Chapter 1 Limits and Continuity

1.1 Limits of Functions Using Numerical and Graphical
Techniques

Concepts and Vocabulary

1. The limit as x approaches ¢ of a function f is written symbolically as | (¢) lim f(z) |
r—rc

2. . The tangent line to the graph of f at a point P = (¢, f(c)) is the limiting position
of the secant lines passing through P and a point (z, f(z)), « # ¢, as & moves closer to c.

3. . If f is not defined at x = ¢, the il_}mc f(x) may exist.

4. . The limit L of a function y = f(x) as « approaches the number ¢ does not depend
on the value of f at c.

5. . If 1i£>n w exists, it equals the slope of the tangent line to the graph of f
at the point (c, f(c)).

6. . The limit of a function y = f(z) as x approaches a number ¢ equals L if and only
if both of the one-sided limits as x approaches ¢ equal L.

Skill Building

7. The values in the table below suggest that the value of f(z) = 22 can be made “as close
as we please” to 2 by choosing x “sufficiently close” to 1. It therefore appears that

lim 22 = 2|
rz—1

x 0.9 0.99 0.999 =1+ 1.001 1.01 1.1
fl)y=2x 1.8 198 1998 f(x) approaches 2 2.002 2.02 2.2

8. The values in the table below suggest that the value of f(z) = x + 3 can be made “as close
as we please” to 5 by choosing x “sufficiently close” to 2. It therefore appears that

lim (« +3) = [5].

T 1.9 199 1.999 — 2 2.001 201 2.1
fl@)=2+4+3 49 499 4999 f(z) approaches 5 5.001 5.01 5.1
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9. The values in the table below suggest that the value of f(z) = 22 + 2 can be made “as
close as we please” to 2 by choosing x “sufficiently close” to 0. It therefore appears that

lim (22 +2) = 2|,
z—0

T —-0.1 —0.01 -0.001 — 0+ 0.001 0.01 0.1

f(x) =22+2 2.01 2.0001 2.000001 f(x) approaches 2 2.000001 2.0001 2.01

10. The values in the table below suggest that the value of f(x) = 22 — 2 can be made “as
close as we please” to —1 by choosing = “sufficiently close” to —1. It therefore appears

that )
r1—1>H—11<:1j N 2) - .

T -1.1 -1.01 —1.001 — —1 —0.999 -0.99 -0.9

flz)=2%—2 —0.79 —0.9799 —0.997999 f(x) approaches —1 —1.001999 —1.0199 —1.19

2 _

11. The values in the table below suggest that the value of f(x) = z can be made “as

+3
close as we please” to —6 by choosing = “sufficiently close” to —3. It therefore appears
that
.22 -9
lim = —
z—-3 £+ 3
T -35 =31 -=3.01 — =3 + -299 -29 -25
22 -9
f(z) = 3 —-6.5 —6.1 —6.01 f(z) approaches -6 —5.99 —-5.9 —55
x

3

1
12. The values in the table below suggest that the value of f(z) = z +1 can be made “as
x

close as we please” to 3 by choosing = “sufficiently close” to —1. It therefore appears that
3
xz°+1
li =3

x -1.1 -1.01 -1.001 — —1 -0.999 -0.99 -0.9

341
flz) = 1:1 3.31 3.0301 3.003001 f(x) approaches 3 2.997001 2.9701 2.71

13. The values in the table below, which have been rounded to five decimal places for display

purposes, suggest that the value of f(z) =

can be made “as close as we please” to
x
—2 by choosing = “sufficiently close” to 0. It therefore appears that

. 2—2e"
lim =21
x—0 x
x —0.2 —0.1 —0.01 — 0« 0.01 0.1 0.2

2—2e"

T

f(x)

—1.81269 —1.90325 —1.99003 f(x) approaches —2 —2.01003 —2.10342 —2.21403
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14. The values in the table below, which have been rounded to five decimal places for display

Inx
purposes, suggest that the value of f(x) = 1 can be made “as close as we please” to
T —

1 by choosing = “sufficiently close” to 1. It therefore appears that

lim Inz = .

z—1 1 — ]_
x 0.9 0.99 0.999 — 1+ 1.001 1.01 1.1
1
flz)= 1 1 1.05361 1.00503  1.00050  f(z) approaches 1  0.99950 0.99503  0.95310
T —

15. The values in the table below, which have been rounded to five decimal places for display

1—-cosz
purposes, suggest that the value of f(z) = ———— can be made “as close as we please”

to 0 by choosing = “sufficiently close” to 0. It therefore appears that

. 1—cosx
lim — =
x—0 €T
T —0.2 —0.1 —0.01 — 0 « 0.01 0.1 0.2
1—cosx
flx) = —0.09967 —0.04996 —0.00500 f(x) approaches 0 0.00500 0.04996 0.09967

T

16. The values in the table below, which have been rounded to five decimal places for display

sin x
——— can be made “as close as we please”
1+ tanz

to 0 by choosing = “sufficiently close” to 0. It therefore appears that

purposes, suggest that the value of f(z) =

sinx
lim —— = 0|
z—0 1+ tanx @

T -0.2 -0.1 —0.01 — 0+ 0.01 0.1 0.2

_ sinz
" 14 tanz

f(x) —0.24918 —0.11097 —0.01010 f(x) approaches 0 0.00990 0.09073 0.16518

17. The graph suggests that the value of f approaches 2 as x approaches 2 from the left and
as x approaches 2 from the right. Thus,

(a) lim f(x)=[2];

r—2~
(b) lim f(z)=[2} and
(c) lim f(z) =[2]

18. The graph suggests that the value of f approaches 4 as x approaches 2 from the left and
as x approaches 2 from the right. Thus,

(a) lim f(x)=[4}

T2~

(b) lim f(x) =[4} and
(c) lim f(z) =4]

r—2
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19.

20.

21.

22.

23.

The graph suggests that the value of f approaches 3 as x approaches 2 from the left but
the value of f approaches 6 as = approaches 2 from the right. Thus,

(a) lim f(z)=[3]}

r—2~

(b) lim f(z) =[6] and

z—2+1

(c) lirn2 f(z) | does not exist | because there is no single number that the values of f ap-
r—r
proach when z is close to 2.

The graph suggests that the value of f approaches 4 as x approaches 2 from the left but
the value of f approaches 2 as x approaches 2 from the right. Thus,

(a) lim f(a:):;

T2~

(b) lim f(z)=[2] and

r—21

(c) lim2 flx) because there is no single number that the values of f ap-
Tr—r

proach when x is close to 2.

The graph suggests that, as x approaches ¢ from the left,
lim f(z) =1,

xr—c—
while, as x approaches ¢ from the right,

lim f(z)=1.

rz—ct

Because the two one-sided limits are equal, it follows that

lim f(z) = .

z—c
The graph suggests that, as x approaches ¢ from the left,
lim f(z) =1,
r—c—
while, as x approaches ¢ from the right,

lim f(x)=1.

z—ct

Because the two one-sided limits are equal, it follows that

lim f(z) = .

Tr—c

The graph suggests that, as x approaches ¢ from the left,
lim f(z) =1,
xr—c—

while, as x approaches ¢ from the right,

lim f(x)=1.

r—ct

Because the two one-sided limits are equal, it follows that

lim f(z) = .

Tr—cC
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24. The graph suggests that, as x approaches ¢ from the left,
lim f(z) =1,
xr—c—

while, as x approaches ¢ from the right,

lim f(z)=2.

r—ct

Because the two one-sided limits are not equal‘ (that is, there is no single number that

the values of f approach when z is close to ¢), it follows that

lim f(x) [ does not exist |

Tr—cC

25. The graph suggests that, as  approaches ¢ from the left,
lim f(x)=-1,

r—c—
while, as x approaches ¢ from the right,

lim f(z)=1.

z—ct

Because the two one-sided limits are not equal‘ (that is, there is no single number that

the values of f approach when z is close to ¢), it follows that

lim f(x) [does not exist].

Tr—cC

26. The graph suggests that, as  approaches ¢ from the left,
lim f(z) =1,

xr—c—
while, as x approaches ¢ from the right,

lim f(x)=3.

r—ct

Because the two one-sided limits are not equal‘ (that is, there is no single number that

the values of f approach when z is close to c¢), it follows that

lim f(x) | does not exist ]

Tr—C

27. The graph suggests that, as x approaches ¢ from the left,
lim f(x) =2,

xr—c—
while, as x approaches ¢ from the right,

lim f(z)=1.

z—ct

Because the two one-sided limits are not equal‘ (that is, there is no single number that

the values of f approach when x is close to ¢), it follows that

lim f(x) [does not exist |

Tr—cC



1-6 Chapter 1 Limits and Continuity

28. The graph suggests that, as x approaches ¢ from the left,
lim f(z) =1,

Tr—Cc—
while, as x approaches ¢ from the right,

lim f(x)=2.

r—ct

‘Because the two one-sided limits are not equal‘ (that is, there is no single number that

the values of f approach when z is close to ¢), it follows that

lim () [ does not exist |

r—rc
29. The graph of f shown below suggests that, as  approaches 2 from the left,
lim f(z) =29,
T2~
while, as x approaches 2 from the right,

lim f(z) =9.

r—21

Because the two one-sided limits are equal, it follows that

lim f(z) = @

z—2

30. The graph of f shown below suggests that, as x approaches 0 from the left,
lim f(z) =1,
z—0~

while, as « approaches 0 from the right,

lim f(z) =0.

z—0t

Because the two one-sided limits are not equal, it follows that

lim f(x) [does not exist |
z—0
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31. The graph of f shown below suggests that, as  approaches 1 from the left,
lim f(z) =2,
r—1—
while, as x approaches 1 from the right,

lim f(z) = 4.

z—1t

Because the two one-sided limits are not equal, it follows that

lim f(x) [does not exist |
rz—1

32. The graph of f shown below suggests that, as x approaches 2 from the left,
lim f(z) =4,
r—2~
while, as x approaches 2 from the right,

lim f(z)=4.

r—21

Because the two one-sided limits are equal, it follows that

lim f(z) = .

r—2
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33. The graph of f shown below suggests that, as x approaches 1 from the left,
lim f(z) =2,
z—1-
while, as x approaches 1 from the right,

lim f(z) = 2.

z—1+t

Because the two one-sided limits are equal, it follows that

lim f(z) = .

rz—1

1 1 1 1
0.5 1 1.5 2

34. The graph of f shown below suggests that, as  approaches —1 from the left,
lim f(z)=-1,
r——1"

while, as x approaches —1 from the right,

lim f(z)=0.

rz——1t

Because the two one-sided limits are not equal, it follows that

lim f(x) [does not exist].

r——1
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35. The graph of f shown below suggests that, as  approaches 0 from the left,
lim f(z) =0,
x—0~
while, as x approaches 0 from the right,

lim f(z)=1.

z—0t

Because the two one-sided limits are not equal, it follows that

lim f(x) [ does not exist |
z—0

36. The graph of f shown below suggests that, as x approaches 1 from the left,
lim f(z) =1,
x—1—
while, as x approaches 1 from the right,

lim f(z)=-1.

r—1t

Because the two one-sided limits are not equal, it follows that

lim () [does not exist ]

rz—1
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Applications and Extensions

37. Answers will vary. Below is the graph of a function f for which

i f(z) =3 lm fz) =3 lm flz)=1 f(2)=3 [B)=1

3 ® O
2 4
1 o——
t
1 2 3 4

38. Answers will vary. Below is the graph of a function f for which

lim f(z)=0; lim f(z)=-2; _hr;tgr f(z) =—=2; f(—1) is not defined; f(2) = —2.

z——1 o2
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39. Answers will vary. Below is the graph of a function f for which

lim f(z) =4 lim f@z)=-1; lm f(z) =0; f(0)=-1; f(1)=2

40. Answers will vary. Below is the graph of a function f for which

Iim f(z) =2 lim f(z) =0; lim f(z) =1 f(=1)=1 f(2)=3.
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|z =5
41. The table of values below s st lim ——— =1
e table of values below suggests lim ——
x 5« 5.001 5.01 5.1
|z — 5|
flz) = E f(z) approaches 1 1 1 1
T —
e =5
Alternately, the graph below suggests lim = .
z—5+ T —5H
r o
05 T
T 2 a2 4 3 & 1 s o
-05 T
. 5
42. The table of values below suggests lim [z = 51 =
' x5~ T — 5 ;
x 49 499 4.999 —5
|z — 5|
f(z) = o -1 -1 —1  f(x) approaches —1
T —
Alternately, the graph below suggests lim = = 5| =
’ a—5— T — 5 '
1 0

05 T

05 +
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43. The table of values below suggests lim |2z] = @

()"

x 04 049 0.499 -3
flz)=|2z] O 0 0

f(x) approaches 0

Alternately, the graph below suggests

lim |2z| = @

=0

08 T

0.6 T

04 T

02 T

t t t t t t t t t
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

44. The table of values below suggests lim . |22 = .

e (4
x 3 0.501 0.51 0.6
f(z) =12z] f(x) approaches 1 1 1 1
Alternately, the graph below suggests _l}i(nll)+ |22 = .
! Q
08 4 ‘
06 4
04 1
02
01 02 03 04 05 06 07 08 08

45. The table of values below suggests

lim |2z = .
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x 0.6 0.66 0.666 -2
fl@y=12z] 1 1 1 f(x) approaches 1

Alternately, the graph below suggests lim [2z]| = .
o

z—(2)

0.8 T
0.6 T
0.4 T

02 T

Lx=213

46. The table of values below suggests lim |2z] = .

a=(3)
x 2+ 0.667 0.67 0.7
f(z) =|2z] f(z) approaches 1 1 1 1

Alternately, the graph below suggests lim . |2z = .
2

v (%)

0.8 T
0.6 T
04 T

0.2 T

Lx=213

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

47. The table of values below suggests hn21+ Vil -z = @
xr—r

T 2+ 2.001 2.01 21

f(x) =+/|z| —x f(x) approaches 0 0 0 0
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Alternately, the graph below suggests lim+ Vil —z = @
z—2

25

05 [

48. The table of values below suggests lirél Vil -z = @
T—2~

T 1.9 1.99 1.999 — 2
f@)=]zl—z 0 0 0 f(z) approaches 0

Alternately, the graph below suggests lim +/|z| —z = @
T2~

25

05 [

IS
S}
ot
[N}
IS

49. The table of values below suggests lirglJr vz —z= @
z—

T 2 ¢+ 2.000000001  2.000001 2.001
f(x)=~/|z] —x f(z) approaches 0 —0.001 —0.01 -0.1

Alternately, the graph below suggests lim+ V0| —z= @
r—2
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50. The table of values below, in which the function values have been rounded to five decimal

1 for displ , ts lim </ —rz=|—-1|
places for display purposes, sugges sx irg_ |z] —x

T 1.9 1.99 1.999 — 2

flx)=|z] —z —0.96549 —0.99666 —0.99967 f(z) approaches —1

Alt tely, th h bel ts lim </ —z=|—-1|
ernately, the graph below suggests 12120— |lz] —

0.5 1 1.5 2 25 3

51. (a) The secant line containing the points (2,12) and (3,27) has a slope of

27 — 12 15
sec — =—=|15|
m s =1 =L

(b) The secant line containing the points (2,12) and (z, f(x)) for 2 # 2 has a slope of

32212 3(x—2)(x+2)
r—2 T —2

=|3(z+2)|

(¢) The values in the table below suggest that the slope of the tangent line to the graph
of fat2is

lim mgee = 12|
T—2
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T 1.9 1.99 1.999 — 2 < 2.001 2.01 2.1
Msee  11.7 1197  11.997 mgec approaches 12 12.003 12.03 12.3

(d) The secant line from part (a) has slope 15 and passes through the point (2,12). The
equation of this secant line is therefore

y—12=15(x—-2) or y= 15z —18.

The tangent line at « = 2 has slope 12 and also passes through the point (2,12); the
equation of this line is

y—12=12(x—-2) or y=12z—12.

The figure below displays the graph of f as the solid curve, the graph of the tangent
line as the dashed curve, and the graph of the secant line as the dotted curve.

30 T
25 T

20 T

52. (a) The secant line containing the points (2,8) and (3,27) has a slope of

27-8 19
seczizizl -
Mee = 5—5 = 7

(b) The secant line containing the points (2,8) and (z, f(z)) for x # 2 has a slope of

3-8 —2)(z* + 2z +4
mseczw :(x )(x+ Tt ):(E2+2$+4
r—2 T —2
(¢) The values in the table below suggest that the slope of the tangent line to the graph
of fat2is
}}_}HlQ Msec = ~

x 1.9 1.99 1.999 — 2 2.001 2.01 2.1
Mgee 11.41 11.9401 11.994001 mygec approaches 12 12.006001 12.0601 12.61

(d) The secant line from part (a) has slope 19 and passes through the point (2,8). The
equation of this secant line is therefore

y—8=19(x—2) or y=19z —30.

The tangent line at = 2 has slope 12 and also passes through the point (2, 8); the
equation of this line is

y—8=12(x—2) or y=12z—16.

The figure below displays the graph of f as the solid curve, the graph of the tangent
line as the dashed curve, and the graph of the secant line as the dotted curve.
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40 T

30 T

20 T

53. (a) Let f(z) = 322 — 1. The slope of the secant line containing the points P = (2, f(2))
and Q@ = (2+h, f(2+h)) is

L feEm - f@) 32+ -1 (522 -1)

(24+h)—2 h

3A+4h+h%) —1-322+1 242h+3h* =2 2h+gh° | 1
h B h R R

‘ provided h # 0 ‘

(b) Using the result from part (a),

h -0.5 —-0.1 -0.001 0.001 0.1 05
Msee  1.75 195 1.9995 2.0005 2.06 2.25

(c¢) The table from part (b) suggests that ’llimo Mgee = 2.
—

(d) Because the limit of the slope of the secant line is 2, the slope of the line tangent to
the graph of f at the point P = (2, f(2)) is .

(e) The tangent line to f at the point P = (2, f(2)) has slope 2 and contains the point
(2, f(2)) = (2,1). The equation of the tangent line is therefore

y—1=2(x—-2) or y=2z-3.

The figure below displays the graph of f as the solid curve and the graph of the
tangent line as the dashed curve.



1.1 Limits of Functions Using Numerical and Graphical 1-19
Techniques

1 4 s

54. (a) Let f(z) = 22 —1. The slope of the secant line containing the points P = (-1, f(—1))
and Q@ = (=14h, f(—14h)) is

I G e 0 e Gl O I (-1+h)?2=1-((-1)*-1)

(C1+h) — (-1 h

1—2h+h?—-1—-141 —2h+h?

provided h # 0.
(b) Using the result from part (a),

h -0.1 —-0.01 -0.001 —0.0001  0.0001 0.001 0.01 0.1
Mgee —2.1 —2.01 —=2.001 -2.0001 -1.9999 -1999 -199 -1.9

(c) The table from part (b) suggests that }lllir%) Mgec = .

(d) Because the limit of the slope of the secant line is —2, the slope of the line tangent
to the graph of f at the point P = (-1, f(—1)) is .

(e) The tangent line to f at the point P = (-1, f(—1)) has slope —2 and contains the
point (—1, f(—1)) = (—1,0). The equation of the tangent line is therefore

y—0=-2(x+1) or y=-2zx—2.

The figure below displays the graph of f as the solid curve and the graph of the
tangent line as the dashed curve.
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55. (a) ‘The values in the table below suggest that
lim cos © =1
x—0 x
1 1 1 1 1 L 0w 1 1 111
v 2 4 8 10 12 12 10 8 4 2
f(x) = cos T 1 1 1 1 1 f(xz) approaches1 1 1 1 1 1
x
(b) The values in the table below suggest that
lim cos T_ —1.
z—0 x
1 1 1 1 1 0w 1 1 1 1 1
z 1 - = - _Z= -z 2 2 2
3 5 7 9 9 7 5 3
fx) = cost —1 -1 -1 -1 -1 f approaches -1 —1 —1 —1 —1 —1
x

(c) Because the values obtained in parts (a) and (b) are not equal, we conclude | the limit

. As x gets closer to 0, the argument to the cosine function, 7, becomes
unbounded. Consequently, the cosine function oscillates repeatedly between —1 and
1 and never approaches a single value.
A table of values can be a useful tool for investigating a limit, but should only be
viewed as providing evidence of a possible value for a limit. A final conclusion re-
garding a limit should be based on the properties of limits that will be developed in
subsequent sections of this chapter.

(d) The figure below left displays the graph of f with an z-window of (—2m,27), and
the figure below right displays the graph of f with an z-window of (—0.1,0.1). Using
either graph, it appears that lir% f(z) does not exist | because the function value does

xrT—
not approach a single number. Instead, the function seems to oscillate more rapidly
between —1 and 1 as x gets closer to 0.
5 4 ) b 4 o 01 ] M]“ HH “ 0.1
I
56. (a) The values in the table below suggest that

. T
lim cos — = .
T

x—0

T —-0.1 —-0.01 —-0.001 —-0.0001 — 0« 0.0001 0.001 0.01 0.1

f(x) = cos 12 1 1 1 1 f(x) approaches 1 1 1 1 1
x
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(b) The values in the table below suggest that
li T _|V2
lim cos 5 =| 5~ |
. 222 2 L0 2022 2
3 ) 7 9 9 7 ) 3
flz) = COS% Q g ? g f(x) approaches g g @ g @

(c) Because the values obtained in parts (a) and (b) are not equal, we conclude | the limit

. As z gets closer to 0, the argument to the cosine function, 7,

becomes unbounded. Consequently, the cosine function oscillates repeatedly between
—1 and 1 and never approaches a single value.
A table of values can be a useful tool for investigating a limit, but should only be
viewed as providing evidence of a possible value for a limit. A final conclusion re-
garding a limit should be based on the properties of limits that will be developed in
subsequent sections of this chapter.

(d) The figure below left displays the graph of f with an az-window of (—2x,27), and
the figure below right displays the graph of f with an z-window of (—1,1). Using

either graph, it appears that lir% f(x) does not exist | because the function value does
r—

not approach a single number. Instead, the function seems to oscillate more rapidly
between —1 and 1 as = gets closer to 0.

ﬁ /\ '
-2 2 4 6 -1 0.

57. (a) The values in the table below suggest that

. ox—8
lim = -3
r—2 2
x 1.9 1.99 1.999 — 2 2.001 2.01 2.1
-8
fz)="2 5~ 305 —3.005 —3.0005 f(x)approaches —3 —2.9995 —2.995 —2.95

-8
(b) The function f(x) = i is within 0.1 of —3 provided |f(x) — (—3)| < 0.1; that is,

x_8+# < 01

2

(z—8)+6] < 02
x—2| < 02

Thus, if | 1.8 <z < 2.2, then f(x) is within 0.1 of —3.
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8 is within 0.01 of —3 provided |f(z) — (—3)] < 0.01; that

(c) The function f(x) = r

is,

_3
”32 +3‘ < 0.01
(@ —8)+6] < 0.02
lz—2 < 0.2

Thus, if | 1.98 < & < 2.02], then f(z) is within 0.01 of —3.

58. (a) The values in the table below suggest that

lim (5 — 22) =[1]:

r—2

T 1.9 1.99 1.999 — 2 2.001 201 21
f(z)=5—-2¢ 1.2 1.02 1.002 f(x)approaches1 0.998 0.98 0.8

(b) The function f(z) =5 — 2z is within 0.1 of 1 provided |f(z) — 1| < 0.1; that is,

(6—22)—1 < 0.1
4—22] < 0.1
-2 —2) < 0.1
lz—2] < 0.05.

Thus, if [ 1.95 < 2 < 2.05], then f(z) is within 0.1 of 1.
(¢) The function f(x) =5 — 2z is within 0.01 of 1 provided |f(z) — 1| < 0.01; that is,

(5—2x)—1 < 0.01
4—2x2] < 001
|—2(x—2)] < 0.01
lz—2| < 0.005.

Thus, if [1.995 < & < 2.005 ], then f(x) is within 0.01 of 1.

59. (a) Because the Postal Service rounds the weight of the letter up to the next whole number
of ounces, the first-class postage charged is

047, if O<w<1
Cluwy — ) 068 i T<w=2
(W) =9 089 if 2<w<3
1.10, if 3 <w <3.5.

where postage is measured in dollars and weight is measured in ounces. This can be
written compactly in terms of the ceiling function as

C(w) = 0.47 4+ 0.21[w — 1].

(b) The domain of C is the set ‘ {w]0 < w < 3.5} ‘

(¢) The graph of the postage function C is shown below.
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110 |

0.89

0.68

047 p—— @

First-class postage (dollars)

T T T
0.5 1 1.5

t t t t
2 2.5 3 3.5

Weight (ounces)

(d) The graph of C suggests that

lim C(w)=0.68 and

w—2"

lim C(w) =0.89|

w—21

Because these two one-sided limits are not equal, this suggests that

lim C'(w) does not exist |
w—2

The graph of C' suggests that

w—0t

lim C(w) =047\

The graph of C suggests that

w—3.5~

lim C(w)=1.10|

Let w denote the weight (in ounces) of the envelope. For envelopes weighing less

than or equal to 1 ounce, the cost is $0.94. For 1 < w < 2, the cost is $0.94 plus an
additional fee of $0.21 for a total of $1.15. For 2 < w < 3, the cost is $0.94 plus an
additional fee of 2 x $0.21 for a total of $1.36. For 3 < w < 4, the cost is $0.94 plus
an additional fee of 3 x $0.21 for a total of $1.47. Continuing in this manner gives the
piecewise function defined below. This function applies to envelopes weighing up to
and including 13 ounces. First-class rates do not apply to large envelopes weighing

more than 13 ounces.

$0.94 if
$1.15 if
$1.36 if
$1.57 if
$1.78  if
$1.99 if
Cw) =14 $2.20 if
$2.41 if
$2.62 if
$2.83 if
$3.04 if
$3.25 if
$3.46  if

(b) The domain of the function {w|0 < w < 13}.

OO TDUA W~ O
ANNNNNNANNNNAN
EEEEgEEEEEEE
INIAININININININININ
= O 00 ~J O UL W b~

0
10<w<11
1l<w<12
12 <w< 13

The weight of these envelopes can be

any positive real number up to and including 13 ounces.

(¢) The graph of the piecewise function is pictured below.
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Ciiw)
44
4 o—=
34 O—a
1 o—s
o
24 o—a
4 o—
o
le—a
123456780101 1213W

(d) From the graph, lim C(w) = $0.94 and lim+ C(w) = $1.15. Since lirrll C(w) #
w—1— w—1 Ww—s1—
lim C(w), we conclude lim C(w) does not exist.
w—1t w—1

(e) From the graph, lim C(w)=$3.25and lim C(w) = $3.46. Since lim C(w) #
w—12- w—12+ w—12-
lim C(w), we conclude lim C(w) does not exist.
w—12+ w—1
(f) From the graph, lim+ C(w) = $0.94. As w gets closer to 0 from the right hand side,
w—0
C(w) is $0.94.
(g) From the graph, lirlré C(w) = $3.46. As w gets closer to 13 ounces from the left
w— 15—
hand side, C(w) is $3.46.

61. Let S(t) denote a student’s final exam score as a function of the time ¢ that the student
studies.

(a) Professor Smith’s claim can be written symbolically as

lim 5(¢) = 100 |

t—7

(b) Using the e definition of a limit, Professor Smith’s can be written as:

‘given any € > 0, there is a number ¢ > 0 so that whenever 0 < [t — 7| < 6 then‘
[15(t) — 100] < €|

62. If h = x — ¢, then x = h + ¢ and h approaches zero as x approaches c¢. Thus,

e = lim A E = FQ) g fleth) = flo) |
zoe T —C h—0 (c+h)—c h—0

fleth) = f()
- :

63. | No, the value of the function f at x = 2 has no bearing on lim2 f(z)| The limit exam-
r—r

ines the value of f as x approaches 2 but is not equal to 2.

64. , li1112 f(z) conveys no information about the value of f at = 2. The limit examines
r—r
the value of f as = approaches 2 but is not equal to 2.

65. (a) Because
x—377(37x)771
3—r 33—z

provided x # 3, the graph of f(x) is the ‘ horizontal line y = —1 excluding the point
(3,—-1) |
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(b) The graph of f (see below) suggests that

lim f(z)=-1 and lim f(z)=-1|

r—3~ z—3+

.05 +

(c) Because the two one-sided limits are equal, |the graph suggests that lirré f(x)
r—

‘exists and is equal to —1 ‘

66. (a) The values in the table below, which have been rounded to five decimal places for

display purposes, suggest that
i 1z
lim (1 +2)!/* ~[2.72]

T —-0.01 —0.001 —0.0001 — 0+ 0.0001 0.001 0.01

f@)=1+=z)Y/" 2731999 2.719642 2.718418 2.718146 2.716924  2.704814

(b) The figure below left displays the graph of g for —0.5 < 2 < 0.5. The figure below
right displays a closer view of the graph of g, focusing on the y-intercept.

44
2.85 1+

34
28 =

2T 2.75 1+

2.65

0.4 02 0.2 0.4

(¢) The table in part (a) and the graphs in part (b) all suggest that
: 1z
lim (1 +2)!/* ~[2.72]

(d) Using the computer algebra system Mathematica,

lim (1 + 2)/* =[e ~ 2.71828]

x—0
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Challenge Problems

67. The graph of the function f is shown below. Note that except when x is an integer, the
graph of f coincides with the z-axis. The graph suggests that

lim f(z) = @

r—2

08 +
06 T
04 T

02 T

68. The graph of f (see Problem 67) suggests

lim f(z) = @

z—1/2

69. The graph of f (see Problem 67) suggests

lim f(z) = @

z—3

70. The graph of f (see Problem 67) suggests

lim f(z) = @

z—0

1.2 Limits of Functions Using Properties of Limits
Concepts and Vocabulary
L (a) lim(=3) = [-3]
(b) lim 7 =[]
. _ . 5 _ 95
2. If 9161_>Irlcf(m) = 3, then 3%1_>mC [f(x)] =3 = .
3. If lim f(z) = 64, then lim {/f(z) = V64 = .
r—c xr—c

4. (a) lim 9::.

rz——1

(b) limz =[e].

r—e

5. (a) lim(z—2)=0-2=|-2]

z—0
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1
(b) Tim(3+2) =342 =]
z—1 2 2

6. (a) igné(—3x)=—3(2)=.
(b) lim (3z) = 3(0) =[0]

. . If p is a polynomial, then 1im5 p(xz) = p(5).
r—r

8. If the domain of a rational function R is {z|x # 0}, then hm2 R(z) = R()
r—r

EN |

Ne)

. . Properties of limits can be used for one-sided limits.

10. . If f(z) = ErhE+2) and g(x) = x + 2, then lim1 fl@)= lim g(z)=1.

z+1 z—— z——1
Skill Building

11, lim[2(z + 4)] zzig(z+4):2[i%x+i;n%4} —2(3+4) =[14]

12. lim [3(z+1)] =3 lim (z+1) =3 { lim z+ lim 1} =3(-2+1)=[-3]

T——2 z——2 z——2
13.
e =) = o lin Gr =) (e 42)
= e (3 e 1) (i s i)
= —2[3(-2) — 1][-2+2] = —2(-7)(0) = [0].
14.
Al - D10l =l ol -1l (2410
= Jm e (o g ) (st o)

= —1(-1-1)(~1+10) = ~1(~=2)(9) =[18].
15. lim (3t - 2)* = Bi_rg(?)t - 2)}3 =331 -2’ =1°=[1]

12 =[1]

16. lim (—3z + 1)% = Lym(—gx + 1)}2 = [-3(0) + 1]

x—0 —0

17. lim 3v/z =3, /lim = = 3v4 = 6],

1 1 1 1 1
18. lim ( =¥z ) = = 3/li =_—V8=-.2=|-|
8 mli%(zxﬁ) {/ime=7V8=7

19. lim 5z — 4 = \/lim(5x —4)=/5(3) —4=| V11|
r—3 r—3

o

20. lim V3t +4 = \/}g%(:st +4) = /32) +4=| V0|
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21.
lim[t\/(5t +3)(t +4)] = %ggt-}%\/(swf’))(wzx):2\/}135[(5t+3)(t+4)]
= 2, flnGt+3) Tyt +4) = 2/ +3)2+4) =2V
22.
o — e — T —
Jim [£/(t+ 1) (2t — 1)] Jim - lim /(E+1)(2t - 1) 1</t£r£11[(t+1)(2t 1)]
e — — _ s/ —
= f/tg@l(t+1) dim (2t — 1) Y1+ 1)2(-1)-1)
23.
1/2 1/2
lim(vz + 2+ 4)Y2 = [nm(\/g?+x+4)] - [1im\/5+1imx+1im4]
r—9 x—9 x—9 x—9 xr—9
1/2 1/2 o
- { /3175%9:+9+4} = (vo+13) " =162 =[4]
24.
1/3 1/3 1/3
lim (£v/2¢ + 4)/3 = [hm(t\/ﬂ+4)} - [hmt\/ﬂﬂim 4} - [hmt-lim\@+4}
t—2 t—2 t—2 t—2 t—2 t—2
1/3 1/3
_ . : _ _Ql/3 _
- {2 /}1_%(215)—#4] - [2\/2(2)+4} =813 =[2]
25.
2/3 2/3
: 2/3 _ | 15 T o
tlilfll[4t(t+1)] = [t£m14t(t+1)] = [t£m1(4t) tlim1(t+1)}
2/3 23
_ . . . . _ _ _ _ 2/3:
= [4tgm1t <t£m1t+tgm11)] [4(—1)(=1+1)] 0 [0]
2 3/5 2 8/5 2 3/ 2 3/5 3/5
26. lim (22— 22)* = u%(x —QZE)] - {(Ihi%x) —2213%95] = (02 —2(0))3/5 = 0°/5 =
. 2 _ 2 _
27. lim (3t> — 2t +4) = 3(1)* —2(1) +4 [5]
s o 4 — 4 _
28. lim (=3z" + 22 +1) = =3(0)" +2(0) + 1 (1]
4 3
1 1 1 1 31
clim (22 — 82 +4x—5)=2( =) —8(= 4= ) =-b==—-142-5=|—-"—|
29 g};rrlé(x 8x° 4+ 4x — 5) (2) 8<2) + <2> 5 3 + 5 5
1\° 1
: 3 _ _ —
30. mgé@m +9x+1)—27(—3) +9<—3) +1=-1-3+1=|-3]
31. Because the limit of the denominator lirr}1 VI=+V4=2#0,
r—r

: 2
24 Im@THd) 2y 99 9
hm = = = ——= — =

w4 Jz lim /z limz V4 2

- r—4
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32.

33.

34.

35.

36.

37.

38.

39.

40.

Because the limit of the denominator lin% V3z=v9=3+#0,
rT—r

. 2
R R A R L I U Y

lim = = = =|=|
=3 \/3x lim v3z lim 3z V9 3
z—3 r—3
2 3
Because = —2 is in the domain of the rational function R(z) = ;:;Zx,
T —

lim R(z) = R(—2) = 227 +£5(=2) _ =26 13

T—-2 3(-2)—2 -8 4
- . . . 224 — 1
Because x = 1 is in the domain of the rational function R(z) = ———,
33 + 2
) 2(1)* -1 1
lm Rl@) = R = 395555 = |5

Observe that the limit of the denominator is equal to zero. Factoring the numerator and
simplifying yields
2

ot =4 (z—-2)(x42) B
oy =iy = lme =4

Observe that the limit of the denominator is equal to zero. Factoring the denominator and
simplifying yields

T+ 2 . T+ 2
- — —|_

. 1
A T A @ ) ez o2 | 4|

Observe that the limit of the denominator is equal to zero. Factoring the numerator and
simplifying yields

3 — z(x — 1) (x
= i TETDEED g e - 1) = (1) (-2) =[2]

lim
z—=—1 x+1 z——1 x+1 z——1

Observe that the limit of the denominator is equal to zero. Factoring both the numerator
and the denominator and simplifying yields

x4 . 2?(x +1) ) x2 (—1)2 1
hm —_— hm — Y = hm = =|—=
z——1 22 —1 z——1 (,1' — 1)(33 + 1) z——11x —1 —2 2

Observe that
2z 16  20+16 2(x+8)

+ = = =2
r+8 x+8 z+8 z+8
provided that & # —8. Therefore,

2z 16
li = lim 2=|2]|
1m <x+8+m—|—8> 1um

9

r——8 r——8

Observe that
3z 6 73:177673(33—2)73
xr—2 -2 -2 x-=2 7

provided that x # 2. Therefore,

. 3x 6 L _
lim <x—2_x—2) —hm3—.

r—2
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41. Observe that the limit of the denominator is equal to zero. Multiplying numerator and
denominator by 1/z 4+ v/2, the conjugate of \/z — /2, yields
lim\f;\/5 = lim\r_\/i-\/a?—i—ﬂ:lim z=2
=2 r—2 =2 T —2 \/54_\/5 z—>2(m_2)(\/§+\/§)
1 1 1
= lim = = =|V2/4|.
2T +V2 V24V2 22 /
42. Observe that the limit of the denominator is equal to zero. Multiplying numerator and
denominator by \/z 4+ v/3, the conjugate of \/z — v/3, yields
hmﬂ = limf_\/g-ﬁ—i—\/g:lim v-3
z—3 T —3 =3 T —3 \/54_\/3 m—>3($_3)(\/§+\/§)
. 1 1 1
= lim = = .
=3 +V3 V3+V3 [2V3
43. Observe that the limit of the denominator is equal to zero. Multiplying numerator and
denominator by vz + 5 + 3, the conjugate of vz + 5 — 3, yields
lim Ve +5-3 - lim Ve +5-3 \/:c+5+3_hm (x+5)—9
et (z—4)(z+1)  emd(@—4)(@+1) Va+5+3 emi(z—4)(z+1)(Vo+5+3)
. z—4 . 1
= hm = hm
a=d (x —4)(z+ 1)(Ve+5+3) =4 (x+1) (Ve +5+3)
_ 1 |1
(A4+1)(V4+5+3) |[30]
44. Observe that the limit of the denominator is equal to zero. Multiplying numerator and
denominator by v/x 4+ 1 + 2, the conjugate of vz + 1 — 2, yields
l,m\/x+1—2 l,m\/a:+1—2 Ve+1+2 lim (x+1)—4
im-———— = 1l . =1l
s—3  x(x — 3) e=3 z(r—3) Vr+1+2 23z(z-3)(Vr+1+2)
= lim z—3 = lim !
Bz -3)(Ve+142) o3z(Vz+1+2)
_ 1 |1
3(V3+142) [12]
45. lim (z2 —4) = (3)? —4=[5].
T—>3"
46. lim (32% +2) =3(2)° +2 = [14]
r—2
47. Observe that the limit of the denominator is equal to zero. Factoring the numerator and
simplifying yields
2?2 -9 (x —=3)(z+3)
li = lim ————— = 1i 3)=3+3=|6]
e i B e B LA At T
48. Observe that the limit of the denominator is equal to zero. Factoring the numerator and

simplifying yields

2 _ _
T G C ik )k ) BN g P g |

z—3+ x — 3 z—3+ r—3 z—3+
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49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

99.

60.

2
11%17( 9—x2+x)2:<lir§1( 9—$2+x)> :<m+3)2:@.
lim (2v/2% — 4+ 32) = 2v/2" — 4+ 3(2) = [6].
lim [f(2) = 3g(«)] = lim f(2) -3 lim g(a) = 5 —3(2) = -1].

lim[5(x)] = 5 lim f(x) = 5(5) =[25]
lim [g(x)]® = |lim g(gc)}d =23 = .

Tr—c |:£—>C

Because the limit of the denominator is not equal to zero,

. z) lim /(@) lim /(=) 5[5
2 g(@) — h(@)  Im(g(e) ~h(@)  Img(r) ~ EmA(x) 2-0 |2

Because the limit of the denominator is not equal to zero,

h(z) Hmh(z) o
2=

lim [4f(z) - g(x)] = 4 lim f(z) - lim g(z) = 4(5)(2) = [40]

Tr—c r—c xr—cC

Because the limit of the denominator is not equal to zero,

25 [51(1)] - [iaﬂag&f - ll;liéc)] - M -4}

lim v/5¢g(x) —3 = g/lim (5g(z) — 3) = 3/5 lim g(x) —hm3—\/

Tr—cC r—cC Tr—c

(a) lim[f(z) +g(w)] = lim f(x) + lim g(a) = 8 + (~2) =[6].

(b) lim {£(2)lg(x) ~ h(@)]} = lim f(2) (1im g(z) ~ lim h(x) ) = 8(~2 +0) = [-16]

r—4

(¢) lim[f(z) - g(2)] = lim f(z) - lim g(z) = 8(=2) =| ~16|
(d) lim [2h(2)] = 2 lim h(z) = 2(0) = [0]

) z) iﬂg(m) ;2 B 71
© M@ T @ s | 4]
b)) SmhE) o
M@~ @) s s =00
(a) lim {2(f(z) + A >1}—2(hm £(a) + lim h(x)) =200+ (~2)) =[1]

(c) ilg%s\/h \/hmh —2:.
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lim f(z)
1 = = — = .
@ lim 2 = iy = =3 — L
z—3
3
. 3 . _(_o\3 _
(e) lim[a(@))* = (lim h(x)) " = (-2)* =[=8]
(f) Because
lim[f(z) — 2h(x)] = lim f(z) — 2 lim h(z) =0 —2(-2) =4,
z—3 z—3 r—3
it follows that
3/2
i — 3/2 — | _ _ 43/2 _
lim|[f () — 2h(x)] lim (f(x) — 2h(x)) 432 =[8].
61. Let f(x) = 3z% and ¢ = 1. Then
— - f@1 2 -1 1
L@ SO f@ ) 323 3+
z—c T —c z—1 x—1 z—1 1 —1 z—1 r—1
= lim3(z+1)=3(1+1) =[6]
62. Let f(z) = 823 and ¢ = 2. Then
_ _ 3_ _ 2
L@ @ @) f@) st 8- 2)(a? 20 4)
e Tr—c z—2 xr — 2 z—2 xr — 2 T2 r—2
= 8lim(a® + 20 +4) =8(2° +2(2) +4) =[96]
xT
63. Let f(z) = —222 + 4 and ¢ = 1. Then
_ _ _ 9.2 _ _ 9.2
lim f(z) — f(c) — lim flz)— f(1) — lim 20" +4-2 lim 22 +2
T—c T—c z—1 rz—1 z—1 z—1 z—1 x—1
L 2@ -1)(z+1) . _ _
= lim — ——2311_>ml(x+1)——2(1+1)—.
64. Let f(z) =20 — 0.822 and ¢ = 3. Then

65.

66.

lim f(z) = f(c) — m flx)— f(3) — lim 20 — 0.822 — 12.8 — lim —0.822 + 7.2

T—c xr—c z—3 x—3 z—3 x—3 z—3 x—3

. —08(x—3)(x+3) . B -
= lim — = —0.81lim(z +3) = ~0.8(3 +3) =[ -4.8]

Let f(z) = /z and ¢ = 1. Then
i J@ = FQ L f@) SO Vel Va1 Val
T—c Tr—c z—1 r—1 z—=1 x—1 =1 z—1 r+1
I z—1 I 1 1 1
= im ——— = lim = —— ==
a—1 (z—1)(yr+1) =1z +1 1+1 2

Let f(z) = V22 and ¢ = 5. Then

i f@ = flo) o f@ = f6) V22— VI0 L V22— V10 V22 4 V10
T—c Tr —cC B x—5 r—>5 _I~>5 xr—>5 _IH5 xr—25 \/%—i—\/m

2z —10 2 2 1

2 5 (Var 4 VI0) e Vs + VD VIO 4 VIO | VIO |




1.2

Limits of Functions Using Properties of Limits 1-33

67. Let f(z) = 4x — 3. Then

lim
h—0

flz+h) - f(z)

h

68. Let f(x) =3z + 5. Then

lim
h—0

flz+h) - f(z)

h

69. Let f(z) = 322 + 4z + 1.

lim

h—0 h

fl@+h) = f(x)

. 4Axz+h)—3—(42-3) . 4z +4h -3 -4z +3
= lim = lim
h—0 h h—0 h
— am oy 4=4]
= i = o4 =)
. 3x+h)+5-Bzx+5) .. 3x+3h+5-3zx-5
= lim = lim
h—0 h h—0 h
= lim%—lim?)—
o h—0 h TS0 '
Then
. 3x+h)?+4x+h)+1— (32 +4x+1)
lim
h—0 h
_ hm3x2+6xh+3h2+4x+4h+1—3x2—4x—1
RS0 h
h + 3h% + 4h
_ i SRS AR (6x 4 3+ 4)
h—0 h h—0

= 62+3(0)+4=6x+4]

70. Let f(z) = 222 + z. Then

_ 2 . 2
L@ @) 2B+ @ h) = (2021 )
h—0 h h—0 h
224+ dxh+2h2 4+ +h—222 — 2
= lim
h—0 h
dxh + 2h% + h
_ g PR lim (42 + 2h + 1)
h—0 h h—0

71. Let f(x) = 2 Then
x

lim
h—0

flx+h) - fz)
h

72. Let f(x) = % Then

lim
h—0

flz+h) - f(z)

h

Az +2(0) + 1 =4z +1]

2 2 2 2
- h T n +h . 2x—2(xz+h)
1 x+h T _ 1 x4+ x| $(JC -1
R0 h K0 h z(x + h) Hs0 hz(z + h)
lim M lim 2 _ 2 _|_2
h=0 hx(x+h)  w=soz(x+h) xz(x+0) | 22|

_ g T T E L GERE —ar ozt h)?
 h—0 h © h—0 h x2(x + h)?
. 322 =3(x+h)? . 3x?—3x%—6zh — 3h*
= lim ————->~ = lim
h—0 ha?(z + h)? h—0 ha?(z + h)?
o h(G3h) L 6o43h  6+3(0)
w0 hx2(z+h)2 hsox2(z+h)2 22(x+0)2
6z 6

4 x3 |
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73.

74.

75.

76.

e

For x < 1, f(z) = 2z — 3, so that

lim f(z) = lim (22 —3)=2(1) -3 =|-1],

r—1— r—1—

while for > 1, f(x) =3 — z, so that

lim f(z) = lim (3—2)=3-1=/[2]

z—1t z—1t

Because the two one-sided limits as x approaches 1 are not equal, lim1 f(z) does not exist |.
r—

For x < 2, f(z) = 5z + 2, so that

lim f(z) = lim (52 +2) =5(2) +2 =12}

T2~ T2~

while for > 2, f(x) =1+ 3z, so that

lim f(z) = lim (1+3z)=1+3(2) =[7]

z—21 z—21

Because the two one-sided limits as x approaches 2 are not equal, 1i1112 f(z) does not exist |.
r—

For x < 1, f(z) = 3z — 1, so that

lim f(z) = lim 3z —1)=3(1) —1=[2],

r—1— r—1—

while for > 1, f(x) = 2z, so that

lim f(z) = lim 2z =2(1) =[2].

rz—1t rz—1t

Because the two one-sided limits as x approaches 1 are equal to 2,

For z < 1, f(x) = 3z — 1, so that

lim f(z)= lim 3z — 1) =3(1) — 1 =[2],

rz—1- r—1-

while for z > 1, f(x) = 2z, so that

lim f(z) = lim 2z =2(1) =[2].

rz—1t rz—1t

Because the two one-sided limits as x approaches 1 are equal to 2,

For z < 1, f(z) =z — 1, so that

lim f(z) = lim (x—l):l—lZE,

z—1— rz—1-

while for x > 1, f(x) =z — 1, so that
lim f(z) = linll+ Ve—1=+1- :@.
r—r

z—1t

Because the two one-sided limits as x approaches 1 are equal to 0,

lim f(x) = 2]
tim /(x) = 2]
lim f(z) =0/

z—1
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78.

79.

80.

For z < 3, f(z) = V9 — 22, so that
lim f(x) = lim V9—a2=1/9-3=|0]
z—3—

r—3~

while for « > 3, f(x) = Va2 — 9, so that

lim f(z) = lir:r))lJr Va2 —9= \/32—9:@.

r—3t

Because the two one-sided limits as « approaches 3 are equal to 0, liHé f(x)=0|
T—r

2
-9
For x =3, f(x) = %, so that

lm fa) = lm D) gy @D

= lim (z+3)=3+3=[6],

z—3— z—3- T — 3 T—3~ r—3 z—3—
and
. o2t—=9 . (z+3)(z—3) .
Jm fe) = lim T— = lm ———o— = lim (2 +3)=3+3=[6]

Because the two one-sided limits as = approaches 3 are equal to 6, | lim f(z) =6 |.

T—3
For = 2, f(z) = “=2 4o that
or & =2, f(z) = 35—, so tha
-2 -2 1 1 1
hmf(x):limL:limm—:lim =——=|—|
T—2- e—2- 22 —4 a2 (x—2)(x+2) ao2-ax+2 242 |4
and
T —2 T —2 1 1 1
1. = 1. —_— 1. —_— 1. —_—m — = — |
. - . 1
Because the two one-sided limits as « approaches 2 are equal to 7 hm2 flz) = 1l
T—r

Applications and Extensions

81.

82.

For t <1,
lim w;(¢) = lim 0=0,
t—1- t—1-

while for ¢ > 1,
lim uy(t) = lim 1=1.

t—1+ t—1t

Because the two one-sided limits as x approaches 1 are not equal, | lim u; (t) does not exist |

t—1

For t < 3,
lim wz(t) = lim 0=0,
t—3- t—3-

while for ¢ > 3,
lim us(t) = lim 1=1.
t—3+t t—3+

Because the two one-sided limits as « approaches 3 are not equal, }milg usz(t) does not exist |.
—
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. (x+h)2—2* | a?42zh+h?P—2* | h(2x+h) _
5. Jim, ST im Ty meerh [zl
84.
hm\/x+h—\/§ B Hm\/x+h—\/§.\/m+h+\/§_hm (x+h)—x
h—0 h h—0 h \/I+h+\/5 h%Oh(\/‘T+h+ﬁ)
. h . 1 1
= lim ———— = lim = .
h=0 h(vT +h+ ) h=0\x+h+/x 2\/x
85.
1 1 1 1
iR "z _ owo mth oz T(@+h) . w—(x+h)
%,113) h B %gr%) h z(x + h) = S0 hz(x+h) flllgb hz(z + h)
. 1 1
= —m —-—-:=|———7|
h—0 z(x + h) z?
86.
11 1 1 3 3 3 3
lim @t+h)? 23 ~ lim @t h)? 23 T (x—l—h) _ x —(l’+h)
h—0 h h—0 h 23(x+h)®  hso had(x 4+ h)3
a3 — a3 —322h — 3zh? — K . h(3z% + 3zh + h?)
= lim =—lm
h—0 ha3(x + h)3 h—0  had(z+ h)3
. 322+ 3zh + h? 322 3
= —lm—r————=—— = —— |
h—0  z3(x + h)3 a0 x?
87. Observe that
1 1 4-(4+2)
442 4 AMd+z)  A@d+az)
so that
lim 1 1 1 lim 1 x lim 1 1
im |— ——)|=lm |- (———— || =—lm —— =|—— |
a—0 [z \4d4+2 4 a—0 [z \ 44+ x) 0 4(4 4 x) 16
88. Observe that
11  (z+4)-3_ z+1
3 z+4  3@+4)  3a+4)
so that
lim 2 (Lo 1 = lim _2 (el —limi—z
e=-1|z+1\3 z+4)| as-1|z+1\3@@+4)/)] «=-13@+4) |9
. x—7 . x—7 Ve+2+3 . (z=-T)(Vzr+2+3)
89. lim ——— = Ilim . = lim
e=T\/r+2—3 =T\ +2-3 Vr+24+3 o7 (x+2)—-9
-7 243
— g OEDWVER2ES) (a2 43) = VB4 3=[6]
=7 J,‘—? x—7
90 x—2 x—2 \/$+2+2_1. (x—2)(Vx+2+2)

=2\ + 2 — 2 e2\/r+2-2 Jr+2+2 a2 (x42)—4
—2 242
lim (&= 2 e ):nrnz(m+2+2):ﬂ+2=~
T—

r—2 xr —
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23 —32x2 43z -1 . (x—1)3 i
T TG e e - D=1-1=[0]
02. lim DO LAy @R DE 6 gy 2 g1 =[]
" z-3 z2+6x+9 C a——3 z2+6x+9 a3 - o ’

93. (a) Using the rate schedule provided,

9.00, if 0<z<10
Clay = 4 9:00+0.95(z —10), if 10 <z <30
=\ 28.00+1.65(z —30), if 30 <a < 100
143.50 + 2.20(z — 100), if 2 > 100.

(b) The domain of C is the set | {z]|z > 0} |

(c) Start with the one-sided limits:

lim C(z) = lim 9.00 = 9.00
T—5~ r—+5~
lim C(z) = lim 9.00 = 9.00
z—5t z—5t1
lim C(z) = lim 9.00 = 9.00
r—10— r—10—
lim C(z) = lim [9.00+ 0.95(z — 10)] = 9.00 + 0.95(10 — 10) = 9.00
r—10+ z—10+
lim C(z) = lim [9.00 4 0.95(z — 10)] = 9.00 -+ 0.95(30 — 10) = 28.00
rz—30~ rz—30~
lim C(z) = lim [28.00 + 1.65(xz — 30)] = 28.00 + 1.65(30 — 30) = 28.00
z—30+ z—30+
lim C(z) = lim [28.00 4+ 1.65(x — 30)] = 28.00 + 1.65(100 — 30) = 143.50
x—100— z—100~
lim C(z) = lim [143.50 + 2.20(z — 100)] = 143.50 + 2.20(100 — 100) = 143.50
z—100t+ z—1001

Based on these one-sided limits, it follows that

lim C(z) =9.00, lim C(x)=9.00, lim C(z)=28.00, and lim C(z)=143.50|
z—10 z—30

r—5 z—100

d) lim C(z) = lim 9.00 = .
(d) lim C(z)= lim

(e) The graph of C' is shown below.

Quarterly water cost (dollars)

—ttt+—t—t—t—
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
Water usage (thousands of gallons)
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94. (a) Let = denote the monthly amount of electricity (in kWH) used by a customer. Each
customer is assessed a fixed charge of $7.87 regardless of how little or how much
electricity is used. In addition to the fixed charge, each customer pays a variable
charge of $0.02173 for every kWH of electricity used up to and including 1000 kWH.
So, for a customer using  KWH of electricity, the variable charge is $0.02173z. Again,
this variable rate is applied for usage up to and including 1000 kWH. The total charge
for usage = up to and including 1000 kWH (0 < = < 1000) is $7.87 4+ $0.02173x.

For usage over 1000 (z > 1000), the customer is charged $0.03173 per kWH for every

hour over 1000. Since x denotes the total usage, the quantity (z — 1000) denotes
the number of kWH over 1000. For these customers, the total charge for the first
1000 hours is $7.87 + $0.02173(1000) = $29.60. For x > 1000, the additional fee is

0.02183(x — 1000).
The final piecewise function is

Cla) = 7.8740.02173z it 0<a2 <1000
)= 29.60 4 0.03173(z — 1000)  if 2 > 1000

(b) The domain of the function is any nonnegative real number, {z|z > 0}.
(c) Since lim (7.87+0.02173x) = 7.87 + 0.02173(50) = 89565 and lim C() =
r—o0™ r—
(7.87 4 0.02173z) = 7.87 + 0.02173(50) = 8.9565, we conclude lirr510 C(z) = 8.9565.
—

(d) As the usage () gets closer and closer to zero, the total cost gets closer and closer to
the fixed cost of $7.87. 1i1’8+ C(x) =7.87.
r—

(e) The graph of C(x) is shown below. The graph consists of two lines with different
slopes.

[

|3kT
95. (a) Solving the equation $mv?* = 3kT for v(T) yields v(T) = 3— Thus,
m

. . 3kT 3k
fim o) = oy S = A T =1

(b) Answers will vary. One interpretation is that as the temperature of a gas approaches
absolute zero, the average speed of the molecules in the gas also approaches zero. In

other words, ‘ the molecules in the gas stop moving ‘

96. (a) For h < 0,2+ h <2, sothat f(2+h) =3(2+h)+5=3h+ 11. Thus,

f2+h)—f(2) 3h+11—11 3h .
—_— 1 3= .3 .
h—0~ h h—0~ h hso- B heo- E
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(b) For h > 0,24 h > 2, so that f(2+h) =13 — (24 h) = 11 — h. Thus,

_ f@+h)—f@ .. 11—-h-11 _  —h
1 — - -7 =] _ =1 — =1 —1=|-1]
Jim == Jim — Jim === lim —1=[-1]

(¢) Because the two one-sided limits as h approaches 0 are not equal, }1Lir%
—

does not exist |.

97. Consider the one-sided limits:

lim |z|= lim (—x) =0
z—0~ z—0~
and
lim |z| = lim z=0]|
z—0t1 z—0t1

Because the two one-sided limits as « approaches 0 are equal to 0, lir% |z| = 0.
T—>

98. lim |z| = lim Va2 = , /lim 22 = 0 = 0.
x—0 z—0 0

r—

99. Answers will vary. One possibility is the following. Let

1, if x<2 ro0, if x<2
f(l“):{(), if x>2 > g(x)—{L if x>2 p

and ¢ = 2. Then
lim f(z)= lim 1=1and lim f(zr)= lim 0=0
z—2+

r—2~ r—2~

so that lim f(z) does not exist, and
T—2

lim g(z) = lim 0=0and lim g(z)= lim 1=1

T—2— T2~ z—2t r—21

so that lim2 g(z) does not exist. However, (f+g)(x) = 1 for all = so that hmz[f(x) +g(z)] =
T—r r—
1.

100. Answers will vary. One possibility is the following. Let

1, if z<2 [0, if z<2
f(x):{Q if £>2 > g(x)*{l if ©>2 ¢

and ¢ = 2. Then
lim f(z)= lim 1=1and lim f(z)= lim 0=0
z—2+ ]

T2~ T—2~

so that lim f(z) does not exist, and
T—2

lim g(z) = lim 0=0and lim g(z)= lim 1=1

T2~ T2~ z—2t r—21

so that lin12 g(x) does not exist. However, (f-g)(z) = 0 for all z so that lirnQ[f(as)g(x)] = 0.
T— r—
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101. Answers will vary. One possibility is the following. Let
2, if z<1 1 if <1
f<$):{ o i a>1 9(5”)—{ ECTRRTSEN
and ¢ = 1. Then
li = lim 2=2and 1l = lim —-2=-2
Jim f(@) = lim 2=2and lim f(z) = lim,
so that lirn1 f(z) does not exist, and
r—
li = lim 1=1and I = lim —-1=-1
m—1>Hll* g(z) zi>nll* an ri>nl1Jr g(x) zi>nllJr
. . AV [ f@)] _
so that lim g(z) does not exist. However, | = |(x) = 2 for all = so that lim |—=| = 2.
z—1 g a—1 | g(x)
102. Answers will vary. One possibility is the following. Let
1, if x<0
f(x)Z{ 21, i 23>0
and ¢ = 0. Then
li = lim 1=1and 1l = lim —-1=-1
Jim f(@) = lim 1=land lim f(z) = lim,
so that lir% f(z) does not exist. However, |f(z)| =1 for all z so that lir% [f(z)] =1.
T— T—
103. Let f(x) = k, where k is any real number, and let g be a function for which lim g(z)
r—c
exists. Then liLn f(x) exists and is equal to k, so that by the Limit of a Product Theorem,
lim [f(x)g(x)] exists and lim[f(z)g(z)] = lim f(z) - lim g(z). It then follows that
T—c T—c r—c T—c
tim [kg(2)] = lim [/ (2)g(x)]
exists, and
tim [kg(@)] = lim £(@)g(x)] = lim £(2) - lim g(a) = k lim g(z).
104. Let ¢ be a number in the domain of the rational function R(z) = 22 where p and ¢ are

~ q(@)
both polynomial functions. Because ¢ is in the domain of R, ¢(c) # 0. Moreover, because
q is a polynomial function, lim g(z) = ¢(c¢) # 0. Therefore, by the Limit of a Quotient

r—c

Theorem and the Limit of a Polynomial Theorem,

im R(x) = im@—L—%p(I) —@— c
i—»cR( )_ i—)c q(a:) o lim q(x) B q(c) - R( )

Tr—cC

Challenge Problems

105.

When n is a positive integer,

" — gt = (m _a)(xn—l +a$n—2 +CL2$”_3 +_..+an—2x_~_an—1),

so that
) v — g ) (l‘ _ a)(xnfl + axn72 + a2xn73 4t an72x + anfl)
lim = lim
r—a T — a r—a Tr—a
— lim (xn—l +amn—2 4 a2$n—3 N _’_an—Zm +an—1)
r—a

— anfl +aan72+a2anfd +..'+an72a+an71 — nanfl )
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106. If n is an even

positive integer, then

lim (2" +a")=(—a)"+a" =24" and lim (x+a)=—-a+a=0,

r——a

so that

Tr——a

. z" 4+ a”
lim —
z—=—a T+ a

. On the other hand, if n is an odd positive integer, then

" +a" =

so that

. z" 4+ a”
lim —
z—=—a T+ a

1 axn72 +a2xn73 = an72x +an71)

(@+a)(@" "+ (=) + (=a)’2" 7 4 4 (—0)" Pt (—a)" ),

(z+a)(a"™

i @F @+ (ca)a" 2+ (—a)?2" - (—a)" P+ (—a)"T)
r——a T+ a
lim (2" ' 4 (—a)z" 2 + (—a)?z" 3 + -+ (—a)" 2z + (—a)" )

Tr——a

(=a)" "+ (—a)(—a)" 2 + (—a)*(=a)" P + - 4 (—a)" T (—a) + (—a)"

107. When m and n are positive integers,

and

Thus,

r—1

108.
1+ zx—-1
lim ——
x—0 €T

" —1=(z— D™ 2™ 24 em a4 1)

" —1=(z— D" +a2" 242" S 1)

™ —1 . (x =)@t 4am24+am 3 4.t +1)
= 111
xn —1 1 (.’IJ—1)(%‘”_1+$7l_2+$”_3+"-+$+1)

I T e o e R S e

= lim

1 xn71+xn72+xn73+._,+x+1

m terms
1+14+1+---+1
I+14+14---41

n terms

s|3

lim VT+z—-1 YA+ +V1+z+1

= ]l .

=0 x YA+ +T+z+1

) 1+x)—1 . x

lim — = lim

=0 g(/(1+a)2+YT+a+1) ==0z(/A+a)2+YT+x+1)

1 1 1
= lim = R
=0 T+a)P+VT+z+1 VI+V1+1
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109.
y (I1+az)(1+bzx)—1 lim \/(1+a:17)(1—|—bx )—1 V(L +az)(l+bx)+1
im = lim
z—0 x z—0 vV +ax)(1+bx)+1
— lim (1 +ax)(1+bx)—1 — lim 1—|—(a—|—b)x—|—abx2—1
=0 x(\/(1+ax)(1+bx)+1) «=02(/(1+ax)(1+bx)+1)
z[(a 4+ b) + abx] 'm (a+0b) + abx
93%0:5\/14—@3: (I+bx)+1) ==0,/(14+azx)(1+bx)+1
a+ b+ ab(0) _|a+b
(1+0)(1+0)+1 2 |
110. Note that
I+az)1+ax) - 14+az) = 1+ (a1+as+- - +apz

+ terms containing ™ where m > 2,

so that

(14a1z)(14asz) - - - (14apz)—1 = (a1+as+- - -+a,)x+ terms containing 2™ where m > 2.

Thus,

lim VI +aiz)(1+ax) - (1+az) — 1
x—0 x€X

= lim

VI +aiz)(1+ax) - (1+apx) — 1 . VI +az)(1+a) -

(1+apz)+1

z—0 x VI +aiz)(1+a) -

im (I+a1z)(1+agx) - (14+apx)—1
=0 2(\/(L+ a12)(1 + ag) -+ (1 + apz) +1)
~ i (a1 +ag + -+ ap)x + terms containing 2™ where m > 2

=0 z(/(1 +a1z)(1 +azz) - (1 + a,z) + 1)
— lim (a1 +az+---+a,)+ terms containing 2™ where m > 1
z—0 VI +az)(1+agz) - (1 +apz) +1
aptas+---+a,+0 Jartax+---+ay

VI+1 N 2

lim =
h—0- h h—0- h h—0-

For z > 0, f(z) = z(z) = 2%, Thus,

— 2
im M: lim h OZ lim A =0.
B0 h h—0+ h h—0+

Because the two one-sided limits as h approaches 0 are equal to 0,

i 1010 _ 51

h—0 h

1+apz)+1
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1.3 Continuity

Concepts and Vocabulary

1.

2.

10.

11.

12.

. A polynomial function is continuous at every real number.

. Piecewise-defined functions may not be continuous at numbers where the function
changes equations.

. The three conditions necessary for a function f to be continuous at a number ¢ are

f(c) is defined |, il_)mc f(x) exists|, and glcl_>mc flx)=f(o)|

. . If f(z) is continuous at 0, then g(z) = 1 f(z) is continuous at 0.

. . If f is a function defined everywhere in an open interval containing ¢, except

possibly at ¢, then the number c is called a removable discontinuity of f if the function f
is not continuous at ¢ but lim f(x) exists.
xr—c

. . If a function f is discontinuous at a number ¢, then it might be the case that

lim f(z) does not exist. However, the function could be discontinuous at ¢ because lim f(z)
T—c r—c
exists but either f(c) is not defined or lim f(z) # f(c).

r—cC

. . If a function f is continuous on an open interval (a,b), then it is continuous on the

closed interval [a, b] only if the function is also continuous from the right at the number a
and continuous from the left at the number b.

. . If a function f is continuous on the closed interval [a,b], then f is continuous on

the open interval (a, b).

. This function is . When the ball lands on the ground and stops, there will

be a jump discontinuity as the velocity abruptly changes from a nonzero value to zero.

This function is . Though the temperature might change rapidly when the
oven is first turned on and then again after the oven is turned off, there will be no abrupt

jumps in the temperature.

. If a function f is continuous on a closed interval [a, b], then the Intermediate Value
Theorem guarantees that the function takes on every value y between f(a) and f(b).

. If a function f is continuous on a closed interval [a,b] and f(a) # f(b), but both

f(a) > 0 and f(b) > 0, then f may have a zero on the open interval (a,b), but the
Intermediate Value Theorem cannot guarantee that a zero exists. The Intermediate Value
Theorem can never guarantee that a function does not have a zero on a particular interval.

Skill Building

13.

(a) The function f is ‘ not continuous at ¢ = —3 ‘
(b) Although f is defined at ¢ = —3 with f(—3) =1 and 1im3f(as) = -2,
T—>—

Timf() £ (-3)]
(¢) The discontinuity at ¢ = —3 is because lim3 f(z) exists.
T——
(d) Redefine f at ¢ = —3 so that | f(—3) = -2 |= limgf(x). The resulting function will
T—>—

then be continuous at ¢ = —3.
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14. (a) Because f is defined at ¢ = 0 with f(0) = 2, lir% f(z) =2, and lin% f(z) = f(0), the
function f is at ¢ = 0.
15. (a) The function f is ‘ not continuous at ¢ = 2 ‘
(b) Although f is defined at ¢ = 2 with f(2) = 3, lim2 f(z) does not exist |
r—r
(¢) The discontinuity at ¢ = 2 is because lim2 f(z) does not exist.
r—
16. (a) The function f is at ¢ = 3.
(b) Though f is defined at ¢ = 3 with f(3) = —1, lin}g f(z) does not exist |.
T—>
(¢) The discontinuity at ¢ = 3 is because lin}3 f(z) does not exist.
r—
17. (a) Because f is defined at ¢ = 4 with f(4) = 0, hnﬁ f(z) =0, and linﬁ f(x) = f(4), the
r— r—
‘function f is continuous at ¢ =4 ‘
18. (a) The function f is at c=05.
(b) The function f is discontinuous at ¢ = 5 because ‘ f is not defined at ¢ = 5| and be-
cause
lim f(z) =—-3and lim f(z) =1 so that | lim f(z) does not exist |.
r—5— r—5+ T—5
(¢) The discontinuity at ¢ =5 is , because liH% f(z) does not exist,
z—
19. The domain of the function f(x) = 22 4 1 is the set of all real numbers, so f is defined at

20.

21.

¢ = -1 with f(—1) = 2. Next,

lim f(z) = 13311(3:2 +1)=(-1)*+1=2,

rz——1

so that limlf(x) exists. Finally, lim1 f(x) = f(—1). Because all three conditions of the
T — T——

definition of continuity at ¢ = —1 are satisfied, the function f is ‘ continuous at ¢ = —1|.

The domain of the function f(z) = 23 — 5 is the set of all real numbers, so f is defined at
¢ =5 with f(5) = 120. Next,

. IERT 3 _ 3 _ 5 _
lim f(x)fil_%(x 5) =5 —5 =120,

r—5

so that lim5 f(z) exists. Finally, lim5 f(z) = f(5). Because all three conditions of the
T T—

definition of continuity at ¢ = 5 are satisfied, the function f is at ¢ = 5.

Because x2 + 4 is never equal to zero for any real number z, the domain of the function
flz) = ﬁ is the set of all real numbers. Thus, f is defined at ¢ = —2, with f(-2) =
x

—i. Next,

. . x —2 1
L, () = I, g = (-22+2 4

so that lim2 f(x) exists. Finally, lim2 f(z) = f(—2). Because all three conditions of the
T——

z——

definition of continuity at ¢ = —2 are satisfied, the function f is ‘ continuous at ¢ = —2|.
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22.

23.

24.

25.

26.

27.

28.

29.

The domain of the function f(z) = z 5 is the set {z|z # 2}. Because f is not defined
T —

at ¢ = 2, the function f is at ¢ = 2.

The domain of the function f is the set of all real numbers, so f is defined at ¢ = 2 with
f(2) =2(2) +5=29. Next,

lim f(z)= lim (224+5)=9 and IEIIQlJr f(z) = lim (4o 4+1) =9,

T—2~ T—2~ r—2+

so that lim2 f(x) exists and is equal to 9. Finally, 111112 f(x) = f(2). Because all three condi-
r— r—r

tions of the definition of continuity at ¢ = 2 are satisfied, the function f is
’continuous at c =2 ‘

The domain of the function f is the set of all real numbers, so f is defined at ¢ = 0 with
f(0) =2(0) + 1 = 2. Next,

lim f(z)= lim (2z+1)=1 and 111%1+ f(z)= lim 2z =0,
T—r

z—0~ z—0~ z—0t

so that lin}) f(z) does not exist. Therefore, the function f is at ¢c=0.
r—

The domain of the function f is the set of all real numbers, so f is defined at ¢ = 1 with
f(1) = 4. Next,

lim f(z)= lim 3z —1)=2 and lim f(z)= lim 2z =2,

z—1— z—1— z—1t z—1t

so that lim1 f(z) exists and is equal to 2. However, lim1 f(z) # f(1), so the function f is
T— T—

’not continuous at ¢ =1 ‘

The domain of the function f is the set of all real numbers, so f is defined at ¢ = 1 with
f(1) = 2. Next,

lim f(z)= lim 3z —1)=2 and lim f(z)= lim 2z =2,

z—1— z—1— z—1t z—1t
so that lirn1 f(x) exists and is equal to 2. Finally, lim1 f(z) = f(1). Because all three
r— T—
conditions of the definition of continuity at ¢ = 1 are satisfied, the function f is

at ¢ = 1.

The domain of the function f is the set {z|x # 1}. Because f is not defined at ¢ = 1, the
function f is ’ not continuous at ¢ =1 ‘

The domain of the function f is the set of all real numbers, so f is defined at ¢ = 1 with
f(1) = 2. Next,

lim f(z)= lim 3z —1)=2 and lim f(z)= lim 3z =3,

r—1— r—1— r—1t z—1t

so that lim1 f(z) does not exist. Therefore, the function f is at c=1.
r—r

The domain of the function f is the set of all real numbers, so f is defined at ¢ = 0 with
f(0) = 0. Next,

lim f(z)= lim 2° =0 and lim f(z) = lim 2z =0,

z—0— z—0— z—0*t z—0t

so that lir% f(z) exists and is equal to 0. Finally, lin}) f(z) = f(0). Because all three condi-
z— z—>

tions of the definition of continuity at ¢ = 0 are satisfied, the function f is
continuous at ¢ =0 ‘
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30.

31.

32.

33.

34.

35.

36.

The domain of the function f is the set of all real numbers, so f is defined at ¢ = —1 with
f(=1) = 2. Next,

lim f(z)= lim 2°=1 and lim f(z)= lim (-3z+2) =5,

z——1— r——1— r——1* r——1+

so that hm1 f(x) does not exist. Therefore, the function f is at c = —1.

T——

The domain of the function f is the set {z|z < 4}, so f is defined at ¢ = 0 with f(0) = 4.

Next,
lim f(zr)= lim (4—32%) =4 and lim f(z)= lim 4/ 16 =22 2
@—0-  a0- B o0+ stV 44—z 7

so that limO f(z) does not exist. Therefore, the function f is ’ not continuous at ¢ = 0|
xT—r

The domain of the function f is the set {x|z > —4}, so f is defined at ¢ = 4 with

f4) = V8 = 2v/2. Next,
lim f(z) = lim V442 =2V2

r—4- r—4-

and

2-3zx—4 —4 1
lm f(z) = lim )BT gy, JEENERD T TV
r—4+ r—4+ r—4 z—4t z—4 r—44
so that lirI}1 f(z) does not exist. Therefore, the function f is at ¢ =4.
T—

Because 2y ( 2)( 2)
. .oxt = . r—2)(r+ .
S I BErECE L

‘f(2) should be assigned the value 4 ‘ Then 111112 f(x) = f(2), and the resulting function
z—

will be continuous at ¢ = 2.

Because

24+ —12 — 4
lim f(z) = lim ete—12 . (@-3)(z+4)

x—3 z—3 x—3 x—3 x—3

=lim(z+4) =71,
r—3

‘f(?)) should be assigned the value 7 ‘ Then liHé f(x) = f(3), and the resulting function
T—r

will be continuous at ¢ = 3.

Because
lim f(z)= lim (1+2z)=2 and lim+ f(z) = lim 2z =2,
z—1

r—1— r—1— z—1t

it follows that lim1 flx) =2, s0 ‘f(l) should be assigned the value 2 ‘ Then 1im1 flx) =
r— r—

f(1), and the resulting function will be continuous at ¢ = 1.

Because

lim f(z) = lim (2> +5x)=—-4 and lim f(z)= lim (z—3) = —4,

z——1— r——1— z——1+ z——1+

it follows that lim1 flx) = —4, so ‘ f(—1) should be assigned the value —4 ‘ Then
T——

lim1 f(z) = f(—1), and the resulting function will be continuous at ¢ = —1.
T——
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37.

38.

39.

40.

2 _
The domain of the function f(z) = v
T —

39 is the set {z|z # 3}. Since f is not defined at

3, f is | not continuous on the interval [—3, 3] ‘

Let ¢ be any number in the open interval (—3,3). Then

-9 -9

li =1 =
IIE)I}:‘ f((E) :I/’ll)r}: r—3 c—3 f(C)’
so f is continuous on the open interval (—3,3). Also,
22 -9
li = =0= f(-3),
mJIfr%’)Jr f(x) z——-3+ T —3 f( )
so f is also continuous from the right at ¢ = —3. However, since ¢ = 3 is not in the

domain of f, f is not continuous from the left at ¢ = 3. Therefore, the function f is

’ continuous on the interval [—3,3) ‘

1
The domain of the function f(z) =14 — is the set {z|x # 0}. Since f is not defined at 0,
x

fis ‘ not continuous on the interval [—1, 0] ‘

Let ¢ be any number in the open interval (—1,0). Then

lim f(z) = lim (1—1— i) =1+ % = f(c),

Tr—cC Tr—cC

so f is continuous on the open interval (—1,0). Also,
z——1t r——1*

lim f(z)= lim <1+ i) —=0=f(-1),

so f is also continuous from the right at ¢ = —1. However, since ¢ = 0 is not in the
domain of f, f is not continuous from the left at ¢ = 0. Therefore, the function f is

’ continuous on the interval [—1,0) ‘

1
The domain of f(r) = ———= is the set {z| |x| > 3}, so that f is not defined anywhere
V-9

on the closed interval [—3, 3]. Therefore, the function f is

’not continuous at any number in the interval [—3, 3] ‘

The domain of the function f(x) = v9 — z2 is the set {z| -3 < = < 3}, so that f is defined
on the closed interval [—3,3]. Let ¢ be any number in the open interval (—3,3). Then

lim f(x) = lim V9 — 2% = /9 — 2 = f(c),

Tr—c

so f is continous on the open interval (—3,3). At ¢ = —3,

lim f(z)= lim +9—22=0= f(-3),

r——31 r——31
so f is also continuous from the right at ¢ = —3. Finally, at ¢ = 3,
lim f(z)= lim v9—22=0= f(3),
z—3~ z—3~
and f is continuous from the left at ¢ = 3. Therefore, the function f is

continuous on the closed interval [—3, 3] ‘
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41.

42.

43.

44.

45.

46.

47.

1
Let g(z) = 222 + 52 and h(x) = —. The domain of the polynomial function g is the
x

set of all real numbers, and the domain of the rational function h is the set {z|z # 0}.
Each function is continuous on its domain. Because the function f is the difference of the
functions ¢ and h, the domain of f is the intersection of the domains of g and h; that

is, the ‘ domain of f is the set {z|x # 0} ‘ The function f is continuous for all values z at

which both g and h are continuous, so that f is ‘ continuous on the set {z|z # 0} ‘

2z
Let g(z) = 2 + 1 and h(z) = 50—
x
set of all real numbers, and the domain of the rational function h is also the set of all
real numbers (because 2% + 5 is never equal to zero for any real number x). Each func-
tion is continuous on its domain. Because the function f is the sum of the functions
g and h, the domain of f is the intersection of the domains of g and h; that is, the

. The domain of the polynomial function g is the

‘domain of f is the set of all real numbers ‘ The function f is continuous for all values x

at which both g and h are continuous, so that f is ‘ continuous for all real numbers ‘

Let g(z) = x — 1 and h(z) = 2% + 2+ 1. The domain of the polynomial function g is the set
of all real numbers, and the domain of the polynomial function A is also the set of all real
numbers. Each function is continuous on its domain. Because the function f is the product
of the functions g and h, the domain of f is the intersection of the domains of g and h; that

is, the ‘ domain of f is the set of all real numbers ‘ The function f is continuous for all val-

ues = at which both g and h are continuous, so that f is ‘ continuous for all real numbers ‘

Let g(z) = v/x and h(z) = 2 — 5. The domain of the function g is the set {z|x >
0}, and the domain of the polynomial function h is the set of all real numbers. Each
function is continuous on its domain. Because the function f is the product of the functions
g and h, the domain of f is the intersection of the domains of g and h; that is, the

‘domain of f is the set {z|z > 0} ‘ The function f is continuous at all values 2 at which

both g and h are continuous, so that f is ‘ continuous on the set {z|z > 0} ‘

Let g(z) = — 9 and h(z) = v/x — 3. The domain of the polynomial function g is the set
of all real numbers, and the domain of the function A is the set {z|z > 0}. Each function
is continuous on its domain. Because the function f is the quotient of the functions g
and h, the domain of f is the intersection of the domains of g and h excluding any x for

which h(z) = 0; that is, the ‘domain of f is the set {x|z > 0,2 # 9} ‘ The function f is
continuous for all values = at which both g and h are continuous, excluding any = for which
h(z) =0, so that f is ‘ continuous on the set {z|z > 0,z # 9} ‘

Let g(z) = x — 4 and h(z) = \/z — 2. The domain of the polynomial function g is the set
of all real numbers, and the domain of the function A is the set {z|z > 0}. Each function
is continuous on its domain. Because the function f is the quotient of the functions g
and h, the domain of f is the intersection of the domains of g and h excluding any x for

which h(z) = 0; that is, the ‘domain of f is the set {z|x > 0,z # 4} ‘ The function f is
continuous for all values = at which both g and h are continuous, excluding any « for which
h(z) =0, so that f is ‘ continuous on the set {z|z > 0,z # 4} ‘

2

1
Let g(x) = y/z and h(z) = a _+ .
0}, and the domain of the rational function h is the set {z|x # 2}. Each function is

continuous on its domain. Moreover, the solution of the inequality h(xz) > 0 is the set
{z]z < 2}. Because f is the composition g(h(x)) and h(z) is in the domain of g for

x < 2, it follows that the ‘domain of f is the set {z|z < 2} ‘ Finally, the function f is

The domain of the function g is the set {z|x >
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48.

49.

50.

ol.

52.

53.

54.

continuous at ¢ provided h is continuous at ¢ and g is continuous at h(c); thus, f is

’ continuous on the set {z|z < 2} ‘

4

Let g(z) = /x and h(z) = pERNEE
72 —

0}, and the domain of the rational function h is the set {z|z # £1}. Each function is

continuous on its domain. Moreover, the solution of the inequality h(xz) > 0 is the set

{z| |x| > 1}. Because f is the composition g(h(z)) and h(z) is in the domain of g for
|z| > 1, it follows that the ’domain of f is the set {z| |z| > 1} ‘ Finally, the function f

is continuous at ¢ provided h is continuous at ¢ and g is continuous at h(c); thus, f is

The domain of the function g is the set {z|x >

’ continuous on the set {z| |z| > 1} ‘

Let g(x) = 2%/% and h(x) = 22% + 52 — 3. The domain of the function g is the set of all real
numbers, and the domain of the polynomial function h is also the set of all real numbers.
Each function is continuous on its domain. Because f is the composition g(h(x)) and h(x)

is always in the domain of g, it follows that the ‘ domain of f is the set of all real numbers ‘

Finally, the function f is continuous at ¢ provided h is continuous at ¢ and g is continuous
at h(c); thus, f is ‘ continuous on the set of all real numbers ‘

Let g(x) = #'/? and h(z) = 2 + 2. The domain of the function g is the set {x|z > 0}, and
the domain of the polynomial function h is the set of all real numbers. Each function is
continuous on its domain. Moreover, the solution of the inequality h(z) > 0 is the set
{z|z > —2}. Because f is the composition g(h(z)) and h(z) is in the domain of g for

x > —2, it follows that the ‘domain of f is the set {z|z > —2} ‘ Finally, the function f

is continuous at ¢ provided h is continuous at ¢ and g is continuous at h(c); thus, f is

’ continuous on the set {z|r > —2} ‘

Because f is defined at ¢ = 0 with f(0) = v/15 and

lim f(z) = lim V15 — 3z = V15 = f(0),
x—0 z—0
the function f is at c=0.

Because

i fo) = g Lo =2 =1 bl f(0) = i 2 =2] =2
it follows that ili)l}l f(z) does not exist | and f is at c=4.
Because

Jp fle) = i ©-ah)=0 butlim f(=) = M l= -2 =1,
it follows that :}g% f(x) does not exist | and f is at ¢ = 3.
Because

lim f(z)= lim v15 -3z =3 but lim, f(z) = lim (9 —2?%) =5,
r—

T2~ T2~ r—21

it follows that lim2 f(x) does not exist | and f is at ¢ = 2.
z—
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55. Because f is defined at ¢ =1 with f(1) = V12 = 24/3 and
lim f(z) = lim V15 — 3z = V12 =2V3 = f(1),
xr—r xr—r

the function f is at c=1.

56. Because f is defined at ¢ = 2.5 with f(2.5) = 2.75 and
lim f(z) = lim (9 —2?) =9 —2.5? = 2.75 = f(2.5),

r—2.5 r—2.5

the function f is at ¢ = 2.5.

57. (a) A graph of the function f is shown below

3 2 i i 2 3
(b) Based on the graph from part (a), the function f appears to be
‘ continuous on the set of all real numbers ‘

(c) The polynomial functions 2 —8 and x—2 are continuous on the set of all real numbers.
Because the function f is the quotient of these two polynomials, f is continuous on
the set of all real numbers excluding any values for x at which x — 2 = 0. Thus, f is

‘ continuous on the set {z|z # 2} ‘

(d) Answers will vary. One possible response is that graphing technology can be a useful
tool to suggest where a function is continuous, but “conclusions” drawn from graphing
technology should always be confirmed using some basic analysis.

58. (a) A graph of the function f is shown below

05 T

' ' ' ' '
-3 -2 -1 / 2 3

-0.5 T
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99.

60.

61.

62.

63.

64.

65.

(b) Based on the graph from part (a), the function f appears to be

‘ continuous on the set of all real numbers ‘

(c) The polynomial functions 22 — 3z + 2 and 3x — 6 are continuous on the set of all
real numbers. Because the function f is the quotient of these two polynomials, f is
continuous on the set of all real numbers excluding any values for x at which 3xz—6 = 0.

Thus, f is ‘ continuous on the set {z|x # 2} ‘

(d) Answers will vary. One possible response is that graphing technology can be a useful
tool to suggest where a function is continuous, but “conclusions” drawn from graphing
technology should always be confirmed using some basic analysis.

The polynomial function f(r) = 2® — 3z is continuous for all real numbers, so it is
continuous on the closed interval [—2,2]. Because f(—2) = (-2)3 — 3(-2) = -2 <
0 and f(2) = 22 — 3(2) = 2 > 0, the Intermediate Value Theorem guarantees that

’ f must have a zero on the interval (—2,2) ‘

The polynomial function f(z) = x*—1 is continuous for all real numbers, so it is continuous
on the closed interval [—2,2]. Because f(—2) = (—=2)*—1=15>0and f(2) =2* - 1=
15 > 0, the ‘Intermediate Value Theorem gives no information‘ about the presence of a

zero of f on the interval (—2,2).

x
(z 4 1)
difference of a rational function and a polynomial function, it is continuous on its domain.
It follows that f is continuous on the closed interval [10,20]. Now,

The domain of the function f(x) = — 1 is the set {z|x # —1}. Because f is the

10 111 20 421
10)= — —1=-"—c0 and f(20)=— —1=—-"c
F0) =113 o <0 and fR0)= o3 a1 =

so the ‘Intermediate Value Theorem gives no information ‘ about the presence of a zero of
f on the interval (10, 20)

The polynomial function f(r) = 23 — 222 — 2 + 2 is continuous for all real numbers, so it
is continuous on the closed interval [3,4]. Because f(3) = 3% —2(3)2 -3 +2=28> 0 and

f(4) =4%-2(4)2—4+2 =30 > 0, the ‘ Intermediate Value Theorem gives no information
about the presence of a zero of f on the interval (3,4).

3

-1
The domain of the function f(z) = ’ 7 is the set {z|z # 1}. Because the closed interval

[0, 2] contains = 1, f is not continuous on this interval, so the Intermediate Value Theorem

does not apply. Therefore, the ‘Intermediate Value Theorem gives no information | about

the presence of a zero of f on the interval (0, 2).

2
3r +2
The domain of the function f(z) = % is the set {x|z # +1}. Because the closed
2 —
interval [—3,0] contains x = —1, f is not continuous on this interval, so the Intermediate

Value Theorem does not apply. Therefore, the ‘Intermediate Value Theorem gives no

about the presence of a zero of f on the interval (—3,0).

The polynomial function f(z) = 2® + 3z — 5 is continuous for all real numbers, so it is
continuous on the closed interval [1,2]. Because f(1) = 1> +3(1) =5 = —1 < 0 and
f(2) =23 +3(2) — 5 =9 > 0, the Intermediate Value Theorem guarantees that f must
have a zero on the interval %1, 2). To approximate this zero, subdivide the interval [1, 2]
into 10 subintervals, each of length 0.1, and evaluate f at each endpoint. The results
are shown in the first two columns of the table below. Because f(1.1) = —0.369 < 0 and
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f(1.2) = 0.328 > 0, the Intermediate Value Theorem guarantees the zero lies in the interval
(1.1,1.2). Repeating the process by subdividing the interval [1.1,1.2] into 10 subintervals
of length 0.01 yields the results in the middle two columns of the table, where the function
values have been rounded to five decimal places for display purposes. The zero has now
been bracketed in the interval (1.15,1.16). Repeating the subdivision process once more,
the results in the last two columns of the table are produced, again with the function
values rounded to five decimal places. Examining the function values in the last column,
it follows that the zero of the function f is , correct to three decimal places.
[1,2] [1.1,1.2] [1.15,1.16]
z f(x) z f(z) x f(x)
1.0 —1.000 1.10  —0.36900 1.150 —0.02913
1.1 —0.369 1.11  —0.30237 1.151 —0.02215
1.2 0.328 1.12  —0.23507 1.152 —0.01518
1.3 1.097 1.13 —0.16710 1.153 —0.00819
1.4 1.944 1.14  —0.09846 1.154 —0.00120
1.5 2.875 1.15 —0.02913 1.155 0.00580
1.6 3.896 1.16 0.04090 1.156 0.01280
1.7 5.013 1.17 0.11161 1.157 0.01982
1.8 6.232 1.18 0.18303 1.158 0.02684
1.9 7.559 1.19 0.25516 1.159 0.03386
2.0 9.000 1.20 0.32800 1.160 0.04090
66. The polynomial function f(x) = 23 — 4z + 2 is continuous for all real numbers, so it is
continuous on the closed interval [1,2]. Because f(1) = 1° —4(1) +2 = —1 < 0 and
f(2) =23 —4(2) + 2 = 2 > 0, the Intermediate Value Theorem guarantees that f must
have a zero on the interval (1,2). To approximate this zero, subdivide the interval [1, 2]
into 10 subintervals, each of length 0.1, and evaluate f at each endpoint. The results
are shown in the first two columns of the table below. Because f(1.6) = —0.304 < 0 and
f(1.7) = 0.113 > 0, the Intermediate Value Theorem guarantees the zero lies in the interval
(1.6,1.7). Repeating the process by subdividing the interval [1.6,1.7] into 10 subintervals
of length 0.01 yields the results in the middle two columns of the table, where the function
values have been rounded to five decimal places for display purposes. The zero has now
been bracketed in the interval (1.67,1.68). Repeating the subdivision process once more,
the results in the last two columns of the table are produced, again with the function
values rounded to five decimal places. Examining the function values in the last column,
it follows that the zero of the function f is , correct to three decimal places.
[1,2] [1.6,1.7] [1.67,1.68]
v f@) 2 0 v f(z)
1.0 —1.000 1.60 —0.30400 1.670 —0.02254
1.1 —1.069 1.61 —0.26672 1.671 —0.01817
1.2 —-1.072 1.62 —0.22847 1.672 —0.01378
1.3 —1.003 1.63 —0.18925 1.673 —0.00939
1.4 —0.856 1.64 —0.14906 1.674 —0.00499
1.5 —0.625 1.65 —0.10788 1.675 —0.00058
1.6 —0.304 1.66 —0.06570 1.676 0.00384
1.7 0.133 1.67 —0.02254 1.677 0.00828
1.8 0.632 1.68 0.02163 1.678 0.01272
1.9 1.259 1.69 0.06681 1.679 0.01717
2.0 2.000 1.70 0.11300 1.680 0.02163
67. The polynomial function f(z) = 223+ 322 + 42 — 1 is continuous for all real numbers, so it

is continuous on the closed interval [0, 1]. Because f(0) = —1 < 0and f(1) =2+3+4—-1=
8 > 0, the Intermediate Value Theorem guarantees that f must have a zero on the interval
(0,1). To approximate this zero, subdivide the interval [0, 1] into 10 subintervals, each
of length 0.1, and evaluate f at each endpoint. The results are shown in the first two
columns of the table below. Because f(0.2) = —0.064 < 0 and f(0.3) = 0.524 > 0, the
Intermediate Value Theorem guarantees the zero lies in the interval (0.2,0.3). Repeating
the process by subdividing the interval [0.2,0.3] into 10 subintervals of length 0.01 yields
the results in the middle two columns of the table, where the function values have been
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68.

69.

rounded to five decimal places for display purposes. The zero has now been bracketed in
the interval (0.21,0.22). Repeating the subdivision process once more, the results in the
last two columns of the table are produced, again with the function values rounded to five
decimal places. Examining the function values in the last column, it follows that the zero

of the function f is|0.211|, correct to three decimal places.

[0,1] 0.2,0.3] 0.21,0.22]

x f(x) z f(x) x f(x)
0.1 —0.568 0.21  —0.00918 0.211  —0.00365
0.2 —0.064 0.22  0.04650 0.212  0.00189
03 0524 0.23  0.10303 0.213  0.00743
04  1.208 0.24  0.16045 0.214  0.01299
05  2.000 0.25  0.21875 0.215  0.01855
0.6 2912 0.26  0.27795 0.216  0.02412
0.7  3.956 0.27  0.33807 0.217  0.02970
08  5.144 0.28  0.39910 0.218  0.03529
0.9 6488 0.29  0.46108 0.219  0.04089
1.0 8.000 0.30  0.52400 0.220  0.04650

The polynomial function f(x) = 23 — 22 — 2z + 1 is continuous for all real numbers, so it

is continuous on the closed interval [0,1]. Because f(0) =1>0and f(1)=1-1-2+1=
—1 < 0, the Intermediate Value Theorem guarantees that f must have a zero on the
interval (0,1). To approximate this zero, subdivide the interval [0, 1] into 10 subintervals,
each of length 0.1, and evaluate f at each endpoint. The results are shown in the first two
columns of the table below. Because f(0.4) = 0.104 > 0 and f(0.5) = —0.125 < 0, the
Intermediate Value Theorem guarantees the zero lies in the interval (0.4,0.5). Repeating
the process by subdividing the interval [0.4,0.5] into 10 subintervals of length 0.01 yields
the results in the middle two columns of the table, where the function values have been
rounded to five decimal places for display purposes. The zero has now been bracketed in
the interval (0.44,0.45). Repeating the subdivision process once more, the results in the
last two columns of the table are produced, again with the function values rounded to five
decimal places. Examining the function values in the last column, it follows that the zero

of the function f is|0.445|, correct to three decimal places.

[0,1] [0.4,0.5] [0.44, 0.45]

x f(x) z f(x) x f(x)
0.0 1.000 040 0.10400 0440 0.01158
01  0.791 041  0.08082 0.441  0.00929
02  0.568 042  0.05769 0.442  0.00699
0.3  0.337 043 0.03461 0.443  0.00469
04  0.104 044  0.01158 0.444  0.00239
05 —0.125 045 —0.01138 0.445  0.00010
0.6 —0.344 0.46 —0.03426 0.446  —0.00220
0.7 —0.547 0.47 —0.05708 0.447  —0.00449
08 —0.728 0.48 —0.07981 0.448  —0.00679
0.9 —0.881 049 —0.10245 0.449  —0.00908
1.0 —1.000 0.50 —0.12500 0.450 —0.01138

The polynomial function f(z) = 2® — 6z — 12 is continuous for all real numbers, so it is
continuous on the closed interval [3,4]. Because f(3) = 3% — 6(3) — 12 = —3 < 0 and
f(4) =43 —6(4) — 12 = 28 > 0, the Intermediate Value Theorem guarantees that f must
have a zero on the interval (3,4). To approximate this zero, subdivide the interval [3, 4]
into 10 subintervals, each of length 0.1, and evaluate f at each endpoint. The results
are shown in the first two columns of the table below. Because f(3.1) = —0.809 < 0 and
£(3.2) = 1.568 > 0, the Intermediate Value Theorem guarantees the zero lies in the interval
(3.1, 3.2). Repeating the process by subdividing the interval [3.1,3.2] into 10 subintervals
of length 0.01 yields the results in the middle two columns of the table, where the function
values have been rounded to five decimal places for display purposes. The zero has now
been bracketed in the interval (3.13,3.14). Repeating the subdivision process once more,
the results in the last two columns of the table are produced, again with the function
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values rounded to five decimal places. Examining the function values in the last column,
it follows that the zero of the function f is|3.134|, correct to three decimal places.
[3, 4] [3.1,3.2] [3.13,3.14]
v (@) v /(x) v f(x)
3.0 —3.000 3.10  —0.80900 3.130 —0.11570
3.1 —0.809 3.11 —0.57977 3.131  —0.09230
3.2 1.568 3.12  —0.34867 3.132  —0.06888
3.3 4.137 3.13 —0.11570 3.133  —0.04545
34 6.904 3.14 0.11914 3.134 —0.02199
3.5 9.875 3.15 0.35587 3.135 0.00149
3.6 13.056 3.16 0.59450 3.136 0.02498
3.7 16.453 3.17 0.83501 3.137 0.04849
3.8  20.072 3.18 1.07743 3.138 0.07202
3.9 23.919 3.19 1.32176 3.139 0.09557
4.0  28.000 3.20 1.56800 3.140 0.11914
70. The polynomial function f(z) = 3x3 + 5z — 40 is continuous for all real numbers, so it is
continuous on the closed interval [2,3]. Because f(2) = 3(2)% + 5(2) — 40 = —6 < 0 and
f(3) = 3(3)3 + 5(3) — 40 = 56 > 0, the Intermediate Value Theorem guarantees that f
must have a zero on the interval (2,3). To approximate this zero, subdivide the interval
[2, 3] into 10 subintervals, each of length 0.1, and evaluate f at each endpoint. The results
are shown in the first two columns of the table below. Because f(2.1) = —1.717 < 0
and f(2.2) = 2.2944 > 0, the Intermediate Value Theorem guarantees the zero lies in
the interval (2.1,2.2). Repeating the process by subdividing the interval [2.1,2.2] into 10
subintervals of length 0.01 yields the results in the middle two columns of the table, where
the function values have been rounded to five decimal places for display purposes. The
zero has now been bracketed in the interval (2.13,2.14). Repeating the subdivision process
once more, the results in the last two columns of the table are produced, again with the
function values rounded to five decimal places. Examining the function values in the last
column, it follows that the zero of the function f is|2.137 |, correct to three decimal places.
(2,3 [2.1,2.2] [2.13,2.14]
z f(x) z f(x) z f(x)
21 —L.717 211 —1.26281 2.131  —0.31336
2.2 2.944 2.12  —0.81562 2132  —0.26747
2.3 8.001 2.13  —0.35921 2.133 —0.22154
24 13.472 2.14 0.10103 2.134 —0.17557
2.5 19.375 2.15 0.56512 2.135 —0.12957
2.6 25.728 2.16 1.03309 2.136 —0.08353
2.7 32.549 2.17 1.50494 2.137 —0.03744
2.8  39.856 2.18 1.98070 2.138 0.00868
2.9 47.667 2.19 2.46038 2.139 0.05483
3.0  56.000 2.20 2.94400 2.140 0.10103
71. The polynomial function f(x) = z* — 223 + 212 — 23 is continuous for all real numbers, so

it is continuous on the closed interval [1,2]. Because f(1) =1—-2+21—-23 = -3 <0 and
f(2) =2 —2(2)3 +21(2) — 23 = 19 > 0, the Intermediate Value Theorem guarantees that
f must have a zero on the interval (1,2). To approximate this zero, subdivide the interval
[1,2] into 10 subintervals, each of length 0.1, and evaluate f at each endpoint. The results
are shown in the first two columns of the table below. Because f(1.1) = —1.0979 < 0
and f(1.2) = 0.8176 > 0, the Intermediate Value Theorem guarantees the zero lies in
the interval (1.1,1.2). Repeating the process by subdividing the interval [1.1,1.2] into 10
subintervals of length 0.01 yields the results in the middle two columns of the table, where
the function values have been rounded to five decimal places for display purposes. The
zero has now been bracketed in the interval (1.15,1.16). Repeating the subdivision process
once more, the results in the last two columns of the table are produced, again with the
function values rounded to five decimal places. Examining the function values in the last

column, it follows that the zero of the function f is|1.157|, correct to three decimal places.
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72.

73.

74.

[1,2] [1.1,1.2] [1.15,1.16]

x f(@) z f(z) x f(x)
1.0 —3.0000 110 —1.09790 1150 —0.14274
1.1 —1.0979 111 —0.90719 1151 —0.12359
12 08176 112 —0.71634 1152 —0.10444
13 27621 113 —0.52532 1153 —0.08529
14 47536 114 —0.33413 1.154  —0.06613
15  6.8125 115 —0.14274 1.155  —0.04698
1.6 8.9616 116 0.04885 1.156  —0.02781
1.7 11.2261 117 0.24066 1.157  —0.00865
1.8 13.6336 118 0.43271 1.158  0.01051
1.9 16.2141 119 0.62502 1159 0.02968
2.0 19.0000 120 0.81760 1160  0.04885

4

The polynomial function f(r) = x* — 23 + 2 — 2 is continuous for all real numbers, so it
is continuous on the closed interval [1,2]. Because f(1) =1—-1+1-2= -1 < 0 and
f(2)=2%-234+2-2=28>0, the Intermediate Value Theorem guarantees that f must
have a zero on the interval (1,2). To approximate this zero, subdivide the interval [1, 2]
into 10 subintervals, each of length 0.1, and evaluate f at each endpoint. The results
are shown in the first two columns of the table below. Because f(1.3) = —0.0409 < 0
and f(1.4) = 0.4976 > 0, the Intermediate Value Theorem guarantees the zero lies in
the interval (1.3,1.4). Repeating the process by subdividing the interval [1.3,1.4] into 10
subintervals of length 0.01 yields the results in the middle two columns of the table, where
the function values have been rounded to five decimal places for display purposes. The
zero has now been bracketed in the interval (1.30,1.31). Repeating the subdivision process
once more, the results in the last two columns of the table are produced, again with the
function values rounded to five decimal places. Examining the function values in the last

column, it follows that the zero of the function f is|1.308 |, correct to three decimal places.

[1,2] [1.3,1.4] [1.30,1.31]

x f(x) x f(@) z f(@)
1.0 —T1.0000 1.30 —0.04090 T.300  —0.04090
1.1 —0.7669 131 0.00691 1.301  —0.03618
1.2 —0.4544 132 0.05599 1.302  —0.03144
1.3 —0.0409 133 0.10637 1.303  —0.02669
14 0.4976 134 0.15808 1.304  —0.02193
1.5 11875 1.35  0.21113 1.305 —0.01715
1.6 2.0576 136 0.26556 1.306  —0.01237
1.7 3.1391 137 0.32140 1.307  —0.00757
1.8 4.4656 1.38  0.37867 1.308  —0.00275
19  6.0731 1.39  0.43739 1.309  0.00207
2.0  8.0000 140 0.49760 1.310  0.00691

(a) The polynomial function 2% + 4z is continuous on the set of all real numbers and is
non-negative on the set {z|x < —4} U{z|z > 0}. The function f(z) = Va2 + 4o — 2
is therefore continuous on the set {z|z < —4} U {z|z > 0}, which contains the closed
interval [0,1]. Because f(0) = V0 -2 = -2 < 0 and f(1) = V5 —2 ~ 0.236 > 0,

1(;he I)nterme iate Value Theorem guarantees that f must have a zero on the interval
0,1).

(b) Using the FindRoot command in the computer algebra system Mathematica produces

the zero |z =~ 0.828 |, rounded to three decimal places.

(a) The polynomial function f(x) = 2® —x + 2 is continuous for all real numbers, so it is

continuous on the closed interval [—2,0]. Because f(—2) = (=2)>—(=2)+2= -4 <0
and f(0) = 2 > 0, the Intermediate Value Theorem guarantees that f must have a
zero on the interval (—2,0).

(b) Using the FindRoot command in the computer algebra system Mathematica produces

the zero | z &~ —1.521 |, rounded to three decimal places.
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Applications and Extensions

75. Note: f(c) =(—1)—1=—2and f(d) =(1) —1=0.

(a) We have lim f(z) = lim (x —1) = -2 = f(¢). ‘f is left continuous at ¢ = 71.‘

T—cT r——1—
We have liIZl f(z) = lir? 22 =1# f(d). ‘f is not left continuous at d = 1. ‘
r—a— r— 1"
(b) We have hm fz) = hmﬁ 2?2 =1 # f(c). ‘f is not right continuous at ¢ = —1.‘
f—)(‘ Tr—r—
We have hm+ fz) = lim+(:v —1)=0= f(d). ‘f is right continuous at d = 1. ‘
z—1

76. Note: f(c) = f(d)=(1)>-1=0

r—c—

(
(a) We have lim f(z) = hm Jz+1[=0= f(c). ’f is left continuous at ¢ = 71.‘
(

We have lim f(z) = hm (% —1) = 0= f(d). ‘f is left continuous at d = 1.‘

r—d— r—1—

(b) We have hm f(z) = lim (2> —1) =0 = f(c). ’f is right continuous at ¢ = —1.‘

z—ct r——1+

We have lim f(z)= lim |z 4+ 1| =2 # f(d). ‘f is not right continuous at d = 1. ‘
z—dt z—1t

77. Note that the domain of f is {z|z < —1} J{z|z > 5}. From this fact we can immediately
see that lim+ f(z) and lim f(z) do not exist. Also, f(c) = f(d) = 0.
rz——1 T—5"

(a) We have hm f(z) = lir_nl_ (x+1)(x—=5) =0 = f(e). ‘f is left continuous

hm f(z) does not exist. ‘ f is not left continuous at d = 5. ‘

r—d—

(b) hm+ f(z) does not exist. ’f is not right continuous at ¢ = —1. ‘
Tr—C

We have lim f(z) = lim /(x4 1)(z —5) = 0 = f(d). ‘f is right continuous at
z—dt z—5+

78. Note that the domain of f is {z|x < 1}J{z|x > 2}. From this fact we can immediately
see that lirrll+ f(x) and lirg f(x) do not exist. Also, f(c) = f(d) =0.
T— T—27

(a) We have lim f(z) = lim /(z—1)(z—-2) = 0 = f(c). ‘f is left continuous
r—cT T—1-
at ¢ = 1. 11121 f(z) does not exist. ’ f is not left continuous at d = 2. ‘
z—d—

(b) lim+ f(x) does not exist. ’ f is not right continuous at ¢ = 1. ‘
Tr—rC

We have lim f(z) = lim /(z—1)(z—2) = 0 = f(d). ‘f is right continuous
r—dt r—2t

79. (a) Because the Postal Service rounds the weight of the letter up to next whole number
of ounces, the first-class postage charged is

047, if O<w<1
Cluwy— ) 068 if T<w<2
(W)=9 089 if 2<w<3
110, if 3<w < 3.5.

where postage is measured in dollars and weight is measured in ounces. This can be
written compactly in terms of the ceiling function as

C(w) = 047 + 0.21[w — 1].
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(b)
()

The domain of C is the set ’ {w]0 < w < 3.5} ‘

The function C' is continuous on the intervals (0, 1), (1,2), (2, 3), and (3, 3.5) because
the function is a constant (polynomial) on each of these intervals. At w =1,

lim C(w)= lim 0.47=0.47 and lim = lim 0.68 = 0.68,

w—1— w—1— w—171 w—1t

so that lim1 C(w) does not exist. Similarly, at w = 2 and w = 3,
w—
lim C(w)= lim 0.68=0.68 and lim = lim 0.89 = 0.89,
w—2" w—2" w—>2+ w—2F

and
lim C(w)= lim 0.89 =0.89 and lim = lim 1.10 = 1.10,

w—3~ w—3~ w—3+ w—3+
respectively, so that lim2 C(w) does not exist and lim3 C(w) does not exist. Therefore,
w— w—
C' is not continuous at w = 1, w = 2, or w = 3. However,

lim C(w)=047=C(1), lim C(w)=0.68=C(2), and lim C(w)=0.89 = C(3).
w—1— w—2~

w—3~
so C is continuous from the left at w = 1, w = 2, and w = 3. Additionally,
lim C(w)= lim 1.10=1.10=C(3.5),

w—3.5" w—3.57
so C is continuous from the left at w = 3.5. Thus, C' is continuous on the intervals
1(0,1], (1,2], (2,3], and (3,3.5] |

At each number where C' is not continuous (w = 1, w = 2, and w = 3), the two one-

sided limits exist but are not equal, so each discontinuity is a ‘ jump discontinuity |.

Answers will vary. One possible response is that because any fraction of an ounce
results in a charge for a full ounce, it is in the consumer’s best interest to have letters
weigh as close as possible to a whole number of ounces, without going over.

From exercise 60 from Section 1.1, the piecewise function C' that models the first-class
postage charged for a large envelope weighing w ounces is

$0.94 if O<w<l1
$1.15 if I1<w<?2
$1.36 if 2<w<3
$1.57 if 3<w<4
$1.78 if 4<w<5b
$1.99 if 5<w<6
Clw)=4¢ %220 if 6<w<7T
$2.41 if T<w<8
$2.62 if 8<w
$2.83 if 9<w
$3.04 if 10<w<11
$3.25 if 1l<w<12
$3.46 if 12<w<13

The domain of the function {w|0 < w < 13}. The weight of these envelopes can be
any positive real number up to and including 13 ounces.

The function C(z) is continuous on the intervals (0, 1], (1, 2], (2, 3], (3, 4], (4, 5],

(5, 6], (6, 7], (7, 8], (8, 9], (9, 10], (10, 11], (11, 12], and (12, 13].

The function is discontinuous at z =1, 2, 3, 4, 5,6, 7, 8,9, 10, 11, 12, and 13. For any

of these values, the limit does not exist. For example, for z = 5, 111151 C(w) = $1.78
w—5~

and hm C(w) = $1.99. Since lim C(w) # lim C(w), we conclude lim C(w) and

that C( ) is discontinuous at z = 5 Since the left hand limits and the rlght hand
limits are different for x =1, 2, 3,4, 5,6, 7, 8,9, 10, 11, 12, and 13, the discontinuities
are jump discontinuities.
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81.

82.

(e) The answers may vary. One possible answer is that it is in the customer’s best interest
to have packages that weigh as close as possible to a whole number of ounces, without
going over. This avoids paying the extra $0.21 for the first-class rate.

(a) From exercise 94 from Section 1.2, the piecewise function C' that models the monthly

o )_{ 7.8740.02173z if 0 <z <1000
T) =19 —2.13+0.03173 if x> 1000

(b) The domain of the function is any nonnegative real number, | {z|z > 0} | Customers

can use as little (x = 0) or as much (x — 00) electricity as they desire.

cost of using x kWH of electricity is

(c) ‘ C' is continuous on its domain ‘ In particular, for x = 1000, lim C(z)= lim
©—1000~ 2—1000—
(7.87+0.02173z) = $29.60 and lim C(z) =  lim (29.60 + 0.03173
2—1000+ 2—1000+
(x — 1000)) = $29.60. Thus, lim C(z) = $29.60.
2—1000+

Since C(1000) is also $29.60, we conclude that function C(z) is continuous at
x = 1000.

(d) There are no numbers where C is not continuous.

(e) The answers may vary. One possible answer: To minimize the monthly cost of elec-
tricity, it is in the consumer’s best interest to minimize the amount of electricity
used.

(a) Using the rate schedule provided,

9.00, if 0<a2<10
9.00 + 0.95(z — 10), if 10 <2 <30
28.00 + 1.65(z — 30),  if 30 <z < 100
143.50 + 2.20(z — 100), if 2 > 100.

(b) The domain of C is the set | {z|z > 0} |

(¢) The function C' is continuous on the intervals (0, 10), (10, 30), (30, 100), and (100, o),
because it is a polynomial on each of these intervals. At z = 10

lim C(r)= lim 9.00=9.00
z—10—

x—10—

C(z) =

)

and

lim C(z)= lim [9.00 + 0.95(z — 10)] = 9.00 + 0.95(10 — 10) = 9.00,

z—10+ z—10*

so that lirrlloC(ac) exists and is equal to 9.00. As C(10) = 9.00, it follows that C' is
Tr—r

continuous at x = 10. Similarly,

lim C(z)= lim [9.00 4 0.95(z — 10)] = 9.00 + 0.95(30 — 10) = 28.00

r—30~ x—30~
and

lim C(z) = lim [28.00 + 1.65(z — 30)] = 28.00 + 1.65(30 — 30) = 28.00,

z—30t z—30+

so that lirr310 C(z) = 28.00 = C(30) and C is continuous at = 30. At w = 100,
z—

lim C(z)= lim [28.00+ 1.65(z —30)] = 28.00 + 1.65(100 — 30) = 143.50

z—100~ z—100~
and

lim C(z)= lim [143.50 + 2.20(z — 100)] = 143.50 + 2.20(100 — 100) = 143.50,

z—100+ z—100t+
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83.

so that li%0 C(z) exists and is equal to 143.50 = C'(100). Thus, C is continuous at
T—r
2 = 100. Finally,
lim C(z) = lim 9.00 = 9.00 = C(0),

z—0t z—0t

so C is continuous from the right at = 0. Thus, C' is continuous on .

(d) The function C is | continuous on its domain |.

(e) Answers will vary. One possible response is that there is no “penalty” to the consumer
who goes just a little over 10,000 or 30,000 or 100,000 gallons rather than trying to
keep consumption at or a little below these amounts.

(a) Because

lim g(r) = lim G—mr = Gm
r—R~ r—Rr- R3 R?
and
lim g(r) = lim Gm = Gm
r—Rt r—R+ 712 R?

G
are equal, | g(R) must equal R—T in order for the gravitational field of Europa to be

continuous at its surface.
(b) With G = 6.67 x 107" m3 kg=! 572, m = 4.8 x 10?2 kg and R = 1.569 x 10% m,

6.67 x 1071 m?3 kg™ s72- 4.8 x 10?2 kg
R) = ~|1.3 2|
9(R) (1569 x 106 m)?
(c¢) Europa’s gravity is that on Earth.

84. The function f is continuous on the intervals (—o0,0), (0,1), and (1,00), because it is a

polynomial on each of these intervals. At z =0,

lim f(z)= lim (z —1)* =1

rz—0— rz—0—

and p 2_ o
li = 1l — = A = f(0).
lim () = lim (4 2) 7(0)
For f to be continuous at = 0, the constant A must satisfy A2 = 1, or A = £1. At
=1,
lim f(z) = lim (A—2)?=(A—-1)?

x—1— r—1—
and
lim f(z)= lim (zx+ B)=1+ B = f(1).
r—1t+ r—1t+

For f to be continuous at z = 1, the constant B must satisfy 1 + B = (A — 1)2, or
B = A? — 2A. There are therefore two sets of values for A and B for which the function
f is continuous for all z: ‘ {A=1,B=—-1}and {A=-1,B=3} ‘ The figure below left

displays the graph with A =1 and B = —1; the figure below right displays the graph with
A=-1and B=3.
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85.

86.

-2 -1 1 2 3 4 2 -1 1 2 3 4

The function f is continuous on the intervals (—oo,4), (4,9), and (9, 00), because it is a
polynomial on each of these intervals. At x = 4,

lim f(z)= lim (x+A)=4+4+ A
T—4-

r—4-

and ,

li = 1l —1)*=9= f(4).

Jlim f(z) = lim (z-1) f(4)
For f to be continuous at x = 4, the constant A must satisfy 4+ A =9, or A = 5. At
z =09,

lim f(x) = lim (@~ 1)? = 64 = f(9)

r—9~ r—9~
and
li = lim (B 1)=9B+ 1.
Al ) = g (Be ) =98 +
For f to be continuous at x = 9, the constant B must satisfy 9B +1 = 64, or B = 7.

Therefore, the function f will be continuous for all x provided | A =5 and B=7| The
graph of the resulting function is shown below

80 T

60 T

40 1+

20 T

In order to make f continuous at x = 2, k should be set equal to

. o NV2e+ 55—V +7 V2 +5 -2+ T V2r+5+Vr+7
lim f(z) = lim = lim .

x—2 r—2 x— 2 r—2 xr—2 \/2$+5+\/1‘+7
(2x4+5)—(x+7) . x —2

= lim

A o)V 5+ veTT) R @) st va T

1 1 1
lim = S
a=2\2x+5+vVx+7 VI+V9
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87. Let

90.

flz) = 22 — 62 — 16 B (x —8)(z+2)
(@2 —Tr—8)Va2—4  (z—8)(z+1)VaZ -4

(a) The function f is defined for all values x for which the denominator is not equal to

zero and 22 —4 > 0. Thus, the domain of f is the set‘ {z|r < =2} U {z|x > 2,z # 8} ‘

Note that the condition & # —1 need not be explicitly included because —1 does not
have an absolute value greater than 2, and so is already eliminated by virtue of this
condition.

(b) Because the function f is the product, quotient and composition of functions that are
continuous on their domains, f is continuous on its domain.  Thus, f is

‘discontinuous at x = 8 and on the interval [—2, 2] ‘

(¢c) Because

lim f(z) = lim (z —8)(z +2) — lim (x+2) _ 10 _ 5
z—8 z=8 (r — 8)(x + l)m =8 (7 + 1)\/@ 9v/60 915

exists, the ’ discontinuity at = 8 is removable ‘

(a) Because the function f(x) = sinxz + x — 3 is the sum of the sine function and a
polynomial function, both of which are continuous on the set of all real numbers, f
is continuous on the set of all real numbers and is therefore continuous on the closed
interval [0, 7]. Now, f(0) =sin0+0—-3 = -3 <0and f(r) =sint+7—-3=7—-3 > 0,
so the Intermediate Value Theorem guarantees that f has a zero on the interval (0, 7).

(b) Using a TT-84 Plus calculator, the zero is| z &~ 2.180 |, rounded to three decimal places.

(a) Because the function f(z) = e* + x — 2 is the sum of an exponential function and a
polynomial function, both of which are continuous on the set of all real numbers, f
is continuous on the set of all real numbers and is therefore continuous on the closed
interval [0,2]. Now, f(0) =€’ +0—-2=-1<0and f(2)=e?+2—-2=1¢% >0, s0
the Intermediate Value Theorem guarantees that f has a zero on the interval (0, 2).

(b) Using a TI-84 Plus calculator, the zero is | z = 0.443 |, rounded to three decimal places.

The graph of the function f(z) = 2% — 22? — 1 intersects the line y = —1 at x = ¢ for which
f(c) = —1. Noting that f(1) = —2 is less than —1 and f(4) = 31 is more than —1, we use
the Intermediate Value Theorem to conclude that f(c) = —1 for at least one number ¢ in
the interval (1, 4).

Using the TABLE feature on a graphing utility, we subdivide the interval [1, 4] into 10
subintervals, each of length 0.3. Then we find the subinterval whose endpoints have values

on either side of y = —1, or the endpoint whose value equals —1 (in which case, the exact
value is found). From Figure 1, since f(1.9) = —1.3610 and f(2.2) = —0.0320, by the
Intermediate Value Theorem, a solution to f(c) = —1 lies in the interval (1.9, 2.2).

Repeat the process by subdividing the interval [1.9, 2.2] into 10 subintervals, each of length
0.03. See Figure 2. We conclude that the solution to f(c¢) = —1 lies in the interval (1.99,
2.02).

Repeat the process by subdividing the interval [1.99, 2.02] into 10 subintervals, each of
length 0.003. See Figure 3. We conclude that the solution to f(c¢) = —1 lies in the interval
(1.999, 2.002).

Repeat the process by subdividing the interval [1.999, 2.002] into 10 subintervals, each of
length 0.0003. See Figure 4. We conclude that the solution to f(c) = —1 lies in the interval
(1.9999, 2.0002).

Correct to 3 decimals, the solution is ¢ = 2.000.
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z  f(2) x f(x) x f(x) x f(x)
1.0 —2.0000 1.90 -1.3610 1.990 —1.0396 1.9990 —1.0040
1.3 —2.1830 1.93 —1.2607 1.993 —1.0278 1.9993 —1.0028
1.6 —2.0240 1.96 —1.1537 1.996 —1.0159 1.9996 —1.0016
1.9 —1.3610 1.99 —1.0396 1.999 —1.0040 1.9999 —1.0004
2.2 —0.0320 2.02 —0.9184 2.002 —0.9920 2.0002 —0.9992
2.5  2.1250 2.05 —0.7899 2.005 —0.9799 2.0005 —0.9980
2.8  5.2720 2.08 —0.6539 2.008 —0.9677 2.0008 —0.9968
3.1 95710 2.11 —-0.5103 2.011 —0.9555 2.0011  —0.9956
3.4 15.1840 2.14 —0.3589 2.014 —0.9432 2.0014 —0.9944
3.7 222730 2.17  —0.1995 2.017 —0.9308 2.0017 —0.9932
4.0  31.0000 2.20  —0.0320 2.020 —0.9184 2.0020 —0.9920
Figure 1 Figure 2 Figure 3 Figure 4
91. The graph of the function g(z) = —z* + 322 + 3 intersects the line y = 3 at x = ¢ for which
g(c) = 3. Noting that g(1) = 5 is more than 3 and ¢g(2) = —1 is less than 3, we use the
Intermediate Value Theorem to conclude that g(c) = 3 for at least one number ¢ in the
interval (1, 2).
Using the TABLE feature on a graphing utility, we subdivide the interval [1, 2] into 10
subintervals, each of length 0.1. Then we find the subinterval whose endpoints have values
on either side of y = 3, or the endpoint whose value equals 3 (in which case, the exact value
is found). From Figure 1, since ¢g(1.7) = 3.3179 and ¢(1.8) = 2.2224, by the Intermediate
Value Theorem, a solution to g(¢) = 3 lies in the interval (1.7, 1.8).
Repeat the process by subdividing the interval [1.7, 1.8] into 10 subintervals, each of length
0.01. See Figure 2. We conclude that the solution to g(c) = 3 lies in the interval (1.73,
1.74).
Repeat the process by subdividing the interval [1.73, 1.74] into 10 subintervals, each of
length 0.001. See Figure 3. We conclude that the solution to g(c) = 3 lies in the interval
(1.732, 1.733).
Repeat the process by subdividing the interval [1.732, 1.733] into 10 subintervals, each of
length 0.0001. See Figure 4. We conclude that the solution to g(c) = 3 lies in the interval
(1.7320, 1.7321).
Correct to 3 decimals, the solution is | ¢ = 1.732|.
z gz z  g(z) x 9(x) x 9(x)
1.0 5.0000 1.70  3.3179 1.730 3.0212 1.7320  3.0005
1.1  5.1659 1.71  3.2219 1.731 3.0109 1.7321  2.9995
1.2 5.2464 1.72  3.1231 1.732  3.0005 1.7322  2.9984
1.3 5.2139 1.73 3.0212 1.733  2.9901 1.7323 2.9974
1.4 5.0384 1.74 2.9164 1.734  2.9797 1.7324  2.9964
1.5 4.6875 1.75  2.8086 1.735  2.9692 1.7325  2.9953
1.6 4.1264 1.76  2.6977 1.736  2.9587 1.7326  2.9943
1.7 3.3179 1.77  2.5836 1.737 2.9482 1.7327 2.9932
1.8 2.2224 1.78  2.4664 1.738 2.9376 1.7328 2.9922
1.9 0.7979 1.79  2.3460 1.739 2.9271 1.7329 2.9912
2.0 —1.0000 1.80 2.2224 1.740 2.9164 1.7330 2.9901
Figure 1 Figure 2 Figure 3 Figure 4
3 —
92. The graph of the function h(z) = intersects the line y = 1 at * = ¢ for which

2 +1
f(e) = 1. Noting that h(1) = —2 is less than 1 and h(3) = 2.2 is more than 1, we use the
Intermediate Value Theorem to conclude that h(c) = 1 for at least one number ¢ in the
interval (1, 3).
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93.

Using the TABLE feature on a graphing utility, we subdivide the interval [1, 3] into 10
subintervals, each of length 0.2. Then we find the subinterval whose endpoints have values
on either side of y = 1, or the endpoint whose value equals 1 (in which case, the exact value
is found). From Figure 1, since h(2.2) = 0.9671 and h(2.4) = 1.3053, by the Intermediate
Value Theorem, a solution to h(c) = 1 lies in the interval (2.2, 2.4).

Repeat the process by subdividing the interval [2.2, 2.4] into 10 subintervals, each of length
0.02. See Figure 2. We conclude that the solution to h(c) = 1 lies in the interval (2.20,
2.22). Correct to one decimal, the solution is ¢ = 2.2.

Repeat the process by subdividing the interval [2.20, 2.22] into 10 subintervals, each of
length 0.002. See Figure 3. We conclude that the solution to h(c) =1 lies in the interval
(2.218, 2.220). Correct to two decimals, the solution is ¢ = 2.21.

Repeat the process by subdividing the interval [2.218, 2.220] into 10 subintervals, each of
length 0.0002. See Figure 4. We conclude that the solution to h(c) =1 lies in the interval
(2.2186, 2.2188).

Correct to 3 decimals, the solution is ¢ = 2.218.

x h(z) x h(x) x h(z) x h(z)

1.0 —2.0000 2.20  0.9671 2.200 0.9671 2.2180  0.9986
1.2 —1.3410 222 1.0021 2.202  0.9706 2.2182  0.9990
1.4 —0.7622 2.24  1.0369 2.204 0.9741 2.2184 0.9993
1.6 —0.2539 2.26  1.0713 2.206 0.9777 2.2186 0.9997
1.8 0.1962 2.28 1.1055 2.208 0.9812 2.2188 1.0000
2.0 0.6000 2.30  1.1394 2.210 0.9847 2.2190 1.0004
2.2 0.9671 232 1.1731 2.212  0.9882 2.2192  1.0007
2.4 1.3053 2.34  1.2065 2.214  0.9917 2.2194 1.0011
2.6 1.6206 2.36  1.2397 2.216 0.9952 2.2196 1.0014
2.8 1.9176 2.38  1.2726 2.218 0.9986 2.2198 1.0018
3.0 2.2000 2.40 1.3053 2.220 1.0021 2.2200 1.0021

Figure 1 Figure 2 Figure 3 Figure 4
. r—6 . : :
The graph of the function r(z) = o intersects the line y = —1 at z = ¢ for which

3
r(¢) = —1. Noting that 7(0) = —3 is less than —1 and r(3) = 11 is more than —1, we
use the Intermediate Value Theorem to conclude that r(c) = —1 for at least one number ¢
in the interval (0, 3).

Using the TABLE feature on a graphing utility, we subdivide the interval [0, 3] into 10
subintervals, each of length 0.3. Then we find the subinterval whose endpoints have values

on either side of y = —1, or the endpoint whose value equals —1 (in which case, the exact
value is found). From Figure 1, since r(1.5) = —1.0588 and r(1.8) = —0.8015, by the
Intermediate Value Theorem, a solution to r(c) = —1 lies in the interval (1.5, 1.8).

Repeat the process by subdividing the interval [1.5, 1.8] into 10 subintervals, each of length
0.03. See Figure 2. We conclude that the solution to r(¢) = —1 lies in the interval (1.56,
1.59).

Repeat the process by subdividing the interval [1.56, 1.59] into 10 subintervals, each of
length 0.003. See Figure 3. We conclude that the solution to r(c) = —1 lies in the interval
(1.560, 1.563).

Repeat the process by subdividing the interval [1.560, 1.563] into 10 subintervals, each of
length 0.0003. See Figure 4. We conclude that the solution to 7(c) = —1 lies in the interval
(1.5615, 1.5618).
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Correct to 3 decimals, the solution is | ¢ = 1.561 |.

x r(x) x r(z) x r(zx) x r(z)
0.0 —3.0000 1.50 —1.0588 1.560 —1.0014 1.5600 —1.0014
0.3 —2.7273 1.53 —1.0297 1.563 —0.9987 1.5603 —1.0012
0.6 —2.2881 1.56 —1.0014 1.566 —0.9959 1.5606 —1.0009
0.9 —1.8149 1.59 —0.9739 1.569 —0.9931 1.5609 —1.0006
1.2 —1.3953 1.62 —-0.9471 1.572 —0.9903 1.5612 —1.0003
1.5 —1.0588 1.65 —0.9211 1.575 —0.9876 1.5615 —1.0000
1.8 —0.8015 1.68 —0.8958 1.578  —0.9848 1.5618 —0.9998
2.1 —0.6084 171 —0.8712 1.581 —0.9821 1.5621  —0.9995
24 —-0.4639 1.74 —0.8473 1.584 —0.9794 1.5624 —0.9992
2.7  —0.3552 177 —0.8241 1.587 —0.9766 1.5627 —0.9989
3.0 —-0.2727 1.80 —0.8015 1.590 —0.9739 1.5630 —0.9987

Figure 1 Figure 2 Figure 3 Figure 4

94. Answers will vary. The figure below displays the graph of a function that is continuous on
[5,12], that is negative at both endpoints, and has exactly three zeros in the interval. This

‘does not contradict | the Intermediate Value Theorem, because the theorem provides no

information about zeros of a function when the endpoint values are the same sign.

95. Answers will vary. The figure below displays the graph of a function that is continuous on
[—1,2], that is positive at both endpoints, and has exactly two zeros in the interval. This

‘does not contradict | the Intermediate Value Theorem, because the theorem provides no

information about zeros of a function when the endpoint values are the same sign.
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96. Answers will vary. The figure below displays the graph of a function that is continuous
on [—2,3], that is positive at —2 and negative at 3, and has exactly two zeros in the

interval. This ‘ does not contradict | the Intermediate Value Theorem, because the theorem
guarantees that the function has at least one zero on the interval (-2, 3).

97. Answers will vary. The figure below displays the graph of a function that is continuous
on [—5,0], that is negative at —5 and positive at 0, and has exactly three zeros in the

interval. This ‘ does not contradict | the Intermediate Value Theorem, because the theorem
guarantees that the function has at least one zero on the interval (—5,0).
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98. (a) Although the function f(x) = 2% — 1 is continuous on the closed interval [—2,2],
f(=2) = (-=2)* =1 = 15 > 0 and f(2) = 2* —1 = 15 > 0. Because
‘the function has the same sign at both endpoints ‘, the Intermediate Value Theorem
gives no information about the zeros of f on the interval (—2,2).

(b) The graph of f shown below indicates that ‘ f has two zeros on the interval (—2,2) ‘:
one at x = —1, the other at z = 1.

99. (a) Although the function f(z) = In(z? 4 2) is continuous on the closed interval [—2, 2],
f(=2) =1In6 > 0 and f(2) = In6 > 0. Because ‘the function has the same sign at‘

‘both endpoints ‘, the Intermediate Value Theorem gives no information about the
zeros of f on the interval (—2,2).

(b) ‘The graph of f shown below indicates that f has no zero on the interval [—2, 2] ‘
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100. (a) If the graphs of the functions y = 23 and y = 1—2? intersect, then the x-coordinate of
the point of intersection must be a solution of the equation 2° = 1—a2, or 23 +22—1 =
0. Let f(z) = 2 + 22 — 1. This function is continuous on the closed interval [0, 1]
with f(0) = —1 < 0 and f(1) = 1 > 0. The Intermediate Value Theorem therefore
guarantees that f has a zero on the interval (0,1). Hence, the graphs of the functions
y =23 and y = 1 — 22 do intersect somewhere between x = 0 and z = 1.

(b) Using a TT-84 Plus calculator, the point of intersection, rounded to three decimal
places, is | (0.755,0.430) |

(¢) The figure below displays the graphs of both functions with the point of intersection
labeled to three decimal places.

1 4
0.8 T

06 T

(0.755, 0.430)

04 +

02 T

T y y y y
0.2 0.4 0.6 0.8 1

101. Let v(¢) denote the speed of the airplane as a function of time. Further, let ¢; denote a
time when the speed of the airplane was 620 miles per hour, o > t; denote a time when
the speed of the airplane had slowed to 608 miles per hour, and t3 > ty denote a time
when the speed of the airplane had increased to 614 miles per hour. Now, consider the
function f(t) = v(t) — 610. Assuming v(¢) is continuous for all ¢, f is also continuous for
all ¢. Because

f(t1) =v(t;) — 610 = 620 — 610 =10 > 0

and
f(te2) = v(te) — 610 = 608 — 610 = —2 < 0,

the Intermediate Value Theorem guarantees that f(¢t) = 0, or v(t) = 610, for some time
between ¢; and ty. Similarly,

F(ta) = v(ty) — 610 = 608 — 610 = —2 < 0
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102.

103.

104.

105.

106.

and
f(ts) =v(t3) — 610 = 614 — 610 = 4 > 0,

so the Intermediate Value Theorem guarantees that f(t) = 0, or v(t) = 610, for some time
between to and t3. Thus, the airplane’s speed is 610 miles per hour on at least two different
occasions during the flight.

Let f be a function that is defined and continuous on the closed interval [a, b]. The function

will therefore be continuous on the closed interval [a, b], except for those values 2 at which
f(z) =0. Thus, if f is never zero on the closed interval [a, b], then h will be continuous on
the closed interval [a, b].
(a) Factoring, f(z) = 2® — 322 — 42+ 12 = (v — 3)(2? —4) = (x — 3) (2 — 2) (2 +2). Thus,
the zeros of the function f are ‘ r=-2,x=2,and x =3 ‘

(b) The function h will be continuous at x = 3 provided p = ling h(z). Now,
T—r

lim h(z) = lim @=3)@ -4 _ lim (22 — 4) = 5.

r—3 r—3 r—3 r—3

Therefore, h is continuous at = 3 when .

(c) With p = 5, the function h reduces to 2 — 4 for all x. Because
h(—z) = (—2)* —4 =2? — 4 = h(x),
h(z) is an function.

Consider the one-sided limits as x approaches 0:

lim f(z) = lim m: lim — = lim —1=-1
r—0~ rz—0- T z—=0- T z—0—
and
lm f(2) = lim 2= tim = lim 1= 1.
z—0t z—0t T z—0t T z—0t

Because the two one-sided limits as x approaches 0 are not equal, lirrb f(z) does not exist |.
T—r

Therefore, the discontinuity at = 0 is not removable; e.g., it is impossible to define f(0)
so that f is continuous at z = 0.

Answers will vary. One possible response is the following. The polynomial functions

‘f(x) =22 —1land g(x) =2 -3 ‘ are continuous at ¢ = 3; however, because ¢g(3) = 0, the

function i is not continuous at ¢ = 3.
g

Answers will vary. One possible response is the following. A discontinuity at x = ¢
is removable when the limit as x approaches ¢ exists but that limit is not equal to the
function value at x = ¢; a discontinuity at x = ¢ is nonremovable when the limit as x
approaches ¢ does not exist. An example of a removable discontinuity is x = 3 for the

22 -9
function f(z) = ey Because
. 2t —-9 . (z-3)(x+3)
EE N R I e i L
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107.

108.

109.

110.

111.

the discontinuity at 2 = 3 can be removed by defining f(3) = 6. An example of a nonre-
movable discontinuity is = 3 for the function

z+3, x<3
9@) =91 922 >3

Here,
lim g(z) = lim (zx+3)=6 but lim g(z) = lim (9 —2?) =0.

T—3~ z—3~ z—31 z—31

Because the two one-sided limits as x approaches 3 are not equal, lir% g(z) does not exist.
T—

Let f(z) = 2% + 3z — 5, and note that f(1) = —1 < 0 and f(2) = 9 > 0. Set m; = 1.5,
the midpoint of the interval (1,2), and then calculate f(m;) = f(1.5) = 2.875 > 0.
The sign of f(1.5) is opposite that of f(1), so the zero lies in the subinterval (1,1.5).
Now repeat the process and set mo = 1.25, the midpoint of the interval (1,1.5). Next,
calculate f(mg) = f(1.25) = 0.703125 > 0. The sign of f(1.25) is opposite that of f(1),
so the zero lies in the subinterval (1,1.25). Finally, set ms = 1.125, the midpoint of the
interval (1,1.25), and calculate f(ms) = f(1.125) ~ —0.201172 < 0. The sign of f(1.125)
is opposite that of f(1.25), so the zero lies in the subinterval (1.125,1.25) and is given

approximately by the midpoint of this subinterval | my = 1.1875 |.

Let f(z) = 2% — 42 + 2, and note that f(1) = —1 < 0 and f(2) = 2 > 0. Set m; = 1.5,
the midpoint of the interval (1,2), and then calculate f(mi) = f(1.5) = —0.625 < 0.
The sign of f(1.5) is opposite that of f(2), so the zero lies in the subinterval (1.5,2).
Now repeat the process and set ms = 1.75, the midpoint of the interval (1.5,2). Next,
calculate f(mg) = f(1.75) = 0.359375 > 0. The sign of f(1.75) is opposite that of f(1.5),
so the zero lies in the subinterval (1.5,1.75). Finally, set mg = 1.625, the midpoint of
the interval (1.5,1.75), and calculate f(m3) = f(1.625) ~ —0.208984 < 0. The sign of
£(1.625) is opposite that of f(1.75), so the zero lies in the subinterval (1.625,1.75) and is

given approximately by the midpoint of this subinterval | m4 = 1.6875 |.

Let f(x) = 223 + 322 + 42 — 1, and note that f(0) = —1 < 0 and f(1) = 8 > 0. Set
my = 0.5, the midpoint of the interval (0,1), and then calculate f(my) = f(0.5) =2 > 0.
The sign of f(0.5) is opposite that of f(0), so the zero lies in the subinterval (0,0.5). Now
repeat the process and set my = 0.25, the midpoint of the interval (0,0.5). Next, calculate
f(me) = f(0.25) = 0.21875 > 0. The sign of f(0.25) is opposite that of f(0), so the zero lies
in the subinterval (0,0.25). Finally, set ms = 0.125, the midpoint of the interval (0,0.25),
and calculate f(m3) = f(0.125) ~ —0.449219 < 0. The sign of f(0.125) is opposite that of
£(0.25), so the zero lies in the subinterval (0.125,0.25) and is given approximately by the

midpoint of this subinterval | m4 = 0.1875 |.

Let f(z) = 2% — 2% — 22+ 1, and note that f(0) =1 > 0 and f(1) = —1 < 0. Set m; = 0.5,
the midpoint of the interval (0,1), and then calculate f(m;) = f(0.5) = —0.125 < 0.
The sign of f(0.5) is opposite that of f(0), so the zero lies in the subinterval (0,0.5).
Now repeat the process and set my = 0.25, the midpoint of the interval (0,0.5). Next,
calculate f(msq) = f(0.25) = 0.453125 > 0. The sign of f(0.25) is opposite that of f(0.5),
so the zero lies in the subinterval (0.25,0.5). Finally, set mg = 0.375, the midpoint of
the interval (0.25,0.5), and calculate f(mg) = f(0.375) ~ 0.162109 > 0. The sign of
£(0.375) is opposite that of f(0.5), so the zero lies in the subinterval (0.375,0.5) and is

given approximately by the midpoint of this subinterval | m4 = 0.4375 |.

Let f(z) = 23 — 62 — 12, and note that f(3) = =3 < 0 and f(4) = 28 > 0. Set m; = 3.5,
the midpoint of the interval (3,4), and then calculate f(m;) = f(3.5) = 9.875 > 0.
The sign of f(3.5) is opposite that of f(3), so the zero lies in the subinterval (3,3.5).
Now repeat the process and set my = 3.25, the midpoint of the interval (3,3.5). Next,
calculate f(ms) = f(3.25) = 2.828125 > 0. The sign of f(3.25) is opposite that of f(3),
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112.

113.

114.

115.

116.

so the zero lies in the subinterval (3,3.25). Finally, set ms = 3.125, the midpoint of the
interval (3,3.25), and calculate f(ms) = f(3.125) ~ —0.232422 < 0. The sign of f(3.125)
is opposite that of f(3.25), so the zero lies in the subinterval (3.125,3.25) and is given

approximately by the midpoint of this subinterval | m, = 3.1875 |.

Let f(z) = 32 + 5z — 40, and note that f(2) = —6 < 0 and f(3) = 56 > 0. Set m; = 2.5,
the midpoint of the interval (2,3), and then calculate f(my) = f(2.5) = 19.375 > 0.
The sign of f(2.5) is opposite that of f(2), so the zero lies in the subinterval (2,2.5).
Now repeat the process and set my = 2.25, the midpoint of the interval (2,2.5). Next,
calculate f(msg) = f(2.25) = 5.421875 > 0. The sign of f(2.25) is opposite that of f(2),
so the zero lies in the subinterval (2,2.25). Finally, set ms = 2.125, the midpoint of the
interval (2,2.25), and calculate f(ms) = f(2.125) &~ —0.587891 < 0. The sign of f(2.125)
is opposite that of f(2.25), so the zero lies in the subinterval (2.125,2.25) and is given

approximately by the midpoint of this subinterval | my = 2.1875 |.

Let f(z) = 2* — 22% + 21z — 23, and note that f(1) = -3 < 0 and f(2) = 19 > 0.
Set my = 1.5, the midpoint of the interval (1,2), and then calculate f(m1) = f(1.5) =
6.8125 > 0. The sign of f(1.5) is opposite that of f(1), so the zero lies in the subinterval
(1,1.5). Now repeat the process and set mg = 1.25, the midpoint of the interval (1,1.5).
Next, calculate f(ms) = f(1.25) &~ 1.785156 > 0. The sign of f(1.25) is opposite that of
f(1), so the zero lies in the subinterval (1,1.25). Finally, set mz = 1.125, the midpoint
of the interval (1,1.25), and calculate f(mg) = f(1.125) ~ —0.620850 < 0. The sign of
£(1.125) is opposite that of f(1.25), so the zero lies in the subinterval (1.125,1.25) and is

given approximately by the midpoint of this subinterval | my = 1.1875]|.

Let f(z) = 2* — 23 +x — 2, and note that f(1) = —1 < 0 and f(2) = 8 > 0. Set m; = 1.5,
the midpoint of the interval (1,2), and then calculate f(m;) = f(1.5) = 1.1875 > 0. The
sign of f(1.5) is opposite that of f(1), so the zero lies in the subinterval (1,1.5). Now
repeat the process and set my = 1.25, the midpoint of the interval (1,1.5). Next, calculate
f(me) = f(1.25) ~ —0.261719 < 0. The sign of f(1.25) is opposite that of f(1.5), so
the zero lies in the subinterval (1.25,1.5). Finally, set ms = 1.375, the midpoint of the
interval (1.25,1.5), and calculate f(m3) = f(1.375) ~ 0.349854 > 0. The sign of f(1.375)
is opposite that of f(1.25), so the zero lies in the subinterval (1.25,1.375) and is given

approximately by the midpoint of this subinterval | my = 1.3125 |.

The polynomial function 22 + 4z is continuous on the set of all real numbers and is non-
negative on the set {z|x < —4}U{x|z > 0}. The function f(z) = Vz2 4 42 — 2 is therefore
continuous on the set {z|r < —4} U {z|z > 0}, which contains the closed interval [0, 1].
Because f(0) =v0—-2=—-2<0and f(1) = V5 -2~ 0.236 > 0, the Intermediate Value
Theorem guarantees that f must have a zero on the interval (0, 1).

To approximate this zero, subdivide the interval T[O, 1] into 10 subintervals, each of length
0.1, and evaluate f at each endpoint, looking for two successive function values with
opposite signs. This yields f(0.8) ~ —0.040408 and f(0.9) = 0.1, indicating that the zero

lies in the subinterval (0.8,0.9). Thus, correct to one decimal place, the zero is .

The polynomial function f(z) = 2% — x + 2 is continuous for all real numbers, so it is

continuous on the closed interval [—2,0]. Because f(—2) = (=2)3 — (-2)+2 = -4 <0
and f(0) =2 > 0, the Intermediate Value Theorem guarantees that f must have a zero on
the interval (—2,0).

To approximate this zero, subdivide the interval [—2,0] into 20 subintervals, each of length
0.1, and evaluate f at each endpoint, looking for two successive function values with
opposite signs. This yields f(—1.6) = —0.496 and f(—1.5) = 0.125, indicating that the
zero lies in the subinterval (—1.6, —1.5). Next, subdivide the interval [—1.6, —1.5] into 10

subintervals, each of length 0.01. The two successive function values that are of opposite
sign are f(—1.53) —0.051577 and f(—1.52) = 0.008192, so the zero has now been isolated

to the interval (—1.53, —1.52). Thus, correct to two decimal places, the zero is .



1.3 Continuity 1-71

117. Let f and g be functions that are continuous at c¢. Then,
lim f(z) = f(c) and lim g(z) = g(c).

To prove that f+ g is continuous at ¢, it must be shown that lim [f(z)+g(x)] = f(c)+g(c).
r—cC
Using the Limit of a Sum Property, it follows that

lim [f(z) + g(2)] = lim f(2) + lim g(z) = f(c) + g(c),

T—cC

as required.

118. Let f and g be functions that are continuous on the closed interval [a, b], with f(a) < g(a)
and f(b) > g(b). Define the function h(z) = f(x) — g(z). Because f and g are both
continuous on [a, b], it follows that & is also continuous on [a,b]. Now,

h(a) = f(a) —g(a) <O and h(b) = f(b) — g(b) > 0.

Thus, by the Intermediate Value Theorem, there is a number ¢ between a and b such that
h(c) = f(e) —g(c) = 0, or f(c) = g(c). This implies that the graphs of 5 = f(z) and
Yy = ( ) intersect at @ = ¢; that is, the graphs intersect somewhere between = = a and
T =

Challenge Problems

1 1
119. Let f(z) = 1 + L Because f is continuous on the interval (1,2), it is continuous
T — T —
on any closed interval contained within (1,2), say [1.1,1.9]. With

1 1 10 80
1.1) = 2%
A=t =05 =95>0
and 1 1 10 80
1.9) = = _10=——
A9 =193 +t1g5=9 1W0="5<0

the Intermediate value Theorem guarantees there exists a number ¢ between 1.1 and 1.9,
and hence between 1 and 2, such that f(c) =0

120. Let f(x) = 22 —7. This polynomial function is continuous on the closed interval [2.64, 2.65].
With
f(2.64) =2.64 — 7= —0.0304 <0 and f(2.65) = 2.65% — 7 = 0.0225 > 0,

the Intermediate Value Theorem guarantees there exists a number ¢ between 2.64 and 2.65
such that f(c) =c? —7=0,0r c®? =T1.

h) —
121. Let f be a function for which lim M exists. Now, let = a+ h. Then, as h

h—0
approaches 0, z approaches a, and

po J@E R = fl@) L f@) = fla)

h—0 h t—a T —a
To prove that f is continuous at = = a, it must be shown that lim f(z) = f(a). Because

r—a
f(a) is a constant, li_r>n fla) = f(a) and

lim f(z) = f(a) is equivalent to lim[f(z)— f(a)] =0.

r—a r—a
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122.

123.

Proceeding with this last limit, we find

s - g =t |2 o] < B o
- D2,

where, in going from the first line to the second line, we have used the fact that
@)~ 1)

T—a r—a

exists so the Limit of a Product property applies.

2
T _
The rational function +71 is continuous on the set of all real numbers except z = 1,

so f is continuous on the interval (—oo,1). The function f is also continuous on the
intervals (1,4) and (4, 00) because it is a polynomial on each of these intervals. At z =1,

R -1 2
lim f(z) = lim rAroc lim E=De+2) = lim (z4+2)=3
z—1- z—1- z—1 r—1— rz—1 r—1—
and
lim f(z) = lim B(zx— C)*>= B(1-0C)%
rz—1+t rz—1t
Then, at = =4,
lim f(z) = lim B(z—C)*>=B(4-C)?
r—4- r—4-
and

li = lim (22 —8) =0.
im f(z) Igﬁ(x 8)=0

z—4t
Therefore, for f to be continuous at x = 1 and at = = 4, the constants A, B, C, and D
must satisfy the equations

A=3, B(1-0)*=3, B@4-C)*=0, D=0.

The solution of these equations is | A =3, B = %, C=4,and D=0| The figure below
displays a graph of f with these values for the constants.

6 +

, , , , , , , ,
-3/2 Bl 1 2 3 4 5 6 7
44

Let f be a function that is continuous on the closed interval [0, 1] and for which 0 < f(z) <1
for all z in [0,1]. Define the function g(z) = = — f(x). Because g is the difference between
two functions that are continuous on [0, 1], g is also continuous on [0, 1]. Now,

g(0)=0— f(0)<0 and g(1) =1 f(1) >0,
If either g(0) = 0 or g(1) = 0, then either f(0) =0 or f(1) =1 and a ¢ in [0, 1] has been

found such that f(c¢) = c¢. Otherwise, g(0) < 0 and g(1) > 0, so that the Intermediate
Value Theorem guarantees there exists a ¢ in (0, 1) such that g(c) =0, or f(c) =c.
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1.4 Limits and Continuity of Trigonometric, Exponential,
and Logarithmic Functions

Concepts and Vocabulary

1. limsinx = sin0 = @

x—0

cosr —1
. | False | lim —— = 0.
2. [Fase] i 2= <o

3. The Squeeze Theorem states that if functions f, g, and h have the property f(z) < g(x)
h(z) for all z in an open interval containing ¢, except possibly at ¢, and if lim f(x)

z—c
lim A(x) = L, then glELmC g(x) = .

Tr—cC

A

4. . f(z) = cscx is continuous for all real numbers except x = km, where k is any
integer.

Skill Building
5. Because —x? + 1 < g(x) < 2% + 1 for all z in an open interval containing 0 and

lim(—2z?4+1)=1 and lim(z?+1)=1,
x—0

z—0

it follows from the Squeeze Theorem that | lim g(z) = 1|

z—0

6. Because —(z —2)? — 3 < g(z) < (z —2)? — 3 for all z in an open interval containing 2 and

lim[—(z —2)?-3]=-3 and lim[(z —2)? - 3] = -3,

r—2 T—2

it follows from the Squeeze Theorem that | lim g(z) = —3 |

r—2

7. Because cosz < g(z) <1 for all z in an open interval containing 0 and

limcosz=1 and lim1l=1,
z—0 z—0

it follows from the Squeeze Theorem that | lim g(z) = 1|

z—0

8. Because —22 + 1 < g(x) < secx for all x in an open interval containing 0 and

lim(—2?+1)=1 and limsecz =1,
x—0 z—0

it follows from the Squeeze Theorem that 1111% g(z) =1}
T—

. 3 . o 3 . _ o
9. algr%)(x +sinz) =0 +sm0—0—|—0—@.

10. lim (22 — cosz) = 0% — cos0 =0 — 1 :.

z—0
3 1
11. xl_i>r7£1/3(cosm+sinx) :cosg—i—sing = g—f— 3|
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1
12, lim (sinxfcosx):sinﬁfcoszz @77.
z—m/3 3 3 2 2
CcoS X cos( 1
13. li = = =1
3 x%l—i—sinx 1+sin0 1+0
14 lim sinz _ sin 0 _ 0 :@
z—0 14 cosz 1+ cosO 1+1
15. lim 3 = 3 = 3 = §
e—01+er 14+ 1+1 2
e?—1 -1 1-1
16. 1i = = = i
zlgbljtew 14+e  1+1 @
. €T . _ 0 . _ _
17. ilg})(e sinz) =e smO—l(O)—@.
18. lir%(e_x tanz) = e “tan0 = 1(0) = @
Tr—r
19, tmin (S) = (©) =1 =[1]
- limIn )= n )= ne=|1|
. T 1 1
20. i‘1_>mlln (;) =In <61> =Ine :.
2z 2(0) 1 1
2L lim - =%~ _ |1
z—=01+er 1+ 141 2
1—¢* 1—¢" 1 1 1 1

22, lim —— = lim ——————— = |; = = ==
2501 —e2 250 (1—e?)(l+e?) xn0lter 1+ed 141 |2

2. tim STy TITE) 7 i SUTE) 7y )
x

z—0 €T z—0 Tx z—0
: x 1 . x : x
£ 3 5 1 5 1 1
24, tim S25) _ %(3) = lim sz(3> =)=
z—0 x z—0 3 3 z—0 3 3 3
0+ 3sinf 0 3 sin 0 1 3
25. lim———=1lm—+-lim —=—-+-=|2]|
S LY. 26 T2000 8 22
2x — 5si 2 i
2. lim 220800 g 20 g SO o g5 6D o g5 [Ty
z—0 x z—0 X w—)O x z—0 z—0 3z
27. First note that
1 lim9_>0 1 1
lim = sin®  1: sinf 1 L.
9—0sinf 00 5% limg,o ¥ 1
Then
sin 0 . 1 1 1
lim = lim =|=

0%09+tan9 9%0—+sec9 1+1 2

tan 0 in g in g 1 1
28. lim =¥ — Jim —% — jim 22 him —1.-=[1]

6—0 0 6—00-cos® 650 6  6-0cosl 1
. 5 . sinf
29- gl—m 6 - cscl 551—% 6 5(1) = '
o sin(30)
30, Jim 2260 _ 0 3 Tag 31 _
: ai - sin(20) St - 1o
6—0sin(20) -0 2@ m sin(20)  2(1) |2

6—0 20
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31.

32.

33.

34.

35.

36.

37.

38.

. 1—cos?6 . sin?6 . sinf . .
Jim ——g—— = lim == = lim, == - lim sin6 = 1(0) = [0}
. cos(40) —1 . 2lcos(40) —1] .. cos(40) -1 B
T T gm0l
0 - cost Glii%cosf)
g1_r)r(1)(9-cot9):9h_>n% sinf . Sin@:I:'
lim ——
6—0 0
Because
sin 0 cotf —cscf) cost —1
0 - 0 ’

it follows that

lim |:Sin9(COt0;CSC9>:| — lim cos@e— 1 :@.

0—0
First, f is defined at ¢ = 0 with f(0) = 3. Next,
lim f(r) = lim (3cosz) =3(1) =3 and lim f(z) = lim (z+3)=23.

z—0— z—0 z—0t z—0t

Because the two one-sided limits as x approaches 0 are equal to 3, it follows that lin%) f(x)
T—

exists and is equal to 3. Finally, lirrb f(x) = f(0), so ‘ f is continuous at ¢ =0 ‘
rT—r

First, f is defined at ¢ = 0 with f(0) = 0. Next,

lim f(r) = lim cosz =cosO0=1 and lim f(z)= lim ¢” =e’ =1.
z—0~ z—0~ z—0+t z—0t

Because the two one-sided limits as x approaches 0 are equal to 1, it follows that lin% f(x)
T—

exists and is equal to 1. However, lin}J f(z) # £(0), so ‘ f is not continuous at ¢ =0 ‘
z—

V2

First, f is defined at ¢ = g with f(g) = sin% == Next,
2 2
.7;—1>i7'rn/14_ flz)= 7;_137514— sin z = sin g = g and $_1>i7rn/14+ flz)= £_l)i;1/14+ CoS T = CO8 g = g

2
Because the two one-sided limits as = approaches 7/4 are equal to g, it follows that

2
lim f(x) exists and is equal to g Finally, lirn/4f(a:) = f(%), SO ‘f is continuous
Tr—rT

z—m/4

¢ T
at c= —|.
4

First, f is defined at ¢ = 1 with f(1) =In1l = 0. Next,

lim f(z) = lim tan 'z =tan"'1=

r—1— r—1—

I

and
lim f(z) = lim lnz=1Inl1=0.

z—1t r—1t

Because the two one-sided limits as x approaches 0 are not equal, it follows that lim1 f(x)
T—

does not exist. Therefore, ‘ f is not continuous at ¢ =1 |.
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39.

40.

41.

42.

43.

44.

45.

46.

2
—4
Let g(z) = sinz and h(z) = %
T —

set of all real numbers, and the rational function % is continuous on the set {z|z # 4}. As
the function f is the composition g(h(z)) and g is continuous at h(z) for all x at which h

. The trigonometric function g is continuous on the

is continuous, it follows that ’ f is continuous on the set {z|x # 4} ‘

2
4 —5r+1
Let g(x) = cosz and h(z) = 27+ The trigonometric function g is continuous on
x

the set of all real numbers, and the rational function A is continuous on the set {x|z # 0}.
As the function f is the composition g(h(x)) and g is continuous at h(x) for all = at which

h is continuous, it follows that ‘ f is continuous on the set {z|z # 0} ‘

The constant function 1 and the trigonometric function sin 6 are continuous on the set of all
real numbers, so the sum of these functions, 14sin 8, is also continuous on the set of all real

numbers. Now, 1+ sinf = 0 when sinf = —1. This happens for 0 = 37“ + 2km, where k is
any integer. Because f is the quotient of the constant function 1 and the function 1+ sin#,

3
it follows that | f is continuous on the set {J;|a: # g + 2k7r}, where k is an integer |

The constant function 1 and the trigonometric function cosf are continuous on the set
of all real numbers. The function cos?6 = cosf cos#f, being the product of continuous
functions, and the function 1+ cos? #, being the sum of continuous functions, are then also
continuous on the set of all real numbers. Finally, because 1 + cos? § is never equal to zero
for any real number 6 and f is the quotient of the constant function 1 and the function

14 cos? 0, it follows that ‘ f is continuous on the set of all real numbers ‘

Let g(z) = Inz and h(x) = © — 3. The logarithmic function ¢ is continuous on the set
{z|x > 0}, and the polynomial function h is continuous on the set of all real numbers. As
f is the quotient of the functions g and h and the only value x for which h(z) = 0is z = 3,

it follows that the function ’ f is continuous on the set {z|z > 0,z # 3} ‘

Let g(z) = Inz and h(z) = 22 + 1. The logarithmic function g is continuous on the set
{z|x > 0}, and the polynomial function h is continuous on the set of all real numbers. As
the function f is the composition g(h(z)) and g is continuous at h(x) for all = because

2241 > 1 > 0 for any real number z, it follows that ‘ f is continuous on the set of all real

numbers |.

Let g(z) = e ® and h(x) = sinz. The exponential function g and the trigonometric
function h are both continuous on the set of all real numbers. As f is the product of g and

h, it follows that ‘ f is also continuous on the set of all real numbers ‘

The exponential function e, the constant function 1, and the trigonometric function sin x
are all continuous on the set of all real numbers. The function sin? 2 = sin z-sin z, being the
product of continuous functions, and the function 1 + sin? z, being the sum of continuous

functions, are then also continuous on the set of all real numbers. Finally, because 1+sin® x
is never equal to zero for any real number x and f is the quotient of the exponential function

e® and the function 1+sin? z, it follows that‘ f is continuous on the set of all real numbers |

Applications and Extensions

47.

Start from the compound inequality

1
—1 <sin () <1,
T
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48.

49.

which holds for all 2 # 0. Multiplying by 22, which is non-negative for all x, then yields

1
—z? < 2%sin () < z2.
T

As
lim(—2?) =0 and lim2? =0,
z—0 x—0

it follows from the Squeeze Theorem that

1
lim z? sin <x) = @

z—0

Start from the compound inequality

1
—1 < cos <) <1,
T

1
0<1—cos(> <2
T
1
‘1—005 ()’ < 2.
T

Multiplying by |z|, which is non-negative for all z, then yields

1 1
1 — cos ()‘ = x(l — cos <)>’ < 2|x|,
x x
1
—2|z| < x<1 — cos <>) < 2|x|.
x

lim (~2[]) =0 and lim (2fz]) =0,

which holds for all  # 0. Then

and

||

or

As

it follows from the Squeeze Theorem that

(oo (1) -

Start from the compound inequality

1
—1 < cos () <1,
T
1
0<1l—-cos|—) <2
T

Multiplying by 2, which is non-negative for all z, then yields

1
0< z2 (1 — cos <>> < 212,
T

which holds for all  # 0. Then
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50.

51. lim

52.

53.

54.

55.

56.

As
lim0=0 and lim(22%) =0,

z—0 z—0

it follows from the Squeeze Theorem that

i (o-oe(2)] -

First note that 23 + 322 = 22(x + 3) is non-negative for x > —3. Thus, as z approaches 0,
Va3 + 3x? is defined. Now, consider the compound inequality

1
—1 <sin () <1,
T

which holds for all z # 0. Multiplying by vz + 322, which is non-negative for all z, then

yields
1
f\/x3 + 322 < \/:173 + 3z2sin () < Va3 + 3z2.
x

As

lim(—v23+322) =0 and lir% Vad + 322 =0,
T—r

z—0

it follows from the Squeeze Theorem that

lim /23 + 322 sin <1> = @
) x

z—C

in(ax) in(ax) Jim S092)
. sin(ax asin(ax 1im
Sln(a’x) = lim z = lim axr — gEﬁO axr — g . 1 —
z—0 sin(bm) z—0 sin(bz) z—0 bsin(bz) b .. sin(ba:) b 1 '
T bx lim ———=~
x—0 bx
cos(ax) hﬂ% cos(az) 4
lim _= _lom
z—0 cos(bx)  lim cos(bx) 1
z—0
lim sin(ax) — lim asin(ax) _ % hm sin(ax) _aq_]9]
=0  bx =0 abx b2z—0 ax b
.1 —cos(ax) . a(l—cos(ax)) a, 1—cos(ax) a
ilg}) bx _ili% abx _E}:IH%) ax _5.0_@'
. 1l—cosx . 1l—cosx 1+4cosx . 1—cos®x . sin?
lim ——— = lim . = lim =lim ————
=0 2 x—0 12 1+cosz z—=022(l+4cosxz) =2—0x2(1+ cosz)
i i 1 1 1
= lim 2 im 22T lim 11— = .
z—0 T z—0 T z—0 14 cosx 1+1 2

Let f be a function for which 0 < f(x) < 1 for every x. Multiplying by 22, which is
non-negative for all z, then yields 0 < 22 f(x) < 2? for every z. As

lim0=0 and lima?= 0,
z—0 z—0

it follows from the Squeeze Theorem that

lim [z% f(z)] = 0.

z—0
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57. Let f be a function for which 0 < f(z) < M for every z. Multiplying by 2, which is
non-negative for all z, then yields 0 < 22 f(x) < Ma? for every z. As

lim0=0 and lim(Ma2?) =0,
z—0 x—0
it follows from the Squeeze Theorem that

lim [z2 f(z)] = 0.

x—0
58. To make f continuous at 0, f(0) should be defined equal to the value of lir% f(z), provided
r—r
this limit exists. Here,

. . sin(wx
lim =7 lim ( ):71'-1:7r.
x—0 X x—0 ™ x—0 T

sin(mx) y msin(mx)
= lim ————*

Thus, ‘ £(0) should be set equal to 7 ‘ to make f continuous at 0.

59. The functions sin(7z) and are both continuous on the open interval (0,1); con-

1
z(1—2)
) sin(rx) | ) )
sequently, the function f(z) = ﬁ is also continuous on the open interval (0,1).

z(1—=z
Now,
sin(mx) 7 sin(wx) sin(mzx) . 1 1

Jm flo)= T ey = i Ay T T i e =y e

and, using the identity sin 6 = sin(r — 6),

lm f(z)= lim S22 _ g, = o) o, sin(rl =) 1

— 1
=7-1-— =7.
1 a—1-2(l—2) 21— 7z(l-—2x) a—>1- w(l—x) z51-x 1

Thus, defining ‘ fO)=f1)=mn ‘, f will be continuous on the closed interval [0, 1].

60. Because

lim f(x) = lim == =1 = £(0),
fis at 0.
61. Because 1 1 — cosz
fi () = iy~ = 0= 70

f is | continuous | at 0.

62. Let n be a positive integer, and start from the inequality

1
sin ()’ <1,
T

which holds for all z # 0. Multiplying by |z™|, which is non-negative for all z, then yields

(1 . (1
sin | — || =|a"sin| — || < |2"],
x x

1
—|z"| < 2" sin () <z"|.
x

"] -

or
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63.

64.

65.

66.

As
lim(—|z"|) =0 and lim |z"| =0,
z—0 x—0

it follows from the Squeeze Theorem that

lim {z” sin <1)] =0.
x—0 X

Let 0 < 6 < . Consider the diagram presented in the problem statement. The length of
the segment PB is shorter than the length of the segment PA because PA is the hypotenuse
of the right triangle PBA for which PB is one of the legs. Moreover, the length of the

segment PA is shorter than the length of the arc PA because the shortest distance between
any two distinct points is the length of the line segment connecting the two points. Thus,
the segment joining the points P and B is shorter than the length of the arc AP along the
circle. As the length of the segment joining P and B is sin# while the length of the arc
AP is 0, it follows that sinf < 6. Because # is a first quadrant angle, it is also true that
sinf > 0. Thus,
0 <sinf <46.
With
lim 0=0 and lim 6 =0,

0—0+ 0—0t

it follows from the Squeeze Theorem that

lim sin# = 0.
6—0t

If, instead, —5 < 6 < 0, then the length of the segment joining P and B is —sin @, so that
0<—sinf <O or —0<sinh<O0.
With

lim (—¢) =0 and lim 0=0,
0—0— 0—0—

it follows from the Squeeze Theorem that

lim sinf = 0.
6—0—

Finally, because the two one-sided limits are equal,

lim sin @ = 0.
6—0

From the Pythagorean identity cos? 6 + sin? § = 1 it follows that cos# = ++/1 —sin? . In
the limit as 6 approaches 0, 6 will eventually lie in the interval ( z 1), so that cos 8 will

T 2072
be positive; hence, cosd = v/1 — sin? §. Therefore,

lim cosf = lim \/1—sin29: \/1—02 =1.
6—0 6—0

Answers will vary. The function cos @ is continuous on the set of all real numbers, and the
polynomial function 523 4 222 — 8z + 1 is also continuous on the set of all real numbers.
As f(z) = cos(bz® + 222 — 8z + 1) is the composition of the two previously mentioned
functions, it follows that f is continuous on the set of all real numbers.

Answers will vary. One possible response is the following. Suppose we wish to evaluate
lim g(z) for some function g. If two functions f and h can be found such that f(z) < g(z) <
Tr—c

h(z) for all z in a neighborhood of ¢, except possibly at ¢, and lim f(z) = lim h(z) = L
Tr—cC r—c
for some real number L, then lign g(z) = L. In plain terms, the functions f and h squeeze

the value of g toward L. A graph to illustrate the process is shown below.
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and Logarithmic Functions

Challenge Problems

67. To show that the sine function is continuous on its domain, it must be established that

éim sin @ = sin ¢ for any real number ¢. So let ¢ be any real number. Then
—cC

limsinf = lim sin(z 4 ¢) = lim [sin x cos ¢ + cos x sin ¢
0—c z—0 z—0

= cosclimsinz +sinclim cosx =cosc-0+sinc-1 =sinec.
z—0 x—0

Similarly, to show that the cosine function is continuous on its domain, it must be estab-
lished that lim cos @ = cos ¢ for any real number c. So let ¢ be any real number. Then

6—c
limcosf® = lim cos(xz + ¢) = lim[cos z cos ¢ — sin z sin ]
O0—c x—0 x—0
= cosclim cosx —sine¢ lim sinx = cosc-1 —sinc-0 = cosc.
z—0 z—0
2 s 2 <2
. sinzx . xsinz . . sinzx
68. lim = lim =limz - lim —— =0(1) = @
x—0 x x—0 x x—0 z—0 X

69. As defined, 0 < f(z) <1 for all z, so that |f(z)| < 1. Multiplying this last inequality by
|z|, which is non-negative for all z, yields

|z - [f(@)] = [af ()| < 2], or  —laf <zf(x) < |zl

Because
lim(—|z]) =0 and lim |z| =0,
z—0 z—0
it follows from the Squeeze Theorem that
lim[zf(x)] = 0.

z—0

70. Using the diagram in the problem statement, let d denote the z-coordinate of the point
D. Applying right angle trigonometry to the triangle ACD yields dtan6 as the length

of the segment C'D, while applying right angle trigonometry to the triangle BC'D yields
(1 — d) tan(nf) as the length of the segment C'D. Thus,

dtanf = (1 — d) tan(nd),

or p
tan(ng) ~ ‘tened

= - tan(nf) °
tanf + tan(nf) 14+ taningd)
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Now,

tan(nb) . sin(nf)  cosf . sin(nf) . cosf
= lim — . = lim — - lim =n(l) =n,
9—0 tanf 6—0 sinf  cos(nf) 6—0 sinf  6-0 cos(nd)

using the results of Problems 51 and 52. Thus, as 6 approaches 0, d — %, and the
n

limiting position of D is the point L, 0]
n+1

1.5 Infinite Limits; Limits at Infinity; Asymptotes

Concepts and Vocabulary

1. . oo is not a number; oo is a symbol to represent the concept of becoming un-
bounded.

1
2. li —
(a) B —

(b) lim
mm —

r—0+ T

(¢) lim Inz :.

z—0+t

w

. . The graph of a rational function may have a vertical asymptote at a number x at

which the function is undefined. The graph will have a vertical asymptote provided that
at least one of the one-sided limits at that number is infinite. If neither of the one-sided
limits is infinite, the graph will have a hole.

4. If ilg}l f(x) = oo, then the line x =4 is a asymptote of the graph of f.

ot
—
24
S~—
=
81
Il

S
eS|
H

=3
»n
@
—
5
ot
|
ot

T——00
7. (a) zgrilooe :@.
(b) Ilgrgoe =[oo].
(c) wlg{.lo e = @

8. . The graph of a function can have at most two horizontal asymptotes.

Skill Building

9. As z becomes unbounded in the positive direction, the graph of f approaches the line
y = 2. Thus, | lim f(z)=2|
xr—r o0

10. As x becomes unbounded in the negative direction, the graph of f approaches the line
y=0. Thus,| lim f(z)=0|
r—r—00
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11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

As z approaches —1 from the left, the graph of f becomes unbounded in the positive

direction. Thus,

As x approaches
direction. Thus,

lim f(z) = o0l

r——1"

—1 from the right, the graph of f becomes unbounded in the positive

li = 00|
A T =

As x approaches 3 from the left, the graph of f becomes unbounded in the positive direction.

Thus, | lim f(z) = oo
r—3~

As x approaches 3 from the right, the graph of f becomes unbounded in the positive

direction. Thus,

li = 00|
i, 7(e) = o0

The graph of f has two vertical asymptotes: ‘x =—land z =3 ‘

The graph of f has two horizontal asymptotes: ‘y =0and y =2 ‘

As = becomes unbounded in the positive direction, the graph of f approaches the line

y = —3. Thus,

Tr—r00

lim f(z)=-3|

As z becomes unbounded in the negative direction, the graph of f approaches the line

y=0. Thus,| lim f(z)=0]|
r——00

As x approaches —3 from the left, the graph of f becomes unbounded in the positive

direction. Thus,

As z approaches
direction. Thus,

1@ =]

—3 from the right, the graph of f becomes unbounded in the negative
lim f(z)=—o0|

z——31

As x approaches 0 from the left, the graph of f approaches the origin. Thus,| lim f(z) =0/

rz—0~

As x approaches 0 from the right, the graph of f becomes unbounded in the positive

direction. Thus,

lim f(z) =o0|

z—0t

As x approaches 4 from the left, the graph of f becomes unbounded in the positive direction.

Thus, | lim f(z) =oco|.

r—4~

As x approaches 4 from the right, the graph of f becomes unbounded in the positive

direction. Thus,

li =00
A ) =

The graph of f has three vertical asymptotes: ‘x =-3,z=0,and z =4 ‘

The graph of f has two horizontal asymptotes: ‘y =0and y=-3 ‘
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27. As x approaches 2 from the left, 3x approaches 6 and x — 2 approaches 0 from the left.
Therefore, the ratio % becomes unbounded in the negative direction, so

lim —2 —[“oo]

z—2- T — 2

The values in the table below support this conclusion.

z 1.9 1.99 1.999 — 2

—57 =597 —5997 f(z) approaches —oo

28. As x approaches —4 from the right, 2z + 1 approaches —7 and = + 4 approaches 0 from

the right. Therefore, the ratio 2;:"41 becomes unbounded in the negative direction, so

. 20+ 1
Jim oy =l

The values in the table below support this conclusion.

T —4 -3.999 -399 -39

97 + 1
f(z):;jax

f(z) approaches —co  —6998 —698 —68

29. As z approaches 2 from the right, 5 approaches 5 and x2 — 4 approaches 0 from the right.
Therefore, the ratio ﬁ becomes unbounded in the positive direction, so

lim —>— =[]

z2t 22 —4

The values in the table below, which have been rounded to two decimal places, support
this conclusion.

T 2+ 2.001 2.01 2.1

flz) = f(x) approaches co  1249.69 124.69 12.20

30. As z approaches 1 from the left, 2z approaches 2 and 23 — 1 approaches 0 from the left.
Therefore, the ratio —22- becomes unbounded in the negative direction, so

r3—1
. 2z
i 2 [=0]
z—1- 1% — 1

The values in the table below, which have been rounded to two decimal places, support
this conclusion.

T 0.9 0.99 0.999 —1

2
f(z) = o f | —6.64 —66.66 —666.67 f(z) approaches —oo
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31.

32.

33.

34.

As x approaches —1 from the right, 52 + 3 approaches —2 and x(z + 1) approaches 0 from

the left. Therefore, the ratio x‘?iﬁ’) becomes unbounded in the positive direction, so

5+ 3
m ———m
z——1+ z(z + 1)

The values in the table below, which have been rounded to two decimal places, support
this conclusion.

x -1« -0.999 -0.99 -0.9

5 + 3
z(x+1)

f(z) = f(z) approaches oo 1997.00 196.97 16.67

As x approaches 0 from the left, 5z + 3 approaches 3 and 5x(x — 1) approaches 0 from the

right. Therefore, the ratio 5;’(“;"’731) becomes unbounded in the positive direction, so

5t + 3

lim — 2 _[55)

z—0- bx(x — 1)

The values in the table below, which have been rounded to two decimal places, support
this conclusion.

z —-0.1 —-0.01 —-0.001 — 0

b +3
~ bx(r—1)

f(z) 455 58.42 59840  f(z) approaches oo

As z approaches —3 from the left, 1 approaches 1 and 2% — 9 approaches 0 from the right.
Therefore, the ratio ﬁ becomes unbounded in the positive direction, so

1

lim ——— =[50}

r——3" .’132 -9

The values in the table below, which have been rounded to two decimal places, support
this conclusion.

T -3.1 -=3.01 -3.001 — =3

1
f(z) = o 1.64 16.64 166.64 f(x) approaches co
2 —

As z approaches 2 from the right, 2 approaches 2 and x2 — 4 approaches 0 from the right.
Therefore, the ratio " becomes unbounded in the positive direction, so

X

lim —*— =[]

r—2+ 22 —

The values in the table below, which have been rounded to two decimal places, support
this conclusion.

T 2+ 2.001 2.01 2.1

flx) = f(z) approaches oo 500.12 50.12 5.12
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35.

36.

37.

38.

39.

As x approaches 3, 1—xz approaches —2 and (3—x)? approaches 0 from the right. Therefore,
the ratio (31_;;)2 becomes unbounded in the negative direction, so

. 11—z
lim ooy ===}

The values in the table below support this conclusion.

x 2.9 299 2.999 — 3« 3.001 3.01 31
fz) = (317;;)2 —190 —19900 —1999000 f(x) approaches —oo —2001000 —20100 —210
As x approaches —1, x+2 approaches 1 and (x+1)? approaches 0 from the right. Therefore,
the ratio % becomes unbounded in the positive direction, so

T+ 2

zgn—ll (x+1)2 =[oe}

The values in the table below support this conclusion.

x —-1.1 —-1.01 —1.001 — —1 «+ -0.999 -0.99 —-0.9

flx)= (;jf)Q 90 9900 999000 f(x) approaches co 1001000 10100 110

As x approaches 7 from the left, cosz approaches —1 and sinz approaches 0 from the
right. Therefore, the ratio <22 = cot x becomes unbounded in the negative direction, so

sinz
lim cotz = .

T—T

The values in the table below, which have been rounded to two decimal places, support
this conclusion.

x m—01 7—001 w—0.001 — T
fl@)=cotz —=9.97 —100.00 —1000.00 f(x) approaches —oo

As z approaches —m/2 from the left, sin z approaches —1 and cos z approaches 0 from the
left. Therefore, the ratio 27> = tanx becomes unbounded in the positive direction, so

lim tanz =[oo].

T——7/2™

The values in the table below, which have been rounded to two decimal places, support
this conclusion.

@ T 01 -T-001 -I-0.001 — /2

f(z) =tanz 9.97 100.00 1000.00 f(x) approaches co

As x approaches /2 from the right, 2z approaches « from the right, so sin(2x) approaches

0 from the left. Therefore, the ratio m = csc(2x) becomes unbounded in the negative

xli;?2+ csc(2x) = .

The values in the table below, which have been rounded to two decimal places, support
this conclusion.

direction, so
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z T~ 740001 Z+001 Z+40.1
f(z) = csc(2x)  f(z) approaches —oo  —500.00 —50.00 —5.03

40. As x approaches —m/2 from the left, cos z approaches 0 from the left. Therefore, the ratio
L_ — secz becomes unbounded in the negative direction, so

cos T
lim secx = .

T——7/27

The values in the table below, which have been rounded to two decimal places, support
this conclusion.

z ~I 01 -Z-001 —Z—0.001 — —7/2
f(z) =secx  —10.02 —100.00 —1000.00  f(z) approaches —oo

41. As x approaches —1 from the right, x + 1 approaches 0 from the right. Therefore, In(z+1)
becomes unbounded in the negative direction, so

lim In(z +1) = [-o0]

T——

The values in the table below, which have been rounded to two decimal places, support
this conclusion.

x -1+ -14+107% —-14+107* —-1+1072
f(z) =In(z+1) f(x) approaches —oo —13.82 -9.21 —4.61

42. As x approaches 1 from the right, x — 1 approaches 0 from the right. Therefore, In(z — 1)
becomes unbounded in the negative direction, so

lim In(z —1) = .

z—1t

The values in the table below, which have been rounded to two decimal places, support
this conclusion.

x 1< 1+107% 141074 141072
f(z) =In(z —1) f(z) approaches —co  —13.82 -9.21 —4.61
5 5
22 2 _ 0
43, lim - R prr R 8 PERR [o]
z2 2
2 2 0
T 1 T R
a4 xgrzloox2—97mgrfnoox2— 7932@001 771—0 @
22 2
2 +4 2 4 2 40
45 1 2x+4_ m 5T _ oy 5 B5x _ 5 — 2
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z+1 1+1
e+l r z 1+0
0. Jim == = i 5 = i = =[]
T
3/2 L 9p _ 21/2 1
232 4 2 — x1/? Ty x1/2+2—17/2
. . .’L’ . ‘/I/‘
47. lim ————————— = lim = lim —m8M—%"—
T—00 5¢ — 1-1/2 25060 5y — 1,1/2 2300 5 _ 1
T 2172
lim z'/24+2—-0
T—> 00
= 5-0 =[]}
622 4 2%/4
a2y g L
48. IILHOIO 272 + x3/2 — 921/2 3}3{; 22 + a:3/2 —9opl/2
22
6+71
T 5/4 _64+0 _
= limg 00 yE— *2+0—0*'
2+x1/2_x3/2
2241 1+1
A T .z 23 _0+0
49. mg@oox?’—l:mEIPOOﬁ—l:mg@mi:m:@.
3 a3
22 —2x+1 1 2 1
-2 41 B T 2 0-0+0
50. Bim &ty 2t gy oz @ 2t 2 o]
z—oo g3 +5x +4 w0 g3 +5r+4 a—oo 5 4 14+04+0
— I+ =+
3 x x
51.
3z 241
. 3z 22 +1 ) 3z 2?41 ) 2% . 4z2
mlggo 20 +5 422 +8 _mlingo2m+5_zl—>nolo4x2+8_zi>nc}o 2z + _:ELHSOLL'EQ—’—S
2z 42
3 1 1 3 1+0
= lim lim 4 4z? 2 4 §_1_§
e 5  1oco 2 140 140 2 4 |4
e 1+ =
2x 2
52.
. 1 z+1 ) 1 .ox+1
lim — = lim —— — lim
z—=oo |22 +2x+4 3z —1 g0 x2 + 1 +4 w200 3r—1
1 x+1
_ 1 z2 T 3z
o zhﬁnc}ox2—|—x—|—4 $LII;O3I71
2 3z
1 1 1
_ g 2 B 3 3z
- xlgﬂo1+1+4 A 1
2 3z
1
B 0 §+0_0 1 [ 1
14040 1-0 3 3
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53.
5r +1
5 1 5 1
lim {2ez< Tt ﬂ — lim (2¢%)- lim 22D Gim 2ty | tim —32
T——00 3x T——00 rz——00 3T T——00 T——00 3733
3x
5 1 5
3713 310
= 1 x . 1 x = =
= @)t S =00 55— <o)
54.
2 +z—3
. (TPt —3 ) P 2+ -3 . - ) 203
IEI?OO |:6 ( 223 — x2 >:| - mgrgooe mggloo 2x3 — 22 :mgglooe ’ mgrgoo 2];3—12
23
1 1 3
9m2 0+0—-0
= lim e lm 20 2% 2o O ~[0]
T——00 T —00 1~ 1-0
2x
VT +2 1 .2
VT2 3z .. 3yx 3z  0+0
o Jim g =M omtr = S = =[]
3z 3z
N V3x3 + 2 ﬁ n 2
3z3 42 2 0+0
56. lim Yo T2 gy a? gy V2200
2 2
57. Because
32 —1 3 1
L 3x2—1 . 72 . T2 30
2 x?
it follows that
. 3r2 -1 oo 322-1
sy =V S <[
58. Because
1623 + 2z + 1 8+1+ 1
lim oo P gy 209 gy @ 208 _SFOFD g
T—00 2x3 + 3x T—00 2x° + 3x T—00 1 3 1+0
- + R
223 222

it follows that

1623 + 22 + 1\ */? 1623 + 22 + 1\,
00 ( 223 + 3z ) cmoo 223 + 31 s

53
. 5z3 . 2 , 5z
0ty =y = =)

2 x?
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1'4
. at . r . x3
0. Jim 75 = lim oty = lm =[]
x T

1
61. The domain of f(z) =3+ - is the set {z|x # 0}. The one-sided limits as x approaches 0

are . .
lim <3 + > = —00 and lim <3 + > = 00,
r—0— X r—0t €T

so |x = 0 is a vertical asymptote of the graph of f ‘ Because

1 1
lim <3+x>:3+0:3 and lim (3+x>:3+0:3’

T—r—00 Tr—00

‘y = 3 is a horizontal asymptote of the graph of f ‘

1
62. The domain of f(z) =2 — —; is the set {x|z = 0}. The one-sided limits as x approaches
x

1 1
lim (2——=)=—-0c0 and Ilim (2— — )= —o0,
z—0— 2 z—0t1 x2

so |x = 0 is a vertical asymptote of the graph of f ‘ Because

0 are

lim 27i =2—-0=2 and lim in =2-0=2,
T——00 x2 T —00 2

y = 2 is a horizontal asymptote of the graph of f ‘

2
63. The domain of the function f(x) =

1 is the set {z|z # £1}. The one-sided limits as

x? —
x approaches —1 are
22 2
lim —— =00 and lim = —00,
z——1- 22 —1 zo—1+ 12 — 1
so‘ x = —1 is a vertical asymptote of the graph of f ‘ The one-sided limits as x approaches
1 are
22 2
lim =-—o00 and lim = 00,
zo1- 22 —1 =1+ 22 — 1
SO ‘ x =1 is also a vertical asymptote of the graph of f ‘ Because
2
9 fdl
2 1 1
lim — = lim L = lim —=—-—-=1,
zo—0co 2 — 1 T——00 1‘2—1 T—)—ool_i 1—-0
x2 x?
and
2
9 dl
2 1
lim = lim —& = lim =——=1,
2 1
T—00 L4 — r—o0 I — a:~>001_7 1—0
z 2

y = 1 is a horizontal asymptote of the graph of f ‘




1.5 Infinite Limits; Limits at Infinity; Asymptotes 1-91

64.

65.

222 — 1
The domain of the function f(x) = ‘271 is the set {x|z # +1}. The one-sided limits
72 —
as x approaches —1 are
i 222 — 1 i 1 222 — 1
im = n im =—
z——-1- 22 -1 oo @ z——1+ 12 —1 0
so‘ x = —1 is a vertical asymptote of the graph of f ‘ The one-sided limits as x approaches
1 are
22?1 o222 -1
lim =—o00 and lim = 00,
z—1- 22 —1 a1t 22 —1

SO ’ x =1 is also a vertical asymptote of the graph of f ‘ Because

22 — 1 9 1
9 _
lim M: lim _ar lim $2:ﬂ:2
z——o00 12 — 1 zo—co g2 —1 z%—ool_i 1-0 ’
x2 x?
and
22 — 1 9 1
9 et _
fm 22 2 gy 22 270
r—oo 4 — 1 oo 2 —1 x—mol_i 1—-0 ’
2 x?

y = 2 is a horizontal asymptote of the graph of f ‘

By completing the square, we find

1 1 1 1\N? 7979
202 —x+10=2(2’-Zz+—=)4+10—==2(z—= — > —
T T 0 (:E Qx 16> 0 3 <:c 4> +8_8>O

for all . Therefore, 222 —x + 10 is defined for all z, and the domain of f(z) =
V222 — x4+ 10

P is the set {z|z # 3}. The one-sided limits as = approaches 3 are
T —

2

. 222 —z + 10 . 202 — x4+ 10
im — =—-00 and lim —— = o0,
x—3/2- 20 — 3 z—3/2+ 20 — 3

so|z = % is a vertical asymptote of the graph of f| To examine the limits at infinity, note

that

1 10 1 10

ViR a0 P2 o Tt e VPt

2 —3 2 — 3 T, 3
x

Note that |z|/x is —1 as = approaches —oco and +1 as  approaches oo; therefore,

. V2=0+0 V2 . V2-0+0 V2
lim R(z)=————=—-—— and lim R(z)=——=—,
T—r—00 2—0 2 r— 00 2—0 2

so that |y = —g and y = g are horizontal asymptotes of the graph of f|.
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66. The domain of the function f(z) = % is the set {z|x # 6}. The one-sided limits

as x approaches 6 are
Va2 + bx Va2 +5x

lim —— = —o0 and lim ,
T—6— r—06 rz—61 r—6

so |x = 6 is a vertical asymptote of the graph of f ‘ Because

Va2 +5x s/ 1 5
;M = lim X

s 2 0F0
=0

mgrfnoo z—6 oo X —6 xgrfloo 1_ § 0,
T x
and
\3/ 2 + 5x 3 1 + 3
. Va4 5 . T . r 22 V040
lim —— = lim ——*——— = lim = =0,
T—00 x—06 T—00 z—6 T—00 179 1—-0
x x
‘y = 0 is a horizontal asymptote of the graph of f ‘
67. (a) Factoring the denominator of R yields
223 4 422 = 222 (z + 2),
so the domain of R is the set ‘ {z|z # -2,z # 0} ‘
(b) Because
—2z2 +1 1 N 1
222 +1 T 9.3 T T53 040
z——o0 213 + 422 r——oc0 2x° + 4x T——00 14 g 1+0
213 T
and
—2z2 +1 1 N 1
222 +1 T T93 040
T S T %: lim 2z 23 _UF =0,
z—o0 203 + 422 z—oo 223 + 4 woeo 2 140
213 x
‘y = 0 is a horizontal asymptote of the graph of R |
(¢) The one-sided limits as = approaches —2 are
I 222 41 d I 222 4+ 1
im ———— =00 an im ———— = —00
z——2- 223 + 42 a——2+ 223 + 412 ’
so |z = —2 is a vertical asymptote of the graph of R| The one-sided limits as x ap-
proaches 0 are
I —22% +1 Y -2z +1
im ———— =00 an im ————— =
10— 223 + 422 a0+ 223 4 422 ’

so |x = 0 is also a vertical asymptote of the graph of R |
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(d)

638. (a)

69. (a)

The only numbers where R is not defined are x = —2 and « = 0. Using the limits from
part (c), it follows that as x approaches —2 from the left, the graph of R becomes
unbounded in the positive direction, while as x approaches —2 from the right, the
graph of R becomes unbounded in the negative direction. As x approaches 0 from
either direction, the graph of R becomes unbounded in the positive direction.

Factoring the denominator of R yields

ot 1= - D)@?+1) = (z—1)(z+1)(z* + 1),

so the domain of R is the set | {z|z # £1} |

Because
a3 1
3 il -
zt z _ 0
IEIPOOLLA— 71%700‘1:4— 712111001_i 1—070
x4 x4
and
a3 1
. z? . ) . z 0
lim = lim 4:10 = lim L — _— =0,
z—oo x4 — z—oo g% — 1 T—00 _i 1-0
x4 x4
‘y = 0 is a horizontal asymptote of the graph of R |.
The one-sided limits as x approaches —1 are
3 3
x x
lim —— =—0c0 and lim —— = o0,

z—s—1- x4 —1 1+ xt —1

SO ‘:1: = —1 is a vertical asymptote of the graph of R ‘ The one-sided limits as x ap-
proaches 1 are
23 3
lim =—o00 and lim =00
a—1- xt —1 a1+ ot — 1 ’

SO ‘ x =1 is also a vertical asymptote of the graph of R ‘

The only numbers where R is not defined are 2z = +1. Using the limits from part (c),
it follows that as = approaches —1 from the left, the graph of R becomes unbounded
in the negative direction, while as x approaches —1 from the right, the graph of R
becomes unbounded in the positive direction. As z approaches 1 from the left, the
graph of R becomes unbounded in the negative direction, while as x approaches 1
from the right, the graph of R becomes unbounded in the positive direction.

Factoring the denominator of R yields

222 — Tx + 6 = (22 — 3)(x — 2),

so the domain of R is the set | {z|z # 2,2 # 2} |.

Because

1 3 5 1
S22 Z40-0

2 "o x2:2+ _ 1
L1 .3 T 1-0+0 2

z? + 3z — 10
2?4+ 3z — 10 . 272 .
im ————— = lim ——5*-——= lim
z——002x2 —Tx+6 a—-00 22° —T7x+6 z—-00
222 2 a2
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70. (a)

and
z? + 3z — 10 1 3 5 1
o 22432 -10 . ) _ 54‘%—? 5—1—0—0 1
lim ———— = lim ——=L—— = lim = =z,
z—00 222 — 7w +6  x—o0 222 —Tx + 6 z%ool_l 3 1-04+0 2
272 20  x2

Y= % is a horizontal asymptote of the graph of R |.

The one-sided limits as = approaches % are

i 2%+ 3z — 10 . (x —2)(z+5)
lim ——= lim —FF——=-
z—=3/2- 202 = Tx +6  2-3/2- 2z — 3)(z — 2)

and
. 22+ 3z — 10 . (x —2)(z+5)
im —— = 1l A A
e—3/2+ 202 —Tx 4+ 6 2-3/2+ (22— 3)(x — 2) ’
so|x = % is a vertical asymptote of the graph of R| Because

2?43z —10 - (z —2)(x +5) . T+5

I - _ _
i35 202 —Tx 16  anb (20 —3)(z —2) ao22z-3 O

x = 2 is not a vertical asymptote of the graph of R. Rather, the graph of R has a
hole at the point (2, 7).

The only numbers where R is not defined are x = % and x = 2. Using the limits
from part (c), it follows that as « approaches % from the left, the graph of R becomes
unbounded in the negative direction, while as x approaches % from the right, the

graph of R becomes unbounded in the positive direction. The graph of R has a hole
at the point (2,7) and approaches that point as x approaches 2 from either direction.

The domain of R is the set | {z|z # —3} |
(b) Because
2
z(z —1)? 1— 1
x(z —1)2 _ 3 _ x (1-0)?
im ——% = lim —*——— = lim = - =1
T——00 (x + 3)3 T——00 (.’L‘ + 3)3 T——00 3 3 (]_ + 0)3
SR (1+2)
x T
and
2
z(z — 1) 1— 1
z(r —1)32 - . x (1-0)?
1 = 3~ = lim 5 = =1,
; 1+
Z T
‘y =1 is a horizontal asymptote of the graph of R ‘
(¢) The one-sided limits as = approaches —3 are
—1)2 —1)2
lim M =00 and lim M = —00,
z——3- (x+3)3 a——3+ (z+ 3)3

SO ‘ x = —3 is a vertical asymptote of the graph of R ‘
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(d) The only number where R is not defined is z = —3. Using the limits from part (c),
it follows that as x approaches —3 from the left, the graph of R becomes unbounded
in the positive direction, while as x approaches —3 from the right, the graph of R
becomes unbounded in the negative direction.

71. (a) Factoring the denominator of R yields

r— 2% =2(1 - 1),

so the domain of R is the set ‘ {z|z # 0,z # 1} ‘
(b) Because

3 —1 n
3 _ 1 — .2 —X -y
lim 2 = lim T — lim z? _ o0
r——00 I — xz r——00 I — 1‘2 T——00 1
——+1
) x
and
3 —1 1
N s T —— . Trt 3
lim = lim 5 = lim T = —00,
T—o00 I — X r—oo I — X T—00
——+1
—x2 x
‘the graph of R has no horizontal asymptotes ‘
(¢) The one-sided limits as = approaches 0 are
31 —1)(2? 1
lim * = lim (@ Y@+ izt ):oo
z—0- T — a2 10— z(1—x)
and 5 )
-1 -1 1
lim £ = lim (@ )@ +z+1) = —00,
=0+t T — 2% o0+ z(1—x)

so |x = 0 is a vertical asymptote of the graph of R ‘ As x approaches 1,

31 — 1) (22 1
lim x 5 = lim (= )@ +ot1)
=1 —x z—1 aj(l—aj)
o2 +x+1 1+1+4+1
= —lim =— = —3;
r—1 x 1

therefore, x = 1 is not a vertical asymptote of the graph of R. Rather, the graph of
R has a hole at the point (1, —3).

(d) The only numbers where R is not defined are x = 0 and 2z = 1. Using the limits
from part (c¢), it follows that as x approaches 0 from the left, the graph of R becomes
unbounded in the positive direction, while as x approaches 0 from the right, the graph
of R becomes unbounded in the negative direction. The graph of R has a hole at the
point (1,—3) and approaches that point as  approaches 1 from either direction.

72. (a) Factoring the denominator of R yields

2 —1=@-1)(*+z+1),

so the domain of R is the set | {z|z # 1} |.
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(b) Because

47
425 3 422
lim = 1l Z = lim i 00
z——o0 3 — ro—0co g5 — 1 T——00 1— i
x3 x3
and
40
4x° 3 42
lim 330 = lim zs lim T 00,
x—o0 3 — 1 x—oo ° — 1 x—><>ol_7
x3 x3
‘the graph of R has no horizontal asymptotes |.
(¢) The one-sided limits as x approaches 1 are
425 425
lim =—-00 and lim = 00,

z—1— 23 — 1 e—1+ 23 — 1

SO ‘ x =1 is a vertical asymptote of the graph of R |.

(d) The only number where R is not defined is = 1. Using the limits from part (c), it
follows that as x approaches 1 from the left, the graph of R becomes unbounded in
the negative direction, while as x approaches 1 from the right, the graph of R becomes
unbounded in the positive direction.

Applications and Extensions

73. (a) Answers will vary. The figure below displays the graph of a function f with the

properties
f(3) =0, xlggo flz)=1, mgrzloof(m) =1,
lim f(z) =00, and lim f(z)= —oc.
z—1- z—1t

(b) Answers will vary. The function shown above is | f(z) = T i) )
T —

74. (a) Answers will vary. The figure below displays the graph of a function f with the

properties
lim f(z)=—-0c0, and lim f(z)= oc.

r—5~ z—5t1



1.5 Infinite Limits; Limits at Infinity; Asymptotes 1-97

75.

76.

(b)
()

()
(d)

xr— 2

Answers will vary. The function shown above is | f(z) = ——— |.
x?(x — b)

Because k < 0,

lim u(t) = lim [(uo—T)e" +T] = (uo—T) lim "+ lim T = (ug—T)(0) +T = [T]

t—o00

As time increases, one would expect the object to lose heat to its surroundings until
the temperature of the object had decreased to the temperature of the surroundings,

so this limit value is ‘ in line with expectations ‘

lim w(t) = lim [(ug —T)e* +T] = (ug — T) lim e* 4 lim T

t—0+ t—0t t—0t t—0+

= (uo—T)ek(O)+T:(u0—T)+T:.

This value is again ’in line with expectations‘ because as t approaches 0 from the

right, the temperature should approach the temperature of the object when it was
placed into the lower temperature medium.

To remove 45% of the pollutants, p = 45, and

70,000(45

The cost to remove 45% of the pollutants is therefore approximately | $57,272.73 |.

To remove 90% of the pollutants, p = 90, and

70,000(90)
C(90) = 55—~ = 630,000,
The cost to remove 90% of the pollutants is therefore | $630, 000 |.
. . 70,000p
| — fm 2Py
pal1r(r]lof Clp) palun)lof 100 — p m

As the percentage of the pollutants removed from the air increases toward 100, the
cost of removing those pollutants increases without bound.
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5
77. xiing* Cx) = zahf(r)lof 100x— - = [0o] As the percentage of the pollutants removed from

the lake increases toward 100, the cost of removing those pollutants increases without
bound.

78. (a) The projected size of the colony after 1 year (365 days) is

50(1+0.5-365) 9175

P(365) = =
(365) 2+0.01-365 5.65

~ 1623.89,

or | 1624 insects |

(b) The largest population that the protected area can sustain is

1 . 1 ]
lim P(¢t) = lim 50(1 +0.5t) — lim 50(1 +0.5¢) )
tmroo t—oo 2+ 0.01¢ tooo 2+ 0.01¢

50(% 4 0.5 ,
lim z(t ) = 50(0 +0.5) = 2500 insects |.
t—oo 2 +0.01 0-+0.01

H_‘,_.‘H.\._.

(c) The figure below displays the graph of the population P as a function of time .

2500 T
2000 T
1500 T

1000 T

Number of insects

t=1 year

t t t t t
1000 2000 3000 4000 5000
Time (days)

(d) Within the first year, the population increases rapidly from the initial size of 25 insects
to over 1600 insects. After that the population grows more slowly, eventually leveling

off at 2500 insects, which is | consistent with the result from part (b) ‘

79. (a) If the model is correct, the environment can sustain

. , 500 [, 500
tlgg) Pt) = tliglo 1+ 82.3¢-0162t tlim [1 + 82.3¢ 01627
—00
500 500

14823 lim e 1%~ 14-82.3(0) | ald cagles |
—00

(b) The figure below displays the graph of the population P as a function of time t.
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Number of bald eagles

t t t t t
20 40 60 80 100
Time (years)

(¢) Answers will vary. The number of bald eagles increases slowly for roughly the first
ten years, after which the rate of population growth accelerates rapidly. This phase of
growth continues until roughly year 35, after which the rate of growth slows dramati-

cally. Eventually, the number of bald eagles levels off at 500, which is | consistent with

‘the result from part (a) ‘

80. (a) The limiting speed of the hailstone is

lim o(t) = lim [%(1 - e*’“/m)} - %(1 ~ lim e*’“/m) = %(1 —0)="9,

t—o00 t—o0 t—o0 k‘

With m = 4.8 x10~* kg, g = 9.8 m/s?, and k = 3.4 x 10~* kg/s, the limiting speed is

4.8 x 107* kg - 9.8 m/s?
~|13.84 .
3.4 x 10~* kg/s

In miles per hour, this is

1 mi/h
13.84 - ——— =& 30. i/h|
3.84 m/s 0447 m /s 30.96 mi/

(b) The figure below displays a graph of v(¢). The speed appears to approach 13.84 m/s,
‘consistent with the result from part (a) ‘

Speed (meters/second)

t t t t t
2 4 6 8 10

Time (seconds)
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81. (a) The figure below displays the graph of y = x(¢). The graph suggests that

tliglo z(t) =01

Distance (meters)

Time (seconds)

(b) Note that —1 < cost <1 and —1 <sint <1 for all ¢. Thus,

—1.2¢72 < 1.2e7 2 cost < 1.2¢71/2

and
—2.4e71/? < 2.4e 2 sint < 2.4¢ 42,

Because lim e */? =0, it follows that
t—o00

lim (—1.2¢7%/2) = lim (1.2¢7%/?) = lim (—2.4e*t/2):thm (2.4¢7%/%) =0,
— 00

t—o0 o t—o0 o t—o0

so the Squeeze Theorem guarantees

lim (1.2e7%2cost) =0 and lim (2.4e""2sint) = 0.

t—o0 t—o0

Therefore,

. T —t/2 . . —t/2 _ _
lim z(t) = lim (1.2e7*/“ cost) + tliglo(zéle sint) =0+0= @

t—o00 t—o00

(¢) Answers will vary. The answer from part (b) |is supported | by the graph in part (a).

82. (a) First determine the value of the rate constant k. With C'(0) = 2.5 ppm, C(t) = 2.5¢*.
Given that the amount of free chlorine after 24 hours is 2.2 ppm, it follows that
2.2
24k _

2.2 = 2.5¢24k ==
(& or 25,

so that

1 2.2 1
k= 21 In (25> ~ —0.005326 hours™ .

Thus, after 72 hours,
C(72) ~ 2.5e70:005326(72) 1 7,

so the amount of free chlorine is ‘ approximately 1.7 ppm |.
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(b) The approximate time when the amount of free chlorine reaches 1.0 ppm is the solution
of the equation
1.0 = 2.56—0.005326t

t éln (10> ~ 172 hours.

which is

~ 20005326~ \ 25

Therefore, Ben can go ‘roughly 172 hours (a little more than one week) ‘ before he

must shock the pool again.
(c) tllglo C(t) = tl_i>r£.10(2.56_0'005326t) = @ ppm.
(d) In the long run, all of the free chlorine in the pool will decompose.

(a) First determine the value of the rate constant k. With A(0) = 0.40 moles, A(t) =

0.40€**. Given that the amount of sucrose present after 30 minutes is 0.36 moles, it
follows that
30k _ 0.36

.36 = 0.40¢30F = —
0.36 = 0.40e or 0.40°

so that

~ 30 \0.40
Thus, after 2 hours (120 minutes),

k L In (0‘36) ~ —0.003512 minutes™'.

A(120) ~ 0.40e~0-003512(120) ()26,

so the amount of sucrose present is ‘ approximately 0.26 moles |.

(b) The approximate time when the amount of sucrose remaining will be 0.10 moles is
the solution of the equation

0.10 = 0.40¢~0-003512¢

which is

¢ L (%10 395 minut
= n =~ min’ .
20.003512 -\ 0.40 es

() lim A(t) = lim (0.40e~"0912) = [0] moles.
—00

t—o00

(d) In the long run, all of the sucrose will decompose into glucose and fructose.

(a) Solving the thin film equation for ¢ yields

1 1 1 p—f _pf
L il PN P L

a f p pof p—f

Note that division by p— f is permitted here because the problem statement indicates
that p > f, so that p — f will never be equal to zero. Thus,

i .. pf
im ¢g= lim —— = .
p—ft p=ftp—f

Therefore, the distance g of the image from the lens is as the distance

of the object approaches the focal length of the lens.

(b) A camera cannot focus on an object placed close to its focal length because the
distance of the image from the lens becomes unbounded.
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85.

86.

87.

88.

If ¢ =0, then

ax?’—l—b_l, azxd® +b

im im —— —w—()
tooo cxt 4+ d a—oo cxt +d N B

T—>00 C+m7 C+O

b

so that y = 0 would be a horizontal asymptote of the graph of f. Thus, for the graph of
f to have no horizontal asymptotes, ¢ must be zero. It then follows that d cannot be zero,
otherwise the denominator of f would be zero. Now, with ¢ = 0 and d # 0, the function f
reduces to a polynomial, and therefore does not have vertical asymptotes. Next, note that

if a =0, then f(z) = %, so that

A =ma =g

and y = % would be a horizontal asymptote of the graph of f. Thus, a cannot be zero.
Finally, for the graph of f to have no horizontal or vertical asymptotes, we must have

‘a #0,c=0,d#0, and b can be any real number ‘

If ¢ # 0, then

. a+g a+0 a
= lim ===
o0 c+ £ c+0 c

ar +b . ar+b
im = lim .
z—oocx +d z—oocx+d

b

8 =8 =

a

so that y = £ would be a horizontal asymptote of the graph of f. Thus, for the graph of
f to have no horizontal asymptotes, ¢ must be zero. It then follows that d cannot be zero,
otherwise the denominator of f would be zero. Now, with ¢ = 0 and d # 0, the function f
reduces to a polynomial, and therefore does not have vertical asymptotes. Next, note that

if a =0, then f(z) =%, so that

b

lim f(z)= 1

b
m -
T— 00 z—00 d d’

and y = g would be a horizontal asymptote of the graph of f. Thus, a cannot be zero.
Finally, for the graph of f to have no horizontal or vertical asymptotes, we must have

‘a #0,¢=0,d#0, and b can be any real number ‘

(a) Let n be an even positive integer. Then, as x approaches ¢, (x — ¢)™ approaches 0

1
from the right and W becomes unbounded in the positive direction; that is,
T—c
1
lim ——— = co. Answers will vary, but one example is lim — = oo.
z—c (x — )" z—0 2

(b) Let n be an odd positive integer. Then, as x approaches ¢ from the left, (z — ¢)"
approaches 0 from the left and W becomes unbounded in the negative direction;
T—c
1 1
that is, lim ——— = —oo. Answers will vary, but one example is lim =
r—c™ (.13 — C)n z—4- T — 4

—00.
(c) Let n be an odd positive integer. Then, as x approaches ¢ from the right, (x —¢)" ap-

proaches 0 from the right and — becomes unbounded in the positive direction;

1
(z—¢)
1
= 00. Answers will vary, but one example is lim

that is, li — =
as e -2+ (z + 2)3

z—ct (ZE — C)n
Q.

Let R be a rational function whose numerator and denominator have no common zeros,
and let ¢ be a point of discontinuity of R. Then ¢ must be a zero of the denominator of
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89.

90.

R. Because the numerator and denominator of R have no common zeros, ¢ is not a zero
of the numerator, so that, as x approaches ¢, the numerator of R approaches a non-zero
number, while the denominator approaches 0. It follows that the value of R must become
unbounded as x approaches ¢ and that the graph of R must have a vertical asymptote at
T =c

Let p be a polynomial function of degree 1 or higher. Because all polynomial functions are
defined for all real numbers, the graph of p will have no vertical asymptotes. Moreover,
because p contains at least one term of the form az* where a # 0 and k is an integer
greater than or equal to 1 (as otherwise p would not be a polynomial function of degree
1 or higher), p(z) will become unbounded as z becomes unbounded in either direction.
Thus, the graph of f will also have no horizontal asymptotes.

Let P and @ be polynomial functions of degree m and n, respectively. In particular,
suppose
P(2) = ama™ + apm_12™ 1 4+ +ag
and
Q('T) = bnxn + bn—lxnil +-+ b07

where the a; (j = 0,1,2,...,m) and the by (k = 0,1,2,...,n) are real numbers with
am # 0 and b, # 0.

P 1
(a) Suppose m > n. Multiplying the numerator and denominator of ng; by — then
T x"
yields an expression of the form
amszn + am_lxmfnfl 4 @
x'ﬂ
b b ’
by + ot e —
x
Thus,
P(il?)_ 00, if a,, >0
xl—>nolo Q(x) - —0Q, if A, < 0.
1o . P(x) 1
(b) Suppose m = n. Multiplying the numerator and denominator of Q) by — then
T xn
yields an expression of the form
Gy — a
Uy + 2
x x
b— by -
by + 2
x

Thus,

. Pl an+0+---40 [am
lim = =|—

z—o0 Q(x) b +0+---+0 by |

In other words, when m = n, the limit is the ratio of the leading coefficients of the
two polynomial functions.
P(x) 1

by — then
mn

Q(x)

(¢) Suppose m < n. Multiplying the numerator and denominator of

yields an expression of the form

Qm Am—1 agp
xn—m (Enferl + + xn
b b
by + ot e —

Thus,

. P(&)  04+0+---40
1 = =[o0]
050 Q@) bp+ 0+ +0 [9]
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91. (a) The table of values below, which have been rounded to six decimal places, suggests

lim <1+ ;) ~ [2.715252]

Tr—r 00

z 100 10,000 1,000,000 100,000,000 — 00

1 x
flz)= (1 + 7) 2.704814 2.718146 2.718280 2.718282  f(x) approaches 2.718282
x

(b) Using the computer algebra system Mathematica,

1 xr
lim (1 - ) =|e ~ 2.718281828 |
x

Tr—r0o0

(¢) Answers will vary. One possible response is that the results from parts (a) and (b)
agree to five decimal places. Though it is possible to achieve accuracy to as many

xr
decimal places as desired by calculating <1 + — | for larger and larger z, it is im-
x

possible to determine every digit of this limit. The number e, like the number 7, has
a nonrepeating, nonterminating decimal expansion.

Challenge Problems

92. We may prove the result using the standard properties of limits at infinity and the fact

that lim — = 0. For any real number k£ and p > 0 such that x? is defined, we have the
r—+oo
following:
k 1 1\" 1\
lim :k:( lim ): ( lim () ): ( lim ) = k(0)P = 0.
z—too P x—Foo P x—Foo \ T r—too T
2 2

93. (a) As v approaches ¢ from the left, U—Q approaches 1 and 1 — U—Z approaches 0. Therefore
c c

1
lim Kgen(v) = me? lim | ——— 1] = [oo]
v—cT v—cT 1— %

(b) Because it is not possible to have infinite kinetic energy, the result from part (a)
suggests that it is not possible to reach the speed of light.

1\” n
94. In lim (1 + > , the exponent is the variable . The property lim [f(z)]" = [ lim f(x)}
T T—00

T—00 L—>00
requires the exponent to be a constant, independent of the variable x.

1.6 The e Definition of a Limit

Concepts and Vocabulary

1. . The limit of a function as x approaches ¢ does not depend on the value of the
function at c.

2. . In the -0 definition of a limit, we require 0 < |z — ¢| to ensure that x # c.

3. . In an e-d proof of a limit, the size of § usually depends on the size of €.
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4. | False| When proving lim f(z) = L using the e-¢ definition, you try to find a connection
r—c
between |f(z) — L| and |z — ¢|.

5. . Given any e > 0, suppose there is a § > 0, so that whenever 0 < |x — ¢| < §, then
|f(z) — L| <e. Then lim f(x) = L.
r—cC

6. . A function f has a limit L at infinity, if for any given € > 0, there is a positive
number M so that whenever x > M, |f(z) — L| < e.

Skill Building
7. Here, f(z) =2z, c=1, and L = 2. To make
|f(z) — L| = |22 — 2| = 2|z — 1] < 0.01

requires

0.01

Thus, the largest § that “works” for e = 0.01 is | = 0.005 |.

8. Here, f(z) = =3z, ¢ =2, and L = —6. To make

|lf(x) =L =|—-3z—(=6)|=|—-3zx+6]=|—-3| |z —2| =3z — 2| <0.01
requires
0.01 1
lx — 2| < — = —.
3 300
1
Thus, the largest ¢ that “works” for e = 0.01 is | = 300

9. Here f(xz) =6z — 1, ¢ =2, and L = 11. To make
1
|f(x)—L\:\(636—1)—11\:|6x—12\:6|x—2|<5

requires

x 17
1. 1
Thus, the largest § that “works” for ¢ = 3 is|d = ol
10. Here f(z) =2 — 3z, ¢ = —3, and L = 11. To make
1
[f(x)—L|=](2—-3x)—11|=|—-32—-9|=|=3| |+ 3| =3|z+ 3| < 3
requires
1
3| < =.
o +3 < 3

1
Thus, the largest ¢ that “works” for e = 3 is|d=

1
5|
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1
11. Here f(z) = 5 +5,c=2,and L =4. To make

1
|z —2| = §|x—2\ < 0.01

1 1 1
[f(x) = L| = ‘(—2x+5) —4’ = ‘—295—1— 1‘ - ‘_2

requires
|z — 2| < 2(0.01) = 0.02.

Thus, the largest § that “works” for e = 0.01 is |6 = 0.02 |
1
12. Here f(z) =3z + 5 c= 2, and L = 3. To make

5

1 5
— L = — — = — — | = — = .
|f(x) | ‘<3x+2> 3‘ 3z 2‘ 3|z 6‘<03
requires
5 0.3
— = <—=0.1.
v 6‘ 3
Thus, the largest ¢ that “works” for e = 0.3 is .
13. To make
[(dx — 1) — 11| = [dx — 12| = 4|z — 3| < ¢
requires
€

Thus, the largest ¢ that “works” for an arbitrary € is § = i

0.1
(a) For e = 0.1, we can choose any | § < = 0.025|.

.01
(b) For € = 0.01, we can choose any | § < TO = 0.0025 |.
.001
(¢) For € =0.001, we can choose any | § < % = 0.00025 |
d) For arbitrary ¢ > 0, we can choose any | 4§ < .
4
14. To make
|[(2—5z)—12|=| -5z —10|=|—5| [z +2|=5blz+ 2| <e
requires
€
2| < -,
o+l < §

Thus, the largest § that “works” for an arbitrary € is § = é

2
(a) For e = 0.2, we can choose any | § < % =0.04|.

.02
(b) For € =0.02, we can choose any | § < % =0.004|

0.002
(¢) For e = 0.002, we can choose any | 6 < 5 = 0.0004 |.
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(d) For arbitrary e > 0, we can choose any |4 <

(SR}

15. The inequality 0 < |z + 3| guarantees that @ cannot be equal to —3. Now, for x # —3,

22 —9  (x+3)(x—3)

= =z — 3.
x4+ 3 z+3 v

Therefore, for x # —3,

z2-9
r+3

(—6)’ = |(z =3)+6]=|z+ 3|

To make this less than €, requires |2+ 3| < €, so the largest § that “works” for an arbitrary
€is d =e.

(a) For e = 0.1, we can choose any .
(b) For e = 0.01, we can choose any | < 0.01 |
(c) For arbitrary € > 0, we can choose any .

16. The inequality 0 < |z — 2| guarantees that = cannot be equal to 2. Now, for z = 2,

2
_4 _

T :(a:+2)(x 2):‘%_’_2.

r—2 xr — 2

Therefore, for x # —2,

x?—4
T —2

—4’:(x+2)—4|=|x—2|.

To make this less than e, requires |z — 2| < ¢, so the largest 0 that “works” for an arbitrary
eisd=e.

(a) For e = 0.1, we can choose any .
(b) For e = 0.01, we can choose any | < 0.01 |
(c) For arbitrary e > 0, we can choose any .

17. Given any € > 0, we must find a number 6 > 0 so that whenever 0 < |z — ¢| < §, then
|f(z) — L| <e. Here f(z) =3z, c=2, and L = 6. To make

|f(z) =L =13z —6|=3|z—2| <e

requires |z — 2| < €/3. Thus, the largest § that “works” for an arbitrary € is § = % The

e-0 proof may be written as follows:

’Given any € > 0, we can choose § = ¢/3 ‘ Whenever 0 < |z — 2| < §, then

|f(:Jc)—L|:|3x—6\:3|x—2|<35:3-§:e.

Therefore, lim (3z) = 6.
T—2
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18. Given any € > 0, we must find a number § > 0 so that whenever 0 < |x — ¢| < ¢, then
|f(x) — L| < e. Here f(x) =4z, ¢c=3, and L = 12. To make

f(z) — L| = |4z — 12| = 4|z — 3| < ¢

requires |z — 3| < €/4. Thus, the largest § that “works” for an arbitrary € is § = 2 The

e-0 proof may be written as follows:

‘Given any € > 0, we can choose § = ¢/4 ‘ Whenever 0 < |z — 3| < §, then

€
— — €.

\f(x) — L| = |4z — 12| = 4|z — 3| <46 = 4 -

o~

Therefore, lim (4z) = 12.
r—3

19. Given any € > 0, we must find a number 6 > 0 so that whenever 0 < |z — ¢| < J, then
|f(z) — L| <e. Here f(x) =2x+5,c=0, and L =5. To make

|f(x)— Ll =1](2x+5) -5 =2|z| <e

€
requires |z| = | — 0] < €/2. Thus, the largest ¢ that “works” for an arbitrary € is § = 3

The e-6 proof may be written as follows:

‘Given any € > 0, we can choose § = €¢/2 ‘ Whenever 0 < |z — 0] = |z| < §, then

If(z) — L| = |(22 + 5) — 5| = 2|| <26:2~§:e.
Therefore, lim (2z 4 5) = 5.
z—0

20. Given any € > 0, we must find a number § > 0 so that whenever 0 < |z — ¢| < §, then
|f(z) — L| <e. Here f(z) =2—3x, c=—1, and L = 5. To make

If(z) =Ll =|(2—-32) 5| =| -3z -3 =| -3 [s+ 1| =3lz + 1| <

requires |z + 1| < ¢/3. Thus, the largest J that “works” for an arbitrary € is § = g The

e-0 proof may be written as follows:

‘Given any € > 0, we can choose § = €/3 ‘ Whenever 0 < |z — (—1)| = | + 1| < J, then

|f(x)—L|=\(2—3x)—5|:|—3x—3|:3\x+1|<3(5:3-§:6.

Therefore, 1im1(2 — 3z) = 5.

r—

21. Given any € > 0, we must find a number § > 0 so that whenever 0 < | — ¢| < §, then
|f(z) — L| <e. Here f(x) = —bx+2, c= -3, and L = 17. To make

If(@) = L] = |(=52+2) — 17| = | =5z — 15| = | = 5| |[x + 3| =5lz + 3| < €

requires |z + 3| < ¢/5. Thus, the largest § that “works” for an arbitrary € is § = % The

€-0 proof may be written as follows:

‘Given any € > 0, we can choose § = €¢/5 ‘ Whenever 0 < |z — (=3)| = |z + 3| < d, then

\f(x)fL|:|(f5x+2)717|:|75x715|:5\x+3|<5§:5'§:e.

Therefore, 11m3(—5a: +2)=17.

r—r
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22.

23.

24.

Given any € > 0, we must find a number § > 0 so that whenever 0 < |x — ¢| < ¢, then
|f(x) — L| <e. Here f(x) =2x—3,c=2, and L = 1. To make

|flz) =L =]2x—3)—1| =2z —4| =2z — 2| < e

requires |z — 2| < ¢/2. Thus, the largest § that “works” for an arbitrary € is § = % The
€-0 proof may be written as follows:

’Given any € > 0, we can choose § = €/2 ‘ Whenever 0 < |z — 2| < §, then

If(x) — L] = |(2x — 3) — 1] = 2|z — 2| <25:2~§:e.
Therefore, lim (2z — 3) = 1.
T—2

Given any € > 0, we must find a number § > 0 so that whenever 0 < |z — ¢| < §, then
|f(z) — L] < e. Here f(x) =22 -2z, c=2,and L =0. Then

[f(z) = L] = |(2* — 22) = 0] = |z(z — 2)| = |a| - |2 — 2|.

The factor |z — 2| will be smaller than ¢, but what about the factor |z|? If, in addition
to any other restrictions placed on ¢, we require § < 1, then |z — 2| < § guarantees that
|z — 2| < 1. Removing the absolute value from this last inequality yields —1 < z — 2 < 1,
or 1 <z < 3. Thus, |z| < 3 and

|f(z) = L] = |z| - |z — 2] < 3]z — 2| < 30.

To make this less than €, we can choose § < €/3. Combining all of this information, the
e-0 proof may be written as follows:

Given any e > 0, we can choose § = min {1, %} . Whenever 0 < |z — 2| < ¢, it follows

that |z| < 3, and then

|f(z) — L| = |(2® — 22) — 0| = |2 - |# — 2| < 3|z — 2| <35§3-§=6.
Therefore, lim (z* — 2z) = 0.

T—2

Given any € > 0, we must find a number § > 0 so that whenever 0 < |z — ¢| < §, then
|f(z) — L| < e. Here f(z) = 2%+ 3z, c=0, and L =0. Then

[f(z) = L] = |(2* + 32) = 0] = |z(z + 3)| = [a| - |z + 3|.

The factor |z| will be smaller than ¢, but what about the factor |z + 3|7 If, in addition to
any other restrictions placed on d, we require 6 < 1, then |z| < § guarantees that |z| < 1,
or —1 <z < 1. Thus, 2 < z + 3 < 4, so that |z + 3] < 4 and

|f(z) = L] = |z| - |z + 3] < 4]z| < 40.

To make this less than €, we can choose 6 < ¢/4. Combining all of this information, the
e-0 proof may be written as follows:

Given any € > 0, we can choose § = min {1, i} . Whenever 0 < |z| < 0, it follows that

|z + 3| < 4, and then
|f(:1:)—L|:|(x2+3x)—0|:|m|-\x+3|<4|x|<45§4-§:e.

Therefore, lim (z* + 3z) = 0.
z—0
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25.

26.

Given any € > 0, we must find a number § > 0 so that whenever 0 < |x — ¢| < ¢, then

1+2
|f(z) — L| < e. Here f(z) = %, c=1,and L = g Then
—x

|f(x)L|‘1+2z 3“21%7

_2 _ Tl -1
3—x 2 B—z)| 2[3—2z2|

The factor |x — 1] will be smaller than §, but what about the factor |3 —x|? If, in addition
to any other restrictions placed on ¢, we require 6 < 1, then |x — 1| < § guarantees that
|z —1| < 1. Removing the absolute value from this last inequality yields -1 < z—1 < 1, or
0<x<2 Thus, 2< —z<0and1<3—xz<3. Because 3—z>1>0,3—2=|3—1,

1 1
so that 1 < |3 — x| < 3. Therefore, 3 < —-—— <1land

54l
Tle—1 7 7
— L=+ Lz -1 < L6
1) L= gy < gl =1 <5

To make this less than e, we can choose § < 2¢/7. Combining all of this information, the
e-0 proof may be written as follows:

2
Given any € > 0, we can choose § = min {1, 76} . Whenever 0 < |z — 1] < 4, it follows

that 1 < 1, and then

3 — =
1+2z 3 Tx—T7 Tle—=1] 7 7 7T 2
—L=|—"-2|= = - <zlr—-1<0< - T =e
(@) - L ‘3—33 2’ ’2(3—33) 23—a “2lsgisg g e
Therefore, lim 1+ 22 = §
z2—1 3—=x 2

Given any € > 0, we must find a number 6 > 0 so that whenever 0 < |x — ¢| < ¢, then

2 2
|f(z) — L| < e. Here f(m)zél—i—ixx’ c=2, anszg. Then
2z 2 dr — 8 4|z — 2|
—Il=— | = = — .
@) = L| ‘4+x 3‘ ‘3(4+x) 3[4+

The factor |2 — 2| will be smaller than §, but what about the factor |4 + z|? If, in addition
to any other restrictions placed on 4, we require § < 1, then |z — 2| < ¢ guarantees that
|z — 2| < 1. Removing the absolutely value from this last inequality yields —1 < z —2 < 1,
orl <z <3 Thus, 5<4+2 <7 Becaused+x >5> 0,4+ x = |4+ x|, so that

1 1 1
5 < |4+ x| < 7. Therefore, = < —— < — and
7T |44z 5
dlz—2 4 4
L=- Zle—2l< =4
@ == g < B2 <1

To make this less than €, we can choose § < 15¢/4. Combining all of this information, the
e-0 proof may be written as follows:

15
Given any € > 0, we can choose § = min {17 46} . Whenever 0 < |z — 2| < 4, it follows

1
< —, and then

that
RV
2z 2 dr — 8 4lz—2| 4 4 4 15e
—L=|—-=|= = - <—|z-2l< =6 = -—=¢
(@) -1 ‘44—1‘ 3‘ ‘3(4+x) 7 I LA U Al
2 2
Therefore, lim T —.
z—24+x 3
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27.

28.

29.

Given any € > 0, we must find a number § > 0 so that whenever 0 < |x — ¢| < ¢, then
|f(z) — L| <e. Here f(x) = Jx,c=0, and L = 0. To make

[f@) = LI = ¥z =0 = {/]z] < e

requires |z| = |z — 0] < €3. Thus, the largest § that “works” for an arbitrary e is § = €.
The e-§ proof may be written as follows:

’Given any € > 0, we can choose § = €3 ‘ Whenever 0 < |z — 0] = |z| < §, then

1f(x) = L| =¥z —0| = {/|z| < Vo = Ve =e.
Therefore, lim <z = 0.
x—0

Given any € > 0, we must find a number § > 0 so that whenever 0 < |z — ¢| < §, then
|f(z) — L| <e. Here f(z) =+/2—2,c=1,and L =1. Then

e WETEHl_|C—w -l [-a _ fa-1]
H@) =Ll = V2 =e =l e = V= sl We—et1 Ve—s+ 1]

The factor |« — 1] will be smaller than J, but what about the factor |[v/2 —  + 1|. Because
V2—2>0,v2—x+12>1. Thus,

1
<1 so that

1
0< — - <,
V2—z+17 V2—z+1 —
and
=1
V2 —xz+1]

To make this less than e requires |z — 1| < €. Therefore, the largest § that “works” for an
arbitrary € is 6 = e. Combining all of this information, the e-0 proof may be written as
follows:

|f(z) = L|

<l|x—1].

Given any € > 0, we can choose § = € ‘ Whenever 0 < |z — 1| < §, then

VITZ41] |2—2) -1
L = W2—a-1] -
@) =Ll = W2-e -l e = =
= i-el el <lp—1]<d=e

WV2—z+1] |V2—z+1]

Therefore, lirn1 Vv2—x=1.
Tz—

Given any € > 0, we must find a number § > 0 so that whenever 0 < |z — ¢| < §, then
|f(z) — L| < e Here f(z) =2% c¢= -1, and L = 1. Then

[f(z) = LI = 2* = 1| = |(z = D(z +1)| = [z = 1] - |2 + 1].

The factor |x + 1| will be smaller than J, but what about the factor |x — 1|? If, in addition
to any other restrictions placed on d, we require § < 1, then |z + 1| < § guarantees that
|x 4+ 1] < 1. Removing the absolute value from this last inequality yields —1 <z + 1 < 1,
or =2 <z < 0. Thus, -3 <z —1 < —1, so that |z — 1| < 3 and

|f(x) =L =|z—1| |z + 1] < 3|z + 1| < 34.

To make this less than €, we can choose § < €/3. Combining all of this information, the
e-0 proof may be written as follows:
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30.

31.

Given any € > 0, we can choose § = min {1, g} . Whenever 0 < |z + 1| < ¢, it follows

that |z — 1| < 3, and then
|f(ac)—L|:|x2—1|:\x—1|-|x+1\<3|x+1|<36§3-§:6.
Therefore, lim z? = 1.
T——

Given any € > 0, we must find a number § > 0 so that whenever 0 < |z — ¢| < §, then
|f(x) — L] < e Here f(x) =23, ¢=2, and L = 8. Then

|f(x) — L| = |2® — 8| = |(z — 2)(2? + 22 + 4)| = |2® + 22 + 4| - |z — 2].

The factor |z — 2| will be smaller than §, but what about the factor |z? + 22 + 4|? If,
in addition to any other restrictions placed on &, we require § < 1, then |z — 2| < 6
guarantees that |x — 2| < 1. Removing the absolute value from this last inequality yields
—l<z—2<1,0rl <z <3. Thus, |z| < 3, so that [2? + 2z + 4| < |z|> + 2[z| +4 < 19
and

If(z) = L| = |2% 4+ 22 + 4] - |z — 2| < 19|z — 2| < 196.

To make this less than e, we can choose § < €/19. Combining all of this information, the
e-0 proof may be written as follows:

Given any ¢ > 0, we can choose § = min {1, %} . Whenever 0 < |z — 2| < 4, it follows

that
|22 4 22 + 4| < 19, and then

If(x) =L = |23 =8| =|(z—2)(x®+ 2z +4)| = |2° + 2z + 4| - |z — 2|
€
_ < C— = €.
< 19z —-2| <195 <19 5 =€

Therefore, lim 2% = 8.
x—2

Given any € > 0, we must find a number § > 0 so that whenever 0 < |z — ¢| < §, then

1 1
|f(z) — L| <e. Here f(x) =—,c=3,and L = 3 Then
x

|f(z) = L| =

11 pal a3
Sal ~ Bfal |

r 3|
The factor |z — 3| will be smaller than ¢, but what about the factor |z|? If, in addition
to any other restrictions placed on ¢, we require 6 < 1, then |x — 3| < § guarantees that
|z — 3| < 1. Removing the absolute value from this last inequality yields —1 < z — 3 < 1,
1 1 1
or 2 <z < 4. Because x > 2 > 0, z = |z| so that 2 < |z — 2| < 4. Therefore, 1< 2l <3
x
e e-3 _le-2 _9
T — T —
—L|= —.
F) Dl = T < P <

To make this less than e, we can choose § < 6e. Combining all of this information, the e-§
proof may be written as follows:

‘Given any € > 0, we can choose § = min {1, 6¢} ‘ Whenever 0 < |z — 3| < J, it follows

1 1
that — < —, and then
=] 2

<§<@—6
6~ 6

[f(z) = L| =

1 1] Bz |z-3] |z-3
r 3| 3z 3|z 6
1

Therefore, lim 1 =—.
rx—3 3
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32. Given any € > 0, we must find a number § > 0 so that whenever 0 < |z — ¢| < §, then

1 1
|f(z) — L| < e Here f(z) = —,c=2,and L = T Then
T

[f(x) = L| =

1 1‘ l4—22 |z -2 |z +2

2 4 422 422

The factor |z — 2| will be smaller than &, but what about the factors |z + 2| and z2?
If, in addition to any other restrictions placed on §, we require § < 1, then |z — 2| < §
guarantees that |x — 2| < 1. Removing the absolute value from this last inequality yields

1
—l<z-2<l,or1 <z <3. Thus,  <1land 3 <z+2<5,sothat [z +2| <5 and
x

e—2[-Jz+2| 5

5
|f(z)—L|= 12 4\1 —-2| < 16.

To make this less than e, we can choose § < 4¢/5. Combining all of this information, the
€-0 proof may be written as follows:

4
Given any € > 0, we can choose § = min {1, 56} . Whenever 0 < |z — 2| < ¢, it follows

1
that — <1 and |z +2[ <5. Then
x

6 <

|f(z) = L| =

= €.

de
5

| Ot

5 )
Sle=2l < =
<4|m |<4

L1|_[4-a?_Jo-2-lo+2
x2 4| 4x2 422

Therefore, lim % = 1
=2 T 4

33. Negating the -0 definition of a limit yields the statement: lim f(x) # L provided there is
r—c

an € > 0 such that for any 6 > 0, there is an z satisfying 0 < |z —c¢| < § but |f(z) — L| > e.
To establish that lirrg(?):c —1) #12,let e = 1 and § > 0. From the set of = values satisfying
r—r

0 < |z — 3| < § select any x for which —6 <2 —3 <0, 0r 3—0 < < 3. Then
—4-30<@Bxr—-1)—12<—-4 or |Bz—-1)—-12/>4>1=e
Therefore, lim (3z — 1) # 12.
r—3

34. Negating the -0 definition of a limit yields the statement: liin f(x) # L provided there is

an € > 0 such that for any 6 > 0, there is an z satisfying 0 < |z —c¢| < d but |f(z) —L| > e.
To establish that lim2(4x) # —7,let e = % and § > 0. From the set of x values satisfying
rT—r—

0 < |z + 2| < § select any « for which —d <z +2 <0, 0or =2 -0 <2 < —2. Then
1
—-1-46<4x+7< -1 or |4x+7|>1>§:e.

Therefore, lim (4z) # —7.
T——2

Applications and Extensions

35. Note that

22+9 18|

|z — 3|

18(z2 +9)

1 1 18— (z2+9)| | 9—2a* | 3—a[-[3+z]  |z+3
18(x24+9) | 18(x2+9)  18(x2+9)
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If 2 < x < 4, then

1 1
1 2 2 that ——— < —
3<z°4+9<25 sotha x2+9<13
and
b<x+3<7 sothat |x+3]<T;
therefore,
1 1 3 7 7 7
B o A A Y |z — 3] < ——4.

22+9 18| 18(22+9) 18(13) T 234
To make this less than €, we can choose § < 234¢/7. It is important to note that another
restriction on ¢ is implicit in the analysis that has just been performed. If 2 < z < 4, then
—1<a—-3<1,and |z — 3| < 1. Thus, § must also be less than or equal to 1. Combining

all of this information, the e-0 proof may be written as follows:

234
Given any € > 0, we can choose § = min {1, 36} . Whenever 0 < |z — 3| < 4, it follows

1 1
hat —— < — . Th
tatx2+9<13and|x+3|<7 en

e R N e L R IR B L R g

- 18(22 +9)

1 1’ |z + 3| 7 7 7234

1 1
Theref li = —.
erefore, lim — 9" 18

36. Note that
|24 2)? —4| = [4+4x+ 2% — 4| = |z(d+2)| = |2| - |= + 4]

If -1<z<1,then3 <xz+4<5and |z +4| <5. Thus,
(2 +2)* — 4| = |z - |z + 4] < 5]z| < 5.

To make this less than €, we can choose § < €/5. It is important to note that another
restriction on § is implicit in the analysis that has just been performed. If —1 < z < 1,
then |z| < 1. Thus, é must also be less than or equal to 1. Combining all of this information,
the e-0 proof may be written as follows:

Given any € > 0, we can choose § = min {1, g} . Whenever 0 < |z| < §, it follows that

|z + 4| <5, and then
2+ 2)2— 4] = [d+4z+ 22 — 4| = |e(4 + 2)| = |z - |2 + 4] < 5|z| <55g5.§:e.
Therefore, lim (2 4 z)? = 4.
z—0

37. Note that

1 1] 13— (22+9)| | 4—a® | [2—z|-2+2]  |z+2 -2
x24+9 13| | 13(22+9) | |13(224+9)|  13(22+9)  13(22+09) '
If 1 < x <3, then
1
10<2?249<18 that ——— < —
<z"+9< so tha x2+9<10

and
3<zr+4+2<5 sothat |z+2]<5.



1.6 The ¢-6 Definition of a Limit 1-115

38.

39.

40.

Thus,

1 1 |z + 2| o -2 < 5 |
B S e Y P N P
2249 13| 13(z2+2) 13(10)

1 1
2 = |z —2| < —4.
|=g36l* 2 <5

To make this less than e, we can choose § < 26¢. It is important to note that another
restriction on ¢ is implicit in the analysis that has just been performed. If 1 < x < 3, then
—1l<az—2<1land |xr—2| <1 Thus, § must also be less than or equal to 1. Combining
all of this information, the e-0 proof may be written as follows:

’ Given any € > 0, we can choose ¢ = min {1, 26¢} ‘ Whenever 0 < |z — 2| < 4, it follows

thalt
m<ﬁand|x+2|<5Then
1 1 &+ 2| 1 11
o e o e o 2l< 5 < — 26—
719 13| T3azag) T U< gl T2 <50 S g5 He=e
1 1

Therefore, 911_)m2 o =13

Negating the e-¢ definition of a limit yields the statement: lim f(z) = L provided there is
r—cC

an € > 0 such that for any 6 > 0, there is an z satisfying 0 < |z —c| < § but |f(z) —L| > e.
To establish that lim1 2?2 =131, let e =0.1 and § > 0. If § < 1, from the set of = values
x—

satisfying 0 < |z — 1] < 0 select any x for which -6 <2 —1<0,0or 1 —¢ <z < 1, and

note that 1 — § > 0. On the other hand, if § > 1, then from the set of x values satisfying

0 < |z — 1] < § select any « for which —1 <z —1 <0, or 0 < 2 < 1. Then, for any § > 0,
2% <1 sothat |2 —1.31]>031>0.1=c¢.

Therefore, lim 2% = 1.31.
z—1

_ ¢
1+ |m|

mula for ¢ to insure that § will be positive. Moreover, 1 has been added to the denominator
to allow for the possibility that m could be zero. Whenever 0 < |z — ¢| < §, then

Given any € > 0, we can choose § = . The absolute value of m appears in the for-

[m|

[(mar+8) = (me +8)| = m| |& ~ ¢l <|m| -6 = =

e <e.

Therefore, liLn (mz +b) = me+ b.

Recall that
|22 — 4| =|(z —2)(z +2)| = |z — 2| - |z + 2].

1
If|:c72|<§,then§<x<g,sothat

11 13 13
§<x+2<§ and |x—|—2|<§.
Thus,

13 13
|x2—4\:|x—2|'\x+2|<§|x—2|<§5.

3
To make this less than €, we can choose § < 1—; Combining the two restrictions placed on &

yields

6 < min lﬁ
- 3713 J°
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41. For x # 3, to guarantee that |(2z — 1) — 5| < 0.1 requires

|22 — 6] =2]z —3] < 0.1 or

|z — 3] < 0.05.

Thus, ‘ 2 must be within 0.05 of 3 ‘ to guarantee that 2z — 1 differs from 5 by less than 0.1.

42.

-01<3*-1<0.1 or

This last compound inequality yields

In0.9
In3

—0.0959 ~

For z # 0, to guarantee that |3 — 1| < 0.1 requires

0.9 < 3% < 1.1.

Inl.1
In3

~ 0.0868.

Thus, ‘w must be within approximately 0.

087 of 0 ‘ to guarantee that 3% differs from 1 by

less than 0.1.

L
43. Suppose lim f(xz) = L where L < 0, and let ¢ = u > 0. Then there is a 6 > 0 such that,
xr—c
whenever 0 < |z —¢| < 4,
L L L
|f(;z:)—L|<u f%<f(a:)fL<%.
Because L < 0, |L| = —L, so the last compound inequality becomes
L L 3L L
= —L<-2 Rt ~Z <o,
2<f(x) <-g or 2<f(x)<2<0

Thus, everywhere in the open interval |x — ¢| < J, except possibly at ¢, f(x) < 0.

1
44. | Given any € > 0, we can choose N = —— | Whenever x < N, then
€
1 0 1 < 1
- —0l=—<—-——==c¢
x T N
1
—=0.

Therefore, lim
T——00 I

1
45. | Given any € > 0, we can choose M = — | Whenever z > M, then
€
‘ 1 O‘ 1 - 1
—— 0 =—F=< —==¢
NG v /M
Theref li ! 0
erefore, lim | ——= | =0.
Tz 500 \/5
46. To make
1 1
requires
z2>10 or |z|>V10.

As this limit is for x approaching —oo, take | N = —/10 |.
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47.

48.

49.

50.

51.

First, consider L > 0. Take ¢ = L/2, let 6 > 0, and choose x = —§/2. Then 0 < |z — 0| =
|z| < & but

1 2 2 L

S S (S 1 [ =iy | N /N

R A LS Rt

1
where the inequality L > L/2 follows because L > 0. Therefore, lin%) — cannot equal
z—0

L. Next, consider L < 0. Take ¢ = —L/2, let 6 > 0, and choose z = ¢/2. Then
0<|z—0]=]z] <d but

1 2 L

1
where the inequality —L > —L/2 follows because —L > 0. Therefore, 1ir% — cannot equal
z—0 X

L. Finally, consider L = 0. Take e = 1, let § > 0, and choose |z| < min{1,6}. Then
0<|z—0]=]z|] <d but
1

X

g §
X

>1=c¢e

1 ‘ B

1 1
Therefore, lim — cannot equal 0. In summary, there is no number L such that lim — = L.
x—0 x—0

The strict inequality on the left (0 < |z — ¢|) is to remove the function value at x = ¢ from
consideration; the strict inequality on the right (| — ¢| < §) is to create an open interval
containing r = c.

A limit is supposed to capture the behavior of the value of a function as the value of the
independent variable approaches a target value. We do not want the limit to depend on the
value of the function at that location or even to depend on whether the function is defined
at that location. Including the phrase except possibly at ¢ imposes these restrictions.

In the e-¢ definition of a limit, ¢ measures the “closeness” of the function value f(z) to
the value of the limit L, while § measures the “closeness” of the value of the independent
variable z to the target value c. For example, notice the placement of € and § in the proof
that li_)I%(QLL' —1)=5:

x

Given any € > 0, take § = ¢/2. Then, whenever 0 < |z — 3| < 4,
(22 — 1) — 5| = |22 — 6] = 2|z — 3| <2~5:2~§:e.
Therefore, lim (22 — 1) = 5.
r—3

First consider lirrb f(z). Any open interval containing 0 will contain both rational numbers
T—r

and irrational numbers. As the rational numbers approach 0, the function value 2% will
approach 0; as the irrational numbers approach 0, the function value will also approach

0. This suggests that | lim f(z) = 0| This argument can be made precise using 6 = /e

z—0

within the e-J definition.

Next, consider lim1 f(z). Any open interval containing 1 will contain both rational numbers
T—r

and irrational numbers. As the rational numbers approach 1, the function value x? will
approach 1; as the irrational numbers approach 1, however, the function value will approach

0. This suggests that lim1 f(z) does not exist | This argument can be made precise as
r—r

follows: Suppose the limit does exist and is equal to L. Take ¢ = 1/4. There would then
be a ¢ such that whenever 0 < |z — 1| < §, the function value would be within 1/4 of
L. Considering the rational and irrational values of x separately would require that L be
simultaneously within 1/4 of 1 and 0, which is impossible.
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52.

Any open interval containing 0 will contain both rational numbers and irrational numbers.

As the rational numbers approach 0, the function value 22 will approach 0; as the irrational
numbers approach 0, the function value tanx will also approach 0. This suggests that

gljig%)f(z) =0

Challenge Problems

53.

54.

55.

Note that

|f(z) — L| = [42® + 32® — 242 + 22 — 5| = |[42° + 32% — 242 + 17| = [42® + T2 — 17| - |z — 1|.

The factor |z — 1| will be smaller than &, but what about the factor [4z2 + 72 — 17|? If, in
addition to any other restrictions placed on J, we require § < 1, then |z — 1| < § guarantees
that |z — 1| < 1, 0or 0 < x < 2. Thus, |z| < 2 so that |42? + Tz — 17| < 4|z|? +7|x| +17 < 47

and

|f(x) — L| = |42 + T2 — 17| - |[x — 1| < 47|z — 1| < 476.

To make this less than e, we can choose ¢ < €/47.
e-0 proof may be written as follows:

Given any € > 0, we can choose § = min {1, 4i7}

that
|42 + 7x — 17| < 19, and then

Combining all of this information, the

. Whenever 0 < |z — 1| < 0, it follows

|f(z) — L] = |42% + 322 — 242 + 22 — 5| = |42® + 322 — 24z + 17|
= |4x2+7z—17|.|m—1|<47|:c—1|<475§47-4i7:e.

Therefore, liml(élx3 + 322 — 24z + 22) = 5.
z—

Suppose lim f(z) = L and lim g(z) = M. Given any ¢ > 0, there then exists a §; > 0
r—rc r—c

such that ‘
|f(z)—L| < 3 whenever

and a d > 0 such that

lg(z) — M| < % whenever

0<|z—c|<dn,

0<|z—c|l <o

Choose ¢ = min{dq,d2}. Whenever 0 < |z — ¢| < §, then

(f(z) + g(z)) — (L + M)

IN

Therefore, im[f(x) + g(x)] = L+ M.
r—c

First note that

V5 4422 > V42?2  so that

|(f(x) — L) + (g(z) — M)
|f(z) = L| + |g(z) — M| < % 4

€

2

= €.

1 1
<
VH+4x2 42

for all z. For x > 2, 2 — z < 0 so that upon multiplying the latter inequality above by the

negative expression 2 — x,

2—x 2—x 2—x

> =
Vo +4x?  Vdx? 2z
Thus, to be within e = 0.01 of L = —1/2, we need

2-w < —=0.49 or

x
V5 + 42 V5 + 42

- - > _

N |

8|~
DN | =

-2
> 0.49.
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56.

57.

Squaring both sides of this last inequality and gathering terms yields

0.03962% — 4z + 2.7995 > 0.

The roots of the quadratic function are

4+ /16 — 4(0.0396)(2.7995)
— ~ 100. .
v 2(0.0396) 00.3,0.7,

SO
2—x

V5 + 4a?
for approximately = < 0.7 and « > 100.3. In the e-§ definition of a limit at infinity, we can

therefore take .

To prove that the linear function f(z) = ax+b is continuous everywhere, it must be shown

< —0.49

that lim f(z) = ac + b for any real number ¢. Now, |given any € > 0, we can choose
xr—cC

- €
1+ a]

positive. Moreover, 1 has been added to the denominator to allow for the possibility that
a could be zero. Whenever 0 < |z — ¢| < §, then

. The absolute value of a appears in the formula for ¢ to ensure that § will be

[(ax +b) — (ac+b)| = |a| |z —¢| < a|]-§ = 1—|i1||a|

e <eEe€.

Therefore, lim f(x) = ac+b, and the linear function f(x) = az+b is continuous everywhere.
Tr—cC

Start by proving continuity at x = 0. Because 0 is a rational number, f(0) = 0. Now,
given any e > 0, choose 6 = . Whenever 0 < |z — ¢| < 4, then

[f(x) =0 = [f(x)] = |z| <O =€
for every rational number = and
[f(z) =0l = [f(z)| =0 <d=e

for every irrational number z. Therefore, lim0 f(z) = 0 = f(0) and f is continuous at
rT—r
z=0.

Now, let ¢ be any non-zero real number. We will proceed with a proof by contradiction.

Toward this end, suppose that f is continuous at x = ¢. Then the limit as x approaches

¢ must exist and be equal to f(c). Based on the definition of f, lim f(z) must therefore
r—c

be equal to either 0 (if ¢ is a rational number) or ¢ (if ¢ is an irrational number). We will
now show that neither of these are the limit. Take € = |c|/2, and choose 6 > 0. For any
irrational number x such that 0 < |z — ¢| < 4,

1) 0 = 1f@)| = I > D = ¢

so lim f(z) # 0. Moreover, for every rational number x such that 0 < |z —¢| < 4,
r—cC

so lim f(x) # ¢. Thus, lim f(z) does not exist, and f is not continuous at = = c.
xr—rc r—rc
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58. Let f(z) = 2. Then
[f(2) = f(o)] = |2° = | = (& = ) (a® + cx + )| = o — | - |2 + cx + 2.
With both z and ¢ in the open interval (0,2), || < 2 and |¢| < 2. Therefore
|2% 4+ cx + 2| < x> + || |z| + |e]? < 22 + 2% 422 =12,

and
1f(x) = f(o)] = |z —c| - |2 + cx + 2| < 12|z — ¢].

Thus, is a Lipschitz constant for f(z) = 2 on (0,2).

Chapter 1 Review Exercises

1. The values in the table below, which have been rounded for display purposes, suggest that

1 — cos
the value of f(x) = Hix can be made “as close as we please” to 0 by choosing z
cos T

“sufficiently close” to 0. It therefore appears that

1—cosx
im ———
z—0 1+ cosx

T -0.1 —0.01 —0.001 — 0« 0.001 0.01 0.1

1—cosz
1+ cosz

flx) = 0.002504 0.000025 0.00000025 f(x) approaches 0 0.00000025 0.000025 0.002504

2. The figure below displays a graph of f. Using the graph,
lim f(z)=-3 and lim f(x)=-3.
rz—1t

r—1-

Because the two one-sided limits as x approaches 1 are equal, lim1 f(z) exists. Moreover,
T—r

because the two one-sided limits are equal to —3, lim1 flz)=-3|
z—

3. The figure below displays a graph of f. Using the graph,

li = d i =5.
[lim f(z)=6 and lim f(z)=5

Because the two one-sided limits as x approaches 2 are not equal, 111112 f(z) does not exist |.
r—r
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4. The statement can be written as lin}3 f(z) =5.
T—r

5. Let f(x) = g Then

. flx+h)— f(2) 2= ax+h . 3x—=3(x+h) . —3h
e h hoo  h z(@+h)  hso ha(eth) oo ha(z + h)
3
= — 1. _— = —y — = | —— .
3hli>% x(z+h) 3 x? x?

6. Let f(x) = 322 + 2x. Then

f(x+h)— f(z) 3(x+ h)? +2(x + h) — (322 + 22)

Jimny h = Jim h
_ hm3x2+6xh+3h2+2m+2h—3m2—2x
- h—0 h
. 6xh +3h%+2h )
= Jim —————— = lim (62 + 3h +2) =6z + 2|

7. Because 1 +sinz < f(x) < |z|+1 for all z in the open interval (—g, E) containing 0 and

2
lim(1+4sinz) =14sin0=1 and lim(Jz|+1)=10[+1=1,
z—0 z—0

it follows from the Squeeze Theorem that

lim f(z) = .

z—0

r—2 xX

. 1 1 |7
8. lim <2x—)—2(2)—2— 2|

9. lim (zcosz) =mcosT = .

T—rT

10. lim (2® +32° —2—1) = (1> +3(-1) = (-1) -1 = '

x——1

11 lim Yx(z +2)3 = 3/0(2)3 =[0]
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12. lim[(2z + 3)(z° 4 52)] = (0 + 3)(0° +0) = [0]

z—0
w3 =27 (x=3)(2®+3z+9) . 5 5
13 Jim ———= = lim pr— = lim (2 + 32 +9) =3 +3(3)+9=[27]
. x? 3z . x? -3 . x(z—3) .
i (25— 02 ~im oy - i S ~ i = ()
L ox?—4 . (=2 (x+2) .
By T Ty il —2e2=()
16 lim ?4+3c4+2 i (z+1)(xz+2) g EF2_ 142 |1
Cas-122 44243 as-1(z+1D)(x+3) em-124+3  —1+3 |2
54527 46 2 3 3)  —2(—2+3 2
17. 1imwzlimw:hmx(x+): ( +):7.
a——2 a2+ -2 a==2 (x+2)(z—1) a=-2 x-1 -2-1 3
1\ 15 1\ 15
. 2 - — 2 - — (1) | _
18. lim <x 3x—|—x> (1 3(1)+1> (-n*=[-1]
19.
limg_ r2+5 Hm3—\/x2—|—5 3—|—\/x2+5_hm 9 — (22 +5)
=2 12 —4 52 2 —4 34+vVzZ+5 @22 (22 —4)(3+ V22 + b)
4 — z2 . 1

= lim —lim —————
=2 (22 — 4)(3 + Va2 + e=23 +Va? +5

B 3+¢22 .

1 1 4—(2+x)? 4—d—da—2*  z(x+4)

20. Note that

24x)2 4 42422 42422 42+ 2)?

Therefore,

iy s [ 1))

“im |5 Ty

— im r+4 . 0+4 __1
 2=04(242)2 42402 | 4]
21.
. (+3)2%2-9 . 22 +62+9-9
lim —— = lim —mM8M
z—0 x x—0 X
2
— i 0T i TEEO 6 =016 =[6]
x—0 €T x—0 x x—0

22. lim[(2® — 322 + 3z — 1) (z + 1)%] = (1 = 3(1)2 + 3(1) — 1)(1 + 1)2 = 0(4) =[0].

rz—1
03, fm 0rEO g @) (z+3)=-2+3=[1]
) r——21 x4+ 2 o r——21 x4+ 2 - r——2t o o '
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24.

25.

26.

27.

28.

29.

30.

31.

As x approaches 5 from the right, x — 5 > 0, so that

.|z =5 . x—5 .
lim = lim 5 = hm+ 1= .

z—5+ T — 5 r—5t T — z—5

As x approaches 1 from the left, x — 1 < 0, so that
|z —1]

—(z—1
lim 2= — lim (9”71): lim —1=[—1]

z—1- T — r—1- xr — r—1—

As x approaches 3/2 from the right, 22 approaches 3 from the right, so that

lim [2z] = .

z—3/2F

2?16 m (x —4)(z+4)

li =1 = 1l 4)=4+4=|8|
xigll* Tr — 931>4* z—4 migll* (513 + ) +
As x approaches 1 from the right, x — 1 > 0, so that

lim Vo —1=vI-1=[0]
rz—1

Because

lim f(z) = lim (2z+3) =2(2) +3=7]

T2~ T2~

and

lim f(z)= lim (9 —2)=9—2=[7]

z—2t z—2t

are equal, lim2 f(x) exists. Moreover, because both one-sided limits are equal to 7,
T

lim f(x) =7|

Because

lim f(z)= lim (3z4+1)=3(3)+1=

r—3~ r—3~

and

lim f(z) = lim (42 —2) =4(3) -2 =

z—31 z—31

are equal, lirré f(x) exists. Moreover, because both one-sided limits are equal to 10,
Tr—r

il_}rr}q)f(m) =10|

The function f is defined at ¢ = 1 with f(1) = 5. Because

lim f(z)= lim bz —2)=5(1)—2=3

T—1— rz—1—
and
I — lim (22 4+1)=2(1)+1=3
lim fx) = lim (22 +1) = 2(1) +
are equal, hm1 f(z) exists and is equal to 3. However f(1) = 5 = 3 = lim1 f(x), so
T T—

’ f is not continuous at ¢ =1 ‘




1-124 Chapter 1 Limits and Continuity

32. The function f is defined at ¢ = —1 with f(—1) = 2. Because

rz——1" r——1"
and
li = 1 —3r—-2)=-3(-1)-2=1
im () = lim (<32~ 2) = ~3(-1)
are equal, lirn1 f(x) exists and is equal to 1. However f(—1) =2 #1 = lim1 f(x), so
T—— T——
‘ f is not continuous at ¢ = —1 ‘
33. The function f is defined at ¢ = 0 with f(0) = 4. Because
lim f(x) = lim (4 —32%) =4-3(0)> =4
z—0~ rz—0~
and
lim f(z)= lim V16 —22=/16—02 =4
z—0t z—0t
are equal, lin% f(z) exists and is equal to 4.  Finally, f(0) = lin% f(z), so
r— T—
‘ f is continuous at ¢ =0 ‘
34. The function f is defined at ¢ = 4 with f(4) = 4 + 4 = 21/2. Because
lim f(z) = lim Vi+z=v4+4=2V2
r—4- r—4-
and
. , x2 —16 . (x —4)(z +4) _
lim f(z)= lim = lim (/2" — lim Ve+4=V4+4=2V2
z—4t z—4t r—4 z—4+t r—4 z—4t
are equal, liH}L f(z) exists and is equal to 2v/2. Finally, f(4) = 1in}1 f(z), so
T—r r—

‘ f is continuous at ¢ = 4 ‘

35. The function f is defined at ¢ = 1/2 with f(1/2) = |1 = 1. As z approaches 1/2 from
the left, 2z approaches 1 from the left, so that

lim f(z)= lim |2z]=0.

z—1/2— z—1/2—

On the other hand, as x approaches 1/2 from the right, 2z approaches 1 from the right, so
that

li = 1 2z] = 1.

m ()= lm |2a

z—1/2+

Because the two one-sided limits as = approaches 1/2 are not equal lim/ f(z) does not
rz—1/2

exist. Therefore, ‘ f is not continuous at ¢ = 1/2 ‘

36. The function f is defined at ¢ = 5 with f(5) = |5 — 5| = 0. Because
lim f(z)= lim |z —5|= lim [-(z—5)]=—-(5—-5)=0
T—5~ T—5~

T—5-
and . . ]
i 1) =l 1= i (2 5) =550
are equal, il_}Hl5f(£L') exists and is equal to O. Finally, f(5) = glgg%f(@’ SO

‘ f is continuous at c =5 ‘
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37

38

39.

40.

41.

42.

43.

44

. Let f(z) =222 — 5.

(a) The average rate of change of f from 1 to x is

flx)— f(1) _2x2—5x—(—3) _2362—533—1—3_ (x—1)(2x—3)
r—1 x—1 -1 N r—1 _’

for x # 1.
(b) Using the result from part (a),
S ) _ _
lim == = lim (20 - 3) = 2(1) - 3=[ -1}

. The function
-1, i —1<2<0
f@—{ 1, fo0<a<i
satisfies the indicated conditions: f is continuous on the interval [—1,1] except at O,

f(=1)=-1<0, f(1) =1> 0, and f has no zeroes. This

’does not contradict the Intermediate Value Theorem | because the function is not contin-
uous on the closed interval [—1,1].

Let g(z) = z and h(z) = 2® — 27. The polynomial functions g and h are both continuous
on the set of all real numbers. Because f is the quotient of g and h, f is continuous on
the set of all real numbers except those for which i(xz) = 0. The only real solution to the
equation

h(z)=a®—27=(z—3)(2® +3z+9) =0

isx =3, so ‘ f is continuous on the set {z|x # 3} ‘

Let g(z) = 2% — 3 and h(x) = 2% + 52 + 6. The polynomial functions g and h are both
continuous on the set of all real numbers. Because f is the quotient of g and h, f is
continuous on the set of all real numbers except those for which h(x) = 0. The solutions

to the equation h(z) = 22 + 52+ 6 = (r +3)(z +2) = 0 are z = —3 and * = —2, so
’f is continuous on the set {z|r # —3,x # —2} ‘

Let g(x) = 2r + 1 and h(z) = 2% + 422 + 42. The polynomial functions g and h are
both continuous on the set of all real numbers. Because f is the quotient of g and h,
f 1s continuous on the set of all real numbers except those for which h(z) = 0. The

solutions to the equation h(z) = 2® + 422 + 4z = z(z +2) =0 are x = —2 and 2 = 0, so
’f is continuous on the set {z|z # —2,x # 0} ‘

Let g(x) = /z and h(z) = x — 1. The function ¢ is continuous on the set {z|z > 0}, and
the polynomial function h is the continuous on the set of all real numbers. Moreover, the
solution of the inequality h(z) > 0 is the set {z|x > 1}. As f is the composition g(h(z)),
the function f is continuous at ¢ provided h is continuous at ¢ and g is continuous at h(c);

thus, ‘ f is continuous on the set {z|z > 1} ‘

Let g(x) = 2* and h(z) = —x. The exponential function g and the polynomial function h
are both continuous on the set of all real numbers. As f is the composition g(h(x)), the
function f is continuous at ¢ provided h is continuous at ¢ and g is continuous at h(c);

’ f is continuous on the set of all real numbers ‘

. Let f(x) = 22 + 322 — 232 — 42. This polynomial function is continuous on the set of all
real numbers, so it is continuous on the closed interval [3,4]. Because

f(3)=2(3)%*+3(3)2—23(3) —42=-30<0
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45.

46.

and f(4) =2(4)% +3(4)* — 23(4) —42 =42 > 0,

the Intermediate Value Theorem guarantees there is a number c in the interval (3,4) such
that f(c) = 0. Thus, the equation 22 + 322 — 23z — 42 =0

‘does have a solution in the interval (3,4) ‘

The polynomial function f(z) = 8z*—222+52—1 is continuous for all real numbers, so it is
continuous on the closed interval [0, 1]. Because f(0) = —1 <0 and f(1) =8—2+5—-1=
10 > 0, the Intermediate Value Theorem guarantees that f must have a zero on the
interval (0,1). To approximate this zero, subdivide the interval [0, 1] into 10 subintervals,
each of length 0.1, and evaluate f at each endpoint. The results are shown in the first two
columns of the table below. Because f(0.2) = —0.0672 < 0 and f(0.3) = 0.3848 > 0, the
Intermediate Value Theorem guarantees the zero lies in the interval (0.2,0.3). Repeating
the process by subdividing the interval [0.2,0.3] into 10 subintervals of length 0.01 yields
the results in the middle two columns of the table, where the function values have been
rounded to five decimal places for display purposes. The zero has now been bracketed in
the interval (0.21,0.22). Repeating the subdivision process once more, the results in the
last two columns of the table are produced, again with the function values rounded to five
decimal places. Examining the function values in the last column, it follows that the zero

of the function f is|0.215|, correct to three decimal places.

[0,1] [0.2,0.3] 0.21,0.22]

x f(x) z fx) x (z)
0.0 —1.0000 020 —0.06720 0210 —0.02264
01 —0.5192 021 —0.02264 0.211 —0.01819
02 —0.0672 022  0.02194 0.212 —0.01373
03  0.3848 023  0.06659 0.213  —0.00927
04  0.8848 024  0.11134 0.214  —0.00481
0.5 15000 0.25  0.15625 0.215 —0.00036
06  2.3168 026  0.20136 0.216  0.00410
0.7  3.4408 027  0.24672 0.217  0.00856
08  4.9968 028  0.29237 0218  0.01302
09 71288 029  0.33838 0219  0.01748
1.0 10.0000 0.30  0.38480 0220  0.02194

The polynomial function f(z) = 323 — 10z + 9 is continuous for all real numbers, so it is
corétinuous on the closed interval [—3, —2]. Because f(—3) = 3(—3)3—10(=3)+9 = —42 < 0
an

f(=2) = 3(=2)2 - 10(-2) +9 = 5 > 0, the Intermediate Value Theorem guarantees that f
must have a zero on the interval (—3, —2). To approximate this zero, subdivide the interval
[—3,—2] into 10 subintervals, each of length 0.1, and evaluate f at each endpoint. The re-
sults are shown in the first two columns of the table below. Because f(—2.2) = —0.944 < 0
and f(—2.1) = 2.217 > 0, the Intermediate Value Theorem guarantees the zero lies in the
interval (—2.2,—2.1). Repeating the process by subdividing the interval [—2.2, —2.1] into
10 subintervals of length 0.01 yields the results in the middle two columns of the table,
where the function values have been rounded to five decimal places for display purposes.
The zero has now been bracketed in the interval (—2.18, —2.17). Repeating the subdivision
process once more, the results in the last two columns of the table are produced, again
with the function values rounded to five decimal places. Examining the function values
in the last column, it follows that the zero of the function f is , correct to three

decimal places.
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(-3, —2] [—2.2,-2.1] [—2.18, —2.17]

x () x f(x) z f(z)
—30 —42.000 —220 —0.94400 —2.180  —0.28070
—2.9 —35.167 —2.19  —0.61038 —2.179 —0.24794
—2.8 —28.856 —2.18  —0.28070 ~2.178 —0.21523
—2.7 —23.049 —2.17  0.04506 —2.177 —0.18256
—26 —17.728 —2.16  0.36691 —2.176  —0.14992
—25 —12.875 —2.15  0.68488 2175 —0.11733
24 —8472 214 0.99897 —2.174  —0.08477
23 —4.501 213 1.30921 —2.173  —0.05226
—22  —0.944 —2.12  1.61562 ~2.172  —0.01978
—2.1 2217 —2.11  1.91821 2171 0.01266
—20  5.000 210  2.21700 —2.170  0.04506

47. For z > 0, |z| = «, so

lim m(1fx): lim E(17916) hm(lf:v):lfOZ.

z—0t T z—=0+ T z—0t
For z < 0, |z| = —x, so
im 202y = tim =51 —2) = lim (@—1)=0—1=[—1]
z—0- T z—0— T z—0~ '

Because the two one-sided limits as « approaches 0 are not equal,

lim | |
x—0 I

— (1 — ) does not exist |.

2 2_9 —2
48. lim<z - x):limz T i P02 e —[3)

z—=2 \ 1 — 2 r—2 =2 T — 2 =2 T — 2 r—2

Individually, the functions
x2 2x
and
r—2 T —2
become unbounded as z approaches 2, so that neither of the individual limits exists. Be-
cause the individual limits do not exist, the Limit of a Sum property does not apply,
and

. 2 2 . ¢ o b I x2 i 2
im — is not given im — lim .
=2 \x — 2 x—2 sV Y =23 —2 z=2x—2

49. Let f(x) = v/z. Then

im fla+h)—fx) _ lim va:—&- vr+h—Vax _ o VR —Vr Vat+h+a
h—0 h h—0 haO h WJF\/»
(@ +h)—:c . 1 1 1

T v Rl v v abv vl P

50. To make
|2z +1) = 7| = |22 — 6] = 2| — 3| < 0.01

requires that |z — 3| < 0.005. Thus, the largest § that “works” for ¢ = 0.01 is | § = 0.005 |.

51. lim cos(tanx) = cos(tan0) = cos0 = .

x—0

sin £ Lginz 1 sin 1 1
1 4 _ )3 4 4 _ —1i 4 = — . = | —
52. ;lg%) x ilg%) 4 :}:IE}) z 4 1 '

w8



1-128 Chapter 1 Limits and Continuity
53.
. 3sin(3x)
3 2 4 3 4
i tan(3z) — lm b?n(Bx) ~cos(4x)  lim 3 lim cos(4x)
2—0 tan(4z) -0 sin(4z) cos(3z)  =—0 45%(490) 2—0 cos(3z)
I sin(3x)
MM 3, cos0_3 11 [3
4 . sin(4x) cosO 4 1 1 |4
lim ———=
z—0 4x
x 1 x T
cos £ — = (cos £ — cost —1 1
54. llm#:limw— lim ‘Z’U = ~0:@
z—0 x x—0 3 z—0 3

55.

56.

57.

58.

59.

60.

61.

4ac_1 23”—1 20 1 T _ 1 x 1 2x 1
im € = lim (e )(e + ) = lim (e )(e + )(e * )
z—0 e — 1 z—0 e —1 z—0 e? —1

= lim[(e” + 1)(e + 1)] = (" + 1)(e* + 1) =[4]

As z approaches 7/2 from the right, sinz approaches 1 and cosx approaches 0 from the

sin x
left. Thus, tan z = —— becomes unbounded in the negative direction, so that
cosx
lim tanz = .
Jim

As x approaches —3, 2+ x approaches —1 and (z + 3)? approaches 0 from the right. Thus,

24+
_ctr becomes unbounded in the negative direction, so that

(z + 3)2
. 2+«

323 — 2w+ 1 g 2 N 1
323 — 20 41 23 T2 T3 3-0+40
e SR S o el By e
3 x3
3zt +a , 1
R TR S ( tor)
. : . dr —2 . :
The domain of the rational function f(z) = T3 the set {z|z # —3}. The one-sided
x
limits as x approaches —3 are
. 4x —2 . 4 —2
lim =00 and lim = —00,
z—-3- T+ 3 z—-3+ T+ 3
so |x = —3 is a vertical asymptote of the graph of f ‘ Moreover, because
4x —2 2
Az —2 d=— 4 9

. T x — T R
IEI?OOCU_Fg_mEIPOO r+3 _mEIElool_i_; 140 1
T

x
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62.

63.

64.

65.

and
4 — 2 4 2
4r — 2 - 4
lim — 2 — lim — fim =z 3220
T T

y = 4 is a horizontal asymptote of the graph of f ‘

The domain of the rational function f(z) = — i 1 is the set {x|z # +2}. The one-sided
22 _

limits as & approaches —2 are

lim 271 =—o0 and lim A =00
ts—2- 12 —4 e 2+ x2 —4 ’
so‘ x = —2 is a vertical asymptote of the graph of f ‘ The one-sided limits as x approaches
2 are
lim 2z =—-o00 and lim 2733 =0
z—2- 2 — 4 z—2+ 12 — 4 ’

SO ’ x = 2 is also a vertical asymptote of the graph of f ‘ Moreover, because

2z 2
R - S N
Lim s T A 2o _wllﬁlool_i_1fo_0
2 x?
and
2z 2
. 2x . 2 . T 0
ey R _wli)ngol_i —o "
T z?
y = 0 is a horizontal asymptote of the graph of f ‘
The function f is defined at 0 with f(0) = 1/2. Because
t 1 i 1
lim f(z) = lim i
z—0 z—0 22 2220 x COS T
1. sinz . 1 1 1 1
= —lim - lim = - - =_,
22—0 x x—0cosx 2 1 2

it follows that ill)% f(z) exists and f(0) = ili% f(x). Therefore, f is at 0.
The function f is defined at 0 with f(0) = 1. Because
- 3sin(3z) 3 lim sin(3z)

lim f(z) = lim sin(3z) =1l

x—0 z—0 x z—0 X z—=0 3x

it follows that lir% f(z) exists but f(0) # lir% f(z). Therefore, f is at 0.
z— z—

Note that
7T U . . . .
cos (ww + 5) = cos(mz) cos 5 sin(mx) sin 5 = cos(mx) - 0 — sin(mz) - 1 = —sin(wx).
Thus,

lim f(z) = — lim sin(r) = — lim O sin(re) = —r lim sin(ne) =-7m-1=-m.

x—0 z—0 xT z—0 ™ x—0 ™

To make f continuous at 0, define | f(0) = —7 |.
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66. Take e = 1, let § > 0, and choose any z satisfying 0 < |« + 3| < §. Then
(2% —9) — (—18)| =[2* +9| =2 +9>9>1=c¢,
so that lim (z? —9) # —18.
z——3

67. (a) Answers will vary. The figure below displays the graph of a function f with the
properties

f(=1)=0, lim f(z)=2, lim f(z)=2,

li =- d I = 00.
)= oo, and iy J) = oe

_2$+2
T ox—4

(b) Answers will vary. The function shown above is | f(x)

222 — 5x + 2

68. (a) Let R(x) = e

Factoring the numerator yields
2% — 5 +2 = (2r — 1)(z — 2).
Applying the quadratic formula to the equation 522 — x — 2 = 0 yields

1 /(-1)2-4(5)(-2) 1+£v41
— 5 .

T

(5) 10

14++41
Therefore, the domain of R is the set {x|x7$ 10} , the

are 1 and 2|, and the ‘ y-intercept is R(0) = —1 ‘

1—+v41
(b) The one-sided limits as « approaches —0 ~ —0.54 are
lim R(z)=o00 and lim R(x)=-oc0|
PG L/ Yy sy lovait
10 10
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Thus, the graph of R becomes unbounded in the positive direction as x approaches

1—+/41

from the left and becomes unbounded in the negative direction as x ap-

10
1—+41 1441
proaches BETEE from the right. The one-sided limits as x approaches Jrlio ~
0.74 are
lim R(z) =00 and lim R(z) =—o0]|
ey LA~ G ERVZS
10 10

Thus, the graph of R becomes unbounded in the positive direction as z approaches

1+ 41
0

———— from the left and becomes unbounded in the negative direction as = ap-

1
1+ 41
Rl from the right.

h
proaches — o

14 1+ V4l

(c) Based on the limits from part (b), |z 10 and z g e both vertical
of the graph of R. Because
222 — 51 + 2 2 1+ 2 2 040
222 -5 2 T Be2 o o 2
lim -2 —2%T2 e lim —s—r b2 = lim 2 =z 22 _5 =-
z——co Hr? —x — 2 z——oc0 Hr® —x —2 ac%fool_i_l 1-0-0 5
522 5z  Hx?
and
22 — 5 + 2 2 1 2 2
lim —L 2P T= oo + = lim —>—— 52 — lim 2@ 22 _ 5 = -,
z—o0 br?2 —x —2 w00 by —x—2 xﬁwl_i_l 1-0-0 5
512 5x 512

Y= % is a horizontal asymptote | of the graph of R.

69. Because 1 — 22 < f(z) < cosz for all z in the open interval (—g, g) containing 0 and

lim(1-2?)=1-0=1 and limcosz =cos0 =1,
z—0 x—0

it follows from the Squeeze Theorem that

lim f(z) = 1.

z—0
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