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Preface

This Instructor’s Manual for the Tenth edition of Numerical Analysis by Burden,
Faires, and Burden contains solutions to all the exercises in the book. Although the
answers to the odd exercises are also in the back of the text, we have found that
users of the book appreciate having all the solutions in one source. In addition, the
results listed in this Instructor’s Manual often go beyond those given in the back of
the book. For example, we do not place the long solutions to theoretical and applied
exercises in the book. You will find them here.

A Student Study Guide for the Tenth edition of Numerical Analysis is also available
and the solutions given in the Guide are generally more detailed than those in the
Instructor’s Manual.

We have added a number of exercises to the text that can be implemented in any
generic computer algebra system such as Maple, Matlab, Mathematica, Sage, and
FreeMat. In our recent teaching of the course we found that students understood the
concepts better when they worked through the algorithms step-by-step, but let the
computer algebra system do the tedious computation.

It has been our practice to include in our Numerical Analysis book structured
algorithms of all the techniques discussed in the text. The algorithms are given in a
form that can be coded in any appropriate programming language, by students with
even a minimal amount of programming expertise.

At our companion website for the book,

https://sites.google.com/site/numericalanalysis1burden/

you will find all the algorithms written in the programming languages FORTRAN,
Pascal, C, Java, and in the Computer Algebra Systems, Maple, MATLAB, and Math-
ematica. For the Tenth edition, we have added new Maple programs to reflect the
NumericalAnalysis package.

The companion website also contains additional information about the book and
will be updated regularly to reflect any modifications that might be made. For exam-
ple, we will place there any responses to questions from users of the book concerning
interpretations of the exercises and appropriate applications of the techniques. We
also have a set of PowerPoint files for many of the methods in the book. Many

vii



viii Preface

of these files were created by Professor John Carroll of Dublin City University and
several were developed by Dr. Annette M. Burden of Youngstown State University.

We hope our supplement package provides flexibility for instructors teaching Nu-
merical Analysis. If you have any suggestions for improvements that can be incorpo-
rated into future editions of the book or the supplements, we would be most grateful
to receive your comments. We can be most easily contacted by electronic mail at the
addresses listed below.

Youngstown State University Richard L. Burden
rlburden@ysu.edu

February 22, 2015 Annette M. Burden
amburden@ysu.edu

9:29pm February 22, 20159:29pm February 22, 20159:29pm February 22, 2015



Mathematical Preliminaries

Exercise Set 1.1, page 14

1. For each part, f 2 C[a, b] on the given interval. Since f(a) and f(b) are of opposite sign, the
Intermediate Value Theorem implies that a number c exists with f(c) = 0.

2. (a) f(x) =
p
(x) � cosx; f(0) = �1 < 0, f(1) = 1 � cos 1 > 0.45 > 0; Intermediate Value

Theorem implies there is a c in (0, 1) such that f(c) = 0.

(b) f(x) = ex � x2 + 3x � 2; f(0) = �1 < 0, f(1) = e > 0; Intermediate Value Theorem
implies there is a c in (0, 1) such that f(c) = 0.

(c) f(x) = �3 tan(2x) + x; f(0) = 0 so there is a c in [0, 1] such that f(c) = 0.

(d) f(x) = lnx� x2 + 5
2x� 1; f( 12 ) = � ln 2 < 0, f(1) = 1

2 > 0; Intermediate Value Theorem
implies there is a c in ( 12 , 1) such that f(c) = 0.

3. For each part, f 2 C[a, b], f 0 exists on (a, b) and f(a) = f(b) = 0. Rolle’s Theorem implies
that a number c exists in (a, b) with f 0(c) = 0. For part (d), we can use [a, b] = [�1, 0] or
[a, b] = [0, 2].

4. (a) [0, 1]

(b) [0, 1], [4, 5], [�1, 0]

(c) [�2,�2/3], [0, 1], [2, 4]

(d) [�3,�2], [�1,�0.5], and [�0.5, 0]

5. The maximum value for |f(x)| is given below.

(a) 0.4620981

(b) 0.8

(c) 5.164000

(d) 1.582572

6. (a) f(x) = 2x
x

2+1 ; 0  x  2; f(x) � 0 on [0, 2], f 0(1) = 0, f(0) = 0, f(1) = 1, f(2) =
4
5 ,max0x2 |f(x)| = 1.

(b) f(x) = x2
p
4� x; 0  x  4; f 0(0) = 0, f 0(3.2) = 0, f(0) = 0, f(3.2) = 9.158934436, f(4) =

0,max0x4 |f(x)| = 9.158934436.

(c) f(x) = x3 � 4x + 2; 1  x  2; f 0( 2
p
3

3 ) = 0, f 0(1) = �1, f( 2
p
3

3 ) = �1.079201435, f(2) =
2,max1x2 |f(x)| = 2.

1



2 Exercise Set 1.1

(d) f(x) = x
p
3� x2; 0  x  1; f 0(

q
3
2 ) = 0,

q
3
2 not in [0, 1], f(0) = 0, f(1) =

p
2,max0x1 |f(x)| =p

2.

7. For each part, f 2 C[a, b], f 0 exists on (a, b) and f(a) = f(b) = 0. Rolle’s Theorem implies
that a number c exists in (a, b) with f 0(c) = 0. For part (d), we can use [a, b] = [�1, 0] or
[a, b] = [0, 2].

8. Suppose p and q are in [a, b] with p 6= q and f(p) = f(q) = 0. By the Mean Value Theorem,
there exists ⇠ 2 (a, b) with

f(p)� f(q) = f 0(⇠)(p� q).

But, f(p)� f(q) = 0 and p 6= q. So f 0(⇠) = 0, contradicting the hypothesis.

9. (a) P2(x) = 0

(b) R2(0.5) = 0.125; actual error = 0.125

(c) P2(x) = 1 + 3(x� 1) + 3(x� 1)2

(d) R2(0.5) = �0.125; actual error = �0.125

10. P3(x) = 1 + 1
2x� 1

8x
2 + 1

16x
3

x 0.5 0.75 1.25 1.5

P3(x) 1.2265625 1.3310547 1.5517578 1.6796875p
x+ 1 1.2247449 1.3228757 1.5 1.5811388

|
p
x+ 1� P3(x)| 0.0018176 0.0081790 0.0517578 0.0985487

11. Since

P2(x) = 1 + x and R2(x) =
�2e⇠(sin ⇠ + cos ⇠)

6
x3

for some ⇠ between x and 0, we have the following:

(a) P2(0.5) = 1.5 and |f(0.5)� P2(0.5)|  0.0932;

(b) |f(x)� P2(x)|  1.252;

(c)
R 1
0 f(x) dx ⇡ 1.5;

(d) |
R 1
0 f(x) dx�

R 1
0 P2(x) dx| 

R 1
0 |R2(x)| dx  0.313, and the actual error is 0.122.

12. P2(x) = 1.461930+0.617884
�
x� ⇡

6

�
�0.844046

�
x� ⇡

6

�2
andR2(x) = � 1

3e
⇠(sin ⇠+cos ⇠)

�
x� ⇡

6

�3

for some ⇠ between x and ⇡

6 .

(a) P2(0.5) = 1.446879 and f(0.5) = 1.446889. An error bound is 1.01⇥10�5, and the actual
error is 1.0⇥ 10�5.

(b) |f(x)� P2(x)|  0.135372 on [0, 1]

(c)
R 1
0 P2(x) dx = 1.376542 and

R 1
0 f(x) dx = 1.378025

(d) An error bound is 7.403⇥ 10�3, and the actual error is 1.483⇥ 10�3.

9:29pm February 22, 20159:29pm February 22, 20159:29pm February 22, 2015



Mathematical Preliminaries 3

13. P3(x) = (x� 1)2 � 1
2 (x� 1)3

(a) P3(0.5) = 0.312500, f(0.5) = 0.346574. An error bound is 0.2916, and the actual error
is 0.034074.

(b) |f(x)� P3(x)|  0.2916 on [0.5, 1.5]

(c)
R 1.5
0.5 P3(x) dx = 0.083,

R 1.5
0.5 (x� 1) lnx dx = 0.088020

(d) An error bound is 0.0583, and the actual error is 4.687⇥ 10�3.

14. (a) P3(x) = �4 + 6x� x2 � 4x3; P3(0.4) = �2.016

(b) |R3(0.4)|  0.05849; |f(0.4)� P3(0.4)| = 0.013365367

(c) P4(x) = �4 + 6x� x2 � 4x3; P4(0.4) = �2.016

(d) |R4(0.4)|  0.01366; |f(0.4)� P4(0.4)| = 0.013365367

15. P4(x) = x+ x3

(a) |f(x)� P4(x)|  0.012405

(b)
R 0.4
0 P4(x) dx = 0.0864,

R 0.4
0 xex

2

dx = 0.086755

(c) 8.27⇥ 10�4

(d) P 0
4(0.2) = 1.12, f 0(0.2) = 1.124076. The actual error is 4.076⇥ 10�3.

16. First we need to convert the degree measure for the sine function to radians. We have 180� = ⇡
radians, so 1� = ⇡

180 radians. Since,

f(x) = sinx, f 0(x) = cosx, f 00(x) = � sinx, and f 000(x) = � cosx,

we have f(0) = 0, f 0(0) = 1, and f 00(0) = 0.

The approximation sinx ⇡ x is given by

f(x) ⇡ P2(x) = x, and R2(x) = �cos ⇠

3!
x3.

If we use the bound | cos ⇠|  1, then

���sin
⇡

180
� ⇡

180

��� =
���R2

⇣ ⇡

180

⌘��� =
����
� cos ⇠

3!

⇣ ⇡

180

⌘3
����  8.86⇥ 10�7.

17. Since 42� = 7⇡/30 radians, use x0 = ⇡/4. Then

����Rn

✓
7⇡

30

◆���� 
�
⇡

4 � 7⇡
30

�
n+1

(n+ 1)!
<

(0.053)n+1

(n+ 1)!
.

For |R
n

( 7⇡30 )| < 10�6, it su�ces to take n = 3. To 7 digits,

cos 42� = 0.7431448 and P3(42
�) = P3(

7⇡

30
) = 0.7431446,

so the actual error is 2⇥ 10�7.

9:29pm February 22, 20159:29pm February 22, 20159:29pm February 22, 2015



4 Exercise Set 1.1

18. P
n

(x) =
P

n

k=0 x
k, n � 19

19. P
n

(x) =
nX

k=0

1

k!
xk, n � 7

20. For n odd, P
n

(x) = x� 1
3x

3 + 1
5x

5 + · · ·+ 1
n

(�1)(n�1)/2xn. For n even, P
n

(x) = P
n�1(x).

21. A bound for the maximum error is 0.0026.

22. For x < 0, f(x) < 2x+k < 0, provided that x < � 1
2k. Similarly, for x > 0, f(x) > 2x+k > 0,

provided that x > � 1
2k. By Theorem 1.11, there exists a number c with f(c) = 0. If f(c) = 0

and f(c0) = 0 for some c0 6= c, then by Theorem 1.7, there exists a number p between c and c0

with f 0(p) = 0. However, f 0(x) = 3x2 + 2 > 0 for all x.

23. Since R2(1) =
1
6e

⇠, for some ⇠ in (0, 1), we have |E �R2(1)| = 1
6 |1� e⇠|  1

6 (e� 1).

24. (a) Use the series

e�t

2

=
1X

k=0

(�1)kt2k

k!
to integrate

2p
⇡

Z
x

0
e�t

2

dt,

and obtain the result.

(b) We have

2p
⇡
e�x

2
1X

k=0

2kx2k+1

1 · 3 · · · (2k + 1)
=

2p
⇡


1� x2 +

1

2
x4 � 1

6
x7 +

1

24
x8 + · · ·

�

·

x+

2

3
x3 +

4

15
x5 +

8

105
x7 +

16

945
x9 + · · ·

�

=
2p
⇡


x� 1

3
x3 +

1

10
x5 � 1

42
x7 +

1

216
x9 + · · ·

�
= erf (x)

(c) 0.8427008

(d) 0.8427069

(e) The series in part (a) is alternating, so for any positive integer n and positive x we have
the bound ����erf(x)�

2p
⇡

nX

k=0

(�1)kx2k+1

(2k + 1)k!

���� <
x2n+3

(2n+ 3)(n+ 1)!
.

We have no such bound for the positive term series in part (b).

25. (a) P (k)
n

(x0) = f (k)(x0) for k = 0, 1, . . . , n. The shapes of P
n

and f are the same at x0.

(b) P2(x) = 3 + 4(x� 1) + 3(x� 1)2.

26. (a) The assumption is that f(x
i

) = 0 for each i = 0, 1, . . . , n. Applying Rolle’s Theorem
on each on the intervals [x

i

, x
i+1] implies that for each i = 0, 1, . . . , n � 1 there exists a

number z
i

with f 0(z
i

) = 0. In addition, we have

a  x0 < z0 < x1 < z1 < · · · < z
n�1 < x

n

 b.

9:29pm February 22, 20159:29pm February 22, 20159:29pm February 22, 2015



Mathematical Preliminaries 5

(b) Apply the logic in part (a) to the function g(x) = f 0(x) with the number of zeros of g in
[a, b] reduced by 1. This implies that numbers w

i

, for i = 0, 1, . . . , n� 2 exist with

g0(w
i

) = f 00(w
i

) = 0, and a < z0 < w0 < z1 < w1 < · · ·w
n�2 < z

n�1 < b.

(c) Continuing by induction following the logic in parts (a) and (b) provides n+1�j distinct
zeros of f (j) in [a, b].

(d) The conclusion of the theorem follows from part (c) when j = n, for in this case there
will be (at least) (n+ 1)� n = 1 zero in [a, b].

27. First observe that for f(x) = x� sinx we have f 0(x) = 1� cosx � 0, because �1  cosx  1
for all values of x.

(a) The observation implies that f(x) is non-decreasing for all values of x, and in particular
that f(x) > f(0) = 0 when x > 0. Hence for x � 0, we have x � sinx, and | sinx| =
sinx  x = |x|.

(b) When x < 0, we have �x > 0. Since sinx is an odd function, the fact (from part (a))
that sin(�x)  (�x) implies that | sinx| = � sinx  �x = |x|.
As a consequence, for all real numbers x we have | sinx|  |x|.

28. (a) Let x0 be any number in [a, b]. Given ✏ > 0, let � = ✏/L. If |x � x0| < � and a  x  b,
then |f(x)� f(x0)|  L|x� x0| < ✏.

(b) Using the Mean Value Theorem, we have

|f(x2)� f(x1)| = |f 0(⇠)||x2 � x1|,

for some ⇠ between x1 and x2, so

|f(x2)� f(x1)|  L|x2 � x1|.

(c) One example is f(x) = x1/3 on [0, 1].

29. (a) The number 1
2 (f(x1) + f(x2)) is the average of f(x1) and f(x2), so it lies between these

two values of f . By the Intermediate Value Theorem 1.11 there exist a number ⇠ between
x1 and x2 with

f(⇠) =
1

2
(f(x1) + f(x2)) =

1

2
f(x1) +

1

2
f(x2).

(b) Let m = min{f(x1), f(x2)} and M = max{f(x1), f(x2)}. Then m  f(x1)  M and
m  f(x2)  M, so

c1m  c1f(x1)  c1M and c2m  c2f(x2)  c2M.

Thus
(c1 + c2)m  c1f(x1) + c2f(x2)  (c1 + c2)M

and

m  c1f(x1) + c2f(x2)

c1 + c2
 M.

By the Intermediate Value Theorem 1.11 applied to the interval with endpoints x1 and
x2, there exists a number ⇠ between x1 and x2 for which

f(⇠) =
c1f(x1) + c2f(x2)

c1 + c2
.

9:29pm February 22, 20159:29pm February 22, 20159:29pm February 22, 2015



6 Exercise Set 1.2

(c) Let f(x) = x2 + 1, x1 = 0, x2 = 1, c1 = 2, and c2 = �1. Then for all values of x,

f(x) > 0 but
c1f(x1) + c2f(x2)

c1 + c2
=

2(1)� 1(2)

2� 1
= 0.

30. (a) Since f is continuous at p and f(p) 6= 0, there exists a � > 0 with

|f(x)� f(p)| < |f(p)|
2

,

for |x � p| < � and a < x < b. We restrict � so that [p � �, p + �] is a subset of [a, b].
Thus, for x 2 [p� �, p+ �], we have x 2 [a, b]. So

� |f(p)|
2

< f(x)� f(p) <
|f(p)|
2

and f(p)� |f(p)|
2

< f(x) < f(p) +
|f(p)|
2

.

If f(p) > 0, then

f(p)� |f(p)|
2

=
f(p)

2
> 0, so f(x) > f(p)� |f(p)|

2
> 0.

If f(p) < 0, then |f(p)| = �f(p), and

f(x) < f(p) +
|f(p)|
2

= f(p)� f(p)

2
=

f(p)

2
< 0.

In either case, f(x) 6= 0, for x 2 [p� �, p+ �].

(b) Since f is continuous at p and f(p) = 0, there exists a � > 0 with

|f(x)� f(p)| < k, for |x� p| < � and a < x < b.

We restrict � so that [p� �, p+ �] is a subset of [a, b]. Thus, for x 2 [p� �, p+ �], we have

|f(x)| = |f(x)� f(p)| < k.

Exercise Set 1.2, page 28

1. We have

Absolute error Relative error

(a) 0.001264 4.025⇥ 10�4

(b) 7.346⇥ 10�6 2.338⇥ 10�6

(c) 2.818⇥ 10�4 1.037⇥ 10�4

(d) 2.136⇥ 10�4 1.510⇥ 10�4

2. We have

Absolute error Relative error

(a) 2.647⇥ 101 1.202⇥ 10�3arule
(b) 1.454⇥ 101 1.050⇥ 10�2

(c) 420 1.042⇥ 10�2

(d) 3.343⇥ 103 9.213⇥ 10�3
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3. The largest intervals are

(a) (149.85,150.15)

(b) (899.1, 900.9 )

(c) (1498.5, 1501.5)

(d) (89.91,90.09)

4. The largest intervals are:

(a) (3.1412784, 3.1419068)

(b) (2.7180100, 2.7185536)

(c) (1.4140721, 1.4143549)

(d) (1.9127398, 1.9131224)

5. The calculations and their errors are:

(a) (i) 17/15 (ii) 1.13 (iii) 1.13 (iv) both 3⇥ 10�3

(b) (i) 4/15 (ii) 0.266 (iii) 0.266 (iv) both 2.5⇥ 10�3

(c) (i) 139/660 (ii) 0.211 (iii) 0.210 (iv) 2⇥ 10�3, 3⇥ 10�3

(d) (i) 301/660 (ii) 0.455 (iii) 0.456 (iv) 2⇥ 10�3, 1⇥ 10�4

6. We have

Approximation Absolute error Relative error

(a) 134 0.079 5.90⇥ 10�4

(b) 133 0.499 3.77⇥ 10�3

(c) 2.00 0.327 0.195
(d) 1.67 0.003 1.79⇥ 10�3

7. We have

Approximation Absolute error Relative error

(a) 1.80 0.154 0.0786
(b) �15.1 0.0546 3.60⇥ 10�3

(c) 0.286 2.86⇥ 10�4 10�3

(d) 23.9 0.058 2.42⇥ 10�3

8. We have

Approximation Absolute error Relative error

(a) 1.986 0.03246 0.01662
(b) �15.16 0.005377 3.548⇥ 10�4

(c) 0.2857 1.429⇥ 10�5 5⇥ 10�5

(d) 23.96 1.739⇥ 10�3 7.260⇥ 10�5
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9. We have

Approximation Absolute error Relative error

(a) 3.55 1.60 0.817
(b) �15.2 0.0454 0.00299
(c) 0.284 0.00171 0.00600
(d) 0 0.02150 1

10. We have

Approximation Absolute error Relative error

(a) 1.983 0.02945 0.01508
(b) �15.15 0.004622 3.050⇥ 10�4

(c) 0.2855 2.143⇥ 10�4 7.5⇥ 10�4

(d) 23.94 0.018261 7.62⇥ 10�4

11. We have

Approximation Absolute error Relative error

(a) 3.14557613 3.983⇥ 10�3 1.268⇥ 10�3

(b) 3.14162103 2.838⇥ 10�5 9.032⇥ 10�6

12. We have

Approximation Absolute error Relative error

(a) 2.7166667 0.0016152 5.9418⇥ 10�4

(b) 2.718281801 2.73 ⇥10�8 1.00⇥ 10�8

13. (a) We have

lim
x!0

x cosx� sinx

x� sinx
= lim

x!0

�x sinx

1� cosx
= lim

x!0

� sinx� x cosx

sinx
= lim

x!0

�2 cosx+ x sinx

cosx
= �2

(b) f(0.1) ⇡ �1.941

(c)
x(1� 1

2x
2)� (x� 1

6x
3)

x� (x� 1
6x

3)
= �2

(d) The relative error in part (b) is 0.029. The relative error in part (c) is 0.00050.

14. (a) lim
x!0

ex � e�x

x
= lim

x!0

ex + e�x

1
= 2
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(b) f(0.1) ⇡ 2.05

(c)
1

x

✓✓
1 + x+

1

2
x2 +

1

6
x3

◆
�
✓
1� x+

1

2
x2 � 1

6
x3

◆◆
=

1

x

✓
2x+

1

3
x3

◆
= 2 +

1

3
x2;

using three-digit rounding arithmetic and x = 0.1, we obtain 2.00.

(d) The relative error in part (b) is = 0.0233. The relative error in part (c) is = 0.00166.

15.

x1 Absolute error Relative error x2 Absolute error Relative error

(a) 92.26 0.01542 1.672⇥ 10

�4
0.005419 6.273⇥ 10

�7
1.157⇥ 10

�4

(b) 0.005421 1.264⇥ 10

�6
2.333⇥ 10

�4 �92.26 4.580⇥ 10

�3
4.965⇥ 10

�5

(c) 10.98 6.875⇥ 10

�3
6.257⇥ 10

�4
0.001149 7.566⇥ 10

�8
6.584⇥ 10

�5

(d) �0.001149 7.566⇥ 10

�8
6.584⇥ 10

�5 �10.98 6.875⇥ 10

�3
6.257⇥ 10

�4

16.

Approximation for x1 Absolute error Relative error

(a) 1.903 6.53518⇥ 10�4 3.43533⇥ 10�4

(b) �0.07840 8.79361⇥ 10�6 1.12151⇥ 10�4

(c) 1.223 1.29800⇥ 10�4 1.06144⇥ 10�4

(d) 6.235 1.7591⇥ 10�3 2.8205⇥ 10�4

Approximation for x2 Absolute error Relative error

(a) 0.7430 4.04830⇥ 10�4 5.44561
(b) �4.060 3.80274⇥ 10�4 9.36723⇥ 10�5

(c) �2.223 1.2977⇥ 10�4 5.8393⇥ 10�5

(d) �0.3208 1.2063⇥ 10�4 3.7617⇥ 10�4

17.

Approximation for x1 Absolute error Relative error

(a) 92.24 0.004580 4.965⇥ 10�5

(b) 0.005417 2.736⇥ 10�6 5.048⇥ 10�4

(c) 10.98 6.875⇥ 10�3 6.257⇥ 10�4

(d) �0.001149 7.566⇥ 10�8 6.584⇥ 10�5
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Approximation for x2 Absolute error Relative error

(a) 0.005418 2.373⇥ 10�6 4.377⇥ 10�4

(b) �92.25 5.420⇥ 10�3 5.875⇥ 10�5

(c) 0.001149 7.566⇥ 10�8 6.584⇥ 10�5

(d) �10.98 6.875⇥ 10�3 6.257⇥ 10�4

18.

Approximation for x1 Absolute error Relative error

(a) 1.901 1.346⇥ 10�3 7.078⇥ 10�4

(b) -0.07843 2.121⇥ 10�5 2.705⇥ 10�4

(c) 1.222 8.702⇥ 10�4 7.116⇥ 10�4

(d) 6.235 1.759⇥ 10�3 2.820⇥ 10�4

Approximation for x2 Absolute error Relative error

(a) 0.7438 3.952⇥ 10�4 5.316⇥ 10�4

(b) �4.059 6.197⇥ 10�4 1.526⇥ 10�4

(c) �2.222 8.702⇥ 10�4 3.915⇥ 10�4

(d) �0.3207 2.063⇥ 10�5 6.433⇥ 10�5

19. The machine numbers are equivalent to

(a) 3224

(b) �3224

(c) 1.32421875

(d) 1.3242187500000002220446049250313080847263336181640625

20. (a) Next Largest: 3224.00000000000045474735088646411895751953125;

Next Smallest: 3223.99999999999954525264911353588104248046875

(b) Next Largest: �3224.00000000000045474735088646411895751953125;

Next Smallest: �3223.99999999999954525264911353588104248046875

(c) Next Largest: 1.3242187500000002220446049250313080847263336181640625;

Next Smallest: 1.3242187499999997779553950749686919152736663818359375

(d) Next Largest: 1.324218750000000444089209850062616169452667236328125;

Next Smallest: 1.32421875

21. (b) The first formula gives �0.00658, and the second formula gives �0.0100. The true three-
digit value is �0.0116.

22. (a) �1.82
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(b) 7.09⇥ 10�3

(c) The formula in (b) is more accurate since subtraction is not involved.

23. The approximate solutions to the systems are

(a) x = 2.451, y = �1.635

(b) x = 507.7, y = 82.00

24. (a) x = 2.460 y = �1.634

(b) x = 477.0 y = 76.93

25. (a) In nested form, we have f(x) = (((1.01ex � 4.62)ex � 3.11)ex + 12.2)ex � 1.99.

(b) �6.79

(c) �7.07

(d) The absolute errors are

|� 7.61� (�6.71)| = 0.82 and |� 7.61� (�7.07)| = 0.54.

Nesting is significantly better since the relative errors are
����
0.82

�7.61

���� = 0.108 and

����
0.54

�7.61

���� = 0.071,

26. Since 0.995  P  1.005, 0.0995  V  0.1005, 0.082055  R  0.082065, and 0.004195 
N  0.004205, we have 287.61�  T  293.42�. Note that 15�C = 288.16K.

When P is doubled and V is halved, 1.99  P  2.01 and 0.0497  V  0.0503 so that
286.61�  T  293.72�. Note that 19�C = 292.16K. The laboratory figures are within an
acceptable range.

27. (a) m = 17

(b) We have
✓
m

k

◆
=

m!

k!(m� k)!
=

m(m� 1) · · · (m� k � 1)(m� k)!

k!(m� k)!
=
⇣m
k

⌘✓m� 1

k � 1

◆
· · ·

✓
m� k � 1

1

◆

(c) m = 181707

(d) 2,597,000; actual error 1960; relative error 7.541⇥ 10�4

28. When d
k+1 < 5,

����
y � fl(y)

y

���� =
0.d

k+1 . . .⇥ 10n�k

0.d1 . . .⇥ 10n
 0.5⇥ 10�k

0.1
= 0.5⇥ 10�k+1.

When d
k+1 > 5,
����
y � fl(y)

y

���� =
(1� 0.d

k+1 . . .)⇥ 10n�k

0.d1 . . .⇥ 10n
<

(1� 0.5)⇥ 10�k

0.1
= 0.5⇥ 10�k+1.

29. (a) The actual error is |f 0(⇠)✏|, and the relative error is |f 0(⇠)✏| · |f(x0)|�1, where the number
⇠ is between x0 and x0 + ✏.

(b) (i) 1.4⇥ 10�5; 5.1⇥ 10�6 (ii) 2.7⇥ 10�6; 3.2⇥ 10�6

(c) (i) 1.2; 5.1⇥ 10�5 (ii) 4.2⇥ 10�5; 7.8⇥ 10�5
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Exercise Set 1.3, page 39

1 (a) The approximate sums are 1.53 and 1.54, respectively. The actual value is 1.549. Significant
roundo↵ error occurs earlier with the first method.

(b) The approximate sums are 1.16 and 1.19, respectively. The actual value is 1.197. Significant
roundo↵ error occurs earlier with the first method.

2. We have

Approximation Absolute Error Relative Error

(a) 2.715 3.282⇥ 10�3 1.207⇥ 10�3

(b) 2.716 2.282⇥ 10�3 8.394⇥ 10�4

(c) 2.716 2.282⇥ 10�3 8.394⇥ 10�4

(d) 2.718 2.818⇥ 10�4 1.037⇥ 10�4

3. (a) 2000 terms

(b) 20,000,000,000 terms

4. 4 terms

5. 3 terms

6. (a) O
�
1
n

�

(b) O
�

1
n

2

�

(c) O
�

1
n

2

�

(d) O
�
1
n

�

7. The rates of convergence are:

(a) O(h2)

(b) O(h)

(c) O(h2)

(d) O(h)

8. (a) If |↵
n

� ↵|/(1/np)  K, then

|↵
n

� ↵|  K(1/np)  K(1/nq) since 0 < q < p.

Thus

|↵
n

� ↵|/(1/np)  K and {↵
n

}1
n=1 ! ↵

with rate of convergence O(1/np).
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(b)

n 1/n 1/n2 1/n3 1/n5

5 0.2 0.04 0.008 0.0016
10 0.1 0.01 0.001 0.0001
50 0.02 0.0004 8⇥ 10�6 1.6⇥ 10�7

100 0.01 10�4 10�6 10�8

The most rapid convergence rate is O(1/n4).

9. (a) If F (h) = L+O (hp), there is a constant k > 0 such that

|F (h)� L|  khp,

for su�ciently small h > 0. If 0 < q < p and 0 < h < 1, then hq > hp. Thus, khp < khq,
so

|F (h)� L|  khq and F (h) = L+O (hq) .

(b) For various powers of h we have the entries in the following table.

h h2 h3 h4

0.5 0.25 0.125 0.0625
0.1 0.01 0.001 0.0001
0.01 0.0001 0.00001 10�8

0.001 10�6 10�9 10�12

The most rapid convergence rate is O
�
h4
�
.

10. Suppose that for su�ciently small |x| we have positive constants K1 and K2 independent of
x, for which

|F1(x)� L1|  K1|x|↵ and |F2(x)� L2|  K2|x|� .
Let c = max(|c1|, |c2|, 1), K = max(K1,K2), and � = max(↵,�).

(a) We have

|F (x)� c1L1 � c2L2| = |c1(F1(x)� L1) + c2(F2(x)� L2)|
 |c1|K1|x|↵ + |c2|K2|x|�  cK[|x|↵ + |x|� ]
 cK|x|� [1 + |x|��� ]  K̃|x|� ,

for su�ciently small |x| and some constant K̃. Thus, F (x) = c1L1 + c2L2 +O(x�).

(b) We have

|G(x)� L1 � L2| = |F1(c1x) + F2(c2x)� L1 � L2|
 K1|c1x|↵ +K2|c2x|�  Kc�[|x|↵ + |x|� ]
 Kc�|x|� [1 + |x|��� ]  K̃|x|� ,

for su�ciently small |x| and some constant K̃. Thus, G(x) = L1 + L2 +O(x�).
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11. Since

lim
n!1

x
n

= lim
n!1

x
n+1 = x and x

n+1 = 1 +
1

x
n

,

we have

x = 1 +
1

x
, so x2 � x� 1 = 0.

The quadratic formula implies that

x =
1

2

⇣
1 +

p
5
⌘
.

This number is called the golden ratio. It appears frequently in mathematics and the sciences.

12. Let F
n

= Cn. Substitute into F
n+2 = F

n

+ F
n+1 to obtain Cn+2 = Cn + Cn+1 or Cn[C2 �

C � 1] = 0. Solving the quadratic equation C2 � C � 1 = 0 gives C = 1±
p
5

2 . So F
n

=

a( 1+
p
5

2 )n + b( 1�
p
5

2 ) satisfies the recurrence relation F
n+2 = F

n

+ F
n+1. For F0 = 1 and

F1 = 1 we need a = 1+
p
5

2
1p
5
and b = �( 1�

p
5

2 ) 1p
5
. Hence, F

n

= 1p
5
(( 1+

p
5

2 )n+1� ( 1�
p
5

2 )n+1).

13. SUM =
P

N

i=1 xi

. This saves one step since initialization is SUM = x1 instead of SUM = 0
. Problems may occur if N = 0.

14. (a) OUTPUT is PRODUCT = 0 which is correct only if x
i

= 0 for some i.

(b) OUTPUT is PRODUCT = x1x2 . . . xN

.

(c) OUTPUT is PRODUCT = x1x2 . . . xN

but exists with the correct value 0 if one of x
i

= 0.

15. (a) n(n+ 1)/2 multiplications; (n+ 2)(n� 1)/2 additions.

(b)
nX

i=1

a
i

0

@
iX

j=1

b
j

1

A requires n multiplications; (n+ 2)(n� 1)/2 additions.
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Solutions of Equations of One
Variable

Exercise Set 2.1, page 54

1. p3 = 0.625

2. (a) p3 = �0.6875

(b) p3 = 1.09375

3. The Bisection method gives:

(a) p7 = 0.5859

(b) p8 = 3.002

(c) p7 = 3.419

4. The Bisection method gives:

(a) p7 = �1.414

(b) p8 = 1.414

(c) p7 = 2.727

(d) p7 = �0.7265

5. The Bisection method gives:

(a) p17 = 0.641182

(b) p17 = 0.257530

(c) For the interval [�3,�2], we have p17 = �2.191307, and for the interval [�1, 0], we have
p17 = �0.798164.

(d) For the interval [0.2, 0.3], we have p14 = 0.297528, and for the interval [1.2, 1.3], we have
p14 = 1.256622.

6. (a) p17 = 1.51213837

(b) p18 = 1.239707947

(c) For the interval [1, 2], we have p17 = 1.41239166, and for the interval [2, 4], we have
p18 = 3.05710602.

15



16 Exercise Set 2.1

(d) For the interval [0, 0.5], we have p16 = 0.20603180, and for the interval [0.5, 1], we have
p16 = 0.68196869.

7. (a)

y = f (x) y = x

x1

1

2

2

y

(b) Using [1.5, 2] from part (a) gives p16 = 1.89550018.

8. (a)

10

210

y

  5

10 x

y = x

y = tan x

(b) Using [4.2, 4.6] from part (a) gives p16 = 4.4934143.

9. (a)

x1

1

2

2

1

y
y = cos (e  2 2)x

y = e  2 2x

(b) p17 = 1.00762177

10. (a)
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(b) p11 = �1.250976563

11. (a) 2

(b) �2

(c) �1

(d) 1

12. (a) 0

(b) 0

(c) 2

(d) �2

13. The cube root of 25 is approximately p14 = 2.92401, using [2, 3].

14. We have
p
3 ⇡ p14 = 1.7320, using [1, 2].

15. The depth of the water is 0.838 ft.

16. The angle ✓ changes at the approximate rate w = �0.317059.

17. A bound is n � 14, and p14 = 1.32477.

18. A bound for the number of iterations is n � 12 and p12 = 1.3787.

19. Since lim
n!1(p

n

�p
n�1) = lim

n!1 1/n = 0, the di↵erence in the terms goes to zero. However,
p
n

is the nth term of the divergent harmonic series, so lim
n!1 p

n

= 1.

20. For n > 1,

|f(p
n

)| =
✓
1

n

◆10


✓
1

2

◆10

=
1

1024
< 10�3,

so

|p� p
n

| = 1

n
< 10�3 , 1000 < n.

21. Since �1 < a < 0 and 2 < b < 3, we have 1 < a+ b < 3 or 1/2 < 1/2(a+ b) < 3/2 in all cases.
Further,

f(x) < 0, for � 1 < x < 0 and 1 < x < 2;

f(x) > 0, for 0 < x < 1 and 2 < x < 3.

Thus, a1 = a, f(a1) < 0, b1 = b, and f(b1) > 0.

(a) Since a + b < 2, we have p1 = a+b

2 and 1/2 < p1 < 1. Thus, f(p1) > 0. Hence,
a2 = a1 = a and b2 = p1. The only zero of f in [a2, b2] is p = 0, so the convergence will
be to 0.

(b) Since a + b > 2, we have p1 = a+b

2 and 1 < p1 < 3/2. Thus, f(p1) < 0. Hence, a2 = p1
and b2 = b1 = b. The only zero of f in [a2, b2] is p = 2, so the convergence will be to 2.

(c) Since a+ b = 2, we have p1 = a+b

2 = 1 and f(p1) = 0. Thus, a zero of f has been found
on the first iteration. The convergence is to p = 1.

9:29pm February 22, 20159:29pm February 22, 20159:29pm February 22, 2015



18 Exercise Set 2.2

Exercise Set 2.2, page 64

1. For the value of x under consideration we have

(a) x = (3 + x� 2x2)1/4 , x4 = 3 + x� 2x2 , f(x) = 0

(b) x =

✓
x+ 3� x4

2

◆1/2

, 2x2 = x+ 3� x4 , f(x) = 0

(c) x =

✓
x+ 3

x2 + 2

◆1/2

, x2(x2 + 2) = x+ 3 , f(x) = 0

(d) x =
3x4 + 2x2 + 3

4x3 + 4x� 1
, 4x4 + 4x2 � x = 3x4 + 2x2 + 3 , f(x) = 0

2. (a) p4 = 1.10782; (b) p4 = 0.987506; (c) p4 = 1.12364; (d) p4 = 1.12412;

(b) Part (d) gives the best answer since |p4 � p3| is the smallest for (d).

3. (a) Solve for 2x then divide by 2. p1 = 0.5625, p2 = 0.58898926, p3 = 0.60216264, p4 =
0.60917204

(b) Solve for x3, divide by x2. p1 = 0, p2 undefined

(c) Solve for x3, divide by x, then take positive square root. p1 = 0, p2 undefined

(d) Solve for x3, then take negative of the cubed root. p1 = 0, p2 = �1, p3 = �1.4422496, p4 =
�1.57197274. Parts (a) and (d) seem promising.

4. (a) x4 + 3x2 � 2 = 0 , 3x2 = 2 � x4 , x =
q

2�x

4

3 ; p0 = 1, p1 = 0.577350269,p2 =
0.79349204,p3 = 0.73111023, p4 = 0.75592901.

(b) x4 + 3x2 � 2 = 0 , x4 = 2� 3x2 , x = 4
p
2� 3x2; p0 = 1, p1 undefined.

(c) x4 + 3x2 � 2 = 0 , 3x2 = 2 � x4 , x = 2�x

4

3x ; p0 = 1, p1 = 1
3 , p2 = 1.9876543,p3 =

�2.2821844, p4 = 3.6700326.

(d) x4+3x2�2 = 0 , x4 = 2�3x2 , x3 = 2�3x2

x

, x = 3

q
2�3x2

x

; p0 = 1, p1 = �1, p2 = 1,
p3 = �1, p4 = 1.

Only the method of part (a) seems promising.

5. The order in descending speed of convergence is (b), (d), and (a). The sequence in (c) does
not converge.

6. The sequence in (c) converges faster than in (d). The sequences in (a) and (b) diverge.

7. With g(x) = (3x2 + 3)1/4 and p0 = 1, p6 = 1.94332 is accurate to within 0.01.

8. With g(x) =
q
1 + 1

x

and p0 = 1, we have p4 = 1.324.

9. Since g0(x) = 1
4 cos

x

2 , g is continuous and g0 exists on [0, 2⇡]. Further, g0(x) = 0 only when
x = ⇡, so that g(0) = g(2⇡) = ⇡  g(x) = g(⇡) = ⇡ + 1

2 and |g0(x)|  1
4 , for 0  x  2⇡.

Theorem 2.3 implies that a unique fixed point p exists in [0, 2⇡]. With k = 1
4 and p0 = ⇡, we

have p1 = ⇡ + 1
2 . Corollary 2.5 implies that

|p
n

� p|  kn

1� k
|p1 � p0| =

2

3

✓
1

4

◆
n

.
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Solutions of Equations of One Variable 19

For the bound to be less than 0.1, we need n � 4. However, p3 = 3.626996 is accurate to
within 0.01.

10. Using p0 = 1 gives p12 = 0.6412053. Since |g0(x)| = 2�x ln 2  0.551 on
⇥
1
3 , 1

⇤
with k = 0.551,

Corollary 2.5 gives a bound of 16 iterations.

11. For p0 = 1.0 and g(x) = 0.5(x+ 3
x

), we have
p
3 ⇡ p4 = 1.73205.

12. For g(x) = 5/
p
x and p0 = 2.5, we have p14 = 2.92399.

13. (a) With [0, 1] and p0 = 0, we have p9 = 0.257531.

(b) With [2.5, 3.0] and p0 = 2.5, we have p17 = 2.690650.

(c) With [0.25, 1] and p0 = 0.25, we have p14 = 0.909999.

(d) With [0.3, 0.7] and p0 = 0.3, we have p39 = 0.469625.

(e) With [0.3, 0.6] and p0 = 0.3, we have p48 = 0.448059.

(f) With [0, 1] and p0 = 0, we have p6 = 0.704812.

14. The inequalities in Corollary 2.4 give |p
n

� p| < kn max(p0 � a, b� p0). We want

kn max(p0 � a, b� p0) < 10�5 so we need n >
ln(10�5)� ln(max(p0 � a, b� p0))

ln k
.

(a) Using g(x) = 2 + sinx we have k = 0.9899924966 so that with p0 = 2 we have n >
ln(0.00001)/ ln k = 1144.663221. However, our tolerance is met with p63 = 2.5541998.

(b) Using g(x) = 3
p
2x+ 5 we have k = 0.1540802832 so that with p0 = 2 we have n >

ln(0.00001)/ ln k = 6.155718005. However, our tolerance is met with p6 = 2.0945503.

(c) Using g(x) =
p
ex/3 and the interval [0, 1] we have k = 0.4759448347 so that with

p0 = 1 we have n > ln(0.00001)/ ln k = 15.50659829. However, our tolerance is met with
p12 = 0.91001496.

(d) Using g(x) = cosx and the interval [0, 1] we have k = 0.8414709848 so that with p0 = 0
we have n > ln(0.00001)/ ln k > 66.70148074. However, our tolerance is met with p30 =
0.73908230.

15. For g(x) = (2x2 � 10 cosx)/(3x), we have the following:

p0 = 3 ) p8 = 3.16193; p0 = �3 ) p8 = �3.16193.

For g(x) = arccos(�0.1x2), we have the following:

p0 = 1 ) p11 = 1.96882; p0 = �1 ) p11 = �1.96882.

16. For g(x) =
1

tanx
� 1

x
+ x and p0 = 4, we have p4 = 4.493409.

17. With g(x) =
1

⇡
arcsin

⇣
�x

2

⌘
+ 2, we have p5 = 1.683855.

18. With g(t) = 501.0625�201.0625e�0.4t and p0 = 5.0, p3 = 6.0028 is within 0.01 s of the actual
time.
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20 Exercise Set 2.2

19. Since g0 is continuous at p and |g0(p)| > 1, by letting ✏ = |g0(p)|�1 there exists a number � > 0
such that |g0(x) � g0(p)| < |g0(p)| � 1 whenever 0 < |x � p| < �. Hence, for any x satisfying
0 < |x� p| < �, we have

|g0(x)| � |g0(p)|� |g0(x)� g0(p)| > |g0(p)|� (|g0(p)|� 1) = 1.

If p0 is chosen so that 0 < |p� p0| < �, we have by the Mean Value Theorem that

|p1 � p| = |g(p0)� g(p)| = |g0(⇠)||p0 � p|,

for some ⇠ between p0 and p. Thus, 0 < |p� ⇠| < � so |p1 � p| = |g0(⇠)||p0 � p| > |p0 � p|.

20. (a) If fixed-point iteration converges to the limit p, then

p = lim
n!1

p
n

= lim
n!1

2p
n�1 �Ap2

n�1 = 2p�Ap2.

Solving for p gives p =
1

A
.

(b) Any subinterval [c, d] of

✓
1

2A
,
3

2A

◆
containing

1

A
su�ces.

Since

g(x) = 2x�Ax2, g0(x) = 2� 2Ax,

so g(x) is continuous, and g0(x) exists. Further, g0(x) = 0 only if x =
1

A
.

Since

g

✓
1

A

◆
=

1

A
, g

✓
1

2A

◆
= g

✓
3

2A

◆
=

3

4A
, and we have

3

4A
 g(x)  1

A
.

For x in
�

1
2A , 3

2A

�
, we have

����x� 1

A

���� <
1

2A
so |g0(x)| = 2A

����x� 1

A

���� < 2A

✓
1

2A

◆
= 1.

21. One of many examples is g(x) =
p
2x� 1 on

⇥
1
2 , 1

⇤
.

22. (a) The proof of existence is unchanged. For uniqueness, suppose p and q are fixed points in
[a, b] with p 6= q. By the Mean Value Theorem, a number ⇠ in (a, b) exists with

p� q = g(p)� g(q) = g0(⇠)(p� q)  k(p� q) < p� q,

giving the same contradiction as in Theorem 2.3.

(b) Consider g(x) = 1� x2 on [0, 1]. The function g has the unique fixed point

p =
1

2

⇣
�1 +

p
5
⌘
.

With p0 = 0.7, the sequence eventually alternates between 0 and 1.
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Solutions of Equations of One Variable 21

23. (a) Suppose that x0 >
p
2. Then

x1 �
p
2 = g(x0)� g

⇣p
2
⌘
= g0(⇠)

⇣
x0 �

p
2
⌘
,

where
p
2 < ⇠ < x. Thus, x1 �

p
2 > 0 and x1 >

p
2. Further,

x1 =
x0

2
+

1

x0
<

x0

2
+

1p
2
=

x0 +
p
2

2

and
p
2 < x1 < x0. By an inductive argument,

p
2 < x

m+1 < x
m

< . . . < x0.

Thus, {x
m

} is a decreasing sequence which has a lower bound and must converge.

Suppose p = lim
m!1 x

m

. Then

p = lim
m!1

✓
x
m�1

2
+

1

x
m�1

◆
=

p

2
+

1

p
. Thus p =

p

2
+

1

p
,

which implies that p = ±
p
2. Since x

m

>
p
2 for all m, we have lim

m!1 x
m

=
p
2.

(b) We have

0 <
⇣
x0 �

p
2
⌘2

= x2
0 � 2x0

p
2 + 2,

so 2x0

p
2 < x2

0 + 2 and
p
2 < x0

2 + 1
x0

= x1.

(c) Case 1: 0 < x0 <
p
2, which implies that

p
2 < x1 by part (b). Thus,

0 < x0 <
p
2 < x

m+1 < x
m

< . . . < x1 and lim
m!1

x
m

=
p
2.

Case 2: x0 =
p
2, which implies that x

m

=
p
2 for all m and lim

m!1 x
m

=
p
2.

Case 3: x0 >
p
2, which by part (a) implies that lim

m!1 x
m

=
p
2.

24. (a) Let

g(x) =
x

2
+

A

2x
.

Note that g
⇣p

A
⌘
=

p
A. Also,

g0(x) = 1/2�A/
�
2x2

�
if x 6= 0 and g0(x) > 0 if x >

p
A.

If x0 =
p
A, then x

m

=
p
A for all m and lim

m!1 x
m

=
p
A.

If x0 > A, then

x1 �
p
A = g(x0)� g

⇣p
A
⌘
= g0(⇠)

⇣
x0 �

p
A
⌘
> 0.

Further,

x1 =
x0

2
+

A

2x0
<

x0

2
+

A

2
p
A

=
1

2

⇣
x0 +

p
A
⌘
.
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22 Exercise Set 2.3

Thus,
p
A < x1 < x0. Inductively,

p
A < x

m+1 < x
m

< . . . < x0

and lim
m!1 x

m

=
p
A by an argument similar to that in Exercise 23(a).

If 0 < x0 <
p
A, then

0 <
⇣
x0 �

p
A
⌘2

= x2
0 � 2x0

p
A+A and 2x0

p
A < x2

0 +A,

which leads to p
A <

x0

2
+

A

2x0
= x1.

Thus
0 < x0 <

p
A < x

m+1 < x
m

< . . . < x1,

and by the preceding argument, lim
m!1 x

m

=
p
A.

(b) If x0 < 0, then lim
m!1 x

m

= �
p
A.

25. Replace the second sentence in the proof with: “Since g satisfies a Lipschitz condition on [a, b]
with a Lipschitz constant L < 1, we have, for each n,

|p
n

� p| = |g(p
n�1)� g(p)|  L|p

n�1 � p|.”

The rest of the proof is the same, with k replaced by L.

26. Let " = (1� |g0(p)|)/2. Since g0 is continuous at p, there exists a number � > 0 such that for
x 2 [p��, p+�], we have |g0(x)�g0(p)| < ". Thus, |g0(x)| < |g0(p)|+" < 1 for x 2 [p��, p+�].
By the Mean Value Theorem

|g(x)� g(p)| = |g0(c)||x� p| < |x� p|,

for x 2 [p� �, p+ �]. Applying the Fixed-Point Theorem completes the problem.

Exercise Set 2.3, page 75

1. p2 = 2.60714

2. p2 = �0.865684; If p0 = 0, f 0(p0) = 0 and p1 cannot be computed.

3. (a) 2.45454

(b) 2.44444

(c) Part (a) is better.

4. (a) �1.25208

(b) �0.841355

5. (a) For p0 = 2, we have p5 = 2.69065.

(b) For p0 = �3, we have p3 = �2.87939.

(c) For p0 = 0, we have p4 = 0.73909.
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(d) For p0 = 0, we have p3 = 0.96434.

6. (a) For p0 = 1, we have p8 = 1.829384.

(b) For p0 = 1.5, we have p4 = 1.397748.

(c) For p0 = 2, we have p4 = 2.370687; and for p0 = 4, we have p4 = 3.722113.

(d) For p0 = 1, we have p4 = 1.412391; and for p0 = 4, we have p5 = 3.057104.

(e) For p0 = 1, we have p4 = 0.910008; and for p0 = 3, we have p9 = 3.733079.

(f) For p0 = 0, we have p4 = 0.588533; for p0 = 3, we have p3 = 3.096364; and for p0 = 6,
we have p3 = 6.285049.

7. Using the endpoints of the intervals as p0 and p1, we have:

(a) p11 = 2.69065

(b) p7 = �2.87939

(c) p6 = 0.73909

(d) p5 = 0.96433

8. Using the endpoints of the intervals as p0 and p1, we have:

(a) p7 = 1.829384

(b) p9 = 1.397749

(c) p6 = 2.370687; p7 = 3.722113

(d) p8 = 1.412391; p7 = 3.057104

(e) p6 = 0.910008; p10 = 3.733079

(f) p6 = 0.588533; p5 = 3.096364; p5 = 6.285049

9. Using the endpoints of the intervals as p0 and p1, we have:

(a) p16 = 2.69060

(b) p6 = �2.87938

(c) p7 = 0.73908

(d) p6 = 0.96433

10. Using the endpoints of the intervals as p0 and p1, we have:

(a) p8 = 1.829383

(b) p9 = 1.397749

(c) p6 = 2.370687; p8 = 3.722112

(d) p10 = 1.412392; p12 = 3.057099

(e) p7 = 0.910008; p29 = 3.733065

(f) p9 = 0.588533; p5 = 3.096364; p5 = 6.285049

11. (a) Newton’s method with p0 = 1.5 gives p3 = 1.51213455.

The Secant method with p0 = 1 and p1 = 2 gives p10 = 1.51213455.

The Method of False Position with p0 = 1 and p1 = 2 gives p17 = 1.51212954.
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24 Exercise Set 2.3

(b) Newton’s method with p0 = 0.5 gives p5 = 0.976773017.

The Secant method with p0 = 0 and p1 = 1 gives p5 = 10.976773017.

The Method of False Position with p0 = 0 and p1 = 1 gives p5 = 0.976772976.

12. (a) We have

Initial Approximation Result Initial Approximation Result

Newton’s p0 = 1.5 p4 = 1.41239117 p0 = 3.0 p4 = 3.05710355

Secant p0 = 1, p1 = 2 p8 = 1.41239117 p0 = 2, p1 = 4 p10 = 3.05710355

False Position p0 = 1, p1 = 2 p13 = 1.41239119 p0 = 2, p1 = 4 p19 = 3.05710353

(b) We have

Initial Approximation Result Initial Approximation Result

Newton’s p0 = 0.25 p4 = 0.206035120 p0 = 0.75 p4 = 0.681974809

Secant p0 = 0, p1 = 0.5 p9 = 0.206035120 p0 = 0.5, p1 = 1 p8 = 0.681974809

False Position p0 = 0, p1 = 0.5 p12 = 0.206035125 p0 = 0.5, p1 = 1 p15 = 0.681974791

13. (a) For p0 = �1 and p1 = 0, we have p17 = �0.04065850, and for p0 = 0 and p1 = 1, we
have p9 = 0.9623984.

(b) For p0 = �1 and p1 = 0, we have p5 = �0.04065929, and for p0 = 0 and p1 = 1, we have
p12 = �0.04065929.

(c) For p0 = �0.5, we have p5 = �0.04065929, and for p0 = 0.5, we have p21 = 0.9623989.

14. (a) The Bisection method yields p10 = 0.4476563.

(b) The method of False Position yields p10 = 0.442067.

(c) The Secant method yields p10 = �195.8950.

15. Newton’s method for the various values of p0 gives the following results.

(a) p0 = �10, p11 = �4.30624527

(b) p0 = �5, p5 = �4.30624527

(c) p0 = �3, p5 = 0.824498585

(d) p0 = �1, p4 = �0.824498585

(e) p0 = 0, p1 cannot be computed because f 0(0) = 0

(f) p0 = 1, p4 = 0.824498585

(g) p0 = 3, p5 = �0.824498585

(h) p0 = 5, p5 = 4.30624527

9:29pm February 22, 20159:29pm February 22, 20159:29pm February 22, 2015



Solutions of Equations of One Variable 25

(i) p0 = 10, p11 = 4.30624527

16. Newton’s method for the various values of p0 gives the following results.

(a) p8 = �1.379365

(b) p7 = �1.379365

(c) p7 = 1.379365

(d) p7 = �1.379365

(e) p7 = 1.379365

(f) p8 = 1.379365

17. For f(x) = ln(x2 + 1)� e0.4x cos⇡x, we have the following roots.

(a) For p0 = �0.5, we have p3 = �0.4341431.

(b) For p0 = 0.5, we have p3 = 0.4506567.

For p0 = 1.5, we have p3 = 1.7447381.

For p0 = 2.5, we have p5 = 2.2383198.

For p0 = 3.5, we have p4 = 3.7090412.

(c) The initial approximation n� 0.5 is quite reasonable.

(d) For p0 = 24.5, we have p2 = 24.4998870.

18. Newton’s method gives p15 = 1.895488, for p0 = ⇡

2 ; and p19 = 1.895489, for p0 = 5⇡. The
sequence does not converge in 200 iterations for p0 = 10⇡. The results do not indicate the
fast convergence usually associated with Newton’s method.

19. For p0 = 1, we have p5 = 0.589755. The point has the coordinates (0.589755, 0.347811).

20. For p0 = 2, we have p2 = 1.866760. The point is (1.866760, 0.535687).

21. The two numbers are approximately 6.512849 and 13.487151.

22. We have � ⇡ 0.100998 and N(2) ⇡ 2,187,950.

23. The borrower can a↵ord to pay at most 8.10%.

24. The minimal annual interest rate is 6.67%.

25. We have P
L

= 363432, c = �1.0266939, and k = 0.026504522. The 1990 population is
P (30) = 248,319, and the 2020 population is P (60) = 300,528.

26. We have P
L

= 446505, c = 0.91226292, and k = 0.014800625. The 1990 population is
P (30) = 248,707, and the 2020 population is P (60) = 306,528.

27. Using p0 = 0.5 and p1 = 0.9, the Secant method gives p5 = 0.842.

28. (a) 1
3e, t = 3 hours

(b) 11 hours and 5 minutes

(c) 21 hours and 14 minutes
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29. (a) We have, approximately,

A = 17.74, B = 87.21, C = 9.66, and E = 47.47

With these values we have

A sin↵ cos↵+B sin2 ↵� C cos↵� E sin↵ = 0.02.

(b) Newton’s method gives ↵ ⇡ 33.2�.

30. This formula involves the subtraction of nearly equal numbers in both the numerator and
denominator if p

n�1 and p
n�2 are nearly equal.

31. The equation of the tangent line is

y � f(p
n�1) = f 0(p

n�1)(x� p
n�1).

To complete this problem, set y = 0 and solve for x = p
n

.

32. For some ⇠
n

between p
n

and p,

f(p) = f(p
n

) + (p� p
n

)f 0(p
n

) +
(p� p

n

)2

2
f 00(⇠

n

)

0 = f(p
n

) + (p� p
n

)f 0(p
n

) +
(p� p

n

)2

2
f 00(⇠

n

)

Since f 0(p
n

) 6= 0,

0 =
f(p

n

)

f 0(p
n

)
+ p� p

n

+
(p� p

n

)2

2f 0(p
n

)
f 00(⇠

n

)

we have

p� [p
n

� f(p
n

)

f 0(p
n

)
] = � (p� p

n

)2

2f 0(p
n

)
f 00(⇠

n

)

and

p� p
n+1 = � (p� p

n

)2

2f 0(p
n

)
f 00(p

n

).

So

|p� p
n+1| 

M2

2|f 0(p
n

)| (p� p
n

)2.
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Exercise Set 2.4, page 85

1. (a) For p0 = 0.5, we have p13 = 0.567135.

(b) For p0 = �1.5, we have p23 = �1.414325.

(c) For p0 = 0.5, we have p22 = 0.641166.

(d) For p0 = �0.5, we have p23 = �0.183274.

2. (a) For p0 = 0.5, we have p15 = 0.739076589.

(b) For p0 = �2.5, we have p9 = �1.33434594.

(c) For p0 = 3.5, we have p5 = 3.14156793.

(d) For p0 = 4.0, we have p44 = 3.37354190.

3. Modified Newton’s method in Eq. (2.11) gives the following:

(a) For p0 = 0.5, we have p3 = 0.567143.

(b) For p0 = �1.5, we have p2 = �1.414158.

(c) For p0 = 0.5, we have p3 = 0.641274.

(d) For p0 = �0.5, we have p5 = �0.183319.

4. (a) For p0 = 0.5, we have p4 = 0.739087439.

(b) For p0 = �2.5, we have p53 = �1.33434594.

(c) For p0 = 3.5, we have p5 = 3.14156793.

(d) For p0 = 4.0, we have p3 = �3.72957639.

5. Newton’s method with p0 = �0.5 gives p13 = �0.169607. Modified Newton’s method in
Eq. (2.11) with p0 = �0.5 gives p11 = �0.169607.

6. (a) Since

lim
n!1

|p
n+1 � p|
|p

n

� p| = lim
n!1

1
n+1
1
n

= lim
n!1

n

n+ 1
= 1,

we have linear convergence. To have |p
n

� p| < 5⇥ 10�2, we need n � 20.

(b) Since

lim
n!1

|p
n+1 � p|
|p

n

� p| = lim
n!1

1
(n+1)2

1
n

2

= lim
n!1

✓
n

n+ 1

◆2

= 1,

we have linear convergence. To have |p
n

� p| < 5⇥ 10�2, we need n � 5.

7. (a) For k > 0,

lim
n!1

|p
n+1 � 0|
|p

n

� 0| = lim
n!1

1
(n+1)k

1
n

k

= lim
n!1

✓
n

n+ 1

◆
k

= 1,

so the convergence is linear.

(b) We need to have N > 10m/k.

8. (a) Since

lim
n!1

|p
n+1 � 0|
|p

n

� 0|2 = lim
n!1

10�2n+1

(10�2n)2
= lim

n!1

10�2n+1

10�2n+1 = 1,

the sequence is quadratically convergent.
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(b) We have

lim
n!1

|p
n+1 � 0|
|p

n

� 0|2 = lim
n!1

10�(n+1)k

�
10�n

k

�2 = lim
n!1

10�(n+1)k

10�2nk

= lim
n!1

102n
k�(n+1)k = lim

n!1
10n

k(2�(n+1
n

)k) = 1,

so the sequence p
n

= 10�n

k

does not converge quadratically.

9. Typical examples are

(a) p
n

= 10�3n

(b) p
n

= 10�↵

n

10. Suppose f(x) = (x� p)mq(x). Since

g(x) = x� m(x� p)q(x)

mq(x) + (x� p)q0(x)
,

we have g0(p) = 0.

11. This follows from the fact that

lim
n!1

����
b� a

2n+1

����
����
b� a

2n

����
=

1

2
.

12. If f has a zero of multiplicity m at p, then f can be written as

f(x) = (x� p)mq(x),

for x 6= p, where
lim
x!p

q(x) 6= 0.

Thus,
f 0(x) = m(x� p)m�1q(x) + (x� p)mq0(x)

and f 0(p) = 0. Also,

f 00(x) = m(m� 1)(x� p)m�2q(x) + 2m(x� p)m�1q0(x) + (x� p)mq00(x)

and f 00(p) = 0. In general, for k  m,

f (k)(x) =
kX

j=0

✓
k

j

◆
dj(x� p)m

dxj

q(k�j)(x) =
kX

j=0

✓
k

j

◆
m(m�1)· · ·(m�j+1)(x�p)m�jq(k�j)(x).

Thus, for 0  k  m� 1, we have f (k)(p) = 0, but f (m)(p) = m! lim
x!p

q(x) 6= 0.

Conversely, suppose that

f(p) = f 0(p) = . . . = f (m�1)(p) = 0 and f (m)(p) 6= 0.
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Consider the (m� 1)th Taylor polynomial of f expanded about p:

f(x) =f(p) + f 0(p)(x� p) + . . .+
f (m�1)(p)(x� p)m�1

(m� 1)!
+

f (m)(⇠(x))(x� p)m

m!

=(x� p)m
f (m)(⇠(x))

m!
,

where ⇠(x) is between x and p.

Since f (m) is continuous, let

q(x) =
f (m)(⇠(x))

m!
.

Then f(x) = (x� p)mq(x) and

lim
x!p

q(x) =
f (m)(p)

m!
6= 0.

Hence f has a zero of multiplicity m at p.

13. If

|p
n+1 � p|
|p

n

� p|3 = 0.75 and |p0 � p| = 0.5, then |p
n

� p| = (0.75)(3
n�1)/2|p0 � p|3

n

.

To have |p
n

� p|  10�8 requires that n � 3.

14. Let e
n

= p
n

� p. If

lim
n!1

|e
n+1|

|e
n

|↵ = � > 0,

then for su�ciently large values of n, |e
n+1| ⇡ �|e

n

|↵. Thus,

|e
n

| ⇡ �|e
n�1|↵ and |e

n�1| ⇡ ��1/↵|e
n

|1/↵.

Using the hypothesis gives

�|e
n

|↵ ⇡ |e
n+1| ⇡ C|e

n

|��1/↵|e
n

|1/↵, so |e
n

|↵ ⇡ C��1/↵�1|e
n

|1+1/↵.

Since the powers of |e
n

| must agree,

↵ = 1 + 1/↵ and ↵ =
1 +

p
5

2
⇡ 1.62.

The number ↵ is the golden ratio that appeared in Exercise 11 of section 1.3.

Exercise Set 2.5, page 90

1. The results are listed in the following table.
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30 Exercise Set 2.5

(a) (b) (c) (d)

p̂0 0.258684 0.907859 0.548101 0.731385
p̂1 0.257613 0.909568 0.547915 0.736087
p̂2 0.257536 0.909917 0.547847 0.737653
p̂3 0.257531 0.909989 0.547823 0.738469
p̂4 0.257530 0.910004 0.547814 0.738798
p̂5 0.257530 0.910007 0.547810 0.738958

2. Newton’s Method gives p16 = �0.1828876 and p̂7 = �0.183387.

3. Ste↵ensen’s method gives p(1)0 = 0.826427.

4. Ste↵ensen’s method gives p(1)0 = 2.152905 and p(2)0 = 1.873464.

5. Ste↵ensen’s method gives p(0)1 = 1.5.

6. Ste↵ensen’s method gives p(0)2 = 1.73205.

7. For g(x) =
q
1 + 1

x

and p(0)0 = 1, we have p(3)0 = 1.32472.

8. For g(x) = 2�x and p(0)0 = 1, we have p(3)0 = 0.64119.

9. For g(x) = 0.5(x+ 3
x

) and p(0)0 = 0.5, we have p(4)0 = 1.73205.

10. For g(x) = 5p
x

and p(0)0 = 2.5, we have p(3)0 = 2.92401774.

11. (a) For g(x) =
�
2� ex + x2

�
/3 and p(0)0 = 0, we have p(3)0 = 0.257530.

(b) For g(x) = 0.5(sinx+ cosx) and p(0)0 = 0, we have p(4)0 = 0.704812.

(c) With p(0)0 = 0.25, p(4)0 = 0.910007572.

(d) With p(0)0 = 0.3, p(4)0 = 0.469621923.

12. (a) For g(x) = 2 + sinx and p(0)0 = 2, we have p(4)0 = 2.55419595.

(b) For g(x) = 3
p
2x+ 5 and p(0)0 = 2, we have p(2)0 = 2.09455148.

(c) With g(x) =
q

e

x

3 and p(0)0 = 1, we have p(3)0 = 0.910007574.

(d) With g(x) = cosx, and p(0)0 = 0, we have p(4)0 = 0.739085133.

13. Aitken’s �2 method gives:

(a) p̂10 = 0.045

(b) p̂2 = 0.0363

14. (a) A positive constant � exists with

� = lim
n!1

|p
n+1 � p|

|p
n

� p|↵ .
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Hence

lim
n!1

����
p
n+1 � p

p
n

� p

���� = lim
n!1

|p
n+1 � p|

|p
n

� p|↵ · |p
n

� p|↵�1 = � · 0 = 0 and lim
n!1

p
n+1 � p

p
n

� p
= 0.

(b) One example is p
n

= 1
n

n

.

15. We have
|p

n+1 � p
n

|
|p

n

� p| =
|p

n+1 � p+ p� p
n

|
|p

n

� p| =

����
p
n+1 � p

p
n

� p
� 1

���� ,

so

lim
n!1

|p
n+1 � p

n

|
|p

n

� p| = lim
n!1

����
p
n+1 � p

p
n

� p
� 1

���� = 1.

16.
p̂
n

� p

p
n

� p
=
� (�

n

+ �
n+1)� 2�

n

+ �
n

�
n+1 � 2�

n

(�� 1)� �2
n

(�� 1)2 + � (�
n

+ �
n+1)� 2�

n

+ �
n

�
n+1

17. (a) Since p
n

= P
n

(x) =
nX

k=0

1

k!
xk, we have

p
n

� p = P
n

(x)� ex =
�e⇠

(n+ 1)!
xn+1,

where ⇠ is between 0 and x. Thus, p
n

� p 6= 0, for all n � 0. Further,

p
n+1 � p

p
n

� p
=

�e

⇠1

(n+2)!x
n+2

�e

⇠

(n+1)!x
n+1

=
e(⇠1�⇠)x

n+ 2
,

where ⇠1 is between 0 and 1. Thus, � = lim
n!1

e

(⇠1�⇠)
x

n+2 = 0 < 1.

(b)

n p
n

p̂
n

0 1 3
1 2 2.75
2 2.5 2.72
3 2.6 2.71875
4 2.7083 2.7183
5 2.716 2.7182870
6 2.71805 2.7182823
7 2.7182539 2.7182818
8 2.7182787 2.7182818
9 2.7182815
10 2.7182818

(c) Aitken’s �2 method gives quite an improvement for this problem. For example, p̂6 is
accurate to within 5⇥ 10�7. We need p10 to have this accuracy.
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Exercise Set 2.6, page 100

1. (a) For p0 = 1, we have p22 = 2.69065.

(b) For p0 = 1, we have p5 = 0.53209; for p0 = �1, we have p3 = �0.65270; and for p0 = �3,
we have p3 = �2.87939.

(c) For p0 = 1, we have p5 = 1.32472.

(d) For p0 = 1, we have p4 = 1.12412; and for p0 = 0, we have p8 = �0.87605.

(e) For p0 = 0, we have p6 = �0.47006; for p0 = �1, we have p4 = �0.88533; and for
p0 = �3, we have p4 = �2.64561.

(f) For p0 = 0, we have p10 = 1.49819.

2. (a) For p0 = 0, we have p9 = �4.123106; and for p0 = 3, we have p6 = 4.123106. The complex
roots are �2.5± 1.322879i.

(b) For p0 = 1, we have p7 = �3.548233; and for p0 = 4, we have p5 = 4.38111. The complex
roots are 0.5835597± 1.494188i.

(c) The only roots are complex, and they are ±
p
2i and �0.5± 0.5

p
3i.

(d) For p0 = 1, we have p5 = �0.250237; for p0 = 2, we have p5 = 2.260086; and for
p0 = �11, we have p6 = �12.612430. The complex roots are �0.1987094± 0.8133125i.

(e) For p0 = 0, we have p8 = 0.846743; and for p0 = �1, we have p9 = �3.358044. The
complex roots are �1.494350± 1.744219i.

(f) For p0 = 0, we have p8 = 2.069323; and for p0 = 1, we have p3 = 0.861174. The complex
roots are �1.465248± 0.8116722i.

(g) For p0 = 0, we have p6 = �0.732051; for p0 = 1, we have p4 = 1.414214; for p0 = 3, we
have p5 = 2.732051; and for p0 = �2, we have p6 = �1.414214.

(h) For p0 = 0, we have p5 = 0.585786; for p0 = 2, we have p2 = 3; and for p0 = 4, we have
p6 = 3.414214.

9:29pm February 22, 20159:29pm February 22, 20159:29pm February 22, 2015



Solutions of Equations of One Variable 33

3. The following table lists the initial approximation and the roots.

p0 p1 p2 Approximate roots Complex Conjugate roots

(a) �1 0 1 p7 = �0.34532� 1.31873i �0.34532 + 1.31873i
0 1 2 p6 = 2.69065

(b) 0 1 2 p6 = 0.53209
1 2 3 p9 = �0.65270

�2 �3 �2.5 p4 = �2.87939

(c) 0 1 2 p5 = 1.32472
�2 �1 0 p7 = �0.66236� 0.56228i �0.66236 + 0.56228i

(d) 0 1 2 p5 = 1.12412
2 3 4 p12 = �0.12403 + 1.74096i �0.12403� 1.74096i

�2 0 �1 p5 = �0.87605

(e) 0 1 2 p10 = �0.88533
1 0 �0.5 p5 = �0.47006

�1 �2 �3 p5 = �2.64561

(f) 0 1 2 p6 = 1.49819
�1 �2 �3 p10 = �0.51363� 1.09156i �0.51363 + 1.09156i
1 0 �1 p8 = 0.26454� 1.32837i 0.26454 + 1.32837i
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4. The following table lists the initial approximation and the roots.

p0 p1 p2 Approximate roots Complex Conjugate roots

(a) 0 1 2 p11 = �2.5� 1.322876i �2.5 + 1.322876i
1 2 3 p6 = 4.123106

�3 �4 �5 p5 = �4.123106

(b) 0 1 2 p7 = 0.583560� 1.494188i 0.583560 + 1.494188i
2 3 4 p6 = 4.381113

�2 �3 �4 p5 = �3.548233

(c) 0 1 2 p11 = 1.414214i �1.414214i
�1 �2 �3 p10 = �0.5 + 0.866025i �0.5� 0.866025i

(d) 0 1 2 p7 = 2.260086
3 4 5 p14 = �0.198710 + 0.813313i �0.198710 + 0.813313i
11 12 13 p22 = �0.250237

�9 �10 �11 p6 = �12.612430

(e) 0 1 2 p6 = 0.846743
3 4 5 p12 = �1.494349 + 1.744218i �1.494349� 1.744218i

�1 �2 �3 p7 = �3.358044

(f) 0 1 2 p6 = 2.069323
�1 0 1 p5 = 0.861174
�1 �2 �3 p8 = �1.465248 + 0.811672i �1.465248� 0.811672i

(g) 0 1 2 p6 = 1.414214
�2 �1 0 p7 = �0.732051
0 �2 �1 p7 = �1.414214
2 3 4 p6 = 2.732051

(h) 0 1 2 p8 = 3
�1 0 1 p5 = 0.585786
2.5 3.5 4 p6 = 3.414214
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5. (a) The roots are 1.244, 8.847, and �1.091, and the critical points are 0 and 6.

(b) The roots are 0.5798, 1.521, 2.332, and �2.432, and the critical points are 1, 2.001, and
�1.5.

6. We get convergence to the root 0.27 with p0 = 0.28. We need p0 closer to 0.29 since f 0(0.283) =
0.

7. The methods all find the solution 0.23235.

8. The width is approximately W = 16.2121 ft.

9. The minimal material is approximately 573.64895 cm2.

10. Fibonacci’s answer was 1.3688081078532, and Newton’s Method gives 1.36880810782137 with
a tolerance of 10�16, so Fibonacci’s answer is within 4⇥ 10�11. This accuracy is amazing for
the time.
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