80 m/ s’ . The displacement upon catching the ball is 0,
assuming it was caught at the same height from which it was thrown. The starting speed can be
found from Eq. 2-11b, with x replaced by v.
y=y,+vt+iat’=0 —
—y. —1at?
v, = % - —iat=-1(-980m/s*)(3.0's) =14.7m/s=[15m/s
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The height can be calculated from Eq. 2-11c, with afinal velocity of v= 0 at thetop of the path.
A 0-(14.7m/s)’

0

vVi=vi+2a(y-y,) - y= y°+T=O+—=

2(-9.8m/s’)

38. Choose downward to be the positive direction, and take y, = O to be at the height where the object
was released. Theinitia velocity is v, = 0, and the acceleration is a = 9.80 m/s2 :
(a) The speed of the object will be given by Eq. 2-11awith vy =0,andso v=at = (9.80 m/s2 )t .
Thisisthe equation of a straight line passing through the origin with a slope of 9.80 m/s2 .
(b) The distance fallen will be given by equation (2-11b) with v, = 0, and so

y=y,+Vt+iat’=0+0+ (4.9Om/sz)t2 . Thisisthe equation of a parabola, centered on the
t-axis, opening upward.
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o
-
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39. Choose downward to be the positive direction, and take y, = 0 to be the height where the object

was released. Theinitial velocity is v, = —5.20m/s2 , the accelerationis a = 9.80 m/s2 , and the
displacement of the package will be y =125 m. Thetime to reach the ground can be found from
Eq. 2-11b, with x replaced by .
2 2 2(-5.2m/s 2(125m
y=y,+vt+iat® — 1y Yoo 5 2y ( /Z)t— ( 2):
a a 9.80m/s 9.80 m/s

_)

t=5.61s, —455s

The correct time is the positive answer, |t =5.61 s|.

40. Choose downward to be the positive direction, and take y, = O to be the height from which the
object isreleased. Theinitial velocity is v, = 0, the accelerationis a = g . Then we can calculate

the position as a function of time from Eq. 2-11b, with x replaced by y, as y(t) =4 gt®. Attheend
of each second, the position would be as follows:

y(0)=0; y(1)=g; y(2)=19(2) =4y(); y(3)=19(3) =9y(1)
The distance traveled during each second can be found by subtracting two adjacent position values
from the above list.

d(1)=y(1)-y(0)=y(1): d(2)=y(2)-y(1)=3y(1); d(3)=y(3)-y(2)=5y(2)
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We could do thisin general.
y(n)=2<gn’ y(n+1)=1g(n+1)’
d(n+1)=y(n+1)-y(n)=2g(n+1)’ -1gn’ :%g((n+1)2 —nz)
=%g(n2 +2n+1- nz)zgg(2n+1)

Thevalueof (2n+1) isaways odd, in the sequence

41. Choose upward to be the positive direction, and take y, = 0 to be the height from which the ball is
thrown. Theinitial velocity is v, , the acceleration is a = —g , and the final location for the round
tripis y=0. Thevelocity under those conditions can be found from Eqg. 2-11c, with x replaced by
y.

2 2 2 2
Vi-vy=2ay=0 — Vv =v; — |v=zV,

The two results represent two different velocities for the same displacement of 0. The positive sign
(v=\v,) istheinitial velocity, when the ball is moving upwards, and the negative sign (v = -V, ) is
the final velocity, when the ball is moving downwards. Both of these velocities have the same

magnitude, and so the ball has the same speed at the end of its flight as at the beginning.
42. Choose upward to be the positive direction, and y, = 0 to be the height from which the stone is
thrown. We have v, =18.0m/s, a=-9.80m/s?, and y—y, =11.0m.
(@ Thevelocity can be found from Eq, 2-11c, with x replaced by y.
vi=v.+2a(y-y,)=0 —
V=4V +2ay = i\/(18.0 m/s)’ +2(-9.80m/s’)(11.0 m) = +10.4m/s
Thus the speed is [|[v] =10.4m/s
(b) Thetime to reach that height can be found from eguation (2-11b).
2(18.0m/s) ( 2(-11.0m) B
~9.80m/s*  -9.80m/s’
t*~3673t+2245=0 — [t=2.90s, 0.7755|
(© |There are two times at which the object reaches that hei ght| — once on the way up (t =0.775 s) :

y=y,+Vt+iat® — t*+

and once on the way down (t =2.90s).

43. The 10-cm (100 mm) apple has a diameter of about 6 mm as measured in the photograph. Thus any
distances measured from the picture need to be multiplied by 100/ 6. Choose the downward

direction to be positive. Choose y, = 0 to be stem of the apple on the THIRD image from the top of
the picture. It isthefirst picture in which the stem of the apple isvisible. The velocity of the apple
at that position is not 0, but it is not known either. Call it v,. We will choose that the time at that
pointis t =0, and we call the time interval from one picture to the nextto be T . The acceleration
of the appleis a= g = 9.8m/s?.
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The 3" picture after the t = 0 picture (the first one that is not overlapping with another image) has
the stem 16.5 mm from the origin of coordinates, at atimeof t = 3T . The actual position would be
found by

y, = (16.5mm)(100/6) = 275 mm = 0.275 m.

The 6™ picture after the t = 0 picture (the next to last one in the picture) has the stem 42 mm from
the origin of coordinates, at atime of t = 6T . The actual position would be found by

y, = (42 mm)(100/6) = 700 mm = 0.70 m.

Now we have two sets of position-time data, relative to the origin. Both of those sets of position-
time data must satisfy equation Eqg. 2-11b.

Y, = Y, + Vot +4at? -  0.275=3v,T+1g(3T)
Y, =Y, +Vt, ++at; — 0.70=6v,T +§g(6T)2

Multiply the first equation by 2, and then subtract it from the second equation to €liminate the
dependence on V,. The resulting equation can be solved for T .

0.55m = 6v.T +9gT> 0.15
o' 9 } 5 015m=9gT? — T-= 9—m=4.1><102$

0.70m = 6v,T +18gT> (9.8m/s?)

1flash 1f|as'l = 24 flashes per second|.
T 4.1x10°s

Thisis equivalent to

44. Choose downward to be the positive direction, and y, = 0 to be the height from which the stoneis
dropped. Call the location of the top of the window Y, , and the time for the stone to fall from
release to the top of thewindow is t,. Since the stoneis dropped from rest, using Eq. 2-11b with y
substituting for x, we have y, =y, +V,t +%at* = 0+ 0+ gt2. Thelocation of the bottom of the
window is y, +2.2 m, and the time for the stone to fall from release to the bottom of the window is
t, +0.28's. Sincethe stoneisdropped from rest, using Eq. 2-11b, we have
Y, +22m=y,+V,++at’ =0+0+2g(t, +0.28s)". Substituting the first expression for y,, into
the second one.

igt2+22m=2g(t,+028s)° — t,=0662s
Use thistime in the first equation.
y, =%0t] =4(9.8m/s")(0.662s)" =[2.1m].

45. For thefalling rock, choose downward to be the positive direction, and y, = O to be the height from
which the stone is dropped. Theinitial velocity is v, = 0m/s, the accelerationis a= g, the
displacementis y=H , and thetime of fall is t, . Using Eq. 2-11b with y substituting for x, we
have H =y, + Vvt +2t* =0+0+1gt’.

. H :
For the sound wave, use the constant speed equation that v, = % = ﬁ , which can be rearranged

1

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rightsreserved. This material is protected under al copyright laws as they
currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the
publisher.

25



Chapter 2 Describing Motion: Kinematicsin One Dimension

46.

48.

togivet =T —i, where T = 3.2 s isthetotal time elapsed from dropping the rock to hearing the

S

sound. Insert this expression for t, into the equation for H, and solve for H.

2
H T
H:%g[T_V—J - %HZ—EQV_-F].}H +%gT2=O -

S S S

4.239x10°H*-1.092H +50.18=0 — H =46.0m, 2.57x10" m

. : H o .
If the larger answer isused in t, =T ——, anegative time of fall results, and so the physically
vV

correct answer is .

Choose upward to be the positive direction, and y, = 0 to be the location of the nozzle. The
initial velocity is v, , the acceleration is a = —9.8m/s2 , thefinal locationis y=-1.5m, and
thetime of flightist =2.0s. Using Eq. 2-11b and substituting y for x gives the following.
y—ia® -15m-(-9.8m/s*)(20s)

t 20s

y=y,+vt+iat® - v, = 9.1m/s

Choose downward to be the positive direction, and y, = O to be at the top of the cliff. Theinitial
velocity is v, = —12.0m/s, the acceleration is a = 9.80 m/s2 , and thefinal locationis y =70.0m.
(8) Using Eg. 2-11b and substituting y for x, we have

y=Y,+yt+iat’ > (49m/s)t°-(120m/s)t-70m=0 — t=-2749s,5.198s.

The positive answer is the physical answer: .
(b) Using Eq. 2-11a, we have v = v, +at = -12.0m/s+(9.80m/s’)(5.198 s) = [38.9m/s] .

(c) Thetotal distance traveled will be the distance up plus the distance down. The distance down
will be 70 m more than the distance up. To find the distance up, use the fact that the speed at
the top of the path will be 0. Then using Eg. 2-11c:

V-V 0 0-(-12.0m/s)’

vi=Vv:+2a(y- > y=Vy + o -0+ =-7.35m.
° (¥=%) Y=Y 2(9.80m/s%)
Thus the distance up is 7.35 m, the distance down is 77.35 m, and the total distancetraveled is
84.7 m|.

Choose upward to be the positive direction, and y, = 0 to be the level from which the ball was
thrown. Theinitia velocity is v, , the instantaneous velocity is v =13 m/s, the acceleration is

a=-9.80 m/s2 , and the location of the window is y =28 m.
(&) Using Eg. 2-11c and substituting y for x, we have
vi=Vv +2a(y-y,) —

Vo = 1V —2a(y-y,) = J_r\/(13m/s)2 ~2(-9.8m/s’)(28 m) =[27m/s
Choose the positive value because the initial direction is upward.
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49,

50.

51.

(b) Atthetop of its path, the velocity will be 0, and so we can use the initial velocity asfound
above, along with Eg. 2-11c.

2V 0-(27m/s)’
V=V +2a(y- _y 4y Yooy -
o +2(Y=¥%) > Y= ¥ 2a 2(-9.8m/s%)

(c) Wewant the time elapsed from throwing (speed v, = 27 m/s) to reaching the window (speed

37 m

v =13m/s). Using Eq. 2-11a, we have:
v-v, 13m/s-27m/s 149
= =(1.4g].
a -9.80m/s’
(d) We want the time elapsed from the window (speed v, =13 m/s) to reaching the street (speed
v=-27m/s). Using Eq. 2-11a, we have:
v-v, -27m/s-13m/s 219
= =[4.15]|.
a -9.80m/s’

v=y,+at o> t=

v=y,+at —> t=

Slightly different answers may be obtained since the data comes from reading the graph.

(&) Thegreatest velocity isfound at the highest point on the graph, which is at .

(b) Theindication of a constant velocity on avelocity-time graph is aslope of 0, which occurs from
[t=90s to t ~108 5.

(c) Theindication of a constant acceleration on avelocity-time graph is a constant slope, which
occurs from |t =0s to t~38 s| , again from |t ~65s to t ~83 s| , and again from
[t=90s to t~1087|.

(d) The magnitude of the acceleration is greatest when the magnitude of the slope is greatest, which
occurs from |t ~65s to t ~83 s| .

Slightly different answers may be obtained since the data comes from reading the graph.
(@) Theinstantaneous velacity is given by the slope of the tangent lineto the curve. At t =10.0 s,
3m-0
the slopeis approximately v(10) ~ ———— =0.3m/s|.
PeISapp y v(10) 10.0s-0 /
(b) At t=30.0s,thedopeof thetangent lineto the curve, and thus the instantaneous vel ocity, is
22m-8m

35s5-25s -

approximately v(30) ~

1.4m/s|.

o _ x(5m-x(0)m 15m-0

c) Theaverage velocity isgivenby V = = =].30m/s|.

© = y1sg y 50s-0s 50s /
L _ x(30)m-x(25)m 16m-9m

d) The average velocity isgivenby V = = =|1.4m/s|.

@ « yisg Y 30.0s-25.0s 50s /
. 5)m-x(40)m 1 -19.

(e) The average velocity isgivenby V = X( ) X( ) = 0m-19.5m = —O.95m/s .

50.0s-40.0s 10.0s

Slightly different answers may be obtained since the data comes from reading the graph.
(&) Theindication of a constant velocity on a position-time graph is a constant slope, which occurs

from [t=0s to t~18g|.
(b) The greatest velocity will occur when the slope is the highest positive value, which occurs at
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52.

53.

about :

(c) Theindication of a0 velocity on a position-time graph is a slope of 0, which occurs at about

from .

(d) |The object movesin both directions.| When the dopeis positive, fromt=0s tot=38s,

the object is moving in the positive direction. When the slopeis negative, from t =38 s to
t =50 s, the object is moving in the negative direction.

Slightly different answers may be obtained since the data comes from reading the graph. We assume
that the short, nearly horizontal portions of the graph are the times that shifting is occurring, and
those times are not counted as being “in” a certain gear.

Av,

24m/s-14m/s
(@) Theaverage accelerationin 2™ gear isgivenby @, =—2 = / / = 2.5m/s2 .
At, 8s-4s
A 44 -37
The average acceleration in 4" gear isgiven by T, = Vo _ m/s-37m/s - [0.64m/s?|.
At 27s-16s

4
(b) The distance traveled can be determined from a velocity-time graph by calculating the area
between the graph and the v =0 axis, bounded by the times under consideration. For this case,
we will approximate the area as arectangle.

Vi +V,  44m/s+37m/s

height =V = =40.5m/s width=At=27s-16s=11s

Thus the distance traveled is d = VAt = (40.5m/s)(11s) = :

Slightly different answers may be obtained since the data comes from reading the graph. We assume
that the short, nearly horizontal portions of the graph are the times that shifting is occurring, and
those times are not counted as being “in” a certain gear.

(8) Theaverage acceleration in first gear is given by gzﬂ:w: 4m/s2 .
At 4s-0s
(b) Theaverage acceleration in third gear is given by ﬁzﬂz 37m/s—24m/s: 3m/s2 .
At 14s-9s
L . A 2 —44
(c) Theaverage acceleration in fifth gear is given by Ez—vz 52m/s m/s: 0.35m/s2 .
At 50s-27s

(d) The average acceleration through the first four gearsis given by
Av _44m/s-0m/s _ Lom/<|.

T=—-=

At - 27s-0s

Slightly different answers may be obtained since the data comes from reading the graph.
(@) To estimate the distance the object traveled during the first minute, we need to find the area
under the graph, fromt=0stot=60s. Each"block" of the graph represents an "area’ of

Ax =(10m/s)(10 s) =100 m. By counting and estimating, there are about 17.5 blocks under
the 1st minute of the graph, and so the distance traveled during the 1st minute is about .

(b) For the second minute, there are about 5 blocks under the graph, and so the distance traveled
during the second minute is about :

Alternatively, average accelerations can be estimated for various portions of the graph, and then the
uniform accel eration equations may be applied. For instance, for part (a), break the motion up into
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two segments, from O to 50 seconds and then from 50 to 60 seconds.
Av  38m/s-14m/s

(a8 t=0to50: _—_———
At 50s-0s

d, =v,t, ++at’ = (14m/s)(50 s) +4(0.48m/s’ ) (50 s)° =1300 m
~ _Av_31m/s-38m/s _
At 60s-50s
d, = v,t, +4at =(38m/s)(10 s) +4(-0.70m/s’ ) (10's)* =345 m

d,+d, =1645m

= 0.48m/s’

2l

-0.70m/s’

R

55. Thevvs.t graph isfound by taking the slope of the x vs. t graph.
Both graphs are shown here.

[~
=
s

£ /
=10
- F

R
il .-v“l""‘ :

0 T 3 35 an i
£ (s)

56. (a) Duringtheinterva fromA to B, itis |moving in the negative direction|, because its
displacement is negative.
(b) During theinterval from A to B, it is , because the magnitude of its Slopeis
increasing (changing from less steep to more steep).
(c) Duringtheinterva from A to B, |the acceleration is negative|, because the graph is

concave downward, indicating that the slope is getting more negative, and thus the acceleration
is negative.

(d) During theinterval from D to E, it is [moving in the positive direction| , becauise the
displacement is positive.

(6) During theinterval from D to E, it is , because the magnitude of its slopeis
increasing (changing from less steep to more steep).

() During theinterval from D to E, the acceleration is positive| , because the graph is

concave upward, indicating the slope is getting more positive, and thus the acceleration
IS positive.
(9) During theinterval from Cto D, |the object is not moving in either direction|.

|The velocity and acceleration are both 0.|
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57. (a) For thefree-falling part of the motion, choose downward to be the positive direction, and
Yy, = 0 to be the height from which the person jumped. Theinitial velocity is v, =0,

accelerationis a =9.80 m/s2 , and the location of the netis y =15.0 m. Find the speed upon
reaching the net from Eq. (2-11c) with x replaced by y.

V=V +2a(y-y,,) - v=+,0+2a(y-0)= i\/2(9.80 m/s*)(15.0 m) =17.1m/s
The positive root is selected since the person is moving downward.
For the net-stretching part of the motion, choose downward to be the positive direction, and

Y, =15.0 m to be the height at which the person first contacts the net. Theinitial velocity is

v, = 17.1m/s , thefinal velocity is v =0, and the location at the stretched position is
y =16.0 m. Find the acceleration from Eq. (2-11c) with x replaced by y.

2 ¢ 0P —(17.1m/s)’

vVi=v:+2a(y-y,) - a= Y% ( /s) = |-150m/s’
2(y_yo) 2(1'0 m)

(b) For the acceleration to be smaller, in the above equation we see that the displacement would

have to be larger. This means that the net should be M.

58. Choose the upward direction to be positive, and y, = 0 to be the level from which the object was

thrown. Theinitial velocity is v, and the velocity at the top of the path is v = Om/s. The height at
the top of the path can be found from Eg. (2-11c) with x replaced by v.

2
— V0

2a
From this we see that the displacement is inversely proportional to the acceleration, and so if the
acceleration is reduced by afactor of 6 by going to the Moon, and the initial velocity is unchanged,

the |displacement increases by afactor of 6| .

Vi=vi+2a(y-vy,) = y-Y,=

1m/s
3.6km/h

location at which the deceleration begins. We have v=0m/s and a = -30g = -294 m/s2 . Find
the displacement from Eqg. (2-11c).

V=V, +2a(x-%) — X= +V2_V§—O+ O—(27.8m/s)2 —13lm~
° % T 2(-294x10°m/s*) )

59. Theinitial velocity of the car is v, = (100 km/h)( j = 27.8m/s. Choose x, = 0 to be

60. Choose downward to be the positive direction, and y, = 0 to be at the height of the bridge. Agent

Bond has aninitial velocity of v, = 0, an acceleration of a = g, and will have a displacement of
y=12m-15m=11.5m. Findthetime of fall from Eq. 2-11b with x replaced by y.

2y  [2(11.5m)
Cy ovitdar? o t= Yo A ey
Y= Yo %ol a 9.80m/s?

If the truck is approaching with v = 25m/s, then he needs to jump when the truck is a distance away
givenby d = vt =(25m/s)(1.532 s) = 38.30 m. Convert this distanceinto "poles’.
d =(38.30 m)(1 pole/25 m) =1.53 poles
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61.

62.

63.

So he should jump when the truck is about away from the bridge.

(a) Choose downward to be the positive direction, and y, = 0 to be the level from which the

car was dropped. Theinitial velocity is v, = 0, thefinal locationis y = H , and the
accelerationis a = g . Findthefinal velocity from Eq. 2-11c, replacing x with y.

Vi=vi+2a(y-y,) — v=%{V,+2a(y-VY,)=%20H .

The speed is the magnitude of the velocity, |v=+/2gH |.

2

(b) Solving the above equation for the height, we have that H = ;'— . Thus for acollision of
g

1m/s

= (60km/h
o= ok 52
na _ (16.67m/s)’
A2 Y _1417m~[14m].

29 - 2(9.80m/s)

j =16.67 m/ s, the corresponding height is:

1m/s

(c) For acollision of v= (100km/h)(3 ™ /hJ = 27.78m/s, the corresponding height is:
6km

V_2 M_gg_gﬂnz 39 m|.
29 2(9.80m/s’)

The average speed is the distance divided by the time.

9
v-d_[1x10 km ( 1y )( 1d j=1.142><105km/hz 1x10° km/h
1y J\365d/)\ 24

Use the information for the first 180 m to find the acceleration, and the information for the full
motion to find the final velocity. For the first segment, thetrain has v, = Om/s, v, =25 m/s, and a

displacement of x — X, =180 m. Find the acceleration from Eq. 2-11c.
V-2 (25m/s)’ -0

1 0
2(x,-%) 2(180m)
Find the speed of the train after it has traveled the total distance (total displacement of
X, — X, = 275m) using Eq. 2-11c.

VE=VE42a(x,-%,) > v, =V +2a(x - %) =,/2(1736m/s*)(275 m) =[3Lm/3].

V=V, +2a(x -%,) — a= =1.736m/s’

For the motion in the air, choose downward to be the positive direction, and y, = O to be at the
height of the diving board. Then diver has v, = 0, (assuming the diver does not jump upward or

downward), a=g =9.8 m/s2 ,and y = 4.0 m when reaching the surface of the water. Find the
diver's speed at the water’ s surface from Eq. 2-11c, with x replaced by .

Vi=v,+2a(y-y,)x — v=i\/vj +2a(y-vy,) = \/0+ 2(9.8m/s’)(4.0m) =8.85m/s
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65.

For the motion in the water, again choose down to be positive, but redefine y, = 0to be at the

surface of the water. For this motion, v, = 8.85m/s, v=0,and y-y, =2.0m. Find the
acceleration from Eqg. 2-11c, with x replaced by y.

2\ p _ ’
__ V- 0 (8.85m/s) = -19.6m/s? ~[-20m/s?
2(y-vy,)x 2(2.0m)

The negative sign indicates that the acceleration is directed upwards.

V=V, +2a(y-y,) — a

This problem can be analyzed as a series of three one-dimensional motions. the acceleration phase,
the constant speed phase, and the deceleration phase. The maximum speed of thetrainis:

(90km/h)(%r/ns/hj: 25m/s.

In the acceleration phase, the initial velocity is v, = 0m/s, the acceleration is a = 1.1m/s2 , and the
final velocity is v= 25 m/s. Find the elapsed time for the accel eration phase from Eqg. 2-11a.
v-v, 25m/s-0
v=y,+at > t = = >
a 1.1m/s
Find the displacement during the acceleration phase from Eq. 2-11b.
(x=%,),. =Vt+dat’ =0+4(11m/s’)(22.73s)" =284 m.

=22.73s.

In the deceleration phase, the initial velocity is v, = 25 m/s, the accelerationis a=-2.0 m/s2 , and

thefinal velocity is v = Om/s. Find the elapsed time for the deceleration phase from equation Eq.
2-1l1a
v-v, 0-25m/s

a -20m/s
Find the distance traveled during the deceleration phase from Eqg. 2-11b.

(X=%),. =Vt +4at’ =(25m/s)(125s) +4(-20m/s’)(125s)° =156 m.
Thetotal elapsed time and distance traveled for the accel eration / decel eration phases are:

t +t, =227s+125s5=352s

(Xx=%), . +(X=%), =284m+156 m=440m’

=125s.

v=V,+at — t, =

9000 m

00 m
station segments. A train making the entire trip would thus have atotal of 5 inter-station
segments and 4 stops of 20 s each at the intermediate stations. Since 440 m istraveled during
acceleration and deceleration, 1360 m of each segment is traveled at an average speed of

V =25m/s. Thetimefor that 1360 m is given by
~d 1360 m

constant  —

G T 25 m/s
+54.4s=89.6s. With 5 inter-station segments of 89.6 s each, and 4 stops of 20 s each, the
total timeisgiven by:

tysin = 5(89.65)+4(20s) =528 s=[8.8 min|.

0.8 km

(a) If the stations are spaced 1.80 km = 1800 m apart, then thereisatotal of =5 inter-

d=vt > t

=54.4 s. Thusatota inter-station segment will take 35.2 s
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9000 m

00 m
station segments. A train making the entire trip would thus have atotal of 3 inter-station
segments and 2 stops of 20 s each at the intermediate stations. Since 440 m istraveled during
acceleration and deceleration, 2560 m of each segment is traveled at an average speed of

. o d 2560
V=25m/s. Thetimefor that 2560 misgivenby d =Vt — t=—-= m:102.45.

v 25 m/s
Thus atotal inter-station segment will take 35.2 s+ 102.4 s=137.6 s. With 3 inter-station
segments of 137.6 s each, and 2 stops of 20 s each, the total timeis

o0, = 3(137.65) + 2(205) = 453 s =[7.5 min].

66. Choose downward to be the positive direction, and y, = O to be at the start of the pelican’s dive.

(b) If the stations are spaced 3.0 km =3000 m apart, then thereis atotal of =3 inter-

The pelican has an initial velocity is v, = 0 and an acceleration of a = g, and afinal location of
y=16.0 m. Find thetotal time of the pelican’s dive from Eqg. 2-11b, with x replaced by y.

[2y  [2(16.0m)
=y +vt+iat® » y=0+0+iat® > t =,—<= |[———~2-181s.
Y= Yot T3 y 2 e a 9.80m/s’

The fish can take evasive action if he seesthe pelican at atime of 1.81 s—0.20 s= 1.61 sinto the
dive. Find thelocation of the pelican at that time from Eq. 2-11b.

Y=Y, +V,t+4at = 0+0+4(9.80m/s’)(1.61s)" =127 m
Thus the fish must spot the pelican at a minimum height from the surface of the water of

16.0m-12.7 m =[3.3m].

67. First consider the "uphill lie", in which the ball is being putted down the hill. Choose x, = 0 to be
the ball's original location, and the direction of the ball's travel as the positive direction. Thefinal
velocity of theball is v= Om/s, the acceleration of theball is a=-2.0 m/s2 , and the displacement
of the ball will be x - x, = 6.0 m for thefirst case, and x— x, = 8.0 m for the second case. Find the
initial velocity of the ball from Eq. 2-11c.

VE=Vo+2a(X=%) — V=4V —2a(x-X%)=

The range of acceptable velocities for the uphill lieis [4.9m/s to 5.7 m/s|, with a spread of 0.8 m/s.

J0-2(-20m/s*)(6.0m) = 4.9m/s

J0-2(-20m/s*)(8.0m) =5.7m/s

Now consider the "downhill lie", in which the ball is being putted up the hill. Use avery similar set-
up for the problem, with the basic difference being that the acceleration of the ball is now

a=-3.0 m/s2 . Find theinitial velocity of the ball from Eq. 2-11c.
0-2(-3.0m/s*)(6.0m) = 6.0m/s
V=V +2a(X=X%) —> V=4V —2a(Xx-X,)= \/ ( )

The range of acceptable velocities for the downhill lieis |6.0 m/s t0 6.9 m/s , with a spread of 0.9

J0-2(-30m/s*)(80m) =6.9m/s

m/s.
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68.

69.

Because the range of acceptable velocitiesis smaller for putting down the hill, more control in
putting is necessary, and so the downhill putt is more difficult.

(@) Thetrain's constant speedis v, = 6.0 m/s, and the location of the empty box car asa

function of timeisgiven by x . =V,,.t =(6.0m/s)t. Thefugitive has v, = 0m/s and
a=4.0 m/s2 until hisfinal speed is 8.0m/s. The elapsed time during acceleration is
_v-v,  80m/s
= a  40m/s
run. Thefirst possibility to consider is, "Can the fugitive catch the train before he reaches his
maximum speed?’ During the fugitive's acceleration, hislocation as afunction of timeisgiven

DY X = X, + Vot +2at* =0+ 0+4(4.0m/s*)t*. For him to catch the train, we must have

t = 2.0 s. Lettheorigin be the location of the fugitive when he starts to

Xoan = Xugme = (6.0m/s)t=2(4.0m/s*)t*. Thesolutionsof thisare t=0's,3s. Thus
the fugitive cannot catch the car during his 2.0 s of acceleration.

Now the equation of motion of the fugitive changes. After the 2.0 s acceleration, he runswith a
constant speed of 8.0 m/s. Thus hislocation is now given (for times t > 2 s) by the following.

Xegive = +(4.0m/s) (2.0 5)° +(8.0m/s)(t - 2.0 5) = (8.0m/s)t-8.0m.

So now, for the fugitive to catch the train, we again set the locations equal .
Xein = Xugie —>  (6.0mM/s)t=(8.0m/s)t-80m — t=|40s
(b) Thedistance traveled to reach the box car is given by
X e (1 = 4.0 5) = (8.0m/s)(4.0s)-8.0 m = .

Choose downward to be the positive direction, and y, = O to be at the roof from which the stones

are dropped. Thefirst stone has an initial velocity of v, =0 and an acceleration of a=g. Egs. 2-

1laand 2-11b (with x replaced by y) give the velocity and location, respectively, of the first stone as
afunction of time.

v=v,+at - Vv, =gt y=y,+vt+iat® — y =2<gt’.
The second stone has the same initial conditions, but its elapsed time t —1.50 s, and so has velocity
and location equations as follows.

v, =g(t,-1505) y,=+g(t,-150s)’

2
The second stone reaches a speed of v, =12.0 m/s at atime given by

12.0m/s

2

v
t, =150 s+-2=150s+
g 9.80m/s

The location of the first stone at that timeis
Y, =40t =4(9.80m/s*)(2.72s)" =364 m.
The location of the second stone at that timeis
Y, =+9(t,-150s)" =4(9.80m/s’)(2.72-150s) = 7.35m.

=272s.

Thus the distance between the two stonesis y, —y, =36.4 m-7.35m = .
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70. To find the average speed for the entire race, we must take the total distance divided by the total

71.

72.

time. If onelapisadistanceof L, then thetotal distance will be 10L . Thetime elapsed at a given
oL

—, and
198.0km/h
the time for the last Iap would be t, = L/V, , where v, isthe average speed for the last lap. Write an

constant speed isgiven by t = d/v, so the time for the first 9 laps would be t, =

expression for the average speed for the entire race, and then solve for V.

d 10L
V=—ld =200.0km/h —

t +t oL L

1 2 _

198.0km/h v,
1
= =1220.0km/h

V. 10 9 /

200.0km/h  198.0km/h

1m/s

Theinitial velocity is v, = (18km/h)(m/h
6km

j =5.0m/s. Thefina velocity is

v, = (75km/h)(%r/ns/h

average acceleration from Eq. 2-11c.
vV - (20.83m/s)’ -(5.0m/s)”

2: 2 2 _ — 0 —
Vv r2alex) > a 2(x-x,) 2(4000 m)

j =20.83m/s. Thedisplacementis x—x, = 4.0 km=4000m. Find the

5.1x1072 m/s?

Assumethat y, =0 for each child is the level at which the child loses contact with the trampoline
surface. Choose upward to be the positive direction.

(@) Thesecond child has v, =5.0m/s, a=-g=-9.8 m/s2 ,and v=0m/s at the maximum
height position. Find the child’s maximum height from Eq. 2-11c, with x replaced by .
2 2 2
V2 = ng + 2a(y2 - yo) - y2 = yo + - ZaV02 =0+ 2(_(952::?22)) =1276m zm
(b) Sincethefirst child can bounce up to one-and-a-half times higher than the second child, the first
child can bounce up to aheight of 1.5(1.276m) =1.913m=y, - y,. Eq. 2-11cisagain used to
find theinitial speed of the first child.
V=V +2a(y,-y,) —

Vo = £V —2a(y, - ¥,) = \/0— 2(-9.8m/s’)(1.913 m) = 6.124m/s ~[6.1m/s

The positive root was chosen since the child was initially moving upward.
(¢) Tofindthetime that the first child wasin the air, use Eqg. 2-11b with atotal displacement of O,
since the child returnsto the original position.

Y=Y, +Vul, +2at’ - 0=(6.124m/s)t, +1(-9.8m/s’ )t} — t,=0s, 1.2497s
Thetime of 0 s corresponds to the time the child started the jump, so the correct answer is
1.25|.

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rightsreserved. This material is protected under al copyright laws as they
currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the
publisher.

35



Chapter 2 Describing Motion: Kinematicsin One Dimension

73. For the car to pass the train, the car must travel the length of the train AND the distance the train

travels. The distance the car travels can thus be written as either d_, = v, t = (95km/h)t or
d., = Ly, + Veuol =1.10 km+(75km/h)t . To solvefor the time, equate these two expressions

car

for the distance the car travels.

(95km/h)t =1.10 km + (75km/h)t — t:%zo.osshz
m

The distance the car travels during thistimeis d = (95km/h)(0.055 h) = 5.225km ~ [5.2 km].

If thetrain istraveling the opposite direction from the car, then the car must travel the length of the
train MINUS the distance the train travels. Thus the distance the car travels can be written as either

d_, =(95km/h)t or d_ =1.10 km—(75km/h)t. To solvefor the time, equate these two
expressions for the distance the car travels.

(95km/h)t =110 km — (75km/h)t — t = o kI"

" 170km/h
The distance the car travels during thistime is d = (95km/h)(6.47x10° h) = [0.61km].

= 6.47x10° h=

74. For the baseball, v, =0, x—-x, =3.5m, and the final speed of the baseball (during the throwing
motion) is v= 44m/s. The acceleration is found from Eq. 2-11c.

V=V +2a(x-x) - a=— _(44mjs) -0 _ 280m/s’
2(x-x,)  2(35m)

75. (a) Choose upward to be the positive direction, and y, = 0 at the ground. Therocket has v, =0,

a=3.2 m/s2 ,and y=1200 m when it runsout of fuel. Find the velocity of the rocket when it
runs out of fuel from Eq 2-11c, with x replaced by y.

V12200m =V§ +2a(y— yo) -

Viom = £V +2a(y - ,) = +,/0+2(3.2m/s") (1200 m) = 87.64m/s ~ [83m/s

1200 m

The positive root is chosen since the rocket is moving upwards when it runs out of fuel.
(b) Thetimeto reach the 1200 m location can be found from equation (2-11a).

v, -v, 87.64m/s-0
> tigom = 12°°"; *= 32m§32 =27.39s~[27s

(c) For this part of the problem, the rocket will have aninitial velocity v, = 87.64 m/s, an

V,

oo m = Vo T @t

1200 m

acceleration of a=-9.8 m/s2 , and afinal velocity of v=0 at its maximum altitude. The
altitude reached from the out-of-fuel point can be found from equation (2-11c).
V2=V +2a(y-1200m) —

1200 m

—V2 ~(87.64m/s)’
Y. =1200 m+ovﬂ=1200 m+(—/2)=1200 m-+390 m=|1590 m
2a 2(-9.8m/s’)
(d) Thetimefor the "coasting" portion of the flight can be found from Eqg. 2-11a.
_v-vy, 0-87.64m/s

V=V +at -t = =894s
¢ a -9.8m/s’

1200 m coast
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Thus the total time to reach the maximum altitudeis t = 27 s+8.94 s~ .

(e) For this part of the problem, the rocket has v, = Om/s, a=-9.8 m/s2 , and a displacement of

—1600 m (it fallsfrom a height of 1600 m to the ground). Find the velocity upon reaching the
Earth from Eg. 2-11c.

Vi=v,+2a(y-y,) —

v=+ V2 +2a(y-y,) = £,/0+2(-9.80m/s*)(~1600 m) =[-177m/s
The negative root was chosen because the rocket is moving downward, which is the negative
direction.
() Thetimefor the rocket to fall back to the Earth isfound from Eqg. 2-11a.
- =177 -0
v=y,+at — tfanzv Yo _ m/s —=18.1s
a -9.80 m/ S

Thus the total time for the entireflight is t =36 s+18.1s= .

1m/s

76. The speed limit is 50km/h[36k j:13.89m/s.

(&) For your motion, you would need to travel (10 +15+50+15+ 70) m =160 m to get through

the third light. The time to travel the 160 m is found using the distance and the constant speed.
- d 160 m
d=Vt > t=—=—-——

vV 13.89m/s
, you can make it through al three lights without stopping.

(b) The second car needs to travel 150 m before the third light turnsred. This car accelerates from
v, = 0m/s toamaximum of v =13.89m/s with a=2.0m/s*. UseEq. 2-11ato determine
the duration of that acceleration.

v-v, 13.89m/s-0m/s

a  20m/s

The distance traveled during that time is found from Eq. 2-11b.

(X=%,),, = Vol ++at2, =0+4(2.0m/s*)(6.945)" =482 m.

Since 6.94 sec have elapsed, there are 13 — 6.94 = 6.06 sec remaining to clear the intersection.

The car travels another 6 seconds at a speed of 13.89 m/s, covering a distance of

dopeae = V't =(13.89m/s)(6.06 s) =84.2 m . Thusthetotal distanceis48.2m+84.2m=

=11.52s

=6.94s

v=y,+at —> t =

constant

speed
132.4 m. , the car cannot make it through all three lights without stopping.

77. Takethe origin to be the location where the speeder passes the police car. The speeder's constant

1

speedis v, =(120 km/h)(ﬁ} = 33.3m/s, and the location of the speeder asafunction
6km

of timeisgiven by X, .. = Ve uetoee = (33-3M/s)t ... Thepolicecar hasan initial velocity of

v, = 0m/s and a constant acceleration of ..+ 1helocation of the police car as afunction of time
isgiven by Eq. 2-11b.
X e = Vot +2at* =4a .t

police police "police *
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78.

79.

(@) The position vs. time graphs would qualitatively look
like the graph shown here.

. X Speeder
(b) Thetime to overtake the speeder occurs when the speeder

has gone a distance of 750 m. The time isfound using the Police car
speeder's equation from above. | t t, >

750 m
750 m =(33.3m/s)t -t =—=2255~|235
( / ) 'speeder ‘speeder 333m/3
(c) The police car's acceleration can be calculated knowing that the police car also had gone a
distance of 750 minatime of 22.5s.

_2(750 m)
" (225%)
(d) The speed of the police car at the overtaking point can be found from Eq. 2-11a.

V=Y, +at =0+(2.96m/s’) (225 5) = 66.67m/s ~ [67m/q]

Note that thisis exactly twice the speed of the speeder.

750m=4a (225s) — a =296m/s’ ~|3.0m/s’

Choose downward to be the positive direction, and the origin to be at the roof of the building from
which the stones were dropped. Thefirst stonehas y, =0, v, = 0, afinal location of y=H (asyet

unknown), and a = g . If thetime for the first stoneto reach the ground is t , then Eq. 2-11c gives
the following, replacing x with y:

y=y,+Vt+iat® —» H =§(9.80m/sz)tl2 :
The second stone has v, = 25.0m/s, Yy, = 0, afina locationof y=H ,and a=g. Thetimefor
the second stone to reach the ground is t, — 2.00 s, and so Eq. 2-11c for the second stone is

H = (25.0m/s)(t, — 2.00) +4(9.80m/s")(t, - 2.00)".
(a) Setthetwo expressionsfor H equal to each other, and solve for t,.

1(9.80m/s?)t? = (25.0m/s)(t, - 2) + +(9.80m/s)(t, - 2)" — t, =

(b) Thebuilding height is given by H =2 gt? = 2(9.80m/s?)(5.63s)’ = .
(c) The speed of the stonesisfound using Eq. 2-11a.
#1: v=v,+at = gt, =(9.80m/s*)(5.635) =[55.2m/s

#2: v=v,+at=v,+9g(t - 2) = 25.0m/s+(9.80m/s)(3.63 s) =[60.6m/s

Choose upward to be the positive direction, and the origin to be at ground level. Theinitial velocity
of thefirst stoneis v,, = 11.0m/s, and the acceleration of both stonesis a = -9.80 m/s2 . The

starting locationis y,, = H , , and it takes 4.5 sfor the stone to reach the final location y=0. Use
Eq. 2-11b (with X replaced by y) to find avaluefor H .
y=y,+Vt+iat® — 0=H,+(11.0m/s)(45s)-4(9.80m/s’)(455)" —

H,=49.7m
Assume that the 12" floor balcony is three times higher above the ground than the 4™ floor balcony.
Thus the height of 4" floor balcony is (49.7 m)=16.6 m. So for the second stone, y,, =16.6 m,
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and it takes 4.5 sfor the stone to reach the final location y = 0. Use Eq. 2-11b to find the starting
velocity, v, .

Y=Y, +Vt+dat® - 0=166m+v,,(455)-4(9.80m/s’)(45s) -

Vs =[18m/s

0B

80. Choose downward to be the positive direction, and the origin to be at the location of the plane. The

81.

82.

83.

parachutisthas v, =0, a=g = 9.8m/s2 , and will have y-y, = 2850 m when she pullsthe
ripcord. EQ. 2-11b, with x replaced by vy, is used to find the time when she pulls the ripcord.

Y=Yovt+tat - t=\2(y-y,)/a=,/2(2850 m)/(9.80m/s*) =[241]

The speed isfound from Eq. 2-11a
V=V, +at=0+(9.80m/s’)(24.1s) = 236 m/s = |2.3x10° m/s| = 850km/h

The speed of the conveyor beltisgivenby d =VAt > V=—=———= O.44m/min . Therate

of burger production, assuming the spacing given is center to center, can be found as

(1 burger)(OAA mj _l»o burgers
0.15m )\ 1 min ~_min |

Choose upward to be the positive direction, and the origin to be at the level where the ball was
thrown. The velocity at the top of the ball's path will be v =0, and the ball will have an acceleration
of a=-g. If the maximum height that the ball reachesis y = H , then the relationship between the

initial velocity and the maximum height can be found from Eq. 2-11c, with x replaced by y.
vV =Vi+2a(y-y,) — 0=V?+2(-g)H — H=v/2g.

2 2
Wearetold that v, ,, = 1.5v,,,, S0 Ao _ (Voo )2/29 = (Yo )2 =15 =225~|2.3.
HJoe (Vojoe) /2g (VOJoe)

As shown in problem 41, the speed with which the ball was thrown upward is the same as its speed
on returning to the ground. From the symmetry of the two motions (both mations have speed = 0 at
top, have same distance traveled and have same acceleration), thetime for the ball toriseis 1.2 s.
Choose upward to be the positive direction, and the origin to be at the level where the ball was
thrown. For theball, v=0 at the top of the motion, and a = —g . Find theinitial velocity from Eq.

2-11a
v=y,+at - V,=v-at=0-(-9.80m/s*)(1.2s)=[12m/s

84. Choose downward to be the positive direction, and the origin to be at the top of the building. The

barometer has y, =0, v, =0,and a=g=9.8 m/s2 . Use Eq. 2-11b to find the height of the
building, with x replaced by v.

y =Y, +Vt+at’ =0+0+1(9.8m/s")t’

Yoo =+(98m/s’)(20s) =20m  y_,,=4(9.8m/s’)(23s)" =26 m

The difference in the estimatesis .
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