
Chapter 1 Limits and Continuity 

1.1	 Limits of Functions Using Numerical and Graphical 
Techniques 

Concepts and Vocabulary 

1. The limit as x approaches c of a function f is written symbolically as (c) lim f(x) . 
x→c 

2. True . The tangent line to the graph of f at a point P = (c, f(c)) is the limiting position 
of the secant lines passing through P and a point (x, f(x)), x = c, as  x moves closer to c. 

3. False . If f  is not defined at x = c, the lim f(x) may exist. 
x→c 

4. False . The limit L of a function y = f(x) as x  approaches the number c does not depend 
on the value of f at c. 

f(x) − f(c)
 lim 
x→c x  c
 

5. False . If exists, it equals the slope of the tangent line to the graph of f 

at the point (c, f(c)).

−

 

6. False . The limit of a function y = f(x) as x  approaches a number c equals L if and only 
if both of the one-sided limits as x approaches c equal L. 

Skill Building 

7. The values in the table below suggest that the value of f(x) = 2x can be made “as close 
as we  please” to 2 by choosing  x “sufficiently close” to 1. It therefore appears that 

lim 2x = 2  . 
x→1 

x 0.9 0.99 0.999 → 1 ← 1.001 1.01 1.1 

f(x) = 2x 1.8 1.98 1.998 f(x) approaches 2 2.002 2.02 2.2 

8. The values in the table below suggest that the value of f(x) =  x + 3 can be made “as close 
as we  please” to 5 by choosing  x “sufficiently close” to 2. It therefore appears that 

lim (x + 3)  =  5  . 
x→2

x 1.9 1.99 1.999 → 2 ← 2.001 2.01 2.1 

f(x) = x  + 3 4.9 4.99 4.999 f(x) approaches 5 5.001 5.01 5.1 
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x −0.1 −0.01 −0.001 → 0 ← 0.001 0.01 0.1 

f(x) = x 2 + 2 2.01 2.0001 2.000001 f(x) approaches 2 2.000001 2.0001 2.01 

x −1.1 −1.01 −1.001 → −1 ← −0.999 −0.99 −0.9 
f(x) =  x 2 − 2 −0.79 −0.9799 −0.997999 f(x) approaches −1 −1.001999 −1.0199 −1.19 

x −3.5 −3.1 −3.01 → −3 ← −2.99 −2.9 −2.5 

x2 − 9 
f(x) =  

x + 3  
−6.5 −6.1 −6.01 f(x) approaches −6 −5.99 −5.9 −5.5 

x −1.1 −1.01 −1.001 → −1 ← −0.999 −0.99 −0.9 

x3 + 1
f(x) =  

x + 1  
 
3.31 3.0301 3.003001 f(x) approaches 3 2.997001 2.9701 2.71 

x −0.2 −0.1 −0.01 → 0 ← 0.01 0.1 0.2 

2− 2ex
f (x) =  

x 
−1.81269 −1.90325 −1.99003 f (x) approaches −2 −2.01003 −2.10342 −2.21403 

9. The values in the table below suggest that the value of f(x) = x 2 + 2 can be made “as 
close as we please” to 2 by choosing x “sufficiently close” to 0. It therefore appears that 

lim (x2  + 2)  =  2  . 
x→0

10. The values in the table below suggest that the value of f(x) = x 2 − 2 can be made “as 
close as we please” to −1 by choosing x  “sufficiently close” to −1. It therefore appears 
that 

lim (x2  − 2) = −1 . 
x→−1

x2 − 9 
f(x) =  

x + 3  
11. The values in the table below suggest that the value of can be made “as 

close as we please” to −6 by choosing x  “sufficiently close” to −3. It therefore appears 
that 

x2 − 9 
lim = −6 . 

x→−3 x + 3  

x3 + 1
f(x) =  

x + 1

 
12. The values in the table below suggest that the value of can be made “as 

close as we please” to 3 by choosing x “sufficiently close” to
 

 −1. It therefore appears that 

x3 + 1  
lim = 3 .  

x→−1 x + 1  

13. The values in the table below, which have been rounded to five decimal places for display 

purposes, suggest that the value of
2 − 2ex

 f(x) =  
x 

can be made “as close as we please” to 

−2 by choosing x  “sufficiently close” to 0. It therefore appears that 

2 − 2ex
lim = −2 . 
x→0 x 



x 0.9 0.99 0.999 → 1 ← 1.001 1.01 1.1 

ln x 
f (x) =  

x − 1 
1.05361 1.00503 1.00050 f(x) approaches 1 0.99950 0.99503 0.95310 

x −0.2 −0.1 −0.01 → 0 ← 0.01 0.1 0.2 

1− cos x
f (x) =  

x 

 −0.09967 −0.04996 −0.00500 f (x) approaches 0 0.00500 0.04996 0.09967 

x −0.2 −0.1 −0.01 → 0 ← 0.01 0.1 0.2 

sin x 
f (x) =  

1 + tan  x 
−0.24918 −0.11097 −0.01010 f(x) approaches 0 0.00990 0.09073 0.16518 
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14. The values in the table below, which have been rounded to five decimal places for display 

purposes, suggest that the value of
ln x 

f(x) =  
x − 1

 can be made “as close as we please” to 

 

1 by choosing  x “sufficiently close” to 1. It therefore appears that
 

ln x 
lim = 1 .  
x→1 x − 1 

15. The values in the table below, which have been rounded to five decimal places for display 

purposes, suggest that the value of 
1 − cos x 

f(x) = 	  
x 

can be made “as close as we please” 

to 0 by choosing x “sufficiently close” to 0. It therefore appears that 

1 − cos x 
lim = 0  . 
x→0 x 

16. The values in the table below, which have been rounded to five decimal places for display 

purposes, suggest that the value of
sin x 

f(x) = 	  
1 + tanx 


 can be made “as close as we please” 

to 0 by choosing x “sufficiently close” to 0. It therefore appears that
 
 

sin x 
lim = 0 .  
x→0 1 + tanx  

17. The graph suggests that the value of f approaches 2 as x approaches 2 from the left and 
as x approaches 2 from the right. Thus, 

(a) lim f(x) =  2 ; 
x→2− 

(b) lim f(x) =  2  ; and  
x→2+ 

(c) lim f(x) =  2 . 
x→2 

18. The graph suggests that the value of f approaches 4 as x approaches 2 from the left and 
as x approaches 2 from the right. Thus, 

(a) lim f(x) =  4 ; 
x→2− 

(b) lim f(x) =  4  ; and  
x→2+ 

(c) lim f(x) =  4 .
x→2 
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19. The graph suggests that the value of f approaches 3 as x approaches 2 from the left but 
the value of f approaches 6 as x approaches 2 from the right. Thus, 

(a) lim f(x) =  3 ; 
x→2− 

(b) lim f(x) =  6  ; and  
x→2+ 

(c) lim f(x)
x→2 

does n ot e xist b ecause there is no single number that the values of f ap­

proach when x is  close to 2.  

20. The graph suggests that the value of f approaches 4 as x approaches 2 from the left but 
the value of f approaches 2 as x approaches 2 from the right. Thus, 

(a) lim f(x) =  4  ; 
x→2− 

(b) lim f(x) =  2  ; and  
x→2+ 

(c) lim f(x)
x→2 

does n ot e xist b ecause there is no single number that the values of f ap­

proach when x is  close to 2.  

21. The graph suggests that, as x approaches c from the left, 

lim f(x) = 1, 
x→c− 

while, as x approaches c from the right, 

lim f(x) = 1. 
x→c+ 

Because the two one-sided limits are equal, it follows that 

lim f(x) =  1  . 
x→c 

22. The graph suggests that, as x approaches c from the left, 

lim f(x) = 1, 
x→c− 

while, as x approaches c from the right, 

lim f(x) = 1. 
x→c+ 

Because the two one-sided limits are equal, it follows that 

lim f(x) =  1  . 
x→c 

23. The graph suggests that, as x approaches c from the left, 

lim f(x) = 1, 
x→c− 

while, as x approaches c from the right, 

lim f(x) = 1. 
x→c+ 

Because the two one-sided limits are equal, it follows that 

lim f(x) =  1 . 
x→c 
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24. The graph suggests that, as x approaches c from the left, 

lim f(x) = 1, 
x→c− 

while, as x approaches c from the right,
 

lim f(x) = 2.
 
x→c+ 

Because the two one-sided limits are not equal (that is, there is no single number that 
the values of f approach when x is close to c), it follows that 

lim f(x) does n ot e xist .  
x→c 

25. The graph suggests that, as x approaches c from the left, 

lim f(x) =  
− 

−1, 
x→c

while, as x approaches c from the right,
 

lim f(x) = 1.
 
x→c+ 

Because the two one-sided limits are not equal (that is, there is no single number that 
the values of f approach when x is close to c), it follows that 

lim f(x)
x→c 

does n ot e xist .  

26. The graph suggests that, as x approaches c from the left, 

lim f(x) = 1, 
x→c− 

while, as x approaches c from the right,
 

lim f(x) = 3.
 
x→c+ 

Because the two one-sided limits are not equal (that is, there is no single number that 
the values of f approach when x is close to c), it follows that 

lim f(x) does n ot e xist .  
x→c 

27. The graph suggests that, as x approaches c from the left, 

lim f(x) = 2, 
x→c− 

while, as x approaches c from the right, 

lim f(x) = 1. 
x→c+ 

Because the two one-sided limits are not equal (that is, there is no single number that 
the values of f approach when x is close to c), it follows that 

lim f(x)
x→c 

does n ot e xist .  
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28. The graph suggests that, as x approaches c from the left, 

lim f(x) = 1, 
x→c− 

while, as x approaches c from the right,
 

lim f(x) = 2.
 
x→c+ 

Because the two one-sided limits are not equal (that is, there is no single number that 
the values of f approach when x is close to c), it follows that 

lim f(x)
x→c 

does n ot e xist .  

29. The graph of f shown below suggests that, as x approaches 2 from the left, 

lim f(x) = 9, 
x→2− 

while, as x approaches 2 from the right,
 

lim f(x) = 9.
 
x→2+ 

Because the two one-sided limits are equal, it follows that 

lim f(x) =  9  . 
x→2 

5 

10 

15 

20 

(2, 9) 

-2 -1 1 2 3 4 5 

30. The graph of f shown below suggests that, as x approaches 0 from the left, 

lim f(x) = 1, 
x→0− 

while, as x approaches 0 from the right,
 

lim f(x) = 0.
 
x→0+ 

Because the two one-sided limits are not equal, it follows that 

lim f(x)
x→0 

does n ot e xist .  



10 

8 

6 

2 

4 

-1 

-2 

1 2 3 
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-3 
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-1 

1 

2 

3 

4 

31. The graph of f shown below suggests that, as x approaches 1 from the left, 

lim f(x) = 2, 
x→1− 

while, as x approaches 1 from the right,
 

lim f(x) = 4.
 
x→1+ 

Because the two one-sided limits are not equal, it follows that
 

lim f(x)
x→1 

does n ot e xist .
  

32. The graph of f shown below suggests that, as x approaches 2 from the left, 

lim f(x) = 4, 
x→2− 

while, as x approaches 2 from the right,
 

lim f(x) = 4.
 
x→2+ 

Because the two one-sided limits are equal, it follows that 

lim f(x) =  4 . 
x→2 
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2 

4 

6 

8 

10 

12 

14 

(2, 4) 

1 2 3 4 

33. The graph of f shown below suggests that, as x approaches 1 from the left, 

lim f(x) = 2, 
x→1− 

while, as x approaches 1 from the right,
 

lim f(x) = 2.
 
x→1+ 

Because the two one-sided limits are equal, it follows that
 

lim f(x) = 
  2  . 
x→1 

0.5 1 1.5 2 

2 

4 

6 

8 

10 

(1, 2) 

34. The graph of f shown below suggests that, as x approaches −1 from the left, 

lim f(x) = − 1, 
x→−1− 

while, as x approaches −1 from the right,
 

lim f(x) = 0.
 
x→−1+ 

Because the two one-sided limits are not equal, it follows that 

lim f(x)
x→−1 

does n ot e xist .  
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-2 -1.5 -1 -0.5 

-8 

-7 

-6 

-5 

-4 

-3 

-2 

-1 

35. The graph of f shown below suggests that, as x approaches 0 from the left, 

lim f(x) = 0, 
x→0− 

while, as x approaches 0 from the right,
 

lim f(x) = 1.
 
x→0+ 

Because the two one-sided limits are not equal, it follows that
 

lim f(x)
x→0 

does n ot e xist .
  

-2 -1 1 2 

1 

2 

3 

4 

5 

36. The graph of f shown below suggests that, as x approaches 1 from the left, 

lim f(x) = 1, 
x→1− 

while, as x approaches 1 from the right,
 

lim f(x) = − 1.
 
x→1+ 

Because the two one-sided limits are not equal, it follows that 

lim f(x)
x→1 

does n ot e xist .  



1 

2 

-1 -0.5 

-2 

-1 

0.5 1 1.5 2 

-3 

-4 
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Applications and Extensions 

37. Answers will vary.	 Below is the graph of a function f for which 

lim f(x) = 3; 
x→2 

lim f(x) = 3; 
x→3− 

lim f(x) = 1
x→3+ 

;  f(2) = 3; f(3) = 1. 

1 2 3 4 

1 

2 

3 

38. Answers will vary.	 Below is the graph of a function f for which 

lim f(x) = 0; 
x→−1 

lim f(x) = − 2; 
x→2− 

lim f(x) = − 2; 
x→2+ 

f(−1) is not defined; f(2) = −2. 



1 

-2 -1 

-1 

1 2 3 

-2 

1 

2 

3 

-2 -1 

-1 

1 2 3 4 
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39. Answers will vary.	 Below is the graph of a function f for which 

lim f(x) = 4; 
x→1 

lim f(x) = − 1; 
x→0− 

lim f(x) = 0;  
x→0+ 

f(0) = −1; f(1) = 2. 

-1 1 2 

-1 

1 

2 

3 

4 

40. Answers will vary.	 Below is the graph of a function f for which 

lim f(x) = 2; 
x→2 

lim f(x) = 0; 
x→−1 

lim f(x) = 1;  
x→1 

f(−1) = 1; f(2) = 3. 



x 5 ← 5.001 5.01 5.1 

x
f(x) =  

|  − 5| 
x − 5 

f(x) approaches 1 1 1 1 

x 4.9 4.99 4.999 → 5 

f
|x − 5

(x) =  
|

x − 5 
−1 −1 −1 f(x) approaches −1 
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41. The table of values below suggests 
|x − 5

lim 
|
= 1 .

x→5+ x − 5 

Alternately, the graph below suggests lim
|x − 5

 
|
= 1 . 

x→5+ x − 5 

1 2 3 4 5 6 7 8 9 10 

-1 

-0.5 

0.5 

1 

42. The table of values below suggests lim
|x − 5

 
|
= 

x→5− x  5 
−1 . −

Alternately, the graph below suggests 
|x − 5

lim 
|
= 

x→5− x − 5 
−1 . 

1 2 3 4 5 6 7 8 9 10 

-1 

-0.5 

0.5 

1 



x 0.4 0.49 0.499 → 1 
2

f(x) = l 2xJ 0 0 0 f(x) approaches 0 

1 

0.8 

0.6 

0.4 

0.2 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

1 
2 ← 0.501 0.51 0.6x 

f(x) = l 2xJ f(x) approaches 1 1 1 1 

1 

0.8 

0.6 

0.4 

0.2 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
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43. The table of values below suggests lim l2xJ = 0 . 
)
− 

x→( 1 
2

Alternately, the graph below suggests lim l2xJ = 0 . 
− 

x→( 1 
2 )

44. The table of values below suggests lim l2xJ = 1 . 
)
+ 

x→( 1 
2

Alternately, the graph below suggests lim l2xJ = 1 . 
)
+ 

x→( 1 
2

45. The table of values below suggests lim l2xJ = 1 . 
x→( 2 

3 )
− 



→ 2 3 x 0.6 0.66 0.666 

f(x) = l 2xJ 1 1 1 f(x) approaches 1 

1 

0.8 

0.6 

0.4 

0.2 

x = 2/3 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

2 ← 3 x 0.667 0.67 0.7

f(x) = l 2xJ f(x) approaches 1 1 1 1 

1 

0.8 

0.6 

0.4 

0.2 

x = 2/3 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

x 2 ← 2.001 2.01 2.1 

f(x) =  
�
|x| − x f(x) approaches 0 0 0 0 
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Alternately, the graph below suggests lim l2xJ = 1 .
)
− 

x→( 2 
3

46. The table of values below suggests lim l2xJ = 1 .
)
+

x→( 2 
3

Alternately, the graph below suggests lim l2xJ = 1 .
)
+

x→( 2 
3

47. The table of values below suggests lim 
�

x→2+ 
|x| − x = 0 . 



2.5 

2 

1.5 

1 

0.5 

0 

-4 -2 0 2 4 

x 1.9 1.99 1.999 → 2 

f(x) =
�
 |x| − x 0 0 0 f(x) approaches 0 

2.5 

2 

1.5 

1 

0.5 

0 

-4 -2 0 2 4 

x	 2 ← 2.000000001 2.000001 2.001 

f(x) =  
�
3 lxJ − x f(x) approaches 0 −0.001 −0.01 −0.1 
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Alternately, the graph below suggests lim 
�
|x| − x = 0 . 

x→2+ 

48. The table of values below suggests lim 
�
|x| − x = 0 .  

x→2− 

Alternately, the graph below suggests lim 
�

x→2− 
|x| − x = 0 . 

49. The table of values below suggests lim 
�
3 

→2+ 
lxJ − x = 0 . 

x

Alternately, the graph below suggests lim 
�
3 

x→2+ 
lxJ − x = 0 . 

√

√

√

√

√

√

√



x 1.9 1.99 1.999 → 2 

f(x) =  
�
3 lxJ − x −0.96549 −0.99666 −0.99967 f(x) approaches −1 
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0.5 1 1.5 2 2.5 3 

-0.2 

-0.4 

-0.6 

-0.8 

-1 

50. The table of values below, in which the function values have been rounded to five decimal 
places for display purposes, suggests lim 

�
3 lxJ − x = −1 . 

x→2− 

Alternately, the graph below suggests lim 
�
3 lxJ − x = 

x→2− 
−1 . 

0.5 1 1.5 2 2.5 3 

-0.2 

-0.4 

-0.6 

-0.8 

-1 

51.	 (a) The secant line containing the points (2, 12) and (3, 27) has a slope of 

27 − 12 15 
msec = = = 15 .  

3 − 2 1 

(b) The secant line containing the points (2, 12) and (x, f(x)) for x = 2  has  a  slope  of  

3x2 − 12 3(x 2)(x + 2)  
msec = =	 

−
= 3(x + 2)  . 

x − 2 x − 2 

(c) The values in the table below suggest that the slope of the tangent line to the graph 
of f at 2 is 

lim msec = 12  .
x→2 

√

√

√

�



x 1.9 1.99 1.999 → 2 ← 2.001 2.01 2.1 

msec 11.7 1 1.97 11.997 msec approaches 12 12.003 12.03 12.3 

 

x 1.9 1.99 1.999 → 2 ← 2.001 2.01 2.1 

msec 11.41 11.9401 11.994001 msec approaches 12 12.006001 12.0601 12.61 
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(d) The secant line from part (a) has slope 15 and passes through the point (2, 12). The 
equation of this secant line is therefore 

y − 12 = 15(x − 2) or y = 15x − 18. 

The tangent line at x = 2 has slope 12 and also passes through the point (2, 12); the 
equation of this line is 

y − 12 = 12(x − 2) or y = 12x − 12. 

The figure below displays the graph of f as the solid curve, the graph of the tangent 
line as the dashed curve, and the graph of the secant line as the dotted curve. 

1 2 3 

5 

10 

15 

20 

25 

30 

(2, 12) 

(3, 27) 

52.	 (a) The secant line containing the points (2, 8) and (3, 27) has a slope of 

27 − 8 19 
msec = = = 19 .  

3 − 2 1 

(b) The secant line containing the points (2, 8) and (x, f(x)) for x = 2  has  a  slope  of  

x3 − 8 (x  2)(x2 + 2x + 4)  
msec = =	 

−
= x2 + 2x + 4  . 

x − 2 x − 2 

(c) The values in the table below suggest that the slope of the tangent line to the graph 
of f at 2 is
 

lim msec = 12 .
 
x→2 

(d) The secant line from part (a) has slope 19 and passes through the point (2, 8). The 
equation of this secant line is therefore 

y − 8 = 19(x − 2) or y = 19x − 30. 

The tangent line at x = 2 has slope 12 and also passes through the point (2, 8); the 
equation of this line is 

y − 8 = 12(x − 2) or y = 12x − 16. 

The figure below displays the graph of f as the solid curve, the graph of the tangent 
line as the dashed curve, and the graph of the secant line as the dotted curve. 

�



 

h −0.5 −0.1 −0.001 0.001 0.1 0.5 

msec 1.75 1.95 1.9995 2.0005 2.05 2.25 
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1 2 3 

10 

20 

30 

40 

(2, 8) 

(3, 27) 

53. (a) Let f(x) =  1 x2 − 1. The slope of the secant line containing the points P = (2, f(2))
and Q = (2 + h, f(2 + h)) is 

2

f(2 + h) − f(2) 1 (2 + h)2 2 − 1 − 
�
122 − 12

�

msec = = 
(2 + h) − 2 h 

1 (4 + 4h+ h2) − 1 − 122 + 1  2 + 2h+ 1h2 − 2 2h+ 1h2 

= 2 2 = 2 = 2 1 
= 2 +  h ,

h h h 2 

provided h = 0  . 

(b) Using the result from part (a), 

(c) The table from part (b) suggests that lim msec = 2 . 
h→0 

(d) Because the limit of the slope of the secant line is 2, the slope of the line tangent to 
the graph of f at the point P = (2, f(2)) is 2 . 

(e) The tangent line to f at the point P = (2, f(2)) has slope 2 and contains the point 
(2, f(2)) = (2, 1). The equation of the tangent line is therefore 

y − 1 = 2(x− 2) or y = 2x− 3. 

The figure below displays the graph of f as the solid curve and the graph of the 
tangent line as the dashed curve. 

�



 

h −0.1 −0.01 −0.001 −0.0001 0.0001 0.001 0.01 0.1 

msec −2.1 −2.01 −2.001 −2.0001 −1.9999 −1.999 −1.99 −1.9 
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1 2 3 

-1 

1 

2 

3 

y = 2x – 3 

54. (a) Let f(x) = x 2− 1. The slope of the secant line containing the points P = (−1, f(−1)) 
and Q = (−1 +  h, f(−1 + h )) is 

f(−1 + h ) − f(−1) (−1 + h )2 − 1 − 
�
(−1)2 − 1

�
 

msec = = 
(−1 + h ) − (−1) h 

1 − 2h+ h2 − 1 
= 

− 1 + 1  −2h+ h2 

= = −2 +  h ,
h h
 

provided h = 0. 
  
(b) Using the result from part (a), 

(c) The table from part (b) suggests that lim msec = −2 . 
h→0 

(d) Because the limit of the slope of the secant line is −2, the slope of the line tangent 
to the graph of f at the point P = (−1, f(−1)) is −2 . 

(e) The tangent line to f at the point P = (−1, f(−1)) has slope −2 and contains the 
point (−1, f(−1)) = (−1, 0). The equation of the tangent line is therefore 

y − 0 =  2(x+ 1)  or  y = −2x− 2. −
The figure below displays the graph of f as the solid curve and the graph of the 
tangent line as the dashed curve. 

-2 -1 1 

-1 

1 

2 

3 

�



1−
2 

1−
4 

1−
8 

 1 −
10 

1 − 
12 

1

12

1

10

1

8

1

4

1 
2 

x → 0 ← 

π 
f(x) = cos  

x 
1 1 1 1 1 f(x) approaches 1 1 1 1 1 1 

1−
3

1−
5

1−
7

1 − 
9 

1

9

1

7

1

5

1 
3 

x −1 → 0 ← 1 

π 
f(x) = cos  

x 
−1 −1 −1 −1 −1 f approaches −1 −1 −1 −1 −1 −1 

x −0.1 −0.01 −0.001 −0.0001 → 0 ← 0.0001 0.001 0.01 0.1 

π 
f(x) = cos 

x2
1 1 1 1 f(x) approaches 1 1 1 1 1 
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55. (a) The values in the table below suggest that 

π 
lim cos = 1  . 
x→0 x 

(b) The values in the table below suggest that 

π 
lim cos = −1. 
x→0 x 

(c) Because the values obtained in parts (a) and (b) are not equal, we conclude the limit 

does not exist . As x  gets closer to 0, the argument to the cosine function, π ,x  becomes 
unbounded. Consequently, the cosine function oscillates repeatedly between −1 and  
1 and never approaches a single value. 
A table of values can be a useful tool for investigating a limit, but should only be 
viewed as providing evidence of a possible value for a limit. A final conclusion re­
garding a limit should be based on the properties of limits that will be developed in 
subsequent sections of this chapter. 

(d) The figure below left displays the graph of f with an x-window of (−2π, 2π), and 
the figure below right displays the graph of f with an x-window of (−0.1, 0.1). Using 

either graph, it appears that lim f(x)
x→0 

does not exist  because the function value does 

not approach a single number. Instead, the function seems to oscillate more rapidly 
between −1 and  1 as x  gets closer to 0. 

-6 -4 -2 2 4 6 

-1 

-0.5 

0.5 

1 

-0.1 -0.05 0.05 0.1 

-1 

-0.5 

0.5 

1 

56. (a) The values in the table below suggest that 

π 
lim cos = 1 .  
x→0 x2 



2−
3

2−
5

2−
7

2	 − 
9	 

2

9

2

7

2

5

2 
3 

x → 0 ← 

√
2
2

√
2
2

√
2
2

√	 
2	 
2	 

√
f(x) approaches 2

2

√
2
2

√
2
2

√
2
2

√
2
2

π 
f(x) = cos 	  

x2 

x 1.9 1.99 1.999 → 2 ← 2.001 2.01 2.1 

x − 8 −3.05 f (x) =  
2 

−3.005 −3.0005 f(x) approaches −3 −2.9995 −2.995 −2.95 
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(b) The values in the table below suggest that 

π
√ 

 2 
lim cos = . 
x→0 x2 2 

(c) Because the values obtained in parts (a) and (b) are not equal, we conclude the limit 

does not exist . As x  gets closer to 0, the argument to the cosine function, π
2 ,x

becomes unbounded. Consequently, the cosine function oscillates repeatedly between 
−1 and 1 and never approaches a single value. 
A table of values can be a useful tool for investigating a limit, but should only be 
viewed as providing evidence of a possible value for a limit. A final conclusion re­
garding a limit should be based on the properties of limits that will be developed in 
subsequent sections of this chapter. 

(d) The figure below left displays the graph of f with an x-window of (−2π, 2π), and 
the figure below right displays the graph of f with an x-window of (−1, 1). Using 

either graph, it appears that lim f(x)
x→0 

does not  exist  because the function value does 

not approach a single number. Instead, the function seems to oscillate more rapidly 
between −1 and 1 as  x gets closer to 0. 

-6 -4 -2 2 4 6 

-1 

-0.5 

0.5 

1 

-1 -0.5 0.5 1 

-1 

-0.5 

0.5 

1 

57. (a) The values in the table below suggest that 

x − 8 
lim = −3 . 
x→2 2 

 

x− 8
 f(x) =  

2 
  

(b) The function is within 0.1 of −3 provided |f(x) − (−3)| ≤ 0.1; that is,

 
x 

  − 8 
+ 3

   ≤ 0.1 
2   

|(x − 8) + 6| ≤ 0.2 

|x − 2| ≤ 0.2. 

Thus, if 1.8 ≤ x ≤ 2.2 , then  f(x) is within 0.1 of −3. 



 
x 8

 
 −  

+ 3
 
   ≤ 0.01 

2   

|(x− 8) + 6| ≤ 0.02 

|x− 2| ≤ 0.02. 

x 1.9 1.99 1.999 → 2 ← 2.001 2.01 2.1 

f(x) = 5− 2x 1.2 1.02 1.002 f(x) approaches 1 0.998 0.98 0.8 
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x− 8 
 f(x) =  

2 
(c) The function is within 0.01 of −3 provided |f(x) − (−3)| ≤ 0.01; that 

is, 

Thus, if 1.98 ≤ x ≤ 2.02 , then f (x) is within 0.01 of −3. 
58. (a) The values in the table below suggest that 

lim(5 − 2x) =  1  . 
x→2

(b) The function f(x) = 5− 2x is within 0.1 of 1 provided |f(x) − 1| ≤ 0.1; that is, 

|(5 − 2x) − 1| ≤ 0.1 

|4 − 2x| ≤ 0.1 

| − 2(x− 2)| ≤ 0.1 

|x− 2| ≤ 0.05. 

Thus, if 1.95 ≤ x ≤ 2.05 , then f (x) is within 0.1 of 1. 

(c) The function f(x) = 5− 2x is within 0.01 of 1 provided |f(x) − 1| ≤ 0.01; that is, 

|(5 − 2x) − 1| ≤ 0.01 

|4 − 2x| ≤ 0.01 

| − 2(x− 2)| ≤ 0.01 

|x− 2| ≤ 0.005. 

Thus, if 1.995 x 2.005 ,≤ ≤ then f (x) is within 0.01 of 1. 

59.	 (a) Because the Postal Service rounds the weight of the letter up to the next whole number 
of ounces, the first-class postage charged is 

 
0.47, if ⎧

0 < w ≤ 1  
0.68, if 1 < w 2

C(w) =
⎨
 ≤

 0.89, if 2 < w ≤ 3 ⎩
1.10, if 3 < w ≤ 3.5. 

where postage is measured in dollars and weight is measured in ounces. This can be 
written compactly in terms of the ceiling function as 

C(w) = 0.47 + 0.21�w − 1�. 

(b) The domain of C is the set {w|0 < w ≤ 3.5} . 
(c) The graph of the postage function C is shown below. 

∣
∣∣∣

∣
∣∣∣
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1.10 

0.89 

0.68 

0.47 

0.5 1 1.5 2 2.5 3 3.5 

Weight (ounces) 

(d) The graph of C suggests that 

lim C(w) = 0.68 and lim C(w) = 0.89 . 
w→2−	 w→2+ 

Because these two one-sided limits are not equal, this suggests that 
lim C(w)
w→2 

does not exist  . 

(e) The graph of C suggests that lim C(w) = 0.47 . 
w→0+ 

(f) The graph of C suggests that lim C(w) = 1.10 . 
w→3.5− 

60.	 (a) Let w denote the weight (in ounces) of the envelope. For envelopes weighing less 
than or equal to 1 ounce, the cost is $0.94. For 1 < w ≤ 2, the cost is $0.94 plus an 
additional fee of $0.21 for a total of $1.15. For 2 < w ≤ 3, the cost is $0.94 plus an 
additional fee of 2  $0.21 for a total of $1.36. For × 3 < w ≤ 4, the cost is $0.94 plus 
an additional fee of 3 × $0.21 for a total of $1.47. Continuing in this manner gives the 
piecewise function defined below. This function applies to envelopes weighing up to 
and including 13 ounces. First-class rates do not apply to large envelopes weighing 
more than 13 ounces. 

 ⎧
$0.94 if 0 < w  1   ⎪

 ⎪
 $1.15 if 1 < w

≤
 2 ⎪

 ⎪
  

≤⎪
$1.36 if 2 < w  3 ⎪

 ⎪
 ⎪
   ⎪ $1.57 if 3 < w

≤
 4 ⎪

 ⎪
  $1.78 if 4  < w

≤
 ⎪
5 ⎪⎪

 ⎪
 $1.99 if 5 < w

≤
 6 ⎪

C(w) =
⎨
 $2.20 if 6 < w

≤
 7 

   $2.41 if 7 < w
≤

 8 ⎪⎪
 ⎪
  $2.62 if  8 

≤⎪
< w  9⎪⎪

 ⎪
  $2.83 if 9 < w

≤
⎪ ≤ 10 ⎪

 ⎪
 ⎪
 $3.04 if 10 < w  ⎪
 11⎪
  

≤⎪
  $3.25 if 11 < w ≤ 12 ⎪⎪⎩

$3.46 if 12 < w ≤ 13 

(b) The domain of the function {w  0 < w  13}. The weight of these envelopes can be 
any positive real number up to and including 13 ounces. 

| ≤

(c) The graph of the piecewise function is pictured below. 
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(d) From the graph, lim C(w) = $0.94 and lim C(w) = $1.15. 
w→1− w→1+ 

Since lim C(w) = 
w→1− 

lim C(w),
w→1+ 

 we conclude lim C(w) does not exist. 
w→1 

(e) From the graph, lim C(w) = $3.25 and lim C(w) = $3.46. 
w→12− w→12+ 

Since lim C(w) = 
w→12− 

lim C(w), we conclude lim C(w) does not exist. 
w→1 w→12+ 

(f) From the graph, lim C(w) = $0.94. 
w→0+ 

As w gets closer to 0 from the right hand side, 

C(w) is $0.94. 

(g) From the graph, lim C(w) = $3.46. As w gets closer to 13 ounces from the left 

hand side, 
w→13− 

C(w) is $3.46. 

61. Let S(t) denote a student’s final exam score as a function of the time t that the student 
studies. 

(a) Professor Smith’s claim can be written symbolically as 

lim S(t) = 100 . 
t→7 

(b) Using the E-δ definition of a limit, Professor Smith’s can be written as: 

given any E > 0, there is a number δ > 0 so that whenever 0 < |t− 7| < δ then 

|S(t) − 100| < E . 

62. If h = x− c, then  x = h+ c and h approaches zero as x approaches c. Thus,  

f(x) − f(c) f(c+ h) − f(c) f(c+ h) − f(c)
mtan = lim = lim = lim . 

x→c x− c h 0 (c+ h) − c → h→0 h 

63. No, the value of the function f at x = 2 has no bearing on lim f(x) . 
x→2 

The limit exam­

ines the value of f as x approaches 2 but is not equal to 2. 

64. No , lim f(x) conveys no information about the value of f at x = 2. The limit examines 

the value of f as x approaches 2 but is not equal to 2. 
x→2 

65. (a) Because 
x− 3 −(3 − x) 

= = −1 
3 − x 3 − x 

provided x = 3, the graph of f(x) is the horizontal line y = −1 excluding the point 

(3,−1) . 

�

�

�



x −0.01 −0.001 −0.0001 → 0 ← 0.0001 0.001 0.01 

f (x) = (1 +  x)1/x 2.731999 2.719642 2.718418 2.718146 2.716924 2.704814 
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(b) The graph of f (see below) suggests that 

lim f(x) = − 1 and lim f(x) =  −1 . 
x→3−	 x→3+ 

1 2 3 4 

-2 

-1.5 

-1 

-0.5 

0.5 

1 

(c) Because the two one-sided limits are equal, the graph suggests that lim f(x) 
x→3 

exists and is equal to −1 . 

66.	 (a) The values in the table below, which have been rounded to five decimal places for 
display purposes, suggest that 

 lim(1 + x)1/x ≈ 2.72 . 
x→0

(b) The figure below left displays the graph of g for −0.5 ≤ x ≤ 0.5. The figure below 
right displays a closer view of the graph of g, focusing on the y-intercept. 

-0.4 -0.2 0.2 0.4 

1 

2 

3 

4 

2.6 

2.65 

2.7 

2.75 

2.8 

2.85 

(c) The table in part (a) and the graphs in part (b) all suggest that 

 lim(1 + x)1/x ≈ 2.72 . 
x→0

(d) Using the computer algebra system Mathematica, 

 lim(1 + x)1/x = e 
x→0

≈ 2.71828 . 



lim f(x) =  0  . 
x→2 
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Challenge Problems 

67. The graph of the function f is shown below. Note that except when x is an integer, the 
graph of f coincides with the x-axis. The graph suggests that 

-3 -2 -1 1 2 3 

0.2 

0.4 

0.6 

0.8 

1 

68. The graph of f (see Problem 67) suggests
 

lim f(x) = 
  0  . 
x→1/2 

69. The graph of f (see Problem 67) suggests
 

lim f(x) = 
  0  . 
x→3 

70. The graph of f (see Problem 67) suggests
 

lim f(x) = 
  0  . 
x→0 

1.2 Limits of Functions Using Properties of Limits 

Concepts and Vocabulary 

1. (a) lim(−3) = −3 . 
x→4

(b) lim π = π . 
x→0
 

2. If lim f(x) = 3,
x→c

 then 5

lim [f(x)] = 35 = 243 . 
x→c 

 
3. If lim f(x) = 64, then

x→c
 lim 

�
3 f(x) =  

√
3 
64 = 4 . 

x→c 

4. (a) lim x = −1 . 
x→−1 

(b) lim x = e . 
x→e 

5. (a) lim(x − 2) = 0 − 2 =  −2 . 
x→0

√
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1 7 
 lim (3 + x) = 3 +  = . 
x→ 1 2 2 2 

(b)

6. (a) lim(−3x) = − 3(2) = −6 . 
x→2

(b) lim (3x) = 3(0) = 0 . 
x→0

7. True . If p  is a polynomial, then lim p(x) = p (5). 
x→5

8. If the domain of a rational function R is {x|x = 0}, then lim R(x) =  R( 2 ).  
x→2 

9. False . Properties of limits can be used for one-sided limits. 

(x + 1)(x + 2)  
and g(x) =  x + 2, then f (x) =  

x + 1  
10. True . If lim f(x) = lim g(x) = 1.  

x→−1 x→−1

Skill Building 

11. lim [2(x + 4)] = 2 lim (x + 4) = 2
[
 lim x + lim 4

]
= 2(3 + 4) =  14  . 

x→3 x→3 x→3 x→3 

  
lim [3(x + 1)] = 3 lim (x + 1) = 3 lim x + lim 1 = 3(−2 + 1)  =  −3 . 

x→−2 x→−2 x→−2 x→−2 
12. 

13. 

lim [x(3x − 1)(x + 2)] = lim x · lim (3x − 1) 
x→−2 x→−2 x→−2

· lim (x + 2)  
x→−2

( ) ( )
= lim x 

x→−2 
· 3 lim x − lim 1 · lim x + lim 2

x→−2 x→−2 x→−2 x→−2 

= −2[3(−2) − 1][−2 + 2]  =  −2(−7)(0) = 0 . 

14. 

lim [x(x − 1)(x + 10)] = lim x 
x

· lim (x − 1) 
→−1 x→−1 x→−1

· lim (x + 10) 
x→−1

  ( ) ( )
= lim x · lim x − lim 1 · lim x + lim 10 

x→−1 x→−1 x→−1 x→−1 x→−1 

= −1(−1 − 1)(−1 + 10) = −1(−2)(9) = 18 . 

15. lim
[ 3 

(3t − 2)3 = lim(3t − 2)
]

3
= [3(1) − 2] = 13 = 1 . 

t→1 t→1

16.  
[ 2 

 lim − 2
(−3x+ 1)2 = lim ( 3x + 1)

]
= [−3(0) + 1] = 12 = 1 . 

x→0 x→0

  
17. lim

√ 
 3 x = 3

V
 lim x = 3

√
 4 =  6 . 

x→4 x→4 

(
1 √ 

)
1 1 1 1 

lim 3 x = 
V
3 lim x = 

√
3 
8 =  · 2 =  . 

x→8 4 4 x→8 4 4 2 

 

18. 

19. lim
√   

 5x − 4 =  
V

lim (5x − 4) = 
�

5(3) 
√− 4 = 11 . 

x→3 x→3

20. lim
√  
 3t + 4  =  

V
lim(3t + 4) =  

�
3(2) + 4 = 

√
10 . 

t→2 t→2

�

√

√
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21. 
 

lim[t 
�

(5t + 3)(t + 4)] = lim t  lim 
�

(5t + 3)(t + 4)  =  2
V
 lim[(5t + 3)(t + 4)]  

t→2 t→2 
·
t→2 t→2

  
= 2

V
 lim(5t + 3) ·  lim(t + 4)  =  2

�
 (5(2) + 3)(2 + 4) = 2

√
 78 . 

t→2 t→2

22. 
 

lim [t
�
3 (t + 1)(2t − 1)] = lim t  lim 

�
3 (t + 1)(2t  1) = 1 

V
3 lim [(t + 1)(2t  1)]

t→−1 t→−1 
·
t→−1 

− −
t→−1

−
 

= − 
V
3 lim (t + 1) ·  lim (2t − 1) = − 

�
3 (−1 + 1)(2(−1) − 1) 

t→−1 t→−1√
3 

 
= − 0 =  0  . 

23. 

 1

( 
√ /2  1/2

lim x + x + 4)1/2 = 
[
lim ( 
√
x + x + 4)

]
= 

[
lim 
√
x + lim x + lim 4

]

x→9 x→9 x→9 x→9 x→9 

   1/2  1/2 

= 
V

lim x + 9 + 4  = 
(√

9 + 13
)
 = [16]1/2 = 4 .  

x→9 

24. 
1   

t
√  /3 1/3 1/3 

lim(  2t + 4)1/3 = 
[
lim(t 

√
2t + 4)

]
= 

[
lim t
√
 2t + lim 4

]
= 

[
lim t  lim 

√
2t + 4

]

t→2 t→2 t→2 t→2 t→2 
·
t→2
 

   1/3
 1/3 

= 2 · 
V

lim(2t) + 4  = 
[
2
�
 2(2) + 4

]
= 81/3 = 2 .  

t→2

25. 

2

  2/3   2/3
 
lim [4t(t + 1)] /3 = lim 4t(t + 1)  = lim (4t)  lim (t + 1) 
  

t→−1 t→−1 t→−1
·
t→−1

 ( ) 2/3 
= 4 lim t · lim t +  2/3 

lim 1 = [4(−1)(−1 + 1)] = 02/3 = 0 .  
t→−1 t→−1 t→−1 

33/5 
 

2
 /5 

lim (x 2−2x)3/5 = 
[
lim (x 2 − 2x)

]
= 

(
lim x 

)
− 2 lim x = (02−2(0))3/5 = 03/5 = 

x→0 x→0 x→0 x→0 

0 . 

26. 

27. lim(3t2 − 2t + 4) = 3(1)2 − 2(1) + 4 = 5 . 
t→1

28. lim (−3x 4 + 2x + 1)  =  −3(0)4 + 2(0) + 1  =  1 . 
x→0

( )4 ( )3 
1 1

(
1 
)

1 31 
 lim (2x 4 − 8x 3 + 4x − 5) = 2 − 8 + 4 − 5 =  − 1 + 2−  5 =  − . 
x 2 

2 2  8 → 1 2 8
29.

30. lim 3 

( )3 
1

(
1
)

 (27x + 9x + 1)  =  27 − + 9 − + 1 =  −1 − 3 + 1 =  −3 . 
x→− 1 

3
3 3

 
31. Because the limit of the denominator lim 

√
x = 
√
4 = 2 = 0,  

x→4 

2 lim (x 2 + 4)  x + 4  x 4 42 + 4  20 20 
lim √ = → √ =  =  = = 10 .  
x→4 x lim x 

V
lim x 

√
4 2 

x→4 x→4 

√ √ √

√

√ √

√

[ ]

[ ]

[ ] [ ]

[

[ ]

�

√
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32. Because the limit of the denominator lim
√ √ 

 3x = 9 = 3 = 0,
x→3 

 

2 lim (x 2 + 5)  x + 5  32 
 x→3 + 5  14 14 

lim √ = √ =  =  = . 
x→3 3x lim 3x 

V
lim 3x 

√
9 3 

x→3 x→3 

2x3 + 5x 
R(x) =  ,

3x − 2 
33. Because x = −2 is in the domain of the rational function 

2(−2)3 + 5(
lim R(x) =  R( 2) =	 

−2) −26 13 − = = . 
x→−2	 3(−2) − 2 −8 4 

2x4 − 1 
R(x) =  ,

3x3 + 2  
34. Because x = 1 is in the domain of the rational function 

2(1)4 − 1 1 
lim R(x) =  R(1) = = . 
x→1 3(1)3 + 2  5 

35. Observe that the limit of the denominator is equal to zero.	 Factoring the numerator and 
simplifying yields 

x2 − 4 (x − 2)(x + 2)  
lim = lim = lim(x + 2)  =  4  . 
x→2 x − 2 x→2 x  2 x→2−

36. Observe that the limit of the denominator is equal to zero. Factoring the denominator and 
simplifying yields 

x + 2  x + 2  1 1 
lim = lim	 = lim = 	 . 
→− x2 x 2 

−− 4 x→−2 (x − 2)(x + 2)  x→−2 x − 2 4 

37. Observe that the limit of the denominator is equal to zero.	 Factoring the numerator and 
simplifying yields 

x3 − x x(x − 1)(x + 1)  
lim = lim	 = lim [x(x − 1)] = (−1)(−2) = 2 . 

x→−1 x + 1  x→−1 x + 1  x→−1

38. Observe that the limit of the denominator is equal to zero. Factoring both the numerator 
and the denominator and simplifying yields 

x3 + x2	 x2(x + 1)  x2 (−1)2 1 
lim = lim	 = lim = = −	 . 

2 x→−1 x − 1 x→−1 (x − 1)(x + 1)  x→−1 x − 1 −2 2 

39. Observe that 
2x 16 2x + 16  2(x + 8)  

+ = = = 2, 
x + 8  x + 8  x + 8  x + 8 
  

provided that x = −8. Therefore,
 
(

2x 16 
)

lim + = lim 2 =  2  . 
x→−8 x + 8  x + 8  x→−8 

40. Observe that 
3x 6 3x − 6 3(x − 2)− = = = 3, 

x − 2 x − 2 x − 2 x − 2
 
provided that x = 2. Therefore,
 

(
3x 6 

)
lim − = lim 3 =  3  . 
x→2 x − 2 x − 2 x→2 

�

�

�
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41. Observe that the limit of the denominator is equal to zero. Multiplying numerator and  
denominator by

	 √
x 
√− 2, yields
  

√
x + 
√
2, the conjugate of 

√ √ √ √ √ √
 
x − 2 x − 2 x + 2 x − 2 

lim = lim   = lim  
x→2 x − 2 x→2 x − 2 

· √
x +
√
2 x→2 (x − 2)(

√
 x + 

√
2) 

1 1 1  
= lim 

√
√ √ = √ √ = √ = 2/4 . 

x→2 x + 2 2 + 2 2 2 

42. Observe that the limit of the denominator is equal to zero. Multiplying numerator and 
denominator by

	 
 
√
x + 
√
3, 

√ √ 
x − 3, the conjugate of 

√ √ 
 

√ √ 
 
x

√− 3 x − 3 x +
√
3 x  3 

lim = lim · √ √ = lim 
−

 
x→3 x − 3 x→3 x − 3 x + 3 x→3 (x  

√− 3)( x + 
√
3) 

1 1 1 
= lim √ √ =  = 	 .

x→3 x + 3 
√
3 +
√
3 2

√
3 

yields
 

43. Observe that the limit of the denominator is equal to zero. Multiplying numerator and  
denominator by

√	
 x + 5 + 3, the conjugate of 

√
x + 5−  3, yields
 

√ √ √
 
x + 5−  3 x + 5−  3 x + 5 + 3  (x + 5)   9 

lim = lim · √ = lim 
−

 
x→4 (x − 4)(x + 1)  x→4 (x 

√− 4)(x + 1)  x + 5 + 3  x→4 (x − 4)(x + 1)(  x + 5 + 3)  
x  4 1 

= lim 
−

 = lim  
x→4 (x − 4)(x + 1)(

√
 x + 5 + 3)  x→4 (x + 1)(

√
 x + 5 + 3)  

1 1 
= √ = . 

(4 + 1)( 4 + 5 + 3)  30

44. Observe that the limit of the denominator is equal to zero. Multiplying numerator and  
denominator by

√	
 x + 1 + 2,

√
x + 1−  2, the conjugate of  yields
 

√
x + 1  

√ √− 2 x + 1−  2 x + 1 + 2  (x + 1)   4 
lim = lim · √ = lim  

−
x→3 x(x − 3) x→3 x(x − 3) x + 1 + 2  x→3 x(x 

√− 3)( x + 1 + 2)  
x − 3 1 

= lim  = lim  
x→3 x(x  

√ √− 3)( x + 1 + 2)  x→3 x( x + 1 + 2)  

1 1 
= √ = . 

3(	 3 + 1 + 2)  12

 
 

45. lim (x 2 − 4) = (3)2 − 4 =  5 . 
x→3−

46. lim (3x 2 + x) = 3(2)2 + 2 =  14  . 
x→2+ 

47. Observe that the limit of the denominator is equal to zero.	 Factoring the numerator and 
simplifying yields 

x2 − 9 (x 
lim = lim	 

− 3)(x + 3)  
= lim (x + 3)  =  3 + 3  =  6  . 

x→3− x − 3 x→3− x − 3 x→3−

48. Observe that the limit of the denominator is equal to zero.	 Factoring the numerator and 
simplifying yields 

x2 − 9 (x  3)(x + 3)  
lim = lim	 

−
= lim (x + 3)  =  3 + 3  =  6  . 

x→3+ x − 3 x→3+ x − 3 x→3+ 



lim h(x)h(x) x 0→4lim = = = 0 . 
x→4 f(x) lim f(x) 8 

x→4 

(a) lim [f(x) + g (x)] = lim f(x) + lim g(x) = 8 + (−2) = 6 . 
x→4 x→4 x→4

(b) lim {f(x)[g(x) − h(x)]} = lim f(x)
(
lim g(x) − lim h(x)

)
= 8(−2 + 0)  =  −16 . 

x→4 x→4 x→4 x→4 

(c) lim [f(x) · g(x)] = lim f(x) · lim g(x) = 8(−2) = −16 . 
x→4 x→4 x→4

(d) lim [2h(x)] = 2 lim h(x) = 2(0) = 0 . 
x→4 x→4 

lim g(x)g(x) x −2 1→4lim = = =  . 
x→4 f(x) lim f(x) 8 

−
4 

x→4 

 
(e)

(f) 
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49. 2 

( )2 2 

lim ( 
�

9 − x + x)2 = lim ( 
�
9 

x
− x2 + x) = 

(�
9 − 32 + 3

)
= 9 . 

→3− x→3−

50. lim (2
�
 x2  4 + 3x) = 2

�
 22  4 + 3(2) = 6 . 

x→2+ 
− −

51. lim[f(x) − 3g(x)] = lim f(x) − 3 lim g(x) = 5−  3(2) = −1 . 
x→c x→c x→c 

52. lim[5f(x)] = 5 lim f(x) = 5(5) = 25 . 
x→c x→c 

53. 
[ ]3 

lim[g(x)]3 = lim g(x) = 23 = 8 . 
x→c x→c 

54. Because the limit of the denominator is not equal to zero, 

lim f(x) lim f(x) f(x) x 5 5→clim = = x→c = = . 
x→c g(x) − h(x) lim(g(x) − h(x)) lim g(x) − lim h(x) 2 − 0 2 

x→c x→c x→c 

55. Because the limit of the denominator is not equal to zero, 

lim h(x)h(x) x 0→clim = = = 0 .  
x→c g(x) lim g(x) 2 

x→c 

56. lim[4f(x) · g(x)] = 4 lim f(x) · lim g(x) = 4(5)(2) = 40 . 
x→c x→c x→c 

57. Because the limit of the denominator is not equal to zero, 

2  1 2   2 lim 2
1 1 

  
x

  
1 
 

1→clim = lim = = = . 
x→c g(x) x→c g(x) lim g(x) 2 4 

x→c 

  
lim 

�
3 5g(x) − 3 = 

V
3 lim(5g(x) − 3) = 

V
3 5 lim g(x) − lim 3 =  

�
3 5(2) − 3 = 

√
3 7 . 

x→c x→c x→c x→c 
58. 

59. 

60. (a) lim {2[f(x) + h (x)]} = 2
(
lim f(x) + lim h(x)

)
= 2(0 + (−2)) = −4 . 

x→3 x→3 x→3 

(b) lim [g(x) + h (x)] = lim g(x) + lim h(x) = 6 + (−2) = 4 . 
x→3− x→3− x→3− 

 √ √ 
(c) lim 

�
3 h(x) = 

V
3 lim h(x) =  3 −2 =  − 3 2 . 

x→3 x→3 

√ √ √

√ √

[ ] [ ] [ ]

√ √

√
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lim f(x)f(x) x 0→3lim = = = 0 . 
x→3 h(x) lim h(x) 2 

x→3
 
−(d)

(e) 
( 3
 

lim [h(x)]3 = lim h(x)
)

= (−2)3 = −8 . 
x→3 x→3 

(f) Because
 

lim [f(x) − 2h(x)] = lim f(x) − 2 lim h(x) = 0−  2(−2) = 4,
 
x→3 x→3 x→3 

it follows that 

 
[ 3/2 

lim [f(x) − 2h(x)]3/2 = lim (f(x) − 2h(x))
]

= 43/2 = 8 .  
x→3 x→3

61. Let f(x) = 3x2 and c = 1.  Then  

f(x) − f(c) f(x) − f(1) 3x2 − 3 3(x − 1)(x + 1)  
lim = lim = lim = lim 
x→c x − c x→1 x − 1 x→1 x − 1 x→1 x − 1 

= lim 3(x + 1) = 3(1 + 1) = 6 . 
x→1

62. Let f(x) = 8x3 and c = 2.  Then  

f(x) − f(c) f(x) − f(2) 8x3 − 64 8(x 
lim = lim = lim = lim 

− 2)(x2 + 2x + 4)  
x→c x − c x→2 x − 2 x→2 x − 2 x→2 x − 2 

= 8 lim (x 2 + 2x + 4)  =  8(22 + 2(2) + 4)  =  96  . 
x→2

63. Let f(x) = − 2x2 + 4  and  c = 1.  Then  

f(x) − f(c) f(x) − f(1) −2x2 + 4−  2 −2x2 + 2  
lim = lim = lim = lim 
x→c x − c x→1 x − 1 x→1 x − 1 x→1 x − 1 

−2(x − 1)(x + 1)  
= lim = −2 lim (x + 1)  =  2(1 + 1) = 4 . 

x→1 x 1
−− 1 x→

−

64. Let f(x) = 20−  0.8x2 and c = 3.  Then  

f(x) − f(c) f(x) − f(3) 20 − 0.8x2 − 12.8 −0.8x2 + 7.2 
lim = lim = lim = lim 
x→c x − c x→3 x − 3 x→3 x − 3 x→3 x − 3
 

−0.8(x − 3)(x + 3) 
  
= lim = −0.8 lim (x + 3)  =  −0.8(3 + 3) = −4.8 . 

x→3 x − 3 x→3

65. Let f
√ 

(x) =  x and c = 1.  Then  
√ √ √ 

f(x) − f(c) f(x) − f(1) x − 1 x − 1 x + 1  
lim = lim = lim = lim  
x→c x − c x→1 x − 1 x→1 x →

√− 1 x 1 x 
·− 1 x + 1  

x − 1 1 1 1 
= lim √ = lim  = = . 

x→1 (x − 1)( x + 1)  x→1 
√
x + 1  1 + 1  2 

66. Let f
√ 

(x) =  2x and c = 5.  Then  
  

f(x) − f(c) f(x) 
√ √ √

 
√− f(5) 2x − 10 2x − 10 

√
2x + 

√
10 

lim = lim = lim = lim   
x→c x − c x→5 x − 5 x→5 x 5

√ √−  x→5 x 
·− 5 2x + 10 

2x − 10 2 2 1 
= lim √ √ = lim √ √ = √ √ =  .

x→5 (x − 5)( 2x + 10) x→5 2x + 10 10 + 10 
√
10 
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67. Let f(x) = 4x − 3. Then 

f(x + h) − f(x) 4(x + h) − 3 − (4x − 3) 4x + 4h − 3 − 4x + 3  
lim = lim = lim 
h 0 h h 0 h h 0 h → → →

4h 
= lim = lim 4 =  4  . 

h→0 h h→0 

68. Let f(x) = 3x + 5.  Then  

f(x + h)  f(x) 3(x + h) + 5   (3x + 5)  3x + 3h + 5   3x  5 
lim 

−
= lim 

−
= lim 

− −
h 0 h h 0 h h 0 h → → →

3h 
= lim = lim 3 =  3  . 

h→0 h h→0 

69. Let f(x) = 3x2 + 4x + 1.  Then  

f(x + h) − f(x) 3(x + h)2 + 4(x + h) + 1−  (3x2 + 4x + 1)  
lim = lim 
h→0 h h  →0 h

3x2 + 6xh + 3h2 + 4x + 4h + 1   3x2  4x  1 
= lim 

− − −
h→0 h 

6xh + 3h2 + 4h 
= lim = lim (6x + 3h + 4)  

h→0 h h→0 

= 6x + 3(0) + 4  =  6x + 4  . 

70. Let f(x) = 2x2 + x. Then  

f(x + h) − f(x) 2(x + h)2 + (x + h) − (2x2 + x)
lim = lim 
h→0 h h→0 h 

2x2 + 4xh + 2h2 + x + h − 2x2 − x 
= lim 

h→0 h 
4xh + 2h2 + h 

= lim = lim (4x + 2h + 1)  
h→0 h h→0 

= 4x + 2(0) + 1  =  4x + 1  . 

2 
f(x) =  

x 
.71. Let Then  

f  − 2 2 2 2
(x + h) f(x) − − x+h x x+h x x(x + h) 2x  2(x + h)

lim = lim = lim  
−· = lim 

h→0 h h→0 h h→0 h x(x + h) h→0 hx(x + h) 

−2h 2 2 2 
= lim =  lim =  =  . 

2h  →0 hx(x+ h) 
−

h→0 x(x + h) 
−
x(x + 0)  

−
x

3 
 f(x) =  .

x2
72. Let Then  

f(x + h) − f(x) 
3 3 3 3 

(x+h 2 − ) x2  x2(x + h)2 
lim = lim = lim 

(x+h)2 − x2 

 
2h→0 h h  →0 h h→0 h

·
x (x + h)2 

3x2 − 3(x + h)2 3x2  3x2  6xh  3h2 

= lim = lim 
2 2 

−
2

− −
h→0 hx (x + h) h→0 hx (x + h)2 

h(6x + 3h) 6x + 3h 6x + 3(0)  
= − lim =  lim =  

h 0 hx2(x  → + h)2 
−

h→0 x2(x + h)2 
−
x2(x + 0)2 

6x 6 
= − = − . 

x4 x3 
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73. For x < 1, f(x) = 2x− 3, so that 

lim f(x) = lim (2x− 3) = 2(1) − 3 =  −1 , 
x→1− x→1−

while for x > 1, f(x) = 3−  x, so that 
  

lim f(x) = lim (3 − x) = 3−  1 = 
  2  . 
x→1+ x→1+ 

Because the two one-sided limits as x approaches 1 are not equal, lim f(x) does not  exist  . 
x→1 

74. For x < 2, f(x) = 5x+ 2,  so  that  

lim f(x) = lim (5x+ 2) = 5(2) + 2 = 12 , 
x→2− x→2−

while for x > 2, f(x) = 1 + 3x, so that 
  

lim f(x) = lim (1 + 3x) = 1 + 3(2) =
 7 . 
x→2+ x→2+ 

Because the two one-sided limits as x approaches 2 are not equal, lim f(x)
x→2 

does not  exist  . 

75. For x < 1, f(x) = 3x− 1, so that 

lim f(x) = lim (3x− 1) = 3(1) − 1 =  2  , 
x→1− x→1−

while for x > 1, f(x) = 2x, so that 
  

lim f(x) = lim 2x = 2(1) = 
  2  . 
x→1+ x→1+ 

Because the two one-sided limits as x approaches 1 are equal to 2, lim f(x) = 2 . 
x→1 

76. For x < 1, f(x) = 3x− 1, so that 

lim f(x) = lim (3x− 1) = 3(1) − 1 =  2  , 
x→1− x→1−

while for x > 1, f(x) = 2x, so that 
  

lim f(x) = lim 2x = 2(1) = 
  2  . 
x→1+ x→1+ 

Because the two one-sided limits as x approaches 1 are equal to 2, lim f(x) = 2 . 
x→1 

77. For x < 1, f(x) = x − 1, so that 

lim f(x) = lim (x− 1) = 1 
x

− 1 =  0  , 
→1− x→1−

while for x > 1, f
√ 

(x) =  x− 1, so that 

lim
√  

 f(x) = lim x− 1 =  
√
1 − 1 =  0  . 

x→1+ x→1+ 

Because the two one-sided limits as x approaches 1 are equal to 0, lim f(x) = 0 . 
x→1 



 

 

1.2 Limits of Functions Using Properties of Limits 1-35 

78. For x < 3, f
√ 

(x) =  9 − x2, so that  

lim f(x) = lim 
�
9 − x2 =

�
9 − 32 = 0 ,  

x→3− x→3− 

while for x > 3, f
√
 

(x) =  x2 − 9, so that
 

lim f(x) = lim 
�
x2 − 9 =  

�
32 − 9 =  0  . 

x→3+ x→3+ 

Because the two one-sided limits as x approaches 3 are equal to 0, lim f(x) = 0 . 
x→3 

x2 − 9 
 f(x) =  ,

x− 3 
79. For x = 3, so that  

x2  9 (x+ 3)(x  3)
lim f(x) = lim 

−
= lim 

−
= lim (x+ 3)  =  3 + 3  =  6  , 

x→3− x→3− x− 3 x→3− x− 3 x→3−

and 

x2  9 (x+ 3)(x  3)
lim f(x) = lim 

−
= lim 

−
= lim (x+ 3)  =  3 + 3  =  6  . 

x→3+ x→3+ x− 3 x→3+ x− 3 x→3+ 

Because the two one-sided limits as x approaches 3 are equal to 6, lim f(x) = 6 . 
x→3 

x− 2 
 f(x) =  

x2 − 4 
80. For x = 2, , so that  

x  2 x  2 1 1 1 
lim f(x) = lim = lim = lim = = , 
→  →  x2 

− −
x 2− x 2− − 4 x→2− (x− 2)(x+ 2)  x→2− x+ 2  2 + 2  4 

and 

x  2 x  2 1 1 1 
lim f(x) = lim = lim = lim = = . 
→ + → + x2 

− −
x 2 x 2 − 4 x 2+ (x−  → 2)(x+ 2) x 2+ x+ 2  2 + 2  4 →

1 1 
, lim f(x) =  . 

4 x→2 4
Because the two one-sided limits as x approaches 2 are equal to 

Applications and Extensions 

81. For t < 1,
 
lim u1(t) = lim 0 = 0,
 

t→1− t→1− 

while for t > 1,
 
lim u1(t) = lim 1 = 1.
 
t→1+ t→1+ 

Because the two one-sided limits as x approaches 1 are not equal, lim u1(t)
t→1 

does not exist  . 

82. For t < 3,
 
lim u3(t) = lim 0 = 0,
 

t→3− t→3− 

while for t > 3,
 
lim u3(t) = lim 1 = 1.
 
t→3+ t→3+ 

Because the two one-sided limits as x approaches 3 are not equal, lim u3(t)
t→3 

does not exist  . 

√ √

√ √



 
1
(

1 1 
)  

1 
(

x 
)

1 1 
lim − = lim − = − lim = − . 
x→0 x 4 +  x 4 x→0 x 4(4 + x) x→0 4(4 + x) 16 

 
2

(
1 1 

)  
2 

(
x + 1  

)
2 2 

lim  = lim = lim = . 
x→−1 x + 1  3 

−
x + 4  x→−1 x + 1  3(x + 4)  x→−1 3(x + 4)  9 
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(x + h)2 − x2 x2 + 2xh + h2  x2 h(2x + h)
lim = lim 

−
= lim = lim(2x + h) =  2x . 

h→0 h h→0 h h→0 h h→0 
83. 

84. 
√ √ 

x
√  

x + h − x + h 
√ √ √− x x + h + x (x + h)  x 

lim = lim · √  = lim 
−

 
h→0 h h→0 h x + h + 

√
x h→0 h( 

√
x + h + 

√
x) 

h 1 1 
= lim  lim  . 

h→0 h( 
√ =   = 
x + h + 

√
x) h→0 

√
x + h + 

√
x 2 

√
x 

85. 

1 − 1 1 − 1 
lim x+h x = lim x+h x x(x + h) x − (x + h) h

 = lim =  lim 
h→0 h h→0 h

·
x(x + h) h→0 hx(x + h) 

−
h→0 hx(x + h) 

1 1 
= − lim = − . 

x2h→0 x(x + h) 

86. 

1 − 1 1 − 1 
x3(x + h)3 (x+h)3 x3 (x+h)3 x3 x3  (x + h)3 

lim = lim  = lim 
−

h→ h 3 h→ 3 3 30 0 h
·
x (x + h) h 0 hx (x + → h)

x3 − x3 − 3x2h − 3xh2 − h3 h(3x2 + 3xh + h2) 
= lim = 

3h
− lim 

0 hx (x + h)3 h 0 hx3(x + → → h)3 

3x2 + 3xh + h2 3x2 3 
= − lim = − = − . 

x4h→0 x3(x + h)3 x6 

87. Observe that 
1 1 4 − (4 + x) x − = = − ,

4 + x  4 4(4 + x) 4(4 + x)
 

so that
 

88. Observe that 
1 1 (x + 4)−  3 x + 1  − = = ,
3 x + 4  3(x + 4)  3(x + 4) 
  

so that
 

x
√  

x − 7  − 7 x + 2 + 3  (x 
√− 7)( x + 2 + 3)  

lim 
x→7 
√ = lim √  = lim 
x + 2−  3 x→7 x + 2  − 3 

· √
x + 2 + 3  x→7 (x + 2)−  9 

(x  7)(
√ −  x + 2 + 3)   

= lim = lim( 
√
x + 2 + 3) =  

√
9 + 3 =  6  . 

x→7 x  7 x→7

89. 

−
x

√  
x − 2  − 2 x + 2 + 2  (x 

√− 2)( x + 2 + 2)  
lim 
x→2 
√ = lim √  = lim 
x + 2−  2 x→2 x + 2  − 2 

· √
x + 2 + 2  x→2 (x + 2)−  4 √ 

(x − 2)( x + 2 + 2)  √ √ 
= lim = lim( x + 2 + 2) =  4 + 2 =  4  . 

x→2 x − 2 x→2

90. 

[ [ )]

[ [ )]
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x3 − 3x2 + 3x− 1 (x− 1)3 
 lim = lim = lim(x− 1) = 1 − 1 =  0 . 
x→1 x2 − 2x+ 1  x→1 (x− 1)2 x→1

91.

x3 + 7x2 + 15x+ 9  (x+ 1)(x2 + 6x+ 9)  
lim = lim = lim (x+ 1)  =  −3 + 1 =  −2 . 

2 x→−3 x + 6x+ 9  x→−3 x2 + 6x+ 9  x→−3
92. 

93. (a) Using the rate schedule provided, 

 ⎧
 9.00, if 0  x  10  ⎪⎨
9.00 + 0.95(x  10), if 10

≤
 < x
≤

 30
C(x) =  x

−
 28.00 + 1.65(

≤
− 30), if 30 < x ≤ 100  ⎪⎩

143.50 + 2.20(x− 100), if x > 100. 

(b) The domain of C is the set x x ≥ 0  . { | }
(c) Start with the one-sided limits: 

lim C(x) = lim 9.00 = 9.00 
x→5− x→5− 

lim C(x) = lim 9.00 = 9.00 
x→5+ x→5+ 

lim C(x) = lim 9.00 = 9.00 
x→10− x→10− 

lim C(x) = lim [9.00 + 0.95(x− 10)] = 9.00 + 0.95(10 − 10) = 9.00 
x→10+ x→10+ 

lim C(x) = lim [9.00 + 0.95(x− 10)] = 9.00 + 0.95(30 − 10) = 28.00
x→30− x→30−

       

lim C(x) = lim [28.00 + 1.65(x− 30)] = 28.00 + 1.65(30 − 30) = 28.00 
x→30+ x→30+ 

lim C(x) = lim [28.00 + 1.65(x− 30)] = 28.00 + 1.65(100 − 30) = 143.50 
x→100− x→100−

lim C(x) = lim [143.50 + 2.20(x− 100)] = 143.50 + 2.20(100 − 100) = 143.50 
x→100+ x→100+ 

Based on these one-sided limits, it follows that 

lim C(x) = 9.00, lim C(x) = 9.00, lim C(x) = 28.00, and lim C(x) = 143.50 . 
x→5 x→10 x→30 x→100 

(d) lim C(x) = lim 9.00 = 9.00 . 
x→0+ x→0+ 

(e) The graph of C is shown below. 
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 �
7.87 + 0.02173x if 0  x  1000

C(x) = 	  
≤ ≤

.29.60 + 0.03173(x− 1000) if x > 1000 

 

  �
3kT 

�
3k 

lim v(T ) = lim = 
V

lim T = 0 .  
T →0 T →0 m m T →0 
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94. (a) Let x denote the monthly amount of electricity (in kWH) used by a customer. Each 
customer is assessed a fixed charge of $7.87 regardless of how little or how much 
electricity is used. In addition to the fixed charge, each customer pays a variable 
charge of $0.02173 for every kWH of electricity used up to and including 1000 kWH. 
So, for a customer using x kWH of electricity, the variable charge is $0.02173x. Again, 
this variable rate is applied for usage up to and including 1000 kWH. The total charge 
for usage x up to and including 1000 kWH (0 ≤ x ≤ 1000) is $7.87 + $0.02173x. 

For usage over 1000 (x > 1000), the customer is charged $0.03173 per kWH for every 
hour over 1000. Since x denotes the total usage, the quantity (x − 1000) denotes 
the number of kWH over 1000. For these customers, the total charge for the first 
1000 hours is $7.87 + $0.02173(1000) = $29.60. For x > 1000, the additional fee is 
0.02183(x− 1000).  
The final piecewise function is 

(b) The domain of the function is any nonnegative real number, {x|x ≥ 0}. 
(c) Since lim (7.87 + 0.02173x) = 7.87 + 0.02173(50) = 8.9565 and lim C(x) =  

x→50−	 x→50+ 

(7.87 + 0.02173x) = 7.87 + 0.02173(50) = 8.9565, we conclude lim C(x) = 8.9565. 
x→50 

(d) As the usage (x) gets closer and closer to zero, the total cost gets closer and closer to 
the fixed cost of $7.87. lim C(x) = 7.87. 

x→0+ 

(e) The graph of	 C(x) is shown below. The graph consists of two lines with different 
slopes. 

95. (a) Solving the equation
3

 1 2	 3

�
kT 

mv = kT for v(T ) yields v(T ) =  .2 2 m 
Thus,  

(b) Answers will vary.	 One interpretation is that as the temperature of a gas approaches 
absolute zero, the average speed of the molecules in the gas also approaches zero. In 
other words, the molecules in the gas stop moving . 

96.	 (a) For h < 0, 2 + h < 2, so that f(2 + h) = 3(2 + h ) + 5 = 3h+ 11. Thus, 

f(2 + h) − f(2) 3h+ 11−  11 3h 
lim	 = lim = lim = lim 3 =  3  . 

h→0− h h→0− h h→0− h h→0− 
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(b) For h > 0, 2 + h > 2, so that f(2 + h) = 13−  (2 + h) = 11−  h. Thus,  

f(2 + h) − f(2) 11 − h− 11 −h 
lim = lim = lim = lim −1 =   

h→0+ h h→0+ h h→0+ h →0+ 
−1 .

h

f(2 + h) − f(2)
 lim 
h→0 h 

(c) Because the two one-sided limits as h approaches 0 are not equal,

does not exist . 

97. Consider the one-sided limits: 

lim |x| = lim (−x) = 0  
x→0− x→0−

and 
lim |x| = lim x = 0  . 

x→0+ x→0+ 

Because the two one-sided limits as x approaches 0 are equal to 0, lim |x| = 0.  
x→0

   
98. lim  

√
|x| = lim x2 = 

V
lim x2 = 

√
0 = 0.  

x→0 x→0 x→0 

99. Answers will vary. One possibility is the following. Let 

f
{

1, if x < 2 0, if x < 2
(x) =  ≥ , g(x) =

{
 ,0, if x  2 1, if x ≥ 2 

and c = 2.  Then 
  

lim f(x) = lim 1 = 1 and lim f(x) = lim 0 = 0 
  
x→2− x→2− x→2+ x→2+ 

so that lim f(x) does not exist, and 
x→2 

lim g(x) = lim 0 = 0 and lim g(x) = lim 1 = 1  
x→2− x→2− x→2+ x→2+ 

so that lim g(x) does not exist. However, (f+g)(x) = 1 
x→2

for all x so that lim [f(x)+g(x)] = 
x→2

1. 

100. Answers will vary. One possibility is the following. Let 

f
{

1, if x < 2 0, if x < 2
(x) =  ≥ , g(x) =

{
 ,0, if x  2 1, if x ≥ 2 

and c = 2.  Then  

lim f(x) = lim 1 = 1 and lim f(x) = lim 0 = 0  
x→2− x→2− x→2+ x→2+ 

so that lim f(x) 
x→2 

does not exist, and 

lim g(x) = lim 0 = 0 and lim g(x) = lim 1 = 1  
x→2− x→2− x→2+ x→2+ 

so that lim g(x) does not exist. However, 
x→2

(f · g)(x) = 0 for all x so that lim [f(x)g(x)] = 0. 
x→2
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f(x) 

 
lim = 2.  
x→1 g(x) 

 
 

101. Answers will vary. One possibility is the following. Let 
 
,

f
{

2  if x < 1  1, if x < 1  
(x) =  − ≥ , g(x) =  

{
 2, if x 1 −1, if  ≥ ,x 1 

 

and c = 1.  Then  

lim f(x) = lim 2 = 2 and lim f(x) = lim 2 =  2 
x→1− x→1− x→1+ x→1+ 

− −

so that lim f(x) does not exist, and 
x→1 

lim g(x) = lim 1 = 1 and lim g(x) = lim 1 =  1 
x→1− x→1− x→1+ x→1+ 

− −

so that lim g(x) does not exist. However, 
x→1

(
f 
)
(x) = 2 

g 

 

for all x so that 

102. Answers will vary. One possibility is the following. Let 
 

f(x) =  
{

1, if x < 0  
−1, if x ≥ 0 

and c = 0.  Then 
  

lim f(x) = lim 1 = 1 and lim f(x) = lim −1 =  −1
 
x→0− x→0− x→0+ x→0+ 

so that lim f(x)
x→0 

 does not exist. However, |f(x)| = 1 for all x so that lim |f(x)| = 1.  
x 0→

103. Let f(x) = k , where k  is any real number, and let g be a function for which lim g(x) 
x→c 

exists. Then lim f(x) exists and is equal to k, so that by the Limit of a Product Theorem, 
x→c 

lim[f(x)g(x)] 
x→c

exists and  lim [f(x)g(x)] = lim f(x) 
x

· lim g(x).→c x→c x→c 
 It then follows that 

lim[kg(x)] = lim[f(x)g(x)] 
x→c x→c 

exists, and
 

lim[kg(x)] = lim[f(x)g(x)] = lim f(x) · lim g(x) = k  lim g(x).
 
x→c x→c x→c x→c x→c 

104. Let c be a number in the domain of the rational function pR(x) =  (x)
q(x) , where p  and q are 

both polynomial functions. Because c is in the domain of R, q(c) = 0. Moreover, because 
q is a polynomial function, lim q(x) = q (c) = 0. 

x→c 
Therefore, by the Limit of a Quotient 

Theorem and the Limit of a Polynomial Theorem,
 

 lim p(x)
p(x) x c p(c)
lim R(x) = lim = → = = R(c). 
x→c x→c q(x) lim q(x) q(c) 

x→c 

Challenge Problems 

105. When n is a positive integer, 
 x n − a n = (x − a)(x n−1 + ax n−2 + a2 x n−3 + · · ·+ an−2 x + a n−1),
 

so that
 

xn an (x a)(xn−1 + axn−2 + a2xn−3 + + an−2x + an−1)
lim 

−
= lim 

− · · ·
x→a x − a x→a x − a 

= lim (x n−1 + ax n−2 + a2 x n−3 + + an−2 x + a n−1)
x→a 

· · ·

= an −1 + aa n−2 + a2 a n−3 + · · ·+ an−2 a + a n−1 = nan−1 . 

[ ]

�
�
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106. If n is an even positive integer, then 

  lim (x n + a n) = (−a)n + a n = 2a n and lim (x + a) = − a + a = 0, 
x→−a x→−a 

so that 
xn + an 

lim 
x→−a x + a 

does not exist . On the other hand, if n is an odd positive integer, then 

x n n + a = (x + a)(x n−1 − ax n−2 + a2 x n−3 −+ · · · − an−2 x + a n−1)

= (x + a)(x n−1 + ( a)x n−2 + ( a)2 x n−3 + + ( a)n−2 x + ( a)n−1), − − · · · − −
so that 

xn + an (x + a)(xn−1 + (−a)xn−2 + (−a)2xn−3 + · · ·+ (−a)n−2x + (−a)n−1)
lim = lim 

x→−a x + a x→−a x + a
 
= lim (x n−1 + (−a)x n−2 + (−a)2 x n−3
 + · · ·+ (−a)n−2 x + (−a)n−1) 

x→−a 

= (−a)n−1 + (−a)(−a)n−2 + (−a)2(−a)n−3 + · · ·+ (−a)n−2(−a) + (−a)n−1 

= n(−a)n−1 = nan−1 . 

107. When m and n are positive integers, 

  xm − 1 = (x − 1)(x m−1 + x m−2 + x m−3 + · · ·+ x + 1)  

and 
n  x − 1 = (x − 1)(x n−1 + x n−2 + x n−3 + · · ·+ x + 1). 

Thus, 

xm − 1 (x − 1)(xm−1 + xm−2 + xm−3 + · · ·+ x + 1)  
lim = lim 
x→ n1 x  − 1 x→1 (x − 1)(xn−1 + xn−2 + xn−3 + · · ·+ x + 1)  

xm−1 + xm−2 + xm−3 + + x + 1  
= lim 

→ xn−1 + xn−2 + xn 3 

· · ·
x 1 − + · · ·+ x + 1  

m terms 
'
1 + 1 + 1 +

t 
 

=
· · ·+ 1

f
 m 
= .

1 + 1 + 1 +  · · ·+ 1 n    
n terms 

f' t

108. 
√
1 +

√ √ 
3  x 

lim
− 1 3 1 +  x 

 = lim 
− 1 

�
3 (1 + x)2 + 3 1 +  x + 1  

 
x→0 x x→0 x 

· �
3 (1 + x)2 +

√
3 1 +  x + 1  

(1 + x) − 1 x 
= lim √ = lim  

x→0 x( 
�
3 (1 + x)2 + 3 1 +  x + 1)  x→0 x( 

�
3 (1 + x)2 +

√
3 1 +  x + 1)  

1 1 1 
= lim  =  = . 

x→0 
�
3 (1 + x)2 +

√
3 1 +  x + 1

√
3 1 +

√
3 1 + 1  3 

√

√

√ √

√
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�
(1 + ax)(1 + bx) − 1 

�
(1 + ax)(1 + bx) − 1 

�
(1 + ax)(1 + bx) + 1  

lim = lim	  
x→0 x x→0 x 

· �
(1 + ax)(1 + bx) + 1  

(1 + ax)(1 + bx) − 1 1 + (a + b)x + abx2 − 1 
= lim	 = lim 

x→0	 x( 
�
(1 + ax)(1 + bx) + 1)  x→0 x( 

�
(1 + ax)(1 + bx) + 1)  

x[(a + b) + abx ] (a + b) + abx  
= lim = lim 

x→0 x( 
�
(1 + ax)(1 + bx) + 1)  x→0 

�
(1 + ax)(1 + bx) + 1  

a + b + ab(0) a + b 
=	 = . �

(1 + 0)(1 + 0) + 1 2

�
(1 + a )(1 + a

 1x 2x) · · · (1 + anx) − 1 
lim
x→0 x �

(1 + a1x)(1 + a2x) · · · (1 + anx) − 1 
�
(1 + a1x)(1 + a2x) · · · (1 + a

	 nx) + 1  
= lim · 

x→0	 x 
�
(1 + a1x)(1 + a2x) · · · (1 + anx) + 1  

(1 + a x)(1 + a x) (1 + a x) 1 
=	 lim
 1 2 · · · n −

x→0 x(
�
 (1 + a1x)(1 + a2x) · · · (1 + anx) + 1) 
  

(a1 + a2 + · · ·+ a ) m

=	 n x + terms containing x where m ≥ 2 
lim 
x→0 x(

�
 (1 + a1x)(1 + a2x) · · · (1 + anx) + 1)  

(a1 + a2 + · · ·+ a  m
n) + terms containing x where m 

=	 lim 
≥ 1 

x→0 
�
(1 + a1x)(1 + a2x) · · · (1 + anx) + 1 
  

a1 + a2 + · · ·+ a
 √ n + 0 
  a + a + + a

= = 1 2 · · · n 
. 

1 + 1  2

Thus, 

109. 

110. Note that 

(1 + a1x)(1 + a2x) · · · (1 + anx) = 1 + (a1 + a2 + · · ·+ an)x 
+ terms containing x m where m ≥ 2, 

so that 

(1+a1x)(1+a2x) · · · (1+anx)−1 = (a1+a2+· · ·+a m
n)x+ terms containing x where m ≥ 2. 

111. Let f(x) = x |x|. For x < 0,  f(x) = x (−x) =  −x2. Thus,  

f(h) − f(0) −h2 − 0 
lim = lim = lim (

h
−h) = 0. 

→0− h h→0− h h→0−

For x ≥ 0, f(x) = x (x) = x 2. Thus,  

f(h) − f(0) h2 − 0 
lim = lim = lim h = 0. 

h→0+ h h→0+ h h→0+ 

Because the two one-sided limits as h approaches 0 are equal to 0, 

f(h) − f(0)
lim = 0 .  
h→0 h 

√ √

√ √

√ √

√

√

√ √

√

√

√

√

√

√
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1.3 Continuity 

Concepts and Vocabulary 

1. True . A polynomial function is continuous at every real number. 

2. False . Piecewise-defined functions may not be continuous at numbers where the function 
changes equations. 

3. The three conditions necessary for	 a function f to be continuous at a number c are 
f(c) is defined , lim f(x) exists  , and lim f(x) = f (c) . 

x c x c → →

4. True . If f (x) is continuous at 0, then g(x) =  1f(x) 4 is continuous at 0. 

5. False . If f  is a function defined everywhere in an open interval containing c, except 
possibly at c, then the number c is called a removable discontinuity of f if the function f 
is not continuous at c but lim f(x)

x→c 
  exists. 

6. False . If a function f is discontinuous at a number c,  then it might  be the case that  
lim f(x)
x→c	

  does not exist. However, the function could be discontinuous at c because lim f(x) 
x→c 

exists but either f(c) is not defined or lim f(x) = f(c). 
x c →

7. False . If a function f is continuous on an open interval (a, b), then it is continuous on the 
closed interval [a, b] only if the function is also continuous from the right at the number a 
and continuous from the left at the number b. 

8. True . If a function f is continuous on the closed interval [a, b], then f is continuous on 
the open interval (a, b). 

9. This function is discontinuous . When the ball lands on the ground and stops, there will
be a jump discontinuity as the velocity abruptly changes from a nonzero value to zero. 

 

10. This function is continuous . Though the temperature might change rapidly when the 
oven is first turned on and then again after the oven is turned off, there will be no abrupt 
jumps in the temperature. 

11. True . If a function f is continuous on a closed interval [a, b], then the Intermediate Value 
Theorem guarantees that the function takes on every value y between f(a) and f (b). 

12. False . If a function f is continuous on a closed interval [a, b] and f (a) = f(b), but both 
f(a) > 0 and  f(b) > 0, then f may have a zero on the open interval (a, b), but the
Intermediate Value Theorem cannot guarantee that a zero exists. The Intermediate Value 
Theorem can never guarantee that a function does not have a zero on a particular interval. 

            

Skill Building 

13. (a) The function f is not continuous at c = −3 . 

(b) Although f is defined at c = −3 with  f(−3) = 1 and lim f(x) = − 2, 
x→−3 

lim f(x) = f(−3) . 
x→−3 

(c) The discontinuity at c = −3 is  removable  because lim f(x) 
x→−3 

exists. 

(d) Redefine f at c = −3 so that  f(−3) = −2 =	 lim f(x).
x→−3 

 The resulting function will 

then be continuous at c = −3. 

�

�

�
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14. (a) Because f is defined at c = 0  with  f(0) = 2, lim f(x) = 2, and lim f(x) = f (0),
x→0 x→0 

 the 

function f is continuous at c = 0.  

15. (a) The function f is not continuous at c = 2 . 

(b) Although f is defined at c = 2  with  f(2) = 3, lim f(x) does not  exist  .
x→2 

(c) The discontinuity at c = 2 is not removable because lim f(x) 
x→2 

does not exist. 

16. (a) The function f is not continuous at c = 3.  

(b) Though f is defined at c = 3  with  f(3) = −1, lim f(x) does not  exist  . 
x 3 →

(c) The discontinuity at c = 3 is not removable because lim f(x) 
x→3 

does not exist. 

17. (a) Because f is defined at c = 4  with  f(4) = 0, lim f(x) = 0, and lim f(x) = f (4), 
x→4 x→4 

the 

function f is continuous at c = 4 . 

18. (a) The function f is not continuous at c = 5.  

(b) The function f is discontinuous at c = 5 because f is not defined at c = 5  and be­
cause 
lim f(x) = − 3 and lim f(x) = 1 so that lim f(x) does not e xist  . 

x→5− x→5+ x→5

(c) The discontinuity at c = 5 is not removable , because lim f(x) 
x→5 

does not exist, 

19. The domain of the function f(x) = x 2 + 1 is the set of all real numbers, so f is defined at 
c = −1 with  f(−1) = 2. Next, 

lim f(x) = lim (x 2 + 1)  =  (−1)2 + 1 = 2, 
x→−1 x→−1

so that lim f(x)
x→−1 

 exists. Finally, lim f(x) =  f(−1). 
x→−1 

Because all three conditions of the 

definition of continuity at c = −1 are satisfied, the function f is continuous at c = −1 . 

20. The domain of the function f(x) = x 3 − 5 is the set of all real numbers, so f is defined at 
c = 5  with  f(5) = 120. Next, 

lim f(x) = lim(x 3 − 5) = 53 − 5 = 120, 
x→5 x→5

so that lim f(x) 
x→5 

exists. Finally, lim f(x) = f (5). 
x→5 

Because all three conditions of the 

definition of continuity at c = 5 are satisfied, the function f is continuous at c = 5.  

21. Because x2 + 4 is never equal to zero for any real number x, the domain of the function 
x

f(x) =  
x2 + 4

 
is the set of all real numbers. Thus, f is defined at c = −2, with f(−2) = 

− 1
 . 4


  
Next,
 

x −2 1
 
lim f(x) = lim = = − , 

x→−2 x→−2 x2 + 4  (−2)2 + 2  4 

so that lim f(x) 
x→−2 

exists. Finally, lim f(x) =  f(−2). 
x→−2 

Because all three conditions of the 

definition of continuity at c = −2 are satisfied, the function f is continuous at c = −2 . 
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x 
f(x) =  

x − 2

22. The domain of the function is the set {x|x = 2}. Because f is not defined 

at c = 2, the function f is
 not continuous at c = 2.  
 

23. The domain of the function f is the set of all real numbers, so f is defined at c = 2  with  
f(2) = 2(2) + 5 = 9. Next, 

lim f(x) = lim (2x + 5) = 9 and lim f(x) = lim (4x + 1)  =  9, 
x→2− x→2− x→2+ x→2+ 

so that lim f(x) exists and is equal to 9. Finally, 
x→2 

lim f(x) = f (2). 
x→2 

Because all three condi­

tions of the definition of continuity at c = 2 are satisfied, the function f is 
continuous at c = 2 . 

24. The domain of the function f is the set of all real numbers, so f is defined at c = 0  with  
f(0) = 2(0) + 1 = 2. Next, 

lim f(x) = lim (2x + 1) = 1 and lim f(x) = lim 2x = 0, 
x 0− x 0− x 0+ x 0+ → → → →

so that lim f(x) does not exist. Therefore, the function f is not continuous at c = 0.  
x→0 

25. The domain of the function f is the set of all real numbers, so f is defined at c = 1  with  
f(1) = 4. Next, 

lim f(x) = lim (3x − 1) = 2 and lim f(x) = lim 2x = 2, 
x→1− x→1− x→1+ x→1+ 

so that  lim f(x) 
x→1 

exists and is equal to 2. However, lim f(x) = f(1),
x→1 

 so the function f is 

not continuous at c = 1 . 

26. The domain of the function f is the set of all real numbers, so f is defined at c = 1  with  
f(1) = 2. Next, 

lim f(x) = lim (3x − 1) = 2 and lim f(x) = lim 2x = 2, 
x 1− x 1− x 1+ x 1+ → → → →

so that lim f(x)
x→1 

 exists and is equal to 2. Finally, lim f(x) = f (1).
x→1 

 Because all three 

conditions of the definition of continuity at c = 1 are satisfied, the function f is continuous 
at c = 1.  

27. The domain of the function f is the set {x|x = 1}. Because f is not defined at c = 1,  the  
function f is not continuous at c = 1 . 

28. The domain of the function f is the set of all real numbers, so f is defined at c = 1  with  
f(1) = 2. Next, 

lim f(x) = lim (3x − 1) = 2 and lim f(x) = lim 3x = 3, 
x→1− x→1− x→1+ x→1+ 

so that lim f(x) 
x→1 

does not exist. Therefore, the function f is not continuous at c = 1.  

29. The domain of the function f is the set of all real numbers, so f is defined at c = 0  with  
f(0) = 0.   Next, 

lim f(x) = lim x 2 = 0 and lim f(x) = lim 2x = 0, 
x→0− x→0− x→0+ x→0+ 

so that  lim f(x) 
x→0 

exists and is equal to 0. Finally, lim f(x) = f (0). 
x→0 

Because all three condi­

tions of the definition of continuity at c = 0 are satisfied, the function f is

continuous at c = 0 . 
                

�

�

�
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 �
16 x2

lim f(x) = lim (4 − 3x 2) = 4 and lim f(x) = lim 
−

= 2, 
x 0− x 0− x 0+ x 0+ 4 − x → → → →

  �
x2 − 3x− 4

�
(x 4)(x+ 1)   

lim f(x) = lim = lim 
+ 

−
= lim 

√
x+ 1 =  

√
5, 

x→4 x   →4+ x− 4 x→4+ x− 4 x→4+ 

30. The domain of the function f is the set of all real numbers, so f is defined at c = −1 with  
f(−1) = 2. Next, 

lim f(x) = lim x 2 = 1 and lim f(x) = lim (
x

−3x+ 2)  =  5, 
→−1− x→−1− x→−1+ x→−1+ 

so that lim f(x) 
x→−1 

does not exist. Therefore, the function f is not continuous at c = −1. 

31. The domain of the function f is the set {x|x < 4}, so f  is defined at c = 0  with  f(0) = 4. 
Next, 

so that lim f(x) 
x→0 

does not exist. Therefore, the function f is not continuous at c = 0 . 

32. The domain of the function f is the set  {x|x ≥ −4}, so f  is defined at c = 4 w ith  √ √
f(4) = 8 = 2  2. Next, 

lim
√ √ 

 f(x) = lim 4 + x = 2  2 
x→4− x→4− 

and 

so that lim f(x)
x→4 

 does not exist. Therefore, the function f is not continuous at c = 4.  

33. Because 
x2 − 4 (x− 2)(x+ 2)  

lim f(x) = lim = lim = lim(x+ 2)  =  4, 
x→2 x→2 x− 2 x→2 x− 2 x→2

f(2) should be assigned the value 4 . Then lim f(x) = f (2), 
x→2 

and the resulting function 

will be continuous at c = 2.  

34. Because 

x2 + x− 12 (x− 3)(x+ 4)  
lim f(x) = lim = lim = lim(x+ 4)  =  7, 
x→3 x→3 x− 3 x→3 x− 3 x→3

f(3) should be assigned the value 7 . Then lim f(x) = f (3), 
x→3 

and the resulting function 

will be continuous at c = 3.  

35. Because 
lim f(x) = lim (1 + x) = 2 and lim f(x) = lim 2x = 2, 

x→1− x→1− x→1+ x→1+ 

it follows that lim f(x) = 2
x→1 

,  so  f(1) should be assigned the value 2 . Then lim f(x) =  
x→1 

f(1), and the resulting function will be continuous at c = 1.  

36. Because 

lim f(x) = lim (x 2 + 5x) = − 4 and lim f(x) = lim (x− 3) = −4, 
x→−1− x→−1− x→−1+ x→−1+ 

it follows that lim f(x) = − 4, 
x→−1 

so f(−1) should be assigned the value −4 .  Then  

lim f(x) = f (−1), 
x→−1 

and the resulting function will be continuous at c = −1. 
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x2 − 9 
f(x) =  

x − 3 
37. The domain of the function is the set {x|x = 3}. Since f is not defined at 

3, f is not continuous on the interval [−3, 3] .
 
Let c be any number in the open interval (−3, 3). Then
 

x2 − 9 c2 − 9
 
lim f(x) = lim = = f(c), 
x→c x→c x − 3 c − 3 

so f is continuous on the open interval (−3, 3). Also, 

x2 − 9 
lim f(x) = lim = 0 = f (

x
−3), 

→−3+ x→−3+ x − 3 

so f is also continuous from the right at c = −3. However, since c = 3 is not in the 
domain of f, f is not continuous from the left at c = 3. Therefore, the function f is 
continuous on the interval [−3, 3) . 

1 
f(x) = 1 +  

x

38. The domain of the function is the set {x|x = 0}. Since f is not defined at 0, 

f is
 not continuous on the interval
 

 [−1, 0] . 
Let c be any number in the open interval (−1, 0). Then 

(
1
)

1 
lim f(x) = lim 1 +  = 1 +  = f(c), 
x→c x→c x c 

so f is continuous on the open interval (−1, 0). Also, 
(

1 
)

lim f(x) = lim 1 +  = 0 =  f(−1), 
x→−1+ x→−1+ x 

so f is also continuous from the right at c = −1. However, since c = 0 is not in the 
domain of f, f is not continuous from the left at c = 0. Therefore, the function f is

continuous on the interval 
                  

[−1, 0) . 
1 

f(x) =  √ 
x2 − 9
 

39. The domain of is the set {x| |x| > 3}, so that f  is not defined anywhere 

on the closed interval [−3, 3]. Therefore, the function f is
 

not continuous at any number in the interval [−3, 3] . 
√ 

40. The domain of the function f(x) =  9 − x2 is the set {x|−3 ≤ x ≤ 3}, so t hat f  is defined 
on the closed interval [−3, 3]. Let c be any number in the open interval (−3, 3). Then 

lim f(x) = lim 
�
9 − x2 =

�
9 − c2 = f(c), 

x→c x→c 

so f is continous on the open interval (−3, 3). At c = −3,
 

lim f(x) = lim 
�
9 − x2 = 0 =  f(−3),
 

x→−3+ x→−3+ 

so f is also continuous from the right at c = −3. Finally, at c = 3, 
  

lim f(x) = lim 
�

9 − x2 = 0 = f (3),
 
x→3− x→3− 

and f is continuous from the left at c = 3. Therefore, the function f is 
continuous on the closed interval [−3, 3] . 

�

�

√ √

√

√



1-48 Chapter 1 Limits and Continuity 

 

 
 

 

 

 

 

 

41. Let 
1

g(x) = 2x2 + 5x and h(x) =  . 
x 

 
The domain of the polynomial function g is the 

set of all real numbers, and the domain of the rational function h is the set {x|x = 0}. 
Each function is continuous on its domain. Because the function f is the difference of the 
functions g and h, the domain of f is the intersection of the domains of g and h; that  
is, the domain of f is the set {x|x = 0} . The function f is continuous for all values x at 

which both g and h are continuous, so that f is continuous on the set {x|x = 0} . 
2x 

g(x) = x + 1  and  h(x) =  . 
x2 + 5  

42. Let The domain of the polynomial function g is the 

set of all real numbers, and the domain of the rational function h is also the set of all 
real numbers (because x2 + 5 is never equal to zero for any real number x). Each func­
tion is continuous on its domain. Because the function f is the sum of the functions
g and h, the domain of f is the intersection of the domains of g and h; that i s, t he  
domain of f is the set of all real numbers . The function f is continuous for all values x 

at which both g and h are continuous, so that f is continuous for all real numbers . 

                

43. Let g(x) = x − 1 and h (x) = x 2+ x+1. The domain of the polynomial function g is the set 
of all real numbers, and the domain of the polynomial function h is also the set of all real 
numbers. Each function is continuous on its domain. Because the function f is the product 
of the functions g and h, the domain of f is the intersection of the domains of g and h; that  
is, the domain of f is the set of all real numbers . The function f is continuous for all val­

ues x at which both g and h are continuous, so that f is continuous for all real numbers . 

44. Let	 
√ 

g(x) =  x and h(x) = x 3 − 5. The domain of the function g is the set 
0

{x|x ≥ 
}, and the domain of the polynomial function h is the set of all real numbers. Each
function is continuous on its domain. Because the function f is the product of the functions 
g and h, the domain of f is the intersection of the domains of g and h; that i s, t he
domain of f is the set 

                

 
{x|x ≥ 0} . The function f is continuous at all values x at which 

both g and h are continuous, so that f is continuous on the set {x|x ≥ 0} . 

45. Let 
√ 

g(x) = x − 9 and  h(x) =  x− 3. The domain of the polynomial function g is the set 
of all real numbers, and the domain of the function h is the set {x|x ≥ 0}. Each function 
is continuous on its domain. Because the function f is the quotient of the functions g 
and h, the domain of f is the intersection of the domains of g and h excluding any x for 
which h(x) = 0; that is, the domain of f is the set {x|x ≥ 0, x = 9} . The function f is 
continuous for all values x at which both g and h are continuous, excluding any x for which 
h(x) = 0, so that f is continuous on the set {x|x ≥ 0, x  = 9} . 

√ 
46. Let g(x) = x − 4 and  h(x) =  x− 2. The domain of the polynomial function g is the set 

of all real numbers, and the domain of the function h is the set              {x|x ≥ 0}. Each function 
is continuous on its domain. Because the function f is the quotient of the functions g 
and h, the domain of f is the intersection of the domains of g and h excluding any x for 
which h(x) = 0; that is, the domain of f is the set {x|x ≥ 0, x = 4} . The function f is 
continuous for all values x at which both g and h are continuous, excluding any x for which 
h(x) = 0, so that f is continuous on the set {x|x ≥ 0, x  = 4} . 

47. Let g
√ x2 + 1  

(x) =  x and h(x) =  . 
2 − x 

The domain of the function g is the set {x|x ≥ 

0}, and the domain of the rational function h is the set {x|x = 2}. Each function is 
continuous on its domain. Moreover, the solution of the inequality h(x) ≥ 0 is the  set  
{x|x < 2 }. Because f is the composition g(h(x)) and h(x) is in the domain of g for 

x <  2, it follows that the domain of f is the set {x|x < 2} . Finally, the function f is 

�

�
�

�

�

�

�

�
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continuous at c provided h is continuous at c and g is continuous at h(c); thus, f is 

continuous on the set    {x|x < 2} . 
  

48. Let g
√ 4

(x) =  x and h(x) =  . 
x2 − 1 

The domain of the function g is the set {x|x ≥ 

0}, and the domain of the rational function h is the set {x|x = ±1}. Each function is 
continuous on its domain. Moreover, the solution of the inequality h(x) ≥ 0 is the s et  
{x| |x| > 1}. Because f is the composition g(h(x)) and h(x) is in the domain of g for 

|x| > 1, it follows that the domain of f is the set {x| |x| > 1} . Finally, the function f 

is continuous at c provided h is continuous at c and g is continuous at h(c); thus, f is 

continuous on the set {x| |x| > 1} . 

49. Let g(x) = x 2/3 and h(x) = 2x2+5x−3. The domain of the function g is the set of all real 
numbers, and the domain of the polynomial function h is also the set of all real numbers.
Each function is continuous on its domain. Because f is the composition 

 
g(h(x)) and h(x) 

is always in the domain of g, it follows that the domain of f is the set of all real numbers . 
Finally, the function f is continuous at c provided h is continuous at c and g is continuous 
at h(c); thus, f is continuous on the set of all real numbers . 

50. Let g(x) = x 1/2 and h(x) = x + 2. The domain of the function g is the set {x|x ≥ 0}, and  
the domain of the polynomial function h is the set of all real numbers. Each function is 
continuous on its domain. Moreover, the solution of the inequality h(x) ≥ 0 is the s et  
{x|x ≥ −2}. Because f is the composition g(h(x)) and h(x) is in the domain of g for 

x ≥ −2, it follows that the domain of f is the set {x|x ≥ −2} . Finally, the function f 

is continuous at c provided h is continuous at c and g is continuous at h(c); thus, f is 

continuous on the set {x|x ≥ −2} . 

51. Because f is defined at c = 0  with  
√ 

f(0) = 15 and 

lim
√  

 f(x) = lim 15 − 3x = 
√
15 = f(0), 

x→0 x→0 

the function f is continuous at c = 0.  

52. Because 

lim f(x) = lim lx− 2J = 1 but lim f(x) = lim lx− 2J = 2, 
x→4− x→4− x→4+ x→4+ 

it follows that lim f(x)
x→4 

does not exist  and f is not continuous at c = 4.  

53. Because 

lim f(x) = lim (9 − x 2) = 0 but lim f(x) = lim lx− 2J = 1, 
x→3− x→3− x→3+ x→3+ 

it follows that lim f(x)
x→3 

does not exist  and f is not continuous at c = 3.  

54. Because 
 

lim f(x) = lim 
√
15 − 3x = 3 but lim f(x) = lim (9 − x 2) = 5, 

x→2− x→2− x→2+ x→2+ 

it follows that lim f(x)
x→2 

does not exist  and f is not continuous at c = 2.  

�
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55. Because f is defined at c = 1  with  
√ √ 

f(1) = 12 = 2 3 and  
√ √ √ 

lim f(x) = lim 15 − 3x = 12 = 2 3 = f(1), 
x→1 x→1 

the function f is continuous at c = 1.  

56. Because f is defined at c = 2.5 with  f(2.5) = 2.75 and 

lim f(x) = lim (9 − x 2) = 9−  2.52 = 2.75 = f(2.5), 
x→2.5 x→2.5

the function f is continuous at c = 2.5. 

57. (a) A graph of the function f is shown below 

(b) Based on the graph from part (a), the function f appears to be 
continuous on the set of all real numbers . 

(c) The polynomial functions x3−8 and  x−2 are continuous on the set of all real numbers. 
Because the function f is the quotient of these two polynomials, f is continuous on 
the set of all real numbers excluding any values for x at which x − 2 = 0.  Thus,  f is 
continuous on the set {x|x =2} . 

(d) Answers will vary.	 One possible response is that graphing technology can be a useful 
tool to suggest where a function is continuous, but “conclusions” drawn from graphing 
technology should always be confirmed using some basic analysis. 

58. (a) A graph of the function f is shown below 

�
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(b) Based on the graph from part (a), the function f appears to be 
continuous on the set of all real numbers . 

(c) The polynomial functions x2 − 3x + 2  and  3x − 6 are continuous on the set of all 
real numbers. Because the function f is the quotient of these two polynomials, f is 
continuous on the set of all real numbers excluding any values for x at which 3x−6 = 0.  
Thus, f is continuous on the set {x|x = 2} . 

(d) Answers will vary.	 One possible response is that graphing technology can be a useful 
tool to suggest where a function is continuous, but “conclusions” drawn from graphing 
technology should always be confirmed using some basic analysis. 

59. The polynomial function	 f(x) = x 3 − 3x is continuous for all real numbers, so it is 
continuous on the closed interval [−2, 2]. Because f(−2) = (−2)3 − 3(−2) = −2 < 
0 and  f(2) = 23 − 3(2) = 2 > 0, the Intermediate Value Theorem guarantees that 

f must have a zero on the interval (−2, 2) . 

60. The polynomial function f(x) = x 4−1 is continuous for all real numbers, so it is continuous 
on the closed interval [−2, 2]. Because f(−2) = (−2)4 − 1 = 15 >  0 and  f(2) = 24 − 1 =  
15 > 0, the Intermediate Value Theorem gives no information about the presence of a 
zero of f on the interval (−2, 2). 

x 
f(x) =  − 1

(x + 1)2 
61. The domain of the function is the set { x|x = −1}. Because f is the 

difference of a rational function and a polynomial function, it is continuous on its domain. 
It follows that f is continuous on the closed interval [10, 20]. Now, 

10 111	 20 421 
f(10) = − 1 =  − < 0 and f (20) = − 1 =  − < 0,

112 121	 212 441 

so the Intermediate Value Theorem gives no information about the presence of a zero of 
f on the interval (10, 20) 

62. The polynomial function f(x) = x 3 − 2x2 − x + 2 is continuous for all real numbers, so it 
is continuous on the closed interval [3, 4]. Because    f(3) = 33 − 2(3)2 − 3 + 2 = 8  > 0 and  
f(4) = 43−2(4)2−4+2  =  30  > 0, the Intermediate Value Theorem gives no information 
about the presence of a zero of f on the interval (3, 4). 

x3 − 1 
 f(x) =  

x − 1 
63. The domain of the function is the set {x|x = 1}. Because the closed interval 

[0, 2] contains x = 1, f  is not continuous on this interval, so the Intermediate Value Theorem 
does not apply. Therefore, the Intermediate Value Theorem gives no information about 
the presence of a zero of f on the interval (0, 2). 

x2 + 3x + 2
f(x) =  

x2 − 1 
 

64. The domain of the function is the set {x|x = ±1}. Because the closed 

interval [−3, 0] contains x = −1, f is not continuous on this interval, so the Intermediate

Value Theorem does not apply. Therefore, the Intermediate Value Theorem gives no 

information about the presence of a zero of f on the interval 

          

(−3, 0). 
65. The polynomial function f(x) = x 3 + 3x − 5 is continuous for all real numbers, so it is 

continuous on the closed interval [1, 2]. Because f(1) = 13 + 3(1)   5 =  1 < 0 and
f(2) = 23 + 3(2)   5 = 9 >  0,

− −  
−  the Intermediate Value Theorem guarantees that f must 

have a zero on the interval (1, 2). To approximate this zero, subdivide the interval [1, 2]
into 10 subintervals, each of length 0.1, and evaluate f at each endpoint. The results
are shown in the first two columns of the table below. Because

 
 

 f(1.1) = −0.369 < 0 and  

�

�

�

�
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[1, 2] 
x f(x) 
1.0 −1.000 
1.1 −1.069 
1.2 −1.072 
1.3 −1.003 
1.4 −0.856 
1.5 −0.625 
1.6 −0.304 
1.7 0.133 
1.8 0.632 
1.9 1.259 
2.0 2.000 

[1.6, 1.7] 
x f(x) 

1.60 −0.30400 
1.61 −0.26672 
1.62 −0.22847 
1.63 −0.18925 
1.64 −0.14906 
1.65 −0.10788 
1.66 −0.06570 
1.67 −0.02254 
1.68 0.02163 
1.69 0.06681 
1.70 0.11300 

[1.67, 1.68] 
x f (x) 

1.670 −0.02254 
1.671 −0.01817 
1.672 −0.01378 
1.673 −0.00939 
1.674 −0.00499 
1.675 −0.00058 
1.676 0.00384 
1.677 0.00828 
1.678 0.01272 
1.679 0.01717 
1.680 0.02163 

f(1.2) = 0.328 > 0, the Intermediate Value Theorem guarantees the zero lies in the interval 
(1.1, 1.2). Repeating the process by subdividing the interval [1.1, 1.2] into 10 subintervals 
of length 0.01 yields the results in the middle two columns of the table, where the function 
values have been rounded to five decimal places for display purposes. The zero has now 
been bracketed in the interval (1.15, 1.16). Repeating the subdivision process once more, 
the results in the last two columns of the table are produced, again with the function 
values rounded to five decimal places. Examining the function values in the last column, 
it follows that the zero of the function f is 1.154 , correct to three decimal places. 

[1, 2] 
x f(x) 
1.0 −1.000 
1.1 −0.369 
1.2 0.328 
1.3 1.097 
1.4 1.944 
1.5 2.875 
1.6 3.896 
1.7 5.013 
1.8 6.232 
1.9 7.559 
2.0 9.000 

[1.1, 1.2] 
x f(x) 

1.10 −0.36900 
1.11 −0.30237 
1.12 −0.23507 
1.13 −0.16710 
1.14 −0.09846 
1.15 −0.02913 
1.16 0.04090 
1.17 0.11161 
1.18 0.18303 
1.19 0.25516 
1.20 0.32800 

[1.15, 1.16] 
x f (x) 

1.150 −0.02913 
1.151 −0.02215 
1.152 −0.01518 
1.153 −0.00819 
1.154 −0.00120 
1.155 0.00580 
1.156 0.01280 
1.157 0.01982 
1.158 0.02684 
1.159 0.03386 
1.160 0.04090 

66. The polynomial function f(x) = x 3 − 4x + 2 is continuous for all real numbers, so it is 
continuous on the closed interval [1, 2]. Because f(1) = 13 − 4(1) + 2 = −1 < 0 and  
f(2) = 23 − 4(2) + 2 = 2 > 0, the Intermediate Value Theorem guarantees that f must 
have a zero on the interval (1, 2). To approximate this zero, subdivide the interval [1, 2]
into 10 subintervals, each of length 0.1, and evaluate f at each endpoint. The results 
are shown in the first two columns of the table below. Because 

                 

f(1.6) = −0.304 < 0 and  
f(1.7) = 0.113 > 0, the Intermediate Value Theorem guarantees the zero lies in the interval
(1.6, 1.7). Repeating the process by subdividing the interval [1.6, 1.7] into 10 subintervals 
of length 0.01 yields the results in the middle two columns of the table, where the function 
values have been rounded to five decimal places for display purposes. The zero has now 
been bracketed in the interval (1.67, 1.68). Repeating the subdivision process once more, 
the results in the last two columns of the table are produced, again with the function 
values rounded to five decimal places. Examining the function values in the last column, 
it follows that the zero of the function f is 1.675 , correct to three decimal places. 

           

67. The polynomial function f(x) = 2x3 +3x2 +4x − 1 is continuous for all real numbers, so it 
is continuous on the closed interval [0, 1]. Because f(0) = −1 < 0 and  f(1)  =  2+3+4−1 =  
8 > 0, the Intermediate Value Theorem guarantees that f must have a zero on the interval
(0, 1). To approximate this zero, subdivide the interval [0, 1] into 10 subintervals, each 
of length 0.1, and evaluate f at each endpoint. The results are shown in the first two 
columns of the table below. Because 

              

f(0.2) = −0.064 < 0 and  f(0.3) = 0.524 > 0, the 
Intermediate Value Theorem guarantees the zero lies in the interval (0.2, 0.3). Repeating 
the process by subdividing the interval [0.2, 0.3] into 10 subintervals of length 0.01 yields 
the results in the middle two columns of the table, where the function values have been 
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[0, 1] 
x f(x) 
0.0 −1.000 
0.1 −0.568 
0.2 −0.064 
0.3 0.524 
0.4 1.208 
0.5 2.000 
0.6 2.912 
0.7 3.956 
0.8 5.144 
0.9 6.488 
1.0 8.000 

[0.2, 0.3] 
x f(x) 

0.20 −0.06400 
0.21 −0.00918 
0.22 0.04650 
0.23 0.10303 
0.24 0.16045 
0.25 0.21875 
0.26 0.27795 
0.27 0.33807 
0.28 0.39910 
0.29 0.46108 
0.30 0.52400 

[0.21, 0.22] 
x f(x) 

0.210 −0.00918 
0.211 −0.00365 
0.212 0.00189 
0.213 0.00743 
0.214 0.01299 
0.215 0.01855 
0.216 0.02412 
0.217 0.02970 
0.218 0.03529 
0.219 0.04089 
0.220 0.04650 

[0, 1] 
x f(x) 
0.0 1.000 
0.1 0.791 
0.2 0.568 
0.3 0.337 
0.4 0.104 
0.5 −0.125 
0.6 −0.344 
0.7 −0.547 
0.8 −0.728 
0.9 −0.881 
1.0 −1.000 

[0.4, 0.5] 
x f(x) 

0.40 0.10400 
0.41 0.08082 
0.42 0.05769 
0.43 0.03461 
0.44 0.01158 
0.45 −0.01138 
0.46 −0.03426 
0.47 −0.05708 
0.48 −0.07981 
0.49 −0.10245 
0.50 −0.12500 

[0.44, 0.45] 
x f(x) 

0.440 0.01158 
0.441 0.00929 
0.442 0.00699 
0.443 0.00469 
0.444 0.00239 
0.445 0.00010 
0.446 −0.00220 
0.447 −0.00449 
0.448 −0.00679 
0.449 −0.00908 
0.450 −0.01138 

rounded to five decimal places for display purposes. The zero has now been bracketed in 
the interval (0.21, 0.22). Repeating the subdivision process once more, the results in the 
last two columns of the table are produced, again with the function values rounded to five 
decimal places. Examining the function values in the last column, it follows that the zero 
of the function f is 0.211 , correct to three decimal places. 

68. The polynomial function f(x) = x 3 − x2 − 2x + 1 is continuous for all real numbers, so it 
is continuous on the closed interval [0, 1]. Because f(0) = 1 > 0 and f (1) = 1 − 1 − 2+1  =  
−1 < 0, the Intermediate Value Theorem guarantees that f must have a zero on the 
interval (0, 1). To approximate this zero, subdivide the interval [0, 1] into 10 subintervals, 
each of length 0.1, and evaluate f at each endpoint. The results are shown in the first two 
columns of the table below. Because f(0.4) = 0.104 > 0 and f (0.5) = −0.125 < 0, the 
Intermediate Value Theorem guarantees the zero lies in the interval (0.4, 0.5). Repeating 
the process by subdividing the interval [0.4, 0.5] into 10 subintervals of length 0.01 yields 
the results in the middle two columns of the table, where the function values have been 
rounded to five decimal places for display purposes. The zero has now been bracketed in 
the interval (0.44, 0.45). Repeating the subdivision process once more, the results in the 
last two columns of the table are produced, again with the function values rounded to five 
decimal places. Examining the function values in the last column, it follows that the zero 
of the function f is 0.445 , correct to three decimal places. 

69. The polynomial function f(x) = x 3 − 6x − 12 is continuous for all real numbers, so it is 
continuous on the closed interval [3, 4]. Because f(3) = 33 − 6(3) − 12 = −3 < 0 and
f(4) = 43 − 6(4) − 12 = 28 > 0, 

 
the Intermediate Value Theorem guarantees that f must 

have a zero on the interval (3, 4). To approximate this zero, subdivide the interval [3, 4] 
into 10 subintervals, each of length 0.1, and evaluate f at each endpoint. The results 
are shown in the first two columns of the table below. Because f(3.1) = −0.809 < 0 and  
f(3.2) = 1.568 > 0,     the Intermediate Value Theorem guarantees the zero lies in the interval 
(3.1, 3.2). Repeating the process by subdividing the interval [3.1, 3.2] into 10 subintervals 
of length 0.01 yields the results in the middle two columns of the table, where the function 
values have been rounded to five decimal places for display purposes. The zero has now 
been bracketed in the interval (3.13, 3.14). Repeating the subdivision process once more, 
the results in the last two columns of the table are produced, again with the function 
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[3, 4] 
x f(x) 
3.0 3.000−  
3.1 −0.809 
3.2 1.568 
3.3 4.137 
3.4 6.904 
3.5 9.875 
3.6 13.056 
3.7 16.453 
3.8 20.072 
3.9 23.919 
4.0 28.000 

[3.1, 3.2] 
x f(x) 

3.10 −0.80900 
3.11 −0.57977 
3.12 −0.34867 
3.13 −0.11570 
3.14 0.11914 
3.15 0.35587 
3.16 0.59450 
3.17 0.83501 
3.18 1.07743 
3.19 1.32176 
3.20 1.56800 

[3.13, 3.14] 
x f (x) 

3.130 −0.11570 
3.131 −0.09230 
3.132 −0.06888 
3.133 −0.04545 
3.134 −0.02199 
3.135 0.00149 
3.136 0.02498 
3.137 0.04849 
3.138 0.07202 
3.139 0.09557 
3.140 0.11914 

[2, 3] 
x f(x) 
2.0 −6.000 
2.1 −1.717 
2.2 2.944 
2.3 8.001 
2.4 13.472 
2.5 19.375 
2.6 25.728 
2.7 32.549 
2.8 39.856 
2.9 47.667 
3.0 56.000 

[2.1, 2.2] 
x f(x) 

2.10 −1.71700 
2.11 −1.26281 
2.12 −0.81562 
2.13 −0.35921 
2.14 0.10103 
2.15 0.56512 
2.16 1.03309 
2.17 1.50494 
2.18 1.98070 
2.19 2.46038 
2.20 2.94400 

[2.13, 2.14] 
x f (x) 

2.130 −0.35921 
2.131 −0.31336 
2.132 −0.26747 
2.133 −0.22154 
2.134 −0.17557 
2.135 −0.12957 
2.136 −0.08353 
2.137 −0.03744 
2.138 0.00868 
2.139 0.05483 
2.140 0.10103 

values rounded to five decimal places. Examining the function values in the last column, 
it follows that the zero of the function f is 3.134 , correct to three decimal places. 

70. The polynomial function f(x) = 3x3 + 5x − 40 is continuous for all real numbers, so it is 
continuous on the closed interval [2, 3]. Because        f(2) = 3(2)3 + 5(2)   40 = −6 < 0 and  
f(3) = 3(3)3 + 5(3)   40 = 56 > 0,

−
−  the Intermediate Value Theorem guarantees that f 

must have a zero on the interval (2, 3). To approximate this zero, subdivide the interval 
[2, 3] into 10 subintervals, each of length 0.1, and evaluate f at each endpoint. The results 
are shown in the first two columns of the table below. Because f(2.1) = 1.717 < 0 
and f(2.2) = 2.2944 > 0, 

−
the Intermediate Value Theorem guarantees the zero lies in 

the interval (2.1, 2.2). Repeating the process by subdividing the interval [2.1, 2.2] into 10 
subintervals of length 0.01 yields the results in the middle two columns of the table, where 
the function values have been rounded to five decimal places for display purposes. The 
zero has now been bracketed in the interval (2.13, 2.14). Repeating the subdivision process 
once more, the results in the last two columns of the table are produced, again with the 
function values rounded to five decimal places. Examining the function values in the last 
column, it follows that the zero of the function f is 2.137 , correct to three decimal places. 

71. The polynomial function f(x) = x 4 − 2x3 +21x − 23 is continuous for all real numbers, so 
it is continuous on the closed interval [1, 2]. Because f(1) = 1 − 2 + 21  − 23 = −3 < 0 and  
f(2) = 24 − 2(2)3 + 21(2) − 23 = 19 > 0, the Intermediate Value Theorem guarantees that 
f must have a zero on the interval (1, 2). To approximate this zero, subdivide the interval 
[1, 2] into 10 subintervals, each of length 0.1, and evaluate f at each endpoint. The results 
are shown in the first two columns of the table below. Because f(1.1) = −1.0979 < 0 
and f(1.2) = 0.8176 > 0,      the Intermediate Value Theorem guarantees the zero lies in 
the interval (1.1, 1.2). Repeating the process by subdividing the interval [1.1, 1.2] into 10
subintervals of length 0.01 yields the results in the middle two columns of the table, where 
the function values have been rounded to five decimal places for display purposes. The 
zero has now been bracketed in the interval (1.15, 1.16). Repeating the subdivision process 
once more, the results in the last two columns of the table are produced, again with the 
function values rounded to five decimal places. Examining the function values in the last 
column, it follows that the zero of the function f is 1.157 , correct to three decimal places. 
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[1, 2] 
x f (x) 
1.0 −3.0000 
1.1 −1.0979 
1.2 0.8176 
1.3 2.7621 
1.4 4.7536 
1.5 6.8125 
1.6 8.9616 
1.7 11.2261 
1.8 13.6336 
1.9 16.2141 
2.0 19.0000 

[1.1, 1.2] 
x f(x) 

1.10 −1.09790 
1.11 −0.90719 
1.12 −0.71634 
1.13 −0.52532 
1.14 −0.33413 
1.15 −0.14274 
1.16 0.04885 
1.17 0.24066 
1.18 0.43271 
1.19 0.62502 
1.20 0.81760 

[1.15, 1.16] 
x f(x) 

1.150 −0.14274 
1.151 −0.12359 
1.152 −0.10444 
1.153 −0.08529 
1.154 −0.06613 
1.155 −0.04698 
1.156 −0.02781 
1.157 −0.00865 
1.158 0.01051 
1.159 0.02968 
1.160 0.04885 

[1, 2] 
x f (x) 
1.0 −1.0000 
1.1 −0.7669 
1.2 −0.4544 
1.3 −0.0409 
1.4 0.4976 
1.5 1.1875 
1.6 2.0576 
1.7 3.1391 
1.8 4.4656 
1.9 6.0731 
2.0 8.0000 

[1.3, 1.4] 
x f(x) 

1.30 −0.04090 
1.31 0.00691 
1.32 0.05599 
1.33 0.10637 
1.34 0.15808 
1.35 0.21113 
1.36 0.26556 
1.37 0.32140 
1.38 0.37867 
1.39 0.43739 
1.40 0.49760 

[1.30, 1.31] 
x f(x) 

1.300 −0.04090 
1.301 −0.03618 
1.302 −0.03144 
1.303 −0.02669 
1.304 −0.02193 
1.305 −0.01715 
1.306 −0.01237 
1.307 −0.00757 
1.308 −0.00275 
1.309 0.00207 
1.310 0.00691 

72. The polynomial function f(x) = x 4 − x3 + x − 2 is continuous for all real numbers, so it 
is continuous on the closed interval [1, 2]. Because         f(1) = 1 − 1 + 1  2 =  1 < 0 and  
f(2) = 24 − 23 + 2− 2 = 8 >  0, the Intermediate Value Theorem guarantees that f must 
have a zero on the interval (1, 2). To approximate this zero, subdivide the interval [1, 2] 
into 10 subintervals, each of length 0.1, and evaluate f at each endpoint. The results 
are shown in the first two columns of the table below. Because 

− −

f(1.3) = 0.0409 < 0 
and f(1.4) = 0.4976 > 0, 

−
the Intermediate Value Theorem guarantees the zero lies in 

the interval (1.3, 1.4). Repeating the process by subdividing the interval [1.3, 1.4] into 10 
subintervals of length 0.01 yields the results in the middle two columns of the table, where 
the function values have been rounded to five decimal places for display purposes. The 
zero has now been bracketed in the interval (1.30, 1.31). Repeating the subdivision process 
once more, the results in the last two columns of the table are produced, again with the 
function values rounded to five decimal places. Examining the function values in the last 
column, it follows that the zero of the function f is 1.308 , correct to three decimal places. 

73. (a) The polynomial function x2 + 4x is continuous on the set of all real numbers and is 
non-negative on the set 

√ {x|x ≤ −4} ∪ {x|x ≥ 0}. The function f(x) =  x2 + 4x − 2 
is therefore continuous on the set {x|x ≤ −4} ∪ {x|x ≥ 0}, which contains the closed 
interval [0, 1]. Because   

√	  
 f(0) = 0 − 2 =  −2 < 0 and  f(1) = 

√
5 − 2 ≈ 0.236 > 0, 

the Intermediate Value Theorem guarantees that f must have a zero on the interval 
(0, 1). 

(b) Using the FindRoot command in the computer algebra system Mathematica produces 
the zero x ≈ 0.828 , rounded to three decimal places. 

74.	 (a) The polynomial function f(x) = x 3 − x + 2 is continuous for all real numbers, so it is 
continuous on the closed interval [−2, 0]. Because f(−2) = (−2)3−(−2)+2 = 
and

−4 < 0 
 f(0) = 2 > 0, the Intermediate Value Theorem guarantees that f must have a 

zero on the interval (−2, 0). 
(b) Using the FindRoot command in the computer algebra system Mathematica produces 

the zero x ≈ −1.521 , rounded to three decimal places. 
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Applications and Extensions 

75. Note: f(c) = (−1) − 1 =  2 and  f(d) = (1)  1 = 0. − −
(a) We have lim f(x) = lim (x − 1) = −2 =  f(c). f is left continuous at c = −1. 

x→c− x→−1−

We have lim f(x) = lim x 2 = 1 = f(d)
x→d− x→1− 

. f is n ot left continuous at  d = 1. 

(b) We have lim f(x) = lim x 2 = 1 = f(c). f is not right continuous at c = −1. 
x→c+ x→−1+ 

We have lim f(x) = lim (x− 1) = 0 = f(d)
x→d+ x→1+ 

. f is right continuous at d = 1. 

76. Note: f(c) = f (d) = (1)2 − 1 = 0  

(a) We have lim f(x) = lim |x+ 1| = 0 =  f(c). f is left continuous at c = −1. 
x→c− x→−1− 

We have lim f(x) = lim (x 2 − 1) = 0 = f(d)
x→d− x→1−

. f is left continuous at d = 1. 

(b) We have lim f(x) = lim (x 2 − 1) = 0 = f(c). f is right continuous at c = −1. 
x→c+ x→−1+ 

We have lim f(x) = lim x+ 1 = 2 = f(d)
x→d+ x→1+ 

| | . f is not right continuous at d = 1. 

 
77. Note that the domain of f is {x|x ≤ −1}�{x|x ≥ 5}. From this fact we can immediately 

see that lim f(x) and lim f(x) do not exist. Also, f(c) = f (d) = 0. 
x→−1+ x→5− 

(a) We have lim f(x) = lim 
�
(x+ 1)(x− 5) = 0 = f(c).

x→c− x→−1− 
f is left continuous 

at c = −1. lim f(x) 
x→d− 

does not exist. f is n ot left continuous at  d = 5. 

(b) lim f(x) does not exist. f is not right continuous at c = −1. 
x→c+ 

We have lim f(x) = lim 
�

(x+ 1)(x
x

− 5) = 0 = f(d)
→d+ x→5+ 

. f is right continuous at 

d = 5. 
 

78. Note that the domain of f is {x|x ≤ 1}�{x|x ≥ 2}. From this fact we can immediately 
see that lim f(x) and lim f(x) do not exist. Also, f(c) = f (d) = 0. 

x→1+ x→2− 

(a) We have lim f(x) = lim 
�
(x− 1)(x− 2) = 0 = f(c)

x→c− x→1− 
. f is left continuous 

at c = 1. lim f(x) does not exist.
x→d− 

 f is n ot left continuous at  d = 2. 

(b) lim f(x) does not exist. 
x→c+ 

f is not right continuous at c = 1. 

We have lim f(x) = lim 
�

(x− 1)(x− 2) = 0 = f(d)
x→d+ x→2+ 

. f is right continuous 

at d = 2. 

79. (a) Because the Postal Service rounds the weight of the letter up to next whole number 
of ounces, the first-class postage charged is 

 
0.47, if ⎧

0 < w ≤ 1  
0.68, if 1 < w 2

C(w) =
⎨
 ≤

 0.89, if 2 < w ≤ 3 ⎩
1.10, if 3 < w ≤ 3.5. 

where postage is measured in dollars and weight is measured in ounces. This can be 
written compactly in terms of the ceiling function as 

C(w) = 0.47 + 0.21�w − 1�. 

�

�

�

√

√

√

√
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(b) The domain of C is the set {w|0 < w ≤ 3.5} . 
(c) The function C is continuous on the intervals (0, 1), (1, 2), (2, 3), and (3, 3.5) because 

the function is a constant (polynomial) on each of these intervals. At w = 1,  

lim C(w) = lim 0.47 = 0.47 and lim = lim 0.68 = 0.68, 
w→1− w→1−	 w→1+ w→1+ 

so that lim C(w) 
w→1 

does not exist. Similarly, at w = 2  and  w = 3,  

lim C(w) = lim 0.68 = 0.68 and lim = lim 0.89 = 0.89, 
w→2− w→2−	 w→2+ w→2+ 

and 
lim C(w) = lim 0.89 = 0.89 and lim = lim 1.10 = 1.10, 

w→3− w→3−	 w→3+ w→3+ 

respectively, so that lim C(w) 
w→2	 

does not exist and lim C(w) 
w→3 

does not exist. Therefore, 

C is not continuous at w = 1,  w = 2,  or  w = 3. However, 

lim	 C(w)= 0.47 = C(1), lim C(w)= 0.68 = C(2), and lim C(w) = 0.89 = C(3), 
w→1− w→2−	 w→3− 

so C is continuous from the left at w = 1,  w = 2,  and  w = 3. Additionally, 

lim C(w) = lim 1.10 = 1.10 = C(3.5), 
w 3.5− w 3.5− → →

so C is continuous from the left at w = 3.5. Thus, C is continuous on the intervals 
(0, 1], (1, 2], (2, 3], and (3, 3.5] . 

(d) At each number where C is not continuous (w = 1,  w = 2,  and  w = 3), the two one-
sided limits exist but are not equal, so each discontinuity is a jump discontinuity . 

(e) Answers will vary.	 One possible response is that because any fraction of an ounce 
results in a charge for a full ounce, it is in the consumer’s best interest to have letters 
weigh as close as possible to a whole number of ounces, without going over. 

80.	 (a) From exercise 60 from Section 1.1, the piecewise function C that models the first-class 
postage charged for a large envelope weighing w ounces is 

 ⎧
$0.94	 if 0 < w  1   ⎪

 ⎪
 $1.15 if 1 < w

≤
 2 ⎪

 ⎪
  

≤⎪
$1⎪

 .36 if 2 < w  3 ⎪
 ⎪
  

≤
⎪

 $1.57 if 3 < w  4 ⎪
 ⎪
  $1.78 if 4  < w

≤
 ⎪
5 ⎪⎪

 ⎪
 $1.99 if 5 < w

≤
 6 ⎪

C(w) =
⎨
 $2.20 if 6 < w

≤
 7 

   $2.41 if 7 < w
≤

⎪ ≤ 8 ⎪
 ⎪
   if  < w  9 ⎪⎪
 $2.62 8⎪
 ⎪
  $2.83 if 9 < w

≤
 10 ⎪⎪

 ⎪
 ⎪
  $3.04 if 10 < w

≤
 11 ⎪

 ⎪⎪
  $3.25 if 11 < w

≤
⎪⎪ ≤ 12 ⎩

$3.46	 if 12 < w ≤ 13 

(b)	 The domain of the function {w|0 < w ≤ 13}. The weight of these envelopes can be 
any positive real number up to and including 13 ounces. 

(c) The function	 C(x) is continuous on the intervals (0, 1], (1, 2], (2, 3], (3, 4], (4, 5], 
(5, 6], (6, 7], (7, 8], (8, 9], (9, 10], (10, 11], (11, 12], and (12, 13]. 

(d) The function is discontinuous at x = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, and 13. For any
of these values, the limit does not exist. For example, for x = 5, 

 
lim C(w) = $1.78 

w→5− 

and lim C(w) = $1.99. 
w→5+	 

Since lim C(w) = lim C(w), 
w→5− w→5+ 

we conclude lim C(w)
w→5 

and  

that C(w) is discontinuous at x = 5. Since the left hand limits and the right hand 
limits are different for x = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, and 13, the discontinuities 
are jump discontinuities. 

�
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(e) The answers may vary.	 One possible answer is that it is in the customer’s best interest 
to have packages that weigh as close as possible to a whole number of ounces, without 
going over. This avoids paying the extra $0.21 for the first-class rate. 

81. (a) From exercise 94 from Section 1.2, the piecewise function C that models the monthly 

cost of using x kWH of electricity is
{

7.87 + 0.02173x if 0 x 1000
C(x) = 	  − .2.13 + 0.03173 if x >

≤
1000
≤

 

 
 

(b) The domain of the function is any nonnegative real number, {x|x ≥ 0} . Customers  

can use as little (x = 0)  or  as  much  (x→∞) electricity as they desire. 

(c) C is continuous on its domain . In particular, for x = 1000, lim C(x) = lim 
x→1000− x→1000− 

(7.87 + 0.02173x) = $29.60 and lim C(x) = lim (29.60 + 0.03173 
x→1000+ x→1000+ 

(x− 1000)) = $29.60. Thus, lim C(x) = $29.60. 
x→1000+ 

Since C(1000) is also $29.60, we conclude that function C(x) is continuous at 
x = 1000. 

(d) There are no numbers where C is not continuous. 

(e) The answers may vary.	 One possible answer: To minimize the monthly cost of elec­
tricity, it is in the consumer’s best interest to minimize the amount of electricity 
used. 

82. (a) Using the rate schedule provided, 

 ⎧
 9.00,	 if 0 x 10  ⎪⎨
9.00 + 0.95(x 10), if 10

≤
 < x
≤

30
C(x) =  

 28.00 + 1.65(x
−

30), if 30 < x
≤

100  ⎪⎩
143.50 + 2.20(x

− ≤
− 100), if x > 100. 

(b) The domain of C is the set {x|x ≥ 0} . 
(c) The function C is continuous on the intervals (0, 10), (10, 30), (30, 100), and (100,∞), 

because it is a polynomial on each of these intervals. At x = 10,             

lim C(x) = lim 9.00 = 9.00 
x→10− x→10− 

and 

lim C(x) = lim [9.00 + 0.95(x− 10)] = 9.00 + 0.95(10 − 10) = 9.00, 
x→10+ x→10+ 

so that lim C(x) 
x→10 

exists and is equal to 9.00. As C(10) = 9.00, it follows that C is 

continuous at x = 10. Similarly, 

lim C(x) = lim [9.00 + 0.95(x− 10)] = 9.00 + 0.95(30 − 10) = 28.00 
x→30− x→30−

and 

lim C(x) = lim [28.00 + 1.65(x− 30)] = 28.00 + 1.65(30 − 30) = 28.00, 
x→30+ x→30+ 

so that lim C(x) = 28.00 = C(30) and C is continuous at x = 30. At w = 100, 
x→30 

lim C(x) = lim [28.00 + 1.65(x− 30)] = 28.00 + 1.65(100 − 30) = 143.50 
x→100− x→100−

and 

lim C(x) = lim [143.50 + 2.20(x− 100)] = 143.50 + 2.20(100 − 100) = 143.50, 
x→100+ x→100+ 
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so that lim C(x) 
x→100 

exists and is equal to 143.50 = C(100). Thus, C is continuous at 

x = 100. Finally,
 
lim C(x) = lim 9.00 = 9.00 = C(0),
 

x→0+ x→0+ 

so C is continuous from the right at x = 0. Thus, C is continuous on               [0, ∞) . 

(d) The function C is continuous on its domain . 

(e) Answers will vary.	 One possible response is that there is no “penalty” to the consumer 
who goes just a little over 10,000 or 30,000 or 100,000 gallons rather than trying to 
keep consumption at or a little below these amounts. 

83. (a) Because 
Gm Gm 

lim g(r) = lim r = 
r→R− r→R− R3 R2 

and 
Gm Gm 

lim g(r) = lim = 
r→R+ r→R+ r2 R2 

Gm 
R2 

are equal, g(R) must equal in order for the gravitational field of Europa to be 

continuous at its surface. 
(b) With G = 6.67 × 10−11 m3 kg−1 s−2, m = 4.8 × 1022 kg and R = 1.569 × 106 m, 

6.67 × 10−11 m3 kg−1 s−2 · 4.8 × 1022 kg 
g(R) = 	  ≈ 1.3 m/s2 . 

(1.569 × 106 m)2 

(c) Europa’s gravity is less than that on Earth. 

84. The function f is continuous on the intervals (−∞, 0), (0, 1), and (1, ∞), because it is a 
polynomial on each of these intervals. At x = 0,  

lim f(x) = lim (x − 1)2 = 1  
x→0− x→0−

and
 
lim f(x) = lim (A − x)2 = A2 = f(0).
 

x→0+ x→0+ 

For f to be continuous at x = 0, the constant A must satisfy A2 = 1,  or  A = ±1. At 
x = 1,  

lim f(x) = lim (A − x)2 = (A − 1)2 
x→1− x→1−

and
 
lim f(x) = lim (x + B) = 1 +B  = f(1).
 

x→1+ x→1+ 

For f to be continuous at x = 1, the constant B must satisfy 1 + B = (A − 1)2, or  
B = A2 − 2A. There are therefore two sets of values for A and B for which the function 
f is continuous for all x: {A = 1, B  = −1} and {A = −1, B  = 3} . The figure below left 
displays the graph with A = 1  and  B = −1; the figure below right displays the graph with 
A = −1 and  B = 3.  
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85. The function f is continuous on the intervals (−∞, 4), (4, 9), and (9, ∞), because it is a 
polynomial on each of these intervals. At x = 4,  

lim f(x) = lim (x + A) = 4 +A  
x→4− x→4−

and
 
lim f(x) = lim (x − 1)2 = 9 =  f(4).
 

x→4+ x→4+ 

For f to be continuous at x = 4, the constant A must satisfy 4 + A = 9,  or  A = 5.  At  
x = 9,  

lim f(x) = lim (x − 1)2 = 64 =  f(9) 
x→9− x→9−

and
 
lim f(x) = lim (Bx + 1)  =  9B + 1.
 

x→9+ x→9+ 

For f to be continuous at x = 9, the constant B must satisfy 9B + 1 = 64, or B = 7.  
Therefore, the function f will be continuous for all x provided A = 5  and  B = 7 . The  
graph of the resulting function is shown below 
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(4, 9) 

(9,64) 

86. In order to make f continuous at x = 2,  k should be set equal to 
√ √ 

 
√  

2x+ 5   x + 7  2x + 5   
√
x + 7  

√
2x + 5 +  

√
x + 7  

lim f(x) = lim 
−

= lim 
−

  
x→2 x→2 x − 2 x→2 x 

· √ √− 2 2x + 5 +  x + 7  
(2x + 5)−  (x + 7)  x − 2 

= lim  = lim  
x→2 (x − 2)( 

√
2x + 5 +

√
 x + 7)  x→2 (x − 2)(

√
 2x + 5 +  

√
x + 7)  

1 1 1 
= lim √ √ = √ √ = . 

x→2 2x + 5 +  x + 7  9 + 9 6
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87. Let 
x2 − 6x− 16 (x− 8)(x+ 2)  

f(x) =  √ = √ . 
(x2 − 7x− 8) x2 − 4 (x− 8)(x+ 1)  x2 − 4 

(a) The function f is defined for all values x for which the denominator is not equal to 

zero and x2−4 > 0. Thus, the domain of f is the set {x|x < −2} ∪ {x|x > 2, x = 8} . 
Note that the condition x = −1 need not be explicitly included because −1 does not  
have an absolute value greater than 2, and so is already eliminated by virtue of this 
condition. 

(b) Because the function f is the product, quotient and composition of functions that are 
continuous on their domains, f is continuous on its domain. Thus, f is 
discontinuous at x = 8 a nd on the  interval [−2, 2] . 

(c) Because 

(x 8)(x+ 2)  (x+ 2)  10 5 
lim f(x) = lim 

− √ = lim √ = √ = 
x→8 x→8	 (x 8)(x+ 1)  x2 4 x→8 (x+ 1)  x2 4 9 60 9

√ − − − 15 

exists, the discontinuity at x = 8  is  removable  . 

88.	 (a) Because the function f(x) = sinx  + x − 3 is the sum of the sine function and a 
polynomial function, both of which are continuous on the set of all real numbers, f 
is continuous on the set of all real numbers and is therefore continuous on the closed 
interval [0, π]. Now, f(0) = sin 0+0 3 =  3 < 0 and  f(π) = sinπ +π−3 =  π−3 > 0, − −
so the Intermediate Value Theorem guarantees that f has a zero on the interval (0, π). 

(b) Using a TI-84 Plus calculator, the zero is x ≈ 2.180 , rounded to three decimal places. 

89.	 (a) Because the function f(x) = e x + x − 2 is the sum of an exponential function and a 
polynomial function, both of which are continuous on the set of all real numbers, f 
is continuous on the set of all real numbers and is therefore continuous on the closed 
interval [0, 2]. Now, f(0) = e0 + 0  2 =  1 < 0 and  f(2) = e2 + 2 − 2 =  e2 > 0, so 
the Intermediate Value Theorem guarantees that f has a zero on the interval (0, 2). 

− −

(b) Using a TI-84 Plus calculator, the zero is x ≈ 0.443 , rounded to three decimal places. 

90. The graph of the function f(x) = x 3−2x2−1 intersects the line y = −1 at  x = c for which 
f(c) =  1.−  Noting that f(1) = −2 is less than  −1 and  f(4) = 31 is more than −1, we use 
the Intermediate Value Theorem to conclude that       f(c) =  −1 for at least one number c in 
the interval (1, 4). 

Using the TABLE feature on a graphing utility, we subdivide the interval [1, 4] into 10 
subintervals, each of length 0.3. Then we find the subinterval whose endpoints have values 
on either side of y = −1, or the endpoint whose value equals −1 (in which case, the exact 
value is found). From Figure 1, since f(1.9) = −1.3610 and f(2.2) = −0.0320, by the 
Intermediate Value Theorem, a solution to f(c) = − 1 lies in the interval (1.9, 2.2). 

Repeat the process by subdividing the interval [1.9, 2.2] into 10 subintervals, each of length 
0.03. See Figure 2. We conclude that the solution to f(c) = − 1 lies in the interval (1.99, 
2.02). 

Repeat the process by subdividing the interval [1.99, 2.02] into 10 subintervals, each of 
length 0.003. See Figure 3. We conclude that the solution to f(c) = − 1 lies in the interval 
(1.999, 2.002). 

Repeat the process by subdividing the interval [1.999, 2.002] into 10 subintervals, each of 
length 0.0003. See Figure 4. We conclude that the solution to f(c) = − 1 lies in the interval 
(1.9999, 2.0002). 

Correct to 3 decimals, the solution is c = 2.000. 

�
�



x f(x) 

1.0 −2.0000 
1.3 −2.1830 
1.6 −2.0240 
1.9 −1.3610 
2.2 −0.0320 
2.5 2.1250 
2.8 5.2720 
3.1 9.5710 
3.4 15.1840 
3.7 22.2730 
4.0 31.0000 

Figure 1 

x f (x) 

1.90 −1.3610 
1.93 −1.2607 
1.96 −1.1537 
1.99 −1.0396 
2.02 −0.9184 
2.05 −0.7899 
2.08 −0.6539 
2.11 −0.5103 
2.14 −0.3589 
2.17 −0.1995 
2.20 −0.0320 

Figure 2 

x f(x) 

1.990 −1.0396 
1.993 −1.0278 
1.996 −1.0159 
1.999 −1.0040 
2.002 −0.9920 
2.005 −0.9799 
2.008 −0.9677 
2.011 −0.9555 
2.014 −0.9432 
2.017 −0.9308 
2.020 −0.9184 

Figure 3 

x f(x) 

1.9990 −1.0040 
1.9993 −1.0028 
1.9996 −1.0016 
1.9999 −1.0004 
2.0002 −0.9992 
2.0005 −0.9980 
2.0008 −0.9968 
2.0011 −0.9956 
2.0014 −0.9944 
2.0017 −0.9932 
2.0020 −0.9920 

Figure 4 

x g(x) 

1.0 5.0000 
1.1 5.1659 
1.2 5.2464 
1.3 5.2139 
1.4 5.0384 
1.5 4.6875 
1.6 4.1264 
1.7 3.3179 
1.8 2.2224 
1.9 0.7979 
2.0 −1.0000 

Figure 1 

x g(x) 

1.70 3.3179 
1.71 3.2219 
1.72 3.1231 
1.73 3.0212 
1.74 2.9164 
1.75 2.8086 
1.76 2.6977 
1.77 2.5836 
1.78 2.4664 
1.79 2.3460 
1.80 2.2224 

Figure 2 

x g(x) 

1.730 3.0212 
1.731 3.0109 
1.732 3.0005 
1.733 2.9901 
1.734 2.9797 
1.735 2.9692 
1.736 2.9587 
1.737 2.9482 
1.738 2.9376 
1.739 2.9271 
1.740 2.9164 

Figure 3 

x g(x) 

1.7320 3.0005 
1.7321 2.9995 
1.7322 2.9984 
1.7323 2.9974 
1.7324 2.9964 
1.7325 2.9953 
1.7326 2.9943 
1.7327 2.9932 
1.7328 2.9922 
1.7329 2.9912 
1.7330 2.9901 

Figure 4 
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91. The graph of the function g(x) =  x4+3x2+ 3 intersects the line y = 3  at  x = c for which −
g(c) = 3. Noting that g(1) = 5 is more than 3 and g(2) = −1 is less than 3, we use the
Intermediate Value Theorem to conclude that

   
      g(c) = 3 for at least one number c in the 

interval (1, 2). 

Using the TABLE feature on a graphing utility, we subdivide the interval [1, 2] into 10 
subintervals, each of length 0.1. Then we find the subinterval whose endpoints have values 
on either side of y = 3, or the endpoint whose value equals 3 (in which case, the exact value 
is found). From Figure 1, since g(1.7) = 3.3179 and g(1.8) = 2.2224, by the Intermediate 
Value Theorem, a solution to g(c) = 3 lies in the interval (1.7, 1.8). 

Repeat the process by subdividing the interval [1.7, 1.8] into 10 subintervals, each of length 
0.01. See Figure 2. We conclude that the solution to g(c) = 3 lies in the interval (1.73, 
1.74). 

Repeat the process by subdividing the interval [1.73, 1.74] into 10 subintervals, each of 
length 0.001. See Figure 3. We conclude that the solution to g(c) = 3 lies in the interval 
(1.732, 1.733). 

Repeat the process by subdividing the interval [1.732, 1.733] into 10 subintervals, each of 
length 0.0001. See Figure 4. We conclude that the solution to g(c) = 3 lies in the interval 
(1.7320, 1.7321). 

Correct to 3 decimals, the solution is c = 1.732 . 

x3 − 5 
h(x) =  intersects the line y = 1 at x  = c for which 

x2 + 1  
92. The graph of the function 

f(c) = 1. Noting that h(1) = −2 is less than 1 and  h(3) = 2.2 is more than 1, we use t he  
Intermediate Value Theorem to conclude that h(c) = 1 for at least one number c in the 
interval (1, 3). 

1.9
2.2

1.7
1.8



x h(x) 

1.0 −2.0000 
1.2 −1.3410 
1.4 −0.7622 
1.6 −0.2539 
1.8 0.1962 
2.0 0.6000 
2.2 0.9671 
2.4 1.3053 
2.6 1.6206 
2.8 1.9176 
3.0 2.2000 

Figure 1 

x h(x) 

2.20 0.9671 
2.22 1.0021 
2.24 1.0369 
2.26 1.0713 
2.28 1.1055 
2.30 1.1394 
2.32 1.1731 
2.34 1.2065 
2.36 1.2397 
2.38 1.2726 
2.40 1.3053 

Figure 2 

x h(x) 

2.200 0.9671 
2.202 0.9706 
2.204 0.9741 
2.206 0.9777 
2.208 0.9812 
2.210 0.9847 
2.212 0.9882 
2.214 0.9917 
2.216 0.9952 
2.218 0.9986 
2.220 1.0021 

Figure 3 

x h(x) 

2.2180 0.9986 
2.2182 0.9990 
2.2184 0.9993 
2.2186 0.9997 
2.2188 1.0000 
2.2190 1.0004 
2.2192 1.0007 
2.2194 1.0011 
2.2196 1.0014 
2.2198 1.0018 
2.2200 1.0021 

Figure 4 
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Using the TABLE feature on a graphing utility, we subdivide the interval [1, 3] into 10 
subintervals, each of length 0.2. Then we find the subinterval whose endpoints have values 
on either side of y = 1, or the endpoint whose value equals 1 (in which case, the exact value 
is found). From Figure 1, since h(2.2) = 0.9671 and h(2.4) = 1.3053, by the Intermediate 
Value Theorem, a solution to h(c) = 1 lies in the interval (2.2, 2.4). 

Repeat the process by subdividing the interval [2.2, 2.4] into 10 subintervals, each of length 
0.02. See Figure 2. We conclude that the solution to h(c) = 1 lies in the interval (2.20, 
2.22). Correct to one decimal, the solution is c = 2.2. 

Repeat the process by subdividing the interval [2.20, 2.22] into 10 subintervals, each of 
length 0.002. See Figure 3. We conclude that the solution to h(c) = 1 lies in the interval 
(2.218, 2.220). Correct to two decimals, the solution is c = 2.21. 

Repeat the process by subdividing the interval [2.218, 2.220] into 10 subintervals, each of 
length 0.0002. See Figure 4. We conclude that the solution to h(c) = 1 lies in the interval 
(2.2186, 2.2188). 

Correct to 3 decimals, the solution is c = 2.218. 

x − 6 
r(x) =  

x2 + 2
93. The graph of the function intersects the line y = −1 at  x = c for which 

 
3 

 −1 and  r(3) = − 
11 

r(c) =  1. Noting that − r(0) = 3− is less than is more than −1, we 

use the Intermediate Value Theorem to conclude that r(c) = − 1 for at least one number c 
in the interval (0, 3). 

Using the TABLE feature on a graphing utility, we subdivide the interval [0, 3] into 10 
subintervals, each of length 0.3. Then we find the subinterval whose endpoints have values 
on either side of y = −1, or the endpoint whose value equals −1 (in which case, the exact 
value is found). From Figure 1, since r(1.5) = −1.0588 and r(1.8) = −0.8015, by the 
Intermediate Value Theorem, a solution to r(c) = − 1 lies in the interval (1.5, 1.8). 

Repeat the process by subdividing the interval [1.5, 1.8] into 10 subintervals, each of length 
0.03. See Figure 2. We conclude that the solution to r(c) =  −1 lies in the interval (1.56, 
1.59). 

Repeat the process by subdividing the interval [1.56, 1.59] into 10 subintervals, each of 
length 0.003. See Figure 3. We conclude that the solution to r(c) = − 1 lies in the interval 
(1.560, 1.563). 

Repeat the process by subdividing the interval [1.560, 1.563] into 10 subintervals, each of 
length 0.0003. See Figure 4. We conclude that the solution to           r(c) = − 1 lies in the interval 
(1.5615, 1.5618). 

2.2
2.4



x r(x) 

0.0 −3.0000 
0.3 −2.7273 
0.6 −2.2881 
0.9 −1.8149 
1.2 −1.3953 
1.5 −1.0588 
1.8 −0.8015 
2.1 −0.6084 
2.4 −0.4639 
2.7 −0.3552 
3.0 −0.2727 

Figure 1 

x r(x) 

1.50 −1.0588 
1.53 −1.0297 
1.56 −1.0014 
1.59 −0.9739 
1.62 −0.9471 
1.65 −0.9211 
1.68 −0.8958 
1.71 −0.8712 
1.74 −0.8473 
1.77 −0.8241 
1.80 −0.8015 

Figure 2 

x r(x) 

1.560 −1.0014 
1.563 −0.9987 
1.566 −0.9959 
1.569 −0.9931 
1.572 −0.9903 
1.575 −0.9876 
1.578 −0.9848 
1.581 −0.9821 
1.584 −0.9794 
1.587 −0.9766 
1.590 −0.9739 

Figure 3 

x r(x) 

1.5600 −1.0014 
1.5603 −1.0012 
1.5606 −1.0009 
1.5609 −1.0006 
1.5612 −1.0003 
1.5615 −1.0000 
1.5618 −0.9998 
1.5621 −0.9995 
1.5624 −0.9992 
1.5627 −0.9989 
1.5630 −0.9987 

Figure 4 
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Correct to 3 decimals, the solution is c = 1.561 . 

94. Answers will vary.	 The figure below displays the graph of a function that is continuous on 
[5, 12], that is negative at both endpoints, and has exactly three zeros in the interval. This 
does not contradict the Intermediate Value Theorem, because the theorem provides no 
information about zeros of a function when the endpoint values are the same sign. 

1 2 3 4 5 6 7 8 9 10 11 12 13 

-10 

-8 

-6 

-4 

-2 

2 

4 

95. Answers will vary.	 The figure below displays the graph of a function that is continuous on 
[−1, 2], that is positive at both endpoints, and has exactly two zeros in the interval. This 
does not contradict the Intermediate Value Theorem, because the theorem provides no 
information about zeros of a function when the endpoint values are the same sign. 

1.5
1.8
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-2 -1 1 2 3 

1 

2 

3 

96. Answers will vary.	 The figure below displays the graph of a function that is continuous 
on [−2, 3], that is positive at −2 and negative at 3, and has exactly two zeros in the 
interval. This does not contradict the Intermediate Value Theorem, because the theorem 
guarantees that the function has at least one zero on the interval (−2, 3). 

-3 -2 -1 1 2 3 4 

-20 

-15 

-10 

-5 

5 

10 

97. Answers will vary.	 The figure below displays the graph of a function that is continuous 
on [−5, 0], that is negative at −5 and positive at 0, and has exactly three zeros in the 
interval. This does not contradict the Intermediate Value Theorem, because the theorem
guarantees that the function has at least one zero on the interval 

            
(−5, 0). 
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-6 -5 -4 -3 -2 -1 1 
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20 

98. (a) Although the function f(x) = x 4 − 1 is continuous on the closed interval [ 2, 2], 
f(−2) = (−2)4 − 1 = 15   

−
> 0 and  f(2) = 24 − 1 = 15 >  0. Because 

the function has the same sign at both endpoints , the Intermediate Value Theorem 
gives no information about the zeros of f on the interval (−2, 2). 

(b) The graph of f shown below indicates that f has two zeros on the interval (−2, 2) : 
one at x = −1, the other at x = 1.  

-2 -1 1 2 

5 

10 

15 

99.	 (a) Although the function f(x) = ln(x2 + 2) is continuous on the closed interval [−2, 2], 
f(−2) = ln 6 > 0 and f (2) = ln 6 > 0. Because the function has the same sign at 

both endpoints , the Intermediate Value Theorem gives no information about the 
zeros of f on the interval (−2, 2). 

(b) The graph of f shown below indicates that f has no zero on the interval [−2, 2] . 
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-2 -1 1 2 
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1 

1.5 

100.	 (a) If the graphs of the functions y = x3 and y = 1−x2 intersect, then the x-coordinate of 
the point of intersection must be a solution of the equation x3 = 1−x2, or x 3+x2−1 =  
0. Let f(x) = x 3 + x2 − 1. This function is continuous on the closed interval [0, 1] 
with f(0) = −1 < 0 and  f(1) = 1 > 0. The Intermediate Value Theorem therefore 
guarantees that f has a zero on the interval (0, 1). Hence, the graphs of the functions 
y = x3 and y = 1−  x2 do intersect somewhere between x = 0  and  x = 1.  

(b) Using a TI-84 Plus calculator, the point of intersection,	 rounded to three decimal 

places, is (0.755, 0.430) . 

(c) The figure below displays the graphs of both functions with the point of intersection 
labeled to three decimal places. 

0.2 0.4 0.6 0.8 1 

0.2 

0.4 

0.6 

0.8 

1 

(0.755, 0.430) 

101. Let v(t) denote the speed of the airplane as a function of time. Further, let t1 denote a 
time when the speed of the airplane was 620 miles per hour, t2 > t1 denote a time when 
the speed of the airplane had slowed to 608 miles per hour, and t3 > t2 denote a time 
when the speed of the airplane had increased to 614 miles per hour. Now, consider the 
function f(t) =  v(t) − 610. Assuming v(t) is continuous for all t, f is also continuous for 
all t. Because 

f(t1) =  v(t1) − 610 = 620 − 610 = 10 > 0 

f(t2) = v (t2) − 610 = 608 − 610 = −2 < 0,
 
and
 

the Intermediate Value Theorem guarantees that f(t) = 0, or v(t) = 610, for some time 
between t1 and t2. Similarly, 

f(t2) = v (t2) − 610 = 608 − 610 = −2 < 0 
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and
 
f(t3 3

so the Intermediate Value Theorem guarantees that 

) = v (t )  610 = 614  610 = 4 > 0,
 − −
f(t) = 0, or v(t) = 610, for some time 

between t2 and t3. Thus, the airplane’s speed is 610 miles per hour on at least two different 
occasions during the flight. 

102. Let f be a function that is defined and continuous on the closed interval [a, b]. The function 

1 
h(x) =  

f(x) 

will therefore be continuous on the closed interval [a, b], except for those values x at which 
f(x) = 0.  Thus,  if  f is never zero on the closed interval [a, b], then h will be continuous on 
the closed interval [a, b]. 

103. (a) Factoring, f(x) =  x3 − 3x2 − 4x +12  =  (x − 3)(x2 − 4) = (x − 3)(x − 2)(x +2).  Thus,  
the zeros of the function f are x = −2, x = 2,  and  x = 3 . 

(b) The function h will be continuous at x = 3  provided  p = lim h(x). 
x→3 

Now, 

(x − 3)(x2 − 4)
lim h(x) = lim	 = lim(x 2 − 4) = 5. 
x→3 x→3 x − 3 x→3

Therefore, h is continuous at x = 3  when  p = 5 . 

(c) With p = 5, the function h reduces to x2 − 4 for all x. Because 

h(−x) = (−x)2 − 4 =  x 2 − 4 =  h(x), 

h(x) is an  even  function. 

104. Consider the one-sided limits as x approaches 0: 

 
|x

lim
| −x 

 f(x) = lim = lim = lim −1 =  −1 
x→0− x→0− x x→0− x x→0− 

and 

lim
|x| x 

 f(x) = lim = lim = lim 1 = 1. 
x→0+ x→0+ x x→0+ x x→0+ 

Because the two one-sided limits as x approaches 0 are not equal, lim f(x)
x→0 

does not  exist .  

Therefore, the discontinuity at x = 0 is not removable; e.g., it is impossible to define f(0) 
so that f is continuous at x = 0.  

105. Answers	 will vary. One possible response is the following. The polynomial functions 

f(x) = x 2 − 1 and  g(x) =  x − 3 are continuous at c = 3; however, because g(3) = 0, the 

function
f 

 
g 

is not continuous at c = 3.  

106. Answers	 will vary. One possible response is the following. A discontinuity at x = c 
is removable when the limit as x approaches c exists but that limit is not equal to the 
function value at x = c; a d iscontinuity a t x  = c is nonremovable when the limit as x 
approaches c does not exist. An example of a removable discontinuity is x = 3 for the

function

 
x2 − 9 

 f(x) =  . 
x  3 

Because −
x2 − 9 (x 

lim f(x) = lim = lim 
− 3)(x + 3)  

= lim(x + 3)  =  6, 
x→3 x→3 x − 3 x→3 x − 3 x→3



 �
x+ 3, x ≤ 3 

g(x) =  9 − x2, x > 3. 
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the discontinuity at x = 3 can be removed by defining f(3) = 6. An example of a nonre­
movable discontinuity is x = 3 for the function 

Here, 
lim g(x) = lim (x+ 3) = 6 but lim g(x) = lim (9 − x 2) = 0. 

x→3− x→3− x→3+ x→3+ 

Because the two one-sided limits as x approaches 3 are not equal, lim g(x) 
x→3

does not exist. 

107. Let f(x) = x 3 + 3x − 5, and note that f(1) = −1 < 0 and  f(2) = 9 > 0. Set m1 = 1.5, 
the midpoint of the interval (1, 2), and then calculate f(m1) =  f(1.5) = 2.875 > 0. 
The sign of f(1.5) is opposite that of f(1), so the zero lies in the subinterval (1, 1.5). 
Now repeat the process and set m2 = 1.25, the midpoint of the interval (1, 1.5). Next, 
calculate f(m ) =  f(1.25) = 0.703125 > 0.2  The sign of f(1.25) is opposite that of f(1), 
so the zero lies in the subinterval (1, 1.25). Finally, set m3 = 1.125, the midpoint of the 
interval (1, 1.25), and calculate f(m3) =  f(1.125) ≈ −0.201172 < 0. The sign of f(1.125) 
is opposite that of f(1.25), so the zero lies in the subinterval (1.125, 1.25) and is given 
approximately by the midpoint of this subinterval m4 = 1.1875 . 

108. Let f(x) = x 3 − 4x + 2, and note that f(1) = −1 < 0 and  f(2) = 2 > 0. Set m1 = 1.5, 
 f(m1) =  f(1.5) = −0.625 < 0. the midpoint of the interval (1, 2), and then calculate

The sign of f(1.5) is opposite that of f(2), so the zero lies in the subinterval (1.5, 2). 
Now repeat the process and set m2 = 1.75, 

f(m2) =  f(1.75) = 0.359375 > 0. 
the midpoint of the interval (1.5, 2). Next, 

calculate The sign of f(1.75) is opposite that of f(1.5), 
so the zero lies in the subinterval (1.5, 1.75). Finally, set m3 = 1.625, the midpoint of 
the interval (1.5, 1.75), and calculate f(m3) = f (1.625) ≈ −0.208984 < 0. The sign of 
f(1.625) is opposite that of f(1.75), so the zero lies in the subinterval (1.625, 1.75) and is 
given approximately by the midpoint of this subinterval m4 = 1.6875 . 

109. Let f(x) = 2x3 + 3x2 + 4x − 1, and note that f(0) = −1 < 0 and  f(1) = 8 > 0. Set 
m1 = 0.5, the midpoint of the interval (0, 1), and then calculate f(m1) =  f(0.5) = 2 > 0. 
The sign of f(0.5) is opposite that of f(0), so the zero lies in the subinterval (0, 0.5). Now 
repeat the process and set m2 = 0.25, the midpoint of the interval (0, 0.5). Next, calculate 
f(m2) =  f(0.25) = 0.21875 > 0.  so the zero lies 
in the subinterval (0, 0.25). Finally, set m3 = 0.125,

The sign of f(0.25) is opposite that of f(0),

f(m3) =  f(0.125) ≈ −0.449219 < 0. 
 the midpoint of the interval (0, 0.25), 

and calculate The sign of f(0.125) is opposite that of 
f(0.25), so the zero lies in the subinterval (0.125, 0.25) and is given approximately by the 
midpoint of this subinterval m4 = 0.1875 . 

110. Let f(x) = x 3 −x2−2x+ 1, and note that f(0) = 1 > 0 and  f(1) = −1 < 0. Set m1 = 0.5, 
the midpoint of the interval (0, 1), and then calculate f(m1) =  f(0.5) = 0.125 < 0.−  
The sign of f(0.5) is opposite that of f(0), so the zero lies in the subinterval (0, 0.5). 
Now repeat the process and set m2 = 0.25, the midpoint of the interval (0, 0.5). Next,
calculate f(m2) =  f(0.25) = 0.453125 > 0. 

 
The sign of f(0.25) is opposite that of f(0.5), 

so the zero lies in the subinterval (0.25, 0.5). Finally, set m3 = 0.375, the midpoint of 
the interval (0.25, 0.5), and calculate f(m3) = f (0.375) ≈ 0.162109 > 0. The sign of 
f(0.375) is opposite that of f(0.5), so the zero lies in the subinterval (0.375, 0.5) and is 
given approximately by the midpoint of this subinterval m4 = 0.4375 . 

111. Let f(x) = x 3 − 6x− 12, and note that f(3) = −3 < 0 and  f(4) = 28 > 0. Set m1 = 3.5, 
the midpoint of the interval (3, 4), and then calculate f(m1) =  f(3.5) = 9.875 > 0. 
The sign of f(3.5) is opposite that of f(3), so the zero lies in the subinterval (3, 3.5). 
Now repeat the process and set m2 = 3.25, the midpoint of the interval (3, 3.5). Next, 
calculate f(m2) =  f(3.25) = 2.828125 > 0. The sign of f(3.25) is opposite that of f(3), 
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so the zero lies in the subinterval (3, 3.25). Finally, set m3 = 3.125, 
 f(m3) = f (3.125) ≈ −0.232422 < 0. 

the midpoint of the 
interval (3, 3.25), and calculate The sign of f(3.125) 
is opposite that of f(3.25), so the zero lies in the subinterval (3.125, 3.25) and is given 
approximately by the midpoint of this subinterval m4 = 3.1875 . 

112. Let f(x) = 3x3 + 5x − 40, and note that f(2) = −6 < 0 and  f(3) = 56 > 0. Set m1 = 2.5, 
the midpoint of the interval (2, 3), and then calculate f(m1) = f (2.5) = 19.375 > 0. 
The sign of f(2.5) is opposite that of f(2), so the zero lies in the subinterval (2, 2.5). 
Now repeat the process and set m2 = 2.25, 

 f(m2) = f (2.25) = 5.421875 > 0. 
the midpoint of the interval (2, 2.5). Next,

calculate
 

The sign of f(2.25) is opposite that of f(2), 
so the zero lies in the subinterval (2, 2.25). Finally, set m3 = 2.125, the midpoint of the 
interval (2, 2.25), and calculate f(m3) = f (2.125) 0.587891 < 0. ≈ − The sign of f(2.125) 
is opposite that of f(2.25), so the zero lies in the subinterval (2.125, 2.25) and is given 
approximately by the midpoint of this subinterval m4 = 2.1875 . 

113. Let	 f(x) = x 4 − 2x3 + 21x − 23, and note that f(1) = −3 < 0 and  f(2) = 19 > 0. 
Set m1 = 1.5, the midpoint of the interval (1, 2), and then calculate f(m1) = f (1.5) = 
6.8125 > 0. The sign of f(1.5) is opposite that of f(1), so the zero lies in the subinterval 
(1, 1.5). Now repeat the process and set m2 = 1.25, the midpoint of the interval (1, 1.5). 
Next, calculate f(m2) =  f(1.25) ≈ 1.785156 > 0. The sign of f(1.25) is opposite that of 
f(1), so the zero lies in the subinterval (1, 1.25). Finally, set m3 = 1.125, the midpoint 
of the interval (1, 1.25), and calculate f(m3) =  f(1.125) ≈ −0.620850 < 0. The sign of 
f(1.125) is opposite that of f(1.25), so the zero lies in the subinterval (1.125, 1.25) and is 
given approximately by the midpoint of this subinterval m4 = 1.1875 . 

114. Let f(x) = x 4 − x3 + x − 2, and note that f(1) = −1 < 0 and  f(2) = 8 > 0. Set m1 = 1.5, 
the midpoint of the interval (1, 2), and then calculate f(m1) =  f(1.5) = 1.1875 > 0. The 
sign of f(1.5) is opposite that of f(1), so the zero lies in the subinterval (1, 1.5). Now 
repeat the process and set m2 = 1.25, the midpoint of the interval (1, 1.5). Next, calculate 
f(m2) = f (1.25) ≈ −0.261719 < 0. The sign of f(1.25) is opposite that of f(1.5), so 
the zero lies in the subinterval (1.25, 1.5). Finally, set m3 = 1.375, the midpoint of the 
interval (1.25, 1.5), and calculate f(m3) = f (1.375) ≈ 0.349854 > 0. The sign of f(1.375) 
is opposite that of f(1.25), so the zero lies in the subinterval (1.25, 1.375) and is given 
approximately by the midpoint of this subinterval m4 = 1.3125 . 

115. The polynomial function x2 + 4x is continuous on the set of all real numbers and is non­
negative on the set {x|x ≤ −4}∪{x|x ≥ 0}. The function f

√ 
(x) =  x2 + 4x −2 is therefore 

continuous on the set {x|x ≤ −4} ∪ {x|x ≥ 0},  which contains the closed interval [0, 1].
Because 

	
f(0) = 

√
0 − 2 = − 2 < 0 and  f(1) = 

√
5 − 2 ≈ 0.236 > 0, the Intermediate Value 

Theorem guarantees that f must have a zero on the interval (0, 1). 

To approximate this zero, subdivide the interval [0, 1] into 10 subintervals, each of length 
0.1, and evaluate f at each endpoint, looking for two successive function values with 
opposite signs. This yields f(0.8) ≈ −0.040408 and f(0.9) = 0.1, indicating that the zero 
lies in the subinterval (0.8, 0.9). Thus, correct to one decimal place, the zero is x = 0.8 . 

116. The polynomial function f(x) = x 3 − x + 2 is continuous for all real numbers, so it is
continuous on the closed interval [−2, 0]. 

 
Because f(−2) = (−2)3 − (−2) + 2 = −4 < 0 

and f(0) = 2 > 0, the Intermediate Value Theorem guarantees that f must have a zero on 
the interval (−2, 0). 
To approximate this zero, subdivide the interval [−2, 0] into 20 subintervals, each of length 
0.1, and evaluate f at each endpoint, looking for two successive function values with 
opposite signs. This yields f(−1.6) = −0.496 and f( 1.5) = 0.125, indicating that the 
zero lies in the subinterval 

−
(−1.6, −1.5). Next, subdivide the interval [−1.6, −1.5] into 10 

subintervals, each of length 0.01. The two successive function values that are of opposite 
sign are f(−1.53) − 0.051577 and f(−1.52) = 0.008192, so the zero has now been isolated 
to the interval (−1.53, −1.52). Thus, correct to two decimal places, the zero is x = −1.52 . 
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117. Let f and g be functions that are continuous at c. Then, 

lim f(x) =  f(c) and lim g(x) =  g(c). 
x→c x→c 

To prove that f +g is continuous at c,  it must be shown  that  lim[ f(x)+g(x)] = f(c)+g(c). 
x→c 

Using the Limit of a Sum Property, it follows that
 

lim[f(x) + g (x)] = lim f(x) + lim g(x) =  f(c) + g (c),
 
x→c x→c x→c 

as required. 

118. Let f and g be functions that are continuous on the closed interval [a, b], with f(a) < g(a) 
and f(b) > g(b). Define the function h(x) =  f(x) − g(x). Because f and g are both 
continuous on [a, b], it follows that h is also continuous on [a, b]. Now, 

h(a) =  f(a) − g(a) < 0 and h (b) =  f(b) − g(b) > 0. 

Thus, by the Intermediate Value Theorem, there is a number c between a and b such that 
h(c) =  f(c) − g(c) = 0, or f(c) = g (c). This implies that the graphs of y = f(x) and  
y = g(x) intersect at x = c; that is, the graphs intersect somewhere between x = a and 
x = b. 

Challenge Problems 

1 1 
f(x) =  + . 

x − 1 x − 2
 
119. Let Because f is continuous on the interval (1, 2), it is continuous 

on any closed interval contained within (1, 2), say [1.1, 1.9]. With
 

1 1 10 80 
f(1.1) = + = 10−  = > 0 

1.1 − 1 1.1 − 2 9 9
 

and
 
1 1 10 80 

f(1.9) = + =  10 =  < 0,
1.9 − 1 1.9 − 2 9 

− −
9 

the Intermediate value Theorem guarantees there exists a number c between 1.1 and 1.9, 
and hence between 1 and 2, such that f(c) = 0.  

120. Let f(x) = x 2−7. This polynomial function is continuous on the closed interval [2.64, 2.65]. 
With 

f(2.64) = 2.642 − 7 =  −0.0304 < 0 and  f(2.65) = 2.652 − 7 = 0.0225 > 0, 

the Intermediate Value Theorem guarantees there exists a number c between 2.64 and 2.65 
such that f(c) = c 2 − 7 = 0, or c2 = 7. 
  

f(a + h) − f(a)

lim 
h→0 h
 

121. Let f be a function for which exists. Now, let x = a + h. Then, as h 

approaches 0, x approaches a, and 
  

f(a + h) − f(a) f(x) − f(a)
lim = lim . 
h→0 h x→a x − a 

To prove that f is continuous at x = a, it must be shown t hat  lim f (x) = f (a). 
x→a 

Because 

f(a) is a constant, lim f(a) = f (a) and  
x→a 

lim f(x) =  f(a) is equivalent to lim [f(x) − f(a)] = 0. 
x→a x→a 
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Proceeding with this last limit, we find 
 
f(x) 

lim [f(x)  f(a)] = lim 
− f(a) 

 
f(x) − f(a)− · (x− a) = lim · lim (x

 
− a) 

x→a x→a x− a x→a x− a x→a 

f(x) − f(a) 
= lim · 0 = 0, 

x→a x− a 
where, in going from the first line to the second line, we have used the fact that 

f(x) − f(a)
lim 
x→a x− a 

exists so the Limit of a Product property applies. 

x2 + x− 2 
 

x− 1 
122. The rational function is continuous on the set of all real numbers except x = 1,

so f is continuous on the interval 

 

(−∞, 1). The function f is also continuous on the 
intervals (1, 4) and (4,∞) because it is a polynomial on each of these intervals. At x = 1,  

x2 + x  2 (x  1)(x+ 2)  
lim f(x) = lim 

−
= lim 

−
= lim (x+ 2)  =  3  

x 1− x 1− x−  → → 1 x→1− x− 1 x→1−

and
 
lim f(x) = lim B(x− C)2 = B(1 − C)2 .
 

x→1+ x→1+ 

Then, at x = 4, 
  
lim f(x) = lim B(x− C)2 = B(4 − C)2
 

x→4− x→4− 

and
 
lim f(x) = lim (2x− 8) = 0.
 

x→4+ x→4+ 

Therefore, for f to be continuous at x = 1  and  at  x = 4, the constants A, B, C, and D  
must satisfy the equations 

A = 3, B(1 − C)2 = 3, B(4 − C)2 = 0, D = 0. 

The solution of these equations is A = 3,  B = 1 , C = 4,  and  D = 0  . The figure below 

displays a graph of f with these values for the constants. 
3

-3 -2 -1 1 2 3 4 5 6 7 

-1 

1 

2 

3 

4 

5 

6 

123. Let f be a function that is continuous on the closed interval [0, 1] and for which 0 ≤ f(x) ≤ 1 
for all x in [0, 1]. Define the function g(x) = x − f(x). Because g is the difference between 
two functions that are continuous on [0, 1], g is also continuous on [0, 1]. Now, 

g(0) = 0 − f(0) ≤ 0 and  g(1) = 1 − f(1) ≥ 0. 

If either g(0) = 0 or g(1) = 0, then either f(0) = 0 or f(1) = 1 and a c in [0, 1] has been 
found such that f(c) = c . Otherwise, g(0) < 0 and  g(1) > 0, so that the Intermediate 
Value Theorem guarantees there exists a c in (0, 1) such that g(c) = 0, or f(c) =  c. 



1.4	 Limits and Continuity of Trigonometric, Exponential, 
and Logarithmic Functions 

1-73 
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Concepts and Vocabulary 

1. lim sin x = sin 0 =  0 . 
x→0 

cos x − 1 
 lim = 0.  
x 0	 x 

2. False .	
→

3. The Squeeze Theorem states that if functions f , g, and h  have the property f(x) ≤ g(x) ≤ 
h(x) for all x in an open interval containing c, except possibly at c, and if lim f(x) =

x→c 

lim h(x) =  L, then lim g(x) =  L . 
x→c x→c 

 

4. False . f(x) = cscx is continuous for all real numbers except x = kπ, where k  is any 
integer. 

Skill Building 

5. Because −x2 + 1  ≤ g(x) ≤ x2 + 1 for all x in an open interval containing 0 and
 

lim (−x 2 + 1) = 1 and lim(x 2 + 1)  =  1,
 
x→0	 x→0

it follows from the Squeeze Theorem that lim g(x) = 1 . 
x→0

6. Because −(x − 2)2 − 3 ≤ g(x) ≤ (x − 2)2 − 3 for all x in an open interval containing 2 and 

lim [−(x − 2)2 − 3] = −3 and lim [(x − 2)2 − 3] = −3, 
x→2	 x→2

it follows from the Squeeze Theorem that lim g(x) =  3 . 
x→2

−

7. Because cos x ≤ g(x) ≤ 1 for all x in an open interval containing 0 and
 

lim cos x = 1 and lim 1 = 1,
 
x→0	 x→0 

it follows from the Squeeze Theorem that lim g(x) = 1 . 
x→0

8. Because −x2 + 1  ≤ g(x) ≤ sec x for all x in an open interval containing 0 and
 

lim (−x 2 + 1) = 1 and lim sec x = 1,
 
x→0	 x→0 

it follows from the Squeeze Theorem that lim g(x) = 1 .
x→0

  

9. lim(x 3 + sinx ) = 03 + sin 0 = 0 + 0 =  0 .
x→0

 

10. lim (x 2 − cos x) = 02 − cos 0 = 0 − 1 =  −1 . 
x→0

√ 
π	 π 3 1 

lim (cos x + sinx ) = cos  + sin  = + . 
x→π/3	 3 3 2 2

11. 
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π
√ 

π 3 1 
lim (sin x − cos x) = sin  − cos = − . 

x→π/3 3 3 2 2
 
12. 

cos x cos 0 1
 
lim = = = 1 . 
x→0 1 + sinx  1 + sin 0  1 + 0 
  

13.

sin x sin 0 0
 
lim = = = 0 . 
x→0 1 + cosx  1 + cos 0  1 + 1  

14.

3 3 3 3 
lim = = = . 
x→0 1 +  ex 1 +  e0 1 + 1  2 

15.

ex − 1 e0  1 1  1 
lim = 

−
= 
−

= 0 . 
x→0 1 +  ex 1 +  e0 1 + 1  

16.

17.  lim (ex sin x) = e 0  sin 0 = 1(0) = 0 . 
x 0→

18. lim (e− x tan x) = e − 0 tan 0 = 1(0) = 0 . 
x→0

 
ex   

e1
 

 lim ln = ln = ln e  = 1 . 
x→1 x 1

19.

x 
  ( ) 1 

 lim ln = ln = ln e − 1 = −1 . 
x→1 ex e1

20.

e2x e2(0) 1 1 
lim = = = . 
x→0 1 +  ex 1 +  e0 1 + 1  2 

21.

1  ex 1  ex 1 1 1 1 
lim 

−
= lim 

−
= lim = = = . 

x→0 1 − e2x → (1 − ex)(1 + ex xx 0 ) x→0 1 +  e  1 +  e0 1 + 1  2 
22. 

sin(7x) 7 sin(7x) sin(7x)
. lim = lim = 7 lim = 7(1) =  7 . 

x→0 x x→0 7x x→0 7x 
23

 
sin 
(
x 
)

1 sin 
(
x
)

1 sin 
(
x

. lim 3 = lim 3 3 = lim 3

)
1 1

x x = (1) = . 
x→0 x x→0 3 x→0 3 33 3 

24

θ + 3 s in θ θ 3 sin θ 1 3 
lim = lim + lim = + = 2 . 
θ→0 2θ θ→0 2θ 2 θ→0 θ 2 2
 

25.

2x − 5 sin(3x) 2x sin(3x) sin(3x)

lim = lim − 5 lim = lim 2 − 15 lim = 2−  15 = −13 . 
x→0 x x→0 x x→0 x x→0 x→0 3x 

 26.

27. First note that 
θ 1 limθ→0 1 1 

lim = lim = = = 1. θ    → sin θ sin 0 θ θθ→ sin 0 limθ→0 1
θ θ 

Then
 
sin θ 1 1
 1 

lim = lim = = . 
θ→0 θ + tan θ  θ→ θ 0 + sec θ  1 + 1  2 

sin θ 

tan θ sin θ sin θ 1 1 
 lim = lim = lim · lim = 1 ·  = 1 . 
θ→0 θ θ→0 θ  cos θ θ→0 θ θ→0 cos θ 1
 

28. ·
5 sin θ
 

 lim = 5 lim = 5(1) =  5 . 
θ→0 θ  csc θ θ→0 θ
 

29. ·
sin(3θ)


sin(3θ) 3 lim sin(3θ) 
  θ  θ→0 3θ 3(1) 3 

lim = lim = = = . 
sin(2θ)θ→0 sin(2θ) θ→0 sin(2θ) 2(1) 2 

θ 2 lim 
θ→0 2θ 

30.



 
cot θ − csc θ 

 
cos θ − 1 

sin θ = ,
θ θ 

  
cot θ − csc θ 

  
cos θ  1
 

lim sin θ = lim 
−

= 0 .  
θ→0 θ θ→0 θ 
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1 − cos2 θ sin2 θ sin θ 
. lim = lim = lim · lim sin θ = 1(0) =  0 . 

θ→0 θ θ→0 θ θ→0 θ θ→0 
31

cos(4θ) − 1 2[cos(4θ) − 1] cos(4θ)  1 
 lim = lim = 2 lim 

−
= 2(0) =  0 . 

θ→0 2θ θ→0 4θ θ→0 4θ
 
32.

lim cos θ
θ  cos θ 1 
 θlim(θ 

·· cot θ) = lim 0 = → = = 1 . 
θ→0 θ→0 sin θ sin θ 1

lim 
θ→0 θ 

33.

34. Because 

it follows that
 

35. First, f is defined at c = 0  with  f(0) = 3. Next, 

lim f(x) = lim (3 cos x) = 3(1) = 3 and lim f(x) = lim (x + 3)  =  3. 
x→0− x→0− x→0+ x→0+ 

Because the two one-sided limits as x approaches 0 are equal to 3, it follows that lim f(x) 
x→0 

exists and is equal to 3. Finally, lim f(x) =  f(0),
x→0 

 so f is continuous at c = 0 . 

36. First, f is defined at c = 0  with  f(0) = 0. Next, 

lim f(x) = lim cos x = cos 0 = 1 and lim f(x) = lim e x = e 0 = 1. 
x→0− x→0− x→0+ x→0+ 

Because the two one-sided limits as x approaches 0 are equal to 1, it follows that lim f(x) 
x 0 →

exists and is equal to 1. However, lim f(x) = f(0), 
x→0 

 so f is not continuous at c = 0 . 

 
π 

√(π) π 2 
c = with f = sin  = .

4 4 4 2 
37. First, f is defined at  Next, 

π
√ √ 

 2 π 2 
lim f(x) = lim sin x = sin  = and lim f(x) = lim cos x = cos  = . 

x→π/4− x   →π/4− 4 2 x→π/4+ x→π/4+ 4 2

√ 
2 

to , 
2 

Because the two one-sided limits as x approaches π/4 are equal it follows that 
 (π 

 lim f(x) = f 
)

x→π/4 4 

√ 
2 
. 

2 
lim f(x) 

x→π/4 
exists and is equal to Finally, , so f is continuous    

π
at c = . 

4 
 

38. First, f is defined at c = 1  with  f(1) = ln 1 = 0. Next, 

π
lim f(x) = lim tan−1  

x = tan−1 1 =  
x→1− x→1− 4 

and 
lim f(x) = lim ln x = ln 1  = 0. 

x→1+ x→1+ 

Because the two one-sided limits as x approaches 0 are not equal, it follows that lim f(x) 
x→1 

does not exist. Therefore, f is not continuous at c = 1 . 

( )

[ ( )]



 
1 
 

−1 ≤ sin ≤ 1, 
x 
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x2 − 4x 
g(x) = sinx  and h(x) =  . The trigonometric function g is continuous on the 

x 4
set of all real numbers, and the rational function h is continuous on the set 

− 
 
39. Let 

{x|x 
= 4}. As
the function f is the composition g(h(x)) and g is continuous at h(x) for all x at which h 

is continuous, it follows that f is continuous on the set {x|x = 4} . 

x2 − 5x+ 1  
 g(x) = cosx  and h(x) =  . 

2x 
40. Let The trigonometric function g is continuous on 

the set of all real numbers, and the rational function h is continuous on the set {x|x = 0}. 
As the function f is the composition g(h(x)) and g is continuous at h(x) for all x at which 

h is continuous, it follows that f is continuous on the set {x|x = 0} . 

41. The constant function 1 and the trigonometric function sin θ are continuous on the set of all 
real numbers, so the sum of these functions, 1+sin θ, is also continuous on the set of all real 
numbers. Now, 1 + sin θ = 0  when  sin θ  = −1. This happens for θ = 3π + 2kπ, where k  is2 
any integer. Because f is the quotient of the constant function 1 and the function 1+sin θ, 

it follows that f is continuous on the set

�
3π 

}
 x|x = + 2kπ ,

2 
where k  is an integer . 

42. The constant function 1 and the trigonometric function cos θ are continuous on the set 
of all real numbers. The function cos2 θ = cos θ   cos θ, being the product of continuous 
functions, and the function 1 + cos2 θ, being the sum of continuous functions, are then also 
continuous on the set of all real numbers. Finally, because 1 + cos2 θ is never equal to zero 
for any real number θ and f is the quotient of the constant function 1 and the function 
1 + cos2 θ, it follows that f is continuous on the set of all real numbers . 

43. Let	 g(x) = lnx  and h(x) = x − 3. The logarithmic function g is continuous on the set 
{x|x > 0}, and the polynomial function h is continuous on the set of all real numbers. As 
f is the quotient of the functions g and h and the only value x for which h(x) = 0  is  x = 3,  

it follows that the function f is continuous on the set {x|x > 0, x = 3} .  

44. Let g(x) = lnx  and h(x) =  x2 + 1. The logarithmic function g is continuous on the set 
{x|x > 0}, and the polynomial function h is continuous on the set of all real numbers. As 
the function f is the composition g(h(x)) and g is continuous at h(x) for all x because 
x2+1  ≥ 1 > 0 for any real number x, it follows that f is continuous on the set of all real 

numbers .  

45. Let	 g(x) =  e−x and h(x) = sinx . The exponential function g and the trigonometric 
function h are both continuous on the set of all real numbers. As f is the product of g and 
h, it follows that f is also continuous on the set of all real numbers . 

46. The exponential function  the constant function 1, and the trigonometric function sin x 
are all continuous on the set of all real numbers. The function sin2 x = sinx sin x, being the 
product of continuous functions, and the function 

·
1 + sin2 x, being the sum of continuous 

functions, are then also continuous on the set of all real numbers. Finally, because 1+sin2 x 
is never equal to zero for any real number x and f is the quotient of the exponential function 
ex and the function 1+sin2 x, it follows that f is continuous on the set of all real numbers .              

Applications and Extensions 

47. Start from the compound inequality 

�

�

�

�

�

e ,

( )

x



 

 
1 
 

−1 ≤ cos ≤ 1, 
x 

 
 
1 
 

0 ≤ 1 − cos ≤ 2 
x 

  
1 
  

−2|x| ≤ x 1 − cos ≤ 2|x|. 
x 

   
1 
   

lim x 1 − cos = 0 .  
x→0 x 

 
1 
 

−1 ≤ cos ≤ 1, 
x 

 
 
1 
 

0 ≤ 1 − cos ≤ 2. 
x 
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which holds for all x = 0. Multiplying by x2, which is non-negative for all x, then yields 

− 2 

 
1
 

x ≤ x 2 sin ≤ x2. 
x 

As 
lim (−x 2) = 0 and lim x 2 = 0, 
x→0	 x→0 

it follows from the Squeeze Theorem that 

2 

 
1 
 

lim x sin = 0 .  
x→0 x 

48. Start from the compound inequality 

which holds for all x = 0.  Then  

and	  �
 
 

 
1 
 �

 �
 �

 1 − cos 
��
 ≤ 2. 

x � �

Multiplying by |x|, which is non-negative for all x, then yields 
    �
 

 
1 
 �

 
�
 
  

1 
  �

 |x| �1 − cos  
�
 = 
�
x 1 

�� � � − cos  
  

�
 x x 
≤ 2|x|, � � � �

or 

As 
lim (−2|x|) = 0 and lim(2|x|) = 0, 
x→0	 x→0

it follows from the Squeeze Theorem that 

49. Start from the compound inequality 

which holds for all x = 0.  Then  

Multiplying by x2, which is non-negative for all x, then yields 

0 2	

  
1
  

 ≤ x 1 − cos ≤ 2x2. 
x 

( )

( )

( )

( )

( )

( ) ( ( ))

( ( ))

[ ( ( ))]

( )

( )

( ( ))

�

�

�



 
2

  
1

   

lim x 1 − cos = 0 .  
x→0 x 

 
1
 
 

−1 ≤ sin ≤ 1, 
x 

 

1-78 Chapter 1 Limits and Continuity 

As
 
lim 0 = 0 and lim(2x 2) = 0,
 
x→0 x→0

it follows from the Squeeze Theorem that
 

50. First note that x3 +3x2 = x2(x + 3) is non-negative for x ≥ −3. Thus, as x approaches 0, √
x3 + 3x2 
 

is defined. Now, consider the compound inequality
 

which holds for all x = 0. Multiplying by 
√ 
x3 + 3x2, which is non-negative for all x, then

yields 
 

	  
1 
 

− 
J
x3 + 3x2 ≤ 

J
x3 + 3x2 sin ≤ 

J
x3 + 3x2 . 

x 

As 

lim (−

J
x3 + 3x2) = 0 and lim 

J
x3 + 3x2 = 0,
 

x→0	 x→0 

it follows from the Squeeze Theorem that 

  
1 
 

lim 
J
x3 + 3x2 sin = 0 .  

x→0	 x 

sin(ax)
sin(ax) a sin(ax) limsin(ax)	 a

  x  ax  x→0 a 1 a axlim = lim = lim = = · = . 
→ sin(bx) b sin(bx)x 0 sin(bx) x→0 x→0 b sin(bx) b 1 b 

x bx lim 
x→0 bx 

51.	 

lim cos(ax)cos(ax)	 x 1→0lim = = = 1 . 
x→0 cos(bx) lim cos(bx) 1 

x→0

52.	

sin(ax) a sin(ax) a sin(ax) a a 
 lim = lim = lim = · 1 =  . 
x→0 bx x→0 abx b x→0 ax b b
 

53.	

1 − cos(ax) a(1 − cos(ax)) a 1 cos(ax) a
 
lim = lim = lim 

−
= · 0 =  0 . 

x→0 bx x→0 abx b x→0 ax b 
54.	 

55. 

1 − cos x 1 − cos x 1 + cosx  1 − cos2 x sin2 x 
lim = lim 
x→0 x2 x→0 x2 

· = lim = lim 
1 + cosx  x→0 x2(1 + cos x) x→0 x2(1 + cos x) 

sin x sin x 1 1 1 
= lim · lim · lim = 1 · 1 · = . 

x→0 x x→0 x x→0 1 + cosx  1 + 1  2 

56. Let	 f be a function for which 0 ≤ f(x) ≤ 1 for every x. Multiplying by x2, which is 
non-negative for all x, then yields

 
 0 ≤ x2f(x) ≤ x2 for every x. As  

lim 0 = 0 and lim x 2 = 0, 
x→0 x→0 

it follows from the Squeeze Theorem that 

lim [x 2f(x)] = 0. 
x→0

[ ( ( ))]

( )

�
( )

( )
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57. Let f be a function for which 0 ≤ f(x) ≤ M for every x. Multiplying by x2, which i s  
non-negative for all x, then yields 0 ≤ x2f(x) ≤Mx2 for every x. As  

lim 0 = 0 and lim(Mx2) = 0, 
x→0 x→0

it follows from the Squeeze Theorem that
 

lim [x 2f(x)] = 0.
 
x→0

58. To make f continuous at 0, f(0) should be defined equal to the value of lim f(x), 
x→0 

provided 

this limit exists. Here,
 

sin(πx) π sin(πx) sin(πx)

lim = lim = π lim = π · 1 =  π. 
x→0 x x→0 πx x→0 πx 

Thus, f(0) should be set equal to π to make f continuous at 0.      

1 
 
x(1 − x) 

59. The functions sin(πx) and are both continuous on the open interval (0, 1); con­

sequently, the function
sin(πx)

 f(x) =  
x(1 − x)


is also continuous on the open interval (0, 1). 
 

Now,
 

sin(πx) π sin(πx)	 sin(πx) 1 1 
lim f(x)= lim = lim = π lim  lim = π 1  = π, 

x 0+ x 0+ x(1 x
·−  → → x) →0+ πx(1 

· ·− x) x→0+ πx x→0+ 1 − x 1 − 0 

and, using the identity sin θ = sin(π − θ), 

sin(πx) π sin(π(1 x)) sin(π(1 x)) 1 1 
lim f(x)= lim = lim	 

−
= π lim 

− · lim = π·1· = π. 
x→1− x→1− x(1 − x) x→1− πx(1 − x) x→1− π(1 − x) x→1− x 1 

Thus, defining f(0) = f(1) = π , f will be continuous on the closed interval [0, 1]. 

60. Because 
sin x 

lim f(x) = lim = 1 =  f(0), 
x→0 x→0 x 

f is continuous at 0. 

61. Because 
1 − cos x 

lim f(x) = lim = 0 =  f(0), 
x→0 x→0 x 

f is continuous at 0. 

62. Let n be a positive integer, and start from the inequality 
�
 
 
 
1 
 �

 �
 sin �

 
��
 ≤ 1, 

x � �

which holds for all x = 0. Multiplying by |xn|, 
 

which is non-negative for all x, then yields 
�
 
 
1 
 � �

 
  

 
1 
 �

 |  x n| ·  �sin   
�
 =
�
x n n� �
 sin 

�
�

 x , 
x x 

� ≤ | |� � � �

or
 
n

 
1
 
 

−|x | ≤ x n sin ≤ |xn|. 
x 

( )

�
( ) ( )

( )



    
lim x n 1 

sin = 0. 
x→0 x 
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As 
lim (−|x n|) = 0 and lim 
x→0 x→0

|x n| = 0, 

it follows from the Squeeze Theorem that 

63. Let 0 < θ <  π . 2 Consider the diagram presented in the problem statement. The length of 
the segment PB  is shorter than the length of the segment PA because PA is the hypotenuse 
of the right triangle PBA  for which PB  is one of the legs. Moreover, the length of the 
segment PA  is shorter than the length of the arc PA  because the shortest distance between 
any two distinct points is the length of the line segment connecting the two points. Thus,
the segment joining the points P and B is shorter than the length of the arc AP along the 
circle. As the length of the segment joining P and B is sin θ 

                

while the length of the arc 
AP is θ, it follows that sin θ ≤ θ. Because θ is a first quadrant angle, it is also true that 
sin θ ≥ 0. Thus, 

0 ≤ sin θ ≤ θ. 

With 
lim 0 = 0 and lim θ = 0, 

θ→0+ θ→0+ 

it follows from the Squeeze Theorem that 

lim	 sin θ = 0. 
θ→0+ 

If, instead, − π < θ < 0,  2 then the length of the segment joining P and B is − sin θ, so that  

0 ≤ − sin  θ ≤ θ or − θ ≤ sin θ ≤ 0. 

With 
lim (−θ) = 0 and lim 0 = 0, 

θ→0−	 θ→0− 

it follows from the Squeeze Theorem that 

lim	 sin θ = 0. 
θ→0− 

Finally, because the two one-sided limits are equal, 

lim sin θ = 0. 
θ→0 

 
 cos θ = ± 

J
1 − sin2 θ.64. From the Pythagorean identity cos2 θ+ sin2 θ = 1 it follows that In

the limit as 
 (− π , π2

)
,2θ approaches 0, θ will eventually lie in the interval so that cos θ  will

be positive; hence, cos θ =
J
1 − sin2 θ. 
 

Therefore, 
  

lim cos θ = lim 
J
1 − sin2 θ =

J
1 − 02 = 1. 

θ→0 θ→0 

65. Answers will vary.	 The function cos θ is continuous on the set of all real numbers, and the 
polynomial function 5x3 + 2x2 − 8x + 1 is also continuous on the set of all real numbers. 
As f(x) = cos(5x3 + 2x2 − 8x + 1) is the composition of the two previously mentioned 
functions, it follows that f is continuous on the set of all real numbers. 

66. Answers will vary.	 One possible response is the following. Suppose we wish to evaluate 
lim g(x)
x→c 

 for some function g. If two functions f and h can be found such that f(x) ≤ g(x) ≤ 

h(x) for all x in a neighborhood of c, except possibly at c, and lim f(x) = lim h(x) = L  
x c x→c →

for some real number L, then lim g(x) = L . 
x→c 

In plain terms, the functions f and h squeeze 

the value of g toward L. A graph to illustrate the process is shown below. 

[ ( )]



L 

y = h(x) 

y = f (x) 

y = g(x) 

c 
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Challenge Problems 

67. To show that the sine function is continuous on its domain, it must be established that 
lim sin θ = sin c  
θ→c 

for any real number c. So l et c  be any real number. Then 

lim sin θ = lim sin(x + c) = lim [sin x cos c + cosx  sin c] 
θ→c x→0 x→0

= cos c lim  sin x + sin c  lim cos x = cos c  · 0 + sin c  1 = sin c.  
x→0 x→0 

·

Similarly, to show that the cosine function is continuous on its domain, it must be estab­
lished that lim cos θ = cos c  

θ→c 
for any real number c. So l et c  be any real number. Then 

lim cos θ = lim cos(x + c) = lim [cos x cos c − sin x sin c] 
θ→c x→0 x→0

= cos c lim  cos x − sin c lim sin x = cos c  · 1 − sin c 0 = cos c.  
x→0 x→0 

·

sin x2 x sin x2 sin x2

lim = lim = lim x · lim = 0(1) =  0 . 
x→0 x x→0 x2 x→0 x→0 x2 

68. 

69. As defined, 0 ≤ f(x) ≤ 1 for all x, so t hat | f(x)| ≤ 1. Multiplying this last inequality by 
|x|, which is non-negative for all x, yields 

|x| · |f(x)| = |xf(x)| ≤ |x|, or − |x| ≤ xf(x) ≤ |x|. 
Because
 

lim (−|x|) = 0 and lim |x| = 0,
 
x→0 x→0

it follows from the Squeeze Theorem that 

lim [xf(x)] = 0. 
x→0

70. Using the diagram in the problem statement, let d denote the x-coordinate of the point 
D. Applying right angle trigonometry to the triangle ACD yields d tan θ as the length 
of the segment CD, while applying right angle trigonometry to the triangle BCD yields 
(1 − d) tan(nθ) as the length of the segment CD. Thus,  

d tan θ = (1− d) tan(nθ), 

or 
 tan(nθ)

tan(nθ)
d = = tan θ . 

tan θ + tan(nθ)  tan(nθ)1 + tan θ 



 
n 

 
 , 0	 . 

n + 1  
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Now, 

tan(nθ) sin(nθ) cos θ sin(nθ) cos θ 
lim = lim · = lim · lim = n(1) = n, 
θ 0 tan θ θ 0 sin θ  → → cos(nθ) θ→0 sin θ θ→0 cos(nθ) 

n 
 d → 

n + 1  
using the results of Problems 51 and 52. Thus, as θ approaches 0, , and t he

limiting position of D is the point

 

1.5 Infinite Limits; Limits at Infinity; Asymptotes 

Concepts and Vocabulary 

1. False . ∞ is not a number;  ∞ is a symbol to represent the concept of becoming un­
bounded. 

1 
lim = −∞ . 

x→0− x 
2.	 (a)

1 
lim = ∞ . 

x→0+ x 
(b) 

(c) lim ln x = −∞ . 
x→0+ 

3. False . The graph of a rational function may have a vertical asymptote at a number x at 
which the function is undefined. The graph will have a vertical asymptote provided that 
at least one of the one-sided limits at that number is infinite. If neither of the one-sided 
limits is infinite, the graph will have a hole. 

4. If lim f(x) =∞ , 
x→4 

then the line x = 4  is  a vertical asymptote of the graph of f .  

1 
 lim = 0 . 
x  x 

5.	 (a) →∞
1 

 lim = 0 . 
x  x2 

(b) →∞
(c)	 lim ln x = ∞ . 

x→∞ 

6. False . lim 5 = 5.  
x→−∞ 

7.	 (a) lim ex = 0 . 
x→−∞
 

(b) lim x
e = ∞ . 
x→∞ 

(c)	 lim e −x = 0 . 
x→∞ 

8. True . The graph of a function can have at most two horizontal asymptotes. 

Skill Building 

9. As	 x becomes unbounded in the positive direction, the graph of f approaches the line 
y = 2. Thus,    lim	 f(x) = 2 . 

x→∞ 

10. As	 x becomes unbounded in the negative direction, the graph of f approaches the line 
y = 0. Thus,    lim f(x) = 0 . 

x→−∞ 

( )
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11. As	 x approaches −1 from the left, the graph of f becomes unbounded in the positive 
direction. Thus, lim f(x) =  ∞ . 

x→−1− 

12. As	 x approaches −1 from the right, the graph of f becomes unbounded in the positive 
direction. Thus, lim f(x) =  ∞ . 

x→−1+ 

13. As x approaches 3 from the left, the graph of f becomes unbounded in the positive direction. 
Thus, lim	 f(x) =  ∞ . 

x→3− 

14. As	 x approaches 3 from the right, the graph of f becomes unbounded in the positive 
direction. Thus, lim	 f(x) =  ∞ . 

x→3+ 

15. The graph of f has two vertical asymptotes: x = 1 and  x = 3 . −

16. The graph of f has two horizontal asymptotes: y = 0  and  y = 2 . 

17. As	 x becomes unbounded in the positive direction, the graph of f approaches the line 
y = −3. Thus, lim	 f(x) = − 3 . 

x→∞ 

18. As	 x becomes unbounded in the negative direction, the graph of f approaches the line 
y = 0. Thus, lim f(x) = 0 . 

x→−∞ 

19. As	 x approaches −3 from the left, the graph of f becomes unbounded in the positive 
direction. Thus, lim f(x) =  ∞ . 

x→−3− 

20. As	 x approaches −3 from the right, the graph of f becomes unbounded in the negative 
direction. Thus, lim f(x) =  −∞ . 

x→−3+ 

21. As x approaches 0 from the left, the graph of f approaches the origin. Thus, lim	 f(x) = 0 . 
x→0− 

22. As	 x approaches 0 from the right, the graph of f becomes unbounded in the positive 
direction. Thus, lim	 f(x) =  ∞ . 

x→0+ 

23. As x approaches 4 from the left, the graph of f becomes unbounded in the positive direction. 
Thus, lim	 f(x) =  ∞ . 

x→4− 

24. As	 x approaches 4 from the right, the graph of f becomes unbounded in the positive 
direction. Thus, lim	 f(x) =  ∞ . 

x→4+ 

25. The graph of f has three vertical asymptotes: x = −3, x = 0,  and  x = 4 . 

26. The graph of f has two horizontal asymptotes: y = 0  and  y = −3 .   



x 1.9 1.99 1.999 → 2 

3x 
f(x) =  

x  2 
−57 −597 −5997 f(x) approaches −∞ −
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27. As x approaches 2 from the left, 3x approaches 6 and x − 2 approaches 0 from the left. 
Therefore, the ratio 3x

x−2 becomes unbounded in the negative direction, so
 

3x
 
lim = −∞ . 

x→2− x − 2
 

The values in the table below support this conclusion.
 

28. As x approaches −4 from the right, 2x + 1 approaches −7 and  x + 4 approaches 0 from 
the right. Therefore, the ratio 2x+1 becomes unbounded in the negative direction, so x+4 

2x + 1  
lim = −∞ . 

x→−4+ x + 4 
  

The values in the table below support this conclusion.
 

x −4 ← −3.999 −3.99 −3.9 

2x + 1  
f(x) =  

x + 4  
f(x) approaches −∞ −6998 −698 −68 

29. As x approaches 2 from the right, 5 approaches 5 and x2 − 4 approaches 0 from the right. 
Therefore, the ratio 5

x2−4 becomes unbounded in the positive direction, so
  

5
 
lim = ∞ . 

x→2+ x2 − 4 

The values in the table below, which have been rounded to two decimal places, support 
this conclusion. 

x 2 ← 2.001 2.01 2.1 

5 
f(x) =  

x2 − 4 
f(x) approaches ∞ 1249.69 124.69 12.20 

30. As x approaches 1 from the left, 2x approaches 2 and x3 − 1 approaches 0 from the left. 
Therefore, the ratio 2x

x3−1 becomes unbounded in the negative direction, so
 

2x
 
lim = −∞ . 

x→1− x3 − 1 

The values in the table below, which have been rounded to two decimal places, support 
this conclusion. 

x 0.9 0.99 0.999 → 1 

2x 
f(x) =  

x3 − 1 
−6.64 −66.66 −666.67 f(x) approaches −∞ 
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31. As x approaches −1 from the right, 5x + 3 approaches −2 and  x(x + 1) approaches 0 from 
the left. Therefore, the ratio 5x+3

x(x+1) becomes unbounded in the positive direction, so 

5x + 3  
lim = ∞ . 

x→−1+ x(x + 1)  

The values in the table below, which have been rounded to two decimal places, support 
this conclusion. 

x −1 ← −0.999 −0.99 −0.9 

5x + 3  
f(x) =  

x(x + 1)  
f(x) approaches ∞ 1997.00 196.97 16.67 

32. As x approaches 0 from the left, 5x + 3 approaches 3 and 5x(x − 1) approaches 0 from the 
right. Therefore, the ratio 5x+3

5x(x−1) becomes unbounded in the positive direction, so 

5x + 3  
lim = ∞ . 

x→0− 5x(x − 1) 

The values in the table below, which have been rounded to two decimal places, support 
this conclusion. 

x −0.1 −0.01 −0.001 → 0 

5x + 3  
f(x) =  4.55 58.42 598.40 f(x) approaches ∞ 

5x(x − 1) 

33. As x approaches −3 from the left, 1 approaches 1 and x2 − 9 approaches 0 from the right. 
Therefore, the ratio 1

x2−9 becomes unbounded in the positive direction, so      
 

1
 
lim = ∞ . 

x→−3− x2 − 9 

The values in the table below, which have been rounded to two decimal places, support 
this conclusion. 

x −3.1 −3.01 −3.001 → −3 

1 
f(x) =  1.64 16.64 166.64 f(x) approaches ∞ 

x2 − 9 

34. As x approaches 2 from the right, x approaches 2 and x2 − 4 approaches 0 from the right. 
Therefore, the ratio x

x2−4 becomes unbounded in the positive direction, so 

x 
lim = ∞ . 

x→2+ x2 − 4 

The values in the table below, which have been rounded to two decimal places, support 
this conclusion. 

x 2 ← 2.001 2.01 2.1 

x 
f(x) =  

x2 − 4 
f(x) approaches ∞ 500.12 50.12 5.12 
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35. As x approaches 3, 1−x approaches −2 and  (3−x)2 approaches 0 from the right. Therefore, 
the ratio 1−x 

(3−x)2 becomes unbounded in the negative direction, so 

1 − x 
lim = −∞ . 
x→3 (3  x)2
 −

The values in the table below support this conclusion.
 

x 2.9 2.99 2.999 → 3 ← 3.001 3.01 3.1 

1−xf(x) =  −190 −19900 −1999000 f(x) approaches −∞ −2001000 −20100 −210(3−x)2 

36. As x approaches −1, x+2 approaches 1 and (x+1)2 approaches 0 from the right. Therefore, 
the ratio x+2

(x+1)2 becomes unbounded in the positive direction, so 

x + 2  
lim = ∞ . 

x→−1 (x + 1)2
 

The values in the table below support this conclusion.
 

x −1.1 −1.01 −1.001 → −1 ← −0.999 −0.99 −0.9 

x+2f(x) =  90 9900 999000 f(x) approaches ∞ 1001000 10100 110(x+1)2 

37. As x approaches π from the left, cos x approaches −1 and  sinx  approaches 0 from the 
right. Therefore, the ratio    cos x = cotx  sin x becomes unbounded in the negative direction, so 

lim cot x = −∞ . 
x→π− 

The values in the table below, which have been rounded to two decimal places, support 
this conclusion. 

x π − 0.1 π − 0.01 π − 0.001 → π 

f(x) = cot  x −9.97 −100.00 −1000.00 f(x) approaches −∞ 

38. As x approaches −π/2 from the left, sin x approaches −1 and c osx  approaches 0 from the 
left. Therefore, the ratio sin x = tanx cos x   becomes unbounded in the positive direction, so 

lim tan x = ∞ . 
x→−π/2− 

The values in the table below, which have been rounded to two decimal places, support 
this conclusion. 

x − π 
2 − 0.1 − π 

2 − 0.01 − π 
2 − 0.001 → −π/2

f(x) = tan  x 9.97 100.00 1000.00 f(x) approaches ∞ 

39. As x approaches π/2 from the right, 2x approaches π from the right, so sin(2x) approaches 
0 from the left. Therefore, the ratio 1 = csc(2x) sin(2x) becomes unbounded in the negative
direction, so
 

 

lim csc(2x) = 
  −∞ . 
x→π/2+ 

The values in the table below, which have been rounded to two decimal places, support 
this conclusion. 
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x π 
2 ← π 

2 + 0.001 π 
2 + 0.01 π 

2 + 0.1 

f(x) = csc(2x) f(x) approaches −∞ −500.00 −50.00 −5.03 

40. As x approaches −π/2 from the left, cos x approaches 0 from the left. Therefore, the ratio 
1 = secx cos x  becomes unbounded in the negative direction, so 

lim sec x = −∞ . 
x→−π/2− 

The values in the table below, which have been rounded to two decimal places, support 
this conclusion. 

x − π 
2 − 0.1 − π 

2 − 0.01 − π 
2 − 0.001 → −π/2

f(x) = sec  x −10.02 −100.00 −1000.00 f(x) approaches −∞ 

41. As x approaches −1 from the right, x+ 1 approaches 0 from the right. Therefore, ln(x+1)  
becomes unbounded in the negative direction, so 

lim ln(x + 1)  =  −∞ . 
x→−1+ 

The values in the table below, which have been rounded to two decimal places, support 
this conclusion. 

x −1 ← −1 + 10−6 −1 + 10−4 −1 + 10−2 

f(x) = ln(x + 1)  f(x) approaches −∞ −13.82 −9.21 4.61 −

42. As x approaches 1 from the right, x − 1 approaches 0 from the right. Therefore, ln(x − 1) 
becomes unbounded in the negative direction, so 

lim ln(x − 1) = −∞ . 
x→1+ 

The values in the table below, which have been rounded to two decimal places, support 
this conclusion. 

x 1 ← 1 + 10−6 1 + 10−4 1 + 10−2 

f(x) = ln(x − 1) f(x) approaches −∞ −13.82 −9.21 −4.61 

5 5 
5 x2 x2 0 

 lim = lim = lim = = 0 . 
2 2 x  →∞ x + 4  x→∞ x + 4  x→∞ 4 1 + 0

1 +  
x2 x2 

43.

1 1 
1 x2 x2 0 

lim = lim = lim = = 0 . 
x→−∞ x2 − 9 x→−∞ x2 − 9 x→−∞ 9 1 − 0

1 − 
x2 x2 

44. 

2x + 4  2 4 2 
+ + 02x + 4  25x 5 5x 5lim = lim = lim = = . 

x→∞ 5x x→∞ 5x x→∞ 1 1 5 
5x 

45. 



 
1 x + 1  

 
1 x + 1  

lim  = lim  lim 
2 2 x→∞ x + x + 4  

−
3x − 1 x→∞ x + x + 4  

−
x→∞ 3x − 1 

1 x + 1  
x2 

  − 3x = lim lim2 x  3x − 1 →∞ x + x + 4  x→∞
x2 3x 
1 1 1 

+ 
x2 

= lim −  3 3xlim
x→∞ 1 4 x→∞ 1 

1 + + 1 − 
x x2 3x 

1 
+ 00 1 13= − = 0−  = − . 

1 + 0 + 0  1 − 0 3 3 
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x + 1  1 
1 +  x + 1  1 + 0xlim = lim = lim x = = 1 .

x x →∞ x x→∞ x→∞ 1 1 
x 

46. 

x3/2 + 2x  x1/2 
2 1 

x 1/ + 2   x3/2 + 2x 1/2 
−

− x x 
−

x1/2 
lim = lim = lim 
x→∞ 5x − x1/2  /2 x→∞ 5x − x1 x→∞ 1

5 − 
 x1/2 

x
lim x 1/2 + 2−  0 
x→∞ = = ∞ .5 − 0 

47. 

6x2 + x3/4

6x2 + x3/4
x2 

lim = lim 
2 x→∞ 2x2 + x3/2 − 2x1/ x→∞ 2x2 + x3/2 − 2x
1/2

x2
 

1 
6 +  

x5/4 6 + 0= limx→∞ = = 3 .1 2 2+0−0 
2 +  − 

x1/2 x3/2 

48. 

x + 1 1 1
+ x2 + 1  x3 x3 0 + 0

 xlim = lim = lim = = 0 . 
x→−∞ x3 − 1 x→−∞ x3 − 1 x→−∞ 1 1 − 0

1 − 
x3 x3 

2   

49.

x2  2x + 1  1 2 1 
x2   − 2

−
+x + 1  x3 x2 x3 0  0 + 0

lim xlim = = lim 
−

= 
−

=
x→∞ x3 + 5x + 4  x→∞ x3 + 5x + 4  x→∞ 5 4 1 + 0 + 0

1 +  + 
x3 x2 x3 

50. 0 . 

51. 

3x x2 + 1   
3x x2 + 1  

 
3x x2 + 1  

 2x 4x2 
lim − = lim − lim = lim  lim 

2 x  2x + 5  4x + 8  2 x  2x + 5  x  4x + 8  x  2x + 5  →∞ →∞ →∞ →∞ − →∞ 4x2 x + 8  
2x 4x2 

3 1 1 3 1 
+ + 0  3 1  2 4 4x2 54= 2lim 

5
− lim =  =  = . 

x→∞ x→∞ 2 1 + 0  
−

1 + 0  2
−

4 4 
1 +  1 +  

2x x2 

52. 

[ ]

[ ]
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53. 

5  ⎛
x+ 1  ⎞ 

 

 
5x + 1

  
 5x + 1   

lim 3x 2ex = lim (2ex )  lim = lim (2ex )  ⎜ lim ⎟
 

x→−∞ 3x x→−∞ ·
x→−∞ 3x x→−∞ ·⎝

x→−∞ 3x ⎠

3x 
5 1 5 
+ + 0  

  = lim  3 3x 3(2ex) · lim = 0 ·  = 0 .  
x→−∞ x→−∞ 1 1 

54. 

x2   
2

⎛
+ x  3⎞ 

2
x

 
x + x − 3 

  
x x + x − 3 

−
  2x3 

lim e = lim e · lim = lim e x  ⎜ lim ⎟
 

x→−∞ 2x3 − x2 x→−∞ x→−∞ 2x3 − x2 x→−∞ 
·⎝

x→−∞ 2x3 − x2 ⎠

2x3 

1 1 3 
+  

2 3 0 + 0    0
= lim e x 2x 2x

−
2x −· lim = 0 ·  = 0 .  

x→−∞ x→−∞ 1 1 − 0
1 − 

2x 

√ 
x + 2 1 2√ √ + 

x + 2  3x 3 x 3x 0 + 0
lim = lim = lim = = 0 . 
x  →∞ 3x − 4 x→∞ 3x− 4 x→∞ 4 1 − 0

1 − 
3x 3x 

55. 

 
√ 
3x3 + 2

√
√ 3 2

 + 
3x3 + 2  x2 

√
x x2 0 + 0  

lim = lim = lim = = 0 . 
x→∞ x2 + 6  x→∞ x2 + 6  x→∞ 6 1 + 0

1 +  
x2 x2 

56. 

57. Because
 
3x2 − 1 1
 

3 3x2 − 1 x2 x2 3  0 
lim = lim = lim 

−
= 
−

= 3, 
x→∞ x2 + 4  x  →∞ x2 + 4  x→∞ 4 1 + 0

1 +  
x2 x2 

it follows that 
 �
3x2 − 1

�
3x2 − 1
 

lim = lim = 
√ 
3 . 

x→∞ x2 + 4  x→∞ x2 + 4  

58. Because 

16x3 + 2x + 1  1 1 
16x3 + 2x + 1  8 +  + 8 + 0 + 0  

  2x3 x2 2x3 
lim = lim = lim = = 8, 
x→∞ 2x3 + 3x x→∞ 2x3 + 3x x→∞ 3 1 + 0

1 +  
2x3 2x2

it follows that 

 
2/3 2/3 

16x3 + 2x+ 1
 
 

 
16x3 + 2x + 1

 
 

lim = lim = 82/3 = 4 .  
x→∞ 2x3 + 3x x→∞ 2x3 + 3x 

5x3

5x3
x2 5x 

 lim = lim = lim = −∞ . 
2 x→−∞ x + 1  x→−∞ x2 + 1  x→−∞ 1 

1 +  
x2 x2 

59.

[ ( )]

[ ( )]

( ) ( )



 
 

1
  

1 
 

lim 3 +  = −∞ and lim 3 +  = ∞, 
x→0− x x→0+ x 

 
1
  

1 
 

lim 3 +  = 3 + 0 = 3 and lim 3 +  = 3 + 0 = 3, 
x→−∞ x x→∞ x 

 
 

1
  

1 
 

lim 2 − = −∞ and lim 2 − = −∞, 
x→ 2 − x2 0 x→0+ x

 
1
  

1
 
 

lim 2 − = 2−  0 = 2 and lim 2 − = 2−  0 = 2, 
x→−∞ x2 x→∞ x2 
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x4 

60. 
x4 

 x3 

lim = lim x = lim =  . 
x→−∞ x − 2 x  x − →−∞ 2 x   →−∞ 2

−∞
1 − 

x x 

1 
f(x) = 3 +  

x 
61. The domain of is the set {x|x = 0}. The one-sided limits as x approaches 0 

are 

so x = 0 is a vertical asymptote of the graph of f . Because              

y = 3 is a horizontal asymptote of the graph of f . 

1 
f(x) = 2 −  

x2 
62. The domain of is the set {x|x = 0}. The one-sided limits as x approaches 

0 are  

so x = 0 is a vertical asymptote of the graph of f . Because
 

y = 2 is a horizontal asymptote of the graph of f .             

x2

f(x) =  
x2 − 1

63. The domain of the function is the set {x|x = ±1}.
 

 The one-sided limits as 

x approaches −1 are  

x2 x2

lim = ∞ and lim = , 
2 x 1− x − 1 x 1+ x2 − 1 →− →−

−∞

so x = −1 is a vertical asymptote of the graph of f . The one-sided limits as x approaches               
1 are  

x2 x2

lim = −∞ and lim = , 
2 x 1− x − 1 x 1+ x2 − 1 → →

∞

so x = 1 is also a vertical asymptote of the graph of f . Because 

x2

x2
x2 1 1 

lim = lim = lim = = 1, 
x→−∞ x2 − 1 x→−∞ x2 − 1 x→−∞ 1 1 − 0

1 − 
x2 x2 

and 
x2 

x2 1 1 
lim = x2 

lim = lim = = 1, →∞ x2 − 1 x→∞ x2 x  − 1 x→∞ 1 1 
1 

x2 
−

2 

− 0  
x

y = 1 is a horizontal asymptote of the graph of f .             

�
( ) ( )

( ) ( )

( ) ( )

( ) ( )

�
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2x2 − 1 
f(x) =  

x2 − 1 
64. The domain of the function is the set {x|x = ±1}. The one-sided limits 

as x approaches −1 are 
  

2x2 − 1 2x2 − 1
 
lim = ∞ and lim = 

2 x
−∞, 

→−1− x − 1 x→−1+ x2 − 1 

so x = −1 is a vertical asymptote of the graph of f . The one-sided limits as x approaches 
1 are  

2x2 − 1 2x2 − 1 
lim = −∞ and lim = 

2 x
∞, 

→1− x − 1 x→1+ x2 − 1 

so x = 1 is also a vertical asymptote of the graph of f . Because
 

2x2  1 1
 
 2 2x2 − 1 x2 

− −
x2 2 − 0 

lim = lim = lim = = 2, 
x→−∞ x2 − 1 x→−∞ x2 − 1 x→−∞ 1 1 − 0

1 − 
x2 x2 

and 
2x2  1 1 

 2 2x2 − 1 x2 

− −
x2 2 − 0 

lim = lim = lim = = 2, 
x→∞ x2 − 1 x→∞ x2 − 1 x→∞ 1 1 − 0

1 − 
x2 x2 

y = 2 is a horizontal asymptote of the graph of f . 

65. By completing the square, we find 

2 

    2
2 1 1 1 1 79 79

2x − x + 10  =  2  x − x + + 10−  = 2  x − +  > 0 
2 16 8 4 8

≥
8 

√ 
2x2 − x + 10 for all x. Therefore, is defined for all x, and the domain of √ f(x) =

2x2 − x + 10

2x − 3 

 
 
is the set {x|x = 3}. 2 The one-sided limits as x approaches 3 2 are

√ √ 
2x2 − x + 10  2x2  x + 10  

lim = −∞ and lim 
 

−
= ∞, 

x→3/2− 2x − 3 x→3/2+ 2x − 3 

so x = 3 2 is a vertical asymptote of the graph of f . To examine the limits at infinity, note 

that 
 �
1 10 

�
1 10
√ x  2  + 2  +

2x2 − x + 10  | | −
x x2 

−|x| x x2 
= =  .

2x  
·− 3 2x − 3 x 3

2 − 
x 

Note that |x|/x is −1 as  x approaches −∞ and +1 as x approaches ∞; therefore, 

√ √ √ √ 
2 − 0 + 0 2 2  0 + 0  2 

lim R(x) =  − = − and lim R(x) =  
−

= , 
x→−∞ 2 − 0 2 x→∞ 2 − 0 2 

so that y = − 2 and y = 2 
2 2 

√ √ 
are horizontal asymptotes of the graph of f .

�

( ) ( )

�
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√
3 

 
x2 + 5x 

 f(x) =  
x− 6 

66. The domain of the function is the set {x|x = 6}. The one-sided limits 

as x approaches 6 are 
√
3 

 √ 
x2 + 5x 3 x2 + 5x 

lim = −∞ and lim = ∞, 
x→6− x− 6 x→6+ x− 6 

so x = 6 is a vertical asymptote of the graph of f . Because 

√	  
√ 

3 x2 + 5x
�
3 1 5

3 +
x2 + 5x x x2

√
3 0 + 0xlim = lim = lim = = 0,

x→−∞ x− 6 x x− 6 →−∞ x→−∞ 6 1 − 0
1 − 

x x 

and   

3 
 

√
3 x2 + 5x

�
√ 3 1 5

+
x2 + 5x x x2

√
3 0 + 0xlim = lim = lim = = 0,

x→∞ x− 6 x x− 6 →∞ x→∞ 6 1 − 0
1 − 

x	 x 

y = 0 is a horizontal asymptote of the graph of f . 

67.	 (a) Factoring the denominator of R yields 

2x3  + 4x 2 = 2x 2(x+ 2), 

so the domain of R is the set {x|x = −2, x = 0} . 
(b) Because
 

2
−2x2 + 1  1 1
 

 − +x2 + 1 	  0 + 0
 2x3  3 

lim = lim =	 lim 
−
x 2x = = 0  

x→−∞ 2x3 + 4x2 x→−∞ 2x3 + 4x2	 x→−∞ 2 1 + 0
1 +  

2x3	 x 

and 

2
−2x2 + 1  1 1 

− x2 + 1  2x3 
lim = lim = lim 

− +
2x3 0 + 0  x = = 0, 

x→∞ 2x3 + 4x2 x→∞ 2x3 + 4x2 x→∞ 2 1 + 0
1 +  

2x3	 x 

y = 0 is a horizontal asymptote of the graph of R .             

(c) The one-sided limits as x approaches −2 are  

 
−2x2 + 1  2x2 + 1  

lim =  and lim 
−

= , 
x→− 3 2 3 2 2− 2x + 4x

∞
x→−2+ 2x + 4x

−∞

so x = −2  is a vertical asymptote of the graph of R . The one-sided limits as x ap­
proaches 0 are 

 
−2x2 + 1 	  2x2 + 1  

lim =  and lim 
−

= , 
x→ 3 2 3 2 0− 2x + 4x

∞
x→0+ 2x + 4x

∞

so x = 0 is also a vertical asymptote of the graph of R . 

�

� �
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(d) The only numbers where R is not defined are x = −2 and  x = 0. Using the limits from 
part (c), it follows that as x approaches −2 from the left, the graph of R becomes 
unbounded in the positive direction, while as x approaches −2 from the right, the 
graph of R becomes unbounded in the negative direction. As x approaches 0 from 
either direction, the graph of R becomes unbounded in the positive direction. 

68. (a) Factoring the denominator of R yields 

x 4 − 1 = (x 2 − 1)(x 2 + 1)  =  (x− 1)(x+ 1)(x 2 + 1), 

so the domain of R is the set {x|x = ±1} . 
(b) Because 

x3 1 
x3 

 0
lim = lim x4  

 x= lim = = 0  
x→−∞ x4 − 1 x→−∞ x4 − 1 x→−∞ 1 1  0 

1 
x4 

− 
x4 

−

and 
x3 1 

x3
x4 0 

lim = lim = lim x = = 0, 
x→∞ x4 − 1 x→∞ x4 − 1 x→∞ 1 1 − 0

1 − 
x4 x4 

y = 0 is a horizontal asymptote of the graph of R . 

(c) The one-sided limits as x approaches −1 are  

x3 x3

lim = −∞ and lim = , 
4 x 1− x − 1 x 1+ x4 − 1 →− →−

∞

so x = −1 is a vertical asymptote of the graph of R . The one-sided limits as x ap­
proaches 1 are 

x3 x3

lim = −∞ and lim = , 
4 x 1− x − 1 x 1+ x4 − 1 → →

∞

so x = 1 is also a vertical asymptote of the graph of R . 

(d) The only numbers where R is not defined are x = ±1. Using the limits from part (c), 
it follows that as x approaches −1 from the left, the graph of R becomes unbounded 
in the negative direction, while as x approaches −1 from the right, the graph of R 
becomes unbounded in the positive direction. As x approaches 1 from the left, the 
graph of R becomes unbounded in the negative direction, while as x approaches 1 
from the right, the graph of R becomes unbounded in the positive direction. 

69. (a) Factoring the denominator of R yields 

2x2  − 7x+ 6  =  (2x− 3)(x− 2), 

so the domain of R is the set {x|x = 3 , x  = 2} .2

(b) Because 

x2 + 3x  10 1 3 5 1 
x2      + 3x− 10 

−
+ + 0 0 12x2 2 2x x2 2lim = lim = lim 

−
= 

−
= 

x→−∞ 2x2 − 7x+ 6  x→−∞ 2x2 − 7x+ 6  x  →−∞ 7 3 1 − 0 + 0  2
1 − + 

2x2 2x x2 

�

� �
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and 

x2 + 3x  10 1 3 5 1 
+ x2  + 0   0 + 3x 

−
− 10 −

x2 
− 12x2 2 2x 2lim = lim = lim = = , 

x→∞ 2x2 − 7x + 6  x→∞ 2x2 − 7x + 6  x→∞ 7 3 1 − 0 + 0  2
1 − + 

2x2 2x x2 

y = 1 2 is a horizontal asymptote of the graph of R .

(c) The one-sided limits as x approaches 32 are 

x2 + 3x − 10 (x − 2)(x + 5)  
lim = lim =  

2 x→3/2− 2x
−∞− 7x + 6  x→3/2− (2x − 3)(x − 2) 

and
 
x2 + 3x − 10 (x − 2)(x + 5) 
  

lim = lim = , 
2 x→3/2+ 2x

∞− 7x + 6  x→3/2+ (2x − 3)(x − 2) 

so x = 3 2 is a vertical asymptote of the graph of R . Because 

x2 + 3x − 10 (x − 2)(x + 5)  x + 5  
lim = lim = lim = 7, 

2 x→2 2x  7x + 6  x→2 (2x  3)(x  2) x→2 2x  3 − − − −
x = 2 is not a vertical asymptote of the graph of R. Rather, the graph of R has a 
hole at the point (2, 7). 

(d) The only numbers where R is not defined are x = 3
2

from the left, the graph of R becomes 
unbounded in the negative direction, while as x approaches 

and x = 2. Using the limits  

from part (c), it follows that as x approaches 3 2 
3
2 from the right, the 

graph of R becomes unbounded in the positive direction. The graph of R has a hole 
at the point (2, 7) and approaches that point as x approaches 2 from either direction. 

70. (a) The domain of R is the set {x|x = −3} . 
(b) Because 

 1x
  2

(x 1)2 

x(x − 1)2 
− 1 
x3 

− 
x (1 

lim = lim = lim = 
3 3 3

− 0)2 
= 1

x→−∞ (x + 3) x→−∞ (x + 3) 3 3x→−∞ 
 

 
 

(1 + 0)
1 +  

x3 x 

and 

 1x
  2

(x 1)2 

x(x − 1)2 
− 1 
x3 

− 
x (1 

lim = lim = lim = 
3 3 3 

− 0)2 
= 1, 

x→∞ (x + 3) x→∞ (x + 3) x→∞ 
 

3 
 

(1 + 0)3 
1 +  

x3 x 

y = 1 is a horizontal asymptote of the graph of R . 

(c) The one-sided limits as x approaches −3 are  

x(x − 1)2 x(x − 1)2 
lim = ∞ and lim = −∞, 

x→−3− (x + 3)3 x→−3+ (x + 3)3 

so x = −3 is a vertical asymptote of the graph of R . 

�

( )

( )

( )

( )
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(d) The only number where R is not defined is x = −3. Using the limits from part (c), 
it follows that as x approaches −3 from the left, the graph of R becomes unbounded 
in the positive direction, while as x approaches −3 from the right, the graph of R 
becomes unbounded in the negative direction. 

71. (a) Factoring the denominator of R yields 

x− x 2 = x(1 − x), 

so the domain of R is the set {x|x = 0, x = 1} . 
(b) Because 

x3 − 1 1 
3 2 −x+ x − 1 −x x2 

lim = lim = lim =  
x→−∞ x− x2 x→−∞ x

∞− x2 x→−∞ 1 −	 + 1  −x2 x 

and
 
x3 − 1 1
 

x3 − 1 −x2 −x+ 
x2
 

lim = lim = lim = , →∞ x− x2 →∞ x− x2 x x x→∞ 1 −∞
−	 + 1  

x2 x −
the graph of R has no horizontal asymptotes . 

(c) The one-sided limits as x approaches 0 are 

x3  1 (x  1)(x2 + x+ 1)  
lim = lim	 =  

x→0− 

− −
x

∞− x2 x→0− x(1 − x) 

and 
x3 − 1 (x− 1)(x2 + x+ 1)  

lim = lim	 = 
2 x

−∞, 
→0+ x− x x→0+ x(1 − x) 

so x = 0 is a vertical asymptote of the graph of R . As x  approaches 1, 

x3  1 (x  1)(x2 + x+ 1)  
lim 

−
= lim 

−
x→1 x− x2 x→1 x(1 

x2

− x) 

+ x+ 1  1 + 1 + 1  
=	 − lim = − = 3; 

x→1 x 1 
−

therefore, x = 1 is not a vertical asymptote of the graph of R. Rather, the graph of 
R has a hole at the point (1,−3). 

(d) The only numbers where	 R is not defined are x = 0 a nd x  = 1. Using the limits 
from part (c), it follows that as x approaches 0 from the left, the graph of R becomes 
unbounded in the positive direction, while as x approaches 0 from the right, the graph 
of R becomes unbounded in the negative direction. The graph of R has a hole at the 
point (1,−3) and approaches that point as x approaches 1 from either direction. 

72. (a) Factoring the denominator of R yields 

x 3 − 1 = (x− 1)(x 2 + x+ 1), 

so the domain of R is the set {x|x = 1} . 

� �

�
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(b) Because 
4x5

4x5	 2
x3 4x

lim = lim = lim =  
3 x→−∞ x − 1 x  →−∞ x3 − 1 x→−∞ 1

∞
1 − 

x3 x3 

and 
4x5

4x5	 2
x3 4x

lim = lim = lim = , 
x→∞ x3 − 1 3 x→∞ x

∞− 1 x→∞ 1
1 − 

x3 x3 

the graph of R has no horizontal asymptotes . 

(c) The one-sided limits as x approaches 1 are 

4x	5	 4x5

lim = −∞ and lim = ∞, 
x→1− x3  1 x→1+ x3  1 − −

so x = 1 is a vertical asymptote of the graph of R . 

(d) The only number where R is not defined is x = 1. Using the limits from part (c), it 
follows that as x approaches 1 from the left, the graph of R becomes unbounded in 
the negative direction, while as x approaches 1 from the right, the graph of R becomes 
unbounded in the positive direction. 

Applications and Extensions 

73.	 (a) Answers will vary. The figure below displays the graph of a function f with the 
properties 

f(3) = 0, lim f(x) = 1, lim f(x) = 1, 
x→∞ x→−∞ 

lim f(x) =∞ , and lim f(x) = −∞ . 
x→1−	 x→1+ 

-6 -4 -2 2 4 6 

-6 

-4 

-2 

2 

4 

6 

x − 3 
 f(x) =  . 

x  1 
(b) Answers will vary. The function shown above is −

74.	 (a) Answers will vary. The figure below displays the graph of a function f with the 
properties 

f(2) = 0, lim f(x) = 0, lim f(x) = 0, lim f(x) =  , 
x→∞ x→−∞ x→0 

∞

lim f(x) =  −∞, and lim f(x) =∞ . 
x→5−	 x→5+ 
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-4 -2 2 4 6 8 10 

-4 

-2 

2 

4 

(b) Answers will vary. The function shown above is
x

 f(x) =  
− 2 

. 
x2(x− 5) 

75. (a) Because k < 0, 

This value is again in line with expectations because as t approaches 0 from the 
right, the temperature should approach the temperature of the object when it was 
placed into the lower temperature medium. 

76.	 (a) To remove 45% of the pollutants, p = 45, and 

70, 000(45)
C(45) = ≈ 57, 272.73. 

100 − 45 

The cost to remove 45% of the pollutants is therefore approximately $57, 272.73 . 

(b) To remove 90% of the pollutants, p = 90, and
 

70, 000(90)

C(90) = = 630, 000. 

100  90
 −

The cost to remove 90% of the pollutants is therefore
 $630, 000 . 

lim u(t) = lim [(u −T )e kt kt
0 +T ] = (u0−T ) lim e  + lim T = (u0−T )(0)+T = T . 

t→∞ t→∞	 t→∞ t→∞ 

As time increases, one would expect the object to lose heat to its surroundings until 
the temperature of the object had decreased to the temperature of the surroundings, 
so this limit value is in line with expectations . 

(b) 

lim u(t) = lim [(u0  T )e kt	 + T ] = (u  kt
0  T ) lim e + lim T 

t→0+ t→0+	 
− −

t→0+ t→0+ 

= (u − T )e k(0)0 + T = (u0 − T ) + T = u0 . 

70, 000p
lim C(p) = lim = ∞ . 

p→100− p→100− 100 − p 
(c) 

(d) As the percentage of the pollutants removed from the air increases toward 100, the 
cost of removing those pollutants increases without bound. 
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5x 
lim C(x) = lim = ∞ . 

x→100− x→100− 100 − x 
77. As the percentage of the pollutants removed from 

the lake increases toward 100, the cost of removing those pollutants increases without 
bound. 

78. (a) The projected size of the colony after 1 year (365 days) is 

50(1 + 0.5 · 365) 9175 
P (365) = = ≈ 1623.89,

2 + 0.01 · 365 5.65 

or 1624 insects . 

(b) The largest population that the protected area can sustain is 

50(1 + 0.5t) 50(1 + 0.5t) 1

lim P (t) = lim = lim · t

→∞ →∞ 2 + 0.01t →∞ 2 + 0.01t 1t t t
t 

50
(
1 + 0.5t 

)
50(0 + 0.5) 

= lim = = 2500 insects . 
t→∞ 2 + 0.01 0 + 0.01 

t 

(c) The figure below displays the graph of the population P as a function of time t. 
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(d) Within the first year, the population increases rapidly from the initial size of 25 insects 
to over 1600 insects. After that the population grows more slowly, eventually leveling 
off at 2500 insects, which is consistent with the result from part (b) . 

79. (a) If the model is correct, the environment can sustain 

 lim 500500
lim P (t) = lim = t→∞ 

t→∞ t→∞ 1 + 82.3e−0.162t lim [1 + 82.3e −0.162t]
t→∞

500 500 
= = = 500 bald eagles .

1 + 82.3 lim e −0.162t 1 + 82.3(0) 
t→∞ 

(b) The figure below displays the graph of the population P as a function of time t. 
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(c) Answers will vary.	 The number of bald eagles increases slowly for roughly the first 
ten years, after which the rate of population growth accelerates rapidly. This phase of 
growth continues until roughly year 35, after which the rate of growth slows dramati­

cally. Eventually, the number of bald eagles levels off at 500, which is consistent with 

the result from part (a) . 

80. (a) The limiting speed of the hailstone is 
  	 

lim v(t) = lim 
[mg ] mg

(1 − e −kt/m)	 =
(
1 − lim e −kt/m

) mg mg
= (1 − 0) = . 

t→∞ t→∞ k k t→∞ k k 

With m = 4.8 × 10−4 kg, g = 9.8 m/s2, and k  = 3.4 × 10−4 kg/s, the limiting speed is 

4.8 × 10−4 kg · 9.8 m/s2 ≈ 13.84 m/s . 
3.4 × 10−4 kg/s 

In miles per hour, this is
 

1 mi/h
 
13.84 m/s · ≈ 30.96 mi/h . 

0.447 m/s 

(b) The figure below displays a graph of v(t). The speed appears to approach 13.84 m/s, 

consistent with the result from part (a) . 
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81. (a) The figure below displays the graph of y = x(t). The graph suggests that 

lim x(t) = 0 . 
t→∞ 
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(b) Note that −1 ≤ cos t ≤ 1 and  −1 ≤ sin t ≤ 1 for all t. Thus,  

−1.2e− t/2 ≤ 1.2e− t/2 cos t ≤ 1.2e−
 t/2

and
 
−2.4e− t/2 ≤ 2.4e− t/2 sin t ≤ 2.4e−t/2.
 

Because lim e −t/2 = 0, 
t→∞ 

it follows that
 

lim (−1.2e −t/2) = lim (1.2e −t/2) = lim (−2.4e− t/2) = lim (2.4e −t/2) = 0, 
t→∞ t→∞ t→∞ t→∞

so the Squeeze Theorem guarantees 

lim (1.2e −t/2 cos t) = 0 and lim (2.4e −t/2 sin t) = 0. 
t→∞	 t→∞

Therefore, 

lim x(t) = lim (1.2e −t/2 cos t) + lim (2.4e −t/2 sin t) = 0 + 0 =  0  . 
t→∞ t→∞	 t→∞

(c) Answers will vary. The answer from part (b) is supported by the graph in part (a). 

82.	 (a) First determine the value of the rate constant k. With  (0) = 2.5 ppm, C(t) = 2.5ekt. C
Given that the amount of free chlorine after 24 hours is 2.2 ppm, it follows that 

2 24k 24k 2.2
.2 = 2.5e or e = ,

2.5
 

so that
 
1

 
2.2 
 

k = ln ≈ −0.005326 hours−1 . 
24 2.5
 

Thus, after 72 hours,
 
C(72) 2.5e
 −0.005326(72) ≈ 1.7,≈

so the amount of free chlorine is
 approximately 1.7 ppm . 

( )
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(b) The approximate time when the amount of free chlorine reaches 1.0 ppm is the solution 
of the equation 

1.0 = 2.5e−0.005326t,
 

which is
 
1

 
1.0 
 

t = ln ≈ 172 hours. −0.005326 2.5
 

Therefore, Ben can go
 roughly 172 hours (a little more than one week) before he 
must shock the pool again. 

(c)	 lim C(t) = lim (2.5e− 0.005326t) = 0 ppm. 
t→∞ t→∞

(d) In the long run, all of the free chlorine in the pool will decompose. 

83. (a) First determine the value of the rate constant k. With A (0) = 0.40 moles, A(t) =  
0.40ekt. Given that the amount of sucrose present after 30 minutes is 0.36 moles, it 
follows that 

0 30k 30k 0.36
.36 = 0.40e or e =	 ,

0.40
 
so that
 

1
 
0.36 

 
k = ln ≈ −0.003512 minutes−1 . 

30 0.40 

Thus, after 2 hours (120 minutes),
 

A(120) ≈ 0.40e −0.003512(120) ≈ 0.26,


so the amount of sucrose present is approximately 0.26 moles . 

(b) The approximate time when the amount of sucrose remaining will be 0.10 moles is 
the solution of the equation 

0.10 = 0.40e−0.003512t,
 

which is
 
1

 
0.10 

 
t = ln ≈ 395 minutes . −0.003512 0.40 

(c)	 lim A(t) = lim (0.40e −0.003512t) = 0 moles. 
t→∞ t→∞

(d) In the long run, all of the sucrose will decompose into glucose and fructose. 

84.	 (a) Solving the thin film equation for q yields 

1 1 1 p − f pf 
= − = or q = . 

q f p pf p − f 

Note that division by p−f is permitted here because the problem statement indicates 
that p > f , so that  p− f  will never be equal to zero. Thus, 

pf
lim	 q = lim = ∞. 

p→f+ p→f+ p − f 

Therefore, the distance q of the image from the lens is not continuous as the distance 
of the object approaches the focal length of the lens. 

(b) A	 camera cannot focus on an object placed close to its focal length because the 
distance of the image from the lens becomes unbounded. 

( )

( )

( )
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85. If c = 0,  then  

ax3 + b ax3 + b	 1 a
4	 + b 

lim = lim · x = lim x x4 0 + 0  
= = 0,  x→∞ cx4 + d x→∞ cx4 + d 1 dx

x4 
→∞ c + c + 0  

x4 

so that y = 0 would be a horizontal asymptote of the graph of f . Thus, for the graph of 
f to have no horizontal asymptotes, c must be zero. It then follows that d cannot be zero, 
otherwise the denominator of f would be zero. Now, with c = 0  and  d = 0, the function f 
reduces to a polynomial, and therefore does not have vertical asymptotes. Next, note that 
if a = 0,  then  f(x) =  b ,d so that  

b b 
lim f(x) = lim = , 
x→∞ x→∞ d d 

and y = b
d would be a horizontal asymptote of the graph of f . Thus, a  cannot be zero. 

Finally, for the graph of f to have no horizontal or vertical asymptotes, we must have 
a = 0,  c = 0,  d = 0,  and  b can be any real number . 

86. If c = 0,  then  

  ax+ b ax + b 1 a + bx x a + 0  a 
lim = lim  = lim = = , 
x→∞ cx + d →∞ cx + d 

· 1 →∞ c + d x x c + 0  c 
x x 

so that y = ac would be a horizontal asymptote of the graph of f . Thus, for the graph of 
f to have no horizontal asymptotes, c must be zero. It then follows that d cannot be zero, 
otherwise the denominator of f would be zero. Now, with c = 0  and  d = 0, the function f 
reduces to a polynomial, and therefore does not have vertical asymptotes. Next, note that 
if a = 0,  then  f(x) =  b ,d so that  

b b 
lim f(x) = lim = , 
x→∞ x→∞ d d 

and y = b
d would be a horizontal asymptote of the graph of f . Thus, a  cannot be zero. 

Finally, for the graph of f to have no horizontal or vertical asymptotes, we must have 
a = 0,  c = 0,  d = 0,  and  b can be any real number . 

87.	 (a) Let n be an even positive integer. Then, as x approaches c, (x − c)n approaches 0 

from the right and 
1 

(x − c)n 
becomes unbounded in the positive direction; that is, 

1
lim = ∞.
x→c (x − c)n	

1 
lim = ∞. 
x→0 x2 

  Answers will vary, but one example is

(b) Let	 n be an odd positive integer. Then, as x approaches c from the left, (x − c)n 

1 
 
(x − c)n 

approaches 0 from the left and becomes unbounded in the negative direction; 

1
lim = 

− 
−∞. 

x→c (x − c)n	

1 
lim = 

x→4− x − 4 
−∞. 

that is, Answers will vary, but one example is 

(c) Let n be an odd positive integer. Then, as x approaches c from the right, (x − c)n ap­

proaches 0 from the right and
1 

(x − c)n 
 becomes unbounded in the positive direction; 

that is, 
1

lim = ∞. 
x→c+ (x − c)n	

1 
lim = 

x→−2+ (x + 2)3 ∞. 

Answers will vary, but one example is 

88. Let	 R be a rational function whose numerator and denominator have no common zeros, 
and let c be a point of discontinuity of R. Then c  must be a zero of the denominator of 

�

�

� �

� �
�



 

  

 P (x) 
lim = 

�

x

∞, if am > 0
→∞ Q(x) −∞, if am < 0. 
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R. Because the numerator and denominator of R have no common zeros, c is not a zero 
of the numerator, so that, as x approaches c, the n umerator o f R  approaches a non-zero 
number, while the denominator approaches 0. It follows that the value of R must become 
unbounded as x approaches c and that the graph of R must have a vertical asymptote at 
x = c. 

89. Let p be a polynomial function of degree 1 or higher. Because all polynomial functions are 
defined for all real numbers, the graph of p will have no vertical asymptotes. Moreover, 
because p contains at least one term of the form axk where a = 0 a nd k  is an integer 
greater than or equal to 1 (as otherwise p would not be a polynomial function of degree 
1 or higher),  p(x) will become unbounded as x becomes unbounded in either direction. 
Thus, the graph of f will also have no horizontal asymptotes. 

90. Let	 P and Q be polynomial functions of degree m and n, respectively. In particular, 
suppose 

P (x) =  a m m−1
mx + am−1x + · · ·+ a0
 

and
 
Q(x) =  b n n−1

nx + bn−1x + · · ·+ b0, 

where the aj (j = 0, 1, 2, . . . ,m) and  the b k (k = 0, 1, 2, . . . , n) are real numbers with 
am = 0 and bn = 0.   

P (x) 1 
by 

Q(x) xn
(a) Suppose m > n. Multiplying the numerator and denominator of then 

yields an expression of the form 

a xm a−n m n−1 
m  + am

−  −1x + · · ·  0
+

xn
. 

bn−1 b
bn + + · · · 0

+ 
x xn

Thus, 

P (x) 1 
by 

Q(x) xn
(b) Suppose m = n. Multiplying the numerator and denominator of then 

yields an expression of the form 
am a−1 0

am + + · · ·+ 
x xn

. 
b b0

bn + n−1 
+ · · ·+ 

x xn

Thus,
 
P (x) am + 0 +  · · ·+ 0 
  am

lim =	 = . 
x→∞ Q(x) bn + 0 +  · · ·+ 0  bn 

In other words, when m = n, the limit is the ratio of the leading coefficients of the 
two polynomial functions. 

P (x) 1 
by 

Q(x) xn
(c) Suppose m < n. Multiplying the numerator and denominator of then 

yields an expression of the form 
am am−1 a0 

+ + + 
xn−m xn−m+1 

· · ·
xn

. 
bn−1 b0

bn + + · · ·+ 
x xn

Thus,
 
P (x) 0 + 0 +  · · ·+ 0 
  

lim =	 = 0 .  
x→∞ Q(x) bn + 0 +  · · ·+ 0  

�

� �



  x
1 

lim 1 +  ≈ 2.718282 . 
x→∞ x 

x 100 10,000 1,000,000 100,000,000 →∞  

f

( )x1 
(x) =  1 +  

x 
2.704814 2.718146 2.718280 2.718282 f(x) approaches 2.718282 

  x
1 

lim 1 +  = e ≈ 2.718281828 . 
x→∞ x 

  x
1 

1 +  
x 
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91. (a) The table of values below, which have been rounded to six decimal places, suggests 

(b) Using the computer algebra system Mathematica, 

(c) Answers will vary.	 One possible response is that the results from parts (a) and (b) 
agree to five decimal places. Though it is possible to achieve accuracy to as many 

decimal places as desired by calculating for larger and larger x, it i s i m­

possible to determine every digit of this limit. The number e, like the number π, has  
a nonrepeating, nonterminating decimal expansion. 

Challenge Problems 

92. We may prove the result using the standard properties of limits at infinity and the fact 

that 
1 

lim = 0. 
x→±∞ x

For any real number k and p >  0 such that xp is defined, we have the 

following: 
 

 	    
	 
 p  p

k 1 1 1 
 

lim = k lim = k lim =  k lim = k(0)p = 0. 
x→±∞ xp x→±∞ xp x→±∞ x x→±∞ x 

v	2	

c2	 
v2

 1 − 
c2 

93. (a) As v approaches c from the left, approaches 1 and approaches 0. Therefore 

 ⎛ ⎞

lim 2 1 
Kgen(v) =  mc lim  

− − 

⎝� − 1 = ⎠ ∞ . 
v→c	 v→c 1 − v

2 

c2

(b) Because	 it is not possible to have infinite kinetic energy, the result from part (a) 
suggests that it is not possible to reach the speed of light. 

  	  x
1

lim 1 +  
x→∞ x 

94. In , the exponent is the variable x. The property 
[ ]n

lim [f(x)]n = lim f(x)
x→∞ x→∞ 

requires the exponent to be a constant, independent of the variable x. 

1.6 The E-δ Definition of a Limit 

Concepts and Vocabulary 

1. False . The limit of a function as x approaches c does not depend on the value of the 
function at c. 

2. True . In t he E -δ definition of a limit, we require 0 < |x − c| to ensure that x = c. 

3. True . In an E -δ proof of a limit, the size of δ usually depends on the size of E. 

( )

( )

( )

( ) ( ( ) ) ( )

( )

�
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4. False . When proving lim f(x) = L 
x→c 

using the E-δ definition, you try to find a connection 

between |f(x) − L| and |x− c|. 

5. True . Given a ny E > 0, suppose there is a δ > 0, so that whenever 0 < |x− c| < δ, then  
|f(x) − L| < E. Then lim f(x) = L . 

x→c 

6. False . A function f has a limit L at infinity, if for any given E > 0, there is a positive 
number M so that whenever x > M , |f(x) − L| < E. 

Skill Building 

7. Here, f(x) = 2x, c = 1,  and  L = 2.  To  make  

|f(x) − L| = |2x− 2| = 2|x− 1| < 0.01 

requires 
0.01 |x− 1| < = 0.005. 
2
 

Thus, the largest δ that “works” for E = 0.01 is
 δ = 0.005 . 

8. Here, f(x) =  3x, c = 2,  and  L = −6. To make −
|f(x) − L| = | − 3x− (−6)| = | − 3x+ 6| = | − 3| |x− 2| = 3|x− 2| < 0.01 

requires 
0.01 1 |x− 2| < = . 
3 300 

1 
 E = 0.01 is δ = . 

300 
Thus, the largest δ that “works” for

9. Here f(x) = 6x− 1, c = 2,  and  L = 11. To make 

1 |f(x) − L| = |(6x− 1) − 11| = |6x− 12| = 6|x− 2| < 
2
 

requires
 
1 |x− 2| < . 
12 

1 1 
 E = is δ = . 

2 12 
Thus, the largest δ that “works” for

10. Here f(x) = 2− 3x, c = −3, and L = 11. To make 

1 |f(x) − L| = |(2 − 3x) − 11| = | − 3x− 9| = | − 3| |x+ 3| = 3|x+ 3| < 
3 

requires 
1 |x+ 3| < . 
9 

1 1 
E = is δ = . 

3 9 
Thus, the largest δ that “works” for 
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 1 
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 |   1  1
f(x) − L| = 

� −  x+ 5  − 4
�
 = 
�−  x+ 1

�
  = 
�− 

�
 |x− 2| = |x− 2 <� � � � � � | 0.01 
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      �
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1 
f(x) =  − x+ 5,  c = 2,  and  L = 4.

2 
11. Here  To  make  

    

requires
 
|x− 2| < 2(0.01) = 0.02.
 

Thus, the largest δ that “works” for E = 0.01 is
 δ = 0.02 . 

1
f(x) = 3x+ , c = 5 , and L = 3.  To  make  

2 6

 
12. Here 

requires
 

Thus, the largest δ that “works” for E = 0.3 is 
  δ = 0.1 . 

13. To make 
|(4x− 1) − 11| = |4x− 12| = 4|x− 3| < E 
  

requires
 
E|x− 3| < . 
4 
 

E
E is δ = . 

4 
 

Thus, the largest δ that “works” for an arbitrary 

0.1 
δ ≤ = 0.025 . 

4 
(a) For E = 0.1, we can choose any 

0.01 
δ ≤ = 0.0025 . 

4 
(b) For E = 0.01, we can choose any 

0.001 
δ ≤ = 0.00025 . 

4 
(c) For E = 0.001, we can choose any 

E 
δ ≤ . 

4 
(d) For arbitrary E > 0, we can choose any 

14. To make 
|(2 − 5x) − 12| = | − 5x− 10| = | − 5| |x+ 2| = 5|x+ 2| < E 
  

requires
 
E |x+ 2| < . 
5 

E 
E is δ = . 

5 
Thus, the largest δ that “works” for an arbitrary 

0.2 
δ ≤ = 0.04 . 

5 
(a) For E = 0.2, we can choose any 

0.02 
δ ≤ = 0.004 . 

5 
(b) For E = 0.02, we can choose any 

0.002 
δ ≤ = 0.0004 . 

5 
(c) For E = 0.002, we can choose any 

( )

( )



 

 

 

 

  �
 

�
 �

 x
2 

−  
− 9 

(−6) � � �
 = |(x− 3) + 6| = |x+ 3|. 

x+ 3  � �

  �
 x2 
 

�
 � − 4 − 
�
 4 = (�

 
�
 | x+ 2)−  4| = |x− 2|. 

x� − 2 �
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E 
 δ ≤ . 

5 
(d) For arbitrary E > 0, we can choose any

15. The inequality 0 < |x+ 3| guarantees that x cannot be equal to −3. Now, for x = −3, 
x2 − 9 (x+ 3)(x− 3) 

= = x− 3. 
x+ 3  x+ 3 
  

Therefore, for x = −3,
 

To make this less than E, requires |x+3| < E, so t he l argest δ that “works” for an arbitrary 
E is δ = E. 

(a) For E = 0.1, we can choose any δ ≤ 0.1 . 

(b) For E = 0.01, we can choose any δ ≤ 0.01 . 

(c) For arbitrary E > 0, we can choose any δ ≤ E . 

16. The inequality 0 < |x− 2| guarantees that x cannot be equal to 2. Now, for x = 2,  

x2 − 4 (x+ 2)(x− 2) 
= = x+ 2. 

x− 2 x− 2
 

Therefore, for x = −2,
 

To make this less than E, requires |x− 2| < E, so t he l argest δ that “works” for an arbitrary 
E is δ = E. 

(a) For E = 0.1, we can choose any δ ≤ 0.1 . 

(b) For E = 0.01, we can choose any δ ≤ 0.01 . 

(c) For arbitrary E > 0, we can choose any δ  E . ≤
17.	 Given any E > 0, we must find a number δ > 0 so that whenever 0 < |x − c| < δ, then  
|f(x) − L| < E. Here f (x) = 3x, c = 2,  and  L = 6.  To  make  

|f(x) − L| = |3x− 6| = 3|x− 2| < E  

E 
E is δ = 

3 
requires |x − 2| < E/3. Thus, the largest δ that “works” for an arbitrary . The  

E-δ proof may be written as follows:
 

Given any E > 0, we can choose δ = E/3 . Whenever 0 < |x− 2| < δ, then 
  

E
 |f(x) − L| = |3x− 6| = 3|x− 2| < 3δ = 3 ·  = E. 
3
 

Therefore, lim (3x) = 6. 

x→2

 

�

�

�
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18.	 Given any E > 0, we must find a number δ > 0 so that whenever 0 < |x − c| < δ, then  
|f(x) − L| < E. Here f (x) = 4x, c = 3,  and  L = 12. To make 

|f(x) − L| = |4x− 12| = 4|x− 3| < E  

E 
E is δ = .

4 
requires |x − 3| < E/4. Thus, the largest δ that “works” for an arbitrary The  

E-δ proof may be written as follows:
 

Given any E > 0, we can choose δ = E/4 . Whenever 0 < |x− 3| < δ, then 
  

E
 |f(x) − L| = |4x− 12| = 4|x− 3| < 4δ = 4 ·  = E. 
4
 

Therefore, lim (4x) = 12.
 
x→3

19.	 Given any E > 0, we must find a number δ > 0 so that whenever 0 < |x − c| < δ, then  
|f(x) − L| < E. Here f (x) = 2x+ 5,  c = 0,  and  L = 5.  To  make  

|f(x) − L| = |(2x+ 5)− 5| = 2|x| < E  

E 
 E is δ = . 

2 
requires |x| = |x− 0| < E/2. Thus, the largest δ that “works” for an arbitrary

The E-δ proof may be written as follows:
 

Given any E > 0, we can choose δ = E/2 . Whenever 0 < |x− 0| = |x| < δ, then 
  

E
 |f(x) − L| = |(2x+ 5)− 5| = 2|x| < 2δ = 2 ·  = E. 
2
 

Therefore, lim (2x+ 5)  =  5. 
  
x→0

20.	 Given any E > 0, we must find a number δ > 0 so that whenever 0 < |x − c| < δ, then  
|f(x) − L| < E. Here f (x) = 2− 3x, c = −1, and L = 5.  To  make  

|f(x) − L| = |(2 − 3x) − 5| = | − 3x− 3| = | − 3| |x+ 1| = 3|x+ 1| < E  

E 
E is δ = .

3 
requires |x + 1| < E/3. Thus, the largest δ that “works” for an arbitrary The  

E-δ proof may be written as follows: 

Given any E > 0, we can choose δ = E/3 . Whenever 0 < |x− (−1)| = |x+ 1| < δ, then  

E |f(x) − L| = |(2 − 3x) − 5| = | − 3x− 3| = 3|x+ 1| < 3δ = 3 ·  = E. 
3
 

Therefore, lim (2 − 3x) = 5. 
  
x→−1

21.	 Given any E > 0, we must find a number δ > 0 so that whenever 0 < |x − c| < δ, then  
|f(x) − L| < E. Here f (x) = − 5x+ 2,  c = −3, and L = 17. To make 

|f(x) − L| = |(−5x+ 2)− 17| = | − 5x− 15| = | − 5| |x+ 3| = 5|x+ 3| < E  

E
E is δ = .

5 
 

requires |x + 3| < E/5. Thus, the largest δ that “works” for an arbitrary The  

E-δ proof may be written as follows: 

Given any E > 0, we can choose δ = E/5 . Whenever 0 < |x− (−3)| = |x+ 3| < δ, then  

E |f(x) − L| = |(−5x+ 2)− 17| = | − 5x− 15| = 5|x+ 3| < 5δ = 5 ·  = E. 
5
 

Therefore, lim (−5x+ 2) = 17.
 
x→−3



 � E 
 δ = min  1, 

�

3 
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22.	 Given any E > 0, we must find a number δ > 0 so that whenever 0 < |x − c| < δ, then  
|f(x) − L| < E. Here f (x) = 2x 3, c = 2,  and  L = 1.  To  make  −

|f(x) − L| = |(2x− 3) − 1| = |2x− 4| = 2|x− 2| < E  

E 
E is δ = 

2 
.requires |x − 2| < E/2. Thus, the largest δ that “works” for an arbitrary The  

E-δ proof may be written as follows:     
 

Given any E > 0, we can choose   δ = E/2 . Whenever 0 < |x− 2| < δ, then 
  

E
 |f(x) − L| = |(2x− 3) − 1| = 2|x− 2| < 2δ = 2 ·  = E. 
2 

Therefore, lim (2x− 3) = 1. 
x→2

23.	 Given any E > 0, we must find a number δ > 0 so that whenever 0 < |x − c| < δ, then  
|f(x) − L| < E. Here f (x) =  x2 − 2x, c = 2,  and  L = 0.  Then  

|f(x) − L| = |(x 2 − 2x) − 0| = |x(x− 2)| = |x| · |x− 2|. 
The factor |x − 2| will be smaller than δ, but what about the factor |x|? If, in addition 
to any other restrictions placed on δ, we require δ ≤ 1, then |x − 2| < δ  guarantees that 
|x− 2| < 1. Removing the absolute value from this last inequality yields −1 < x− 2 < 1, 
or 1 < x < 3. Thus, |x| < 3 and  

|f(x) − L| = |x| · |x− 2| < 3|x− 2| < 3δ. 

To make this less than     E, we c an c hoose δ  ≤ E/3. Combining all of this information, the      
E-δ proof may be written as follows: 

Given any E > 0, we can choose . Whenever 0 < |x − 2| < δ, it follows 

that |x| < 3, and then  

2 E |f(x) − L| = |(x − 2x) − 0| = |x| · |x− 2| < 3|x− 2| < 3δ ≤ 3 · = E. 
3 

Therefore, lim (x 2 − 2x) = 0.  
x→2

24.	 Given any E > 0, we must find a number δ > 0 so that whenever 0 < |x − c| < δ, then  
|f(x) − L| < E. Here f (x) =  x2 + 3x, c = 0,  and  L = 0.  Then  

|f(x) − L| = |(x 2 + 3x) − 0| = |x(x+ 3)| = |x| · |x+ 3|. 
The factor |x| will be smaller than δ, but what about the factor |x+ 3|? If, in addition to 
any other restrictions placed on δ, we require δ ≤ 1, then x < δ guarantees that x < 1, 
or −1 < x < 1. Thus, 2 < x+ 3  < 4, so that 

| | | |
|x+ 3| < 4 and  

|f(x) − L| = |x| · |x+ 3| < 4|x| < 4δ. 

To make this less than E, we c an c hoose δ  ≤ E/4. Combining all of this information, the 
E-δ proof may be written as follows:      

 � E
 δ = min  1, 

�
.

4 
Given any E > 0, we can choose   Whenever 0 < |x| < δ, it follows that 

|x+ 3| < 4, and then 

2 E |f(x) − L| = |(x + 3x) − 0| = |x| · |x+ 3| < 4|x| < 4δ ≤ 4 · = E. 
4 

Therefore, lim (x 2 + 3x) = 0.  
x→0
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 1 + 2x 3 
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 7x  7 

�
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| − |
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 2x 2 
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 4x− 8 

�
 4  |x  2|f(x) − L| = 
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 − ��
 =
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=
− |

.
4 +  x 3 
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�
 3(4 + x) 3 � � � � |4 +  x| 

�
2E 
}

δ = min  1, 
7 

�
15E 
}

 δ = min  1, 
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    �
 
 2x 2 

�
 
�
 x   

�
   4 − 8  4 |x− 2

f(x)  L  = 
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�
 =
�
 

�
  =

| 4 4 4 15E | − | � − < � �
+ x)

� |x
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− 2| < δ ≤ · = E. � � � � | | 15 15 4 
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25.	 Given any E > 0, we must find a number δ > 0 so that whenever 0 < |x − c| < δ, then  
1 + 2x 3 

f (x) =  , c = 1,  and  L = . Then  
3  x	 2 

|f(x) − L| < E. Here

The factor |x− 1| will be smaller than δ, but what about the factor |3 − x|? If, in addition 
to any other restrictions placed on δ, we require δ ≤ 1, then |x − 1| < δ  guarantees that 
|x−1| < 1. Removing the absolute value from this last inequality yields −1 < x 1 < 1, or 
0 < x < 2. Thus, −2 < −x < 0 and  1 < 3 − x < 3. Because 3 − x > 1 > 0, 3 − x = |3 − x|, 

1 1
so that 1 < |3 − x| < 3. Therefore, < < 1 and  

3 3  x  |

−
 

| −
7 x  1  7 7 |f(x) − L| = 
| − |

< |x− 1| < δ. 
2 |3  x  2 2 − |

To make this less than E, we can c hoose δ ≤ 2E/7. Combining all of this information, the 
E-δ proof may be written as follows: 

Given any E > 0, we can choose . Whenever 0 < |x − 1| < δ, it follows 

1 
< 1,|3 − x| that  and then 

    �
 1 + 2x 3 

� �
 7x  7 

�
 7 x       1 7 7 7 2E |f(x) − L| = 

� −  
�
 =
� − �

= 
| − |

< x  1�
3  x 2 

� �
 

�
 2(3  x) 2 3  x  2 

| − | < δ ≤ · = E. � − � � − � | − | 2 2 7 

1 + 2x 3 
lim = . 
x→1 3 − x 2 

Therefore, 

26.	 Given any E > 0, we must find a number δ > 0 so that whenever 0 < x  c  < δ, then  
2x 2 

| − |
|f(x) − L| < E. Here f (x) = 	  , c = 2,  and  L = . Then  

4 +  x	 3 

The factor |x− 2| will be smaller than δ, but what about the factor |4+  x|? If, in addition 
to any other restrictions placed on δ, we require δ ≤ 1, then |x − 2| < δ  guarantees that 
|x− 2| < 1. Removing the absolutely value from this last inequality yields 1 < x  2 < 1, 
or 1 < x <  3. Thus, 5 < 4 +  x < 7.  Because 4 + x >  5 > 0, 4 + x = 

−
4 +

−
|  x|, so t hat  

1 1 1 
5 < |4 +  x| < 7. Therefore, < < and 

7 4 +  x  | 5 |
4 |x− 2| 4 4 |f(x) − L| = < |x− 2| < δ. 
3 |4 +  x| 15 15 

To make this less than E, we can c hoose δ ≤ 15E/4. Combining all of this information, the 
E-δ proof may be written as follows: 

Given any E > 0, we can choose . Whenever 0 < |x− 2| < δ, it follows 

1 1 
that < , and then

4 +  x  | 5 
  |

2x 2 
Therefore, lim = . 

x→2 4 +  x 3 



. 

1.6 The E-δ Definition of a Limit 1-111 

√
3 

27.	 Given any E > 0, we must find a number δ > 0 so that whenever 0 < |x − c| < δ,
|f(x) − L| < E. Here f (x) = x, c = 0,  and  L = 0.  To  make  

then  

 
f

√ | (x) − L| = | 3 x− 0| = 
J
3 |x| < E  

requires x = |x − 0| < E3	. | | Thus, the largest δ that “works” for an arbitrary E is δ = E3. 
The E-δ proof may be written as follows: 

Given any E > 0, we can choose δ = E3 Whenever 0 < |x− 0| = |x| < δ, then 
  

 
)

√ 
 
|f(x  − L| = | 3 x δ

√
− 0| = 

J
x < 

√
| | 3 33 = E3 = E.

√
3

 
Therefore, lim x = 0.  

x→0 

28.	 Given any E > 0, we must find a number  δ > 0 so that whenever 0 < x c  < δ, then  
|f(x) − L| < E. Here f (x) =  2 − x, c = 1,  and  L = 1.  Then 
  

| − |√

 
√
 √ | 2 − x+ 1

f(x) L =  2 x 1   
|
=
|(2 − x) − 1| |1 − x| |x

 
− 1|| − | | − − | · √

 2 x+ 1
√ = √ = √ . 
 2 x+ 1  2 x+ 1  2 x+ 1| − | | − | | − | | − |

√ 
The factor |x− 1| will be smaller than δ, but what about the factor | 2 − x+1|. Because √ √ 
2 − x ≥ 0, 2 − x+ 1  ≥ 1. Thus, 

1	 1 
0 < √ ≤ 1 so th at  

2 x+ 1   
√ 1, − | 2 − x+ 1| ≤

and
 

f
|x− 1|
| (x) − L| = 

 
√ ≤ |x− 1|. | 2 − x+ 1| 

To make this less than E requires |x− 1| < E. Therefore, the largest δ that “works” for an 
arbitrary E is δ = E. Combining all of this information, the E-δ proof may be written as 
follows: 

Given any  E > 0, we can choose δ = E . Whenever 0 < |x− 1| < δ, then  

√ 

f
√ | 2 − x+ 1| |(2 − x) − 1|| (x) − L| = | 2 − x− 1| ·  √ =  | 2 − x+ 1

√| | 2 − x+ 1|
1 x x 1

=  
| − | | − |√ =  x 1 < δ = E. | 2 − x+ 1| | √2 

≤ | − |− x+ 1|

Therefore, 
√ 

lim 2 − x = 1.  
x→1 

29.	 Given any E > 0, we must find a number δ > 0 so that whenever 0 < |x − c| < δ, then  
|f(x) − L| < E. Here f (x) =  x2, c = −1, and L = 1.  Then  

|f(x) − L| = |x 2 − 1| = |(x− 1)(x+ 1)| = |x− 1| · |x+ 1|. 
The factor |x+1| will be smaller than δ, but what about the factor |x− 1|? If, in addition 
to any other restrictions placed on δ, we require δ ≤ 1, then |x + 1| < δ  guarantees that 
|x+ 1| < 1. Removing the absolute value from this last inequality yields 1 < x+ 1  < 1, 
or −2 < x < 0. Thus, −3 < x

−
− 1 < −1, so that |x− 1| < 3 and  

|f(x) − L| = |x− 1| · |x+ 1| < 3|x+ 1| < 3δ. 

To make this less than E, we c an c hoose δ  ≤ E/3. Combining all of this information, the 
E-δ proof may be written as follows: 



  

  

  �
 1 1 

�
 |3 − x| |x− 3||f |  (x) − L = 

��
 x 
− 

�
 �
 = = . 

3 3� � |x| 3|x| 

�
 1 1 

�
 3   | − x| |x− 3| |x− 3| δ 6E |f(x) − L| = 

�
      �

 x
− �

 = = < < ≤ = E.
 3

�
3� � |x| 3|x|	 6 6 6 

1 1 
Therefore, lim = . 

x→3 x 3 
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Given any E >

� E
0, we can choose δ = min  1, 

�
.

3
 
 Whenever 0 < |x + 1| < δ, it follows 

that |x− 1| < 3, and then
 

2 E
 |f(x) − L| = |x − 1| = |x− 1| · |x+ 1| < 3|x+ 1| < 3δ ≤ 3 · = E. 
3 

Therefore, lim x 2 = 1.  
x→−1 

30. Given any E > 0, we must find a number δ > 0 so that whenever 0 < |x − c| < δ, then  
|f(x) − L| < E. Here f (x) = x 3, c = 2,  and  L = 8.  Then  

|f(x) − L| = |x 3 − 8| = |(x− 2)(x 2 + 2x+ 4)| = |x 2 + 2x+ 4| · |x− 2|. 
The factor |x − 2| will be smaller than δ, but what about the factor |x2 + 2x + 4|? If,  
in addition to any other restrictions placed on δ, we require δ ≤ 1, then |x − 2| < δ  
guarantees that  |x − 2| < 1. Removing the absolute value from this last inequality yields 
−1 < x− 2 < 1, or 1 < x < 3. Thus, |x| < 3, so that |x2 + 2x+ 4| ≤ |x|2 + 2|x|+ 4  < 19 
and
 

|f(x) − L| = |x 2 + 2x+ 4| · |x− 2| < 19|x− 2| < 19δ.
 

To make this less than E, we can c hoose δ ≤ E/19. Combining all of this information, the 
E-δ proof may be written as follows: 

 � E
δ = min  1, 

�
.

19
 
Given any E > 0, we can choose  Whenever 0 < |x − 2| < δ, it follows 

that
 
|x2 + 2x+ 4 < 19, and then
 |

|f(x) − L| = |x 3 − 8| = |(x− 2)(x 2 + 2x+ 4)| = 
E 

|x 2 + 2x+ 4| · |x− 2|
< 19|x− 2| < 19δ ≤ 19 · = E. 

19 

Therefore, lim x 3 = 8.  
x→2 

31.	 Given any E > 0, we must find a number δ > 0 so that whenever 0 < |x − c| < δ
 

, then  
1 1|f(x) − L| < E. Here f (x) =  , c = 3,  and  L = . Then  
x	 3 

The factor |x − 3| will be smaller than δ, but what about the factor |x|? If, in addition 
to any other restrictions placed on δ, we require δ ≤ 1, then |x − 3| < δ  guarantees that 
|x− 3| < 1. Removing the absolute value from this last inequality yields −1 < x− 3 < 1, 

1 1 1 
or 2 < x < 4. Because x > 2 > 0, x = |x| so that 2 < |x− 2| < 4. Therefore, < < ,

4 |x| 2 
and 

f(x) L = 
|x− 3| |x− 2| δ | − | < < . 
3|x| 6 6 

To make this less than E, we can c hoose δ ≤ 6E. Combining all of this information, the E-δ 
proof may be written as follows: 

Given any E > 0, we can choose δ = min { 1, 6E} . Whenever 0 < |x − 3| < δ, it follows 

that
1 1 

 < , and then |x| 2 
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32.	 Given any E > 0, we must find a number δ > 0 so that whenever 0 < |x − c| < δ, then  
1 1 |f(x) − L| < E. Here f (x) =  , c = 2,  and  L = . Then  
x	2 4 

If, in addition to any other restrictions placed on δ, we require δ ≤ 1, then |x − 2| < δ  
guarantees that |x − 2| < 1. Removing the absolute value from this last inequality yields 

1−1 < x− 2 < 1, or 1 < x < 3. Thus, < 1 and  3 < x + 2  < 5, so that |x+ 2| < 5 and  
x2

 

The factor |x − 2| will be smaller than δ, but what about the factors |x + 2| and x2? 

f(x) L = 
|x− 2| · |x+ 2| 5 5 | − | < |x− 2| < δ.

4x2 4 4 

To make this less than E, we c an c hoose δ ≤ 4E/5. Combining all of this information, the 
E-δ proof may be written as follows: 

Given any E > 0, we can choose  Whenever 0 < |x − 2| < δ, it follows 

that
1
 

 < 1 and | x+ 2| < 5. Then 
x2

1 1 
Therefore, lim = .

2x→2 x 4 

33. Negating the E-δ definition of a limit yields the statement: lim f(x) = L
x→c 

provided there is 

an E > 0 such that for any δ > 0, there is an x satisfying 0 < |x− c| < δ but f(x) −L| ≥ E. |
To establish that lim (3x−1) = 12, let E = 1  and  δ > 0. 

x→3
From the set of x values satisfying 

0 < |x− 3| < δ select any x for which −δ < x− 3 < 0, or 3 − δ < x < 3. Then 

−4 − 3δ < (3x− 1) − 12 < −4 or  |(3x− 1) − 12| > 4 > 1 =  E. 

Therefore, lim (3x− 1) = 12. 
x→3

34. Negating the E-δ definition of a limit yields the statement: lim f(x) = L
x→c 

provided there is 

an E > 0 such that for any δ > 0, there is an x satisfying 0 < |x− c| < δ but |f(x) −L| ≥ E. 
To establish that lim (4x) = −7, let E = 1 and δ > 0.2x→−2

 From the set of x values satisfying 

0 < |x+ 2| < δ select any x for which −δ < x+ 2  < 0, or −2 − δ < x < −2. Then 

1 −1 − 4δ < 4x+ 7  < −1 or  |4x+ 7| > 1 > = E. 
2 

Therefore, lim (4x) = −7. 
x→−2

Applications and Extensions 

35. Note that 

�

�

�

�

�

�
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If 2 < x < 4, then
 
2 1 1
 

13 < x + 9  < 25 so that < 
x2 + 9  13 

and
 
5 < x+ 3  < 7 so th at  |x+ 3| < 7;
 

therefore, 

To make this less than E, we can c hoose δ ≤ 234E/7. It is important to note that another 
restriction on δ is implicit in the analysis that has just been performed. If 2 < x < 4, then 
−1 < x− 3 < 1, and |x− 3| < 1. Thus, δ must also be less than or equal to 1. Combining 
all of this information, the E-δ proof may be written as follows: 

Given any E > 0, we can choose . Whenever 0 < |x−3| < δ, it follows 

that 
1 1
 

< and |x+ 3| < 7. Then 
x2 + 9  13 

1 1 
Therefore, lim = . 

x→3 x2 + 9  18 

36. Note that 
|(2 + x)2 − 4| = |4 + 4x+ x 2 − 4| = |x(4 + x)| = |x| · |x+ 4|. 

If −1 < x < 1, then 3 < x+ 4  < 5 and | x+ 4| < 5. Thus, 

|(2 + x)2 − 4| = |x| · |x+ 4| < 5|x| < 5δ. 

To make this less than E, we c an c hoose δ  ≤ E/5. It is important to note that another 
restriction on δ is implicit in the analysis that has just been performed. If −1 < x < 1, 
then |x| < 1. Thus, δ must also be less than or equal to 1. Combining all of this information, 
the E-δ proof may be written as follows: 

Given any E > 0, we can choose 0 < |x| < δ, it follows that 

|x+ 4| < 5, and then
 

2 E |(2 + x) − 4| = |4 + 4x+ x 2 − 4| = |x(4 + x)| = |x| · |x+ 4| < 5|x| < 5δ ≤ 5 · = E. 
5 

Therefore, lim (2 + x)2 = 4.  
x→0

37. Note that 
   

If 1 < x < 3, then
 
2 1 1
 

10 < x + 9  < 18 so that < 
x2 + 9  10 

and
 
3 < x+ 2  < 5 so th at  |x+ 2| < 5.
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3 13 
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Thus, 

To make this less than E, we c an c hoose δ  ≤ 26E. It is important to note that another 
restriction on δ is implicit in the analysis that has just been performed. If 1 < x < 3, then 
−1 < x− 2 < 1 and |x− 2| < 1.    Thus, δ must also be less than or equal to 1. Combining 
all of this information, the E-δ proof may be written as follows: 

Given any E > 0, we can choose δ = min { 1, 26E} . Whenever 0 < |x − 2| < δ, it follows 
that 

1 1 
< and |x+ 2| < 5. Then 

x2 + 9  10 

1 1 
Therefore, lim = . 

x→2 x2 + 9  13 

38. Negating the E-δ definition of a limit yields the statement: lim f(x) = L
x→c 

provided there is 

an E > 0 such that for any δ > 0, there is an x satisfying 0 < |x− c| < δ but |f(x) −L| ≥ E. 
To establish that lim x 2 = 1.31, let E = 0.1 and  δ > 0. If δ < 1,

x→1 
 from the set of x values 

satisfying 0 < |x − 1| < δ  select any x for which −δ < x − 1 < 0, or 1 − δ < x < 1, and 
note that 1 − δ > 0. On the other hand, if δ ≥ 1, then from the set of x values satisfying 
0 < |x− 1| < δ select any x for which −1 < x− 1 < 0, or 0 < x < 1. Then, for any   δ > 0, 

x2 < 1 so th at  |x 2 − 1.31| > 0.31 > 0.1 =  E. 

Therefore, lim x 2 = 1.31. 
x→1 

E 
δ = .

1 +  |m|39.
 Given any E > 0, we can choose  The absolute value of m appears in the for­

mula for δ to insure that δ will be positive. Moreover, 1 has been added to the denominator 
to allow for the possibility that m could be zero. Whenever 0 < |x− c| < δ, then  

(
|m

mx
||( + b) − mc+ b)| = |m| |x− c| < |m| · δ = E < E.  

1 +  m  | |
Therefore, lim (mx+ b) = mc + b. 

x→c 

40. Recall that 
|x 2 − 4| = |(x− 2)(x+ 2)| = |x− 2| · |x+ 2|. 

1 5 7 
If |x− 2| < , then  < x <  ,

3 3 3 
so that  

11 13 13 
< x+ 2  < and |x+ 2| < . 

3 3 3 

Thus,
 
2 13 13
 |x − 4| = |x− 2| · |x+ 2| < |x− 2| < δ. 

3 3 
3E 

δ ≤ . Combining the two restrictions placed on δ 
13 

To make this less than E, we c an c hoose

yields 
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1 
 

 lim 
x→∞ 

− √ = 0.  
x 

1-116 

41. For x = 3, to guarantee that (2x  1)  5  < 0.1 requires | − − |
|2x− 6| = 2|x− 3| < 0.1 or  |x− 3| < 0.05. 

Thus, x must be within 0.05 of 3 to guarantee that 2x− 1 differs from 5 by l ess  than  0.1. 

42. For x = 0, to guarantee that |3x − 1| < 0.1 requires 

−0.1 < 3x − 1 < 0.1 or 0.9 < 3x < 1.1. 

This last compound inequality yields
 

ln 0.9 ln 1.1
 −0.0959 ≈ < x <  ≈ 0.0868. 
ln 3 ln 3
 

Thus,
 x must be within approximately 0.087 of 0 to guarantee that 3x differs from 1 by 
less than 0.1.   

43. Suppose lim f(x) = L where L < 0, and let E = 
|L|

> 0. Then there is a δ > 0 
x→c 2
 

such that, 

whenever 0 < |x− c| < δ,
 

f(x)  L  < 
|L| |L| |L|| − | or − < f(x) − L <  . 
2 2 2
 

Because L < 0, L  = −L, so the last compound inequality becomes
 | |
L L 3L L
 

< f(x) − L < − or < f(x) < < 0. 
2 2 2 2
 

Thus, everywhere in the open interval |x− c| < δ, except possibly at c, f(x) < 0.
 

1
 
Given any E > 0, we can choose N = − . Whenever x < N , then  

E 

  �
   1

�
 �
 1 1 

   − 0
�

   � �
 = − < − = E.

x x N � �

1 
Therefore, lim = 0.  

x→−∞ x 

44. 

1 
 M = . Whenever x > M

E2 
45. Given any E > 0, we can choose , then  

Therefore,

46. To make 

requires 

�
 1 

�
   �

 1 1− √ − 0 
�
 = �

 
�
 √ < 

x x 
√ = E. 

 � � M

  

  �
 �
 1 

�
 1 �

 x2 
− 0 
�
 �
 = < 0.1 

x2 � �

| |
 

x 2 > 10 or x  > 
√
10. 

As this limit is for x approaching −∞, take  
√ 

N = − 10 . 

�

�

( )



1.6 The E-δ Definition of a Limit 

      �
 1 

� �
 2  2 L  

� � �
 � −   L =  

�
 
�
  

�
 

�
 = +� � �

 − −   L  �
  L

�
    � �
 > L > = E,

x δ δ 2 � � � � � �

    �
 1 

� �
 2 

�
 L �

 − 
�
   

�
 −  L = + ( L)

�
 > −L > − = E, �

 
�
 
�
 

�
 x δ	 2 � � � �

    �
 1 

� �
 1 
�
 �

         �
 − L

�
�
 =
� �
�
  > 1 = E.

x x 
�� � � �
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47. First, consider L > 0. Take E = L/2, let δ > 0, and choose x = −δ/2. Then 0 < |x− 0| = 
|x| < δ but 

1 
 lim 
x 0 x 

where the inequality L > L/2 follows because L > 0.  Therefore, cannot equal 

L. Next, consider
→

 L < 0.  Take E = −L/2, let δ > 0,  and choose x = δ/2. Then 
0 < |x− 0| = |x| < δ but 

1 
 lim 
x→0 x 

where the inequality −L > −L/2 follows because −L > 0. Therefore, cannot equal 

L. Finally, consider L = 0.  Take E  = 1,  let δ > 0,  and choose |x| < min{1, δ}. Then  
0 < |x− 0| = |x| < δ but 

1	
 lim 
x→0 x	

1 
 lim = L. 
x→0 x 

Therefore, cannot equal 0. In summary, there is no number L such that
 

48. The strict inequality on the left (0 < |x− c|) is to remove the  function  value at x = c from 
consideration; the strict inequality on the right (|x− c| < δ) is to create an  open interval 
containing x = c.   

49. A limit is supposed to capture the behavior of the value of a function as the value of the 
independent variable approaches a target value. We do not want the limit to depend on the 
value of the function at that location or even to depend on whether the function is defined 
at that location. Including the phrase except possibly at c imposes these restrictions. 

50. In the	 E-δ definition of a limit, E measures the “closeness” of the function value f(x) to  
the value of the limit L, while δ measures the “closeness” of the value of the independent 
variable x to the target value c. For example, notice the placement of            E and δ in the proof 
that lim (2x− 1) = 5: 

x→3

Given any E > 0, take δ = E/2. Then, whenever 0 < x  3  < δ, | − |
E |(2x− 1) − 5| = |2x− 6| = 2|x− 3| < 2 · δ = 2 ·  = E. 
2 

Therefore, lim (2x− 1) = 5. 
x→3

51. First consider lim f(x). Any open interval containing 0 will contain both rational numbers 

and irrational numbers. As the rational numbers approach 0, the function value x2 will 
approach 0; as the irrational numbers approach 0, the function value will also approach 
0. This suggests that 

x→0 

lim f(x) = 0  . This argument can be made precise using
x→0 

 
√ 

δ = E 

within the E-δ definition.
 
Next, consider lim f(x). Any open interval containing 1 will contain both rational numbers


and irrational numbers. As the rational numbers approach 1, the function value x2 will 
approach 1; as the irrational numbers approach 1, however, the function value will approach

0. This suggests that

x→1 
 

              
 lim f(x)

x→1 
does not  exist  . This argument can be made precise as 

follows: Suppose the limit does exist and is equal to L. Take E = 1/4. There would then 
be a δ such that whenever 0 < |x − 1| < δ, the function value would be within 1/4 of 
L. Considering the rational and irrational values of x separately would require that L be
simultaneously within 1/4

             
 of 1 and 0, which is impossible. 
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52. Any open interval containing 0 will contain both rational numbers and irrational numbers. 
As the rational numbers approach 0, the function value x2 will approach 0; as the irrational 
numbers approach 0, the function value tan x will also approach 0. This suggests that 
lim f(x) = 0 . 
x→0 

Challenge Problems 

53. Note that 

|f(x) −L| = |4x 3 +3x 2 − 24x+22  − 5| = |4x 3 +3x 2 − 24x+17| = |4x 2 +7x− 17| · |x− 1|. 
The factor |x− 1| will be smaller than δ, but what about the factor |4x2 + 7x− 17|? If, in 
addition to any other restrictions placed on δ, we require δ ≤ 1, then |x−1| < δ guarantees 
that |x−1| < 1, or 0 < x < 2. Thus, |x| < 2 so that  |4x2+7x−17| ≤ 4|x|2+7|x|+17  < 47 
and
 

|f(x) − L| = |4x 2 + 7x− 17| · |x− 1| < 47|x− 1| < 47δ.
 

To make this less than E, we can c hoose δ ≤ E/47. Combining all of this information, the 
E-δ proof may be written as follows: 

 
Given any E > 0, we can choose 

� E
δ = min  1, 

�
. Whenever 0 < |x − 1| < δ, it follows 

that
 
47
 

|4x2 + 7x− 17 < 19, and then
 |
|f(x) − L| = |4x 3 + 3x 2 − 24x+ 22− 5| = |4x 3 + 3x 2 − 24x+ 17

E 
|

= |4x 2 + 7x− 17| · |x− 1| < 47|x− 1| < 47δ ≤ 47 · = E. 
47 

Therefore, lim (4x 3 + 3x 2 − 24x+ 22) = 5. 
x 1→

54. Suppose lim f(x) = L  and lim g(x) =  M
x→c x→c 

. Given a ny E > 0, there then exists a δ1 > 0 

such that 
E |f(x) − L| < whenever 0 < |x− c| < δ1,
2
 

and a δ2 > 0 such that
 

E |g(x) −M | < whenever 0 < |x− c| < δ2. 
2 

Choose δ = min{δ1, δ2}. Whenever 0 < |x− c| < δ, then  

|(f(x) + g (x)) − (L+ M)| = |(f(x) − L) + (g(x) −M)| 
E E ≤ |f(x) − L|+ |g(x) −M | < + = E. 
2 2 

Therefore, lim [f(x) + g (x)] = L+ M . 
x→c 

55. First note that  J √ 1 1
5 + 4x2 > 4x2 so that √ < √ 

5 + 4x2 4x2

for all x. For x > 2, 2 − x < 0 so that upon multiplying the latter inequality above by the 
negative expression  2 − x, 

2 − x 2 − x 2 − x 1 1 1 √ > 
5 + 4x2 

√ = = − > − . 
4x2 2x x 2 2 

Thus, to be within  E = 0.01 of L = −1/2, we need 

2 − x x− 2 √ < −0.49 or √ > 0.49. 
5 + 4x2 5 + 4x2
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Squaring both sides of this last inequality and gathering terms yields 

0.0396x2  − 4x+ 2.7995 > 0.
 

The roots of the quadratic function are
 
 

4 ± 
J
16 − 4(0.0396)(2.7995) 

x =	 ≈ 100.3, 0.7,
2(0.0396)
 

so
 
2 − x √ < −0.49 
5 + 4x2

for approximately x < 0.7 and x > 100.3. In the E-δ definition of a limit at infinity, we can 
therefore take M = 101 . 

56. To prove that the linear function f(x) = ax + b is continuous everywhere, it must be shown 
that lim f(x) = ac + b 

x→c 
for any real number c. Now, g iven an y E > 0, we can choose 

E 
δ = . The absolute value of a appears in the formula for δ

1 +  |a| to ensure that δ will be 

positive. Moreover, 1 has been added to the denominator to allow for the possibility that 
a could be zero. Whenever 0 < |x− c| < δ, then  

a|(ax+ b) − (ac+ b)| = |a x
| || | − c| < |a| · δ = E < E.  

1 +  |a| 
Therefore, lim f(x) =  ac+b,

x→c 
 and the linear function f(x) = ax +b is continuous everywhere. 

57. Start by proving continuity at	 x = 0. Because 0 is a rational number, f(0) = 0. Now, 
given any E > 0, choose δ = E. Whenever 0 < |x− c| < δ, then  

|f(x) − 0| = |f(x)| = |x| < δ = E 

for every rational number x and 

|f(x) − 0| = |f(x)| = 0 < δ = E 

for every irrational number x. Therefore, lim f(x) = 0 =  f(0) and f is continuous at 

x = 0.  
x→0 

Now, let c be any non-zero real number. We will proceed with a proof by contradiction. 
Toward this end, suppose that f is continuous at x = c. Then the limit as x approaches 
c must exist and be equal to f(c). Based on the definition of f ,      lim f(x)

x→c 
 must therefore  

be equal to either 0 (if c is a rational number) or c (if c is an irrational number). We will 
now show that neither of these are the limit. Take E = |c|/2, and choose δ > 0. For any 
irrational number x such that 0 < |x− c| < δ, 

f
|c|| (x) − 0| = |f(x)| = |c| > = E,
2 

so lim f(x) = 0. Moreover, for every rational number x such that
x→c 

 0 < |x− c| < δ, 

f
|c|| (x) − c| = |c| > = E,
2
 

so lim f(x) = c. Thus,
x→c	

 lim f(x) does not exist, and f is not continuous at x = c.
 
x→c 

�

�
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x −0.1 −0.01 −0.001 → 0 ← 0.001 0.01 0.1 

f (x) =  
1− cos x 

1 + cos x 
0.002504 0.000025 0.00000025 f (x) approaches 0 0.00000025 0.000025 0.002504 
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58. Let f(x) = x 3. Then  

|f(x) − f(c)| = |x 3 − c 3| = |(x − c)(x2 + cx + c2 )| = |x − c| · |x 2 + cx + c 2|. 
With both x and c in the open interval (0, 2), |x| < 2 and  c| < 2. Therefore |

|x 2 + cx + c 2| ≤ |x|2 + |c| |x|+ |c|2 < 22 + 22 + 22 = 12, 

and 
|f(x) − f(c)| = |x − c| · |x 2 + cx + c 2| < 12|x − c|. 

Thus, K = 12  is a Lipschitz constant for f(x) = x 3 on (0, 2). 

Chapter 1 Review Exercises 

1. The values in the table below, which have been rounded for display purposes, suggest that 

the value of 
1 − cos x 

f(x) =  
1 + cosx 
 

can be made “as close as we please” to 0 by choosing x 

“sufficiently close” to 0. It therefore appears that
 

1 
lim 

− cos x 
= 0  . 

x→0 1 + cosx  

2. The figure below displays a graph of f . Using the graph, 

lim f(x) = − 3 and lim f(x) = − 3. 
x→1− x→1+ 

Because the two one-sided limits as x approaches 1 are equal, lim f(x) exists. Moreover, 

because the two one-sided limits are equal to
x→1 

 −3, lim f(x) = − 3 . 
x→1 

-2 -1 1 2 

-7 

-6 

-5 

-4 

-3 

-2 

-1 

1 

3. The figure below displays a graph of f . Using the graph, 

lim f(x) = 6 and lim f(x) = 5. 
x→2− x→2+ 

Because the two one-sided limits as x approaches 2 are not equal, lim f(x)
x→2 

does not  exist  . 
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1
 

1 7 
lim 2x − = 2(2)
x

−  = . 
→2 x 2 2 
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1 2 3 4 

1 

2 

3 

4 

5 

6 

7 

4. The statement can be written as lim f(x) = 5. 
x→3 

3 
 f(x) =  

x 
5. Let . Then  

 3 − 3
f(x+ h) − f(x) x+h x x(x + h) 3x − 3(x + h) −3h

lim = lim · = lim = lim 
h→0 h h→0 h x(x + h) h 0 hx(x + h)  → h→0 hx(x+ h) 

1 1 3 
= −3 lim = −3 · = − . 

x2h→0 x(x + h) x2 

6. Let f(x) = 3x2 + 2x. Then  

f(x + h) f(x) 3(x + h)2 + 2(x + h) (3x2 + 2x)
lim 

−
= lim 

−
h→0 h h→0 h 

3x2 + 6xh + 3h2 + 2x + 2h − 3x2 − 2x 
= lim 

h→0 h 
6xh + 3h2 + 2h 

= lim = lim (6x + 3h + 2)  =  6x + 2  . 
h→0 h h→0 

 ( π π
 − , 

)

2 2 
7. Because 1 + sin x ≤ f(x) ≤ |x|+ 1 for all x in the open interval containing 0 and 

lim(1 + sin x) = 1 + sin 0 = 1 and lim( x + 1)  =  0 + 1 = 1, 
x→0 x→0

| | | |

it follows from the Squeeze Theorem that 

lim f(x) =  1  . 
x→0 

 
8.

9. lim (x cos x) = π  cos π = −π . 
x→π

10. lim (x 3 + 3x 2 − x − 1) = (−1)3 + 3(−1)2 − (−1) − 1 =  2 . 
x→−1

 
11. lim 

J
3 x(x + 2)3 = 

J
3 0(2)3 = 0 . 

x→0 

( )
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x2
 3x

 
x2 − 3x x(x − 3)

 lim − = lim = lim = lim x = 3 . 
x→3 x  3 x  3 x→3 x  3 x→3 x  3 x→3
 

 
 
 15  15 

2 1 2 1 
 

 lim x − 3x + = 1
x→1 x 

− 3(1) + = (−1)15 = 1 . 
1 

−

  �
1
 

1 1 
 }  

1 x(x + 4)  
 

lim − = − lim  
x→0 x (2 + x)2 4 x→0 x 

·
4(2 + x)2 

x + 4  0 + 4  1 
= − lim = − = − . 

x→0 4(2 + x)2 4(2 + 0)2 4 
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12. lim [(2x + 3)(x 5 + 5x)] = (0 + 3)(05 + 0)  =  0 . 
x→0

x3 − 27 (x − 3)(x2 + 3x + 9)  
 lim = lim = lim(x 2 + 3x + 9)  =  32 + 3(3) + 9  =  27  . 
x→3 x − 3 x→3 x − 3 x→3


13.

14. − − − −
x2 − 4 (x − 2)(x + 2) 
  

 lim = lim = lim(x + 2)  =  2 + 2  =  4 . 
x→2 x − 2 x→2 x − 2 x→2

15.

x + 3x+ 2 (x+ 1)(x+ 2) x+ 2 −1 + 2  1 
 lim = lim = lim = = . 

2 x→−1 x + 4x + 3  x→−1 (x + 1)(x + 3)  x→−1 x + 3  1 + 3  2 

2        
16. −

x3 + 5x2 + 6x x(x + 2)(x + 3)  x(x + 3)  −2(−2 + 3)  2 
 lim = lim = lim = = . 
x→−2 x2 + x − 2 x→−2 (x + 2)(x − 1) x→−2 x − 1 −2 − 1 3 

17.

18.

19. 

3
√ 

 
√  

 − x2 + 5  3 x2 + 5  3 +
√
 x2 + 5  9  (x2 + 5)  

lim = lim 
−

 = lim  
2 x2 x→ − 4 x→2 x2 

· √− 4 3 +  x2 + 5  x→2 (x2 

− √− 4)(3 + x2 + 5)  

4 − x2 1 
= lim  =  lim  

x→2 (x2 4)(3
√ −

x→
√−  + x2 + 5)  2 3 +  x2 + 5  

1 1 
= − √ =  . 

3 +  22 + 5  
−
6

20. Note that 

1 1 4  (2 + x)2 4  4  4x  x2 x(x + 4)  − =
2 

−
= 
− − −

=  . 
(2 + x) 4 4(2 + x)2 4(2 + x)2 

−
4(2 + x)2


Therefore,
 

21. 

(x + 3)2 − 9 x2 + 6x + 9
lim = lim 

−  9 
x→0 x x→0 x
 

x2 + 6x x(x + 6) 
  
= lim = lim = lim(x + 6)  =  0 + 6  =  6  . 

x→0 x x→0 x x→0

22. lim [(x 3 − 3x 2 + 3x − 1)(x + 1)2] = (13 − 3(1)2 + 3(1)  − 1)(1 + 1)2 = 0(4) =  0 . 
x→1


x2 + 5x + 6  (x + 2)(x + 3) 
  
 lim = lim = lim (x + 3)  =  −2 + 3 =  1 . 
x→−2+ x + 2  x→−2+ x + 2  x→−2+ 

23.

( )

[ [ ]

( ) ( )
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24. As x approaches 5 from the right, x − 5 > 0, so that 

lim
|x − 5| x − 5 

 = lim = lim 1 =  1  . 
x→5+ x − 5 x 5+ x − → 5 x→5+ 

25. As x approaches 1 from the left, x − 1 < 0, so that 

 
|x 

lim
− 1| −(x − 1)

= lim = lim −1 =  −1 . 
x→1− x − 1 x 1− x − → 1 x→1− 

26. As x approaches 3/2 from the right, 2x approaches 3 from the right, so that 

lim l2xJ = 3 .  
x→3/2+ 

x2 − 16 (x − 4)(x + 4)  
 lim = lim = lim (x + 4)  =  4 + 4  =  8 . 
x→4− x  4 x→4− x  4 x→4−

27. − −
28. As x approaches 1 from the right, x − 1 > 0, so that 

lim
√ √ 

 x − 1 =  1 − 1 =  0  . 
x→1+ 

29. Because 
lim f(x) = lim (2x + 3) = 2(2) + 3 = 7 

x→2− x→2−

and
 
lim f(x) = lim (9 − x) = 9−  2 = 
  7  

x→2+ x→2+ 

are equal, lim f(x) exists. Moreover, because both one-sided limits are equal to 7, 
x→2 

lim f(x) = 7 . 
x→2 

30. Because 
lim f(x) = lim (3x + 1) = 3(3) + 1 = 10 

x→3− x→3− 

and 
lim f(x) = lim (4x − 2) = 4(3) − 2 =  10  

x→3+ x→3+ 

are equal,  lim f(x) exists. Moreover, because both one-sided limits are equal to 10, 
x→3 

lim f(x) = 10  . 
x→3 

31. The function f is defined at c = 1  with  f(1) = 5. Because 

lim f(x) = lim (5x − 2) = 5(1) − 2 = 3  
x→1− x→1− 

and 
lim f(x) = lim (2x + 1) = 2(1) + 1 = 3 

x→1+ x→1+ 

are equal, lim f(x)
x→1 

 exists and is equal to 3. However f(1) = 5 = 3 = lim f(x), so 

f is not continuous at c = 1 . 
x→1 
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  �
x2 − 16 

�
(x − 4)(x + 4)    

lim f(x) = lim = lim = lim 
√
x + 4 =  

√
4 + 4 = 2

√
 2 

x→4+ x→4+ x − 4 x→4+ x − 4 x→4+ 
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32. The function f is defined at c = −1 with  f(−1) = 2. Because 

lim f(x) = lim x 2 = (−1)2 = 1  
x→−1− x→−1− 

and 
lim f(x) = lim (−3x − 2) = −3(−1) − 2 = 1  

x→−1+ x→−1+ 

are equal, lim f(x) exists and is equal to 1. However f(−1) = 2 = 1 = lim f(x),
x→−1 x→−1 

 so 

f is not continuous at c = −1 . 

33. The function f is defined at c = 0  with  f(0) = 4. Because 

lim f(x) = lim (4 − 3x 2) = 4−  3(0)2 = 4  
x→0− x→0− 

and   
lim f(x) = lim 

J
16 

x→0+ x→ + 
− x2 = 

J
16 

0
− 02 = 4  

are equal, lim f(x)
x→0 

 exists and is equal to 4. Finally, f(0) = lim f(x), so 

f is continuous at c = 0  . 
x→0 

 
34. The function f is defined at c = 4  with  f(4) = 

√
4 + 4 = 2

√
 2. Because 

lim
√   

 f(x) = lim 4 + x  = 
√
4 + 4 = 2

√
 2 

x→4− x→4− 

and 

are equal, lim f(x) exists and is equal to 
x→4 

2
√ 
 2. Finally, f(4) = lim f(x), so 

f is continuous at c = 4 . 
x→4 

35. The function f is defined at c = 1/2 with  f(1/2) = l1J = 1.  As  x approaches 1/2 from 
the left, 2x approaches 1 from the left, so that 

lim f(x) = lim l2xJ = 0. 
x→1/2− x→1/2− 

On the other hand, as x approaches 1/2 from the right, 2x approaches 1 from the right, so 
that 

lim f(x) = lim l2xJ = 1. 
x→1/2+ x→1/2+ 

Because the two one-sided limits as x approaches 1/2 are not equal lim f(x)
x→1/2 

does not  

exist. Therefore, f is not continuous at c = 1/2 . 

36. The function f is defined at c = 5  with  f(5) = |5 − 5| = 0. Because 

lim f(x) = lim |x − 5| = lim [−(x − 5)] = −(5 − 5) = 0 
x→5− x→5− x→5−

and 
lim f(x) = lim |x − 5| = lim (x 

x
− 5) = 5 − 5 = 0  

→5+ x→5+ x→5+ 

are equal, lim f(x) 
x→5 

exists and is equal to 0. Finally,       f(5) = lim f(x),
x→5 

 so 

f is continuous at c = 5  . 

�
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 � −1, if − 1 ≤ x ≤ 0
f(x) =  1, if 0 < x ≤ 1 
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37. Let f(x) = 2x2 − 5x. 

(a) The average rate of change of f from 1 to x is 

f(x) − f(1) 2x2 − 5x− (−3) 2x2 − 5x+ 3  (x− 1)(2x
=

− 3) 
	 = = = 2x− 3 , 

x− 1 x− 1 x− 1 x− 1 

for x = 1.  
(b) Using the result from part (a), 

f(x)  f(1)
lim 

−
= lim(2x− 3) = 2(1) − 3 =  −1 . 

x→1 x− 1 x→1

38. The function 

satisfies the indicated conditions: f is continuous on the interval          [−1, 1] except at 0, 
f(−1) = −1 < 0, f(1) = 1 > 0, and f has no zeroes. This 
does not contradict the Intermediate Value Theorem because the function is not contin­
uous on the closed interval [−1, 1]. 

39. Let g(x) =  x and h(x) =  x3 − 27. The polynomial functions g and h are both continuous 
on the set of all real numbers. Because f is the quotient of g and h, f is continuous on 
the set of all real numbers except those for which h(x) = 0.

       
 The only real solution to the

equation
      

 
h(x) =  x 3 − 27 = (x− 3)(x 2 + 3x+ 9)  =  0  

is x = 3,  so  f is continuous on the set {x|x = 3} . 

40. Let g(x) = x 2 − 3 and  h(x) = x 2 + 5x + 6. The polynomial functions g and h are both 
continuous on the set of all real numbers. Because f is the quotient of g and h, f is
continuous on the set of all real numbers except those for which h(x) = 0. The solutions 
to the equation h(x) =  x2 + 5x + 6  =  (x + 3)(x + 2)  =  0  are  x = −3 and  x = −2, so 

                   

f is continuous on the set {x|x = −3, x = −2} . 

41. Let	 g(x) = 2x + 1  and  h(x) =  x3 + 4x2 + 4x. The polynomial functions g and h are 
both continuous on the set of all real numbers. Because f is the quotient of g and h, 
f is continuous on the set of all real numbers except those for which h(x) = 0.  The  
solutions to the equation h(x) =  x3 + 4x2 + 4x = x(x+ 2)2 = 0  are  x = −2 and  x = 0,  so  

f is continuous on the set {x|x = −2, x = 0} . 

42. Let 
√ 

g(x) =  x and h(x) =  x− 1. The function g is continuous on the set {x|x ≥ 0}, and  
the polynomial function h is the continuous on the set of all real numbers. Moreover, the 
solution of the inequality h(x) ≥ 0 is the  set { x|x ≥ 1}. As f  is the composition g(h(x)), 
the function f is continuous at c provided h is continuous at c and g is continuous at h(c); 

thus, f is continuous on the set {x|x ≥ 1} . 

43. Let g(x) = 2x and h(x) = − x. The exponential function g and the polynomial function h 
are both continuous on the set of all real numbers. As f is the composition g(h(x)), the 
function f is continuous at c provided h is continuous at c and g is continuous at h(c); 
f is continuous on the set of all real numbers . 

44. Let f(x) = 2x3 + 3x2 − 23x− 42. This polynomial function is continuous on the set of all 
real numbers, so it is continuous on the closed interval [3, 4]. Because 

f(3) = 2(3)3 + 3(3)2 − 23(3) − 42 = −30 < 0 

�

�
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[0, 1] [0.2, 0.3] [0.21, 0.22] 
x f(x) x f(x) x f(x) 
0.0 −1.0000 0.20 −0.06720 0.210 −0.02264 
0.1 −0.5192 0.21 −0.02264 0.211 −0.01819 
0.2 −0.0672 0.22 0.02194 0.212 −0.01373 
0.3 0.3848 0.23 0.06659 0.213 −0.00927 
0.4 0.8848 0.24 0.11134 0.214 −0.00481 
0.5 1.5000 0.25 0.15625 0.215 −0.00036 
0.6 2.3168 0.26 0.20136 0.216 0.00410 
0.7 3.4408 0.27 0.24672 0.217 0.00856 
0.8 4.9968 0.28 0.29237 0.218 0.01302 
0.9 7.1288 0.29 0.33838 0.219 0.01748 
1.0 10.0000 0.30 0.38480 0.220 0.02194 
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and 
f(4) = 2(4)3 + 3(4)2 − 23(4) − 42 = 42 > 0, 

the Intermediate Value Theorem guarantees there is a number c in the interval (3, 4) such 
that f(c) = 0. Thus, the equation 2x3 + 3x2 − 23x − 42 = 0 

does have a solution in the interval (3, 4) . 

45. The polynomial function f(x) = 8x4−2x2+5x−1 is continuous for all real numbers, so it is 
continuous on the closed interval [0, 1]. Because f(0) = −1 < 0 and  f(1) = 8 − 2+ 5−  1 =  
10 > 0, the Intermediate Value Theorem guarantees that f must have a zero on the 
interval (0, 1). To approximate this zero, subdivide the interval [0, 1] into 10 subintervals, 
each of length 0.1, and evaluate f at each endpoint. The results are shown in the first two 
columns of the table below. Because f(0.2) = −0.0672 < 0 and  f(0.3) = 0.3848 > 0, the 
Intermediate Value Theorem guarantees the zero lies in the interval (0.2, 0.3). Repeating 
the process by subdividing the interval [0.2, 0.3] into 10 subintervals of length 0.01 yields 
the results in the middle two columns of the table, where the function values have been 
rounded to five decimal places for display purposes. The zero has now been bracketed in 
the interval (0.21, 0.22). Repeating the subdivision process once more, the results in the 
last two columns of the table are produced, again with the function values rounded to five 
decimal places. Examining the function values in the last column, it follows that the zero 
of the function f is 0.215 , correct to three decimal places. 

46. The polynomial function f(x) = 3x3 − 10x + 9 is continuous for all real numbers, so it is 
continuous on the closed interval [−3, −2]. Because f(−3) = 3(−3)3−10(−3)+9 = 
and 

−42 < 0 

f(−2) = 3( 2)3 − 10(−2)+ 9 = 5 > 0, the Intermediate Value Theorem guarantees that f 
must have a zero on the interval

−
 (−3, −2). To approximate this zero, subdivide the interval 

[−3, −2] into 10 subintervals, each of length 0.1, and evaluate f at each endpoint. The re­
sults are shown in the first two columns of the table below. Because f( 2.2) = 0.944 < 0 
and f(

− −
−2.1) = 2.217 > 0, the Intermediate Value Theorem guarantees the zero lies in the 

interval (−2.2, −2.1). Repeating the process by subdividing the interval [−2.2, −2.1] into 
10 subintervals of length 0.01 yields the results in the middle two columns of the table, 
where the function values have been rounded to five decimal places for display purposes. 
The zero has now been bracketed in the interval (−2.18, −2.17). Repeating the subdivision 
process once more, the results in the last two columns of the table are produced, again 
with the function values rounded to five decimal places. Examining the function values 
in the last column, it follows that the zero of the function f is −2.171 , correct to three 
decimal places. 
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[−3,−2] [−2.2,−2.1] [−2.18,−2.17] 
x f(x) x f(x) x f(x) 
−3.0 −42.000 −2.20 −0.94400 −2.180 −0.28070 
−2.9 −35.167 −2.19 −0.61038 −2.179 −0.24794 
−2.8 −28.856 −2.18 −0.28070 −2.178 −0.21523 
−2.7 −23.049 −2.17 0.04506 −2.177 −0.18256 
−2.6 −17.728 −2.16 0.36691 −2.176 −0.14992 
−2.5 −12.875 −2.15 0.68488 −2.175 −0.11733 
−2.4 −8.472 −2.14 0.99897 −2.174 −0.08477 
−2.3 −4.501 −2.13 1.30921 −2.173 −0.05226 
−2.2 −0.944 −2.12 1.61562 −2.172 −0.01978 
−2.1 2.217 −2.11 1.91821 −2.171 0.01266 
−2.0 5.000 −2.10 2.21700 −2.170 0.04506 

 
x2 2x

 
x2 − 2x x(x− 2)

 lim − = lim = lim = lim x = 2 . 
x→2 x− 2 x− 2 x→2 x− 2 x→2 x− 2 x→2 

 
x2 2x

 
x2 2x 

lim − is not given by lim − lim . 
x→2 x− 2 x− 2 x→2 x− 2 x→2 x− 2 

1-127 

47. For x > 0, x  = x, so  | |
|x

 
| x 

lim (1 − x) = lim (1 − x) = lim (1 − x) = 1−  0 =  1  . 
x→0+ x x→0+ x x→0+ 

For x < 0, |x| = −x, so  

lim
|x| −x 

 (1 − x) = lim (1 − x) = lim (x− 1) = 0 − 1 =  −1 . 
x→0− x x→0− x x→0−

Because the two one-sided limits as x approaches 0 are not equal, 

lim
|x

 
|
(1 − x)

x→0 x 
does not  exist  . 

48.

Individually, the functions 
x2 2x 

and 
x− 2 x− 2 

become unbounded as x approaches 2, so that neither of the individual limits exists. Be­
cause the individual limits do not exist, the Limit of a Sum property does not apply, 
and 

49. Let 
√ 

f(x) =  x. Then  

  
f(x+ h) − f(x) 

√
x+ h

√ √ √ √− x x+ h− x x+ h+ 
√
x 

lim = lim = lim   
h→0 h h→0 h h→0 h

· √
x+ h+ 

√
x
 

(x+ h) − x 1 1
 1 
= lim √ √ = lim √ √ =  =  .

h 0 h( x+ h+ x) h 0 x+ h+ x
√
x+ 
√
x 2 → →

√
x

50. To make 
|(2x+ 1)−  7| = |2x− 6| = 2|x− 3| < 0.01
 

requires that |x− 3| < 0.005. Thus, the largest δ that “works” for E = 0.01 is
 δ = 0.005 . 

51. lim cos(tan x) = cos(tan 0) = cos 0 = 1 . 
x→0


 sin x 1 sin x 1 sin x 
4 4 4 1
 1

 lim = lim x = lim 4
x = · 1 =  . 

x→0 x x→0 4 x→0 4 44 4 

52.

( )

( )
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cos x 

 lim 
− 

 10   10 
1 cos x  1 

= lim 
−

= 010 = 0 . 
x→0 x x→0 x 
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53. 

 3 sin(3x)
tan(3x) sin(3x) cos(4x) 

lim = lim · = lim 3x cos(4x)
 lim 

x→0 tan(4x) x→0 sin(4x) cos(3x) x→ 4 sin(4x)0 
·
x→0 cos(3x)

4x 

sin(3x)
lim3 x cos 0 3 1 1 3

 →0 3x =  =  = . 
4 sin(4x)

·
cos 0 4

·
1
·
1 4 

lim 
x→0 4x 

  cos x − 1 
(

x
)

x 1 cos  1 1 cos  1 1
 lim 3 = lim 3 3 − = lim 3

x x 

−
= · 0 =  0 . 

x→0 x x→0 3 x→0 33 3 

54.

55.

56. 

e4x − 1 (e2x − 1)(e2x + 1)  (ex − 1)(ex + 1)(e2x + 1)  
lim = lim = lim 

xx→0 e  − 1 x→ x x 0 e − 1 x→0 e − 1 

= lim [(e x  + 1)(e2 x + 1)]  =  (e 0 + 1)(e0  + 1)  =  4  . 
x→0

57. As x approaches π/2 from the right, sin x approaches 1 and cos x approaches 0 from the 

left. Thus,
sin x 

 tan x = 
cos x

becomes unbounded in the negative direction, so that 
 

lim tan x = −∞ . 
x→π/2+ 

58. As x approaches −3, 2+ x approaches −1 and  (x +3)2 approaches 0 from the right. Thus, 
2 +  x 

(x + 3)2 
becomes unbounded in the negative direction, so that 

2 +  x 
lim = −∞ . 

x→−3 (x + 3)2 

3x3  2x + 1  2 1 
3  +3x3  2x + 1  

−
x3 x2 x3 3  0 + 0  

 lim 
−

= lim = lim 
−

= 
−

= 3 . 
x→∞ x3 − 8 x→∞ x3 − 8 x→∞ 8 1  0

1  
3 

−
x

−
x3 

59.

3x4 + x 
 
3 1

 
 lim = lim x 2 + = ∞ . 
x→∞ 2x2 x→∞ 2 2x 

60.

4x − 2 
 f(x) =  

x + 3 
  
61. The domain of the rational function is the set {x|x = −3}. The one-sided 

limits as x approaches −3 are 
  

4x − 2 4x  2 
lim = ∞ and lim 

 

−
= −∞, 

x→−3− x + 3  x→−3+ x + 3  

so x = −3 is a vertical asymptote of the graph of f . Moreover, because 

4x − 2 2 
4 4x − 2 x x 4  0 

lim = lim = lim 
−

= 
−

= 4  
x→−∞ x + 3  x    →−∞ x+ 3 x→−∞ 3 1 + 0

1 +  
x x 

( ) ( )

( )
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and 
4x  2 2 

 4x − 2	
−

4
 4  0 xlim =	 lim x = lim 

−
= 
−

= 4, 
x→∞ x + 3 	  x    →∞ x+ 3 x→∞ 3 1 + 0

1 +  
x x 

y = 4 is a horizontal asymptote of the graph of f . 

2x 
 f(x) =  

x2 − 4
 
62. The domain of the rational function is the set {x|x = ±2}. The one-sided 

limits as x approaches −2 are 
  

2x	 2x 
lim = −∞ and lim = ∞, 

2 x→−2− x  4 x→−2+ x2  4 − −
so x = −2 is a vertical asymptote of the graph of f . The one-sided limits as x approaches 
2 are  

2x	 2x 
lim = −∞ and lim = ∞, 

2 x→2− x  4 x→2+ x2  4 − −
so x = 2 is also a vertical asymptote of the graph of f . Moreover, because 

2x 2 
2x x2 0xlim = lim = lim = = 0  

x→−∞ x2 − 4 x→−∞ x2 − 4 x→−∞ 4 1 − 0
1 − 

x2 x2 

and 
2x 2 

2x x2 0 
lim = lim = lim x = = 0, →∞ x2 2 x − 4 x→∞ x − 4 x→∞ 4 1 − 0

1 − 
x2 x2 

y = 0 is a horizontal asymptote of the graph of f . 

63. The function f is defined at 0 with f(0) = 1/2. Because 

tan x 1 sin x 1 
lim f(x) =	 lim = lim · 
x→0	 x→0 2x 2 x→0 x cos x 

1 sin x 1 1 1 1 
= lim  lim =  1  = ,

2 x→0 x 
·
x→0 cos x 2 

· ·
1 2
 

it follows that lim f(x) exists and
x→0	 

 f(0) = lim f(x). Therefore, f is
 continuous at 0. 
x→0 

64. The function f is defined at 0 with f(0) = 1. Because 

sin(3x) 3 sin(3x) sin(3x)
lim f(x) = lim = lim = 3 lim = 3 ·  1 = 3, 
x→0 x→0 x x→0 3x x→0 3x 

it follows that lim f(x) 
x→0	 

exists but f(0) = lim f(x). Therefore, f is not continuous at 0. 
x→0 

65. Note that 

 
( π 

cos
) π π 

πx + = cos(πx) cos  − sin(πx) sin  = cos(πx) · 0 − sin(πx) · 1 =  − sin(πx). 
2 2 2
 

Thus,
 

sin(πx) π sin(πx) sin(πx)

lim f(x) =  − lim = − lim = −π lim = π  1 =  π. 
x→0 x→0 x x→0 πx x→0 πx 

− · −

To make f continuous at 0, define f(0) = −π . 
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66. Take E = 1,  let  δ > 0, and choose any x satisfying 0 < |x+ 3| < δ. Then  

|(x 2 − 9) − (−18)| = |x 2 + 9| = x 2 + 9  ≥ 9 > 1 =  E,
 

so that lim (x 2 − 9) = −18.
 
x→−3

67.	 (a) Answers will vary. The figure below displays the graph of a function f with the 
properties 

f(−1) = 0, lim f(x) = 2, lim f(x) = 2, 
x→∞ x→−∞ 

lim f(x) =  −∞, and lim f(x) =  ∞. 
x→4−	 x→4+ 

-8 -6 -4 -2 2 4 6 8 10 12 14 

-6 

-4 

-2 

2 

4 

6 

8 

2x+ 2  
f(x) =  . 

x− 4 
(b) Answers will vary. The function shown above is 

2x2 − 5x+ 2  
 R(x) =  . Factoring the numerator yields 

5x2 − x− 2 
68. (a) Let

2x 2 − 5x+ 2  =  (2x− 1)(x− 2). 

Applying the quadratic formula to the equation 5x2 − x− 2 = 0 yields 
  

1 ± 
J
(−1)2 − 4(5)(−2) 1 

√± 41 
x =	 = . 

2(5) 10 

  
1 
√± 41 

 

x|x = ,
10

Therefore, the domain of R is the set the  x-intercepts 

are 1 and 2 2 , and t he  y-intercept is R(0) = −1 . 

1
√ 

 − 41 ≈ −0.54 
10 

(b) The one-sided limits as x approaches are 

lim R(x) =   and lim R(x) =   . 
1 	 

√	 −	 √ +
x→ − 41 

∞
 x 41
 

−∞
10 → 1−10
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Thus, the graph of R becomes unbounded in the positive direction as x approaches 
1
√ 

 − 41 
10 

from the left and becomes unbounded in the negative direction as x ap­

proaches 
1
√ 

 − 41 
10 

1 +
√ 
 41 ≈ 
10 

0.74

from the right. The one-sided limits as x approaches 

 are 
lim R(x) =∞  and lim R(x) =  −∞ . √ − √ +
 

x→ 1+ 41 x10 → 1+ 41 
10


Thus, the graph of R becomes unbounded in the positive direction as x approaches √ 
1 +  41 

10 
from the left and becomes unbounded in the negative direction as x ap­

proaches
1 +
√ 
 41 

 
10 

from the right. 

 
1 
√ √− 41 1 + 41 

x = and x = 
10 10 

(c) Based on the limits from part (b), are both vertical 

asymptotes of the graph of R. Because 

2x2  5x + 2  2 1 2 2 
2    2x − 5x + 2  

− − + 0 + 0 2
 5x2 5 x   2x2 5lim = lim = lim = 

−
= 

2 2 x→−∞ 5x − x − 2 x→−∞ 5x − x − 2 x→−∞ 1 2 1 − 0 − 0 5
1 − − 

5x2 5x 5x2 

and 

2x2  5x + 2  2 1 2 2 
 − +  0 + 02x2 5x + 2  

− − − 25x2 5 x 2x2 5lim = lim = lim = = , 
2 x→∞ 5x − x − 2 x→∞ 5x2 − x − 2 x→∞ 1 2 1 − 0 − 0 5

1 − − 
5x2 5x 5x2 

y = 2 5 is a horizontal asymptote of the graph of R.

 ( π π
 − , 

)

2 2 
69. Because 1 − x2 ≤ f(x) ≤ cos x for all x in the open interval containing 0 and 

lim(1 − x 2) = 1−  0 = 1 and lim cos x = cos 0 = 1, 
x→0 x→0 

it follows from the Squeeze Theorem that
 

lim f(x) = 1.
 
x→0 
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