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To the Instructor:

In the present (sixth) edition of Photonics, we have added several new topics on related technology in
optical electronics and communications. We have also deleted some less important topics in the main text.
Reflecting the revision, the solutions manual is also being revised accordingly. Many of the problems in
this manual are based on actual problems assigned to the Applied Physics 130 class at Caltech and the ECE
26 class at UC Santa Barbara through 2004. The solutions have thus been tested and debugged by the
students.

The current solutions manual is based on the last (fifth) edition. We have added solutions for the new
problems and deleted the problems that are associated with the less important topics deleted in the present
edition. The authors acknowledge contributions to the solutions manual of the fifth edition by students and
co-workers, including Huey-Daw Wu, Frank Barnes, Bin Zhao, Bin Zhao, Shu Wu Wu, Randolf
Hofmeister, Boaz Salik, and George Barbastathis.

Good luck with the teaching of this course.
Amnon Yariv
Pochi Yeh
Pasadena, California

Santa Barbara, California
September 2005
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Chapter 1

1.1 Solution:
Taking "V -" operation on both sides of Eq. (1.1-2) and using V-(VxH) = 0, we obtain

_év.D=V.J
ot

This proves the conservation of charge after using Eq. (1.1-3).

1.2 Solution:
Using jV -DdV = (j D-dS= cj‘ D - nda , where n is an outward normal unit vector. The surface of
the pillbox shown in Figure 1.1 can be divided into three parts: a top circle, a bottom circle and a
ring.
4D-nda = ID-nda+ JD~nda+ ID-nda

M S, ring

=AMD,n,+D,-n,)=A4A(-D,'n, +D,-n,)=A(-D,'n+D,-n)=0
where Q is the total charge within the pillbox, A is the area of the circle, n, = -n; = n. The
integral over the ring approaches zero. The proof for B is similar.

1.3 Solution:
Using I (VxH)-dS = fj H-d/ and the rectangular path shown in Figure 1.1, we obtain

IJ-a’S =Al = cfH-aQ:(txn)-(H2 —H,)AL, where Al is the current flowing through the

rectangular area, AL is the length of the rectangular path, t is a unit tangent vector perpendicular
to the rectangle and parallel to the interface, n is a unit normal to the interface. Since
K-t=Al/AL and (txn)-(H, -H,)=t-[nx(H, — H,)], we obtain (1.1-11). The proof for E
is similar.

1.4 Solution: Direct substitution into Maxwell's equations.

1.5 Solution:
Take divergence of the stress tensor

V-T=V-(¢eEE+uHH) - V(eE* +puH?)/2

=e¢(V-E)E+u(V-H H+¢(E-V)E+u(H-V)H
—g(E-V)E-p(H-V)H-€¢Ex(VxE)-pHx (VxH)

=pE-eEx(VXE)-pHx(VxH)

where we assume € and p are constants.

Then take the time derivative of the momentum density

a—P=us(—a—E)><H+u8Ex-6—H:—uHxVxH—sExVxE—-JxB
ot Ot Ot

We note pE +J xB is the Lorentz force.
This proves the equation of motion.



1.6 Solution:
(a) Work done = Force x distance. dW =F -dx = qE-dx =qE - vdt

(b) dW =) F,-dx, =) qE-dx,

(c) dW == dx, qE=E-) dx,q,=E-dP

1.7 Solution:
(a) The flight time is given by

t=L/v. =Ldk/do=L-2[2n =L(1+9i"’1j.
& do\ ¢ ¢ cdo
Taking the differential on both sides of Am =27c , we obtain Adwo + odA =0.

Thus, L(ﬁ +9@—j = L(2 —&fl’ﬁ] .
¢ cdo ¢ cdAi

. . d(n Adn A d’n 1 .,dn
b) U the result fr ,wecanwrite D=—| ———— |=—— =——N\
(b) Using the result from (a), w a\ (c c dx) cdl o e

_ 2
(Vo =V, )V, —v,) = (9_ _L‘”_)(Q’_ 0, -0, J ok —0k)
© ky K-k Nk kK kik,(k, — k)

1.8 Solution:
Develop a simple computer program to plot the dispersion curves.

1.9 Solution:
Without loss of generality, we assume

E, =4 cos(wt—3/2)

E, =4, cos(wr+8/2)

Expand the cosine functions, we obtain

E_ /A, =cos(wt—35/2)=cos(wt)cos(d/2)+ sin(wt)sin(d/2)
E, /A, =cos(wf+06/2)=cos(or)cos(d/2) —sin(wt) sin(5/2)
Addition and subtraction of above equations lead to

E /A +E, /A, =2cos(ot)cos(d/2)

E /A -E, /A, =2sin(of)sin(8/2)

and then
sin(@/2)[E, /A, +E,/ A]=2cos(ot)sin(3/2)cos(8/2) = cos(wt)sind

cos(8/2)[E, /A, —E,/ A,]=2sin(ot)sin(8/2)cos(8/2) = sin(wt)sind

We now add the square of the above equations and obtain

sin’(8/2)[E, / A, + E, /Ay]2 +cos’(8/2)[E, /A, -E, /Ay]2 =sin’

Using sin®(8/2)+cos*(8/2) =1and cos®(8/2) —sin’(8/2) = cosd lead to Eq. (1.6-12).



1.10 Solution:
Using the coordinate rotation of Figure 1.4, we have

E,=E, cos¢—E, sin¢

E,=E. sin¢+E, cosd

Substitution of above equation into (1.6-12), we obtain, after multiplying both sides by 4’ Aj
A (E, cos¢—E, sing)’ + 42(E, sing + E,, cos¢)’

—24,4,c088(E, cos¢ - E,, sind)(E, sing+ E,, cosp) = A; 4> sin” §

or

E(A:sin’ ¢+ 4] cos® ¢ — 24,4, cos 8 cos hsin §) +

E}.(A4; cos’ ¢+ 4 sin” ¢ + 24,4, cosScos §sin ) +

EE,(-24; cos¢sing +24; cos¢sin+ 24,4, cosdsin’ ¢ — 24,4, cosScos® §) = A7 4] sin® §
In the principal coordinate, the equation must be of the following form

E./a’ +E, /b* =1, or equivalently b°E> + a’E’, = a’b’

Thus, we obtain

24.4
tan 2¢ = ———=-¢0sd
x_Ay

a® = 47 cos® ¢+ A; sin® ¢+ 24,4, cos 8 cos sin ¢

b® = A2 sin® ¢ + A cos® ¢ — 24,4, cos§cos hsin ¢

The equality a’h® = 42 4] sin’ § can be proven by using the above three equations.
We obtain

Bql  a+b' = A+ 4

Eq2  a’-b’=(4] — A))cos2¢+24,4,cosdsin2¢

Eq.3 0=(4; — 42)sin2¢ — 24, A, cos§cos2¢

We now calculate (Eq. 1)* - (Eq. 2)° - (Eq. 3)°. This leads to a’b” = 424 sin’ .



1.11 Solution:
Without loss of generality, we assume

E, = A, cos(nt), E, = A, cos(ot +9)

We now examine the electric field vector at ot=n/2-8, and wt= ©/2—8 + At. We obtain
ot=n/2-3: E. =4, sing, E,=0

ot= T/2-6 + At: E, = A4, sin(d - At), E, =-A, sin(Af)

We see that the polarization revolve in a clockwise direction if sin6 >0,

1.12 Solution:
(b) We find the inclination angle of the major axis of the polarization ellipse.
_ 2cosysiny

tan2¢, = >—C0sd = tan 2y cos &

cos’ y —sin’ y
2sin\ycosy

tan2¢, =

5 ——cos(7 + ) = tan 2y cos § = tan 2¢,
—cos” y +sin” y

So, 2¢, =2¢, + mn, where m is an integer. In other words, the major axes are either parallel or

perpendicular. To show that the major axes of the polarization ellipses of the two states are

mutually orthogonal, examine some special cases (e.g., y=0 or 8=0) and calculate the length a
for the two states.
The length of the major axes and minor axes can be calculated by using Eq. (1.6-14).

a’ = A} cos® ¢+ A} sin® ¢+ 24,4, cosdcos §sin ¢
b® = A4; sin® ¢ + 4. cos’ ¢ — 24,4, cosScos dsin ¢
al = cos® ycos® ¢ +sin® ysin® ¢ + 2 cosy siny cos 5 cos §sin
b} = cos® ysin® ¢ +sin® ycos® ¢ — 2 cos y sin y cos S cos ¢ sin ¢
a; = sin’ ycos’ ¢ +cos’ ysin® ¢ + 2 cos y siny cos(S + ) cos ¢ sin ¢
= sin” y cos® ¢ + cos” ysin® ¢ — 2 cos \y sin y cos & cos §sin ¢
b2 = sin® ysin® ¢ + cos” y cos® ¢ — 2 cos y sin y cos(d + ) cos psin ¢
= sin® ysin’® ¢ + cos® ycos® ¢ + 2 cosy sin y cos & cos dsin ¢
We note a’ =b. and a? = b} . Thus, the major axes are indeed orthogonal.
The senses of revolution are opposite since sindsin(m +8) = —sin” § < 0.



1.13 Solution:
From Problem 1.12, we have

any Re[x]
2
1

2t :
tan2¢ = tan 2y cos § = ————cos & = . This is Eq. (1.6-18).

1-tan’y 1-|
Using the definition tan® = +b/a , we have sin20 = 2sin@cos0 = 2ab/(a® + b*).
Using a’b® = 424} sin® 8 and @’ +b” = 4] + A, from Problem 1.10, we obtain

sin20 = 2ab/(a® +b*) = 24,4, sind /(A + A*) =—2Im[y] /(1 +]|")
where the choice of " - " sign is consistent with the sense of revolution of the polarization ellipse.

1.14 Solution:
(a) Without loss of generality, we assume

cos cos
A:( i .\Pa j, B:( i -Wb )
e’ smy, e’siny,

A"-B =0 leads to cosy, cosy, +siny, siny, exp[i(8, —8,)] =0 which leads to 8, -8, =+n
and cos(y, +vy,)=0.

(b) 6,8, <0 follows immediately from the condition that — 7 < < 7. If one of the phases is m,
then the other phase must be zero. This proves 8,6, <0.

©)
+ _siny, siny, expli(3, -5, )] = - siny, siny, __,

XaXb -

cosy, cosy, Cos\y, cosy,

(d) From Eq. (1.6-18), and 6, —6, = %7 and cos(y, +y,) =0,

tan2¢, = tan 2y cosJ,

tan2¢, = tan 2y, cosd, = tan2(n/2 -y, )cos(d, — ) =tan 2y, cosd, =tan2¢,

So, the major axes are either parallel or orthogonal. To show that the major axes of the
polarization ellipses of the two states are mutually orthogonal, examine some special cases (e.g.,

y=0 or 6=0) and calculate the length a for the two states.
Follow the same approach used in Problem 1.12(b).

1.15 Solution:

In the principal coordinate, the polarization ellipse can be written

E, =acos(ot)

E, =bcos(ot £ /2) = bsin(w?)

We note that in the principal coordinate the two orthogonal polarization components are out of
phase by m/2. Align the wave plate with a phase retardation of 7/2 so that its slow axis (or fast
axis) is parallel (or perpendicular) to the one of the principal axes of the polarization ellipse. The
output is a linear polarization state.



1.16 Solution:
Without loss of generality, we assume

E, = A cos(of-kz), E, = A, cos(ot —kz +9)

At z=0, the temporal variation is written £, = A4, cos(w?), E, = A, cos(wt + )

At t=0, the spatial variation is written £, = A4, cos(—kz), E, =4, cos(—kz +9)

A direct comparison shows that the spatial variation is equivalent to time-reversed variation.

Thus, the E-vector of right-hand circular polarized light will appear left-handed in the space

domain, and vice versa.
(a) Let E =R +¢®L, where & is an arbitrary phase shift. The (x, y) components of the complex

field amplitudes can be written
1 5 , | .
E =—+e°)expli(ot—kz)], E =—(—i+ie®)expli(wt—kz
x Ji( )expli( )] ) ﬁ( )expli( )

We now examine the ratio of the complex amplitudes,

(mi+ie®) (—i+ie®)(1+e™) —i+i+i(e®—e™) -2sind
1+€®) 1A+ +e™) 2+2co0sd 2+2cosd

This is a real number. In other words, the (X, y) components are in phase. So, the resultant is a
linearly polarized wave, regardless of the phase shift.

(b) Let a polarized wave be written

o a b
B =cE, +c,E, =¢ b +c, i

where we assume that both a and b are real.
The constants ¢; and ¢, can be easily obtained by using the orthogonal property of the basis. They
are given by

_ao—ibB c _ bo+iaP
Yoat+ Poa+ b

For a beam of linearly polarized light, o, B are real. So, both ¢, and ¢, are complex.

For a beam of right-hand circularly polarized light with a =1/ V2, B=-i/ V2, the expansion

coefficients are
1 1
Cl=:/‘5—(a—b), Cz=‘5(a+b)

We note that both ¢, and c, are real.



1.17 Solution:

1
(a) Let the circularly polarized state be written E. = —\/%( .), and the unpolarized state be
—i

1 . .
written E, = —j?( ia) , where d is a random phase. The projection along the transmission axis of
e

a polarizer (oriented at azimuth angle y) is given by

p-E. =—j—§-(cosw—isinw), p-E, =71_2—(cosxp+e"8 siny)

It follows that

p-Ecf =1/2=(p-E,[)=1/2

where < ) represents statistical average over the random phase 9.

Thus, a polarizer alone can not distinguish the difference between circularly polarized light and
unpolarized light.

a
(b) Let the elliptically polarized state be written E = ———2\/_1—_——_2—(1)) The projection along the
a”+b" U

transmission axis of a polarizer (oriented at azimuth angle ) is given by
a’ cos’ y +b°
a’ +b’ a’ +b’
function of the azimuth angle y yields the major axis and the minor axis of the ellipse, provided

a#b. .
It is important to note, a beam of partially polarized light can yield similar result.

a2
sin 2
¥ A measurement of Ip-E as a

p-E = lacosy +ibsiny|” =




1.18 Solution:

(a) Using the orthogonal relation, E; - E, = 0, we can obtain

¢, = (acosy —ibsiny)/(a* +b%), ¢, =(bcosy +iasiny)/(a’ +b*)
(b) We write a general linearly polarized light as:

E - cos =le"‘v 1 +—1—e”"“1
® Asiny) 2 \-i) 2 i

After propagating through the optically active medium, the polarization state becomes

(1), (1Y) . cos(y +a
EL — l el\y ) eux + l e—l\v ' e—l(}, — ) (\l’l )
2 -1 2 i sin(y + o)

We note that the polarization rotates an angle of o, where

-n,)L

r

T
o=—
k(n

We can also write a general elliptical polarization state as a sum of two orthogonal linear
polarization states:

e()= o))

After propagation through the medium, each linearly polarized basis is rotated by an angle o

cosa —sina
E_[ jﬂ-z{ j
sina cosal
These two rotated bases remain the principal axes of the ellipse, as the phase shift between then

remains 7t/2.
So, the major axis is rotated by an angle of a.

1.19 Solution:
(a) Using table 1.5 with I'=nt

v, _(—icos2y —isin2y)(0) (-isin2y) (=sin2y
v, B —isin2y icos2y M\ 1 N icos2y - cos 2y
We note the polarization state is rotated by an angle of 2.

(b)
v, —icos2y —isin2y) 1 (1 1 (—sin2y —icos2y 1 (—iexp(i2y) 1 (1 29)
= . —_— = — . = — = — €X 1
v, —isin2y  icos2y JN2\—i) 2| cos2y—isin2y V2 exp(i2y) 2\ pley
We note the output polarization state is LHC, regardless of the azimuth angle .

(c)d = W—)L-— =1254 nm, or odd integral multiples.
ne - no



1.20 Solution:
(a) Using table 1.5

(I/x J _ ( e cod yt e gint v, —isin("/2)sinQy) ](Oj :( —isin("/2)sinQy) J =( —isin2y )
Y € v

v, —isin@/2)sinQy) e *sin’ y+e"? cos w1 2 sind y+e™? cos 1+icos2y

1+icos2y

— = x +iy. This leads to X =—cos2y/sin2y, y =1/sin2y, and then
—isin2y

(b) By definition, ¥, =

y2 —x* =1 which is exactly a hyperbola. When y varies from 0 to 7/2, y remains positive, so the locus is the

upper branch of the hyperbola.
A
(¢) d = ————=1841nm, or odd integral multiples.
4|n,—n,|

[



1.21 Solution:
(a) Using table 1.5

Vol (€™ cos’y+e™sin®y  —isin(T/2)sin2y) )0} ( —isin(I'/2)sin(2y)
(Vy] B ( —isin(T'/2)sin(RQy)  e™'?sin® y+e"’* cos’ wJ(lJ - [e"ﬂ 2sin® y + e""* cos’ \p)
—isin(I"/2) sin(2y)
B (cos(l“ /2)+isin(I'/2)cos 2\1/)

(b), (¢), ()

cos(I'/2) +isin(I'/2)cos2y _
—isin(I"/2)sin 2y B

y =1/[tan(T"/2)sin 2], and then y* —tan®*(I'/2)x*> =1 which is exactly a hyperbola. When

varies from 0 to /2, and I' varies from 0 to 27, the points (x, y) cover the entire complex plane.

By definition, ¥ = x+1iy. This leads to x=—cos2y/sin2y,

(e) Using Eq. (1.9-11), the matrix is written W = R(—y)W,R(y), the Hermitian coniugate can be
written |
W' =[R(=y)W,RW]" = R(y)'W,"R(—y)" = R(~y)W,'R(y) . Thus,

W'W = R(~\)W, RODR(~pW,R(y) = R(~y)W, WoR(y) = R(~y)R(y) = I

O VIV, = (V) - (FV,) = V- (W)Y, = V] -V,
Scalar product is invariant under unitary transformation.

10



1.22 Solution:
(@

P2_1010_10
* 1o ofo o) (o o

-

P? = R(-y)RR(WR(-W)FR(Y) = R(-Y)RRR(Y) = R(-y)PR(y) = P
Using Dirac notation of linear algebra, a projection operator can be written P = | p)( pl

(b) The transmitted state through a polarizer is obtained by operating the projection operator on

the input polarization state. Thus we have
|E.) = P|E;)=|p)plE;)
(c) The amplitude of transmission is given by

(x|u)(u|y) = cosycosy, where y = 45°.

(d) The transmitted amplitude is given by

(x| Yot |1ty ) -+ g 0y Yoty |, Yty | ¥) = cos ycosycosy -+ -cosy cos y = (cos y)”

where y=m/(2N).
For large N, /(2N) <<1,

(n) 1(nY
cos| — |~1——| —
2N 2\ 2N
Using
X N
Lim| 1--—| =exp(—x
NJ p(—x)

Now

we obtain

N
Lim| cos i = Lim 1—l
Now | 2N Now 2

11

N
1 n? . T
l-——1| =Limexp(——)=1
N8N] Now o 8N)

2



1.23 Solution:
(a) Using Eq. (1.9-39), the transmission of unpolarized light through the first stage (polarizer,
wave plate, polarizer) is

T =—;-cos2 x . The transmission of polarized light through later stages is then T =cos’2"x,

m=1, 2, 3, .. N-1. This leads to the overall transmission.

(b) Using cos0 = (e* +e7)/2, the transmission can be written
(eix Lo (ei2x 4 e )2 (ei4x + e—i4x)zm(ei2”'2x P )2 (eiz”“x + e—iZN"x)z .
Carrying out the multiplications, we obtain

1 2N _ seAN _ 2N _ (9N _ _i(9N _ _i(9N _ _i(7N _
T= 22N+1 61(2 1)x +et(2 3)x +e((2 S)x +... +e i2"-T)x +e i(2 5)x+e i(2 3)x+e i(2Y -1)x

T =

22N+1

Notice that the left side is a geometric series. Thus, we obtain

N _itaN 2 ) 2
T B 1 ez(2 -1)x —e i(2" +1)x B 1 Slnsz
22N+l 1_e—i2x 22N+1 Sinx

(c) For the thin plate, the transmission spectrum is cos® x. The separation between peaks is

Ax =, which corresponds Av = The FWHM of each peak is Ax,,, =7n/2 and

_°

d(n,-n,)’

Av,,, = —271(—0—) . For the thickest plate the transmission spectrum is cos® 2" x. The FWHM
ne - nO

c

of each peak is Ax,,, = n/(2"), which corresponds to Av,,, = _2_Nd(ne "y

.. . c .
So, the overall transmission spectrum consists of peaks separated at Av = d—(————), with the
n,—n,

C
2Vd(n, —n,)
c _ c
2Yd(n,-n,) 2D(n,—n,)’

FWHM of each peak given by Av,,, = . The finesse is thus F~ 2",

(d) Using Av,,, =

where D is the thickness of the thickest plate,

we obtain

Do c _ e _ 5 _ (6563)*
2Av,,,(n,—n,) 2AN,,(n,—n,)v  2AN,,(n,—n,) 2(1.5506 —1.5416)

cm

(e) The spectra feature of the function

sin Mx
S(x)=—
sin x
The function is periodic with a period of 2, and peak values of f(0) = M . The function drops
to zero at x=n/(M). At x=n/(2M), the function is approximately f =2M /n, with

f?=0.405M . At x =0.886n/(2M), > =0.5M .

Angstrom =24

, also appears in grating diffraction, is dominated by the numerator when M >>1.

12



1.24 Solution:

Using Table 1.7, the Jones matrix is given by (with y=0)
e cos’y+esin*y  —isin(I'/2)sin(2y)

( —isin(l'/2)sin(2y) e sin? y+e'? ]

With crossed polarizers, the transmission is given by

T=|M,["/2

cos’ y

1.25 Solution:

(a) Using Table 1.7, the Jones matrix for the wave plate followed by a rotator is given by
s =[cosP —sinp\ e cos® y+ e sin’ y —isin(T"/2)sin(2y) _RW = M, M,
sinp  cosp —isin(I"/2)sin(2y) e ™ sin y+e T cosy ) M, M,

Carrying out the matrix multiplication, we obtain

M, =cosp[e™™'? cos® y +e"'*sin’ y] +isinpsin(T'/2)sin(2y)
M, = —sinp[e™™?sin® y +e™'* cos® y] —icospsin(I"/2)sin(2y)
M,, =sinp[e™'? cos® y +e"'? sin® y] —icospsin(T"/2)sin(2y)
M,, = cosple™'?sin® y + " "? cos® y]—isinpsin(T'/2)sin(2y)

To show unitary property, we examine
MM = RW) (RW)=W'R'RW =w'IW =W'W =1

(b)a =Re[M,,]=cos(I'/2)cosp,

b=Im[M, ]=sinpsin(I'/2)sin2y —cospsin('/2)cos2y = —cos(p + 2y)sin(I"/ 2)

¢ =Re[M,,]=—cos(I'/2)sinp,

d =Im[M,,] = —cospsin(I'/2)sin 2y —sinpsin(I'/2) cos 2y = —sin(p + 2y)sin(I"/ 2)
Thus, we obtain

cosz£:512+c2 sin2£=b2+d2
2 2

tan(p +2y) = 4 tanp = _e
b a

13



1.26 Solution:
(a) Using the Jones matrix method, the output state can be written

V.l (e™* 0 \cosB) (e™?cosH

V,) Lo e (sinG) | e™?sin6
We now examine the Stokes parameter of this state of polarization.
S, =cos20, §, =sin20cosI’, S, =sin20sinl’
We now keep I fixed and let © vary from 0 to 7. The points (S;, S,, S3) form a circle on the plane
defined by S,/S, =tanT’
This is a great circle formed by the intersection of the Poincare sphere(a unit circle) with the
plane §,/S, =tanT.
If we rotate the equatorial plane by an angle I" around S;-axis, we obtain the same great circle.
We now keep 0 fixed and let I" vary from 0 to 2x. The points (S;, Sz, S3) form a circle around S;-
axis with S; fixed at cos26.
(b) If the wave plate is oriented at an azimuth angle y and the input linear polarization state
maintains the same angle 0 relative to the c-axis (slow axis) of the wave plate, then the output
polarization ellipse can be obtained from the case of y=0 by a rotation of an angle of y. The
rotation of a polarization ellipse by an angle y can be represented by the rotator matrix described
in Problem 1.25. On the Poincare sphere, the effect of a rotator by an angle \ in the xy-plane is a

rotation around the polar axis (S;-axis) by an angle of 2y. This is proven as follows. Let the
rotated state be written

V. (cosp —sinp) a | (acosp-be®sinp
(Vy] - (sinp cosp )[beis) B [a sinp + be® cos pj
where p is the angle of rotation. The Stokes parameters of the state before rotation is
S, =a’-b*, S,=2abcosd, S,=2absind
whereas those of the state after the rotation is given by
s=Wl =W, S'=vy vy, S8'=ivy -V,

S,'=(acosp—bsinpcosd)’ + (bsinpsind)> — (asinp + bcosp cos §)* — (bcospsin §)*

=(a’ —b*)cos2p—2abcosdsin2p = S, cos2p — S, sin2p

S,"'= (acosp —be” sinp)(asinp + be® cosp) * +(a cosp — be” sinp) * (asin p + be® cosp)
=2(acosp —bsinpcosd)(asinp + bcospcosd) —2b* sinp cospsin® &
= (a®> - b*)sin2p +2abcos S cos2p = S, sin2p + S, cos 2p

S,'=i(acosp — be” sinp)(asinp + be® cos p) * —i(a cosp — be® sinp) * (a sin p + be® cosp)
=2absind =S,

We note that (S, Sy', S3') is obtained by a rotation of (S;, S, S3) by an angle 2p around the polar
axis (S3-axis). A great circle remains a great circle after the rotation.

(c) According to the results from Problem 1.25(b), a general birefringent network is equivalent to
a wave plate followed by a rotator. If the input linear state is parallel to the slow (or fast) axis of
the wave plate, then the output state will remain linear after transmitting through the wave plate.
The rotator mere rotates the linear state by an angle p.

14



1.27 Solution:
From the basics of eigenvalue problem in linear algebra, the eigenvectors of the following

equation
a b c\x
a, b, ¢ |y|=0
a, b, c,\z

can be written (in terms of row vectors)

(x y Z)= by ¢ | af |a b , or b, ¢| &, a) |a, b, ’ or
b, ¢l lc, a,| |a, b, b, ¢l le; ay| |a, b,
by ¢ le; as) |a; b
b ¢ | a| |la b
o’pe, —k) -k k.k, k .k, E,
From Eq. (1.7-9), kk, o’ue, —k; —k? kk, E, |=0
k.k, k.k, o’pe, —k; -k} \ E,

Note, we are interested in the direction of the eigenvectors. So, for simplicity, we evaluate the
ratios of the components. This avoids having to deal with terms involving »*. Thus

b ¢l | gq ¢, a,| la, b,
x:y=| : , yiz= : ,
» G &2 4 ¢; as| |a; by
From Eq. (1.7-9), we have
k. k k.k,| |kk, o’ue, —k2-k’
E E = Y s O =k k(K -0 : ? — o
T T o'ue, kD -k Rk Kk, k k., K (k" —otpe, )tk k(- otpe, )
k k kk,| \kk o’ue —k>—k’
E :E = Yz yx . yx y x z :k 2__ 2 . 2_ 2
2T T otue, K2 K2 Kk, | |k, kk, ik~ otpe,) Tk, (K - ope,)

where k* =k +k, +k, . From the above two equations, we obtain
k, k k,
(Ex E, Ez): 2 2 2 yz 2 2
(k" —ope,) (k" -ope,) (k" -o’pe,)
If we define k = nsw/ ¢, then

N s N
E, E, E,)= : y :
( Y Z) (n* -g,/e,) (n’-¢,/¢,) (nz—ez/eo)j

(b) Using D =€E, we have

exsx 8 S 8ZSZ
(Dx Dy Dz)= 2 2 — 2
(n" —g,/g)) (n"-¢,/g) (n"—g,/€y)

15



(c)Let n =€, /gy, n, =¢,/g,, nl =¢,/¢,. Let the two eigenvectors be written

E. = Sx Sy sz 2 E —_ Sx S.V sz
- 27 2 2 2 2
T ) i) @l -nd) (ni-n) @-m) (F-n)
2 2 2 2
D, = nin l’lySy nzzsz 2 D. = nxsx n)’sy nzsz
- 2 = 2 2
@) @i o) (nl-n)) (F-m)) (n}-nd)
Here we assume that the denominators are nonvanishing (for biaxial media). We will treat

uniaxial (and isotropic media) later.

S S § s N S
E. ' E. = x p3 + Y y + z z
L =) (- (] —m) (g =) () =) (ng —n2)

_ 1 Sz( 1 J”Z 1 +s2( 11 )
(ny =n)) |\ =m) (7 =n)) P\ =n)) (i =n))) "\ =nl) (n;—n7)
1 S2 S2 S2 S2 Sz S2 J

=T 3 2x2+2y2+222-2x2~2y2—222
(n2 _nl) (nl —nx) (nl _ny) (nl —nz) (n2 —n)c) (n2 —ny) (n2 _nz)

D S R U T P
(n; =n)\nf ny ) min;

where we have used Fresnel equation (1.7-12).
So, in general, the E-vectors in biaxial media are not orthogonal. Now let's evaluate

— nin l’lin n;S}’ nis}’ nzzsz n:sz
T2 2 2 2 2 2
(nl __ni) (n22—nx) (nlz_n)zz) (n22_ni) (nl _nz)(nZ —nz)

L R )
(' =n7) N\ (n3 =n3) o =n3) N (3 =) @ =n2)  N(ny =nl)

= n2n? Sj + S; n S22
V@ =)y —nd) (] —nl)(n —n2)  (n] —n2)(n? - n?)

D1 'Dz

2 2 2 2 2 2
2 Sy Sy S, 2 Sy Sy S, 2,2, 2
| et St S || et t 5 | (s, + s, +s))
[(n] —nx) (n] —ny) (nl —nz) (n2 _nx) (n2 _ny) (n2 _nz) * g ’
1 1 1 .
=n'n, —— —n! — —n; — —1=0, where we have used Fresnel equation (1.7-12).
o, n 2 '

For uniaxial media, n, =n,=n, and n, =n,, the electric field vector of the eigenmodes are
given Eq. (1.8-5) and Eq. (1.8-6). They are mutually orthogonal.

16



(d) Using results from (c), we have
2.2 2.2 2,2
- Rn_S n,s n,s
E D= 55—t
(ny =n)(n; —ny)  (m "ny)(nz _ny) (ny —n;)(ny —n;)

2,22 - - _ -
_ "f"fsf nz2 _ n12 " nn,s, n22 _ n12 + nxzn‘.?sf nz2 _ n12
(ny =n{)\(nf =n7) (n;-nl)) (3 —-n))\ (0 =n}) (n3-n3)) (n;—n)\(nf=nl) (n;—n})

z

2.2
_oninl 1 mny, 1 _,
-2 2N 2.2 7.2 2N 2.2
(n; =ni) niny;  (n; —ny) nin,

where we have used Fresnel equation (1.7-12). The proof for E, - D, =0 is similar.

17



1.28 Solution:
(a) Let k=nso/c andn’ =€ /¢, n) =g, /g,, n. =¢,/g,, Eq. (1.7-10) becomes

2 2 2.2 2 2
(n;—n")+n’s; n°s.s, n°s.s,
2 2 2 2.2 2 _
n's,s, (n,—n")+n’s, n°s,s, =0
2 2 2 2 2.2
n°s.s, n's,s, (n; —n")+n’s;

Carrying out the multiplication, we obtain

2 2 2,2 2
n,—n")+n’s n°s,s,
[(”j—nz)"'”zsi]( o, ) g Y
n’s,s, (n; =n")+n’s;
2 2 2 2 2 2.2
n's,s, WSSy L ae n's,s. (n,—n")+n’s, _o

2
+n's,s, o

2
n°s,s, n’s,s,

(n2 =n*)+n’sl n’ss,

Carrying out the operations and simplifying the equation,

[(nf —-n*)+ nzsj][(ni -n*)+ nzsi][(nf -n*)+ nzsf]— [(ni -n’)+ nzsi ]n4sfsi
—n'sisi(n} —n*)—n'sisl(n; —n*)=0

(n; =n*)(n, —n*)(n! —=n*)+n’s}[(n, —n*)(n; —n’)]

+nls [(n; = n?)(n] —n*)]+n’s;[(n; = n’)(n; —n*)]=0

Dividing both sides by (n> —n*)(n> —n*)(n> —n*)n*, we obtain the Fresnel equation.
x y z

(b) Carrying out the multiplications in the last equation, we note the »° terms cancel out due to
2 2 2 _
s, +s,+s; =1.
We obtain
4 2.2 2.2 2.2 2 2.2 2 2 2.2 2 2 2.2 2 2 2.2 2
ni(nes, s, tngs))+n [-nn (s, +s,)—n;n (s, +s,)—nn; (s, +s;)]+nn,n; =0
This is a quadratic equation in »*, with
2.2 2.2 2 2
A=n.s. +n,s, +n;s,

2.2 2 2 2.2 2 2 2.2 2 2
B =—nxny(sx +sy)—nzny(sz +sy)—nxnZ (s;+s7)
C=nnn

c)We now evaluate B> —4A4C . For simplicity in the proof, let a =n>,b=n>, c=n’>, a=s>,
p Yy p x y z x

B= S; » Y = Sz2 .
B> —4AC = (abo. + abP + beP + bey + cay + ca)’ — 4abe(ao, + b + cy)(o + P +7)
where we have added (a+P+7vy)=1 in the last term. Carrying out the multiplication and
rearranging the terms, we obtain
B* —4A4C =a’d’(b-c)’ +b*B*(c —a)’ + c*y*(a — b)?
+ 2abaf(a —c)(b—c) + 2bcPy(b - a)(c — a) + 2cayo(c — b)(a — b)
Without loss of generality, we assume a < b <c¢. We note all terms are positive except the last
term. We rewrite the last equation as

18



B? —4AC =[aa(c - b) + cy(a — b))’ + b*B*(c — a)* +2abaP(a - c)(b - c) + 2bcPy(b—a)(c—a) > 0

(d) From (b) we have

4 2.2 2.2 2.2 2 22,2 2 22,2 2 2. 272 2 222 __
n'(ngs; +nys, +nys;)+n[-nin (s, +s,)—n;n (s; +s,)—nn;(s; +s;)+nnn; =0
For uniaxial media, n, =n, =n, and n, = n,, the equation becomes

n*(n)s; +nlss +nlsl)+n’[-ninl(s; +s))—nin)(s; + ) —ninl(s; +s)]+nnin; =0

2

Dividing both sides of the above equation by n’n’n>, we obtain

0’0 "e
nt(si+s, o of si+s? s+l
T 7+n—’2 +n°| - "nz £ Zn2 +1=0
4 e o e o

or, equivalently

2.2 2.2 2.2 2,2 2,2 2
n*(n°s, +n’s, n’s n’s’+n’s. n’st) n
— - + -—+1=0
2 2
o o

+ =
2 2 2 2
n, n, n n: n n
or,
2.2 2.2
n's,+ns n’s? n?
r PS5 2 q|=0
2 Tt 2 -
ne nO no

Using k = nsw/ ¢, the above equation becomes

k+k K ei(kz oszo

2 2
n n: ¢

e o

2.2
n: ¢

o

(e) In isotropic media, n, =n, = n, the above equation becomes

2 o)
(*—) =0
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1.29 Solution:
The group velocity and energy velocity are defined as follows:

v, =V,o(k), v,=8/U, where w(k) is the dispersion relation, S is the Poynting vector, U is
the energy density. We start from
kxE=0opH, kxH=-0cE
A wave packet consists of a linear superposition of monochromatic plane wave with a spectrum
peak around a central frequency w. Consider an infinitesimal variation 8k in the above equations.
Let dw, 6E and SH be the corresponding variations in ®, E and H, we have
Ok xE + k x 8E = dopH + opudH
Ok x H + k x 8H = —dweE — 0edE
where we have treated | and € as constants.
Now scalar-multiplying the first equation with H, and the second equation above with E and
using the vector identity
A-BxC)=B-(CxA)-C-(AxB)
we obtain
0k - (ExH)+k:(8Ex H) = éw(H - pH) + o(H - udH)

-0k (ExH)+k-(SHxE)=-3w(E-cE) - o(E - £3E)
Subtracting the second equation from the first equation above and using the symmetry property
of the dielectric tensor € and permeability tensor p, we obtain
20k - (ExH)-08E - (kxH) - o(3E-€E)+8H - (k x E) — o(8H - uH) = 8 (H - pH) + 30(E - ¢E)
which becomes, after using k xE = ouH, kxH =-wcE
Ok - (ExH) =080[(E-€E)+(H-uH)]/2
or, equivalently
do=0k-S/U=38k-v,
From the definition of the group velocity we also have
dw =08k -V, o(k)=0k-v,
Since 8k is an arbitrary vector, we conclude that the energy velocity is the same as the group
velocity. The equality holds provided both € and p are independent of the frequency w.
For complex E and H we start from
Ok X E + k x 0E = douH + oudH
Ok x H + k x 8H = —8weE — 0edE
Now scalar-multiplying the first equation with H*, and the second equation with E* and using
the vector identity
A-(BxC)=B:-(CxA)=C-(AxB)
we obtain

Ok - (ExH*) + k- (8E x H*) = doo(H * uH) + o(H * -uSH)

-8k - (ExH*)+k - (8H*xE) = —80(E - ¢E¥) — o(E - e5E*)
Subtracting the second equation from the first equation above and using the symmetry property
of the dielectric tensor € and permeability tensor p, we obtain
Ok - (E x H*) = 80[(E - eE*) + (H - pH*)]/ 2
Taking the real part on both sides, we obtain
3w =08k -S/U=08k-v,
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1.30 Solution:
(a) We start from the dispersion relation for the extraordinary wave

2 2 2 2
kx+ky &_0)

n:  nl
Taking differential on both sides
2k 2k 2k 20 20
Bk, + Bk, bk, = 280 =38k V,0(K)

The group velocity is thus given by

k., k, k \c

Let O be the polar angle of the wavevector, then
. =nosinOcosd/c, k, =nwsinOsing/c, k, =nwcosb/c

where ¢ is the azimuth angle, n is given by

11 _sin’0  cos’ O
n* ni0) n’ n’

(b) To find the angle o between k and vy, we evaluate
sin’0 cos’O

+ e—
kv, 'y
cosoL = ——=5— =
Ik] |vg| \/;lnz 0, cos’ 0
4 4
ne nD

(c) For 6=0, or /2, cos a =1, according to the above equation.

Differentiate with respect to the angle 6,
2sinOcosO 2sinOcosO 2sinBcosO® 2sinOcosH

n’ n’ 1 n nt sin’® cos’ 0
—cosa = - - - P 7t
00 sin’® cos’*0 2 (sin®’0 cos’0 n, ,
e Tt
ne no ne na

0 _ 1 1 )(sin’0 cos’®) 1(sin’0 cos’0) 1 1
—cosa < 25infcosl| — —— | | ——+—— |- =| ——+—5 | 5+
00 n, n, n, n, 2\ n, n, n, n,

2
. 1 1 sin?@ cos’ 0
=sinfcosf| ——— | | —— ———

e o [ o

So, the maximum occurs at: tan® =n,/n, .

At this angle, the angle o is given by

2n.n
cosoL = —; S
n, +n,

e

Fr ZLI-1646 with n, =1.478, n, = 1.558, this corresponds to 6=46.51°, 0=3.02°.

2
2n,n, J: 2(n, —n,)

2 2 2 2 :
n, +n, n, +n.

(d) For a<<1, we have cosaa~1—-a’/2, so o’ =2(1—

Forn,~n,=n, a, ~ An/n,where An=ncn,.
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1.31 Solution:
(a) See solution of Problem 1.28(a).

(b) Taking the gradient operation of the left side, we obtain, the following components of V,

o __ 2%k k2 .\ k> .\ k?
ok, K -o’e, | (K -o’pe,) (K -o’pe,) (K -o’ue,)’
d 2k, k? k: k?
=kt o wt T a2
Ok, k*-o'ue, (k" —o'pe,)” (K -o'pe))” (k" -o’pe,)
o 2% -2k k, + ki + k;
ok, k*-o’pe, | (k*-o’ue,) (K*-o’pe,)’ (K -o’ue,)’

The gradient vector is normal to the surface of constant frequency (the normal surface).
Scalar multiplication with the eigenvectors of (1.7-11), we obtain

2k} 2Kk k? N Kk} . k? .
(K* -o’ue,)® k' -o’ue, | (K*-o0’pe,)’ (K*-o’pe,)’ (k*-o’ps,)?
2k? ~ 2k} k? . k, . k? .
(k*-o’pe))? k*-o’pe, | (K -o’pe,)® (K’ -o’pe,)’ (K’ -o’pe,)’
2k? 2k? k? k; k?
STV IR T3 PRPTY) yz Tt 3 2|~
(k" —o'pe,)” k" -o'pe, | (K -o'pe,)” (K" -o'pe,)” (kK" -o'pe,)

k? . k, .\ k2 2k 2k 2K
(k* —o’pe,)* (K’ -o’pe,)’ (K -o’pe,)’ kK -o’ue, k*-o’pe, k£’ -o’ue,

k; ](2-2):0

ks k)
= + +
(k*-o’pe,)’ (K’ -o’pe,)* (k' -o’pe,)’
Thus, the normal vector to the normal surface is perpendicular to the eigenvector of E-field.

e caxis

— et

1.32 Solution:
(a) To ensure the transmission f the extrao-ordinary wave the internal angle of incidence is in the
range:

sin”'(1/n,)<0<sin™'(1/n,), or 37.1 <0 < 42.3 degrees.
(b) For the geometry shown, the internal angle of incidence is a.. So, 37.1 < a< 42.3 degrees.
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1.33 Solution:
(a) L = exp(zoyd) , where d is the thickness of the medium.
I, exp(-a,d)

(b) If &, &, and €, are complex, the relative phase between the components of the eigenvectors
may not be zero.

1.34 Solution:
(a) Define ne=¢,, so that n=¢,e”'. Rewrite the equation as s><[san]=——1—2-D- Using the
n

vector identity
Ax(BxC)=B(A-C)-C(A-B)

We have sx[sxnD]=s(s-nD)-nD(s-s) =s(s-nD)-nD = _izl)' So,
n
1
s(s-mD,)-nD, =—;17Dx
1

1
s(s-nD,)-nD, = -—D,

n,
Scalar-multiplying the first equation with Dy*, and the second equation with D,*, and using

D, -s=D, s =0we obtain

€ . 1 € . 1
(_O) EDl'nDlz'_z’(—gj =D, nD, =—
1 n € /n

2
€ 1 n2

(b) Scalar-multiplying the first equation with D,*, and the second equation with D*, and using
D,-s=D, s =0we obtain

(f’i) =D} 7D, =D;-D,/n’
€ /n

(_) =D’ D, =D, D, /n’
21

Since 1 is Hermitian and n, # n,, D;-D, =0.
At the same time, we obtain
S()

(“j ED;.nDz =0
€ /12

23



1.35 Solution:

(a) Let the displacement field be writtenD = D,e’ ™9 + D, 9  The electric field and
magnetic field are written

E=E, /OHS) 4 | o0t ke)

H= Hlei((ot—klg) + Hzei(wt—kzg)

The power flow along the direction s is given by

s:S=s-(ExH)=s-(E,xH))+s-(E, xH,)

Using H =s x En/pc, the power flow becomes

n n n n
s-S =_1[E1 ‘E, - (E, '5)2]+—2'[E2 -E, - (E, '5)2] E_I(Al 'A1)+_2(A2 ‘A,)
pe pe ue ne

Using D=-sxHn/c and H=sxEn/puc, we have

2 2 2

D=-""sx(sxE)=——[E—-s(E-s)]=——A
pe pe pe

3 3
C C C C
Thus, s-S =25 (D, -D,) + £~ (D, -D,) == (D, -D,) + -~ (D, - D,)
n n, €yl €y,
For complex representation, the above is written

1 c x c x
s-S= —Re(—-—S(D1 ‘D)) +——3—(D2 -D2)]
2 o €y,

(b) In (a) we obtain s-S = %(A1 “A)) +§2;(A2 A,). For complex representation, a similar

result is obtained.
(c) In a lossless medium, the power flow is a constant.
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1.36 Solution:

(a) For a field with a transverse dimension, a longitudinal must be present in order to satisfy the
divergence condition

V -E = 0 (assuming free space)

OE
V-E= aE"+ y+aEz o, ‘aE‘)—ikEz =0
ox oy oz Ox oy

Thus, the longitudinal component is given approximately as £, = —;(—ag— 8E0) .

i
ox oy
The magnetic field is related to the electric field by —iopH =V x E . In other words

OF OE
_jopH =V xE = | 2 _ %, )AH_(GEX_OEZJ);_F y OE. ),
oy 0Oz 0z Ox ox 0oy
ay k ay 6x 6y ox Oy

Neglecting the second order derivatives, the above becomes

OE, OFE, ),
= (kE, )% + (- ikE, )y+(—z - ay) =kE

This proves H(x,y,z,t) ~ iLE(x,y,z,t) .
op

(b) The time-averaged momentum density is

—gx—Eo, kE(f)

1 € 0
(P)= —2-Re(psEx H)=5(E05;Eo, ~E,
The time-averaged angular momentum density is
> 0 0 0 0
(L)=(r=xP)= 6(ykE; +onan, ZE, 5EO -xEl, -xE, an ~ yE, —a;EOJ
The z-component is
L=2{-2yp_ % p2ip g
20\ Ox Oy
Now, integrating over the entire space

[[[L.dxdydz = [[[dxdydz 58&—)

0 , O 2 2 2 | _ € 2
(——axEo —gy—yE0 +E, +EOJ_ Ijjdxdydzan

The integral over the first two terms vanishes due to the condition of finite transverse dimension.
The time-averaged energy density is

(U)= —~Re(8E D*+uB - H*)————(E E¥) = [Ez +EX + klz 85;0 ! [QE_] )ngz
Let

I ”(U >dxdydz = J.ﬂdxdydzeEg = Nho , where N is the total number of photons, then
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,mLZdXdde = _[dedydz%Eg = Nh

Thus, a single photon of circularly polarized light carries an angular momentum of 7.

(c) For simplicity, assume a cylindrically symmetric field Eo(x, y).
L= E(yk_Eg +2E, —a—E())
® Ox

L= i(on Sk, -ngJ
o oy

We note that both L, and L, are odd functions. The integrals are zero.
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1.37 Solution.:
E, 4

B (E10, E20)

E,

(a) We write the components of P in a linear medium as
P =gy, E +&X,E,, P, =€XnE + &0k,
and their differential as

dP, = e dE, + €)X ,dE,, dP, =gy, dE, + €),,dE,

For path A, the integral can be written
W= J‘E dP = 'r 10/0)

105 20)

EdP + f (EdP, + E,dP,)
Ey9,0) 10E20)
= [ BoatdE, + [ (BientndE, + EyeitandEs)

1 1
= 5 SOXIIEIZO + € X E0Ey + 5 8oX22E220

(b) For path B, the integral can be written

105E20)

E,dP, + j‘ (E,dP, + E,dP,)

20)

0,E.

W= J‘E~dP=f0m
B

j( N O)E €0 X0ndE, +f v 20)(E €oXdE, + E,€0%,dE,)

1 1
= 580X22E220 + €Lk + E 8oXllElzo
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Chapter 2

2.1 Solution:
A-X\

The ei al tisfy the equation
(a) The eigenvalues satisfy quati c D—k’

=0, or (A=A)(D-A)-BC=0. This is a

quadratic equation. The solutions are:

2= A;Di-;-J(A+D)2 —4(AD—BC)=A;Di%w/(A+D)2—4.

If we define (4 + D) = 2cos0, then the eigenvalues become: A = cos0+isin0 = exp(+i0).

(b) From the basics of linear algebra, the eigenvectors are: (

A-A B B ) ((4-MB+B(A-4) ) (0 o
C D-A\r-4) \(BCO)+(D-M)A-4)) o)
To see if they are orthogonal, we examine

*

B J( B )_ B'B ( B
e®_ gl le® -4 (eie_A*)(eie__A) - (eie__A)z

where we assume that both A and B are real. We see that the scalar product is not generally zero. Thus the
two eigenvectors are not generally orthogonal.

They, however, are dependent when B=0, or 6=0.

j. We can also examine

(c) For a 2x2 matrix with non-zero determinant, the inverse matrix is given by

a bY' 1 (d -b

= , SO

c d ad —bc\—c a

o (B B Y __ 1 ("4 -8
e’ -4 e™-4 -2iBsinB|\-e¢®+4 B
We now carry out the matrix multiplications
(4 B . 1 B B Y'(4 BY B B
M M=M"=———7 , 0 0 -i0
C D —2iBsin0Ole”" -4 e"-A4) \C D\e" -4 e" -4

1 e®-4 -BYA4 BY B B
T _2iBsin®l—-e®+4 B \NC Dle®-4 e®-4

the columns of matrix M are eigenvectors, so
1 e®-4 -B) €°B e™B ]

~ —2iBsinb|\-e®+4 B e®(e® - A) eP(e™ - A)

_ 1 B(e** -1) 0 (e® 0
—2iBsin® 0 Be*®-1) Lo ™
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2.2 Solution:
(a) From the above equation, we obtain

1= (0 +Bo)B, 1y = (e — )+ (e ~ 4).

Rearranging the terms, we obtain
(o, +B,)=1r/B, isinO(o, —B,) =, "+7,(A—cos0)/B.

Solving for o and Bo, we obtain

o, = (r,'+Ar,/ B-r,e™/B)/(2isin0)

B, =(~7,'—Ar,/ B+re"™/ B)/(2isin @)

They are indeed a conjugate pair, provided both A and B are real.

(b) = | = Qo 0 +Bo -9
r C D) \7 C D)(e"-4 C D)\e"-4

. B . B
= a,e™ (e“’ B AJ + Boe"’"e(e_ie ~ AJ . Thus

r, =1, sin(md+a) = B(o,e™ +By,e”™) = B[(a, +B,)cosmb +i(o, —B,)sinm0]

Since, 7, sin(mO+a)=r,, sinocosmO+7r, cosasinmb and the above equation is valid for an
arbitrary m, we must have

Toax SIDOL = B(a, +B,) =7, and r,, coso =iB(o, —B,) =[Br,'+7,(A—-cosB)]/sin6

Thus, we have

72 = (%) +[Br,"+r,(A—cosO)]* /sin® O
¥, sin©
Bry'+1,(A—cos6)

tano =

(c) From Egs. (2.1-10, 11)

v _ 4 BY' Bl AUy, -Uy, BU,_, )
r,) \c b)) | cu,, DU, -U,_, \r,

where
U, = sm(]Y +1)0

sin
So,
re =(AUy, ~Uy ), + BU, Fy =1, ASBNO _ SN -0, psin NO

sin 0 sin 0 sin©
Using sin(a + B) = sino.cosp + cos asin B, the above becomes
sin N© sin NBcos® —cos NOsin® |, . sin N®

ry = rA— -7, - +7', B—

sin 0 sin sin©
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Rearranging the terms, we have
—_l—— o C?SG +7, B—,l—)sinN9+ r, cos N
sin© sin© sin 0
The above can be written
ry =t SIN(NO + ) =7, sinacos NO +7,,, cososin NO
provided
¥oa SINC==7#, and r,, cosa =[Br,'+r,(A—cosB)]/sin0
The results are in agreement with (b). Thus, we also have
v =(r)* +[Br,'+r,(4-cos0)])’ /sin’ O

¥, sin O
Bry'+r,(A—cos0)

ry =(rd

tana =

(d) From Eq. (2.1-21), A=1, B=d, C=-1/f, D=1-d/f , we have

2 1/2
cosO=1-d/(2f), sin6=\/1—coszez(i d ]

S 47

2 2 ' 2 fen 2 2 ' 2 d dz
Foow = (1) +[dr,"+r,(1 —cos0)]” /sin” 0 = (r))" +[dr,"+7,(d /(2 f)]" / 7 - e
oy ¢ AU IQYNY. S ' 4 4 v

0 4fd -d* 4fd -d?
_ Afdr} +41%d*r," +4 fd’r,r, a5 v+ fdr,"? +drr,'
Afd-d’ 4f —d
From (c), we have
. 1/2 12
tana = 7, sin 0 = o a_ d =% (ﬂ—lj
Bry'+r,(A—cos0) dr,'+dr,/2f)\ f 4f? 2fi'+r, \ d
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2.3 Solution:

z=

For an incident ray parallel to the axis with an initial position of r; at z = 0, the ray path is given by
r =1, cos(gz)

At the exit face (z = L), the ray position and slope are givén by

r =r,cos(gl)

r'=—gr, sin(gL)

As a result of refraction at the interface between the medium and air, the slope in the air is given by
(Snell's law)

Vou' = —1o 8T, SIN(gL)

For paraxial rays, the magnitude of the slope is the angle of the ray. So, we have

Vo = —N,81, sin(gl) = _E_CEZLgE_)_
Solving for 4, we obtain
N
n,g tan(gL)
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2.4 Solution:

P Q

First we calculate the thickness d(x,y) of the lens at location (X,y).
Consider a parallel ray at position (X, y). Let z; and z, be the longitudinal position of the lens surface
where the ray traverses. These positions governed by the spherical surfaces and are given by

\/)c2+y2+(zl—cl)2 =R, \/x2+y2+(22—cz)2 =R,
where c¢; and ¢, are location of the centers of curvature.
2 2 2 2
+ +
zl—c1+—)—c——y—le, —22+cz+l——)—}—zR2
2(z,-¢) IZZ CZ,
Further approximation yields,
2 + 2 2 + 2
zlz+c,—)C 4 +R,, zzzc2+———x 4 - R,
1 2R2
The lens thickness function is thus
2 + 2 2 2 2 + 2 1 1
d(x,y)=z, -2, ~d(0,0) -2 X TV _4 XXV |,
2R, 2R, 2 R R,

For paraxial rays, the phase shift upon transmission through the thin lens (between planes z=P and z=Q)
is given by

W(x,y) = [n(2)dz =nkd (x, )+ k{d, - d(x, )]

where k=2m/A, the first term on the right side is due to transmission through the lens medium with index
n, and the second term is due to transmission through air. Substituting the expression for d(x,y), we
obtain

2 2
W(x, ) = k(n = 1)d(x, y) + kdy = —k(n =1 —+— |2 4 fnd,
R R 2
1 x*+y°
) =—K— +
y(x,y) 2 ¢

where ¢ is the phase shift knd, for ray at the center of the lens (x=y=0) and f'is given by

_1_=(n_1)(i+_1_)
f R R,
Assuming a thin lens, the transmitted wave is thus given by

x2 +y?

2f

Eout (x’ y) = Ein (x’ y) exp[_iW('x’ y)] = Ein ()C, y) CXp[lk ]exp("id))
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2.5

7T = | /1/7‘ UL /—\L 1= |
Noe. T A

g e L

h -

Z=
For a ,DoinzL on  the axis at Z=-d, [Yi ]
Yin

[eoe] [ w)[ o] o Raio]f N 4
) c D ' 0 ! 0“ Mo /—:—J’Iﬂ(/_[/ co:/:/_ﬁ—i,q) Lo 7210—“{ 0 |

L cos(f 2) = 1o} /‘F sinf B0, ol cas([Bt) — nohd [ sinl fEeg)+ 7z E sin( [E /‘-M%@]
- Wo\/—z‘ \s:n(\/-?.j/ i) d./;‘.:m(/-,?j) + Co‘:-‘,//giﬂ)

ot | [ 4 e[| [ 4 87f0]~[5m’-’

= };Ouzi =0 ( imagirg gp{o A cingle /mim‘) :‘f B =9
L dos([Be - mhd JB on([Be) + 7% JE (B + heas (B =
% k[ md —sm(f,?—ﬂ) - co“(\/_k_f ] = o(co o fBs, + i i {ip
oy = od c05([/Bg) + 7w JE sr //Tj,

T o JE sin([Ba) — cos( FEe)

e fE ventFy) i dmo

Lk 2 m Rt ad e

LA lenslike medium.  occupging the. region 0 £E <Lyl image

o paint on. the oxjs. at. Z=-c_ onts o single paint at__.
=d+h . If h>o. the image is real. If h<o. tbe

Cimage. 1S virduad . ... . .
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26 (1) | (fout: Yoict ) Note - g‘:__’%-

(¥in, Yid) h(_ﬁ} Yout

JSince ¥in ( slope)= tanp = %mz‘; Vi _
o Yout = Vin -/-Oln'n/ ‘*;--—~——(/)
-Vl‘l{ = ’/oué' = tan p /J‘aﬂle d‘/ape) ----- (2)

'\ From . (1) () => [Yout' _ [' d][)’m]
Vouli'. 0 I Yn'n/

(i) 7hin Lens of focal length F
(rin, Yisdy | vt Pt )

4 > HZhe _
//! E_ f F
— — ¢ ¢ —— e ¢ —

Pl A ¢ — N

Assume the lens Is €0 thin that thete is nesligible distance.
between the entrance (1] and the exit [2] planes. Thuds,
Yin = Vout W --=—------ é’}

Consider ray of in the diagram. For IS S,oec/a/ case > the input
slope V/a 0, yet it rs oéwow that the output slope IS —‘i“ —32’1"
Assume Vouz‘ = C Vint D V/n
Vi -/
=>"‘—‘¥‘=CF//1~/-D'O' = C =7 ----- - (4)
X Vi

In the orther case, ray B comes in with a Slpe of +75' and
obviously exits parallel o the axrs. 7hus, Fout =0

= 0 = CVin +_D( ) = o=-fc =(—f)/5r’)=/ ----- )

Fomfg(4)(5) = Vout = )Vm-l»)’n -—--

| from £, (3)(6), we have [)’out] [F’ ][ ]
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