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Chapter 1

Exercise Solutions

1-1. (a) The only unsettled quantity is decision
variable s. (b) Given quantities or parameters
are d, p and b. (c) Minimize the maximum er-
ror, i.e. objective min (d/s)? (d) We must have
an integer number of sensors and not exceed the
available budget, i.e. constraints ps < b, s non-
negative and integer.

1-2. (a) Feasible because 3.5(4) < 14, and op-
timal because any larger s would not be feasi-
ble. (b) Infeasible and thus not optimal because
3.5(6) £ 14. (c) Feasible because 3.5(2) < 14,
but not optimal because feasible solution s = 4
yields a better objective value.

1-3. (a) The only quantities to be determined
are z; and z,, the numbers of lots on the 2 lines.
(b) Given quantities or parameters are ¢q, 2, c1,
¢, b and T. (c) Minimize total production cost
or objective min ¢;z1+cozs. (d) t121+8222 < T
(at most T hours of production), z; + 2 = b
(produce b lots), z1, z2 > 0 and integer (numbers
nonnegative integers).

1-4. (a) Infeasible and thus not optimal be-
cause 10(0) + 20(3) £ 40. (b) Feasible because
10(2) +20(1) < 40 and 2+ 1 = 3. Also opti-
mal because no more or less expensive z2 can be
used if b = 3 lots are to run. (c) Feasible be-
cause 10(3) +20(0) < 40 and 3 + 0 = 3, but not
optimal because z7 = 2, 3 = 1 yields a lower
cost. :

1-5. (a) Exact numerical optimization because
it is the maximum feasible choice for the given
set of parameter values. (b) Descriptive model-
ing because we have merely evaluated the con-
sequences of a given choice of decision variables
and parameters. (c¢) Closed-form optimization

because an optimal solution is specified for each
choice of decision variables. (d) Heuristic opti-
mization because a good feasible solution is iden-
tified for the given choice of parameter values,
but a non-usual layout might yield superior re-
sults.

1-6. (a) Provides optimum for all choices of in-
put parameters, not just one. (b) Provides a
provably best solution, not just a good feasible
one. (c) Systematically searches for a good feasi-
ble solution, rather than just evaluating the con-
sequences of one.

1-7. Higher tractability usually means loss of va-
lidity, so results from the model might not be
useful in the application.

1-8. (a) (3 for the first) - (3 for the second) - ...
- (3 for the nth) = 3" combinations. (b) One
run per second is 3,600 per hour, 86,400 per day,
31,536,000 per year. The 31° = 59, 049 requires
59,049/3,600 = 16.4 hours; 3% = 14, 348,907
requires 166.1 days; 3%° ~ 3.49 x 10° requires
110.6 years; and 330 =~ 2.06 x 10'* requires 6.5
million years. (¢) Practical computation would
be limited to a few days which could accommo-
date no more than 10 — 11 decision variables.

1-9. (a) Random variable because short term
rainfall is unpredictable. (b) Deterministic
quantity because annual rainfall averages are
fairly stable. (c) Deterministic quantity because
history can be known with certainty. (d) Ran-
dom variable because future stock market behav-
ior is highly uncertain. (e) Deterministic quan-
tity because the seating capacity is fairly fixed.
(f) Random variable because night to night ar-
rivals are usually variable. (g) Random variable
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because breakdowns make the effective produc-
tion rate uncertain. (h) Deterministic quantity
because a reliable robot has a predictable rate of
production. (i) Deterministic quantity because
short term demand for such an expensive prod-
uct would be fairly well known for the next few
days. (j) Random variable because long term
demand for a product is usually uncertain.

Optimization in Operations Research



Chapter 2

Exercise Solutions

2-1. (a) max 200z; + 350z2 (max total profit), (d)
s.t. 5z + 522 < 300 (legs), 0.6z1 + 1.5z2 < 63
(assembly hours), z; < 50 (wood tops), zz < 35 50

X2

(glass tops), 21 > 0, z3 > 0

(b) z7=basic=30, z5=deluxe=30

(c)

50

alternative optima

10 20 30 40
All optimal from x = (30, 30) to x = (17.5, 35).

2-2. (a) max .11z + .17z, (max total return),
s.t. #; + 22 < 12 (312 million investment),

X 2, < 10 (max $10 million domestic), z; < 7

(max $7 million foreign), z; > .5z (domestic at
least half foreign), z > .5z (foreign at least half
domestic), z; > 0, z > 0 (b) zj=domestic=$5
million, z3= foreign=37 million
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optimal

solution

(X*11 x~2)=(5!7)
<

(d)
alternative
optima (d)
Xo
/'y
100
75—
X4
50 —

All optimal from x = (5,7) to x = (8,4).

2-3. (a) min 3z, + 5z (min total cost),s.t. z;+ 25—
T > 50 (at least 50 thousand acres), z1 < 40 (at
most 40 thousand from Squawking Eagle), 22 <
30 (at most 30 thousand from Crooked Creek),
z; > 0, zo > 0 (b) z7=Squawking Eagle=40
thousand, z5=Crooked Creek=10 thousand

Improves forever in direction Az, =1, Az, =
-1.
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(e)
X2
A
_J X1 > O

N
751 N\ %

50 —

+
25 ”\
+
<A
NS

zo = 0 leaves no feasible.

2-4. (a) max z; (max beef content), s.t. z; +
Ty > 125 (weight at least 125), 2.5z1 + 1.8z3 <
350 (calories at most 350), 0.2z + 0.1z2 < 15
(fat at most 15), 3.5z1 + 2.5z, < 360 (sodium
at most 360), z; > 0, z; > 0 (b) z}=Dbeef=25g,
z3=chicken=100g

optimal solution

so-| (X Xp) = (25,100)

25—

25

X220 T
T T T T
10 20 30 40
z1 + z2 > 200 leaves no feasible.

I



i
101 20

Improve forever in direction Az; = 1, Azy =
-2.

2-5. (a) max 450v+200c (max total profit), s.t.
10v + 7¢ < 70000 (water at most 70000 units),
v 4+ ¢ < 10000 (total acreage 10000), v < 7000
(at most 70% vegetables), ¢ < 7000 (at most 70%
cotton), v > 0, ¢ > 0 (b) v* =7000, c* =0

(c)

10000

8000
v< 7000

2000

2000
optimal solution (v*, ¢ *) = (7000,0)

Optimization in Operations Research

(d)

Improves forever in direction Awv
-T.
(e)

\c
10000

8000 ——»

6000

“
c< 7000

4000

v20

X
o
3y
&
>
2000 —

c2 0
| | |
2000 4000 6000 8000

No solution with v 4+ ¢ = 10000.

2-6. (a) min z; +z2 (min used stock), s.t. 521+
3z, > 15 (cut at least 15 long rolls), 2z; + 522 >
10 (cut at least 10 short rolls), ; < 4 (at most 4
times on pattern 1), z2 < 4 (at most 4 times on
pattern 2), 1,72 > 0 and integer. (b) Partial
cuts make no physical sense because all unused
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material is scrap. (c) Either 2z} = 25 = 2, or (d)
zi=3,z3=1 X2
(d) S
-*
Zp.
30—o N
N
& %
P2
20— 4%
X2 <15
= \
10 — 7o)
N
vi
X220 < 1
T T 1 1 g X
10 20 30 40 0
z1 < 25 leaves no feasible.

(e) Both (2,2) and (3,1) are feasible and lie on
the best contour of the objective.

2-7. (a) min 16z; + 16z, (min total wall area),
s.t. z1z9 = 500 (500 sqft pool), z; > 2z (length
at least twice width), z; < 15 (width at most 15
ft), 23 > 0, z2 > 0 (b) zi=length=33% feet,
z3=width=15 feet

()
X2
40—
30— o
N
x
20—
10 —|
optimal solution— ™
(¢ , X5 ) = (33.33,15)
Xp2 0
T 1 7 T d X4
10 20 30 40 0

2-8. (a) max z, (max number of floors),

s.t. m/4(z1)%z2 = 150000 (150000 sqft floor
space), 10z, < 4z; (height at most 4 times di-
ameter), z; > 0, z3 > 0 (b) 2z = diameter =
78.16 feet, z3 = floors = 31.26

(<)
X3
4
80
60— o
Al
40—
)
[
20 —| E
" optimal solution—
TS s ML;.X‘Q).E.(ZB;‘].@;%LZ@). _________
X520
T 2 T T T ™ X
20 40 60 80 100
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(d)
X2
4
80
60 o
Al
x
40 —|
20 —
2 B¥A
\07(‘1’
XQZO ?
| 1 I I
20 40 60 80 100

z1 < 50 leaves no feasible.

2-9.

(2) max w; (b) max 5wy + 2w, (c) max w,

Wy

Optimization in Operations Research

2-10.

= = - \\\\\\
(a) min 2w; — wy (b) min w; (c¢) min w,

2-11. (a) min Y% 54 ?:1 Yij
(b) max Z?=1 iy3,i

(c) max E€=1 QiYia

(d) min Z?:l /B‘iyi

(e) Z:?:l vij=si,t=1,...,3
() E?=1 a;;y; =b;,i=1,...,3

2-12. (a) Y, 70 €200, j = 1,...,5;t =
..., 7; 35 constraints

(b) 331 Y7-1 5,5+ < 4000; 1 constraint

(€) Sl mije 2100, i=1,...,175¢=1,...,7;

119 constraints

2-14. (a) Tio1Zije < @iy @ = 1,...,4T;t =
1,...,10; 470 constraints

(b) =¥, 2,40 > 1000, t = 1,...,10; 10 con-
straints

() Ty i zioe 2 %2?21 2?:1 i1 Tiges 1

constraint

2-16. () f(y1,¥2,¥3) 2 (y1)2y2/v3, 91(¥1, Y2, Y3)
8y +y2+ys, by =13, g2(y1,v2,¥3) 2 2y1 —
Y2 + 93/3, b2 = 0’ g3(y1,y2)y3) é Y1, b3 = 0)
94(y1,¥2,y3) 2 ys, b4 =0 :
(b) f(y1,¥2,y3) & 14315293 + 100, g1(v1, Y2, ¥s)
8 y1-3y2+us, by = =2, g2(¥1, Y2, ¥3) 2 Y148y,
by = 10, g3(y1,¥2,y3) £ v2, b3 = 0, ga(y1, v2, ¥3)
é Ys, b4 =0

2-17. (a) Linear because LHS is a weighted sum
of the decision variables. (b) Linear because
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LHS is a weighted sum of the decision variables.
(¢) Nonlinear because LHS has reciprocal 1/zg.
(d) Linear because LHS is a weighted sum of the
decision variables. (e) Nonlinear because LHS
has (z;)? terms. (f) Nonlinear because LHS
has In(z3) term. (g) Nonlinear because LHS
has max operator. (h) Linear because LHS is
a weighted sum of the decision variables.

2-18. (a) LP because the objective and all con-
straints are linear. (b) NLP because of the non-
linear objective function. (¢) NLP because of
the nonlinear first constraint. (d) LP because
the objective and all constraints are linear.

2-19. (a) Continuous because fractions make
sense. (b) Discrete because they either win or
not. (c) Discrete because a specific process must
be used. (d) Continuous because fractions make
sense.

2-20. (a) Y5y z; =3 (b) T3, 25 > 2 (c) 23+
28 <1(d) z4 <29

2-21. (a) max 85z + 70z; + 6223 + 9324 (max
total score), s.t. 700z1+400z2+300234600z4 <
1000 ($1 million available), z; = Oorl, j =
1,...,4 (b) Fund 2 and 4, ie. 2z} = 23 = 0,
zy=z;=1

2-22. (a) min 200y; + 40y2 + 55y3 + 75y (min
total land cost), s.t. y; + y2 > 1 (service NW),
Y1+ Y2+ ys > 1 (service SW), y1 + y3 + y4 >
1 (service capital), y; + y2 > 1 (service NE),
y1+ys > 1 (service SE),y; =0or 1, j=1,...,4
(b) Build 2 and 4,ie. y; =y3=0,y3=y; =1

2-23. (a) ILP because the objective and all
constraints are linear, but variables are dis-
crete. (b) LP because the objective and all con-
straints are linear, and all variables are continu-
ous. (c) INLP because the objective is nonlinear
and variables are discrete. (d) NLP because the
objective is nonlinear and all variables are con-
tinuous. (e) INLP because the first constraint
is nonlinear and z3 is discrete. (f) ILP because
the objective and all constraints are linear, but
variable z3 is discrete.

2-24. (a) Model (b) because LP’s are gener-
ally more tractable than ILP’s. (b) Model (b)

9

because LP’s are generally more tractable than
NLP’s. (c) Model (d) because NLP’s are gener-
ally more tractable than INLP’s. (d) Model (f)
because LP’s are generally more tractable than
ILP’s.

2-25.

()

VS‘

16

12

altemative
optimal
solutions

e —————

X220 ?
= T T X
12 16

(b)

! /

optimal solution (x4 , x5 ) = (0,4)
(c¢) Helping one can hurt the other.

2-26. (a) min .092z4+.11225+.1412¢+.420z9+
719215 (min total cost),

s.t. T4+ o5 + 6 + T9 + 212 = 16000 (160001’!1
line),

279z4+.160z5+.12026+.06529+.0392,2 < 1600
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(at most 1600 Ohms resistance),

.00175z4 + .00130z5 + .00161z6 + .00095z9 +
.00048z1, < 8.5 (at most 8.5 dBell attenuation),
T4,Ts,Te, T, T12 2 0

(b) Nonzeros: z3 = 1000, z7, = 15000

2-27. (a) Pump rates are the decisions to be
made.

(b) u;2 the capacity of pump j, ¢;2 the pump-
ing cost of pump j

(¢) min Y32, ¢jz;

(d) z1 +z4+ 27 <3000 (well 1), 23+ 25+ 25 <
2500 (well 2), 3+ z + 29 + 10 < 7000 (well 3)
(e)zj <u;,j=1,...,10

(f) 32, z; > 10000

(€) 2;20,j=1,...,10

(h) A single objective LP because the one objec-
tive and all constraints are linear, and all vari-
ables are continuous.

(i) z7 = z3 = z3 = 1100, 25 = zg = 1500,
zi = 1400, =7 = 400; z§ = 2], = 0, z3 = 1900
2-28. (a) The decisions to be made are which
projects to undertake.

(b) p; 2 the profit for project j, m; £ the man-
days required on project j, and t; 2 the CPU
time required on project j.

(c) max S5, pjz;

(d) 7< (They mya;) /240 < 10

(e) Y3.itjz; < 1000 (computer time),
Ele z; > 3 (select at least 3); z3+z4+z5+28 >
1 (include at least 1 of director’s favorites)
(f)z;=00r1,5=1,...,8

(g) A single objective ILP because the one objec-
tive and all constramts are linear, but variables
are discrete.

(h) 27 =z5=2§ =25 =1, others=0

2-29. (a) We must decide what quantities to
move from surplus sites to fulfill each need.

(b) s; 2 the supply available at , 7; 2 the quan-
tity needed at 7, d; ; 2 the distance from ¢ to j.
(¢) min iy 3oy diyaig

(d) 217'=1 Tij = Siy 1= 1, . .,4

(e) Z?:lxi,f =Ty ] = 17"'a7
(£f)z;;20,i=1,...,4,7=1,...,7

(g) A single objective LP because the one objec-
tive and all constraints are linear, and all vari-
ables are continuous.

Optimization in Operations Research

(h) Nonzeros: z}, = 81, z} , = 93, z} 5 = 166,
z} s = 90, 2z} = 85, 2}, = 145, ¢35, = 301,
a:;,l = 166, 17;'4 = 105, zz’S =99

2-30. (a) The values to be chosen are the coef-
ficients in the estimating relationship.

(b) min 3°7_, (Cj -k/(1+ ca"""’ff))2 (min total
squared error)

(c) Single objective NLP because the objective
is quadratic, there are no constraints, and all
variables are continuous.

2-31. (a) The decisions to be made are where to
assign each teacher

(b) min Z,_l 2 cijzi; (min total cost),
max Y22, 3_1 ti; xw (max total teacher prefer-
ence), max Y 22, ]=1 si ;%i; (max total super-
visor preference), max Y72, Y22, pi;zi; (max
total principal preference)
(¢) Z]_lz” 1,i=1,...,
(d) ¥2,2;,;=1,7=1,...,22 (each school j)
(e) zij=00rl,4,5=1,...,22

(f) A multiobjective ILP because the 4 objec-
tives and all constraints are linear, but variables
are discrete.

22 (each teacher 7)

2-32. (a) Each task must go to Assistant 0 or
Assistant 1.

(b) max 100(1 —z;) + 80z, +85(1 —z2) +70z2 +
40(1 — z3) + 9023 + 45(1 — z4) + 8524 + 70(1 —
.’B5) + 80zs5 + 82(1 - Zl'e) + 652¢

(C) E?:l z;= 3

(d) Ts = Tg

(e)zj=00rl,j=1,...,6

(f) A single objective ILP because the one objec-
tive and all constraints are linear, but variables
are discrete.

(g) 23 =23 =125 =1, others=0

2-33. (a) Batch sizes are the decisions to be
made.

(b) min z;/d;, j=1,...,4
(c) Tioatidi/z; < 60
(d)o<Lz;<uy;j=1,...,4

(e) Multiobjective NLP because the first con-
straint is nonlinear and all variables are contin-
uous.

(each burger j)

2-34. (a) The issue is how many cars to move
from where to where.
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(b) Relatively large values can be rounded if
fractional without much loss, and continuous is
more tractable.

(c) ci; 2 the cost of moving a car from 1 to j,
p; 2 the number of cars presently at j, n; A the
number of cars required at j

(d) min T8y 5oy i i

(e) Z?:Li;ek Tik = E?:l,j;ek Zkj = Mk = Pk
k=1,...,5 (each region k)

(f) z;;>20,%,5=1,...,5,i# j

(g) A single objective LP because the one objec-
tive and all constraints are linear, and all vari-
ables are continuous.
(h) Nonzero values:
a3, = 85, o35 = 225
2-35. (a) We must decide how much of what fuel
to burn at each plant

(b) min Ef:l Ep: CfpTfp

(c) min Ef‘:l Sf 2;2711 Tfp

(d) Zfe:l efTfp > rp p=1,...,23
p); 23 constraints

(e) zsp 2 0, f = 1,...,
constraints

(f) A multiobjective LP because the 2 objectives
and all constraints are linear, and all variables
are continuous.

Ty, = 115, 35 = 165,

(each plant

4, p =1,...,23; 92

2-36. (a) The available options are to buy whole
logs or green lumber.

(b) Relatively large magnitudes can be rounded
without much loss, and continuous is more
tractable.

(¢) min 70z10+200215+ 620220+ 1.55y; +1.30y2
(d) 100(.09)z10 + 240(.09)z15 + 400(.09)z20 +
.10y; + .08y2 > 2350

(e) z10 + z15 + z20 < 1500 (sawing capacity),
100210+ 2402154400220+ y1 +y2 < 26500 (dry—
ing capacity)

(f) z10 < 50 (size 10 log availability), z15 < 25
(size 15 log availability), o0 < 10 (size 20 log
availability), y1 < 5000 (grade 1 green lumber
availability)

(8) 10, %15, T20, 41,92 2 0

(h) A single objective LP because the one objec-
tive and all constraints are linear, and all vari-
ables are continuous.

(i) zip = 50, 275 = 25, 3 = 5, Y1
y5 = 8500

= 5000,

11

2-37. (a) Decisions to be made are when to
schedule each film.

(b) min 725" Tftoj 055 i Tt

(c) izt =1,7=1,...,m (each film j)
(d) ZFeizj: <4,t=1,...,n (each time ¢)

(e) zje=0o0rl, j=1,...,mt=1,...,n

(f) A single objective INLP because the one ob-
jective is nonlinear, and variables are discrete.

2-38. (a) We need to decide both which offices
to open and how to service customers from them.
(b) Offices must either be opened or not.

(c) f; A fixed cost of site ¢, ¢;; 2 unit cost of
audits at j from i, r; £ required number of au-
dits in state j

(d) min 3, E?:l ¢ii7i%i; + o=t fiti

(e) X2 ,zi;=1,5=1,...,5 (each location j)
(f) z;; <wyi, 1,7 =1,...,5 (each site 7, location
Jj combination)

(g) Ti,j >20,%4,5=1...,5, 4 =
1,...,5

(h) A single objective ILP because the one ob-
jective and all constraints are linear, but the y;
variables are discrete.

(i) Nonzeros: 23, = 234 =37 = T33 = Tg5 =
Lyy,=y3=y;=1

2-39. (a) How to divide funds is the issue.

(b) max 37, v;;

(c) min 377, rjz;

(d) Toy 25 =1

(e) z; > ¢;,7=1,...,n (each category j)

(f) z; < uj, j=1,...,n (each category j)

(g) A multiobjective LP because the 2 objectives
and all constraints are linear, and all variables
are continuous.

Oorl, : =

2-40. (a) The issue is which module goes to
which site.

(b) If z; ;x5 =1 the ¢ is at j and i is at j’,
so wire d; ;» will be required. Summing over all
possible location pairs captures the wire require-
ments for 7 and 7'.

(c)

ST T @i Y1 Y=y 4,0 i i g
(d) Zizizij=11=1,...,m (each module 7)
(e) X, 2zi; <1,j=1,...,n (each site j)
(f)zij=0o0rl,i=1,....m,j=1,...,n

min
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(g) Single objective INLP because the one ob-
jective is nonlinear and variables are discrete.



