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INTRODUCTION

This solution manual is a companion to the text Optimal State Estimation: Kalman,
He, and Nonlinear Approaches, by Dan Simon {(John Wiley & Sons, 2006). The
MATLAB? source code for the computer exercise solutions is given at the end of
this solution manual. The references in this solution manual refer to the references
section in the text Optimal State Estimation. The equation numbers in this solution
manual refer to the equations in the book Optimal State Estimation,

Although the MATLAB cade for the solutions is not available on the Internet,
MATLAB-based source code for the examples in the text is available at the author’s
Web site.? The author's e-maii address is also available on the Web site, and I
eagerly invite feedback, comments, suggestions for improvements, and corrections,

A note on notation

Three dots between delimiters {parenthesis, brackets, or braces) means that the
quantity between the delimiters is the same as the quantity between the previous
set of identical delimiters in the same equation. For example,

(A+BCD) +(-- 97
A+[B(C~ D) B |

(A+BCD)+ (A+ BcD)T
A+[B(C+ D)'E[B(C + D)

"

IMATLAB is a registered trademark of The MathWarks. Tnc.
2http://.'a.ca,demic..:suohio.eedL;L/sh‘nond/est1'.matio1r1 — if the Web site address changes, it should be
easy to find with an Internet search.






CHAPTER 1

Linear systems theory

Problems

Written exercises

1.1 Find the rank of the matrix [ 8 8 ]

Solution

The rank of a matrix A4 can be defined as the dimension of the largest submatrix
consisting of rows and columns of A whose determinant is nonzero. With this
definition we see that the rank of the zero matrix is zero.

1.2 Find two 2 x 2 matrices 4 and B such that A # B, neither A nor B are
diagonal, A # cB for any scalar ¢, and AB = BA. Find the eigenvectors of 4 and
B. Note that they share an eigenvector. Interestingly, every pair of commuting
matrices shares at least one eigenvector [Hor83, p. a1].
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2 LINEAR SYSTEMS THEQRY

Solution

Suppose 4 and B are given as

4= a ]
dz  Qa
_ by bo
p-n
Then we see that
AB — a1b; + ashg aijby + asgha
- aoby -+ a3b2 azby + Egbg
BA = arby + asby  agh) + aghs
a1ha + aszbs asby + agbs

We see that AB = BA if a1bs +azbs = azby + azbo.
faj=1,a2=2a3=1,by=1,by =3, and bs

A

R

This wiil be true, for example,
= 1. This gives

5 7]

1]

For these matrices 4 has the eigenvalues —1 and 3, B has the eigenvaiues —2 and
4, and both A and B have the eigenvectors -1 1 ]T and [ 1 1 ]T.

1.3 Prove the three identities of Equation (1.26).

Solution

a). Suppose 4 isan n x m matrix, and B is an m x p matrix. Then

All
(AB)T :
Apt

[ X AuBj

| 2" AnBi
[ 3" 41585

BT AT

A By
Bml
Z AIJij

Anm

> AnjBiy ]
2 AnsBy:

ZA”J‘BJP B
Ay

-41m
2B A

Anm

2 Bip Ay



PROBLEMS 3

QED

b). Suppose that (AB) ™' = C. Then CAB = I. Postmultiplying both sides of
this equation by B! gives CA = B~!. Postmultiplying both sides of this
equation by A~! gives C = B~ A~!, Hence we see that {4B)"! = B~14~L
QED

¢). Suppose A is an n x m matrix, and B is an m x n matrix. Then

Ay o Am Bin - Bin
Tr(AB} = Tr ; S : oo
L Anl e ‘4’”,’”’.', Bml e an
| 2 A8 - 2 AuBin
| X AnBj - X AnBjn
= 2.2 4B
i=1 j=1
(_Bn coo Big Ap oo Alm-l
Tr{BA) = Tr : . : : :
k L Bml e Bmﬂ Anl e J4nm. J
[ L BiiAn 0 3 Biidm
= Tr : :
L ZijAjl o D B Aim
= Y > ByAs
i=1j7=1

QED
1.4 Find the partial derivative of the trace of AB with respect to A.

Solution

Suppose A Is an n X m matrix, and B {s an m % n matrix. Then

HTr(AB) 0 e
T e EEZZIAijBﬁ
. i=1 j=

a

r 8
dAn Z?:l E_T:l AU Bﬂ T FAm an:l ZT:l Aiiji

a T § m 8 n . ™m
L 84, Zz’:] Zj:l Aiiji T FAnm ZTZI Zj:l Aiijv’
By -+ Bm

LBln an
= BT
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1.5 Consider the matrix

a b
st
Recall that the eigenvalues of A are found by find the roots of the polynomial
P{A) = |AT — A|. Show that P(A) = 0. (This is an illustration of the Cayley—

Hamilton theorem [Bay99, Che99, Kai00).)

Solution

PO = |M-4
_ A—a —b
- -b A-c
= M- (at+rtac—b

P{A) = A*—(a+ A+ (ac— DI
[ @4+ ab+be a b ac — b 0
T | ab+be b2+c2}_(a+6){b C}Jr{ 0 ac — b2
_ [0 0]
B | 0 Oj

1.6 Suppose that 4 is invertible and

5 alle]-[7]

Find B and C in terms of A [Lie67].

Solution

Multiplying out the matrix equation gives the following two equations.
A+ AC = 0
BA4+AC = ]
Solving for B and C in terms of A gives
B = A+47!
¢ = -4

1.7  Show that AB may not be symmetric even though both A and B are sym-
metric.

Solution

Suppose the symmetric masrices 4 and B are given as
a a
Gz ag

_ by by
2=
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Then we see that

AB = { aiby + azby  aibs + asbs ]

aghy + aghs  azbe + asbs

AR is not symmetric if a b + azbs # azb; + aabs.

1.8

Consider the matrix

1Y)

where a, b, and ¢ are real, and @ and ¢ are nonnegative.

a).

b).

1.9

a) Compute the solutions of the characteristic polynomial of A to prove that

the eigenvalues of A are real.

b) For what values of b is A positive semidefinite?

Solution

The characteristic polynomial of A is

P()) IAT — Al
bA—a —b
- ‘ b A—c

= M —(at+c)htac=b?

Finding the roots of this gives

r=3lotexVa-oF T4

The discriminant is non-negative so A is real.
QED

In order for A to be positive semidefinite, its eigenvalues must be positive.
The eigenvalues are

%{a—&-c—&- (a—c)2+4b2}
A=
%[a-Jrcf (afc)2+4b2]

The first eigenvalue iz always non-negative. The second eigenvalue is non-

negative if g + ¢ 2 v/(a — ¢)? + 4b%. Solving this eguation gives |b < v/ac as
the condition of positive semidefiniteness,

Derive the properties of the state transition matrix given in Equation (1.72).

Solution

d . d & (At)
dt dt Z
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= jf [I+At+ (at)* + (46 +J

2! 3!

A32
= A+A2t+—27—+~-

2
= A[I+At+(‘§) +J
= Aedt

This proves the first equality. After writing the third expression of the above
sequence of equations, we can bring the common factor A out o the right to obtain

d t

doa _ (A2 14

dt 2!

= ety

QED
1.10  Suppose that the matrix 4 has eigenvalues ), and elgenvectors v; (i =
1,-++,n). What are the eigenvalues and eigenvectors of — A7
Solution
Avy = Mvy., therefore —Aw; = —Mv;. From this we see t hat —A has eigenvalues

—A; and eigenvectors ;.

1.11  Show that |e?*| = e for any square matrix A.

Solution:
A2t2
e = T4+ Ar+ + -
A 2
eAt} -~ ﬁII+=At‘+| 2f|+
A2
= Jf+]4it+‘ ‘ + .
= Al
QED
1.12  Show that if A = BA, then
d|A|
=Tr
=Ty
Solution:

The equation A = BA can be solved as A = eB14(0). Taking the determinant of
this eguation gives

Al = [eFA{0)]
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~ [e%|A(0)
e/ P A(0))|
From this we see that
dal it
. \Ble‘Bl |A{0}|
= Tr(B)|A|

QED

1.13 The linear position p of an object under constant acceleration is
- 1 - 2
p=potpt+spt

where pg is the initial position of the object.
a} Define a state vector as & = [ p p b ]T and write the state space equa-
tion # = Ax for this system.

b) Use all three expressions in Equation (1.71) to find the state transition
matrix e for the system.

c) Prove for the state transition matrix found above that ¢4° = I.

Solution
a).
il? 010 P
pn p|=1001 P
‘1P 0 0 0 P

b). From the first expression in Equation (1.72) we obtain

oA i A‘f)j

—

= 7
(AN A (An? ) (AR®
R TE TR A TR
0 ¢t 0 0 0 t*/2
= I+[0 0 t|+]{00 0 | 404
00 0 00 o0
1t )2
= |01 ¢
0 1

From the second expression in Equation {1.72) we obtain

eAt - ﬁ_l[(SI—A)_l]
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0 0 1/s
1t 32
= 01 ¢
00 1

From the third expression in Equation {1.72) we obtain
eft — SAtQ—l

The eigendata of A are found to be

A = {0,0,0}
1 0 0
U= 0 1 0
0 0 1

Actually we can note that 4 is already in Jordan form, which means that its
eigenvalues are on the diagonal, and its eigenvectors form the identity matrix
when augmented together. Recall for a third order Jordan block that

2
At tclt 17 e)\t

€
e = | 0 M jei
0 0 et
In our case A =0 so
1t 2792
=19 1 4
0 ¢ 1

c). From the above expression for e, if we substitute ¢ = @ we see that e = [,
QED

1.14  Consider the following system matrix.
1 0
=0 5]

e 0
S“):'[ 0 2eﬁtJ

satisfies the relation S(¢) = AS(t), but $(¢) is not the state transition matrix of
the system.

Show that the matrix

Solution
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1l

AS(t)

1 0 et 0
0 -1 0 2t
_ et 0
- 0 —2!

We see that S{t) = AS(t). However, the state transition matrix is found to be

QED
1.15 Give an example of a discrete-time system that is marginally stable but not

asymptotically stable.

Solution

The system xj41 = 2 is marginally stable, because the state is bounded for any
initial bounded state, but it is not asymptotically stable, because it is not true that
the state approaches zero for all initial states.

1.16 Show (H, F)is an observable matrix pair if and only if (H, =) is observable
{assuming that F is nonsingular).

Solution

If {H. F) is observable, then Qz # 0 for all nonzero z, where
H
HF

Hanl

Since F is nonsingular F~("~Lz spans the entire n-dimensional space. (That is,
any n-element vector can be written as F° ~(n=1¢ for some n-element vector z.) So
the observability of (H.F) is equivalent to @F ~{"~%z # 0 for all nonzero z. This
is equivalent to @'z # 0 for all nonzero x, where

Hp=n=b
HE-n=%

H
which is the observability matrix of (H, F~1).
QED

Computer exercises

1.17 The dynamics of a DC motor can be described as
J6+Fd=T
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where 6 is the angular position of the motor, J is the moment of inertia, F is the
coeflicient, of viscous friction, and T is the torque applied to the motor.
a} Generate a two-state linear system equation for this motor in the form

T = Ar + Bu

b) Simulate the system for & s and plot the angular position and velocity.
Use J =10 kg m? F =100 kg m%/s, 2(0) = [0 0 )", and T = 10 N
m. Use rectangular integration with a step size of 0.05 s. Do ihe output
plots look correct? What happens when you change the step size At to
0.2 87 What happens when you change the step size to 0.5 s? What are
the eigenvalues of the A matrix, and how can you relate their magnitudes
to the step size that is required for a correct simulation?

Solution

a). Let r; = 6 and xg = 6. Then

iz[g ;/JJJ”L?J}T

bj. Gutput plots for various simulation step sizes are shown in Figures 1.1-1.3,
With At = 0.05 the simulation works fine. With At = 0.2 the simulation
results are obviously incorrect, although the simulation is still stable. With
At = 0.5 the simulation blows up. The eigenvalues of A are 0 and —10.
The simulation step size should be appreciably smaller than 1/ |Almaz. which
implies that the step size should be smaller than 1/10, which is consistent
with our experimental results.

dt=0.05

0.5 T

position
0.45F - velogity |1

C.4f
.35}

0.25F
0.2}
0151 A
01

0.05¢ p

Seconds

Figure 1.1 Problem 1.17 simulation with A7 = 0.05. Good simulation

1.18 The dynamic equations for a series RLC circuit can be written as

u = IR+LI+V,
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dt=0.2

0.5,—
0.45¢

— pasition
- - velogity

0.4r
0.35¢

cost o/ TR G ]

OL[ o L i . : J

4} 1 2 3 4 5
Seconds

Figure 1.2 Problem 1.17 simulation with A7 = 0.2. Poar simulation
x 10° dt=0.5

R .

—— position
' velocity |

1zl . . .
o} 1 2 3 4 5
Seconds

Figure 1.3 Problem 1.17 simulation with At = 0.5. Unstable simulation

I = ¢y,

11

where u is the applied voltage, T is the current through the cireuit, and V. is the

voltage across the capacitor.

a) Write a stale-space equation in matrix form for this system with z, as the

capacitor voltage and x5 as the current,

b) Suppose that R = 3, L =1, and C = 0.5. Find an analytical expression
for the capacitor voltage for £ > 0, assuming that the initial state is zero.

and the input voltage is u(f) = e~

¢) Simulate the system using rectangular, trapezoidal, and fourth-order Runge—
Kutta integration to obtain & numerical solution for the capacitor voltage,
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Simulate from t = 0 to t = 5 using step sizes of 0.1 and 0.2, Tabulate the
RMS vaiue of the error between the numerical and analytical solutions for
the capacitor voltage for each of your six simulations.

Solution
a).
w = xR+ Lig+x
re = Ci
Putting this in matrix form gives
rz[il/‘g —}12//?,]$+{1?L}”
b).

¢
o(t) = eMx(0) + f AT By(7) dr
0

Plugging in the values of R, L, and C into the A mztrix and computing et

gives

ai_ ¢y 22 o) -1 =2 -.

e [_1 —1}”’ { 1 2]
Substituting everything into the expression for z{t) and computing the first
element of z(t) gives

i
z1(t) = 2[ {e—u—.-) _ efm_f)} e 2 dr
0
— 2(6—15 _ ert _ te_Zt)
c). Table 1.1 shows the RMS error of the numerical integration methods.

Table 1.1  Solution to Problem 1.18. RMS errors when numerically integrating the
series RLC circuit, for various integration algorithms, and for various time step sizes T

T=01T=02

Rectangular 0.016  0.035
Trapezoidal 0.012  0.024
Fourth order Runge Kutta (L0018  0.0035

1.19 The vertical dimension of a hovering rocket can be modeled as

i‘1 )

b = Ku—gzz GM
T 3 (R + x1)?

.’i‘g = —u
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where x; is the vertical position of the rocket, xo is the vertical velocity, z3 is
the mass of the rocket, u is the conirol input (the flow rate of rocket propulsion},
K = 1000 is the thrust constant of proportionality, g = 50 is the drag constant,
G = 6.673F — 11 m?/kg/s” is the universal gravitational constant, M = 5.98£24
kg is the mass of the earth, and R = 6.37E6 m is the radius of the earth radius.

b).

a) Find u(f) = ug(t) such that the system is in equilibrium at (1) = 0 and

xTa (t) ={.

b) Find x3{t) when z;(t) = 0 and x2(t) = 0.
c) Linearize the system around the state trajectory found above.
d) Simulate the nonlirear system for five seconds and the linearized system

for five seconds with u(t} = uo(?) + Aucos(t). Plot the altitude of the
rocket for the nonlinear simulation and the linear simulatjon {on the same
plot) when Au = 10. Repeat for Au = 100 and Au = 300. Hand in
your source code and your shree plots. What do vou conclude about the
accuracy of vour linearization?

Solution

iy =

T3 (R +21)?
= 0
rn = 0
Solving the abave for u(t) gives
G]\{{.’Eg
t —_
ult) = —3

From the third state equation and the equilibrium point obtained above we
get
i —GMas
4T TKR?

Seolving for x3(t} gives
KR?

z5(t) = 23(0) exp (GMt)

¢). Use the notation 2z10(f) = 0, 2a0(t) = 0, w30t} = x3(0) exp (5F5), and

ugit) = GKMRﬁ" to denote the nominal trajectory.

i . Py .
Ay = ,—x—lAzl + %/_\mg + ﬂASSg + %Au
dry g dx3 du T30(t},T20(t) 2anit)uo(t)
= A.’Iﬁg
ot o Po &
Ads = S 2Az+ S 2Azy+ %/—\1'3 TLLYN
Ay A1 dxs du r0(t) ma0(E) 2a0(t) ualt)
20M g GM K
= Az — Az — A A
BT e T (D) walt)
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Ba Py . 8;
Afa = —‘M’U—SAﬁfl + —:E—SA.'L‘Q + ?E‘ﬁl‘g, + —ﬂ/_\u
Oz, 9y s du T1a(t), 220 (1).2a0{t),uolt)
= —Ay

d). Figure 1.4 shows simulation results for various values of Au. As Au increases
the linearized simulation becomes less accurate (i.e., the linearized simulation
does not track the nonlinear simulation as accurately).

Au=10
100 T T r

Nenlinear

— = - Linearized

50

Altitude (meters)
8
(=)

Time {seconds)

Figure 1.4 Rocket simulations for Problem 1.19



CHAPTER 2

Probability theory

Problems

Written exercises

2.1 What is the Oth moment of an RV? What i

RV?

Solution:

s

ith moment of 2

Oth moment of z

ith central moment of z

Oth central moment of r

i

E(zY)
E(2")

E{1)

El{z - z)"]
El(z — 2)"]
E(1)

1

Optimal State Estimation Solution Manual, First Edition. By Dan J. Simon

{©2006 John Wiley & Sons, Inc.

s the Oth central moment of an
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2.2  Suppose a deck of 52 cards is randomly divided into four piles of 13 cards
each. Find the probability that each pile contains exactly one ace [Gre01].

Solution:

Consider the first pile. There are a total of 52-choose-13 possible first piles. There
are a total of 48-choose-12 different ways of selecting 12 non-Aces from the re-
maining 48 non-Ace cards. The odds that the first pile has exactly one Ace is
therefore 4(48-choose-12}/(52-choose-13). If this event occurred we sce that there
are 39 cards remaining to be dealt, including three Aces. Therefore, the odds that
the second pile has exactly one Ace is 3{36-choose-12)/(39-choose-13). If both of
the previous events occurred we see that there are 26 cards remaining to be dealt,
including two Aces. Therefore, the odds that the third pile has exactly one Ace
is 2(24-choose-12)/(26-choose-13). Given that all three of the previous cvents oc-
curred, the odds that the fourth pile has exactly one Ace is 1. Multiplving these
odds together gives the total probability of 10.55%.

2.3 Determine the value of ¢ in the function

Fxlz) = { ax{l—z) z€[0,1]

0 otherwise

so that fx(z) is a valid probability density function [Lie67].

Solution:

In order for fx(z) to be a valid pdf its integral from —oc to +oc must be equal to
1.
oo e o)
f Ix(x)ydr = ax(l - z)de

—oC

USIQL---._‘

Therefore ¢ = 6.

2.4 Determine the value of ¢ in the function

fx(x)=

a
er e "

so that fy{z) is a valid probability density function. What is the probability that
x| <17

Solution:

In order for fx () to be a valid pdf its integral from —oc to +-oc must be equal to

1.
(s &) o G,
. - % 4
f_mfh(x)d:c f_wwe_m >

a tan_l(egc)rjOC
amn/2
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Therefore ¢ = 2/7. The probability that |X| < 1 is computed as

PX|<1) = ¢ tan‘l(ex)ll_l
2
= —(tan'e —tan™? e™)
m
~ (.55

2.5 The probability density function of an exponentially distributed random vari-
able is defined as [oliows.

ae”* =0

fX(”:):{ 0 z<0

where a > (.

a) Find the probability distribution function of an exponentially distributed
random variable,

b} Find the mean of an exponentially distributed random variable.

¢) Find the second moment of an exponentially distributed random variable.

d) Find the variance of an exponentially distributed random variable.

e) What is the probability that an exponentlially distributed random variable
takes on a value within one standard deviation of its mean?

Solution:

b).

D0
:E:f rae” " dx
o

Using integration by parts we obtain

(= )
_ - o0 —_
T = zxe ‘“"'|0 +f e~ dx
)

Q-
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Using integration by parts we obtain

E(z*) = mge_“x%r—l—f 2ze “Tdz
0
2 o
= —] are” " dx
aJo
2_
= ZI
a
2
Toa?
d).
72 = E(:::Q)—a’:2
1
T
e).
2/a
Plr—o<xr<Z+o} = / ae” " dz
0
1—e?
= 0.86

2.6 Derive an expression for the skew of a random variable as a function of its
first, second, and third moments.

Solution:
skew = FE[{x —1)7]

Elz® - 3277 4 3277 - 77
E(z*) ~ 33E(2°) + 27°

I

2.7 Consider the following probability density function:

ab

=Lz 020

Ix(z)

a) Determine the value of a in the so that fx (x) is a valid probability density
function. (The correct value of @ makes fx (x) a Cauchy pdf.)
b) Find the mean of a Cauchy random variable.

Solution:

a). In order for fx{z) to be a valid pdf its integral from —cco to +oc must be
equal to 1.

/ ab dr = atan_l(a:)ﬁc

. 52_}_1.2 o0
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b o
S

T W
= a3+
Therefore a = 1/7.
b).
E(X) = f ofx(z)dr

b iz
R S U

o

b
= Eln|b2+12|
oo

— oD

This indicates that the mean is oo, but what it really says is that the integral
does not converge to a real number, so the mean of a Cauchy random variable
does not exist.

2.8  Consider two zero-mean uncorrelated randomn variables W and V with stan-
dard deviavions oy, and ¢, respectively. What is the standard deviation of the
random variable X = W + V7

Solution:

c2 = FE|(X -z)?
= E[(W+V —w-75)?
= E{(W+ V)7
= E(W+ BV +2B8(WV)
= oL+o+0

2.9 Consider two scalar RVs X and Y.
a) Prove that if X and Y are independent, then their correlation coefficient
p=0.
b} Find an example of two RVs that are not independent but that have a
correlation coefficient of zero.
c) Prove that if ¥ is a linear function of X then p = +1.

Solution:

a). If X and Y are independent then E[{X - X)(Y - Y)] = E(X - X)B(Y - Y).
Therefore

Cay

Taly



