
3

SOLUTIONS TO CHAPTER 2 PROBLEMS

1. It is central because there is so much parallel or pseudoparallel activity—
multiple user processes and I/O devices running at once. The multiprogramming
model allows this activity to be described and modeled better.

2. The states are running, blocked and ready. The running state means the
process has the CPU and is executing. The blocked state means that the
process cannot run because it is waiting for an external event to occur, such
as a message or completion of I/O. The ready state means that the process
wants to run and is just waiting until the CPU is available.

3. You could have a register containing a pointer to the current process table
entry. When I/O completed, the CPU would store the current machine state
in the current process table entry. Then it would go to the interrupt vector for
the interrupting device and fetch a pointer to another process table entry (the
service procedure). This process would then be started up.

4. Generally, high level languages do not allow one the kind of access to CPU
hardware that is required. For instance, an interrupt handler may be required
to enable and disable the interrupt servicing a particular device, or to

4 PROBLEM SOLUTIONS FOR CHAPTER 2

manipulate data within a process’ stack area. Also, interrupt service routines
must execute as rapidly as possible.

5. The figure looks like this

1 23

4
Blocked

Running

Ready

1. Process blocks for input

2. Scheduler picks another process

3. Scheduler picks this process

4. Input becomes available

5. Process is terminated

New

Terminated

5

0

0. New process made ready

6. It would be difficult, if not impossible, to keep the file system consistent using
the model in part (a) of the figure. Suppose that a client process sends a
request to server process 1 to update a file. This process updates the cache
entry in its memory. Shortly thereafter, another client process sends a request
to server 2 to read that file. Unfortunately, if the file is also cached there,
server 2, in its innocence, will return obsolete data. If the first process writes
the file through to the disk after caching it, and server 2 checks the disk on
every read to see if its cached copy is up-to-date, the system can be made to
work, but it is precisely all these disk accesses that the caching system is try-
ing to avoid.

7. A process is a grouping of resources: an address space, open files, signal
handlers, and one or more threads. A thread is just an execution unit.

8. Each thread calls procedures on its own, so it must have its own stack for the
local variables, return addresses, and so on.

9. A race condition is a situation in which two (or more) process are about to
perform some action. Depending on the exact timing, one or other goes first.
If one of the processes goes first, everything works, but if another one goes
first, a fatal error occurs.

10. One person calls up a travel agent to find about price and availability. Then
he calls the other person for approval. When he calls back, the seats are gone.

11. A possible shell script might be:

if [! –f numbers]; echo 0 > numbers; fi
count=0
while (test $count != 200)
do
count=‘expr $count + 1 ‘

PROBLEM SOLUTIONS FOR CHAPTER 2 5

n=‘tail –1 numbers‘
expr $n + 1 >>numbers

done

Run the script twice simultaneously, by starting it once in the background
(using &) and again in the foreground. Then examine the file numbers. It
will probably start out looking like an orderly list of numbers, but at some
point it will lose its orderliness, due to the race condition created by running
two copies of the script. The race can be avoided by having each copy of the
script test for and set a lock on the file before entering the critical area, and
unlocking it upon leaving the critical area. This can be done like this:

if ln numbers numbers.lock
then

n=‘tail –1 numbers‘
expr $n + 1 >>numbers
rm numbers.lock

fi

This version will just skip a turn when the file is inaccessible, variant solu-
tions could put the process to sleep, do busy waiting, or count only loops in
which the operation is successful.

12. Yes, at least in MINIX 3. Since LINK is a system call, it will activate server
and task level processes, which, because of the multi-level scheduling of
MINIX 3, will receive priority over user processes. So one would expect that
from the point of view of a user process, linking would be equivalent to an
atomic act, and another user process could not interfere. Also, even if another
user process gets a chance to run before the LINK call is complete, perhaps
because the disk task blocks looking for the inode and directory, the servers
and tasks complete what they are doing before accepting more work. So,
even if two processes try to make a LINK call at the same time, whichever one
causes a software interrupt first should have its LINK call completed first.

13. Yes, it still works, but it still is busy waiting, of course.

14. Yes it can. The memory word is used as a flag, with 0 meaning that no one is
using the critical variables and 1 meaning that someone is using them. Put a
1 in the register, and swap the memory word and the register. If the register
contains a 0 after the swap, access has been granted. If it contains a 1, access
has been denied. When a process is done, it stores a 0 in the flag in memory.

15. To do a semaphore operation, the operating system first disables interrupts.
Then it reads the value of the semaphore. If it is doing a DOWN and the
semaphore is equal to zero, it puts the calling process on a list of blocked
processes associated with the semaphore. If it is doing an UP, it must check

6 PROBLEM SOLUTIONS FOR CHAPTER 2

to see if any processes are blocked on the semaphore. If one or more
processes are blocked, one of then is removed from the list of blocked
processes and made runnable. When all these operations have been com-
pleted, interrupts can be enabled again.

16. Associated with each counting semaphore are two binary semaphores, M,
used for mutual exclusion, and B, used for blocking. Also associated with
each counting semaphore is a counter that holds the number of UPs minus the
number of DOWNs, and a list of processes blocked on that semaphore. To
implement DOWN, a process first gains exclusive access to the semaphores,
counter, and list by doing a DOWN on M. It then decrements the counter. If
it is zero or more, it just does an UP on M and exits. If M is negative, the pro-
cess is put on the list of blocked processes. Then an UP is done on M and a
DOWN is done on B to block the process. To implement UP, first M is
DOWNed to get mutual exclusion, and then the counter is incremented. If it
is more than zero, no one was blocked, so all that needs to be done is to UP
M. If, however, the counter is now negative or zero, some process must be
removed from the list. Finally, an UP is done on B and M in that order.

17. With round robin scheduling it works. Sooner or later L will run, and eventu-
ally it will leave its critical region. The point is, with priority scheduling, L
never gets to run at all; with round robin, it gets a normal time slice periodi-
cally, so it has the chance to leave its critical region.

18. It is very expensive to implement. Each time any variable that appears in a
predicate on which some process is waiting changes, the run-time system
must re-evaluate the predicate to see if the process can be unblocked. With
the Hoare and Brinch Hansen monitors, processes can only be awakened on a
SIGNAL primitive.

19. The employees communicate by passing messages: orders, food, and bags in
this case. In MINIX terms, the four processes are connected by pipes.

20. It does not lead to race conditions (nothing is ever lost), but it is effectively
busy waiting.

21. If a philosopher blocks, neighbors can later see that he is hungry by checking
his state, in test, so he can be awakened when the forks are available.

22. The change would mean that after a philosopher stopped eating, neither of his
neighbors could be chosen next. With only two other philosophers, both of
them neighbors, the system would deadlock. With 100 philosophers, all that
would happen would be a slight loss of parallelism.

23. Variation 1: readers have priority. No writer may start when a reader is
active. When a new reader appears, it may start immediately unless a writer is
currently active. When a writer finishes, if readers are waiting, they are all

PROBLEM SOLUTIONS FOR CHAPTER 2 7

started, regardless of the presence of waiting writers. Variation 2: Writers
have priority. No reader may start when a writer is waiting. When the last
active process finishes, a writer is started, if there is one, otherwise, all the
readers (if any) are started. Variation 3: symmetric version. When a reader is
active, new readers may start immediately. When a writer finishes, a new
writer has priority, if one is waiting. In other words, once we have started
reading, we keep reading until there are no readers left. Similarly, once we
have started writing, all pending writers are allowed to run.

24. It will need nT sec.

25. If a process occurs multiple times in the list, it will get multiple quanta per
cycle. This approach could be used to give more important processes a larger
share of the CPU.

26. The CPU efficiency is the useful CPU time divided by the total CPU time.
When Q ≥T, the basic cycle is for the process to run for T and undergo a pro-
cess switch for S. Thus (a) and (b) have an efficiency of T /(S + T). When
the quantum is shorter than T, each run of T will require T /Q process
switches, wasting a time ST /Q. The efficiency here is then

T + ST /Q
T���������

which reduces to Q /(Q + S), which is the answer to (c). For (d), we just sub-
stitute Q for S and find that the efficiency is 50 percent. Finally, for (e), as
Q → 0 the efficiency goes to 0.

27. Shortest job first is the way to minimize average response time.
0 < X ≤ 3: X, 3, 5, 6, 9.
3 < X ≤ 5: 3, X, 5, 6, 9.
5 < X ≤ 6: 3, 5, X, 6, 9.
6 < X ≤ 9: 3, 5, 6, X, 9.
X > 9: 3, 5, 6, 9, X.

28. For round robin, during the first 10 minutes each job gets 1/5 of the CPU. At
the end of 10 minutes, C finishes. During the next 8 minutes, each job gets
1/4 of the CPU, after which time D finishes. Then each of the three remain-
ing jobs gets 1/3 of the CPU for 6 minutes, until B finishes, and so on. The
finishing times for the five jobs are 10, 18, 24, 28, and 30, for an average of
22 minutes. For priority scheduling, B is run first. After 6 minutes it is
finished. The other jobs finish at 14, 24, 26, and 30, for an average of 18.8
minutes. If the jobs run in the order A through E, they finish at 10, 16, 18, 22,
and 30, for an average of 19.2 minutes. Finally, shortest job first yields
finishing times of 2, 6, 12, 20, and 30, for an average of 14 minutes.

8 PROBLEM SOLUTIONS FOR CHAPTER 2

29. The first time it gets 1 quantum. On succeeding runs it gets 2, 4, 8, and 15, so
it must be swapped in 5 times.

30. The sequence of predictions is 40, 30, 35, and now 25.

31. Yes. Two-level scheduling could be used if memory is too small to hold all
the ready processes. Some set of them is put into memory, and a choice is
made from that set. From time to time, the set of in-core processes is
adjusted. This algorithm is easy to implement and reasonably efficient, cer-
tainly a lot better than say, round robin without regard to whether a process
was in memory or not.

32. There are three ways to pick the first one, four ways to pick the second, three
ways to pick the third and four ways to pick the fourth, for a total of
3 × 4 × 3 × 4 = 144. Note that a thread can be chosen a second time.

33. The fraction of the CPU used is 35/50 + 20/100 + 10/200 + x/250. To be
schedulable, this must be less than 1. Thus x must be less than 12.5 msec.

34. This pointer makes it easy to find the place to save the registers when a pro-
cess switch is needed, either due to a system call or an interrupt.

35. When a clock or keyboard interrupt occurs, and the task that should get the
message is not blocked, the system has to do something strange to avoid los-
ing the interrupt. With buffered messages this problem would not occur.
Notification bitmaps provide provide a simple alternative to buffering.

36. While the system is adjusting the scheduling queues, they can be in an incon-
sistent state for a few instructions. It is essential that no interrupts occur dur-
ing this short interval, to avoid having the queues accessed by the interrupt
handler while they are inconsistent. Disabling interrupts prevents this prob-
lem by preventing recursive entries into the scheduler.

37. When a RECEIVE is done, a source process is specified, telling who the
receiving process is interested in hearing from. The loop checks to see if that
process is among the process that are currently blocked trying to send to the
receiving process. Each iteration of the loop examines another blocked pro-
cess to see who it is.

38. Tasks, drivers and servers get large quanta, but even they can be preempted if
they run too long. Also if a driver or server is not allowing other processes to
run it can be demoted to a lower-priority queue. Even though they are given
large quanta, all system processes are expected to block eventually. They
only run to carry out work requested by user processes, and eventually they
will complete their work and allow user processes to run.

PROBLEM SOLUTIONS FOR CHAPTER 2 9

39. MINIX 3 could probably be used for data logging with long sampling periods,
for instance weather monitoring, but there is no way to guarantee immediate
availability in response to an external event. However, faster data acquisition
would be possible if the data to be collected were received by means of an
existing interface supported by an interrupt (i.e., a serial port), or if a new
interrupt-driven driver for an interface to the data source were added. Also,
the priorities of drivers and servers are not engraved in stone—a new driver
could be configured to run at higher priority than existing drivers or existing
drivers could be configured for lower priorities in order to provide better ser-
vice for a time critical interface.

