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Chapter 8

Sequences and Infinite Series

8.1 An Overview

8.1.1 A sequence is an ordered list of numbers a1, a2, a3, . . . , often written {a1, a2, . . . } or {an}. For example,
the natural numbers {1, 2, 3, ...} are a sequence where an = n for every n.

8.1.2 a1 = 1
1 = 1; a2 = 1

2 ; a3 = 1
3 ; a4 = 1

4 ; a5 = 1
5 .

8.1.3 a1 = 1 (given); a2 = 1 · a1 = 1; a3 = 2 · a2 = 2; a4 = 3 · a3 = 6; a5 = 4 · a4 = 24.

8.1.4 A finite sum is the sum of a finite number of items, for example the sum of a finite number of terms
of a sequence.

8.1.5 An infinite series is an infinite sum of numbers. Thus if {an} is a sequence, then a1+a2+· · · =∑∞
k=1 ak

is an infinite series. For example, if ak = 1
k , then

∑∞
k=1 ak =

∑∞
k=1

1
k is an infinite series.

8.1.6 S1 =
∑1

k=1 k = 1; S2 =
∑2

k=1 k = 1 + 2 = 3; S3 =
∑3

k=1 k = 1 + 2 + 3 = 6; S4 =
∑4

k=1 k =
1 + 2 + 3 + 4 = 10.

8.1.7 S1 =
∑1

k=1 k
2 = 1; S2 =

∑2
k=1 k

2 = 1 + 4 = 5; S3 =
∑3

k=1 k
2 = 1 + 4 + 9 = 14; S4 =

∑4
k=1 k

2 =
1 + 4 + 9 + 16 = 30.

8.1.8 S1 =
∑1

k=1
1
k = 1

1 = 1; S2 =
∑2

k=1
1
k = 1

1 + 1
2 = 3

2 ; S3 =
∑3

k=1
1
k = 1

1 + 1
2 + 1

3 = 11
6 ; S4 =

∑4
k=1

1
k =

1
1 + 1

2 + 1
3 + 1

4 = 25
12 .

8.1.9 a1 =
1

10
; a2 =

1

100
; a3 =

1

1000
; a4 =

1

10000
.

8.1.10 a1 = 3(1) + 1 = 4. a2 = 3(2) + 1 = 7, a3 = 3(3) + 1 = 10, a4 = 3(4) + 1 = 13.

8.1.11 a1 = −1
2 , a2 = 1

22 = 1
4 . a3 = −2

23 = −1
8 , a4 = 1

24 = 1
16 .

8.1.12 a1 = 2− 1 = 1. a2 = 2 + 1 = 3, a3 = 2− 1 = 1, a4 = 2 + 1 = 3.

8.1.13 a1 = 22

2+1 = 4
3 . a2 = 23

22+1 = 8
5 . a3 = 24

23+1 = 16
9 . a4 = 25

24+1 = 32
17 .

8.1.14 a1 = 1 + 1
1 = 2; a2 = 2 + 1

2 = 5
2 ; a3 = 3 + 1

3 = 10
3 ; a4 = 4 + 1

4 = 17
4 .

8.1.15 a1 = 1+sin(π/2) = 2; a2 = 1+sin(2π/2) = 1+sinπ = 1; a3 = 1+sin(3π/2) = 0; a4 = 1+sin(4π/2) =
1 + sin 2π = 1.

8.1.16 a1 = 2 ·12−3 ·1+1 = 0; a2 = 2 ·22−3 ·2+1 = 3; a3 = 2 ·32−3 ·3+1 = 10; a4 = 2 ·42−3 ·4+1 = 21.
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4 Chapter 8. Sequences and Infinite Series

8.1.17 a1 = 2, a2 = 2 · 2 = 4, a3 = 2(4) = 8, a4 = 2 · 8 = 16.

8.1.18 a1 = 32, a2 = 32/2 = 16, a3 = 16/2 = 8, a4 = 8/2 = 4.

8.1.19 a1 = 10 (given); a2 = 3 · a1 − 12 = 30− 12 = 18; a3 = 3 · a2 − 12 = 54− 12 = 42; a4 = 3 · a3 − 12 =
126− 12 = 114.

8.1.20 a1 = 1 (given); a2 = a21 − 1 = 0; a3 = a22 − 1 = −1; a4 = a23 − 1 = 0.

8.1.21 a1 = 0 (given); a2 = 3 · a21 + 1 + 1 = 2; a3 = 3 · a22 + 2 + 1 = 15; a4 = 3 · a23 + 3 + 1 = 679.

8.1.22 a0 = 1 (given); a1 = 1 (given); a2 = a1 + a0 = 2; a3 = a2 + a1 = 3; a4 = a3 + a2 = 5.

8.1.23

a. 1
32 ,

1
64 .

b. a1 = 1; an+1 = an

2 .

c. an = 1
2n−1 .

8.1.24

a. −6, 7.

b. a1 = 1; an+1 = (−1)n(|an|+ 1).

c. an = (−1)n+1n.

8.1.25

a. −5, 5.

b. a1 = −5, an+1 = −an.

c. an = (−1)n · 5.

8.1.26

a. 14, 17.

b. a1 = 2; an+1 = an + 3.

c. an = −1 + 3n.

8.1.27

a. 32, 64.

b. a1 = 1; an+1 = 2an.

c. an = 2n−1.

8.1.28

a. 36, 49.

b. a1 = 1; an+1 = (
√
an + 1)2.

c. an = n2.

8.1.29

a. 243, 729.

b. a1 = 1; an+1 = 3an.

c. an = 3n−1.

8.1.30

a. 2, 1.

b. a1 = 64; an+1 = an

2 .

c. an = 64
2n−1 = 27−n.

8.1.31 a1 = 9, a2 = 99, a3 = 999, a4 = 9999. This sequence diverges, because the terms get larger without
bound.

8.1.32 a1 = 2, a2 = 17, a3 = 82, a4 = 257. This sequence diverges, because the terms get larger without
bound.

8.1.33 a1 = 1
10 , a2 = 1

100 , a3 = 1
1000 , a4 = 1

10,000 . This sequence converges to zero.

8.1.34 a1 = 1
10 , a2 = 1

100 , a3 = 1
1000 , a4 = 1

10,000 . This sequence converges to zero.

8.1.35 a1 = − 1
2 , a2 = 1

4 , a3 = − 1
8 , a4 = 1

16 . This sequence converges to 0 because each term is smaller in
absolute value than the preceding term and they get arbitrarily close to zero.

8.1.36 a1 = 0.9, a2 = 0.99, a3 = 0.999, a4 = .9999. This sequence converges to 1.

Copyright c© 2015 Pearson Education, Inc.



8.1. An Overview 5

8.1.37 a1 = 1 + 1 = 2, a2 = 1 + 1 = 2, a3 = 2, a4 = 2. This constant sequence converges to 2.

8.1.38 a1 = 9+ 9
10 = 9.9, a2 = 9+ 9.9

10 = 9.99, a3 = 9+ 9.99
10 = 9.999, a4 = 9+ 9.999

10 = 9.9999. This sequence
converges to 10.

8.1.39 a1 = 50
11+50 ≈ 54.545, a2 = 54.545

11 +50 ≈ 54.959, a3 = 54.959
11 +50 ≈ 54.996, a4 = 54.996

11 +50 ≈ 55.000.
This sequence converges to 55.

8.1.40 a1 = 0 − 1 = −1. a2 = −10 − 1 = −11, a3 = −110 − 1 = −111, a4 = −1110 − 1 = −1111. This
sequence diverges.

8.1.41

n 1 2 3 4 4 6 7 8 9 10

an 0.4636 0.2450 0.1244 0.0624 0.0312 0.0156 0.0078 0.0039 0.0020 0.0010

This sequence appears to converge to 0.

8.1.42

n 1 2 3 4 5 6 7 8 9 10

an 3.1396 3.1406 3.1409 3.1411 3.1412 3.1413 3.1413 3.1413 3.1414 3.1414

This sequence appears to converge to π.

8.1.43

n 1 2 3 4 5 6 7 8 9 10

an 0 2 6 12 20 30 42 56 72 90

This sequence appears to diverge.

8.1.44

n 1 2 3 4 5 6 7 8 9 10

an 9.9 9.95 9.9667 9.975 9.98 9.9833 9.9857 9.9875 9.9889 9.99

This sequence appears to converge to 10.

8.1.45

n 1 2 3 4 5 6 7 8 9 10

an 0.83333 0.96154 0.99206 0.99840 0.99968 0.99994 0.99999 1.0000 1.0000 1.0000

This sequence appears to converge to 1.

8.1.46

n 1 2 3 4 5 6 7 8 9 10 11

an 0.9589 0.9896 0.9974 0.9993 0.9998 1.000 1.000 1.0000 1.000 1.000 1.000

This sequence converges to 1.

8.1.47

a. 2.5, 2.25, 2.125, 2.0625.

b. The limit is 2.

8.1.48

a. 1.33333, 1.125, 1.06667, 1.04167.

b. The limit is 1.

Copyright c© 2015 Pearson Education, Inc.



6 Chapter 8. Sequences and Infinite Series

8.1.49

n 0 1 2 3 4 5 6 7 8 9 10

an 3 3.500 3.750 3.875 3.938 3.969 3.984 3.992 3.996 3.998 3.999

This sequence converges to 4.

8.1.50

n 0 1 2 3 4 5 6 7 8 9

an 1 −2.75 −3.688 −3.922 −3.981 −3.995 −3.999 −4.000 −4.000 −4.000

This sequence converges to −4.

8.1.51

n 0 1 2 3 4 5 6 7 8 9 10

an 0 1 3 7 15 31 63 127 255 511 1023

This sequence diverges.

8.1.52

n 0 1 2 3 4 5 6 7 8 9 10

an 10 4 3.4 3.34 3.334 3.333 3.333 3.333 3.333 3.333 3.333

This sequence converges to 10
3 .

8.1.53

n 0 1 2 3 4 5 6 7 8 9

an 1000 18.811 5.1686 4.1367 4.0169 4.0021 4.0003 4.0000 4.0000 4.0000

This sequence converges to 4.

8.1.54

n 0 1 2 3 4 5 6 7 8 9 10

an 1 1.4212 1.5538 1.5981 1.6119 1.6161 1.6174 1.6179 1.6180 1.6180 1.6180

This sequence converges to 1+
√
5

2 ≈ 1.618.

8.1.55

a. 20, 10, 5, 2.5.

b. hn = 20(0.5)n.

8.1.56

a. 10, 9, 8.1, 7.29.

b. hn = 10(0.9)n.

8.1.57

a. 30, 7.5, 1.875, 0.46875.

b. hn = 30(0.25)n.

8.1.58

a. 20, 15, 11.25, 8.438

b. hn = 20(0.75)n.

8.1.59 S1 = 0.3, S2 = 0.33, S3 = 0.333, S4 = 0.3333. It appears that the infinite series has a value of
0.3333 . . . = 1

3 .

8.1.60 S1 = 0.6, S2 = 0.66, S3 = 0.666, S4 = 0.6666. It appears that the infinite series has a value of
0.6666 . . . = 2

3 .

Copyright c© 2015 Pearson Education, Inc.



8.1. An Overview 7

8.1.61 S1 = 4, S2 = 4.9, S3 = 4.99, S4 = 4.999. The infinite series has a value of 4.999 · · · = 5.

8.1.62 S1 = 1, S2 = 3
2 = 1.5, S3 = 7

4 = 1.75, S4 = 15
8 = 1.875. The infinite series has a value of 2.

8.1.63

a. S1 = 2
3 , S2 = 4

5 , S3 = 6
7 , S4 = 8

9 .

b. It appears that Sn = 2n
2n+1 .

c. The series has a value of 1 (the partial sums converge to 1).

8.1.64

a. S1 = 1
2 , S2 = 3

4 , S3 = 7
8 , S4 = 15

16 .

b. Sn = 1− 1
2n .

c. The partial sums converge to 1, so that is the value of the series.

8.1.65

a. S1 = 1
3 , S2 = 2

5 , S3 = 3
7 , S4 = 4

9 .

b. Sn = n
2n+1 .

c. The partial sums converge to 1
2 , which is the value of the series.

8.1.66

a. S1 = 2
3 , S2 = 8

9 , S3 = 26
27 , S4 = 80

81 .

b. Sn = 1− 1
3n .

c. The partial sums converge to 1, which is the value of the series.

8.1.67

a. True. For example, S2 = 1 + 2 = 3, and S4 = a1 + a2 + a3 + a4 = 1 + 2 + 3 + 4 = 10.

b. False. For example, 1
2 ,

3
4 ,

7
8 , · · · where an = 1− 1

2n converges to 1, but each term is greater than the
previous one.

c. True. In order for the partial sums to converge, they must get closer and closer together. In order
for this to happen, the difference between successive partial sums, which is just the value of an, must
approach zero.

8.1.68 The height at the nth bounce is given by the recurrence hn = r · hn−1; an explicit form for this
sequence is hn = h0 · rn. The distance traveled by the ball between the nth and the (n+ 1)st bounce is thus
2hn = 2h0 · rn, so that Sn+1 =

∑n
i=0 2h0 · ri.

a. Here h0 = 20, r = 0.5, so S1 = 40, S2 = 40 + 40 · 0.5 = 60, S3 = S2 + 40 · (0.5)2 = 70, S4 =
S3 + 40 · (0.5)3 = 75, S5 = S4 + 40 · (0.5)4 = 77.5

b.

n 1 2 3 4 5 6

an 40 60 70 75 77.5 78.75

n 7 8 9 10 11 12

an 79.375 79.688 79.844 79.922 79.961 79.980

n 13 14 15 16 17 18

an 79.990 79.995 79.998 79.999 79.999 80.000

n 19 20 21 22 23 24

an 80.000 80.000 80.000 80.000 80.000 80.000

The sequence converges to 80.

Copyright c© 2015 Pearson Education, Inc.
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8.1.69 Using the work from the previous problem:

a. Here h0 = 20, r = 0.75, so S1 = 40, S2 = 40 + 40 · 0.75 = 70, S3 = S2 + 40 · (0.75)2 = 92.5,
S4 = S3 + 40 · (0.75)3 = 109.375, S5 = S4 + 40 · (0.75)4 = 122.03125

b.

n 1 2 3 4 5 6

an 40 70 92.5 109.375 122.031 131.523

n 7 8 9 10 11 12

an 138.643 143.982 147.986 150.990 153.242 154.932

n 13 14 15 16 17 18

an 156.199 157.149 157.862 158.396 158.797 159.098

n 19 20 21 22 23 24

an 159.323 159.493 159.619 159.715 159.786 159.839

The sequence converges to 160.

8.1.70

a. s1 = −1, s2 = 0, s3 = −1, s4 = 0.

b. The limit does not exist.

8.1.71

a. 0.9, 0.99, 0.999, .9999.

b. The limit is 1.

8.1.72

a. 1.5, 3.75, 7.125, 12.1875.

b. The limit does not exist.

8.1.73

a. 1
3 ,

4
9 ,

13
27 ,

40
81 .

b. The limit is 1/2.

8.1.74

a. 1, 3, 6, 10.

b. The limit does not exist.

8.1.75

a. −1, 0, −1, 0.

b. The limit does not exist.

8.1.76

a. −1, 1, −2, 2.

b. The limit does not exist.

8.1.77

a. 3
10 = 0.3, 33

100 = 0.33, 333
1000 = 0.333, 3333

10000 = 0.3333.

b. The limit is 1/3.

8.1.78

a. p0 = 250, p1 = 250 ·1.03 = 258, p2 = 250 ·1.032 = 265, p3 = 250 ·1.033 = 273, p4 = 250 ·1.034 = 281.

b. The initial population is 250, so that p0 = 250. Then pn = 250 · (1.03)n, because the population
increases by 3 percent each month.

c. pn+1 = pn · 1.03.
d. The population increases without bound.
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8.1.79

a. M0 = 20, M1 = 20 · 0.5 = 10, M2 = 20 · 0.52 = 5, M3 = 20 · 0.53 = 2.5, M4 = 20 · 0.54 = 1.25

b. Mn = 20 · 0.5n.
c. The initial mass is M0 = 20. We are given that 50% of the mass is gone after each decade, so that

Mn+1 = 0.5 ·Mn, n ≥ 0.

d. The amount of material goes to 0.

8.1.80

a. c0 = 100, c1 = 103, c2 = 106.09, c3 = 109.27, c4 = 112.55.

b. cn = 100(1.03)n for n ≥ 0.

c. We are given that c0 = 100 (where year 0 is 1984); because it increases by 3% per year, cn+1 = 1.03 ·cn.
d. The sequence diverges.

8.1.81

a. d0 = 200, d1 = 200 · .95 = 190, d2 = 200 · .952 = 180.5, d3 = 200 · .953 = 171.475, d4 = 200 · .954 =
162.90125.

b. dn = 200(0.95)n, n ≥ 0.

c. We are given d0 = 200; because 5% of the drug is washed out every hour, that means that 95% of the
preceding amount is left every hour, so that dn+1 = 0.95 · dn.

d. The sequence converges to 0.

8.1.82

a. Using the recurrence an+1 = 1
2

(
an + 10

an

)
, we build a table:

n 0 1 2 3 4 5

an 10 5.5 3.659090909 3.196005081 3.162455622 3.162277665

The true value is
√
10 ≈ 3.162277660, so the sequence converges with an error of less than 0.01 after

only 4 iterations, and is within 0.0001 after only 5 iterations.

b. The recurrence is now an+1 = 1
2

(
an + 2

an

)
c

√
c 0 1 2 3 4 5 6

2 1.414 2 1.5 1.417 1.414 1.414 1.414 1.414

3 1.732 3 2 1.750 1.732 1.732 1.732 1.732

4 2.000 4 2.5 2.050 2.001 2.000 2.000 2.000

5 2.236 5 3 2.333 2.238 2.236 2.236 2.236

6 2.449 6 3.6 2.607 2.454 2.449 2.449 2.449

7 2.646 7 4 2.875 2.655 2.646 2.646 2.646

8 2.828 8 4.5 3.139 2.844 2.828 2.828 2.828

9 3.000 9 5.0 3.400 3.024 3.000 3.000 3.000

10 3.162 10 5.5 3.659 3.196 3.162 3.162 3.162

For c = 2 the sequence converges to within 0.01 after two iterations.
For c = 3, 4, 5, 6, and 7 the sequence converges to within 0.01 after three iterations.
For c = 8, 9, and 10 it requires four iterations.
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8.2 Sequences

8.2.1 There are many examples; one is an = 1
n . This sequence is nonincreasing (in fact, it is decreasing)

and has a limit of 0.

8.2.2 Again there are many examples; one is an = ln(n). It is increasing, and has no limit.

8.2.3 There are many examples; one is an = 1
n . This sequence is nonincreasing (in fact, it is decreasing), is

bounded above by 1 and below by 0, and has a limit of 0.

8.2.4 For example, an = (−1)n. For all values of n we have |an| = 1, so it is bounded. All the odd terms
are −1 and all the even terms are 1, so the sequence does not have a limit.

8.2.5 {rn} converges for −1 < r ≤ 1. It diverges for all other values of r (see Theorem 8.3).

8.2.6 By Theorem 8.1, if we can find a function f(x) such that f(n) = an for all positive integers n, then if
lim
x→∞ f(x) exists and is equal to L, we then have lim

n→∞ an exists and is also equal to L. This means that we

can apply function-oriented limit methods such as L’Hôpital’s rule to determine limits of sequences.

8.2.7 {en/100} grows faster than {n100} as n → ∞.

8.2.8 The definition of the limit of a sequence involves only the behavior of the nth term of a sequence as n
gets large (see the Definition of Limit of a Sequence). Thus suppose an, bn differ in only finitely many terms,
and that M is large enough so that an = bn for n > M . Suppose an has limit L. Then for ε > 0, if N is
such that |an − L| < ε for n > N , first increase N if required so that N > M as well. Then we also have
|bn −L| < ε for n > N . Thus an and bn have the same limit. A similar argument applies if an has no limit.

8.2.9 Divide numerator and denominator by n4 to get lim
n→∞

1/n

1+ 1
n4

= 0.

8.2.10 Divide numerator and denominator by n12 to get lim
n→∞

1
3+ 4

n12
= 1

3 .

8.2.11 Divide numerator and denominator by n3 to get lim
n→∞

3−n−3

2+n−3 = 3
2 .

8.2.12 Divide numerator and denominator by en to get lim
n→∞

2+(1/en)
1 = 2.

8.2.13 Divide numerator and denominator by 3n to get lim
n→∞

3+(1/3n−1)
1 = 3.

8.2.14 Divide numerator by k and denominator by k =
√
k2 to get lim

k→∞
1√

9+(1/k2)
= 1

3 .

8.2.15 lim
n→∞ tan−1 n = π

2 .

8.2.16 Multiply by

√
n2 + 1 + n√
n2 + 1 + n

to obtain

lim
n→∞

(√
n2 + 1− n

)
= lim

n→∞

(√
n2 + 1− n

) (√
n2 + 1 + n

)
√
n2 + 1 + n

= lim
n→∞

1√
n2 + 1 + n

= 0.

8.2.17 Because lim
n→∞ tan−1 n = π

2 , lim
n→∞

tan−1 n
n = 0.

8.2.18 Let y = n2/n. Then ln y = 2 lnn
n . By L’Hôpital’s rule we have lim

x→∞
2 ln x
x = lim

x→∞
2
x = 0, so lim

n→∞n2/n =

e0 = 1.
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8.2.19 Find the limit of the logarithm of the expression, which is n ln
(
1 + 2

n

)
. Using L’Hôpital’s rule:

lim
n→∞n ln

(
1 +

2

n

)
= lim

n→∞
ln
(
1 + 2

n

)
1/n

= lim
n→∞

1
1+(2/n)

(−2
n2

)
−1/n2

= lim
n→∞

2

1 + (2/n)
= 2.

Thus the limit of the original expression is e2.

8.2.20 Take the logarithm of the expression and use L’Hôpital’s rule:

lim
n→∞n ln

(
n

n+ 5

)
= lim

n→∞

ln
(

n
n+5

)
1/n

= lim
n→∞

n+5
n · 5

(n+5)2

−1/n2
= lim

n→∞
−5n

n+ 5
= −5.

Thus the original limit is e−5.

8.2.21 Take the logarithm of the expression and use L’Hôpital’s rule:

lim
n→∞

n

2
ln

(
1 +

1

2n

)
= lim

n→∞
ln(1 + (1/2n))

2/n
= lim

n→∞

1
1+(1/2n) · −1

2n2

−2/n2
= lim

n→∞
1

4(1 + (1/2n))
=

1

4
.

Thus the original limit is e1/4.

8.2.22 Find the limit of the logarithm of the expression, which is 3n ln
(
1 + 4

n

)
. Using L’Hôpital’s rule:

lim
n→∞ 3n ln

(
1 +

4

n

)
= lim

n→∞
3 ln
(
1 + 4

n

)
1/n

= lim
n→∞

1
1+(4/n)

(−12
n2

)
−1/n2

= lim
n→∞

12

1 + (4/n)
= 12.

Thus the limit of the original expression is e12.

8.2.23 Using L’Hôpital’s rule: lim
n→∞

n
en+3n = lim

n→∞
1

en+3 = 0.

8.2.24 ln 1
n = − lnn, so this is − lim

n→∞
lnn
n . By L’Hôpital’s rule, we have − lim

n→∞
lnn
n = − lim

n→∞
1
n = 0.

8.2.25 Taking logs, we have lim
n→∞

1
n ln(1/n) = lim

n→∞− lnn
n = lim

n→∞
−1
n = 0 by L’Hôpital’s rule. Thus the

original sequence has limit e0 = 1.

8.2.26 Find the limit of the logarithm of the expression, which is n ln
(
1− 4

n

)
, using L’Hôpital’s rule:

lim
n→∞n ln

(
1− 4

n

)
= lim

n→∞
ln(1− 4

n )
1/n = lim

n→∞

1
1−(4/n) (

4
n2 )

−1/n2 = lim
n→∞

−4
1−(4/n) = −4. Thus the limit of the origi-

nal expression is e−4.

8.2.27 Except for a finite number of terms, this sequence is just an = ne−n, so it has the same limit as this
sequence. Note that lim

n→∞
n
en = lim

n→∞
1
en = 0, by L’Hôpital’s rule.

8.2.28 ln(n3 + 1)− ln(3n3 + 10n) = ln
(

n3+1
3n3+10n

)
= ln

(
1+n−3

3+10n−2

)
, so the limit is ln(1/3) = − ln 3.

8.2.29 ln(sin(1/n)) + lnn = ln(n sin(1/n)) = ln
(

sin(1/n)
1/n

)
. As n → ∞, sin(1/n)/(1/n) → 1, so the limit of

the original sequence is ln 1 = 0.

8.2.30 Using L’Hôpital’s rule:

lim
n→∞n(1− cos(1/n)) = lim

n→∞
1− cos(1/n)

1/n
= lim

n→∞
− sin(1/n)(−1/n2)

−1/n2
= − sin(0) = 0.

8.2.31 lim
n→∞n sin(6/n) = lim

n→∞
sin(6/n)

1/n = lim
n→∞

−6 cos(6/n)

n2

(−1/n2) = lim
n→∞ 6 cos(6/n) = 6 · cos 0 = 6.
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12 Chapter 8. Sequences and Infinite Series

8.2.32 Because − 1
n ≤ (−1)n

n ≤ 1
n , and because both − 1

n and 1
n have limit 0 as n → ∞, the limit of the given

sequence is also 0 by the Squeeze Theorem.

8.2.33 The terms with odd-numbered subscripts have the form − n
n+1 , so they approach −1, while the terms

with even-numbered subscripts have the form n
n+1 so they approach 1. Thus, the sequence has no limit.

8.2.34 Because −n2

2n3+n ≤ (−1)n+1n2

2n3+n ≤ n2

2n3+n , and because both −n2

2n3+n and n2

2n3+n have limit 0 as n → ∞, the

limit of the given sequence is also 0 by the Squeeze Theorem. Note that lim
n→∞

n2

2n3+n = lim
n→∞

1/n
2+1/n2 = 0

2 = 0.

8.2.35

When n is an integer, sin
(
nπ
2

)
oscillates be-

tween the values ±1 and 0, so this sequence
does not converge. 5 10 15 20

n

y

8.2.36

The even terms form a sequence b2n = 2n
2n+1 ,

which converges to 1 (e.g. by L’Hôpital’s
rule); the odd terms form the sequence
b2n+1 = − n

n+1 , which converges to −1. Thus
the sequence as a whole does not converge.

5 10 15 20
n

y

8.2.37
The numerator is bounded in absolute value
by 1, while the denominator goes to ∞, so
the limit of this sequence is 0.

20 40 60 80 100
n

y

8.2.38
The reciprocal of this sequence is bn = 1

an
=

1 +
(
4
3

)n
, which increases without bound as

n → ∞. Thus an converges to zero.

10 20 30 40 50
n

0.05

0.10

0.15

y
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8.2.39 lim
n→∞(1 + cos(1/n)) = 1 + cos(0) = 2.

2 4 6 8 10
n

0.5

1.0

1.5

2.0
y

8.2.40

By L’Hôpital’s rule we have: lim
n→∞

e−n

2 sin(e−n) =

lim
n→∞

−e−n

2 cos(e−n)(−e−n) =
1

2 cos 0 = 1
2 .

0 2 4 6 8 10
n

0.1

0.2

0.3

0.4

0.5

0.6
y

8.2.41

This is the sequence cosn
en ; the numerator is

bounded in absolute value by 1 and the de-
nominator increases without bound, so the
limit is zero.

2 4 6 8 10 12 14
n

�0.2

�0.1

0.1

0.2
y

8.2.42

Using L’Hôpital’s rule, we have lim
n→∞

lnn
n1.1 =

lim
n→∞

1/n
(1.1)n.1 = lim

n→∞
1

(1.1)n1.1 = 0.

20 40 60 80 100
n

0.05

0.10

0.15

0.20

y

8.2.43

Ignoring the factor of (−1)n for the moment,
we see, taking logs, that lim

n→∞
lnn
n = 0, so

that lim
n→∞

n
√
n = e0 = 1. Taking the sign

into account, the odd terms converge to −1
while the even terms converge to 1. Thus the
sequence does not converge.

5 10 15 20 25 30
n

�1.5

�1.0

�0.5

0.5

1.0

1.5
y
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14 Chapter 8. Sequences and Infinite Series

8.2.44
lim

n→∞
nπ

2n+2 = π
2 , using L’Hôpital’s rule. Thus

the sequence converges to cot(π/2) = 0.

10 20 30 40
n

0.05

0.10

0.15

0.20

0.25

0.30

0.35

y

8.2.45 Because 0.2 < 1, this sequence converges to 0. Because 0.2 > 0, the convergence is monotone.

8.2.46 Because 1.2 > 1, this sequence diverges monotonically to ∞.

8.2.47 Because |−0.7| < 1, the sequence converges to 0; because −0.7 < 0, it does not do so monotonically.
The sequence converges by oscillation.

8.2.48 Because |−1.01| > 1, the sequence diverges; because −1.01 < 0, the divergence is not monotone.

8.2.49 Because 1.00001 > 1, the sequence diverges; because 1.00001 > 0, the divergence is monotone.

8.2.50 This is the sequence
2n+1

3n
= 2 ·

(
2

3

)n

;

because 0 < 2
3 < 1, the sequence converges monotonically to zero.

8.2.51 Because |−2.5| > 1, the sequence diverges; because −2.5 < 0, the divergence is not monotone. The
sequence diverges by oscillation.

8.2.52 |−0.003| < 1, so the sequence converges to zero; because −.003 < 0, the convergence is not monotone.

8.2.53 Because −1 ≤ cosn ≤ 1, we have −1
n ≤ cosn

n ≤ 1
n . Because both −1

n and 1
n have limit 0 as n → ∞,

the given sequence does as well.

8.2.54 Because −1 ≤ sin 6n ≤ 1, we have − 1
5n ≤ sin 6n

5n ≤ 1
5n . Because both − 1

5n and 1
5n have limit 0 as

n → ∞, the given sequence does as well.

8.2.55 Because −1 ≤ sinn ≤ 1 for all n, the given sequence satisfies − 1
2n ≤ sinn

2n ≤ 1
2n , and because both

± 1
2n → 0 as n → ∞, the given sequence converges to zero as well by the Squeeze Theorem.

8.2.56 Because −1 ≤ cos(nπ/2) ≤ 1 for all n, we have −1√
n
≤ cos(nπ/2)√

n
≤ 1√

n
and because both ± 1√

n
→ 0 as

n → ∞, the given sequence converges to 0 as well by the Squeeze Theorem.

8.2.57 The inverse tangent function takes values between −π/2 and π/2, so the numerator is always between

−π and π. Thus −π
n3+4 ≤ 2 tan−1 n

n3+4 ≤ π
n3+4 , and by the Squeeze Theorem, the given sequence converges to

zero.

8.2.58 This sequence diverges. To see this, call the given sequence an, and assume it converges to limit L.
Then because the sequence bn = n

n+1 converges to 1, the sequence cn = an

bn
would converge to L as well. But

cn = sin3 πn
2 doesn’t converge (because it is 1,−1, 1,−1 · · · ), so the given sequence doesn’t converge either.

8.2.59

a. After the nth dose is given, the amount of drug in the bloodstream is dn = 0.5 · dn−1 +80, because the
half-life is one day. The initial condition is d1 = 80.
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b. The limit of this sequence is 160 mg.

c. Let L = lim
n→∞ dn. Then from the recurrence relation, we have dn = 0.5 · dn−1 +80, and thus lim

n→∞ dn =

0.5 · lim
n→∞ dn−1 + 80, so L = 0.5 · L+ 80, and therefore L = 160.

8.2.60

a.

B0 = $20, 000

B1 = 1.005 ·B0 − $200 = $19, 900

B2 = 1.005 ·B1 − $200 = $19, 799.50

B3 = 1.005 ·B2 − $200 = $19, 698.50

B4 = 1.005 ·B3 − $200 = $19, 596.99

B5 = 1.005 ·B4 − $200 = $19, 494.97

b. Bn = 1.005 ·Bn−1 − $200

c. Using a calculator or computer program, Bn becomes negative after the 139th payment, so 139 months
or almost 11 years.

8.2.61

a.

B0 = 0

B1 = 1.0075 ·B0 + $100 = $100

B2 = 1.0075 ·B1 + $100 = $200.75

B3 = 1.0075 ·B2 + $100 = $302.26

B4 = 1.0075 ·B3 + $100 = $404.52

B5 = 1.0075 ·B4 + $100 = $507.56

b. Bn = 1.0075 ·Bn−1 + $100.

c. Using a calculator or computer program, Bn > $5, 000 during the 43rd month.

8.2.62

a. Let Dn be the total number of liters of alcohol in the mixture after the nth replacement. At the next
step, 2 liters of the 100 liters is removed, thus leaving 0.98 ·Dn liters of alcohol, and then 0.1 · 2 = 0.2
liters of alcohol are added. Thus Dn = 0.98 ·Dn−1+0.2. Now, Cn = Dn/100, so we obtain a recurrence
relation for Cn by dividing this equation by 100: Cn = 0.98 · Cn−1 + 0.002.

C0 = 0.4

C1 = 0.98 · 0.4 + 0.002 = 0.394

C2 = 0.98 · C1 + 0.002 = 0.38812

C3 = 0.98 · C2 + 0.002 = 0.38236

C4 = 0.98 · C3 + 0.002 = 0.37671

C5 = 0.98 · C4 + 0.002 = 0.37118

The rounding is done to five decimal places.
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b. Using a calculator or a computer program, Cn < 0.15 after the 89th replacement.

c. If the limit of Cn is L, then taking the limit of both sides of the recurrence equation yields L =
0.98L+ 0.002, so .02L = .002, and L = .1 = 10%.

8.2.63 Because n! 	 nn by Theorem 8.6, we have lim
n→∞

n!
nn = 0.

8.2.64 {3n} 	 {n!} because {bn} 	 {n!} in Theorem 8.6. Thus, lim
n→∞

3n

n! = 0.

8.2.65 Theorem 8.6 indicates that lnq n 	 np, so ln20 n 	 n10, so lim
n→∞

n10

ln20 n
= ∞.

8.2.66 Theorem 8.6 indicates that lnq n 	 np, so ln1000 n 	 n10, so lim
n→∞

n10

ln1000 n
= ∞.

8.2.67 By Theorem 8.6, np 	 bn, so n1000 	 2n, and thus lim
n→∞

n1000

2n = 0.

8.2.68 Note that e1/10 = 10
√
e ≈ 1.1. Let r = e1/10

2 and note that 0 < r < 1. Thus lim
n→∞

en/10

2n = lim
n→∞ rn = 0.

8.2.69 Let ε > 0 be given and letN be an integer withN > 1
ε . Then if n > N , we have

∣∣ 1
n − 0

∣∣ = 1
n < 1

N < ε.

8.2.70 Let ε > 0 be given. We wish to find N such that |(1/n2) − 0| < ε if n > N . This means that∣∣ 1
n2 − 0

∣∣ = 1
n2 < ε. So choose N such that 1

N2 < ε, so that N2 > 1
ε , and then N > 1√

ε
. This shows that such

an N always exists for each ε and thus that the limit is zero.

8.2.71 Let ε > 0 be given. We wish to find N such that for n > N ,
∣∣∣ 3n2

4n2+1 − 3
4

∣∣∣ = ∣∣∣ −3
4(4n2+1)

∣∣∣ = 3
4(4n2+1) < ε.

But this means that 3 < 4ε(4n2 + 1), or 16εn2 + (4ε− 3) > 0. Solving the quadratic, we get n > 1
4

√
3
ε − 4,

provided ε < 3/4. So let N = 1
4

√
3
ε if ε < 3/4 and let N = 1 otherwise.

8.2.72 Let ε > 0 be given. We wish to find N such that for n > N , |b−n−0| = b−n < ε, so that −n ln b < ln ε.
So choose N to be any integer greater than − ln ε

ln b .

8.2.73 Let ε > 0 be given. We wish to find N such that for n > N ,
∣∣∣ cn
bn+1 − c

b

∣∣∣ = ∣∣∣ −c
b(bn+1)

∣∣∣ = c
b(bn+1) < ε.

But this means that εb2n+ (bε− c) > 0, so that N > c
b2ε will work.

8.2.74 Let ε > 0 be given. We wish to find N such that for n > N ,
∣∣∣ n
n2+1 − 0

∣∣∣ = n
n2+1 < ε. Thus we want

n < ε(n2 + 1), or εn2 − n+ ε > 0. Whenever n is larger than the larger of the two roots of this quadratic,

the desired inequality will hold. The roots of the quadratic are 1±√
1−4ε2

2ε , so we choose N to be any integer

greater than 1+
√
1−4ε2

2ε .

8.2.75

a. True. See Theorem 8.2 part 4.

b. False. For example, if an = 1/n and bn = en, then lim
n→∞ anbn = ∞.

c. True. The definition of the limit of a sequence involves only the behavior of the nth term of a sequence
as n gets large (see the Definition of Limit of a Sequence). Thus suppose an, bn differ in only finitely
many terms, and that M is large enough so that an = bn for n > M . Suppose an has limit L. Then
for ε > 0, if N is such that |an −L| < ε for n > N , first increase N if required so that N > M as well.
Then we also have |bn − L| < ε for n > N . Thus an and bn have the same limit. A similar argument
applies if an has no limit.
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d. True. Note that an converges to zero. Intuitively, the nonzero terms of bn are those of an, which
converge to zero. More formally, given ε, choose N1 such that for n > N1, an < ε. Let N = 2N1 + 1.
Then for n > N , consider bn. If n is even, then bn = 0 so certainly bn < ε. If n is odd, then
bn = a(n−1)/2, and (n − 1)/2 > ((2N1 + 1) − 1)/2 = N1 so that a(n−1)/2 < ε. Thus bn converges to
zero as well.

e. False. If {an} happens to converge to zero, the statement is true. But consider for example an = 2+ 1
n .

Then lim
n→∞ an = 2, but (−1)nan does not converge (it oscillates between positive and negative values

increasingly close to ±2).

f. True. Suppose {0.000001an} converged to L, and let ε > 0 be given. Choose N such that for n > N ,
|0.000001an−L| < ε·0.000001. Dividing through by 0.000001, we get that for n > N , |an−1000000L| <
ε, so that an converges as well (to 1000000L).

8.2.76 {2n− 3}∞n=3.

8.2.77 {(n− 2)2 + 6(n− 2)− 9}∞n=3 = {n2 + 2n− 17}∞n=3.

8.2.78 If f(t) =
∫ t

1
x−2dx, then lim

t→∞ f(t) = lim
n→∞ an. But

lim
t→∞ f(t) =

∫ ∞

1

x−2dx = lim
b→∞

[
− 1

x

∣∣∣∣b
1

]
= lim

b→∞

(
−1

b
+ 1

)
= 1.

8.2.79 Evaluate the limit of each term separately: lim
n→∞

75n−1

99n = 1
99 lim

n→∞
(
75
99

)n−1
= 0, while −5n

8n ≤ 5n sinn
8n ≤

5n

8n , so by the Squeeze Theorem, this second term converges to 0 as well. Thus the sum of the terms converges
to zero.

8.2.80 Because lim
n→∞

10n
10n+4 = 1, and because the inverse tangent function is continuous, the given sequence

has limit tan−1 1 = π/4.

8.2.81 Because lim
n→∞ 0.99n = 0, and because cosine is continuous, the first term converges to cos 0 = 1. The

limit of the second term is lim
n→∞

7n+9n

63n = lim
n→∞

(
7
63

)n
+ lim

n→∞
(

9
63

)n
= 0. Thus the sum converges to 1.

8.2.82 Dividing the numerator and denominator by n! gives an = (4n/n!)+5
1+(2n/n!) . By Theorem 8.6, we have

4n 	 n! and 2n 	 n!. Thus, lim
n→∞ an = 0+5

1+0 = 5.

8.2.83 Dividing the numerator and denominator by 6n gives an = 1+(1/2)n

1+(n100/6n) . By Theorem 8.6, n100 	 6n.

Thus lim
n→∞ an = 1+0

1+0 = 1.

8.2.84 Dividing the numerator and denominator by n8 gives an = 1+(1/n)
(1/n)+lnn . Because 1 + (1/n) → 1 as

n → ∞ and (1/n) + lnn → ∞ as n → ∞, we have lim
n→∞ an = 0.

8.2.85 We can write an = (7/5)n

n7 . Theorem 8.6 indicates that n7 	 bn for b > 1, so lim
n→∞ an = ∞.

8.2.86 A graph shows that the sequence appears to converge. Assuming that it does, let its limit be L.
Then lim

n→∞ an+1 = 1
2 lim
n→∞ an + 2, so L = 1

2L+ 2, and thus 1
2L = 2, so L = 4.

8.2.87 A graph shows that the sequence appears to converge. Let its supposed limit be L, then lim
n→∞ an+1 =

lim
n→∞(2an(1−an)) = 2( lim

n→∞ an)(1− lim
n→∞ an), so L = 2L(1−L) = 2L−2L2, and thus 2L2−L = 0, so L = 0, 1

2 .

Thus the limit appears to be either 0 or 1/2; with the given initial condition, doing a few iterations by hand
confirms that the sequence converges to 1/2: a0 = 0.3; a1 = 2 · 0.3 · 0.7 = .42; a2 = 2 · 0.42 · 0.58 = 0.4872.
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8.2.88 A graph shows that the sequence appears to converge, and to a value other than zero; let its limit be
L. Then lim

n→∞ an+1 = lim
n→∞

1
2 (an + 2

an
) = 1

2 lim
n→∞ an + 1

lim
n→∞ an

, so L = 1
2L+ 1

L , and therefore L2 = 1
2L

2 + 1.

So L2 = 2, and thus L =
√
2.

8.2.89 Computing three terms gives a0 = 0.5, a1 = 4 · 0.5 · 0.5 = 1, a2 = 4 · 1 · (1 − 1) = 0. All successive
terms are obviously zero, so the sequence converges to 0.

8.2.90 A graph shows that the sequence appears to converge. Let its limit be L. Then lim
n→∞ an+1 =√

2 + lim
n→∞ an, so L =

√
2 + L. Thus we have L2 = 2 + L, so L2 − L− 2 = 0, and thus L = −1, 2. A square

root can never be negative, so this sequence must converge to 2.

8.2.91 For b = 2, 23 > 3! but 16 = 24 < 4! = 24, so the crossover point is n = 4. For e, e5 ≈ 148.41 > 5! =
120 while e6 ≈ 403.4 < 6! = 720, so the crossover point is n = 6. For 10, 24! ≈ 6.2 × 1023 < 1024, while
25! ≈ 1.55× 1025 > 1025, so the crossover point is n = 25.

8.2.92

a. Rounded to the nearest fish, the populations are

F0 = 4000

F1 = 1.015F0 − 80 = 3980

F2 = 1.015F1 − 80 ≈ 3960

F3 = 1.015F2 − 80 ≈ 3939

F4 = 1.015F3 − 80 ≈ 3918

F5 = 1.015F4 − 80 ≈ 3897

b. Fn = 1.015Fn−1 − 80

c. The population decreases and eventually reaches zero.

d. With an initial population of 5500 fish, the population increases without bound.

e. If the initial population is less than 5333 fish, the population will decline to zero. This is essentially
because for a population of less than 5333, the natural increase of 1.5% does not make up for the loss
of 80 fish.

8.2.93

a. The profits for each of the first ten days, in dollars are:

n 0 1 2 3 4 5 6 7 8 9 10

hn 130.00 130.75 131.40 131.95 132.40 132.75 133.00 133.15 133.20 133.15 133.00

b. The profit on an item is revenue minus cost. The total cost of keeping the heifer for n days is .45n,
and the revenue for selling the heifer on the nth day is (200 + 5n) · (.65 − .01n), because the heifer
gains 5 pounds per day but is worth a penny less per pound each day. Thus the total profit on the nth

day is hn = (200 + 5n) · (.65− .01n)− .45n = 130 + 0.8n− 0.05n2. The maximum profit occurs when
−.1n+ .8 = 0, which occurs when n = 8. The maximum profit is achieved by selling the heifer on the
8th day.

8.2.94

a. x0 = 7, x1 = 6, x2 = 6.5 = 13
2 , x3 = 6.25, x4 = 6.375 = 51

8 , x5 = 6.3125 = 101
16 , x6 = 6.34375 = 203

32 .
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b. For the formula given in the problem, we have x0 = 19
3 + 2

3

(− 1
2

)0
= 7, x1 = 19

3 + 2
3 · −1

2 = 19
3 − 1

3 = 6,

so that the formula holds for n = 0, 1. Now assume the formula holds for all integers ≤ k; then

xk+1 =
1

2
(xk + xk−1) =

1

2

(
19

3
+

2

3

(
−1

2

)k

+
19

3
+

2

3

(
−1

2

)k−1
)

=
1

2

(
38

3
+

2

3

(
−1

2

)k−1(
−1

2
+ 1

))

=
1

2

(
38

3
+ 4 · 2

3

(
−1

2

)k+1

· 1
2

)

=
1

2

(
38

3
+ 2 · 2

3

(
−1

2

)k+1
)

=
19

3
+

2

3

(
−1

2

)k+1

.

c. As n → ∞, (−1/2)n → 0, so that the limit is 19/3, or 6 1/3.

8.2.95 The approximate first few values of this sequence are:

n 0 1 2 3 4 5 6

cn .7071 .6325 .6136 .6088 .6076 .6074 .6073

The value of the constant appears to be around 0.607.

8.2.96 We first prove that dn is bounded by 200. If dn ≤ 200, then dn+1 = 0.5·dn+100 ≤ 0.5·200+100 ≤ 200.
Because d0 = 100 < 200, all dn are at most 200. Thus the sequence is bounded. To see that it is monotone,
look at

dn − dn−1 = 0.5 · dn−1 + 100− dn−1 = 100− 0.5dn−1.

But we know that dn−1 ≤ 200, so that 100−0.5dn−1 ≥ 0. Thus dn ≥ dn−1 and the sequence is nondecreasing.

8.2.97

a. If we “cut off” the expression after n square roots, we get an from the recurrence given. We can thus
define the infinite expression to be the limit of an as n → ∞.

b. a0 = 1, a1 =
√
2, a2 =

√
1 +

√
2 ≈ 1.5538, a3 ≈ 1.5981, a4 ≈ 1.6118, and a5 ≈ 1.6161.

c. a10 ≈ 1.618, which differs from 1+
√
5

2 ≈ 1.61803394 by less than .001.

d. Assume lim
n→∞ an = L. Then lim

n→∞ an+1 = lim
n→∞

√
1 + an =

√
1 + lim

n→∞ an, so L =
√
1 + L, and thus

L2 = 1 + L. Therefore we have L2 − L− 1 = 0, so L = 1±√
5

2 .

Because clearly the limit is positive, it must be the positive square root.

e. Letting an+1 =
√
p+

√
an with a0 = p and assuming a limit exists we have lim

n→∞ an+1 = lim
n→∞

√
p+ an

=
√
p+ lim

n→∞ an, so L =
√
p+ L, and thus L2 = p + L. Therefore, L2 − L − p = 0, so L = 1±√

1+4p
2 ,

and because we know that L is positive, we have L = 1+
√
4p+1
2 . The limit exists for all positive p.

8.2.98 Note that 1− 1
i = i−1

i , so that the product is 1
2 · 23 · 34 · 45 · · · , so that an = 1

n for n ≥ 2. The sequence
{ 1
2 ,

1
3 ,

1
4 , . . .} has limit zero.
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8.2.99

a. Define an as given in the problem statement. Then we can define the value of the continued fraction
to be lim

n→∞ an.

b. a0 = 1, a1 = 1 + 1
a0

= 2, a2 = 1 + 1
a1

= 3
2 = 1.5, a3 = 1 + 1

a2
= 5

3 ≈ 1.667, a4 = 1 + 1
a3

= 8
5 = 1.6,

a5 = 1 + 1
a4

= 13
8 = 1.625.

c. From the list above, the values of the sequence alternately decrease and increase, so we would expect
that the limit is somewhere between 1.6 and 1.625.

d. Assume that the limit is equal to L. Then from an+1 = 1 + 1
an

, we have lim
n→∞ an+1 = 1 + 1

lim
n→∞ an

, so

L = 1 + 1
L , and thus L2 − L− 1 = 0. Therefore, L = 1±√

5
2 , and because L is clearly positive, it must

be equal to 1+
√
5

2 ≈ 1.618.

e. Here a0 = a and an+1 = a+ b
an

. Assuming that lim
n→∞ an = L we have L = a+ b

L , so L2 = aL+ b, and

thus L2 − aL− b = 0. Therefore, L = a±√
a2+4b
2 , and because L > 0 we have L = a+

√
a2+4b
2 .

8.2.100

a. With p = 0.5 we have for an+1 = apn:

n 1 2 3 4 5 6 7

an 0.707 0.841 0.971 0.958 0.979 0.989 0.995

Experimenting with recurrence (1) one sees that for 0 < p ≤ 1 the sequence converges to 1, while for
p > 1 the sequence diverges to ∞.

b. With p = 1.2 and an = pan−1 we obtain

n 1 2 3 4 5 6 7 8 9 10

an 1.2 1.2446 1.2547 1.2570 1.2577 1.2577 1.2577 1.2577 1.2577 1.2577

With recurrence (2), in addition to converging for p < 1 it also converges for values of p less than
approximately 1.444. Here is a table of approximate values for different values of p:

p 1.1 1.2 1.3 1.4 1.44 1.444 1.445

lim
n→∞ an 1.1118 1.25776 1.471 1.887 2.39385 2.587 Diverges

It appears that the upper limit of convergence is about 1.444.

8.2.101

a. f0 = f1 = 1, f2 = 2, f3 = 3, f4 = 5, f5 = 8, f6 = 13, f7 = 21, f8 = 34, f9 = 55, f10 = 89.

b. The sequence is clearly not bounded.

c. f10
f9

≈ 1.61818
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d. We use induction. Note that 1√
5

(
ϕ+ 1

ϕ

)
= 1√

5

(
1+

√
5

2 + 2
1+

√
5

)
= 1√

5

(
1+2

√
5+5+4

2(1+
√
5)

)
= 1 = f1. Also

note that 1√
5

(
ϕ2 − 1

ϕ2

)
= 1√

5

(
3+

√
5

2 − 2
3+

√
5

)
= 1√

5

(
9+6

√
5+5−4

2(3+
√
5)

)
= 1 = f2. Now note that

fn−1 + fn−2 =
1√
5
(ϕn−1 − (−1)n−1ϕ1−n + ϕn−2 − (−1)n−2ϕ2−n)

=
1√
5
((ϕn−1 + ϕn−2)− (−1)n(ϕ2−n − ϕ1−n)).

Now, note that ϕ− 1 = 1
ϕ , so that

ϕn−1 + ϕn−2 = ϕn−1

(
1 +

1

ϕ

)
= ϕn−1 · ϕ = ϕn

and

ϕ2−n − ϕ1−n = ϕ−n(ϕ2 − ϕ) = ϕ−n(ϕ(ϕ− 1)) = ϕ−n.

Making these substitutions, we get

fn = fn−1 + fn−2 =
1√
5
(ϕn − (−1)nϕ−n)

8.2.102

a. We show that the arithmetic mean of any two positive numbers exceeds their geometric mean. Let a,
b > 0; then a+b

2 −√
ab = 1

2 (a − 2
√
ab + b) = 1

2 (
√
a −√

b)2 ≥ 0. Because in addition a0 > b0, we have
an > bn for all n.

b. To see that {an} is decreasing, note that

an+1 =
an + bn

2
<

an + an
2

= an.

Similarly,

bn+1 =
√
anbn >

√
bnbn = bn,

so that {bn} is increasing.

c. {an} is monotone and nonincreasing by part (b), and bounded below by part (a) (it is bounded below
by any of the bn), so it converges by the monotone convergence theorem. Similarly, {bn} is monotone
and nondecreasing by part (b) and bounded above by part (a), so it too converges.

d.

an+1 − bn+1 =
an + bn

2
−
√
anbn =

1

2
(an − 2

√
anbn + bn) <

1

2
(an − 2

√
b2n + bn) =

1

2
(an − bn).

Thus the difference between an+1 and bn+1 is less than half the difference between an and bn, so that
difference goes to zero and the two limits are the same.

e. The AGM of 12 and 20 is approximately 15.745; Gauss’ constant is 1
AGM(1,

√
2)

≈ 0.8346.
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8.2.103

a.

2 : 1

3 : 10, 5, 16, 8, 4, 2, 1

4 : 2, 1

5 : 16, 8, 4, 2, 1

6 : 3, 10, 5, 16, 8, 4, 2, 1

7 : 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1

8 : 4, 2, 1

9 : 28, 14, 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1

10 : 5, 16, 8, 4, 2, 1

b. From the above, H2 = 1, H3 = 7, and H4 = 2.

c.

This plot is for 1 ≤ n ≤ 100. Like hailstones,
the numbers in the sequence an rise and fall
but eventually crash to the earth. The con-
jecture appears to be true.

0 20 40 60 80 100
n

20

40

60

80

100

120
y

8.2.104 {an} 	 {bn} means that lim
n→∞

an

bn
= 0. But lim

n→∞
can

dbn
= c

d lim
n→∞

an

bn
= 0, so that {can} 	 {dbn}.

8.2.105

a. Note that a2 =
√
3a1 =

√
3
√
3 >

√
3 = a1. Now assume that

√
3 = a1 < a2 < . . . ak−1 < ak. Then

ak+1 =
√
3ak >

√
3ak−1 = ak.

Thus {an} is increasing.

b. Clearly because a1 =
√
3 > 0 and {an} is increasing, the sequence is bounded below by

√
3 > 0.

Further, a1 =
√
3 < 3; assume that ak < 3. Then ak+1 =

√
3ak <

√
3 · 3 = 3, so that ak+1 < 3. So by

induction, {ak} is bounded above by 3.

c. Because {an} is bounded and monotonically increasing, lim
n→∞ an exists by Theorem 8.5.

d. Because the limit exists, we have

lim
n→∞ an+1 = lim

n→∞
√
3an =

√
3 lim
n→∞

√
an =

√
3
√

lim
n→∞ an.

Let L = lim
n→∞ an+1 = lim

n→∞ an; then L =
√
3
√
L, so that L = 3.

8.2.106 By Theorem 8.6,

lim
n→∞

2 lnn√
n

= 2 lim
n→∞

lnn

n1/2
= 0,

so that
√
n has the larger growth rate. Using computational software, we see that

√
74 ≈ 8.60233 < 2 ln 74 ≈

8.60813, while
√
75 ≈ 8.66025 > 2 ln 75 ≈ 8.63493.

Copyright c© 2015 Pearson Education, Inc.



8.3. Infinite Series 23

8.2.107 By Theorem 8.6,

lim
n→∞

n5

en/2
= 25 lim

n→∞
(n/2)5

en/2
= 0,

so that en/2 has the larger growth rate. Using computational software we see that e35/2 ≈ 3.982 × 107 <
355 ≈ 5.252× 107, while e36/2 ≈ 6.566× 107 > 365 ≈ 6.047× 107.

8.2.108 By Theorem 8.6, lnn10 	 n1.001, so that n1.001 has the larger growth rate. Using computational
software we see that 351.001 ≈ 35.1247 < ln 3510 ≈ 35.5535 while 361.001 ≈ 36.1292 > ln 3610 ≈ 35.8352.

8.2.109 Experiment with a few widely separated values of n:

n n! n0.7n

1 1 1

10 3.63× 106 107

100 9.33× 10157 10140

1000 4.02× 102567 102100

It appears that n0.7n starts out larger, but is overtaken by the factorial somewhere between n = 10 and
n = 100, and that the gap grows wider as n increases. Looking between n = 10 and n = 100 revels that for
n = 18, we have n! ≈ 6.402 × 1015 < n0.7n ≈ 6.553 × 1015 while for n = 19 we have n! ≈ 1.216 × 1017 >
n0.7n ≈ 1.017× 1017.

8.2.110 By Theorem 8.6,

lim
n→∞

n9 ln3 n

n10
= lim

n→∞
ln3 n

n
= 0,

so that n10 has a larger growth rate. Using computational software we see that 9310 ≈ 4.840 × 1019 <
939 ln3 93 ≈ 4.846× 1019 while 9410 ≈ 5.386× 1019 > 949 ln3 94 ≈ 5.374× 1019.

8.2.111 First note that for a = 1 we already know that {nn} grows fast than {n!}. So if a > 1, then
nan ≥ nn, so that {nan} grows faster than {n!} for a > 1 as well. To settle the case a < 1, recall Stirling’s
formula which states that for large values of n,

n! ∼
√
2πnnne−n.

Thus

lim
n→∞

n!

nan
= lim

n→∞

√
2πnnne−n

nan

=
√
2π lim

n→∞n
1
2+(1−a)ne−n

≥
√
2π lim

n→∞n(1−a)ne−n

=
√
2π lim

n→∞ e(1−a)n lnne−n

=
√
2π lim

n→∞ e((1−a) lnn−1)n.

If a < 1 then (1− a) lnn− 1 > 0 for large values of n because 1− a > 0, so that this limit is infinite. Hence
{n!} grows faster than {nan} exactly when a < 1.

8.3 Infinite Series

8.3.1 A geometric series is a series in which the ratio of successive terms in the underlying sequence is a
constant. Thus a geometric series has the form

∑
ark where r is the constant. One example is 3 + 6+ 12+

24 + 48 + · · · in which a = 3 and r = 2.

Copyright c© 2015 Pearson Education, Inc.



24 Chapter 8. Sequences and Infinite Series

8.3.2 A geometric sum is the sum of a finite number of terms which have a constant ratio; a geometric series
is the sum of an infinite number of such terms.

8.3.3 The ratio is the common ratio between successive terms in the sum.

8.3.4 Yes, because there are only a finite number of terms.

8.3.5 No. For example, the geometric series with an = 3 · 2n does not have a finite sum.

8.3.6 The series converges if and only if |r| < 1.

8.3.7 S = 1 · 1− 39

1− 3
=

19682

2
= 9841.

8.3.8 S = 1 · 1− (1/4)11

1− (1/4)
=

411 − 1

3 · 410 =
4194303

3 · 1048576 =
1398101

1048576
≈ 1.333.

8.3.9 S = 1 · 1− (4/25)21

1− 4/25
=

2521 − 421

2521 − 4 · 2520 ≈ 1.1905.

8.3.10 S = 16 · 1− 29

1− 2
= 511 · 16 = 8176.

8.3.11 S = 1 · 1− (−3/4)10

1 + 3/4
=

410 − 310

410 + 3 · 49 =
141361

262144
≈ 0.5392.

8.3.12 S = (−2.5) · 1− (−2.5)5

1 + 2.5
= −70.46875.

8.3.13 S = 1 · 1− π7

1− π
=

π7 − 1

π − 1
≈ 1409.84.

8.3.14 S =
4

7
· 1− (4/7)10

3/7
=

375235564

282475249
≈ 1.328.

8.3.15 S = 1 · 1− (−1)21

2
= 1.

8.3.16
65

27
. 8.3.17

1093

2916
.

8.3.18
1

5

(
1− (3/5)6

1− 3/5

)
=

7448

15625
. 8.3.19

1

1− 1/4
=

4

3
.

8.3.20
1

1− 3/5
=

5

2
. 8.3.21

1

1− 0.9
= 10.

8.3.22
1

1− 2/7
=

7

5
. 8.3.23 Divergent, because r > 1.

8.3.24
1

1− 1/π
=

π

π − 1
. 8.3.25

e−2

1− e−2
=

1

e2 − 1
.

8.3.26
5/4

1− 1/2
=

5

2
. 8.3.27

2−3

1− 2−3
=

1

7
.
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8.3.28
3 · 43/73
1− 4/7

=
64

49
. 8.3.29

1/625

1− 1/5
=

1

500
.

8.3.30 Note that this is the same as
∑∞

i=0

(
3
4

)k
. Then S =

1

1− 3/4
= 4.

8.3.31
1

1− e/π
=

π

π − e
. (Note that e < π, so r < 1 for this series.)

8.3.32
1/16

1− 3/4
=

1

4
.

8.3.33
∞∑
k=0

(
1

4

)k

53−k = 53
∞∑
k=0

(
1

20

)k

= 53 · 1

1− 1/20
=

53 · 20
19

=
2500

19
.

8.3.34
36/86

1− (3/8)3
=

729

248320
8.3.35

1

1 + 9/10
=

10

19
.

8.3.36 − 2/3

1 + 2/3
= −2

5
. 8.3.37 3 · 1

1 + 1/π
=

3π

π + 1
.

8.3.38

∞∑
k=1

(
−1

e

)k

= − 1/e

1 + 1/e
= − 1

e+ 1
. 8.3.39

0.152

1.15
=

9

460
≈ 0.0196.

8.3.40 − 3/83

1 + 1/83
= − 1

171
.

8.3.41

a. 0.3 = 0.333 . . . =
∑∞

k=1 3(0.1)
k.

b. The limit of the sequence of partial sums is 1/3.

8.3.42

a. 0.6 = 0.666 . . . =
∑∞

k=1 6(0.1)
k.

b. The limit of the sequence of partial sums is 2/3.

8.3.43

a. 0.1 = 0.111 . . . =
∑∞

k=1(0.1)
k.

b. The limit of the sequence of partial sums is 1/9.

8.3.44

a. 0.5 = 0.555 . . . =
∑∞

k=1 5(0.1)
k.

b. The limit of the sequence of partial sums is 5/9.

8.3.45

a. 0.09 = 0.0909 . . . =
∑∞

k=1 9(0.01)
k.

b. The limit of the sequence of partial sums is
1/11.

8.3.46

a. 0.27 = 0.272727 . . . =
∑∞

k=1 27(0.01)
k.

b. The limit of the sequence of partial sums is
3/11.

8.3.47

a. 0.037 = 0.037037037 . . . =
∑∞

k=1 37(0.001)
k.

b. The limit of the sequence of partial sums is
37/999 = 1/27.

8.3.48

a. 0.027 = 0.027027027 . . . =
∑∞

k=1 27(0.001)
k

b. The limit of the sequence of partial sums is
27/999 = 1/37.

8.3.49 0.12 = 0.121212 . . . =

∞∑
k=0

.12 · 10−2k =
.12

1− 1/100
=

12

99
=

4

33
.

8.3.50 1.25 = 1.252525 . . . = 1 +

∞∑
k=0

.25 · 10−2k = 1 +
.25

1− 1/100
= 1 +

25

99
=

124

99
.
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8.3.51 0.456 = 0.456456456 . . . =

∞∑
k=0

.456 · 10−3k =
.456

1− 1/1000
=

456

999
=

152

333
.

8.3.52 1.0039 = 1.00393939 . . . = 1+

∞∑
k=0

.0039·10−2k = 1+
.0039

1− 1/100
= 1+

.39

99
= 1+

39

9900
=

9939

9900
=

3313

3300
.

8.3.53 0.00952 = 0.00952952 . . . =

∞∑
k=0

.00952 · 10−3k =
.00952

1− 1/1000
=

9.52

999
=

952

99900
=

238

24975
.

8.3.54 5.1283 = 5.12838383 . . . = 5.12 +

∞∑
k=0

.0083 · 10−2k = 5.12 +
.0083

1− 1/100
=

512

100
+

.83

99
=

128

25
+

83

9900
=

50771

9900
.

8.3.55 The second part of each term cancels with the first part of the succeeding term, so Sn = 1
1+1 − 1

n+2 =
n

2n+4 , and lim
n→∞

n
2n+4 = 1

2 .

8.3.56 The second part of each term cancels with the first part of the succeeding term, so Sn = 1
1+2 − 1

n+3 =
n

3n+6 , and lim
n→∞

n
3n+9 = 1

3 .

8.3.57
1

(k + 6)(k + 7)
=

1

k + 6
− 1

k + 7
, so the series given is the same as

∑∞
k=1

(
1

k+6 − 1
k+7

)
. In that series,

the second part of each term cancels with the first part of the succeeding term, so Sn = 1
1+6 − 1

n+7 . Thus

lim
n→∞Sn = 1

7 .

8.3.58
1

(3k + 1)(3k + 4)
=

1

3

(
1

3k + 1
− 1

3k + 4

)
, so the series given can be written

1

3

∞∑
k=0

(
1

3k + 1
− 1

3k + 4

)
. In that series, the second part of each term cancels with the first part of the

succeeding term (because 3(k + 1) + 1 = 3k + 4), so we are left with Sn = 1
3

(
1
1 − 1

3n+4

)
= n+1

3n+4 and

lim
n→∞

n+1
3n+4 = 1

3 .

8.3.59 Note that 4
(4k−3)(4k+1) =

1
4k−3 − 1

4k+1 . Thus the given series is the same as

∞∑
k=3

(
1

4k − 3
− 1

4k + 1

)
.

In that series, the second part of each term cancels with the first part of the succeeding term (because

4(k + 1)− 3 = 4k + 1), so we have Sn = 1
9 − 1

4n+1 , and thus lim
n→∞Sn =

1

9
.

8.3.60 Note that 2
(2k−1)(2k+1) =

1
2k−1 − 1

2k+1 . Thus the given series is the same as

∞∑
k=3

(
1

2k − 1
− 1

2k + 1

)
.

In that series, the second part of each term cancels with the first part of the succeeding term (because

2(k + 1)− 1 = 2k + 1), so we have Sn = 1
5 − 1

2n+1 . Thus, lim
n→∞Sn =

1

5
.

8.3.61 ln

(
k + 1

k

)
= ln(k+1)−ln k, so the series given is the same as

∑∞
k=1(ln(k+1)−ln k), in which the first

part of each term cancels with the second part of the next term, so we have Sn = ln(n+1)− ln 1 = ln(n+1),
and thus the series diverges.

8.3.62 Note that Sn = (
√
2−√

1)+ (
√
3−√

2)+ · · ·+(
√
n+ 1−√

n). The second part of each term cancels
with the first part of the previous term. Thus, Sn =

√
n+ 1 − 1. and because lim

n→∞
√
n+ 1 − 1 = ∞, the

series diverges.
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8.3.63
1

(k + p)(k + p+ 1)
=

1

k + p
− 1

k + p+ 1
, so that

∞∑
k=1

1

(k + p)(k + p+ 1)
=

∞∑
k=1

(
1

k + p
− 1

k + p+ 1

)
and this series telescopes to give Sn = 1

p+1 − 1
n+p+1 = n

n(p+1)+(p+1)2 so that lim
n→∞Sn = 1

p+1 .

8.3.64
1

(ak + 1)(ak + a+ 1)
=

1

a

(
1

ak + 1
− 1

ak + a+ 1

)
, so that

∞∑
k=1

1

(ak + 1)(ak + a+ 1)
=

1

a

∞∑
k=1

(
1

ak + 1
− 1

ak + a+ 1

)
. This series telescopes - the second term of each summand cancels with the

first term of the succeeding summage – so that Sn = 1
a

(
1

a+1 − 1
an+a+1

)
, and thus the limit of the sequence

is 1
a(a+1) .

8.3.65 Let an =
1√
n+ 1

− 1√
n+ 3

. Then the second term of an cancels with the first term of an+2, so the

series telescopes and Sn = 1√
2
+ 1√

3
− 1√

n−1+3
− 1√

n+3
and thus the sum of the series is the limit of Sn, which

is
1√
2
+

1√
3
.

8.3.66 The first term of the kth summand is sin( (k+1)π
2k+1 ); the second term of the (k + 1)st summand is

− sin( (k+1)π
2(k+1)−1 ); these two are equal except for sign, so they cancel. Thus Sn = − sin 0 + sin( (n+1)π

2n+1 ) =

sin( (n+1)π
2n+1 ). Because (n+1)π

2n+1 has limit π/2 as n → ∞, and because the sine function is continuous, it follows
that lim

n→∞Sn is sin(π2 ) = 1.

8.3.67 16k2 + 8k − 3 = (4k + 3)(4k − 1), so 1
16k2+8k−3 = 1

(4k+3)(4k−1) = 1
4

(
1

4k−1 − 1
4k+3

)
. Thus the series

given is equal to
1

4

∞∑
k=0

(
1

4k − 1
− 1

4k + 3

)
. This series telescopes, so Sn = 1

4

(
−1− 1

4n+3

)
, so the sum of

the series is equal to lim
n→∞Sn = − 1

4 .

8.3.68 This series clearly telescopes to give Sn = − tan−1(1) + tan−1(n) = tan−1(n) − π
4 . Then because

lim
n→∞ tan−1(n) = π

2 , the sum of the series is equal to lim
n→∞Sn = π

4 .

8.3.69

a. True.
(π
e

)−k

=
( e
π

)k
; because e < π, this is a geometric series with ratio less than 1.

b. True. If
∞∑

k=12

ak = L, then

∞∑
k=0

ak =

(
11∑
k=0

ak

)
+ L.

c. False. For example, let 0 < a < 1 and b > 1.

d. True. Suppose a > 1
2 . Then we want a =

∑∞
k=0 r

k = 1
1−r . Solving for r gives r = 1− 1

a . Because a > 0

we have r < 1; because a > 1
2 we have r > 1− 1

1/2 = −1. Thus |r| < 1 so that
∑∞

k=0 r
k converges, and

it converges to a.

e. True. Suppose a > − 1
2 . Then we want a =

∑∞
k=1 r

k = r
1−r . Solving for r gives r = a

a+1 . For a ≥ 0,

clearly 0 ≤ r < 1 so that
∑∞

k=1 r
k converges to a. For − 1

2 < a < 0, clearly r < 0, but |a| < |a+ 1|, so
that |r| < 1. Thus in this case

∑∞
k=1 r

k also converges to a.

8.3.70 We have

Sn =

(
sin−1 1− sin−1 1

2

)
+

(
sin−1 1

2
− sin−1 1

3

)
+ · · ·+

(
sin−1 1

n
− sin−1 1

n+ 1

)
.
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Note that the first part of each term cancels the second part of the previous term, so the nth partial sum

telescopes to be sin−1 1 − sin−1 1
n+1 . Because sin−1 1 = π

2 and lim
n→∞ sin−1 1

n+ 1
= sin−1 0 = 0, we have

lim
n→∞Sn =

π

2
.

8.3.71 This can be written as
1

3

∞∑
k=1

(
−2

3

)k

. This is a geometric series with ratio r = − 2
3 so the sum is

1
3 · −2/3

1−(−2/3) =
1
3 · (− 2

5

)
= − 2

15 .

8.3.72 This can be written as
1

e

∞∑
k=1

(π
e

)k
. This is a geometric series with r = π

e > 1, so the series diverges.

8.3.73 Note that

ln((k + 1)k−1)

(ln k) ln(k + 1)
=

ln(k + 1)

(ln k) ln(k + 1)
− ln k

(ln k) ln(k + 1)
=

1

ln k
− 1

ln(k + 1)
.

In the partial sum Sn, the first part of each term cancels the second part of the preceding term, so we have

Sn = 1
ln 2 − 1

ln(n+1) . Thus we have lim
n→∞Sn =

1

ln 2
.

8.3.74

a. Because the first part of each term cancels the second part of the previous term, the nth partial sum

telescopes to be Sn = 1
2 − 1

2n+1 . Thus, the sum of the series is lim
n→∞Sn =

1

2
.

b. Note that 1
2k

− 1
2k+1 = 2k+1−2k

2k2k+1 = 1
2k+1 . Thus, the original series can be written as

∞∑
k=1

1

2k+1
which is

geometric with r = 1/2 and a = 1/4, so the sum is 1/4
1−1/2 = 1

2 .

8.3.75

a. Because the first part of each term cancels the second part of the previous term, the nth partial sum

telescopes to be Sn = 4
3 − 4

3n+1 . Thus, the sum of the series is lim
n→∞Sn =

4

3
.

b. Note that 4
3k

− 4
3k+1 = 4·3k+1−4·3k

3k3k+1 = 8
3k+1 . Thus, the original series can be written as

∞∑
k=1

8

3k+1
which

is geometric with r = 1/3 and a = 8/9, so the sum is 8/9
1−1/3 = 8

9 · 3
2 = 4

3 .

8.3.76 It will take Achilles 1/5 hour to cover the first mile. At this time, the tortoise has gone 1/5 mile
more, and it will take Achilles 1/25 hour to reach this new point. At that time, the tortoise has gone another
1/25 of a mile, and it will take Achilles 1/125 hour to reach this point. Adding the times up, we have

1

5
+

1

25
+

1

125
+ · · · = 1/5

1− 1/5
=

1

4
,

so it will take Achilles 1/4 of an hour (15 minutes) to catch the tortoise.

8.3.77 At the nth stage, there are 2n−1 triangles of area An = 1
8An−1 = 1

8n−1A1, so the total area of the

triangles formed at the nth stage is
2n−1

8n−1
A1 =

(
1

4

)n−1

A1. Thus the total area under the parabola is

∞∑
n=1

(
1

4

)n−1

A1 = A1

∞∑
n=1

(
1

4

)n−1

= A1
1

1− 1/4
=

4

3
A1.
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8.3.78

a. Note that 3k

(3k+1−1)(3k−1)
= 1

2 ·
(

1
3k−1

− 1
3k+1−1

)
. Then

∞∑
k=1

3k

(3k+1 − 1)(3k − 1)
=

1

2

∞∑
k=1

(
1

3k − 1
− 1

3k+1 − 1

)
.

This series telescopes to give Sn = 1
2

(
1

3−1 − 1
3n+1−1

)
, so that the sum of the series is lim

n→∞Sn = 1
4 .

b. We mimic the above computations. First, ak

(ak+1−1)(ak−1)
= 1

a−1 ·
(

1
ak−1

− 1
ak+1−1

)
, so we see that

we cannot have a = 1, because the fraction would then be undefined. Continuing, we obtain Sn =
1

a−1

(
1

a−1 − 1
an+1−1

)
. Now, lim

n→∞
1

an+1−1 converges if and only if the denominator grows without bound;

this happens if and only if |a| > 1. Thus, the original series converges for |a| > 1, when it converges to
1

(a−1)2 . Note that this is valid even for a negative.

8.3.79

It appears that the loan is paid off after about
470 months. Let Bn be the loan balance
after n months. Then B0 = 180000 and
Bn = 1.005 · Bn−1 − 1000. Then Bn =
1.005 · Bn−1 − 1000 = 1.005(1.005 · Bn−2 −
1000) − 1000 = (1.005)2 · Bn−2 − 1000(1 +
1.005) = (1.005)2 · (1.005 · Bn−3 − 1000) −
1000(1+ 1.005) = (1.005)3 ·Bn−3 − 1000(1+
1.005 + (1.005)2) = · · · = (1.005)nB0 −
1000(1+1.005+(1.005)2+· · ·+(1.005)n−1) =

(1.005)n ·180000−1000
(

(1.005)n−1
1.005−1

)
. Solving

this equation for Bn = 0 gives n ≈ 461.667
months, so the loan is paid off after 462
months.

100 200 300 400 500
n

50 000

100 000

150 000

y

8.3.80

It appears that the loan is paid off after
about 38 months. Let Bn be the loan bal-
ance after n months. Then B0 = 20000 and
Bn = 1.0075 ·Bn−1−60. Then Bn = 1.0075 ·
Bn−1 − 600 = 1.0075(1.0075 ·Bn−2 − 600)−
600 = (1.0075)2 · Bn−2 − 600(1 + 1.0075) =
(1.0075)2(1.0075 · Bn−3 − 600) − 600(1 +
1.0075) = (1.0075)3 ·Bn−3−600(1+1.0075+
(1.0075)2) = · · · = (1.0075)nB0 − 600(1 +
1.0075 + (1.0075)2 + · · · + (1.0075)n−1) =

(1.0075)n · 20000− 600
(

(1.0075)n−1
1.0075−1

)
.

Solving this equation for Bn = 0 gives n ≈
38.501 months, so the loan is paid off after 39
months.

10 20 30 40
n

5000

10 000

15 000

20 000
y

8.3.81 Fn = (1.015)Fn−1 − 120 = (1.015)((1.015)Fn−2 − 120)− 120 = (1.015)((1.015)((1.015)Fn−3 − 120)−
120)− 120 = · · · = (1.015)n(4000)− 120(1 + (1.015) + (1.015)2 + · · ·+ (1.015)n−1). This is equal to

(1.015)n(4000)− 120

(
(1.015)n − 1

1.015− 1

)
= (−4000)(1.015)n + 8000.

The long term population of the fish is 0.
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8.3.82 Let An be the amount of antibiotic in your blood after n 6-hour periods. Then A0 = 200, An =
0.5An−1 +200. We have An = .5An−1 +200 = .5(.5An−2 +200)+ 200 = .5(.5(.5An−3 +200)+ 200)+ 200 =
· · · = .5n(200) + 200(1 + .5 + .52 + · · ·+ .5n−1). This is equal to

.5n(200) + 200

(
.5n − 1

.5− 1

)
= (.5n)(200− 400) + 400 = (−200)(.5n) + 400.

The limit of this expression as n → ∞ is 400, so the steady-state amount of antibiotic in your blood is 400
mg.

8.3.83 Under the one-child policy, each couple will have one child. Under the one-son policy, we compute the
expected number of children as follows: with probability 1/2 the first child will be a son; with probability
(1/2)2, the first child will be a daughter and the second child will be a son; in general, with probability
(1/2)n, the first n − 1 children will be girls and the nth a boy. Thus the expected number of children

is the sum

∞∑
i=1

i ·
(
1

2

)i

. To evaluate this series, use the following “trick”: Let f(x) =

∞∑
i=1

ixi. Then

f(x) +
∞∑
i=1

xi =

∞∑
i=1

(i+ 1)xi. Now, let

g(x) =
∞∑
i=1

xi+1 = −1− x+

∞∑
i=0

xi = −1− x+
1

1− x

and

g′(x) = f(x) +

∞∑
i=1

xi = f(x)− 1 +

∞∑
i=0

xi = f(x)− 1 +
1

1− x
.

Evaluate g′(x) = −1− 1
(1−x)2 ; then

f(x) = 1− 1

1− x
− 1− 1

(1− x)2
=

−1 + x+ 1

(1− x)2
=

x

(1− x)2

Finally, evaluate at x = 1
2 to get f

(
1
2

)
=
∑∞

i=1 i ·
(
1
2

)i
= 1/2

(1−1/2)2 = 2. There will thus be twice as many

children under the one-son policy as under the one-child policy.

8.3.84 Let Ln be the amount of light transmitted through the window the nth time the beam hits the second
pane. Then the amount of light that was available before the beam went through the pane was Ln

1−p , so
pLn

1−p

is reflected back to the first pane, and p2Ln

1−p is then reflected back to the second pane. Of that, a fraction
equal to 1− p is transmitted through the window. Thus

Ln+1 = (1− p)
p2Ln

1− p
= p2Ln.

The amount of light transmitted through the window the first time is (1− p)2. Thus the total amount is

∞∑
i=0

p2n(1− p)2 =
(1− p)2

1− p2
=

1− p

1 + p
.

8.3.85 Ignoring the initial drop for the moment, the height after the nth bounce is 10pn, so the total
time spent in that bounce is 2 ·√2 · 10pn/g seconds. The total time before the ball comes to rest (now

including the time for the initial drop) is then
√
20/g +

∑∞
i=1 2 ·

√
2 · 10pn/g =

√
20
g + 2

√
20
g

∑∞
i=1(

√
p)n =√

20
g + 2

√
20
g

√
p

1−√
p =

√
20
g

(
1 +

2
√
p

1−√
p

)
=
√

20
g

(
1+

√
p

1−√
p

)
seconds.
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8.3.86

a. The fraction of available wealth spent each month is 1 − p, so the amount spent in the nth month is

W (1− p)n. The total amount spent is then
∑∞

n=1 W (1− p)n = W (1−p)
1−(1−p) = W

(
1−p
p

)
dollars.

b. As p → 1, the total amount spent approaches 0. This makes sense, because in the limit, if everyone
saves all of the money, none will be spent. As p → 0, the total amount spent gets larger and larger.
This also makes sense, because almost all of the available money is being respent each month.

8.3.87

a. In+1 is obtained by In by dividing each edge into three equal parts, removing the middle part, and
adding two parts equal to it. Thus 3 equal parts turn into 4, so Ln+1 = 4

3Ln. This is a geometric
sequence with a ratio greater than 1, so the nth term grows without bound.

b. As the result of part (a), In has 3 ·4n sides of length 1
3n ; each of those sides turns into an added triangle

in In+1 of side length 3−n−1. Thus the added area in In+1 consists of 3·4n equilateral triangles with side

3−n−1. The area of an equilateral triangle with side x is
x2

√
3

4
. Thus An+1 = An +3 · 4n · 3−2n−2

√
3

4 =

An +
√
3

12 · ( 49)n , and A0 =
√
3
4 . Thus An+1 = A0 +

∑n
i=0

√
3

12 · ( 49)i , so that

A∞ = A0 +

√
3

12

∞∑
i=0

(
4

9

)i

=

√
3

4
+

√
3

12

1

1− 4/9
=

√
3

4
(1 +

3

5
) =

2

5

√
3.

8.3.88

a. 5
∞∑
i=1

10−k = 5

∞∑
i=1

(
1

10

)k

= 5

(
1/10

9/10

)
=

5

9
.

b. 54
∞∑
i=1

10−2k = 54

∞∑
i=1

(
1

100

)k

= 54

(
1/100

99/100

)
=

54

99
.

c. Suppose x = 0.n1n2 . . . npn1n2 . . . . Then we can write this decimal as n1n2 . . . np

∑∞
i=1 10

−ip =

n1n2 . . . np

∑∞
i=1

(
1

10p

)i
= n1n2 . . . np

1/10p

(10p−1)/10p =
n1n2...np

999...9 , where here n1n2 . . . np does not mean

multiplication but rather the digits in a decimal number, and where there are p 9’s in the denominator.

d. According to part (c), 0.12345678912345678912 . . . = 123456789
999999999

e. Again using part (c), 0.9̄ = 9
9 = 1.

8.3.89 |S − Sn| =
∣∣∣∣∣
∞∑
i=n

rk

∣∣∣∣∣ =
∣∣∣∣ rn

1− r

∣∣∣∣ because the latter sum is simply a geometric series with first term rn

and ratio r.

8.3.90

a. Solve 0.6n

0.4 < 10−6 for n to get n = 29.

b. Solve 0.15n

0.85 < 10−6 for n to get n = 8.

8.3.91

a. Solve
∣∣∣ (−0.8)n

1.8

∣∣∣ = 0.8n

1.8 < 10−6 for n to get n = 60.

b. Solve 0.2n

0.8 < 10−6 for n to get n = 9.
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8.3.92

a. Solve 0.72n

0.28 < 10−6 for n to get n = 46.

b. Solve
∣∣∣ (−0.25)n

1.25

∣∣∣ = 0.25n

1.25 < 10−6 for n to get n = 10.

8.3.93

a. Solve 1/πn

1−1/π < 10−6 for n to get n = 13.

b. Solve 1/en

1−1/e < 10−6 for n to get n = 15.

8.3.94

a. f(x) =
∑∞

k=0 x
k = 1

1−x ; because f is represented by a geometric series, f(x) exists only for |x| < 1.

Then f(0) = 1, f(0.2) = 1
0.8 = 1.25, f(0.5) = 1

1−0.5 = 2. Neither f(1) nor f(1.5) exists.

b. The domain of f is {x : |x| < 1}.
8.3.95

a. f(x) =
∑∞

k=0(−1)kxk = 1
1+x ; because f is a geometric series, f(x) exists only when the ratio, −x, is

such that |−x| = |x| < 1. Then f(0) = 1, f(0.2) = 1
1.2 = 5

6 , f(0.5) = 1
1+.05 = 2

3 . Neither f(1) nor
f(1.5) exists.

b. The domain of f is {x : |x| < 1}.
8.3.96

a. f(x) =
∑∞

k=0 x
2k = 1

1−x2 . f is a geometric series, so f(x) is defined only when the ratio, x2, is less

than 1, which means |x| < 1. Then f(0) = 1, f(0.2) = 1
1−.04 = 25

24 , f(0.5) =
1

1−0.25 = 4
3 . Neither f(1)

nor f(1.5) exists.

b. The domain of f is {x : |x| < 1}.

8.3.97 f(x) is a geometric series with ratio 1
1+x ; thus f(x) converges when

∣∣∣ 1
1+x

∣∣∣ < 1. For x > −1,

∣∣∣∣ 1

1 + x

∣∣∣∣ =
1

1 + x
and

1

1 + x
< 1 when 1 < 1 + x, x > 0. For x < −1,

∣∣∣∣ 1

1 + x

∣∣∣∣ = 1

−1− x
, and this is less than 1 when

1 < −1 − x, i.e. x < −2. So f(x) converges for x > 0 and for x < −2. When f(x) converges, its value is
1

1− 1
1+x

= 1+x
x , so f(x) = 3 when 1 + x = 3x, x = 1

2 .

8.3.98

a. Clearly for k < n, hk is a leg of a right triangle whose hypotenuse is rk and whose other leg is formed
where the vertical line (in the picture) meets a diameter of the next smaller sphere; thus the other leg
of the triangle is rk+1. The Pythagorean theorem then implies that h2

k = r2k − r2k+1.

b. The height is Hn =
∑n

i=1 hi = rn +
∑n−1

i=1

√
r2i − r2i+1 by part (a).

c. From part (b), because ri = ai−1,

Hn = rn +

n−1∑
i=1

√
r2i − r2i+1 = an−1 +

n−1∑
i=1

√
a2i−2 − a2i

= an−1 +

n−1∑
i=1

ai−1
√

1− a2 = an−1 +
√
1− a2

n−1∑
i=1

ai−1

= an−1 +
√
1− a2

(
1− an−1

1− a

)
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d. lim
n→∞Hn = lim

n→∞ an−1 +
√
1− a2 lim

n→∞
1−an−1

1−a = 0 +
√
1− a2

(
1

1−a

)
=
√

1−a2

(1−a)(1−a) =
√

1+a
1−a .

8.3.99

a. Using Theorem 8.7 in each case except for r = 0 gives

r f(r)

−0.9 0.526

−0.7 0.588

−0.5 0.667

−0.2 0.833

0 1

0.2 1.250

0.5 2

0.7 3.333

0.9 10

b. A plot of f is

�1.0 �0.5 0.5 1.0 r

1

2

3

4

5

6

y

c. For −1 < r < 1 we have f(r) = 1
1−r , so that

lim
r→−1+

f(r) = lim
r→−1+

1

1− r
=

1

2
, lim

r→1−
f(r) = lim

r→1−

1

1− r
= ∞.

8.3.100

a. In each case (except for r = 0 where N(r) is clearly 0), compute |S − Sn| for various values of n gives
the following results:
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r N(r) |S − SN(r)−1| |S − SN(r)|
−0.9 81 1.0× 10−4 9.3× 10−5

−0.7 24 1.1× 10−4 7.9× 10−5

−0.5 12 1.6× 10−4 8.1× 10−5

−0.2 5 2.7× 10−4 5.3× 10−5

0 0 — 0

0.2 5 4.0× 10−4 8.0× 10−5

0.5 14 1.2× 10−4 6.1× 10−5

0.7 29 1.1× 10−4 7.5× 10−5

0.9 109 1.0× 10−4 9.3× 10−5

b. A plot of r versus N(r) for these values of r is

�0.5 0.5 r

20

40

60

80

100

y

c. The rate of convergence is faster for r closer to 0, since N(r) is smaller. The reason for this is that rk

gets smaller faster as k increases when |r| is closer to zero than when it is closer to 1.

8.4 The Divergence and Integral Tests

8.4.1 If the sequence of terms has limit 1, then the corresponding series diverges. It is necessary (but not
sufficient) that the sequence of terms has limit 0 in order for the corresponding series to be convergent.

8.4.2 No. For example, the harmonic serkes
∑∞

k=1
1
k diverges although 1

k → 0 as k → ∞.

8.4.3 Yes. Either the series and the integral both converge, or both diverge, if the terms are positive and
decreasing.

8.4.4 It converges for p > 1, and diverges for all other values of p.

8.4.5 For the same values of p as in the previous problem – it converges for p > 1, and diverges for all other
values of p.

8.4.6 Let Sn be the partial sums. Then Sn+1 − Sn = an+1 > 0 because an+1 > 0. Thus the sequence of
partial sums is increasing.

8.4.7 The remainder of an infinite series is the error in approximating a convergent infinite series by a finite
number of terms.
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8.4.8 Yes. Suppose
∑

ak converges to S, and let the sequence of partial sums be {Sn}. Then for any ε > 0
there is some N such that for any n > N , |S − Sn| < ε. But |S − Sn| is simply the remainder Rn when the
series is approximated to n terms. Thus Rn → 0 as n → ∞.

8.4.9 ak = k
2k+1 and lim

k→∞
ak = 1

2 , so the series diverges.

8.4.10 ak = k
k2+1 and lim

k→∞
ak = 0, so the divergence test is inconclusive.

8.4.11 ak = k
ln k and lim

k→∞
ak = ∞, so the series diverges.

8.4.12 ak = k2

2k
and lim

k→∞
ak = 0, so the divergence test is inconclusive.

8.4.13 ak = 1
1000+k and lim

k→∞
ak = 0, so the divergence test is inconclusive.

8.4.14 ak = k3

k3+1 and lim
k→∞

ak = 1, so the series diverges.

8.4.15 ak =
√
k

ln10 k
and lim

k→∞
ak = ∞, so the series diverges.

8.4.16 ak =
√
k2+1
k and lim

k→∞
ak = 1, so the series diverges.

8.4.17 ak = k1/k. In order to compute limk→∞ ak, we let yk = ln ak = ln k
k . By Theorem 9.6, (or by

L’Hôpital’s rule), limk→∞ yk = 0, so limk→∞ ak = e0 = 1. The given series thus diverges.

8.4.18 By Theorem 9.6 k3 	 k!, so limk→∞ k3

k! = 0. The divergence test is inconclusive.

8.4.19 Clearly 1
ex = e−x is continuous, positive, and decreasing for x ≥ 2 (in fact, for all x), so the integral

test applies. Because∫ ∞

2

e−x dx = lim
c→∞

∫ c

2

e−x dx = lim
c→∞(−e−x)

∣∣∣∣c
2

= lim
c→∞(e−2 − e−c) = e−2,

the Integral Test tells us that the original series converges as well.

8.4.20 Let f(x) = x√
x2+4

. f(x) is continuous for x ≥ 1. Note that f ′(x) = 4
(
√
x2+4)3

> 0. Thus f

is increasing, and the conditions of the Integral Test aren’t satisfied. The given series diverges by the
Divergence Test.

8.4.21 Let f(x) = x · e−2x2

. This function is continuous for x ≥ 1. Its derivative is e−2x2

(1 − 4x2) < 0 for

x ≥ 1, so f(x) is decreasing. Because
∫∞
1

x · e−2x2

dx = 1
4e2 , the series converges.

8.4.22 Let f(x) = 1
3
√
x+10

. f(x) is obviously continuous and decreasing for x ≥ 1. Because
∫∞
1

1
3
√
x+10

dx =

∞, the series diverges.

8.4.23 Let f(x) = 1√
x+8

. f(x) is obviously continuous and decreasing for x ≥ 1. Because
∫∞
1

1√
x+8

dx = ∞,

the series diverges.

8.4.24 Let f(x) = 1
x(ln x)2 . f(x) is continuous and decreasing for x ≥ 2. Because

∫∞
2

f(x) dx = 1
ln 2 the

series converges.

8.4.25 Let f(x) = x
ex . f(x) is clearly continuous for x > 1, and its derivative, f ′(x) = ex−xex

e2x = (1− x) ex

e2x ,

is negative for x > 1 so that f(x) is decreasing. Because
∫∞
1

f(x) dx = 2e−1, the series converges.

8.4.26 Let f(x) = 1
x·ln x·ln ln x . f(x) is continuous and decreasing for x > 3, and

∫∞
3

1
x·ln x·ln ln x dx = ∞. The

given series therefore diverges.
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8.4.27 The integral test does not apply, because the sequence of terms is not decreasing.

8.4.28 f(x) = x
(x2+1)3 is decreasing and continuous, and

∫∞
1

x
(x2+1)3 dx = 1

16 . Thus, the given series con-
verges.

8.4.29 This is a p-series with p = 10, so this series converges.

8.4.30
∑∞

k=2
ke

kπ =
∑∞

k=2
1

kπ−e . Note that π − e ≈ 3.1416− 2.71828 < 1, so this series diverges.

8.4.31
∑∞

k=3
1

(k−2)4 =
∑∞

k=1
1
k4 , which is a p-series with p = 4, thus convergent.

8.4.32
∑∞

k=1 2k
−3/2 = 2

∑∞
k=1

1
k3/2 is a p-series with p = 3/2, thus convergent.

8.4.33
∑∞

k=1
1
3√
k
=
∑∞

k=1
1

k1/3 is a p-series with p = 1/3, thus divergent.

8.4.34
∑∞

k=1
1

3√
27k2

= 1
3

∑∞
k=1

1
k2/3 is a p-series with p = 2/3, thus divergent.

8.4.35

a. The remainder Rn is bounded by
∫∞
n

1
x6 dx = 1

5n5 .

b. We solve 1
5n5 < 10−3 to get n = 3.

c. Ln = Sn +
∫∞
n+1

1
x6 dx = Sn + 1

5(n+1)5 , and Un = Sn +
∫∞
n

1
x6 dx = Sn + 1

5n5 .

d. S10 ≈ 1.017341512, so L10 ≈ 1.017341512 + 1
5·115 ≈ 1.017342754, and U10 ≈ 1.017341512 + 1

5·105 ≈
1.017343512.

8.4.36

a. The remainder Rn is bounded by
∫∞
n

1
x8 dx = 1

7n7 .

b. We solve 1
7n7 < 10−3 to obtain n = 3.

c. Ln = Sn +
∫∞
n+1

1
x8 dx = Sn + 1

7(n+1)7 , and Un = Sn +
∫∞
n

1
x8 dx = Sn + 1

7n7 .

d. S10 ≈ 1.004077346, so L10 ≈ 1.004077346 + 1
7·117 ≈ 1.004077353, and U10 ≈ 1.004077346 + 1

7·107 ≈
1.004077360.

8.4.37

a. The remainder Rn is bounded by
∫∞
n

1
3x dx = 1

3n ln 3 .

b. We solve 1
3n ln 3 < 10−3 to obtain n = 7.

c. Ln = Sn +
∫∞
n+1

1
3x dx = Sn + 1

3n+1 ln 3 , and Un = Sn +
∫∞
n

1
3x dx = Sn + 1

3n ln 3 .

d. S10 ≈ 0.4999915325, so L10 ≈ 0.4999915325 + 1
311 ln 3 ≈ 0.4999966708, and U10 ≈ 0.4999915325 +

1
310 ln 3 ≈ 0.5000069475.

8.4.38

a. The remainder Rn is bounded by
∫∞
n

1
x ln2 x

dx = 1
lnn .

b. We solve 1
lnn < 10−3 to get n = e1000 ≈ 10434.

c. Ln = Sn +
∫∞
n+1

1
x ln2 x

dx = Sn + 1
ln(n+1) , and Un = Sn +

∫∞
n

1
x ln2 x

dx = Sn + 1
lnn .

d. S11 =
∑11

k=2
1

k ln2 k
≈ 1.700396385, so L11 ≈ 1.700396385 + 1

ln 12 ≈ 2.102825989, and

U11 ≈ 1.700396385 + 1
ln 11 ≈ 2.117428776.
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8.4.39

a. The remainder Rn is bounded by
∫∞
n

1
x3/2 dx = 2n−1/2.

b. We solve 2n−1/2 < 10−3 to get n > 4× 106, so let n = 4× 106 + 1.

c. Ln = Sn +
∫∞
n+1

1
x3/2 dx = Sn + 2(n+ 1)−1/2, and Un = Sn +

∫∞
n

1
x3/2 dx = Sn + 2n−1/2.

d. S10 =
∑10

k=1
1

k3/2 ≈ 1.995336493, so L10 ≈ 1.995336493 + 2 · 11−1/2 ≈ 2.598359182, and U10 ≈
1.995336493 + 2 · 10−1/2 ≈ 2.627792025.

8.4.40

a. The remainder Rn is bounded by
∫∞
n

e−x dx = e−n.

b. We solve e−n < 10−3 to get n = 7.

c. Ln = Sn +
∫∞
n+1

e−x dx = Sn + e−(n+1), and Un = Sn +
∫∞
n

e−x dx = Sn + e−n.

d. S10 =
∑10

k=1 e
−k ≈ 0.5819502852, so L10 ≈ 0.5819502852 + e−11 ≈ 0.5819669869, and U10 ≈

0.5819502852 + e−10 ≈ 0.5819956851.

8.4.41

a. The remainder Rn is bounded by
∫∞
n

1
x3 dx = 1

2n2 .

b. We solve 1
2n2 < 10−3 to get n = 23.

c. Ln = Sn +
∫∞
n+1

1
x3 dx = Sn + 1

2(n+1)2 , and Un = Sn +
∫∞
n

1
x3 dx = Sn + 1

2n2 .

d. S10 ≈ 1.197531986, so L10 ≈ 1.197531986 + 1
2·112 ≈ 1.201664217, and U10 ≈ 1.197531986 + 1

2·102 ≈
1.202531986.

8.4.42

a. The remainder Rn is bounded by
∫∞
n

xe−x2

dx = 1
2en2 .

b. We solve 1
2en2 < 10−3 to get n = 3.

c. Ln = Sn +
∫∞
n+1

xe−x2

dx = Sn + 1
2e(n+1)2

, and Un = Sn +
∫∞
n

xe−x2

dx = Sn + 1
2en2 .

d. S10 ≈ 0.4048813986, so L10 ≈ 0.4048813986+ 1
2e112

≈ 0.4048813986, and U10 ≈ 0.4048813986+ 1
2e102

≈
0.4048813986.

8.4.43 This is a geometric series with a = 1
3 and r = 1

12 , so
∑∞

k=1
4

12k
= 1/3

1−1/12 = 1/3
11/12 = 4

11 .

8.4.44 This is a geometric series with a = 3/e2 and r = 1/e, so
∑∞

k=2 3e
−k = 3/e2

1−(1/e) =
3/e2

(e−1)/e = 3
e(e−1) .

8.4.45

∞∑
k=0

(
3

(
2

5

)k

− 2

(
5

7

)k
)

= 3

∞∑
k=0

(
2

5

)k

− 2

∞∑
k=0

(
5

7

)k

= 3

(
1

3/5

)
− 2

(
1

2/7

)
= 5− 7 = −2.

8.4.46
∞∑
k=1

(
2

(
3

5

)k

+ 3

(
4

9

)k
)

= 2

∞∑
k=1

(
3

5

)k

+ 3

∞∑
k=1

(
4

9

)k

= 2

(
3/5

2/5

)
+ 3

(
4/9

5/9

)
= 3 +

12

5
=

27

5
.

8.4.47
∞∑
k=1

(
1

3

(
5

6

)k

+
3

5

(
7

9

)k
)

=
1

3

∞∑
k=1

(
5

6

)k

+
3

5

∞∑
k=1

(
7

9

)k

=
1

3

(
5/6

1/6

)
+

3

5

(
7/9

2/9

)
=

5

3
+

21

10
=

113

30
.
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8.4.48

∞∑
k=0

(
1

2
(0.2)k +

3

2
(0.8)k

)
=

1

2

∞∑
k=0

(0.2)k +
3

2

∞∑
k=0

(0.8)k =
1

2

(
1

0.8

)
+

3

2

(
1

0.2

)
=

5

8
+

15

2
=

65

8
.

8.4.49

∞∑
k=1

((
1

6

)k

+

(
1

3

)k−1
)

=

∞∑
k=1

(
1

6

)k

+

∞∑
k=1

(
1

3

)k−1

=
1/6

5/6
+

1

2/3
=

17

10
.

8.4.50

∞∑
k=0

2− 3k

6k
=

∞∑
k=0

(
2

6k
− 3k

6k

)
= 2

∞∑
k=0

(
1

6

)k

−
∞∑
k=0

(
1

2

)k

= 2

(
1

5/6

)
− 1

1/2
=

2

5
.

8.4.51

a. True. The two series differ by a finite amount (
∑9

k=1 ak), so if one converges, so does the other.

b. True. The same argument applies as in part (a).

c. False. If
∑

ak converges, then ak → 0 as k → ∞, so that ak + 0.0001 → 0.0001 as k → ∞, so that∑
(ak + 0.0001) cannot converge.

d. False. Suppose p = −1.0001. Then
∑

pk diverges but p + 0.001 = −0.9991 so that
∑

(p + .0001)k

converges.

e. False. Let p = 1.0005; then −p+ .001 = −(p− .001) = −.9995, so that
∑

k−p converges (p-series) but∑
k−p+.001 diverges.

f. False. Let ak = 1
k , the harmonic series.

8.4.52 Diverges by the Divergence Test because lim
k→∞

ak = lim
k→∞

√
k + 1

k
= 1 �= 0.

8.4.53 Converges by the Integral Test because

∫ ∞

1

1

(3x+ 1)(3x+ 4)
dx =

∫ ∞

1

1

3(3x+ 1)
− 1

3(3x+ 4)
dx =

lim
b→∞

∫ b

1

(
1

3(3x+ 1)
− 1

3(3x+ 4)

)
dx = lim

b→∞
1

9

(
ln

(
3x+ 1

3x+ 4

))∣∣∣∣b
1

= lim
b→∞

= −1

9
· ln(4/7) ≈ 0.06217 < ∞.

Alternatively, this is a telescoping series with nth partial sum equal to Sn = 1
3

(
1
4 − 1

3n+4

)
which con-

verges to 1
12 .

8.4.54 Converges by the Integral Test because

∫ ∞

0

10

x2 + 9
dx =

10

3
lim
b→∞

(
tan−1(x/3)

∣∣b
0

)
=

10

3

π

2
≈ 5.236 <

∞.

8.4.55 Diverges by the Divergence Test because lim
k→∞

ak = lim
k→∞

k√
k2 + 1

= 1 �= 0.

8.4.56 Converges because it is the sum of two geometric series. In fact,
∑∞

k=1
2k+3k

4k
=
∑∞

k=1(2/4)
k +∑∞

k=1(3/4)
k = 1/2

1−(1/2) +
3/4

1−(3/4) = 1 + 3 = 4.

8.4.57 Converges by the Integral Test because

∫ ∞

2

4

x ln2 x
dx = lim

b→∞

(
−4

lnx

∣∣∣∣b
2

)
=

4

ln 2
< ∞.

8.4.58

a. In order for the series to converge, the integral
∫∞
2

1
x(ln x)p dx must exist. But∫

1

x(lnx)p
dx =

1

1− p
(lnx)1−p,

so in order for this improper integral to exist, we must have that 1− p < 0 or p > 1.
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b. The series converges faster for p = 3 because the terms of the series get smaller faster.

8.4.59

a. Note that
∫

1
x ln x(ln ln x)p dx = 1

1−p (ln lnx)
1−p, and thus the improper integral with bounds n and ∞

exists only if p > 1 because ln lnx > 0 for x > e. So this series converges for p > 1.

b. For large values of z, clearly
√
z > ln z, so that z > (ln z)2. Write z = lnx; then for large x,

lnx > (ln lnx)2; multiplying both sides by x lnx we have that x ln2 x > x lnx(ln lnx)2, so that the first
series converges faster because the terms get smaller faster.

8.4.60

a.
∑

1
k2.5 .

b.
∑

1
k0.75 .

c.
∑

1
k3/2 .

8.4.61 Let Sn =
∑n

k=1
1√
k
. Then this looks like a left Riemann sum for the function y = 1√

x
on [1, n + 1].

Because each rectangle lies above the curve itself, we see that Sn is bounded below by the integral of 1√
x
on

[1, n+ 1]. Now, ∫ n+1

1

1√
x
dx =

∫ n+1

1

x−1/2 dx = 2
√
x

∣∣∣∣n+1

1

= 2
√
n+ 1− 2.

This integral diverges as n → ∞, so the series does as well by the bound above.

8.4.62
∑∞

k=1(ak ± bk) = limn→∞
∑n

k=1(ak ± bk) = limn→∞ (
∑n

k=1 ak ±∑n
k=1 bk) = limn→∞

∑n
k=1 ak ±

limn→∞
∑n

k=1 bk = A±B.

8.4.63
∑∞

k=1 cak = lim
n→∞

∑n
k=1 cak = lim

n→∞ c
∑n

k=1 ak = c lim
n→∞

∑n
k=1 ak, so that one sum diverges if and

only if the other one does.

8.4.64
∞∑
k=2

1

k ln k
diverges by the Integral Test, because

∫∞
2

1
x ln x = limb→∞

(
ln lnx|b2

)
= ∞.

8.4.65 To approximate the sequence for ζ(m), note that the remainder Rn after n terms is bounded by∫ ∞

n

1

xm
dx =

1

m− 1
n1−m.

For m = 3, if we wish to approximate the value to within 10−3, we must solve
1

2
n−2 < 10−3, so that n = 23,

and

23∑
k=1

1

k3
≈ 1.201151926. The true value is ≈ 1.202056903.

For m = 5, if we wish to approximate the value to within 10−3, we must solve
1

4
n−4 < 10−3, so that n = 4,

and
4∑

k=1

1

k5
≈ 1.036341789. The true value is ≈ 1.036927755.
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8.4.66

a. Starting with cot2 x <
1

x2
< 1 + cot2 x, substitute kθ for x:

cot2(kθ) <
1

k2θ2
< 1 + cot2(kθ),

n∑
k=1

cot2(kθ) <

n∑
k=1

1

k2θ2
<

n∑
k=1

(1 + cot2(kθ)),

n∑
k=1

cot2(kθ) <
1

θ2

n∑
k=1

1

k2
< n+

n∑
k=1

cot2(kθ).

Note that the identity is valid because we are only summing for k up to n, so that kθ < π
2 .

b. Substitute
n(2n− 1)

3
for the sum, using the identity:

n(2n− 1)

3
<

1

θ2

n∑
k=1

1

k2
< n+

n(2n− 1)

3
,

θ2
n(2n− 1)

3
<

n∑
k=1

1

k2
< θ2

n(2n+ 2)

3
,

n(2n− 1)π2

3(2n+ 1)2
<

n∑
k=1

1

k2
<

n(2n+ 2)π2

3(2n+ 1)2
.

c. By the Squeeze Theorem, if the expressions on either end have equal limits as n → ∞, the expression
in the middle does as well, and its limit is the same. The expression on the left is

π2 2n2 − n

12n2 + 12n+ 3
= π2 2− n−1

12 + 12n−1 + 3n−2
,

which has a limit of
π2

6
as n → ∞. The expression on the right is

π2 2n2 + 2n

12n2 + 12n+ 3
= π2 2 + 2n−1

12 + 12n−1 + 3n−3
,

which has the same limit. Thus lim
n→∞

n∑
k=1

1

k2
=

∞∑
k=1

1

k2
=

π2

6
.

8.4.67

∞∑
k=1

1

k2
=

∞∑
k=1

1

(2k)2
+

∞∑
k=1

1

(2k − 1)2
, splitting the series into even and odd terms. But

∑∞
k=1

1
(2k)2 =

1
4

∑∞
k=1

1
k2 . Thus

π2

6 = 1
4
π2

6 +
∑∞

k=1
1

(2k−1)2 , so that the sum in question is 3π2

24 = π2

8 .

8.4.68

a. {Fn} is a decreasing sequence because each term in Fn is smaller than the corresponding term in Fn−1

and thus the sum of terms in Fn is smaller than the sum of terms in Fn−1.
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b. 0 5 10 15 20
n

0.2

0.4

0.6

0.8

1.0
y

c. It appears that lim
n→∞Fn = 0.

8.4.69

a. x1 =
∑2

k=2
1
k = 1

2 , x2 =
∑4

k=3
1
k = 1

3 + 1
4 = 7

12 , x3 =
∑6

k=4
1
k = 1

4 + 1
5 + 1

6 = 37
60 .

b. xn has n terms. Each term is bounded below by 1
2n and bounded above by 1

n+1 . Thus xn ≥ n · 1
2n = 1

2 ,

and xn ≤ n · 1
n+1 < n · 1

n = 1.

c. The right Riemann sum for
∫ 2

1
dx
x using n subintervals has n rectangles of width 1

n ; the right edges of

those rectangles are at 1+ i
n = n+i

n for i = 1, 2, . . . , n. The height of such a rectangle is the value of 1
x

at the right endpoint, which is n
n+i . Thus the area of the rectangle is 1

n · n
n+i =

1
n+i . Adding up over

all the rectangles gives xn.

d. The limit lim
n→∞xn is the limit of the right Riemann sum as the width of the rectangles approaches zero.

This is precisely
∫ 2

1
dx
x = lnx

∣∣∣∣2
1

= ln 2.

8.4.70

a.

The first diagram is a left Riemann sum for
f(x) = 1

x on the interval [1, 11] (we assume
n = 10 for purposes of drawing a graph). The

area under the curve is
∫ n+1

1
1
x dx = ln(n+1),

and the sum of the areas of the rectangles is
obviously 1 + 1

2 + 1
3 + · · ·+ 1

n . Thus

ln(n+ 1) < 1 +
1

2
+

1

3
+ · · ·+ 1

n
.

The second diagram is a right Riemann sum
for the same function on the same interval.
Considering only [1, n], we see that, compar-
ing the area under the curve and the sum of
the areas of the rectangles, that

1

2
+

1

3
+ · · ·+ 1

n
< lnn.

Adding 1 to both sides gives the desired in-
equality.

0 2 4 6 8 10
x

0.2

0.4

0.6

0.8

1.0
y

0 2 4 6 8 10
x

0.2

0.4

0.6

0.8

1.0
y

b. According to part (a), ln(n+ 1) < Sn for n = 1, 2, 3, . . . ,, so that En = Sn − ln(n+ 1) > 0.

c. Using the second figure above and assuming n = 9, the final rectangle corresponds to 1
n+1 , and the

area under the curve between n+ 1 and n+ 2 is clearly ln(n+ 2)− ln(n+ 1).
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d. En+1 −En = Sn+1 − ln(n+ 2)− (Sn − ln(n+ 1)) = 1
n+1 − (ln(n+ 2)− ln(n+ 1)). But this is positive

because of the bound established in part (c).

e. Using part (a), En = Sn − ln(n+ 1) < 1 + lnn− ln(n+ 1) < 1.

f. En is a monotone (increasing) sequence that is bounded, so it has a limit.

g. The first ten values (E1 through E10) are

.3068528194, .401387711, .447038972, .473895421, .491573864,

.504089851, .513415601, .520632566, .526383161, .531072981.

E1000 ≈ 0.576716082.

h. For Sn > 10 we need 10−0.5772 = 9.4228 > ln(n+1). Solving for n gives n ≈ 12366.16, so n = 12367.

8.4.71

a. Note that the center of gravity of any stack of dominoes is the average of the locations of their centers.
Define the midpoint of the zeroth (top) domino to be x = 0, and stack additional dominoes down and
to its right (to increasingly positive x-coordinates). Let m(n) be the x-coordinate of the midpoint of
the nth domino. Then in order for the stack not to fall over, the left edge of the nth domino must
be placed directly under the center of gravity of dominos 0 through n − 1, which is 1

n

∑n−1
i=0 m(i),

so that m(n) = 1 + 1
n

∑n−1
i=0 m(i). We claim that in fact m(n) =

∑n
k=1

1
k . Use induction. This is

certainly true for n = 1. Note first that m(0) = 0, so we can start the sum at 1 rather than at 0.

Now, m(n) = 1 + 1
n

∑n−1
i=1 m(i) = 1 + 1

n

∑n−1
i=1

∑i
j=1

1
j . Now, 1 appears n − 1 times in the double

sum, 2 appears n − 2 times, and so forth, so we can rewrite this sum as m(n) = 1 + 1
n

∑n−1
i=1

n−i
i =

1 + 1
n

∑n−1
i=1

(
n
i − 1

)
= 1 + 1

n

(
n
∑n−1

i=1
1
i − (n− 1)

)
=
∑n−1

i=1
1
i + 1− n−1

n =
∑n

i=1
1
i , and we are done

by induction (noting that the statement is clearly true for n = 0, n = 1). Thus the maximum overhang
is
∑n

k=2
1
k .

b. For an infinite number of dominos, because the overhang is the harmonic series, the distance is poten-
tially infinite.

8.4.72

a. The circumference of the kth layer is 2π · 1
k , so its area is 2π · 1

k and thus the total vertical surface area∑∞
k=1 2π · 1

k = 2π
∑∞

k=1
1
k = ∞. The horizontal surface area, however, is π, since looking at the cake

from above, the horizontal surface covers the circle of radius 1, which has area π · 12 = π.

b. The volume of a cylinder of radius r and height h is πr2h, so the volume of the kth layer is π · 1
k2 ·1 = π

k2 .
Thus the volume of the cake is

∞∑
k=1

π

k2
= π

∞∑
k=1

1

k2
=

π3

6
≈ 5.168.

c. This cake has infinite surface area, yet it has finite volume!

8.4.73

a. Dividing both sides of the recurrence equation by fn gives fn+1

fn
= 1 + fn−1

fn
. Let the limit of the ratio

of successive terms be L. Taking the limit of the previous equation gives L = 1+ 1
L . Thus L

2 = L+1,

so L2 − L− 1 = 0. The quadratic formula gives L =
1±

√
1−4·(−1)

2 , but we know that all the terms are

positive, so we must have L = 1+
√
5

2 = φ ≈ 1.618.

b. Write the recurrence in the form fn−1 = fn+1 − fn and divide both sides by fn+1. Then we have
fn−1

fn+1
= 1− fn

fn+1
. Taking the limit gives 1− 1

φ on the right-hand side.
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c. Consider the harmonic series with the given groupings, and compare it with the sum of fk−1

fk+1
as shown.

The first three terms match exactly. The sum of the next two are 1
4 + 1

5 > 1
5 + 1

5 = 2
5 . The sum of the

next three are 1
6 + 1

7 + 1
8 > 1

8 + 1
8 + 1

8 = 3
8 . The sum of the next five are 1

9 + · · · + 1
13 > 5 · 1

13 = 5
13 .

Thus the harmonic series is bounded below by the series
∑∞

k=1
fk−1

fk+1
.

d. The result above implies that the harmonic series diverges, because the series
∑∞

k=1
fk−1

fk+1
diverges,

since its general term has limit 1− 1
φ �= 0.

8.5 The Ratio, Root, and Comparison Tests

8.5.1 Given a series
∑

ak of positive terms, compute limk→∞
ak+1

ak
and call it r. If 0 ≤ r < 1, the given

series converges. If r > 1 (including r = ∞), the given series diverges. If r = 1, the test is inconclusive.

8.5.2 Given a series
∑

ak of positive terms, compute limk→∞ k
√
ak and call it r. If 0 ≤ r < 1, the given

series converges. If r > 1 (including r = ∞), the given series diverges. If r = 1, the test is inconclusive.

8.5.3 Given a series of positive terms
∑

ak that you suspect converges, find a series
∑

bk that you know
converges, for which limk→∞ ak

bk
= L where L ≥ 0 is a finite number. If you are successful, you will have

shown that the series
∑

ak converges.
Given a series of positive terms

∑
ak that you suspect diverges, find a series

∑
bk that you know diverges,

for which limk→∞ ak

bk
= L where L > 0 (including the case L = ∞). If you are successful, you will have

shown that
∑

ak diverges.

8.5.4 The Divergence Test.

8.5.5 The Ratio Test.

8.5.6 The Comparison Test or the Limit Comparison Test.

8.5.7 The difference between successive partial sums is a term in the sequence. Because the terms are
positive, differences between successive partial sums are as well, so the sequence of partial sums is increasing.

8.5.8 No. They all determine convergence or divergence by approximating or bounding the series by some
other series known to converge or diverge; thus, the actual value of the series cannot be determined.

8.5.9 The ratio between successive terms is ak+1

ak
= 1

(k+1)! · (k)!
1 = 1

k+1 , which goes to zero as k → ∞, so the

given series converges by the Ratio Test.

8.5.10 The ratio between successive terms is ak+1

ak
= 2k+1

(k+1)! · (k)!
2k

= 2
k+1 ; the limit of this ratio is zero, so the

given series converges by the Ratio Test.

8.5.11 The ratio between successive terms is ak+1

ak
= (k+1)2

4(k+1)
· 4k

(k)2 = 1
4

(
k+1
k

)2
. The limit is 1/4 as k → ∞,

so the given series converges by the Ratio Test.

8.5.12 The ratio between successive terms is

ak+1

ak
=

(k + 1)(k+1)

2(k+1)
· 2

k

kk
=

k + 1

2

(
k + 1

k

)k

.

Note that limk→∞
(
k+1
k

)k
= e, but limk→∞ k+1

2 = ∞, so the given series diverges by the Ratio Test.

8.5.13 The ratio between successive terms is ak+1

ak
= (k+1)e−(k+1)

(k)e−(k) = k+1
(k)e . The limit of this ratio as k → ∞

is 1/e < 1, so the given series converges by the Ratio Test.
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8.5.14 The ratio between successive terms is ak+1

ak
= (k+1)k+1

(k+1)! · k!
kk =

(
k+1
k

)k
. This has limit e as k → ∞, so

the limit of the ratio of successive terms is e > 1, so the given series diverges by the Ratio Test.

8.5.15 The ratio between successive terms is 2k+1

(k+1)99 · (k)99

2k
= 2

(
k

k+1

)99
; the limit as k → ∞ is 2, so the

given series diverges by the Ratio Test.

8.5.16 The ratio between successive terms is (k+1)6

(k+1)! · (k)!
(k)6 = 1

k+1

(
k+1
k

)6
; the limit as k → ∞ is zero, so the

given series converges by the Ratio Test.

8.5.17 The ratio between successive terms is ((k+1)!)2

(2(k+1))! · (2k)!
((k)!)2 = (k+1)2

(2k+2)(2k+1) ; the limit as k → ∞ is 1/4, so

the given series converges by the Ratio Test.

8.5.18 Note that this series is
∑∞

k=1
2k

k4 . The ratio between successive terms is 2k+1k4

2k(k+1)4
= 2
(

k
k+1

)4
→ 2 as

k → ∞. So the given series diverges by the ratio test.

8.5.19 The kth root of the kth term is 10k3+3
9k3+k+1 . The limit of this as k → ∞ is 10

9 > 1, so the given series
diverges by the Root Test.

8.5.20 The kth root of the kth term is 2k
k+1 . The limit of this as k → ∞ is 2 > 1, so the given series diverges

by the Root Test.

8.5.21 The kth root of the kth term is k2/k

2 . The limit of this as k → ∞ is 1
2 < 1, so the given series

converges by the Root Test.

8.5.22 The kth root of the kth term is
(
1 + 3

k

)k
. The limit of this as k → ∞ is = e3 > 1, so the given series

diverges by the Root Test.

8.5.23 The kth root of the kth term is
(

k
k+1

)2k
. The limit of this as k → ∞ is e−2 < 1, so the given series

converges by the Root Test.

8.5.24 The kth root of the kth term is 1
ln(k+1) . The limit of this as k → ∞ is 0, so the given series converges

by the Root Test.

8.5.25 The kth root of the kth term is
(

1
kk

)
. The limit of this as k → ∞ is 0, so the given series converges

by the Root Test.

8.5.26 The kth root of the kth term is k1/k

e . The limit of this as k → ∞ is 1
e < 1, so the given series

converges by the Root Test.

8.5.27 1
k2+4 < 1

k2 , and
∑∞

k=1
1
k2 converges, so

∑∞
k=1

1
k2+4 converges as well, by the Comparison Test.

8.5.28 Use the Limit Comparison Test with
{

1
k2

}
. The ratio of the terms of the two series is k4+k3−k2

k4+4k2−3
which has limit 1 as k → ∞. Because the comparison series converges, the given series does as well.

8.5.29 Use the Limit Comparison Test with
{

1
k

}
. The ratio of the terms of the two series is k3−k

k3+4 which has
limit 1 as k → ∞. Because the comparison series diverges, the given series does as well.

8.5.30 Use the Limit Comparison Test with
{

1
k

}
. The ratio of the terms of the two series is 0.0001k

k+4 which
has limit 0.0001 as k → ∞. Because the comparison series diverges, the given series does as well.

8.5.31 For all k, 1
k3/2+1

< 1
k3/2 . The series whose terms are 1

k3/2 is a p-series which converges, so the given
series converges as well by the Comparison Test.

8.5.32 Use the Limit Comparison Test with {1/k}. The ratio of the terms of the two series is k
√

k
k3+1 =√

k3

k3+1 , which has limit 1 as k → ∞. Because the comparison series diverges, the given series does as well.
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8.5.33 sin(1/k) > 0 for k ≥ 1, so we can apply the Comparison Test with 1/k2. sin(1/k) < 1, so sin(1/k)
k2 < 1

k2 .
Because the comparison series converges, the given series converges as well.

8.5.34 Use the Limit Comparison Test with {1/3k}. The ratio of the terms of the two series is 3k

3k−2k
=

1

1−
(

2k

3k

) , which has limit 1 as k → ∞. Because the comparison series converges, the given series does as well.

8.5.35 Use the Limit Comparison Test with {1/k}. The ratio of the terms of the two series is k
2k−√

k
=

1
2−1/

√
k
, which has limit 1/2 as k → ∞. Because the comparison series diverges, the given series does as

well.

8.5.36 1
k
√
k+2

< 1
k
√
k
= 1

k3/2 . Because the series whose terms are 1
k3/2 is a p−series with p > 1, it converges.

Because the comparison series converges, the given series converges as well.

8.5.37 Use the Limit Comparison Test with k2/3

k3/2 . The ratio of corresponding terms of the two series is
3√k2+1√
k3+1

· k3/2

k2/3 =
3√k2+1

3√
k2

·
√
k3√

k3+1
, which has limit 1 as k → ∞. The comparison series is the series whose terms

are k2/3−3/2 = k−5/6, which is a p-series with p < 1, so it, and the given series, both diverge.

8.5.38 For all k, 1
(k ln k)2 < 1

k2 . Because the series whose terms are 1
k2 converges, the given series converges

as well.

8.5.39

a. False. For example, let {ak} be all zeros, and {bk} be all 1’s.

b. True. This is a result of the Comparison Test.

c. True. Both of these statements follow from the Comparison Test.

d. True. The limit of the ratio is always 1 in the case, so the test is inconclusive.

8.5.40 Use the Divergence Test: lim
k→∞

ak = lim
k→∞

(
1− 1

k

)k
= 1

e �= 0, so the given series diverges.

8.5.41 Use the Divergence Test: lim
k→∞

ak = lim
k→∞

(
1 + 2

k

)k
= e2 �= 0, so the given series diverges.

8.5.42 Use the Root Test: The kth root of the kth term is k2

2k2+1 . The limit of this as k → ∞ is 1
2 < 1, so

the given series converges by the Root Test.

8.5.43 Use the Ratio Test: the ratio of successive terms is (k+1)100

(k+2)! · (k+1)!
k100 =

(
k+1
k

)100 · 1
k+2 . This has limit

1100 · 0 = 0 as k → ∞, so the given series converges by the Ratio Test.

8.5.44 Use the Comparison Test. Note that sin2 k ≤ 1 for all k, so sin2 k
k2 ≤ 1

k2 for all k. Because
∑∞

k=1
1
k2

converges, so does the given series.

8.5.45 Use the Root Test. The kth root of the kth term is (k1/k − 1)2, which has limit 0 as k → ∞, so the
given series converges by the Root Test.

8.5.46 Use the Limit Comparison Test with the series whose kth term is
(
2
e

)k
. Note that limk→∞ 2k

ek−1
· ek
2k

=

limk→∞ ek

ek−1
= 1. The given series thus converges because

∑∞
k=1

(
2
e

)k
converges (because it is a geometric

series with r = 2
e < 1). Note that it is also possible to show convergence with the Ratio Test.

8.5.47 Use the Divergence Test: limk→∞ k2+2k+1
3k2+1 = 1

3 �= 0, so the given series diverges.

Copyright c© 2015 Pearson Education, Inc.



46 Chapter 8. Sequences and Infinite Series

8.5.48 Use the Limit Comparison Test with the series whose kth term is 1
5k
. Note that limk→∞ 1

5k−1
· 5k1 = 1,

and the series
∑∞

k=1
1
5k

converges because it is a geometric series with r = 1
5 . Thus, the given series also

converges.

8.5.49 Use the Limit Comparison Test with the harmonic series. Note that limk→∞
1

ln k
1
k

= limk→∞ k
ln k = ∞,

and because the harmonic series diverges, the given series does as well.

8.5.50 Use the Limit Comparison Test with the series whose kth term is 1
5k
. Note that limk→∞ 1

5k−3k
· 5k1 =

limk→∞ 1
1−(3/5)k

= 1, and the series
∑∞

k=3
1
5k

converges because it is a geometric series with r = 1
5 . Thus,

the given series also converges.

8.5.51 Use the Limit Comparison Test with the series whose kth term is 1
k3/2 . Note that limk→∞ 1√

k3−k+1
·

√
k3

1 = limk→∞
√

k3

k3−k+1 =
√
1 = 1, and the series

∑∞
k=1

1
k3/2 converges because it is a p-series with p = 3

2 .

Thus, the given series also converges.

8.5.52 Use the Ratio Test: ak+1

ak
= ((k+1)!)3

(3k+3)! · (3k)!
(k!)3 = (k+1)3

(3k+1)(3k+2)(3k+3) , which has limit 1/27 as k → ∞.

Thus the given series converges.

8.5.53 Use the Comparison Test. Each term 1
k + 2−k > 1

k . Because the harmonic series diverges, so does
this series.

8.5.54 Use the Comparison Test with {5/k}. Note that 5 ln k
k > 5

k for k > 1. Because the series whose terms
are 5/k diverges, the given series diverges as well.

8.5.55 Use the Ratio Test. ak+1

ak
= 2k+1(k+1)!

(k+1)k+1 · (k)k

2k(k)!
= 2
(

k
k+1

)k
, which has limit 2

e as k → ∞, so the given

series converges.

8.5.56 Use the Root Test. lim
k→∞

(
1− 1

k

)k
= e−1 < 1, so the given series converges.

8.5.57 Use the Limit Comparison Test with {1/k3}. The ratio of corresponding terms is k11

k11+3 , which has
limit 1 as k → ∞. Because the comparison series converges, so does the given series.

8.5.58 Use the Root Test. lim
k→∞

1
1+p = 1

1+p < 1 because p > 0, so the given series converges.

8.5.59 This is a p-series with exponent greater than 1, so it converges.

8.5.60 Use the Comparison Test: 1
k2 ln k < 1

k2 . Because the series whose terms are 1
k2 is a convergent

p−series, the given series converges as well.

8.5.61 ln
(

k+2
k+1

)
= ln(k+ 2)− ln(k+ 1), so this series telescopes. We get

∑n
k=1 ln

(
k+2
k+1

)
= ln(n+ 2)− ln 2.

Because limn→∞ ln(n+2)− ln 2 = ∞, the sequence of partial sums diverges, so the given series is divergent.

8.5.62 Use the Divergence Test. Note that limk→∞ k−1/k = limk→∞ 1
k√
k

= 1 �= 0, so the given series

diverges.

8.5.63 For k > 7, ln k > 2 so note that 1
kln k < 1

k2 . Because
∑∞

k=1
1
k2 converges, the given series converges

as well.

8.5.64 Use the Limit Comparison Test with {1/k2}. Note that sin2(1/k)
1/k2 =

(
sin(1/k)

1/k

)2
. Because lim

x→0

sin x
x = 1,

the limit of this expression is 12 = 1 as k → ∞. Because
∑∞

k=1
1
k2 converges, the given series does as well.

8.5.65 Use the Limit Comparison Test with the harmonic series. tan(1/k)
1/k has limit 1 as k → ∞ because

lim
x→0

tan x
x = 1. Thus the original series diverges.
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8.5.66 Use the Root Test. lim
k→∞

k
√
ak = lim

k→∞
k
√
100 · 1

k = 0, so the given series converges.

8.5.67 Note that
1

(2k + 1) · (2k + 3)
=

1

2

(
1

2k + 1
− 1

2k + 3

)
. Thus this series telescopes.

n∑
k=0

1

(2k + 1)(2k + 3)
=

1

2

n∑
k=0

(
1

2k + 1
− 1

2k + 3

)
=

1

2

(
− 1

2n+ 3
+ 1

)
,

so the given series converges to 1/2, because that is the limit of the sequence of partial sums.

8.5.68 This series is
∑∞

k=1
k−1
k2 =

∑∞
k=1

(
1
k − 1

k2

)
. Because

∑∞
k=1

1
k2 converges, if the original series also

converged, we would have that
∑∞

k=1
1
k converged, which is false. Thus the original series diverges.

8.5.69 This series is
∑∞

k=1
k2

k! . By the Ratio Test, ak+1

ak
= (k+1)2

(k+1)! · k!
k2 = 1

k+1

(
k+1
k

)2
, which has limit 0 as

k → ∞, so the given series converges.

8.5.70 For any p, if k is sufficently large then k1/p > ln k because powers grow faster than logs, so that
k > (ln k)p and thus 1/k < 1/(ln k)p. Because

∑
1/k diverges, we see that the original series diverges for all

p.

8.5.71 For p ≤ 1 and k > e, ln k
kp > 1

kp . The series
∑∞

k=1
1
kp diverges, so the given series diverges. For p > 1,

let q < p− 1; then for sufficiently large k, ln k < kq, so that by the Comparison Test, ln k
kp < kq

kp = 1
kp−q . But

p− q > 1, so that
∑∞

k=1
1

kp−q is a convergent p-series. Thus the original series is convergent precisely when
p > 1.

8.5.72 For p �= 1, ∫ ∞

2

dx

x lnx(ln lnx)p
= lim

b→∞

(
(ln lnx)1−p

1− p

∣∣∣∣b
2

)
.

This improper integral converges if and only p > 1. If p = 1, we have∫ ∞

2

dx

x(lnx) ln lnx
= lim

b→∞
ln ln lnx

∣∣∣∣b
2

= ∞.

Thus the original series converges for p > 1.

8.5.73 For p ≤ 1, (ln k)p

kp > 1
kp for k ≥ 3, and

∑∞
k=1

1
kp diverges for p ≤ 1, so the original series diverges. For

p > 1, let q < p− 1; then for sufficiently large k, (ln k)p < kq. Note that (ln k)p

kp < kq

kp = 1
kp−q . But p− q > 1,

so
∑∞

k=1
1

kp−q converges, so the given series converges. Thus, the given series converges exactly for p > 1.

8.5.74 Using the Ratio Test, ak+1

ak
= (k+1)!pk+1

(k+2)k+1 · (k+1)k

(k)!pk = (k+1)p(k+1)k

(k+2)k+1 = p
(

k+1
k+2

)k+1

= p ·
(

1
1+ 1

k+1

)k+1

,

which has limit pe−1. The series converges if the ratio limit is less than 1, so if p < e. If p > e, the given
series diverges by the Ratio Test. If p = e, the given series diverges by the Divergence Test.

8.5.75 Use the Ratio Test:

lim
k→∞

ak+1

ak
= lim

k→∞
(k + 1)pk+1

k + 2
· k + 1

kpk
= p,

so the given series converges for p < 1 and diverges for p > 1. For p = 1 the given series diverges by limit
comparison with the harmonic series.

8.5.76 ln
(

k
k+1

)p
= p(ln(k)− ln(k + 1)), so

∞∑
k=1

ln

(
k

k + 1

)p

= p

∞∑
k=1

(ln(k)− ln(k + 1))

which telescopes, and the nth partial sum is −p ln(n + 1), and limn→∞ −p ln(n + 1) is not a finite number
for any value of p other than 0. The given series diverges for all values of p other than p = 0.
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8.5.77 lim
k→∞

ak = lim
k→∞

(
1− p

k

)k
= e−p �= 0, so this sequence diverges for all p by the Divergence Test.

8.5.78 Use the Limit Comparison Test: lim
k→∞

a2
k

ak
= lim

k→∞
ak = 0, because

∑
ak converges. By the Limit

Comparison Test, the series
∑

a2k must converge as well.

8.5.79 These tests apply only for series with positive terms, so assume r > 0. Clearly the series do not
converge for r = 1, so we assume r �= 1 in what follows. Using the Integral Test,

∑
rk converges if and

only if

∫ ∞

1

rxdx converges. This improper integral has value lim
b→∞

rx

ln r

∣∣∣∣b
1

, which converges only when lim
b→∞

rb

exists, which occurs only for r < 1. Using the Ratio Test,
ak+1

ak
=

rk+1

rk
= r, so by the Ratio Test, the series

converges if and only if r < 1. Using the Root Test, lim
k→∞

k
√
ak = lim

k→∞
k
√
rk = lim

k→∞
r = r, so again we have

convergence if and only if r < 1. By the Divergence Test, we know that a geometric series diverges if |r| ≥ 1.

8.5.80

a. Use the Limit Comparison Test with the divergent harmonic series. Note that lim
k→∞

sin(1/k)
1/k = 1,

because lim
x→0

sin x
x = 1. Because the comparison series diverges, the given series does as well.

b. We use the Limit Comparison Test with the convergent series
∑

1
k2 . Note that lim

k→∞
(1/k) sin(1/k)

1/k2 =

lim
k→∞

sin(1/k)
1/k = 1, so the given series converges.

8.5.81 To prove case (2), assume L = 0 and that
∑

bk converges. Because L = 0, for every ε > 0, there is
some N such that for all n > N , |ak

bk
| < ε. Take ε = 1; this then says that there is some N such that for all

n > N , 0 < ak < bk. By the Comparison Test, because
∑

bk converges, so does
∑

ak. To prove case (3),
because L = ∞, then lim

k→∞
bk
ak

= 0, so by the argument above, we have 0 < bk < ak for sufficient large k.

But
∑

bk diverges, so by the Comparison Test,
∑

ak does as well.

8.5.82 The series clearly converges for x = 0. For x �= 0, we have
ak+1

ak
=

xk+1

(k + 1)!
· k!
xk

=
x

k + 1
. This has

limit 0 as k → ∞ for any value of x, so the series converges for all x ≥ 0.

8.5.83 The series clearly converges for x = 0. For x �= 0, we have
ak+1

ak
=

xk+1

xk
= x. This has limit x as

k → ∞, so the series converges for x < 1. It clearly does not converge for x = 1. So the series converges for
x ∈ [0, 1).

8.5.84 The series clearly converges for x = 0. For x �= 0, we have
ak+1

ak
=

xk+1

k + 1
· k

xk
= x · k

k + 1
, which

has limit x as k → ∞. Thus this series converges for x < 1; additionally, for x = 1 (where the Ratio Test is
inconclusive), the series is the harmonic series which diverges. So the series converges for x ∈ [0, 1).

8.5.85 The series clearly converges for x = 0. For x �= 0, we have
ak+1

ak
=

xk+1

(k + 1)2
· k

2

xk
= x

(
k

k + 1

)2

,

which has limit x as k → ∞. Thus the series converges for x < 1. When x = 1, the series is 1
k2 , which

converges. Thus the original series converges for 0 ≤ x ≤ 1.

8.5.86 The series clearly converges for x = 0. For x �= 0, we have
ak+1

ak
=

x2k+2

(k + 1)2
· k2

x2k
= x2

(
k

k + 1

)2

,

which has limit x2 as k → ∞, so the series converges for x < 1. When x = 1, the series is 1
k2 , which

converges. Thus this series converges for 0 ≤ x ≤ 1.
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8.5.87 The series clearly converges for x = 0. For x �= 0, we have
ak+1

ak
=

xk+1

2k+1
· 2

k

xk
=

x

2
, which has limit

x/2 as k → ∞. Thus the series converges for 0 ≤ x < 2. For x = 2, it is obviously divergent.

8.5.88

a. Let Pn be the nth partial product of the ak: Pn =
∏n

k=1 ak. Then
∑n

k=1 ln ak = ln
∏n

k=1 ak = lnPn.
If
∑

ln ak is a convergent series, then
∑∞

k=1 ln ak = lim
n→∞ lnPn = L < ∞. But then eL = lim

n→∞ elnPn =

lim
n→∞Pn, so that the infinite product converges.

b.
n 2 3 4 5 6 7 8

Pn 3/4 2/3 5/8 3/5 7/12 4/7 9/16

It appears that Pn = n+1
2n , so that lim

n→∞Pn = 1
2 .

c. Because lim
n→∞

∏n
k=2

(
1− 1

k2

)
= 1

2 , taking logs and using part (a) we see that lim
n→∞

∑n
k=1 ln

(
1− 1

k2

)
=

ln 1
2 = − ln 2.

8.5.89

a. ln
∏∞

k=0 e
1/2k =

∑∞
k=0

1
2k

= 2, so that the original product converges to e2.

b. ln
∏∞

k=2

(
1− 1

k

)
= ln

∏∞
k=2

k−1
k =

∑∞
k=2 ln

k−1
k =

∑∞
k=2(ln(k − 1) − ln(k)). This series telescopes to

give Sn = − ln(n), so the original series has limit lim
n→∞Pn = lim

n→∞ e− ln(n) = 0.

8.5.90 The sum on the left is simply the left Riemann sum over n equal intervals between 0 and 1 for

f(x) = xp. The limit of the sum is thus
∫ 1

0
xpdx = 1

p+1x
p+1

∣∣∣∣1
0

= 1
p+1 , because p is positive.

8.5.91

a. Use the Ratio Test:

ak+1

ak
=

1 · 3 · 5 · · · (2k + 1)

pk+1(k + 1)!
· pk(k)!

1 · 3 · 5 · · · (2k − 1)
=

(2k + 1)

(k + 1)p

and this expression has limit 2
p as k → ∞. Thus the series converges for p > 2.

b. Following the hint, when p = 2 we have

∞∑
k=1

(2k)!

2kk!(2 · 4 · 6 · · · 2k) =
∞∑
k=1

(2k)!

(2k)2(k!)2
. Using Stirling’s

formula, the numerator is asymptotic to 2
√
π
√
k(2k)2ke−2k = 2

√
π
√
k(2k)2(kk)2e−2k while the denom-

inator is asymptotic to (2k)22πk(kk)2e−2k, so the quotient is asymptotic to 1√
π
√
k
. Thus the original

series diverges for p = 2 by the Limit Comparison Test with the divergent p-series
∑∞

k=1
1

k1/2 .

8.6 Alternating Series

8.6.1 Because Sn+1 − Sn = (−1)nan+1 alternates signs.

8.6.2 Check that the terms of the series are nonincreasing in magnitude after some finite number of terms,
and that lim

k→∞
ak = 0.
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8.6.3 We have
S = S2n+1 + (a2n − a2n+1) + (a2n+2 − a2n+3) + · · ·

and each term of the form a2k − a2k+1 > 0, so that S2n+1 < S. Also

S = S2n + (−a2n+1 + a2n+2) + (−a2n+3 + a2n+4) + · · ·

and each term of the form −a2k+1 + a2k+2 < 0, so that S < S2n. Thus the sum of the series is trapped
between the odd partial sums and the even partial sums.

8.6.4 The difference between L and Sn is bounded in magnitude by an+1.

8.6.5 The remainder is less than the first neglected term because

S − Sn = (−1)n+1(an+1 + (−an+2 + an+3) + · · · )

so that the sum of the series after the first disregarded term has the opposite sign from the first disregarded
term.

8.6.6 The alternating harmonic series
∑

(−1)k 1
k converges, but not absolutely.

8.6.7 No. If the terms are positive, then the absolute value of each term is the term itself, so convergence
and absolute convergence would mean the same thing in this context.

8.6.8 The idea of the proof is to note that 0 ≤ |ak|+ak ≤ 2 |ak| and apply the Comparison Test to conclude
that if

∑ |ak| converges, then so does
∑

2 |ak|, and thus so must
∑

(|ak|+ak), and then conclude that
∑

ak
must converge as well.

8.6.9 Yes. For example,
∑ (−1)k

k3 converges absolutely and thus not conditionally (see the definition).

8.6.10 The alternating harmonic series
∑

(−1)k 1
k converges conditionally, but not absolutely.

8.6.11 The terms of the series decrease in magnitude, and limk→∞ 1
2k+1 = 0, so the given series converges.

8.6.12 The terms of the series decrease in magnitude, and limk→∞ 1√
k
= 0, so the given series converges.

8.6.13 limk→∞ k
3k+2 = 1

3 �= 0, so the given series diverges.

8.6.14 limk→∞
(
1 + 1

k

)k
= e �= 0, so the given series diverges.

8.6.15 The terms of the series decrease in magnitude, and lim
k→∞

1
k3 = 0, so the given series converges.

8.6.16 The terms of the series decrease in magnitude, and lim
k→∞

1
k2+10 = 0, so the given series converges.

8.6.17 The terms of the series decrease in magnitude, and lim
k→∞

k2

k3+1 = lim
k→∞

1/k
1+1/k3 = 0, so the given series

converges.

8.6.18 The terms of the series eventually decrease in magnitude, because if f(x) = ln x
x2 , then f ′(x) =

x(1−2 ln x)
x4 = 1−2 ln x

x3 , which is negative for large enough x. Further, lim
k→∞

ln k
k2 = lim

k→∞
1/k
2k = lim

k→∞
1

2k2 = 0.

Thus the given series converges.

8.6.19 lim
k→∞

k2−1
k2+3 = 1, so the terms of the series do not tend to zero and thus the given series diverges.

8.6.20
∑∞

k=0

(− 1
5

)k
=
∑∞

k=0(−1)k
(
1
5

)k
. (1/5)k is decreasing, and tends to zero as k → ∞, so the given

series converges.
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8.6.21 lim
k→∞

(
1 + 1

k

)
= 1, so the given series diverges.

8.6.22 Note that cos(πk) = (−1)k, and so the given series is alternating. Because lim
k→∞

1
k2 = 0 and 1

k2 is

decreasing, the given series is convergent.

8.6.23 The derivative of f(k) = k10+2k5+1
k(k10+1) is f ′(k) = −(k20+2k10+12k15−8k5+1)

k2(k10+1)2 . The numerator is negative

for large enough values of k, and the denominator is always positive, so the derivative is negative for large

enough k. Also, lim
k→∞

k10+2k5+1
k(k10+1) = lim

k→∞
1+2k−5+k−10

k+k−9 = 0. Thus the given series converges.

8.6.24 Clearly 1
k ln2 k

is nonincreasing, and lim
k→∞

1
k ln2 k

= 0, so the given series converges.

8.6.25 lim
k→∞

k1/k = 1 (for example, take logs and apply L’Hôpital’s rule), so the given series diverges by the

Divergence Test.

8.6.26 ak+1 < ak because ak+1

ak
= (k+1)!

(k+1)k+1 · kk

k! =
(

k
k+1

)k
< 1. Additionally, k!

kk → 0 as k → ∞, so the given

series converges.

8.6.27 1√
k2+4

is decreasing and tends to zero as k → ∞, so the given series converges.

8.6.28 lim
k→∞

k sin(1/k) = lim
k→∞

sin(1/k)
1/k = 1, so the given series diverges.

8.6.29 We want 1
n+1 < 10−4, or n+ 1 > 104, so n = 104.

8.6.30 The series starts with k = 0, so we want 1
n! < 10−4, or n! > 104 = 10000. This happens for n = 8.

8.6.31 The series starts with k = 0, so we want 1
2n+1 < 10−4, or 2n+ 1 > 104, n = 5000.

8.6.32 We want 1
(n+1)2 < 10−4, or (n+ 1)2 > 104, so n = 100.

8.6.33 We want 1
(n+1)4 < 10−4, or (n+ 1)4 > 104, so n = 10.

8.6.34 The series starts with k = 0, so we want 1
(2n+1)3 < 10−4, or 2n+ 1 > 104/3, so n = 11.

8.6.35 The series starts with k = 0, so we want 1
3n+1 < 10−4, or 3n+ 1 > 104, n = 3334.

8.6.36 We want 1
(n+1)6 < 10−4, or (n+ 1)6 > 104 = 10000, so n = 4.

8.6.37 The series starts with k = 0, so we want 1
4n

(
2

4n+1 + 2
4n+2 + 1

4n+3

)
< 10−4, or 4n(4n+1)(4n+2)(4n+3)

4(20n2+21n+5) >

10000, which occurs first for n = 6.

8.6.38 The series starts with k = 0, so we want 1
3n+2 < 10−4, so 3n+ 2 > 10000, n = 3333.

8.6.39 To figure out how many terms we need to sum, we must find n such that 1
(n+1)5 < 10−3, so that

(n+ 1)5 > 1000; this occurs first for n = 3. Thus −1
1 + 1

25 − 1
35 ≈ −0.973.

8.6.40 To figure out how many terms we need to sum, we must find n such that 1
(2(n+1)+1)3 < 10−3, or

(2n+ 3)3 > 103, so 2n+ 3 > 10 and n = 4. Thus the approximation is
∑4

k=1
(−1)n

(2n+1)3 ≈ −0.306.

8.6.41 To figure out how many terms we need to sum, we must find n so that n+1
(n+1)2+1 < 10−3, so that

(n+1)2+1
n+1 = n+ 1 + 1

n+1 > 1000. This occurs first for n = 999. We have
∑999

k=1
(−1)kk
k2+1 ≈ −0.269.
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8.6.42 To figure out how many terms we need to sum, we must find n such that n+1
(n+1)4+1 < 10−3, so that

(n+1)4+1
n+1 = (n+ 1)3 + 1

n+1 > 1000, which occurs for n = 9. We have
∑9

k=1
(−1)kk
k4+1 ≈ −0.409.

8.6.43 To figure how many terms we need to sum, we must find n such that 1
(n+1)n+1 < 10−3, or (n+1)n+1 >

1000, so n = 4 (55 = 3125). Thus the approximation is
∑4

k=1
(−1)n

nn ≈ −.783.

8.6.44 To figure how many terms we need to sum, we must find n such that 1
(2(n+1)+1)! < 10−3, or (2n+3)! >

1000, so 2n+ 3 ≥ 7 and n = 2. The approximation is
∑2

k=1
(−1)n+1

(2n+1)! ≈ 0.158

8.6.45 The series of absolute values is a p-series with p = 2/3, so it diverges. The given alternating series
does converge, though, by the Alternating Series Test. Thus, the given series is conditionally convergent.

8.6.46 The series of absolute values is a p-series with p = 1/2, so it diverges. The given alternating series
does converge, though, by the Alternating Series Test. Thus, the given series is conditionally convergent.

8.6.47 The series of absolute values is a p-series with p = 3/2, so it converges absolutely.

8.6.48 The series of absolute values is
∑

1
3k
, which converges, so the series converges absolutely.

8.6.49 The series of absolute values is
∑ |cos(k)|

k3 , which converges by the Comparison Test because |cos(k)|
k3 ≤

1
k3 . Thus the series converges absolutely.

8.6.50 The series of absolute values is
∑

k2√
k6+1

. The limit comparison test with 1
k gives lim

k→∞
k3√
k6+1

=

lim
k→∞

√
k6

k6+1 = 1. Because the comparison series diverges, so does the series of absolute values. The

original series converges conditionally, however, because the terms are nonincreasing and lim
k→∞

k2√
k6+1

=

lim
k→∞

√
k4

k6+1 = 0.

8.6.51 The absolute value of the kth term of this series has limit π/2 as k → ∞, so the given series is
divergent by the Divergence Test.

8.6.52 The series of absolute values is a geometric series with r = 1
e and |r| < 1, so the given series converges

absolutely

8.6.53 The series of absolute values is
∑

k
2k+1 , but lim

k→∞
k

2k+1 = 1
2 , so by the Divergence Test, this series

diverges. The original series does not converge conditionally, either, because lim
k→∞

ak = 1
2 �= 0.

8.6.54 The series of absolute values is
∑

1
ln k , which diverges, so the series does not converge absolutely.

However, because lim
k→∞

1
ln k → 0 and the terms are nonincreasing, the series does converge conditionally.

8.6.55 The series of absolute values is
∑ tan−1(k)

k3 , which converges by the Comparison Test because
tan−1(k)

k3 < π
2

1
k3 , and

∑
π
2

1
k3 converges because it is a constant multiple of a convergent p−series. So the

original series converges absolutely.

8.6.56 The series of absolute values is
∑

ek

(k+1)! . Using the ratio test, ak+1

ak
= ek+1

(k+2)! · (k+1)!
ek

= e
k+2 , which

tends to zero as k → ∞, so the original series converges absolutely.

8.6.57

a. False. For example, consider the alternating harmonic series.

b. True. This is part of Theorem 8.21.
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c. True. This statement is simply saying that a convergent series converges.

d. True. This is part of Theorem 8.21.

e. False. Let ak = 1
k .

f. True. Use the Comparison Test: lim
k→∞

a2
k

ak
= lim

k→∞
ak = 0 because

∑
ak converges, so

∑
a2k and

∑
ak

converge or diverge together. Because the latter converges, so does the former.

g. True, by definition. If
∑|ak| converged, the original series would converge absolutely, not conditionally.

8.6.58 Neither condition is satisfied. ak+1

ak
= (k+1)(2k+1)

(2k+3)k = 2k2+3k+1
2k2+3k > 1, and lim

k→∞
ak = 1

2 .

8.6.59
∑∞

k=1
1
k2 −

∑∞
k=1

(−1)k+1

k2 = 2
∑∞

k=1
1

(2k)2 = 2 · 14
∑∞

k=1
1
k2 , and thus

∑∞
k=1

(−1)k+1

k2 = π2

6 − 1
2 · π

2

6 = π2

12 .

8.6.60
∑∞

k=1
1
k4 −

∑∞
k=1

(−1)k+1

k4 = 2
∑∞

k=1
1

(2k)4 = 2· 1
16

∑∞
k=1

1
k4 , and thus

∑∞
k=1

(−1)k+1

k4 = π4

90 − 1
8 · π

4

90 = 7π4

720 .

8.6.61 Write r = −s; then 0 < s < 1 and
∑

rk =
∑

(−1)ksk. Because |s| < 1, the terms sk are nonincreasing
and tend to zero, so by the Alternating Series Test, the series

∑
(−1)ksk =

∑
rk converges.

8.6.62

a.

As p gets larger, fewer terms are needed to
achieve a particular level of accuracy; this
means that for larger p, the series converge
faster.

2 3 4 5 6 7 8
r

2 � 107

4 � 107

6 � 107

8 � 107

1 � 108

N

p = 1

2 3 4 5 6 7 8
r

2000

4000

6000

8000

10 000

N

p = 2

2 3 4 5 6 7 8
r

100

200

300

400

N

p = 3
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b. This graph shows that
∑

1
k! converges much

faster than any of the powers of k.

2 4 6 8
r

2

4

6

8

10

N

8.6.63 Let S = 1− 1
2 + 1

3 − · · · . Then

S =
(
1− 1

2

)
+
(
1
3 − 1

4

)
+
(
1
5 − 1

6

)
+
(
1
7 − 1

8

)
+ . . .

1
2S = 1

2 − 1
4 + 1

6 − 1
8 + . . .

Add these two series together to get

3

2
S =

3

2
ln 2 = 1 +

1

3
− 1

2
+

1

5
+ · · ·

To see that the results are as desired, consider a collection of four terms:

· · ·+
(

1
4k+1 − 1

4k+2

)
+

(
1

4k+3 − 1
4k+4

)
+ . . .

. . . + 1
4k+2 − 1

4k+4 + · · ·

Adding these results in the desired sign pattern. This repeats for each group of four elements.

8.6.64

a. Note that we can write

Sn = −a1
2

+
1

2

(
n−1∑
k=1

(−1)k(ai − ai+1)

)
+

(−1)nan
2

,

so that

Sn +
(−1)n+1an+1

2
= −a1

2
+

1

2

(
n∑

k=1

(−1)kdi

)
where di = ai − ai+1. Now consider the expression on the right-hand side of this last equation as the
nth partial sum of a series which converges to S. Because the di’s are decreasing and positive, the error
made by stopping the sum after n terms is less than the absolute value of the first omitted term, which
would be 1

2 |dn+1| = 1
2 |an+1 − an+2|. The method in the text for approximating the error simply takes

the absolute value of the first unused term as an approximation of |S − Sn|. Here, Sn is modified by
adding half the next term. Because the terms are decreasing in magnitude, this should be a better
approximation to S than just Sn itself; the right side shows that this intuition is correct, because
1
2 |an+1 − an+2| is at most an+1 and is generally less than that (because generally an+2 < an+1).

b. i. Using the method from the text, we need n such that 1
n+1 < 10−6, i.e. n > 106 − 1. Using the

modified method from this problem, we want 1
2 |an+1 − an+2| < 10−6, so

1

2

(
1

n+ 1
− 1

n+ 2

)
=

1

2(n+ 1)(n+ 2)
< 10−6

This is true when 106 < 2(n+ 1)(n+ 2), which requires n > 705.6, so n ≥ 706.
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ii. Using the method from the book, we need n such that k ln k > 106, which means k ≥ 87848.
Using the method of this problem, we want

1

2

∣∣∣∣( 1

k ln k
− 1

(k + 1) ln(k + 1)

)∣∣∣∣ = ∣∣∣∣ (k + 1) ln(k + 1)− k ln k

2k(k + 1) ln k ln(k + 1)

∣∣∣∣ < 10−6,

so that |2k(k + 1) ln k ln(k + 1)| > |106(k ln k − (k + 1) ln(k + 1))|, which means k ≥ 319.

iii. Using the method from the book, we need k such that
√
k > 106, so k > 1012. Using the method

of this problem, we want

1

2

(
1√
k
− 1√

k + 1

)
=

√
k + 1−√

k

2
√
k(k + 1)

< 10−6

which means that k > 3968.002 so that k ≥ 3969.

8.6.65 Both series diverge, so comparisons of their values are not meaningful.

8.6.66

a. The first ten terms are

(2− 1) +

(
1− 1

2

)
+

(
2

3
− 1

3

)
+

(
1

2
− 1

4

)
+

(
2

5
− 1

5

)

Suppose that k = 2i is even (and so k − 1 = 2i − 1 is odd). Then the sum of the (k − 1)st term and
the kth term is 4

k − 2
k = 2

k = 1
i . Then the sum of the first 2n terms of the given series is

∑n
i=1

1
i .

b. Note that limk→∞ 4
k+1 = limk→∞ 2

k = 0. Thus given ε > 0 there exists N1 so that for k > N1, we have
4

k+1 < ε. Also, there exist N2 so that for k > N2,
2
k < ε. Let N be the larger of N1 or N2. Then for

k > N , we have ak < ε, as desired.

c. The series can be seen to diverge because the even partial sums have limit ∞. This does not contradict
the alternating series test because the terms ak are not nonincreasing.

Chapter Eight Review

1

a. False. Let an = 1− 1
n . This sequence has limit 1.

b. False. The terms of a sequence tending to zero is necessary but not sufficient for convergence of the
series.

c. True. This is the definition of convergence of a series.

d. False. If a series converges absolutely, the definition says that it does not converge conditionally.

e. True. It has limit 1 as n → ∞.

f. False. The subsequence of the even terms has limit 1 and the subsequence of odd terms has limit −1,
so the sequence does not have a limit.

g. False. It diverges by the Divergence Test because limk→∞ k2

k2+1 = 1 �= 0.

h. True. The given series converges by the Limit Comparison Test with the series
∑∞

k=1
1
k2 , and thus its

sequence of partial sums converges.
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2 lim
n→∞

n2 + 4√
4n4 + 1

= lim
n→∞

1 + 4n−2

√
4 + n−4

=
1

2
.

3 lim
n→∞

8n

n!
= 0 because exponentials grow more slowly than factorials.

4 After taking logs, we want to compute

lim
n→∞ 2n ln(1 + 3/n) = lim

n→∞
ln(1 + 3/n)

1/(2n)
.

By L’Hôpital’s rule, this is lim
n→∞

6n
n+3 (after some algebraic manipulations), which is 6. Thus the original

limit is e6.

5 Take logs and compute lim
n→∞(1/n) lnn = lim

n→∞(lnn)/n = lim
n→∞

1
n = 0 by L’Hôpital’s rule. Thus the original

limit is e0 = 1.

6 lim
n→∞(n−√

n2 − 1) = lim
n→∞

n−√
n2−1
1 · n+

√
n2−1

n+
√
n2−1

= lim
n→∞

1
n+

√
n2+1

= 0.

7 Take logs, and then evaluate lim
n→∞

1
lnn ln(1/n) = lim

n→∞(−1) = −1, so the original limit is e−1.

8 This series oscillates among the values ±1/2,±√
3/2,±1, and 0, so it has no limit.

9 an = (−1/0.9)n = (−10/9)n. The terms grow without bound so the sequence does not converge.

10 lim
n→∞ tan−1 n = lim

x→∞ tan−1 x =
π

2
.

11

a. S1 = 1
3 , S2 = 11

24 , S3 = 21
40 , S4 = 17

30 .

b. Sn =
1

2

(
1

1
+

1

2
− 1

n+ 1
− 1

n+ 2

)
, because the series telescopes.

c. From part (b), lim
n→∞Sn = 3

4 , which is the sum of the series.

12 This is a geometric series with ratio 9/10, so the sum is 9/10
1−9/10 = 9.

13
∑∞

k=1 3(1.001)
k = 3

∑∞
k=1(1.001)

k. This is a geometric series with ratio greater than 1, so it diverges.

14 This is a geometric series with ratio −1/5, so the sum is 1
1+1/5 = 5

6

15 1
k(k+1) = 1

k − 1
k+1 , so the series telescopes, and Sn = 1 − 1

n+1 . Thus lim
n→∞Sn = 1, which is the value of

the series.

16 This series clearly telescopes, and Sn = 1√
n
− 1, so lim

n→∞Sn = −1.

17 This series telescopes. Sn = 3− 3
3n+1 , so that lim

n→∞Sn = 3, which is the value of the series.

18
∑∞

k=1 4
−3k =

∑∞
k=1(1/64)

k. This is a geometric series with ratio 1/64, so its sum is 1/64
1−1/64 = 1

63 .

19

∞∑
k=1

2k

3k+2
=

1

9

∞∑
k=1

(
2

3

)k

=
1

9
· 2/3

1− 2/3
=

2

9
.
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20 This is the difference of two convergent geometric series (because both have ratios less than 1). Thus the
sum of the series is equal to

∞∑
k=0

(
1

3

)k

−
∞∑
k=0

(
2

3

)k+1

=
1

1− 1/3
− 2/3

1− 2/3
=

3

2
− 2 = −1

2
.

21

a. It appears that the series converges, because the sequence of partial sums appears to converge to 1.5.

b. The convergence is uncertain.

c. This series clearly appears to diverge, because the partial sums seem to be growing without bound.

22 This is p-series with p = 3/2 > 1, so this series is convergent.

23 The series can be written
∑

1
k2/3 , which is a p-series with p = 2/3 < 1, so this series diverges.

24 ak = 2k2+1√
k3+2

=
√

4k4+4k2+1
k3+2 , so the sequence of terms diverges. By the Divergence Test, the given series

diverges as well.

25 This is a geometric series with ratio 2/e < 1, so the series converges.

26 Note that 1
ak

=
((

1 + 3
k

)k)2
, so lim

k→∞
1

ak
= lim

k→∞

((
1 +

3

k

)k
)2

= (e3)2, so lim
k→∞

ak =
1

e6
�= 0, so the

given series diverges by the Divergence Test.

27 Applying the Ratio Test:

lim
k→∞

ak+1

ak
= lim

k→∞
2k+1(k + 1)!

(k + 1)k+1
· kk

2kk!
= lim

k→∞
2

(
k

k + 1

)k

=
2

e
< 1,

so the given series converges.

28 Use the Limit Comparison Test with 1
k :

1√
k2 + k

/
1

k
=

k√
k2 + k

=

√
k2

k2 + k
,

which has limit 1 as k → ∞. Because
∑

1/k diverges, the original series does as well.

29 Use the Comparison Test: 3
2+ek

< 3
ek
, but

∑
3
ek

converges because it is a geometric series with ratio
1
e < 1. Thus the original series converges as well.

30 lim
k→∞

ak = lim
k→∞

k sin(1/k) = lim
k→∞

sin(1/k)
1/k = 1, so the given series diverges by the Divergence Test.

31 ak = k1/k

k3 = 1
k3−1/k . For k ≥ 2, then, ak < 1

k2 . Because
∑

1
k2 converges, the given series also converges,

by the Comparison Test.

32 Use the Comparison Test: 1
1+ln k > 1

k for k > 1. Because
∑

1
k diverges, the given series does as well.

33 Use the Ratio Test: ak+1

ak
= (k+1)5

ek+1 · ek

k5 = 1
e · (k+1

k

)5
, which has limit 1/e < 1 as k → ∞. Thus the given

series converges.

34 For k > 5, we have k2 − 10 > (k − 1)2, so that ak = 2
k2−10 < 2

(k−1)2 . Because
∑

2
(k−1)2 converges, the

original series does as well.
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35 Use the Comparison Test. Because lim
k→∞

ln k

k1/2
= 0, we have that for sufficiently large k, ln k < k1/2, so

that ak = 2 ln k
k2 < 2k1/2

k2 = 2
k3/2 . Now

∑
2

k3/2 is convergent, because it is a p-series with p = 3/2 > 1. Thus
the original series is convergent.

36 By the Ratio Test: lim
k→∞

ak+1

ak
= lim

k→∞
k+1
ek+1 · ek

k = lim
k→∞

1
e · k+1

k = 1
e < 1. Thus the given series converges.

37 Use the Ratio Test. The ratio of successive terms is 2·4k+1

(2k+3)! · (2k+1)!
2·4k = 4

(2k+3)(2k+2) . This has limit 0 as

k → ∞, so the given series converges.

38 Use the Ratio Test. The ratio of successive term is 9k+1

(2k+2)! · (2k)!
9k

= 9
(2k+2)(2k+1) . This has limit 0 as

k → ∞, so the given series converges.

39 Use the Limit Comparison Test with the harmonic series. Note that lim
k→∞

coth k

k
· k
1
= lim

k→∞
coth k = 1.

Because the harmonic series diverges, the given series does as well.

40 Use the Limit Comparison Test with the convergent geometric series whose kth term is 1
ek
. We have

limk→∞ 1
sinh k · ek

1 = limk→∞ 2ek

ek−e−k = 2 limk→∞ 1
1−e−2k = 2. The given series is therefore convergent.

41 Use the Divergence Test. limk→∞ tanh k = limk→∞ ek+e−k

ek−e−k = 1 �= 0, so the given series diverges.

42 Use the Limit Comparison Test with the convergent geometric series whose kth term is 1
ek
. We have

limk→∞ 1
cosh k · ek

1 = limk→∞ 2ek

ek+e−k = 2 limk→∞ 1
1+e−2k = 2. The given series is therefore convergent.

43 |ak| = 1
k2−1 . Use the Limit Comparison Test with the convergent series

∑
1
k2 . Because lim

k→∞

1
k2−1

1
k2

=

lim
k→∞

k2

k2−1 = 1, the given series converges absolutely.

44 This series does not converge, because lim
k→∞

|ak| = lim
k→∞

k2+4
2k2+1 = 1

2 .

45 Use the Ratio Test on the absolute values of the sequence of terms: lim
k→∞

∣∣∣ak+1

ak

∣∣∣ = lim
k→∞

k+1
ek+1 · ek

k =

lim
k→∞

1
e · k+1

k = 1
e < 1. Thus, the original series is absolutely convergent.

46 Using the Limit Comparison Test with the harmonic series, we consider lim
k→∞

ak/(1/k) = lim
k→∞

k√
k2+1

= lim
k→∞

√
k2

k2+1 = 1; because the comparison series diverges, so does the original series. Thus the series is not

absolutely convergent. However, the terms are clearly decreasing to zero, so it is conditionally convergent.

47 Use the Ratio Test on the absolute values of the sequence of terms: lim
k→∞

∣∣∣ak+1

ak

∣∣∣ = lim
k→∞

10
k+1 = 0, so the

series converges absolutely.

48
∑

1
k ln k does not converge because

∫∞
2

1
x ln x dx = limb→∞ ln(lnx)

∣∣∣∣∞
2

= ∞, so the improper integral

diverges. Thus the given series does not converge absolutely. However, it does converge conditionally
because the terms are decreasing and approach zero.

49 Because k2 	 2k, limk→∞
−2·(−2)k

k2 �= 0. The given series thus diverges by the Divergence Test.

50 The series of absolute values converges, by the Limit Comparison Test with the convergent geometric

series whose kth term is 1
ek
. This follows because limk→∞ 1

ek+e−k · ek

1 = limk→∞ 1
1+e−2k = 1.
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51

a. For |x| < 1, lim
k→∞

xk = 0, so this limit is zero.

b. This is a geometric series with ratio −4/5, so the sum is 1
1+4/5 = 5

9 .

52

a. lim
k→∞

(
1
k − 1

k+1

)
= lim

k→∞
1

k(k+1) = 0.

b. This series telescopes, and Sn = 1− 1
n+1 , so lim

n→∞Sn = 1, which is the sum of the series.

53 Consider the constant sequence with ak = 1 for all k. The sequence {ak} converges to 1, but the
corresponding series

∑
ak diverges by the divergence test.

54 This is not possible. If the series
∑∞

k=1 ak converges, then we must have limk→∞ ak = 0.

55

a. This sequence converges because limk→∞ k
k+1 = limk→∞ 1

1+ 1
k

= 1
1+0 = 1.

b. Because the sequence of terms has limit 1 (which means its limit isn’t zero) this series diverges by the
divergence test.

56 No. The geometric sequence converges for −1 < r ≤ 1, while the geometric series converges for −1 <
r < 1. So the geometric sequence converges for r = 1 but the geometric series does not.

57 Because the series converges, we must have lim
k→∞

ak = 0. Because it converges to 8, the partial sums

converge to 8, so that lim
k→∞

Sk = 8.

58 Rn is given by

Rn ≤
∫ ∞

n

1

x5
dx = lim

b→∞

(
− 1

4x4

∣∣∣∣b
n

)
=

1

4n4
.

Thus to approximate the sum to within 10−4, we need 1
4n4 < 10−4, so 4n4 > 104 and n = 8.

59 The series converges absolutely for p > 1, conditionally for 0 < p ≤ 1 in which case {k−p} is decreasing
to zero.

60 By the Integral Test, the series converges if and only if the following integral converges:∫ ∞

2

1

x lnp(x)
dx = lim

b→∞

(
1

1− p
ln(1−p)(x)

∣∣∣∣b
2

)
= lim

b→∞
1

1− p
ln(1−p)(b)−

(
1

1− p

)
· ln(1−p)(2).

This limit exists only if 1 − p < 0, i.e. p > 1. Note that the above calculation is for the case p �= 1. In the
case p = 1, the integral also diverges.

61 The sum is 0.2500000000 to ten decimal places. The maximum error is∫ ∞

20

1

5x
dx = lim

b→∞

(
− 1

5x ln 5

∣∣∣∣b
20

)
=

1

520 ln 5
≈ 6.5× 10−15.

62 The sum is 1.037. The maximum error is∫ ∞

20

1

x5
dx = lim

b→∞

(
− 1

4x4

∣∣∣∣b
20

)
=

1

4 · 204 ≈ 1.6× 10−6.
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63 The maximum error is an+1, so we want an+1 = 1
(k+1)4 < 10−8, or (k + 1)4 > 108, so k = 100.

64

a.
∑∞

k=0 e
kx =

∑∞
k=0(e

x)k = 1
1−ex = 2, so 1− ex = 1/2. Thus ex = 1/2 and x = − ln(2).

b.
∑∞

k=0(3x)
k = 1

1−3x = 4, so that 1− 3x = 1
4 , x = 1

4 .

c. The x’s cancel, so the equation reads
∑∞

k=0

(
1

k−1/2 − 1
k+1/2

)
= 6. The series telescopes, so that the

left side, up to n, is

n∑
k=0

(
1

k − 1/2
− 1

k + 1/2

)
=

1

−1/2
− 1

n+ 1/2
= −2− 1

n+ 1/2

and in the limit the equation then reads −2 = 6, so that there is no solution.

65

a. Let Tn be the amount of additional tunnel dug during week n. Then T0 = 100 and Tn = .95 · Tn−1 =
(.95)nT0 = 100(0.95)n, so the total distance dug in N weeks is

SN = 100

N−1∑
k=0

(0.95)k = 100

(
1− (0.95)N

1− 0.95

)
= 2000(1− 0.95N ).

Then S10 ≈ 802.5 meters and S20 ≈ 1283.03 meters.

b. The longest possible tunnel is S∞ = 100
∑∞

k=0(0.95)
k = 100

1−.95 = 2000 meters.

66 Let tn be the time required to dig meters (n − 1) · 100 through n · 100, so that t1 = 1 week. Then
tn = 1.1 · tn−1 = (1.1)n−1t1 = (1.1)n−1 weeks. The time required to dig 1500 meters is then

15∑
k=1

tk =

15∑
k=1

(1.1)k−1 ≈ 31.77 weeks.

So it is not possible.

67

a. The area of a circle of radius r is πr2. For r = 21−n, this is 22−2nπ. There are 2n−1 circles on the nth

page, so the total area of circles on the nth page is 2n−1 · π22−2n = 21−nπ.

b. The sum of the areas on all pages is
∑∞

k=1 2
1−kπ = 2π

∑∞
k=1 2

−k = 2π · 1/2
1/2 = 2π.

68 x0 = 1, x1 ≈ 1.540302, x2 ≈ 1.57079, x3 ≈ 1.570796327, which is π
2 to nine decimal places. Thus p = 2.

69

a. Bn = 1.0025Bn−1 + 100 and B0 = 100.

b. Bn = 100 · 1.0025n + 100 · 1−1.0025n

1−1.0025 = 100 · 1.0025n − 40000(1− 1.0025n) = 40000(1.0025n+1 − 1).

70

a. an =

∫ 1

0

xn dx =
1

n+ 1
xn+1

∣∣∣∣1
0

=
1

n+ 1
, so lim

n→∞ an = 0.

b. bn =

∫ n

1

1

xp
dx =

1

1− p
x1−p

∣∣∣∣n
1

=
1

1− p
(n1−p − 1). Because p > 1, n1−p → 0 as n → ∞, so that

lim
n→∞ bn = 1

p−1 .
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71

a. T1 =
√
3

16 and T2 = 7
√
3

64 .

b. At stage n, 3n−1 triangles of side length 1/2n are removed. Each of those triangles has an area of√
3

4 · 4n =

√
3

4n+1
, so a total of

3n−1 ·
√
3

4n+1
=

√
3

16
·
(
3

4

)n−1

is removed at each stage. Thus

Tn =

√
3

16

n∑
k=1

(
3

4

)k−1

=

√
3

16

n−1∑
k=0

(
3

4

)k

=

√
3

4

(
1−
(
3

4

)n)
.

c. lim
n→∞Tn =

√
3
4 because

(
3
4

)n → 0 as n → ∞.

d. The area of the triangle was originally
√
3
4 , so none of the original area is left.

72 Because the given sequence is non-decreasing and bounded above by 1, it must have a limit. A reasonable
conjecture is that the limit is 1.
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Chapter 9

Power Series

9.1 Approximating Functions With Polynomials

9.1.1 Let the polynomial be p(x). Then p(0) = f(0), p′(0) = f ′(0), and p′′(0) = f ′′(0).

9.1.2 It generally increases, because the more derivatives of f are taken into consideration, the better “fit”
the polynomial will provide to f .

9.1.3 The approximations are p0(0.1) = 1, p1(0.1) = 1 + 0.1
2 = 1.05, and p2(0.1) = 1 + 0.1

2 − .01
8 = 1.04875.

9.1.4 The first three terms: f(a) + f ′(a)(x− a) + 1
2f

′′(a)(x− a)2.

9.1.5 The remainder is the difference between the value of the Taylor polynomial at a point and the true
value of the function at that point, Rn(x) = f(x)− pn(x).

9.1.6 This is explained in Theorem 9.2. The idea is that the error when using an nth order Taylor polynomial

centered at a is |Rn(x)| ≤ M · |x−a|n+1

(n+1)! where M is an upper bound for the (n+1)st derivative of f for values

between a and x.

9.1.7

a. Note that f(1) = 8, and f ′(x) = 12
√
x, so f ′(1) = 12. Thus, p1(x) = 8 + 12(x− 1).

b. f ′′(x) = 6/
√
x, so f ′′(1) = 6. Thus p2(x) = 8 + 12(x− 2) + 3(x− 1)2.

c. p1(1.1) = 12 · 0.1 + 8 = 9.2. p2(1.1) = 3(.1)2 + 12 · 0.1 + 8 = 9.23.

9.1.8

a. Note that f(1) = 1, and that f ′(x) = −1/x2, so f ′(1) = −1. Thus, p1(x) = 1− (x− 1) = −x+ 2.

b. f ′′(x) = 2/x3, so f ′′(1) = 2. Thus, p2(x) = 2− x+ (x− 1)2.

c. p1(1.05) = 0.95. p2(1.05) = (0.05)2 − 0.05 + 2 = .953.

9.1.9

a. f ′(x) = −e−x, so p1(x) = f(0) + f ′(0)x = 1− x.

b. f ′′(x) = e−x, so p2(x) = f(0) + f ′(0)x+ 1
2f

′′(0)x2 = 1− x+ 1
2x

2.

c. p1(0.2) = 0.8, and p2(0.2) = 1− 0.2 + 1
2 (0.04) = 0.82.

63
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9.1.10

a. f ′(x) = 1
2x

−1/2, so p1(x) = f(4) + f ′(4)(x− 4) = 2 + 1
4 (x− 4).

b. f ′′(x) = − 1
4x

−3/2, so p2(x) = f(4) + f ′(4)(x− 4) + 1
2f

′′(4)(x− 4)2 = 2 + 1
4 (x− 4)− 1

64 (x− 4)2.

c. p1(3.9) = 2 + 1
4 (−0.1) = 2− 0.025 = 1.975, and p2(3.9) = 2− 0.025− 1

64 (0.001) = 1.975.

9.1.11

a. f ′(x) = − 1
(x+1)2 , so p1(x) = f(0) + f ′(0)x = 1− x.

b. f ′′(x) = 2
(x+1)3 , so p2(x) = f(0) + f ′(0)x+ 1

2f
′′(0)x2 = 1− x+ x2.

c. p1(0.05) = 0.95, and p2(0.05) = 1− 0.05 + 0.0025 = 0.953.

9.1.12

a. f ′(x) = − sinx, so p1(x) = cos(π/4)− sin(π/4)(x− π/4) =
√
2
2 (1− (x− π/4)).

b. f ′′(x) = − cosx, so

p2(x) = cos(π/4)− sin(π/4)(x− π/4)− 1

2
cos(π/4)(x− π/4)2

=

√
2

2

(
1− (x− π/4)− 1

2
(x− π/4)2

)
.

c. p1(0.24π) ≈ 0.729, p2(0.24π) ≈ 0.729.

9.1.13

a. f ′(x) = (1/3)x−2/3, so p1(x) = f(8) + f ′(8)(x− 8) = 2 + 1
12 (x− 8).

b. f ′′(x) = (−2/9)x−5/3, so p2(x) = f(8) + f ′(8)(x− 8) + 1
2f

′′(8)(x− 8)2 = 2 + 1
12 (x− 8)− 1

288 (x− 8)2.

c. p1(7.5) ≈ 1.958, p2(7.5) ≈ 1.957.

9.1.14

a. f ′(x) = 1
1+x2 , so p1(x) = f(0) + f ′(0)x = x.

b. f ′′(x) = − 2x
(1+x2)2 , so p2(x) = f(0) + f ′(0)x+ 1

2f
′′(0)x2 = x.

c. p1(0.1) = p2(0.1) = 0.1.

9.1.15 f(0) = 1, f ′(0) = − sin 0 = 0, f ′′(0) = − cos 0 = −1, so that p0(x) = 1, p1(x) = 1, p2(x) = 1− 1
2x

2.

1

�1

q�q

�� � x

y

0

y � cos x

y � p0(x) � p1(x)

y � p2(x)

9.1.16 f(0) = 1, f ′(0) = −e0 = −1, f ′′(0) = e0 = 1, so that p0(x) = 1, p1(x) = 1− x, p2(x) = 1− x+ x2

2 .
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y�e�x

y�p0�x�

y�p1�x�

y�p2�x�

�2 �1 1 2 3 4
x

�2

2

4

6
y

9.1.17 f(0) = 0, f ′(0) = − 1
1−0 = −1,f ′′(0) = − 1

(1−0)2 = −1, so that p0(x) = 0, p1(x) = −x,

p2(x) = −x− 1
2x

2.

�2

�3

�1

1

2

321�1�2�3 x

y

0

y � ln (1 � x)

y � p1(x)

y � p0(x)

y � p2(x)

9.1.18 f(0) = 1, f ′(0) = (−1/2)(0 + 1)−3/2 = −1/2, f ′′(0) = (3/4)(0 + 1)−5/2 = 3/4, so that p0(x) = 1,
p1(x) = 1− x

2 , p2(x) = 1− x
2 + 3

8x
2.

y��1�x���1�2�

y�p0�x�

y�p1�x�

y�p2�x�

�1.0 �0.5 0.5 1.0 1.5 2.0
x

0.5

1.0

1.5

2.0

y

9.1.19 f(0) = 0. f ′(x) = sec2 x, f ′′(x) = 2 tanx sec2 x, so that f ′(0) = 1, f ′′(0) = 0. Thus p0(x) = 0,
p1(x) = x, p2(x) = x.

y � tan x

�2

�3

�4

�1

1

2

3

4

q�q x

y

y � p1(x) � p2(x)

y � p0(x)

9.1.20 f(0) = 1, f ′(0) = (−2)(1 + 0)−3 = −2, f ′′(0) = 6(1 + 0)−4 = 6. Thus p0(x) = 1, p1(x) = 1 − 2x,
p2(x) = 1− 2x+ 3x2.
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y��1�x���2�

y�p0�x�
y�p1�x�

y�p2�x�

�1.0 �0.5 0.5 1.0
x

�1

1

2

3

4

5

y

9.1.21 f(0) = 1, f ′(0) = −3(1 + 0)−4 = −3, f ′′(0) = 12(1 + 0)−5 = 12, so that p0(x) = 1, p1(x) = 1 − 3x,
p2(x) = 1− 3x+ 6x2.

2

3

1�1 x

y

0

y � p2(x)

y � p0(x)

y � p1(x)

y � (1 � x)�3

9.1.22 f(0) = 0, f ′(x) = 1√
1−x2

, f ′′(x) = x
(1−x2)3/2

, so that f ′(0) = 1, f ′′(0) = 0. Thus p0(x) = 0, p1(x) = x,

p2(x) = x.

y�p1�x��p2�x�

y�sin��1��x�

y�p0�x�

�1.0 �0.5 0.5 1.0
x

�1.5

�1.0

�0.5

0.5

1.0

1.5

y

9.1.23

a. p2(0.05) ≈ 1.025.

b. The absolute error is
√
1.05− p2(0.05) ≈ 7.68× 10−6.

9.1.24

a. p2(0.1) ≈ 1.032.

b. The absolute error is 1.11/3 − p2(0.1) ≈ 5.8× 10−5.

9.1.25

a. p2(0.08) ≈ 0.962.

b. The absolute error is p2(0.08)− 1√
1.08

≈ 1.5× 10−4.
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9.1.26

a. p2(0.06) = 0.058.

b. The absolute error is ln 1.06− p2(0.06) ≈ 6.9× 10−5.

9.1.27

a. p2(0.15) ≈ 0.861.

b. The absolute error is p2(0.15)− e−0.15 ≈ 5.4× 10−4.

9.1.28

a. p2(0.12) ≈ 0.726.

b. The absolute error is p2(0.12) =
1

1.123 ≈ 1.5× 10−2.

9.1.29

a. Note that f(1) = 1, f ′(1) = 3, and f ′′(1) = 6. Thus, p0(x) = 1, p1(x) = 1 + 3(x − 1), and p2(x) =
1 + 3(x− 1) + 3(x− 1)2.

b.

p0�x�

p1�x�

p2�x�

f�x�
0.0 0.2 0.4 0.6 0.8 1.0 1.2 x

0.5

1.0

1.5

2.0
y

9.1.30

a. Note that f(1) = 8, f ′(1) = 4√
1
= 4, and f ′′(1) = −2

(1)3/2
= −2 Thus, p0(x) = 8, p1(x) = 8 + 4(x − 1),

p2(x) = 8 + 4(x− 1)− (x− 1)2.

b.

p0�x�

p1�x�

p2�x�

f�x�

0.5 1.0 1.5 2.0 2.5 3.0 x

5

10

15

y

9.1.31

a. p0(x) =
√
2
2 , p1(x) =

√
2
2 +

√
2
2 (x− π

4 ), p2(x) =
√
2
2 +

√
2
2 (x− π

4 )−
√
2
4 (x− π

4 )
2.
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b.

�1

1

y

d q f�d x

y � sin x

y � p0(x)

y � p1(x)

y � p2(x)

9.1.32

a. p0(x) =
√
3
2 , p1(x) =

√
3
2 − 1

2

(
x− π

6

)
, p2(x) =

√
3
2 − 1

2

(
x− π

6

)− √
3
4

(
x− π

6

)2
.

b.

y�cos�x�

y�p0�x�

y�p1�x�

y�p2�x�

�1 1 2
x

�1.5

�1.0

�0.5

0.5

1.0

1.5

y

9.1.33

a. p0(x) = 3, p1(x) = 3 + 1
6 (x− 9), p2(x) = 3 + 1

6 (x− 9)− 1
216 (x− 9)2.

b.

�2

2

4

6

8

4 6 8 10 12 14 16 18 20 22 242 x

y

y � �x

y � p0(x)

y � p2(x)

y � p1(x)

9.1.34

a. p0(x) = 2, p1(x) = 2 + 1
12 (x− 8), p2(x) = x+ 1

12 (x− 8)− 1
288 (x− 8)2.

b.

y�x�1�3�

y�p0�x�

y�p1�x�

y�p2�x�

2 4 6 8 10 12
x

0.5

1.0

1.5

2.0

y
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9.1.35

a. p0(x) = 1, p1(x) = 1 + 1
e (x− e), p2(x) = 1 + 1

e (x− e)− 1
2e2 (x− e)2.

b.

y � ln x

�1

�2

�3

1

2

3

4

5

1 2 3 4 5 6 7 8 9 x

y

y � p0(x)

y � p1(x)

y � p2(x)

9.1.36

a. p0(x) = 2, p1(x) = 2 + 1
32 (x− 16), p2(x) = 2 + 1

32 (x− 16)− 3
4096 (x− 16)2.

b.

y�x�1�4�

y�p0�x�

y�p1�x�y�p2�x�

5 10 15 20
x

0.5

1.0

1.5

2.0

y

9.1.37

a. f(1) = π
4 + 2, f ′(1) = 1

2 + 2 = 5
2 . f ′′(1) = − 1

2 + 2 = 3
2 . p0(x) = 2 + π

4 , p1(x) = 2 + π
4 + 5

2 (x − 1),
p2(x) = 2 + π

4 + 5
2 (x− 1) + 3

4 (x− 1)2.

b.

9.1.38

a. f(ln 2) = 2, f ′(ln 2) = 2, f ′′(ln 2) = 2. So p0(x) = 2, p1(x) = 2 + 2(x− ln 2), p2(x) = 2 + 2(x− ln 2) +
(x− ln 2)2.
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b.

y�p0�x�

y�f�x�

y�p1�x�

y�p2�x�

0.5 1.0 1.5 2.0 x

1

2

3

4

5

6

7

y

9.1.39

a. Ue the Taylor polynomial centered at 0 with f(x) = ex. We have p3(x) = 1 + x + 1
2x

2 + 1
6x

3.
p3(0.12) ≈ 1.127.

b. |f(0.12)− p3(0.12)| ≈ 8.9× 10−6.

9.1.40

a. Use the Taylor polynomial centered at 0 with f(x) = cos(x). We have p3(x) = 1− 1
2x

2. p3(−0.2) = 0.98.

b. |f(0.12)− p3(0.12)| ≈ 6.7× 10−5.

9.1.41

a. Use the Taylor polynomial centered at 0 with f(x) = tan(x). We have p3(x) = x+ 1
3x

3.
p3(−0.1) ≈ −0.100.

b. |p3(−0.1)− f(−0.1)| ≈ 1.3× 10−6.

9.1.42

a. Use the Taylor polynomial centered at 0 with f(x) = ln(1 + x). We have p3(x) = x − 1
2x

2 + 1
3x

3.
p3(0.05) ≈ 0.0488.

b. |p3(0.05)− f(0.05)| ≈ 1.5× 10−6.

9.1.43

a. Use the Taylor polynomial centered at 0 with f(x) =
√
1 + x. We have p3(x) = 1 + 1

2x− 1
8x

2 + 1
16x

3.
p3(0.06) ≈ 1.030.

b. |f(0.06)− p3(0.06)| ≈ 4.9× 10−7.

9.1.44

a. Use the Taylor polynomial centered at 81 with f(x) = 4
√
x. We have p3(x) = 3+ 1

108 (x−81)− 1
23328 (x−

81)2 + 7
22674816 (x− 81)3. p3(79) ≈ 2.981.

b. |p3(79)− f(79)| ≈ 4.3× 10−8.

9.1.45

a. Use the Taylor polynomial centered at 100 with f(x) =
√
x. We have p3(x) = 10 + 1

20 (x − 100) −
1

8000 (x− 100)2 + 1
1600000 (x− 100)3. p3(101) ≈ 10.050.

b. |p3(101)− f(101)| ≈ 3.9× 10−9.

9.1.46

a. Use the Taylor polynomial centered at 125 with f(x) = 3
√
x. We have p3(x) = 5 + 1

75 (x − 125) −
1

28125 (x− 125)2 + 1
6328125 (x− 125)3. p3(125) ≈ 5.013.
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b. |p3(126)− f(126)| ≈ 8.4× 10−10.

9.1.47

a. Use the Taylor polynomial centered at 0 with f(x) = sinh(x). Note that f(0) = 0, f ′(0) = 1, f ′′(0) = 0
and f ′′′(0) = 1. Then we have p3(x) = x+ x3/6, so sinh(.5) ≈ (.5)3/6 + .5 ≈ 0.521.

b. |p3(.5)− sinh(.5)| ≈ 2.6× 10−4.

9.1.48

a. Use the Taylor polynomial centered at 0 with f(x) = tanh(x), Note that f(0) = 0, f ′(0) = 1, f ′′(0) = 0,
f ′′′(0) = −2. Then we have p3(x) = −x3/3 + x, so tanh(.5) ≈ −(.5)2/3 + .5 ≈ 0.449.

b. |p3(x)− tanh(.5)| ≈ 3.8× 10−3.

9.1.49 With f(x) = sinx we have Rn(x) =
f (n+1)(c)

(n+ 1)!
xn+1 for c between 0 and x.

9.1.50 With f(x) = cos 2x we have Rn(x) =
f (n+1)(c)

(n+ 1)!
xn+1 for c between 0 and x.

9.1.51 With f(x) = e−x we have f (n+1)(x) = (−1)n+1e−x, so that Rn(x) =
(−1)n+1e−c

(n+ 1)!
xn+1 for c between

0 and x.

9.1.52 With f(x) = cosx we have Rn(x) =
f (n+1)(c)

(n+ 1)!

(
x− π

2

)n+1

for c between π
2 and x.

9.1.53 With f(x) = sinx we have Rn(x) =
f (n+1)(c)

(n+ 1)!

(
x− π

2

)n+1

for c between π
2 and x.

9.1.54 With f(x) = 1
1−x we have f (n+1)(x) = (−1)n+1 1

(1−x)n+2 so that Rn(x) =
(−1)n+1

(1− c)n+2

(
xn+1

)
for c

between 0 and x.

9.1.55 f(x) = sinx, so f (5)(x) = cosx. Because cosx is bounded in magnitude by 1, the remainder is

bounded by |R4(x)| ≤ 0.35

5! ≈ 2.0× 10−5.

9.1.56 f(x) = cosx, so f (4)(x) = cosx. Because cosx is bounded in magnitude by 1, the remainder is

bounded by |R3(x)| ≤ 0.454

4! ≈ 1.7× 10−3.

9.1.57 f(x) = ex, so f (5)(x) = ex. Because e0.25 is bounded by 2, |R4(x)| ≤ 2 · 0.255

5! ≈ 1.63× 10−5.

9.1.58 f(x) = tanx, so f (3)(x) = 2 sec2 x(sec2 x+ 2 tan2 x). Now, since both tanx and secx are increasing
on [0, π/2], and 0.3 < π

6 ≈ 0.524, we can get an upper bound on f (3)(x) on [0, 0.3] by evaluating at π
6 ; this

gives f (3)(x) < 16
3 on [0, 0.3]. Thus |R2(x)| ≤ 16

3 · 0.33

3! = 2.4× 10−2.

9.1.59 f(x) = e−x, so f (5)(x) = −e−x. Because f (5) achieves its maximum magnitude in the range at x = 0,

which has absolute value 1, |R4(x)| ≤ 1 · 0.55

5! ≈ 2.6× 10−4.

9.1.60 f(x) = ln(1 + x), so f (4)(x) = − 6
(x+1)4 . On [0, 0.4], the maximum magnitude is 6, so |R3(x)| ≤

6 · 0.44

4! = 6.4× 10−3.

9.1.61 Here n = 3 or 4, so use n = 4, and M = 1 because f (5)(x) = cosx, so that R4(x) ≤ (π/4)5

5! ≈
2.49× 10−3.
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9.1.62 n = 2 or 3, so use n = 3, and M = 1 because f (4)(x) = cosx, so that |R3(x)| ≤ (π/4)4

4! ≈ 1.6× 10−2.

9.1.63 n = 2 and M = e1/2 < 2, so |R2(x)| ≤ 2 · (1/2)3

3! ≈ 4.2× 10−2.

9.1.64 n = 1 or 2, so use 2, and f (3)(x) = 2 sec2 x(sec2 x+ 2 tan2 x). On [−π
6 , π

6 ] this achieves its maximum

value at ±π
6 ; that value is 16

3 . Thus |R2(x)| ≤ 16
3 · (π/6)3

3! ≈ 1.28× 10−1.

9.1.65 n = 2; f (3)(x) = 2
(1+x)3 , which achieves its maximum at x = −0.2: |f (3)(x)| = 2

0.83 < 4. Then

|R2(x)| ≤ 4 · 0.23

3! ≈ 5.4× 10−3.

9.1.66 n = 1, f ′′(x) = − 1
4 (1 + x)−3/2, which achieves its maximum magnitude at x = −0.1, where it is less

than 1/3. Thus R1(x) ≤ 1
3 · 0.12

2! ≈ 1.7× 10−3.

9.1.67 Use the Taylor series for ex at x = 0. The derivatives of ex are ex. On [−0.5, 0], the maximum

magnitude of any derivative is thus 1 at x = 0, so |Rn(−0.5)| ≤ 0.5n+1

(n+1)! , so for Rn(−0.5) < 10−3 we need
n = 4.

9.1.68 Use the Taylor series at x = 0 for sinx. The magnitude of any derivative of sinx is bounded by 1,

so |Rn(0.2)| ≤ 0.2n+1

(n+1)! , so for Rn(0.2) < 10−3 we need n = 3.

9.1.69 Use the Taylor series for cosx at x = 0. The magnitude of any derivative of cosx is bounded by 1,

so |Rn(−0.25)| ≤ 0.25n+1

(n+1)! , so for |Rn(−0.25)| < 10−3 we need n = 3.

9.1.70 Use the Taylor series for f(x) = ln(1 + x) at x = 0. Then |f (n+1)(x)| = n!
(1+x)n+1 , which for x ∈

[−0.15, 0] achieves its maximum at x = −.15. This maximum is less than (1.2)n+1 · n!. Thus |Rn(−0.15)| ≤
(1.2)n+1 · n! · .18n+1

(n+1)! =
1.2·(0.15)n+1

n , so for |Rn(−0.15)| < 10−3 we need n = 3.

9.1.71 Use the Taylor series for f(x) =
√
x at x = 1. Then |f (n+1)(x)| = 1·3·····(2n−1)

2n+1 x−(2n+1)/2, which
achieves its maximum on [1, 1.06] at x = 1. Then

|Rn(1.06)| ≤ 1 · 3 · · · · · (2n− 1)

2n+1
· (1.06− 1)n+1

(n+ 1)!
,

and for |Rn(0.06)| < 10−3 we need n = 1.

9.1.72 Use the Taylor series for f(x) =
√
1/(1− x) at x = 0. Then |f (n+1)(x)| = 1 · 3 · · · · · (2n+ 1)

2n+1
(1 −

x)(−3−2n)/2, which achieves its maximum on [0, 0.15] at x = 0.15. Thus

|Rn(0.15)| ≤ 1 · 3 · · · · · (2n+ 1)

2n+1
·
(

1

1− 0.15

)(2n+3)/2

· 0.15
n+1

(n+ 1)!

=
1 · 3 · · · · · (2n+ 1)

2n+1(n+ 1)!
·
(

0.15n+1

0.85(2n+3)/2

)
,

and for |Rn(0.15)| < 10−3 we need n = 3.

9.1.73

a. False. If f(x) = e−2x, then f (n)(x) = (−1)n2ne−2x, so that f (n)(0) �= 0 and all powers of x are present
in the Taylor series.

b. True. The constant term of the Taylor series is f(0) = 1. Higher-order terms all involve derivatives of
f(x) = x5 − 1 evaluated at x = 0; clearly for n < 5, f (n)(0) = 0, and for n > 5, the derivative itself
vanishes. Only for n = 5, where f (5)(x) = 5!, is the derivative nonzero, so the coefficient of x5 in the
Taylor series is f (5)(0)/5! = 1 and the Taylor polynomial of order 10 is in fact x5 − 1. Note that this
statement is true of any polynomial of degree at most 10.
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c. True. The odd derivatives of
√
1 + x2 vanish at x = 0, while the even ones do not.

d. True. Clearly the second-order Taylor polynomial for f at a has degree at most 2. However, the
coefficient of (x− a)2 is 1

2f
′′(a), which is zero because f has an inflection point at a.

9.1.74 Let p(x) =
∑n

k=0 ck(x−a)k be the nth polynomial for f(x) at a. Because f(a) = p(a), it follows that
c0 = f(0). Now, the kth derivative of p(x), 1 ≤ k ≤ n, is p(k)(x) = k!ck + terms involving (x− a)i, i > 0, so

that f (k)(a) = p(k)(a) = k! · ck so that ck = f(k)(a)
k! .

9.1.75

a. This matches (C) because for f(x) = (1 + 2x)1/2, f ′′(x) = −(1 + 2x)−3/2 so f ′′(0)
2! = − 1

2 .

b. This matches (E) because for f(x) = (1 + 2x)−1/2, f ′′(x) = 3(1 + 2x)−5/2, so f ′′(0)
2! = 3

2 .

c. This matches (A) because f (n)(x) = 2ne2x, so that f (n)(0) = 2n, which is (A)’s pattern.

d. This matches (D) because f ′′(x) = 8(1 + 2x)−3 and f ′′(0) = 8, so that f ′′(0)/2! = 4

e. This matches (B) because f ′(x) = −6(1 + 2x)−4 so that f ′(0) = −6.

f. This matches (F) because f (n)(x) = (−2)ne−2x, so f (n)(0) = (−2)n, which is (F)’s pattern.

9.1.76

a. �0.4 �0.2 0.2 0.4
x

0.01

0.02

0.03

0.04

0.05

0.06

y

|ln(1− x)− p2(x)|
�0.4 �0.2 0.2 0.4

x

0.005

0.010

0.015

y

|ln(1− x)− p3(x)|

b. The error seems to be largest at x = 1
2 and smallest at x = 0.

c. The error bound found in Example 7 for |ln(1− x)− p3(x)| was 0.25. The actual error seems much
less than that, about 0.02.

9.1.77

a. p2(0.1) = 0.1. The maximum error in the approximation is 1 · 0.13

3! ≈ 1.67× 10−4.

b. p2(0.2) = 0.2. The maximum error in the approximation is 1 · 0.23

3! ≈ 1.33× 10−3.

9.1.78

a. p1(0.1) = 0.1. f ′′(x) = 2 tanx(1 + tan2 x). Because tan(0.1) < 0.2, |f ′′(c)| ≤ 2(.2)(1 + .22) = 0.416.
Thus the maximum error is 0.416

2! · 0.12 ≈ 2.1× 10−3.

b. p1(0.2) = 0.2. The maximum error is 0.416
2 · 0.22 ≈ 8.3× 10−3.

9.1.79

a. p3(0.1) = 1− .01/2 = 0.995. The maximum error is 1 · 0.14

4! ≈ 4.2× 10−6.

b. p3(0.2) = 1− .04/2 = 0.98. The maximum error is 1 · 0.24

4! ≈ 6.7× 10−5.
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9.1.80

a. p2(0.1) = 0.1 (we can take n = 2 because the coefficient of x2 in p2(x) is 0). f (3)(x) = 6x2−2
(x2+1)3 has a

maximum magnitude value of 2, the maximum error is 2 · 0.13

3! ≈ 3.3× 10−4.

b. p2(0.2) = 0.2. The maximum error is 2 · 0.23

3! ≈ 2.7× 10−3.

9.1.81

a. p1(0.1) = 1.05. Because |f ′′(x)| = 1
4 (1 + x)−3/2 has a maximum value of 1/4 at x = 0, the maximum

error is 1
4 · 0.12

2 ≈ 1.3× 10−3.

b. p1(0.2) = 1.1. The maximum error is 1
4 · 0.22

2 = 5× 10−3.

9.1.82

a. p2(0.1) = 0.1 − 0.01/2 = 0.095. Because |f (3)(x)| = 2
(x+1)3 achieves a maximum of 2 at x = 0, the

maximum error is 2 · 0.13

3! ≈ 3.3× 10−4.

b. p2(0.2) = 0.2− 0.04/2 = 0.18. The maximum error is 2 · 0.23

3! ≈ 2.7× 10−3.

9.1.83

a. p1(0.1) = 1.1. Because f ′′(x) = ex is less than 2 on [0, 0.1], the maximum error is less than 2 · 0.12

2! =
10−2.

b. p1(0.2) = 1.2. The maximum error is less than 2 · 0.22

2! = .04 = 4× 10−2.

9.1.84

a. p1(0.1) = 0.1. Because f ′′(x) = x
(1−x2)3/2

is less than 1 on [0, 0.2], the maximum error is 1 · 0.13

3! ≈
1.7× 10−4.

b. p1(0.2) = 0.2. The maximum error is 1 · 0.23

3! ≈ 1.3× 10−3.

9.1.85

a.

|secx− p2(x)| |secx− p4(x)|
−0.2 3.4× 10−4 5.5× 10−6

−0.1 2.1× 10−5 8.5× 10−8

0.0 0 0

0.1 2.1× 10−5 8.5× 10−8

0.2 3.4× 10−4 5.5× 10−6

b. The errors are equal for positive and negative x.
This makes sense, because sec(−x) = secx and
pn(−x) = pn(x) for n = 2, 4. The errors appear
to get larger as x gets farther from zero.

9.1.86

a.

|cosx− p2(x)| |cosx− p4(x)|
−0.2 6.66× 10−5 8.88× 10−8

−0.1 4.17× 10−6 1.39× 10−9

0.0 0 0

0.1 4.17× 10−6 1.39× 10−9

0.2 6.66× 10−5 8.88× 10−8

b. The errors are equal for positive and negative x.
This makes sense, because cos(−x) = cosx and
pn(−x) = pn(x) for n = 2, 4. The errors appear
to get larger as x gets farther from zero.
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9.1.87

a.

|e−x − p1(x)| |e−x − p2(x)|
−0.2 2.14× 10−2 1.40× 10−3

−0.1 5.17× 10−3 1.71× 10−4

0.0 0 0

0.1 4.84× 10−3 1.63× 10−4

0.2 1.87× 10−2 1.27× 10−3

b. The errors are different for positive and negative
displacements from zero, and appear to get larger
as x gets farther from zero.

9.1.88

a.

|f(x)− p1(x)| |f(x)− p2(x)|
−0.2 2.31× 10−2 3.14× 10−4

−0.1 5.36× 10−3 3.61× 10−4

0.0 0 0

0.1 4.69× 10−3 3.10× 10−4

0.2 1.77× 10−2 2.32× 10−3

b. The errors are different for positive and negative
displacements from zero, and appear to get larger
as x gets farther from zero.

9.1.89

a.

|tanx− p1(x)| |tanx− p3(x)|
−0.2 2.71× 10−3 4.34× 10−5

−0.1 3.35× 10−4 1.34× 10−6

0.0 0 0

0.1 3.35× 10−4 1.34× 10−6

0.2 2.71× 10−3 4.34× 10−5

b. The errors are equal for positive and negative x.
This makes sense, because tan(−x) = − tanx and
pn(−x) = −pn(x) for n = 1, 3. The errors appear
to get larger as x gets farther from zero.

9.1.90 The true value of cos
π

12
=

1 +
√
3

2
√
2

≈ 0.966. The 6th-order Taylor polynomial for cosx centered at

x = 0 is

p6(x) = 1− x2

2
+

x4

24
− x6

720
.

Evaluating the polynomials at x = π/12 produces the following table:

n pn
(

π
12

) |pn
(

π
12

)− cos π
12 |

1 1.0000000000 3.41× 10−2

2 0.9657305403 1.95× 10−4

3 0.9657305403 1.95× 10−4

4 0.9659262729 4.47× 10−7

5 0.9659262729 4.47× 10−7

6 0.9659258257 5.47× 10−10

The 6th-order Taylor polynomial for cosx centered at x = π/6 is

p6(x) =

√
3

2
− 1

2

(
x− π

6

)
−

√
3

4

(
x− π

6

)2
+

1

12

(
x− π

6

)3
+

√
3

48

(
x− π

6

)4
− 1

240

(
x− π

6

)5
−

√
3

1440

(
x− π

6

)6
.

Copyright c© 2015 Pearson Education, Inc.



76 Chapter 9. Power Series

Evaluating the polynomials at x = π/12 produces the following table:

n pn
(

π
12

) |pn
(

π
12

)− cos π
12 |

1 0.9969250977 3.10× 10−2

2 0.9672468750 1.32× 10−3

3 0.9657515877 1.74× 10−4

4 0.9659210972 4.73× 10−6

5 0.9659262214 3.95× 10−7

6 0.9659258342 7.88× 10−9

Comparing the tables shows that using the polynomial centered at x = 0 is more accurate when n is
even while using the polynomial centered at x = π/6 is more accurate when n is odd. To see why, consider
the remainder. Let f(x) = cosx. By Theorem 9.2, the magnitude of the remainder when approximating
f(π/12) by the polynomial pn centered at 0 is:∣∣∣Rn

( π

12

)∣∣∣ = |f (n+1)(c)|
(n+ 1)!

( π

12

)n+1

for some c with 0 < c < π
12 , while the magnitude of the remainder when approximating f(π/12) by the

polynomial pn centered at π/6 is: ∣∣∣Rn

( π

12

)∣∣∣ = |f (n+1)(c)|
(n+ 1)!

( π

12

)n+1

for some c with π
12 < c < π

6 . When n is odd, |f (n+1)(c)| = | cos c|. Because cosx is a positive and decreasing
function over [0, π/6], the magnitude of the remainder in using the polynomial centered at π/6 will be less
than the remainder in using the polynomial centered at 0, and the former polynomial will be more accurate.
When n is even, |f (n+1)(c)| = | sin c|. Because sinx is a positive and increasing function over [0, π/6], the
remainder in using the polynomial centered at 0 will be less than the remainder in using the polynomial
centered at π/6, and the former polynomial will be more accurate.

9.1.91 The true value of e0.35 ≈ 1.419067549. The 6th-order Taylor polynomial for ex centered at x = 0 is

p6(x) = 1 + x+
x2

2
+

x3

6
+

x4

24
+

x5

120
+

x6

720
.

Evaluating the polynomials at x = 0.35 produces the following table:

n pn (0.35) |pn (0.35)− e0.35|
1 1.350000000 6.91× 10−2

2 1.411250000 7.82× 10−3

3 1.418395833 6.72× 10−4

4 1.419021094 4.65× 10−5

5 1.419064862 2.69× 10−6

6 1.419067415 1.33× 10−7

The 6th-order Taylor polynomial for ex centered at x = ln 2 is

p6(x) = 2 + 2(x− ln 2) + (x− ln 2)2 +
1

3
(x− ln 2)3 +

1

12
(x− ln 2)4

+
1

60
(x− ln 2)5 +

1

360
(x− ln 2)6.

Evaluating the polynomials at x = 0.35 produces the following table:

Copyright c© 2015 Pearson Education, Inc.



9.1. Approximating Functions With Polynomials 77

n pn (0.35) |pn (0.35)− e0.35|
1 1.313705639 1.05× 10−1

2 1.431455626 1.24× 10−2

3 1.417987101 1.08× 10−3

4 1.419142523 7.50× 10−5

5 1.419063227 4.32× 10−6

6 1.419067762 2.13× 10−7

Comparing the tables shows that using the polynomial centered at x = 0 is more accurate for all n. To
see why, consider the remainder. Let f(x) = ex. By Theorem 9.2, the magnitude of the remainder when
approximating f(0.35) by the polynomial pn centered at 0 is:

|Rn(0.35)| = |f (n+1)(c)|
(n+ 1)!

(0.35)n+1 =
ec

(n+ 1)!
(0.35)n+1

for some c with 0 < c < 0.35 while the magnitude of the remainder when approximating f(0.35) by the
polynomial pn centered at ln 2 is:

|Rn(0.35)| = |f (n+1)(c)|
(n+ 1)!

|0.35− ln 2|n+1 =
ec

(n+ 1)!
(ln 2− 0.35)n+1

for some c with 0.35 < c < ln 2. Because ln 2 − 0.35 ≈ 0.35, the relative size of the magnitudes of the
remainders is determined by ec in each remainder. Because ex is an increasing function, the remainder in
using the polynomial centered at 0 will be less than the remainder in using the polynomial centered at ln 2,
and the former polynomial will be more accurate.

9.1.92

a. Let x be a point in the interval on which the derivatives of f are assumed continuous. Then f ′ is con-
tinuous on [a, x], and the Fundamental Theorem of Calculus implies that because f is an antiderivative
of f ′, then

∫ x

a
f ′(t) dt = f(x)− f(a), or f(x) = f(a) +

∫ x

a
f ′(t) dt.

b. Using integration by parts with u = f ′(t) and dv = dt, note that we may choose any antiderivative of
dv; we choose t− x = −(x− t). Then

f(x) = f(a)− f ′(t)(x− t)

∣∣∣∣x
t=a

+

∫ x

a

(x− t)f ′′(t) dt

= f(a)− f ′(a)(x− a) +

∫ x

a

(x− t)f ′′(t) dt.

c. Integrate by parts again, using u = f ′′(t), dv = (x− t) dt, so that v = − (x−t)2

2 :

f(x) = f(a) + f ′(a)(x− a) +

∫ x

a

(x− t)f ′′(t) dt

= f(a) + f ′(a)(x− a)− (x− t)2

2
f ′′(t)

∣∣∣∣x
a

+
1

2

∫ x

a

(x− t)2f ′′′(t) dt

= f(a) + f ′(a)(x− a) +
f ′′(t)
2

(x− a)2 +
1

2

∫ x

a

(x− t)2f ′′′(t) dt.

It is clear that continuing this process will give the desired result, because successive integral of x− t
give − 1

k! (x− t)k.
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d. Lemma: Let g and h be continuous functions on the interval [a, b] with g(t) ≥ 0. Then there is a
number c in [a, b] with ∫ b

a

h(t)g(t) dt = h(c)

∫ b

a

g(t) dt.

Proof: We note first that if g(t) = 0 for all t in [a, b], then the result is clearly true. We can thus
assume that there is some t in [a, b] for which g(t) > 0. Because g is continuous, there must be an
interval about this t on which g is strictly positive, so we may assume that∫ b

a

g(t) dt > 0.

Because h is continuous on [a, b], the Extreme Value Theorem shows that h has an absolute minimum
value m and an absolute maximum value M on the interval [a, b]. Thus

m ≤ h(t) ≤ M

for all t in [a, b], so

m

∫ b

a

g(t) dt ≤
∫ b

a

h(t)g(t) dt ≤ M

∫ b

a

g(t) dt.

Because
∫ b

a
g(t) dt > 0, we have

m ≤
∫ b

a
h(t)g(t) dt∫ b

a
g(t) dt

≤ M.

Now there are points in [a, b] at which h(t) equals m and M , so the Intermediate Value Theorem shows
that there is a point c in [a, b] at which

h(c) =

∫ b

a
h(t)g(t) dt∫ b

a
g(t) dt

or ∫ b

a

h(t)g(t) dt = h(c)

∫ b

a

g(t) dt.

Applying the lemma with h(t) = f(n+1)(t)
n! , g(t) = (x− t)n, we see that Rn(x) =

f(n+1)(c)
n!

∫ x

a
(x− t)n dt =

f(n+1)(c)
n! · 1

n+1 (x− a)n+1 = f(n+1)(c)
(n+1)! (x− a)n+1 for some c ∈ [a, b].

9.1.93

a. The slope of the tangent line to f(x) at x = a is by definition f ′(a); by the point-slope form for the
equation of a line, we have y − f(a) = f ′(a)(x− a), or y = f(a) + f ′(a)(x− a).

b. The Taylor polynomial centered at a is p1(x) = f(a) + f ′(a)(x− a), which is the tangent line at a.

9.1.94

a. p2(x) = f(a) + f ′(a)(x− a) + f ′′(a)
2 (x− a)2, so that p′2(x) = f ′(a) + f ′′(a)(x− a) and p′′2(x) = f ′′(a).

If f has a local maximum at a, then f ′(a) = 0, f ′′(a) ≤ 0, but then p′2(a) = 0 and p′′2(a) ≤ 0 by the
above, so that p2(x) also has a local maximum at a.

b. Similarly, if f has a local minimum at a, then f ′(a) = 0, f ′′(a) ≥ 0, but then p′2(a) = 0 and p′′2(a) ≥ 0
by the above, so that p2(x) also has a local minimum at a.

c. Recall that f has an inflection point at a if the second derivative of f changes sign at a. But p′′2(x) is
a constant, so p2 does not have an inflection point at a (or anywhere else).
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d. No. For example, let f(x) = x3. Then p2(x) = 0, so that the second-order Taylor polynomial has a
local maximum at x = 0, but f(x) does not. It also has a local minimum at x = 0, but f(x) does not.

9.1.95

a. We have

f(0) = f (4)(0) = sin 0 = 0 f(π) = f (4)(π) = sinπ = 0

f ′(0) = f (5)(0) = cos 0 = 1 f ′(π) = f (5)(0) = cosπ = −1

f ′′(0) = − sin 0 = 0 f ′′(π) = − sinπ = 0

f ′′′(0) = − cos 0 = −1 f ′′′(π) = − cosπ = 1.

Thus

p5(x) = x− x3

3!
+

x5

5!

q5(x) = −(x− π) +
1

3!
(x− π)3 − 1

5!
(x− π)5.

b. A plot of the three functions, with sinx the black solid line, p5(x) the dashed line, and q5(x) the dotted
line is below.
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p5(x) and sinx are almost indistinguishable on [−π/2, π/2], after which p5(x) diverges pretty quickly
from sinx. q5(x) is reasonably close to sinx over the entire range, but the two are almost indistin-
guishable on [π/2, 3π/2]. p5(x) is a better approximation than q5(x) on about [−π, π/2), while q5(x)
is better on about (π/2, 2π].

c. Evaluating the errors gives

x |sinx− p5(x)| |sinx− q5(x)|
π
4 3.6× 10−5 7.4× 10−2

π
2 4.5× 10−3 4.5× 10−3

3π
4 7.4× 10−2 3.6× 10−5

5π
4 2.3 3.6× 10−5

7π
4 20.4 7.4× 10−2

d. p5(x) is a better approximation than q5(x) only at x = π
4 , in accordance with part (b). The two are

equal at x = π
2 , after which q5(x) is a substantially better approximation than p5(x).
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9.1.96

a. We have

f(1) = ln 1 = 0 f(e) = ln e = 1

f ′(1) = 1 f ′(e) =
1

3

f ′′(1) = −1 f ′′(e) = − 1

e2

f ′′′(1) = 2 f ′′′(e) =
2

e3
.

Thus

p3(x) = (x− 1)− 1

2!
(x− 1)2 +

2

3!
(x− 1)3 = (x− 1)− 1

2
(x− 1)2 +

1

3
(x− 1)3

q3(x) = 1 +
1

e
(x− e)− 1

2e2
(x− e)2 +

1

3e3
(x− e)3.

b. A plot of the three functions, with lnx the black solid line, p3(x) the dashed line, and q3(x) the dotted
line is below.
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c. Evaluating the errors gives

x |lnx− p3(x)| |lnx− q3(x)|
0.5 2.6× 10−2 3.6× 10−1

1.0 0 8.4× 10−2

1.5 1.1× 10−2 1.6× 10−2

2.0 1.4× 10−1 1.5× 10−3

2.5 5.8× 10−1 1.1× 10−5

3.0 1.6 2.7× 10−5

3.5 3.3 1.4× 10−3

d. p3(x) is a better approximation than q3(x) for x = 0.5, 1.0, and 1.5, and q3(x) is a better approximation
for the other points. To see why this is true, note that on [0.5, 4] that f (4)(x) = − 6

x4 is bounded in
magnitude by 6

0.54 = 96, so that (using P3 for the error term for p3 and Q3 as the error term for q3)

P3(x) ≤ 96 · |x− 1|4
4!

= 4 |x− 1|4 , Q3(x) ≤ 96 · |x− e|4
4!

= 4 |x− e|4 .

Thus the relative sizes of P3(x) and Q3(x) are governed by the distance of x from 1 and e. Looking at
the different possibilities for x reveals why the results in part (c) hold.
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9.1.97

a. We have

f(36) =
√
36 = 6 f(49) =

√
49 = 7

f ′(36) =
1

2
· 1√

36
=

1

12
f ′(49) =

1

2
· 1√

49
=

1

14
.

Thus

p1(x) = 6 +
1

12
(x− 36) q1(x) = 7 +

1

14
(x− 49).

b. Evaluating the errors gives

x |√x− p1(x)| |√x− q1(x)|
37 5.7× 10−4 6.0× 10−2

39 5.0× 10−3 4.1× 10−2

41 1.4× 10−2 2.5× 10−2

43 2.6× 10−2 1.4× 10−2

45 4.2× 10−2 6.1× 10−3

47 6.1× 10−2 1.5× 10−3

c. p1(x) is a better approximation than q1(x) for x ≤ 41, and q1(x) is a better approximation for x ≥ 43.
To see why this is true, note that f ′′(x) = − 1

4x
−3/2, so that on [36, 49] it is bounded in magnitude by

1
4 · 36−3/2 = 1

864 . . Thus (using P1 for the error term for p1 and Q1 for the error term for q1)

P1(x) ≤ 1

864
· |x− 36|2

2!
=

1

1728
(x− 36)2, Q1(x) ≤ 1

864
· |x− 49|2

2!
=

1

1728
(x− 49)2.

It follows that the relative sizes of P1(x) and Q1(x) are governed by the distance of x from 36 and 49.
Looking at the different possibilities for x reveals why the results in part (b) hold.

9.1.98

a. The quadratic Taylor polynomial for sinx centered at π
2 is

p2(x) = sin
π

2
+ cos

π

2
·
(
x− π

2

)
− 1

2
sin

π

2
·
(
x− π

2

)2
= 1− 1

2

(
x− π

2

)2
= −1

2
x2 +

π

2
x+ 1− π2

8
.

b. Let q(x) = ax2 + bx+ c. Because q(0) = sin 0 = 0, we must have c = 0, so that q(x) = ax2 + bx. Then
the other two conditions give us a pair of linear equation in a and b:

π2

4
a+

π

2
b = 1

π2a+ πb = 0

where the first equation comes from the fact that q(π/2) = sin(π/2) = 1 and the second from the fact
that q(π) = sinπ = 0. Solving the linear system of equations gives b = 4

π and a = − 4
π2 , so that

q(x) = − 4

π2
x2 +

4

π
x.
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c. A plot of the three function, with sinx the black solid line, p2(x) the dashed line, and q(x) the dotted
line is below.
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d. Evaluating the errors gives

x |sinx− p2(x)| |sinx− q(x)|
π
4 1.6× 10−2 4.3× 10−2

π
2 0 0
3π
4 1.6× 10−2 4.3× 10−2

π 2.3× 10−1 0

e. q is a better approximation than p at x = π, and the two are equal at x = π
2 . At the other two

points, however, p2(x) is a better approximation than q(x). Clearly q(x) will be exact at x = 0, x = π
2 ,

and x = π, because it was chosen that way. Also clearly p2(x) will be exact at x = π
2 since it is the

Taylor polynomial centered at π
2 . The fact that p2(x) is a better approximation than q(x) at the two

intermediate points is a result of the way the polynomials were constructed: the goal of p2(x) was to
be as good an approximation as possible near x = π

2 , while the goal of q(x) was to match sinx at three
given points. Overall, it appears that q(x) does a better job over the full range (the total area between
q(x) and sinx is certainly smaller than the total area between p2(x) and sinx).

9.2 Properties of Power Series

9.2.1 c0 + c1x+ c2x
2 + c3x

3.

9.2.2 c0 + c1(x− 3) + c2(x− 3)2 + c3(x− 3)3.

9.2.3 Generally the Ratio Test or Root Test is used.

9.2.4 Theorem 9.3 says that on the interior of the interval of convergence, a power series centered at a
converges absolutely, and that the interval of convergence is symmetric about a. So it makes sense to try to
find this interval using the Ratio Test, and check the endpoints individually.

9.2.5 The radius of convergence does not change, but the interval of convergence may change at the end-
points.

9.2.6 2R, because for |x| < 2R we have |x/2| < R so that
∑

ck(x/2)
k converges.

9.2.7 |x| < 1
4 .

9.2.8 (−1)kckx
k = ck(−x)k, so the two series have the same radius of convergence, because |−x| = |x|.
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9.2.9 Using the Root Test: limk→∞ k
√|ak| = limk→∞ |2x| = |2x|. So the radius of convergence is 1

2 . At
x = 1/2 the series is

∑
1 which diverges, and at x = −1/2 the series is

∑
(−1)k which also diverges. So the

interval of convergence is (−1/2, 1/2).

9.2.10 Using the Ratio Test: lim
k→∞

∣∣∣ak+1

ak

∣∣∣ = lim
k→∞

∣∣∣ (2x)k+1

(k+1)! · k!
(2x)k

∣∣∣ = lim
k→∞

∣∣∣ 2x
k+1

∣∣∣ = 0. So the radius of

convergence is ∞ and the interval of convergence is (−∞,∞).

9.2.11 Using the Root Test, lim
k→∞

k
√|ak| = lim

k→∞
|x−1|
k1/k = |x− 1|. So the radius of convergence is 1. At x = 2,

we have the harmonic series (which diverges) and at x = 0 we have the alternating harmonic series (which
converges). Thus the interval of convergence is [0, 2).

9.2.12 Using the Ratio Test: lim
k→∞

∣∣∣ak+1

ak

∣∣∣ = lim
k→∞

∣∣∣ (x−1)k+1

(k+1)! · k!
(x−1)k

∣∣∣ = lim
k→∞

∣∣∣x−1
k+1

∣∣∣ = 0. Thus the radius of

convergence is ∞ and the interval of convergence is (−∞,∞).

9.2.13 Using the Ratio Test: lim
k→∞

∣∣∣ak+1

ak

∣∣∣ = lim
k→∞

∣∣∣ (k+1)k+1xk+1

kkxk

∣∣∣ = lim
k→∞

(k + 1)
(
k+1
k

)k |x| = ∞ (for x �= 0)

because lim
k→∞

(
k+1
k

)k
= e. Thus, the radius of convergence is 0, the series only converges at x = 0.

9.2.14 Using the Ratio Test: lim
k→∞

∣∣∣ak+1

ak

∣∣∣ = lim
k→∞

∣∣∣ (k+1)!(x−10)k+1

k!(x−10)k

∣∣∣ = lim
k→∞

(k + 1) |x− 10| = ∞ (for x �= 10).

Thus, the radius of convergence is 0, the series only converges at x = 10.

9.2.15 Using the Root Test: lim
k→∞

k
√|ak| = lim

k→∞
sin(1/k)|x| = sin(0)|x| = 0. Thus, the radius of convergence

is ∞ and the interval of convergence is (−∞,∞).

9.2.16 Using the Root Test: lim
k→∞

k
√|ak| = lim

k→∞
2|x−3|
k1/k = 2 |x− 3|. Thus, the radius of convergence is 1/2.

When x = 7/2, we have the harmonic series (which diverges), and when x = 5/2, we have the alternating
harmonic series which converges. The interval of convergence is thus [5/2, 7/2).

9.2.17 Using the Root Test: lim
k→∞

k
√|ak| = lim

k→∞
|x|
3 = |x|

3 , so the radius of convergence is 3. At −3, the

series is
∑

(−1)k, which diverges. At 3, the series is
∑

1, which diverges. So the interval of convergence is
(−3, 3).

9.2.18 Using the Root Test: lim
k→∞

k
√|ak| = lim

k→∞
|x|
5 = |x|

5 , so the radius of convergence is 5. At 5, we obtain∑
(−1)k which diverges. At −5, we have

∑
1, which also diverges. So the interval of convergence is (−5, 5).

9.2.19 Using the Root Test: lim
k→∞

k
√|ak| = lim

k→∞
|x|
k = 0, so the radius of convergence is infinite and the

interval of convergence is (−∞,∞).

9.2.20 Using the Ratio Test: lim
k→∞

∣∣∣ak+1

ak

∣∣∣ = lim
k→∞

∣∣∣( (k+1)(x−4)k+1

2k+1 · 2k

k(x−4)k

)∣∣∣ = lim
k→∞

(
k+1
k · |x−4|

2

)
= |x−4|

2 ,

so that the radius of convergence is 2. The interval is (2, 6), because at the left endpoint, the series becomes∑
k (which diverges) and at the right endpoint, it becomes

∑
(−1)kk (which diverges).

9.2.21 Using the Ratio Test: lim
k→∞

∣∣∣ (k+1)2x2k+2

(k+1)! · k!
k2x2k

∣∣∣ = lim
k→∞

k+1
k2 x2 = 0, so the radius of convergence is

infinite, and the interval of convergence is (−∞,∞).

9.2.22 Using the Root Test: lim
k→∞

k
√|ak| = lim

k→∞
k1/k |x− 1| = |x− 1|. The radius of convergence is therefore

1. At both x = 2 and x = 0 the series diverges by the Divergence Test. The interval of convergence is therefore
(0, 2).

9.2.23 Using the Ratio Test: lim
k→∞

∣∣∣ak+1

ak

∣∣∣ = ∣∣∣x2k+3

3k
· 3k−1

x2k+1

∣∣∣ = x2

3 so that the radius of convergence is
√
3. At

x =
√
3, the series is

∑
3
√
3, which diverges. At x = −√

3, the series is
∑

(−3
√
3), which also diverges, so

the interval of convergence is (−√
3,
√
3).
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9.2.24
∑(−x

10

)2k
=
∑(

x2

100

)k
. Using the Root Test: lim

k→∞
k
√|ak| = lim

k→∞
x2

100 = x2

100 , so that the radius of

convergence is 10. At x = ±10, the series is then
∑

1, which diverges, so the interval of convergence is
(−10, 10).

9.2.25 Using the Root Test: lim
k→∞

k
√|ak| = lim

k→∞
(|x−1|)k

k+1 = |x− 1|, so the series converges when |x− 1| < 1,

so for 0 < x < 2. The radius of convergence is 1. At x = 2, the series diverges by the Divergence Test. At
x = 0, the series diverges as well by the Divergence Test. Thus the interval of convergence is (0, 2).

9.2.26 Using the Ratio Test:

lim
k→∞

|ak+1|
|ak| =

∣∣∣∣ (−2)k+1(x+ 3)k+1

3k+2
· 3k+1

(−2)k(x+ 3)k

∣∣∣∣ = 2

3
|x+ 3|.

Thus the series converges when 2
3 |x + 3| < 1, or − 9

2 < x < − 3
2 . At x = − 9

2 , the series diverges by the
Divergence Test. At x = − 3

2 , the series diverges by the Divergence Test. Thus the interval of convergence is(− 9
2 ,− 3

2

)
.

9.2.27 Using the Ratio Test: lim
k→∞

∣∣∣ak+1

ak

∣∣∣ = ∣∣∣ (k+1)20xk+1

(2k+3)! · (2k+1)!
xkk20

∣∣∣ = lim
k→∞

(
k+1
k

)20 |x|
(2k+2)(2k+3) = 0, so the

radius of convergence is infinite, and the interval of convergence is (−∞,∞).

9.2.28 Using the Root Test: lim
k→∞

k
√|ak| = lim

k→∞
|x3|
27 =

|x3|
27 , so the radius of convergence is 3. The series is

divergent by the Divergence Test for x = ±3, so the interval of convergence is (−3, 3).

9.2.29 f(3x) = 1
1−3x =

∑∞
k=0 3

kxk, which converges for |x| < 1/3, and diverges at the endpoints.

9.2.30 g(x) = x3

1−x =
∑∞

k=0 x
k+3, which converges for |x| < 1 and is divergent at the endpoints.

9.2.31 h(x) = 2x3

1−x =
∑∞

k=0 2x
k+3, which converges for |x| < 1 and is divergent at the endpoints.

9.2.32 f(x3) = 1
1−x3 =

∑∞
k=0 x

3k. By the Root Test, lim
k→∞

k
√|ak| =

∣∣x3
∣∣, so this series also converges for

|x| < 1. It is divergent at the endpoints.

9.2.33 p(x) = 4x12

1−x =
∑∞

k=0 4x
k+12 = 4

∑∞
k=0 x

k+12, which converges for |x| < 1. It is divergent at the
endpoints.

9.2.34 f(−4x) = 1
1+4x =

∑∞
k=0(−4x)k =

∑∞
k=0(−1)k4kxk, which converges for |x| < 1/4 and is divergent

at the endpoints.

9.2.35 f(3x) = ln(1− 3x) = −∑∞
k=1

(3x)k

k = −∑∞
k=1

3k

k xk. Using the Ratio Test:

lim
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣ = lim
k→∞

3k

k + 1
|x| = 3 |x| ,

so the radius of convergence is 1/3. The series diverges at 1/3 (harmonic series), and converges at −1/3
(alternating harmonic series).

9.2.36 g(x) = x3 ln(1 − x) = −∑∞
k=1

xk+3

k . Using the Ratio Test: lim
k→∞

∣∣∣ak+1

ak

∣∣∣ = lim
k→∞

k
k+1 |x| = |x|, so the

radius of convergence is 1. The series diverges at 1 and converges at −1.

9.2.37 h(x) = x ln(1 − x) = −∑∞
k=1

xk+1

k . Using the Ratio Test: lim
k→∞

∣∣∣ak+1

ak

∣∣∣ = lim
k→∞

k
k+1 |x| = |x| , so the

radius of convergence is 1, and the series diverges at 1 (harmonic series) but converges at −1 (alternating
harmonic series).
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9.2.38 f(x3) = ln(1 − x3) = −∑∞
k=1

x3k

k . Using the Ratio Test: lim
k→∞

∣∣∣ak+1

ak

∣∣∣ = lim
k→∞

k
k+1

∣∣x3
∣∣ = ∣∣x3

∣∣ , so
the radius of convergence is 1. The series diverges at 1 (harmonic series) but converges at −1 (alternating
harmonic series).

9.2.39 p(x) = 2x6 ln(1 − x) = −2
∑∞

k=1
xk+6

k . Using the Ratio Test: lim
k→∞

∣∣∣ak+1

ak

∣∣∣ = lim
k→∞

k
k+1 |x| = |x|, so

the radius of convergence is 1. The series diverges at 1 (harmonic series) but converges at −1 (alternating
harmonic series).

9.2.40 f(−4x) = ln(1+ 4x) = −∑∞
k=1

(−4x)k

k . Using the Ratio Test: lim
k→∞

∣∣∣ak+1

ak

∣∣∣ = lim
k→∞

k
k+14 |x| = 4 |x|, so

the radius of convergence is 1/4. The series converges at 1/4 (alternating harmonic series) but diverges at
−1/4 (harmonic series).

9.2.41 The power series for f(x) is
∑∞

k=0(2x)k, convergent for −1 < 2x < 1, so for −1/2 < x < 1/2. The
power series for g(x) = f ′(x) is

∑∞
k=1 k(2x)

k−1 · 2 = 2
∑∞

k=1 k(2x)
k−1, also convergent on |x| < 1/2.

9.2.42 The power series for f(x) is
∑∞

k=0 x
k, convergent for −1 < x < 1, so the power series for g(x) =

1
2f

′′(x) is 1
2

∑∞
k=2 k(k − 1)xk−2 = 1

2

∑∞
k=0(k + 1)(k + 2)xk, also convergent on |x| < 1.

9.2.43 The power series for f(x) is
∑∞

k=0 x
k, convergent for −1 < x < 1, so the power series for g(x) =

1
6f

′′′(x) is 1
6

∑∞
k=3 k(k − 1)(k − 2)xk−3 = 1

6

∑∞
k=0(k + 1)(k + 2)(k + 3)xk, also convergent on |x| < 1.

9.2.44 The power series for f(x) is
∑∞

k=0(−1)kx2k, convergent on |x| < 1. Because g(x) = − 1
2f

′(x), the
power series for g is − 1

2

∑∞
k=1(−1)k2kx2k−1 =

∑∞
k=1(−1)k+1kx2k−1, also convergent on |x| < 1.

9.2.45 The power series for 1
1−3x is

∑∞
k=0(3x)

k, convergent on |x| < 1/3. Because g(x) = ln(1 − 3x) =

−3
∫

1
1−3x dx and because g(0) = 0, the power series for g(x) is −3

∑∞
k=0 3

k 1
k+1x

k+1 = −∑∞
k=1

3k

k xk, also
convergent on [−1/3, 1/3).

9.2.46 The power series for x
1+x2 is x

∑∞
k=0(−1)kx2k =

∑∞
k=0(−1)kx2k+1, convergent on |x| < 1. Be-

cause g(x) = 2
∫
f(x) dx, and because g(0) = 0, the power series for g(x) is 2

∑∞
k=0(−1)k 1

2k+2x
2k+2 =∑∞

k=0(−1)k 1
k+1x

2k+2. This can be written as
∑∞

k=1(−1)k+1 1
kx

2k, which is convergent on [−1, 1].

9.2.47 Start with g(x) = 1
1+x . The power series for g(x) is

∑∞
k=0(−1)kxk. Because f(x) = g(x2), its power

series is
∑∞

k=0(−1)kx2k. The radius of convergence is still 1, and the series is divergent at both endpoints.
The interval of convergence is (−1, 1).

9.2.48 Start with g(x) = 1
1−x . The power series for g(x) is

∑∞
k=0 x

k. Because f(x) = g(x4), its power series

is
∑∞

k=0 x
4k. The radius of convergence is still 1, and the series is divergent at both endpoints. The interval

of convergence is (−1, 1).

9.2.49 Note that f(x) = 3
3+x = 1

1+(1/3)x . Let g(x) =
1

1+x . The power series for g(x) is
∑∞

k=0(−1)kxk, so the

power series for f(x) = g((1/3)x) is
∑∞

k=0(−1)k3−kxk =
∑∞

k=0

(−x
3

)k
. Using the Ratio Test: lim

k→∞

∣∣∣ak+1

ak

∣∣∣ =
lim
k→∞

∣∣∣ 3−(k+1)xk+1

3−kxk

∣∣∣ = |x|
3 , so the radius of convergence is 3. The series diverges at both endpoints. The

interval of convergence is (−3, 3).

9.2.50 Note that f(x) = 1
2 ln(1 − x2). The power series for g(x) = ln(1 − x) is −∑∞

k=1
1
kx

k, so the power
series for f(x) = 1

2g(x
2) is −1

2

∑∞
k=1

1
kx

2k. The radius of convergence is still 1. The series diverges at both
1 and −1, its interval of convergence is (−1, 1).

9.2.51 Note that f(x) = ln
√
4− x2 = 1

2 ln(4 − x2) = 1
2

(
ln 4 + ln

(
1− x2

4

))
= ln 2 + 1

2 ln
(
1− x2

4

)
. Now,

the power series for g(x) = ln(1 − x) is −∑∞
k=1

1
kx

k, so the power series for f(x) is ln 2 − 1
2

∑∞
k=1

1
k
x2k

4k
=

ln 2 −∑∞
k=1

x2k

k22k+1 . Now, lim
k→∞

∣∣∣ak+1

ak

∣∣∣ = lim
k→∞

∣∣∣ x2k+2

(k+1)22k+3 · k22k+1

x2k

∣∣∣ = lim
k→∞

k
4(k+1)x

2 = x2

4 , so that the radius

of convergence is 2. The series diverges at both endpoints, so its interval of convergence is (−2, 2).
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9.2.52 By Example 5, the Taylor series for g(x) = tan−1 x is
∑∞

k=0
(−1)kx2k+1

2k+1 , so that f(x) = g((2x)2) has

Taylor series
∑∞

k=0
(−1)k(2x)4k+2

2k+1 =
∑∞

k=0
(−1)k42k+1

2k+1 x4k+2. Using the Ratio Test: lim
k→∞

∣∣∣ak+1

ak

∣∣∣ =
lim
k→∞

∣∣∣ 42k+3x4k+6

2k+3 · 2k+1
42k+1x4k+2

∣∣∣ = lim
k→∞

16(2k+1)
2k+3 x4 = 16x4, so that the radius of convergence is 1/2. The interval

of convergence is (−1/2, 1/2).

9.2.53

a. True. This power series is centered at x = 3, so its interval of convergence will be symmetric about 3.

b. True. Use the Root Test.

c. True. Substitute x2 for x in the series.

d. True. Because the power series is zero on the interval, all its derivatives are as well, which implies
(differentiating the power series) that all the ck are zero.

9.2.54 Using the Root Test: lim
k→∞

k
√|ak| = lim

k→∞
(
1 + 1

k

)k |x| = ex. Thus, the radius of convergence is 1
e .

9.2.55 Using the Ratio Test: lim
k→∞

∣∣∣ak+1

ak

∣∣∣ = lim
k→∞

∣∣∣ (k+1)! xk+1

(k+1)k+1 · kk

k! xk

∣∣∣ = lim
k→∞

(
k

k+1

)k
|x| = 1

e |x|. The radius

of convergence is therefore e.

9.2.56 1 +
∑∞

k=1
1
2kx

k

9.2.57
∑∞

k=0(−1)k 1
k+1x

k

9.2.58
∑∞

k=0(−1)k x2k+1

(k+1)2

9.2.59
∑∞

k=1(−1)k x2k

k!

9.2.60 The power series for f(ax) is
∑

ck(ax)
k. Then

∑
ck(ax)

k converges if and only if |ax| < R (because∑
ckx

k converges for |x| < R), which happens if and only if |x| < R
|a| .

9.2.61 The power series for f(x−a) is
∑

ck(x−a)k. Then
∑

ck(x−a)k converges if and only if |x− a| < R,
which happens if and only if a−R < x < a+R, so the radius of convergence is the same.

9.2.62 Let’s first consider where this series converges. By the Root Test, lim
k→∞

k
√|ak| = lim

k→∞
(x2 + 1)2 =

(x2 + 1)2, which is always greater than 1 for x �= 0. This series also diverges when x = 0, because there
we have the divergent series

∑
1. Because this series diverges everywhere, it doesn’t represent any function,

except perhaps the empty function.

9.2.63 This is a geometric series with ratio
√
x− 2, so its sum is 1

1−(
√
x−2)

= 1
3−√

x
. Again using the Root

Test, lim
k→∞

k
√|ak| = |√x− 2|, so the interval of convergence is given by |√x− 2| < 1, so 1 <

√
x < 3 and

1 < x < 9. The series diverges at both endpoints.

9.2.64 This series is 1
4

∑∞
k=1

x2k

k . Because
∑∞

k=1
xk

k is the power series for − ln(1−x), the power series given

is − 1
4 ln(1− x2). Using the Ratio Test: lim

k→∞

∣∣∣ak+1

ak

∣∣∣ = ∣∣∣∣ limk→∞
x2k+2

4k+4 · 4k
x2k

∣∣∣∣ = lim
k→∞

k
k+1x

2 = x2, so the radius of

convergence is 1. The series diverges at both endpoints (it is a multiple of the harmonic series). The interval
of convergence is (−1, 1).

9.2.65 This is a geometric series with ratio e−x, so its sum is 1
1−e−x . By the Root Test, lim

k→∞
k
√|ak| = e−x,

so the power series converges for x > 0.
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9.2.66 This is a geometric series with ratio x−2
9 , so its sum is (x−2)/9

1−(x−2)/9 = x−2
9−(x−2) =

x−2
11−x . Using the Root

Test: lim
k→∞

k
√|ak| = lim

k→∞
∣∣x−2

9

∣∣ = ∣∣x−2
9

∣∣, so the series converges for |x− 2| < 9, or −7 < x < 11. It diverges

at both endpoints.

9.2.67 This is a geometric series with ratio (x2 − 1)/3, so its sum is 1

1− x2−1
3

= 3
3−(x2−1) = 3

4−x2 . Using the

Root Test, the series converges for
∣∣x2 − 1

∣∣ < 3, so that −2 < x2 < 4 or −2 < x < 2. It diverges at both
endpoints.

9.2.68 Replacing x by x− 1 gives lnx =
∑∞

k=1
(−1)k+1(x−1)k

k . Using the Ratio Test: lim
k→∞

∣∣∣ak+1

ak

∣∣∣ =
lim
k→∞

∣∣∣ (x−1)k+1

k+1 · k
(x−1)k

∣∣∣ = lim
k→∞

k
k+1 |x− 1| = |x− 1| , so that the series converges for |x− 1| < 1. Checking

the endpoints, the interval of convergence is (0, 2].

9.2.69 The power series for ex is
∑∞

k=0
xk

k! . Substitute −x for x to get e−x =
∑∞

k=0(−1)k xk

k! . The series
converges for all x.

9.2.70 Substitute 2x for x in the power series for ex to get e2x =
∑∞

k=0
(2x)k

k! =
∑∞

k=0
2k

k! x
k. The series

converges for all x.

9.2.71 Substitute −3x for x in the power series for ex to get e−3x =
∑∞

k=0
(−3x)k

k! =
∑∞

k=0(−1)k 3k

k! x
k. The

series converges for all x.

9.2.72 Multiply the power series for ex by x2 to get x2ex =
∑∞

k=0
xk+2

k! , which converges for all x.

9.2.73 The power series for xmf(x) is
∑

ckx
k+m. The radius of convergence of this power series is deter-

mined by the limit

lim
k→∞

∣∣∣∣ck+1x
k+1+m

ckxk+m

∣∣∣∣ = lim
k→∞

∣∣∣∣ck+1x
k+1

ckxk

∣∣∣∣ ,
and the right-hand side is the limit used to determine the radius of convergence for the power series for f(x).
Thus the two have the same radius of convergence.

9.2.74

a. Rn = f(x)− Sn(x) =
∑∞

k=n x
k. This is a geometric series with ratio x. Its sum is then Rn = xn

1−x as
desired.

b. Rn(x) increases without bound as x approaches 1, and its absolute value smallest at x = 0 (where it
is zero). In general, for x > 0, Rn(x) < Rn−1(x), so the approximations get better the more terms of
the series are included.
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c. To minimize |Rn(x)|, set its derivative to zero. Assuming n > 1, we have R′
n(x) = n(1−x)xn−1+xn

(1−x)2 ,

which is zero for x = 0. There is a minimum at this critical point.

d.

The following is a plot that shows, for each x ∈
(0, 1), the n required so that Rn(x) < 10−6. The
closer x gets to 1, the more terms are required in
order for the estimate given by the power series
to be accurate. The number of terms increases
rapidly as x → 1.

0.2 0.4 0.6 0.8 1.0
x

50

100

150

y

9.2.75

a. f(x)g(x) = c0d0 + (c0d1 + c1d0)x+ (c0d2 + c1d1 + c2d0)x
2 + . . .

b. The coefficient of xn in f(x)g(x) is
∑n

i=0 cidn−i.

9.2.76 The function 1√
1−x2

is the derivative of the inverse sine function, and sin−1(0) = 0, so the power

series for sin−1 x is the integral of the given power series, or x+ 1
6x

3 + 1·3
2·4·5x

5 + 1·3·5
2·4·6·7x

7 + . . .. This can also

be written x+
∑∞

k=1
1·3···(2k−1)

2·4···2k·(2k+1)x
2k+1.

9.2.77

a.

For both graphs, the difference between the true
value and the estimate is greatest at the two ends
of the range; the difference at 0.9 is greater than
that at −0.9.
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b. The difference between f(x) and Sn(x) is greatest for x = 0.9; at that point, f(x) = 1
(1−0.9)2 = 100,

so we want to find n such that Sn(x) is within 0.01 of 100. We find that S111 ≈ 99.98991435 and
S112 ≈ 99.99084790, so n = 112.

9.3 Taylor Series

9.3.1 The nth Taylor Polynomial is the nth sum of the corresponding Taylor Series.

9.3.2 In order to have a Taylor series centered at a, a function f must have derivatives of all orders on some
interval containing a.
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9.3.3 The nth coefficient is f(n)(a)
n! .

9.3.4 The interval of convergence is found in the same manner that it is found for a more general power
series.

9.3.5 Substitute x2 for x in the Taylor series. By theorems proved in the previous section about power
series, the interval of convergence does not change except perhaps at the endpoints of the interval.

9.3.6 The Taylor series terminates if f (n)(0) = 0 for n > N for some N . For (1 + x)p, this occurs if and
only if p is an integer ≥ 0.

9.3.7 It means that the limit of the remainder term is zero.

9.3.8 The Maclaurin series is e2x =
∑∞

k=0
(2x)k

k! . This is determined by substituting 2x for x in the Maclaurin
series for ex.

9.3.9

a. Note that f(0) = 1, f ′(0) = −1, f ′′(0) = 1, and f ′′′(0) = −1. So the Maclaurin series is 1−x+x2/2−
x3/6 + · · · .

b.
∑∞

k=0(−1)k xk

k! .

c. The series converges on (−∞,∞), as can be seen from the Ratio Test.

9.3.10

a. Note that f(0) = 1, f ′(0) = 0, f ′′(0) = −4, f ′′′(0) = 0, f (4)(0) = 16, . . . . Thus the Maclaurin series is

1− 2x2 + 2x4

3 − 4x6

45 + · · · .

b.
∑∞

k=0(−1)k (2x)2k

(2k)!

c. The series converges on (−∞,∞), as can be seen from the Ratio Test.

9.3.11

a. Because the series for 1
1+x is 1− x+ x2 − x3 + · · · , the series for 1

1+x2 is 1− x2 + x4 − x6 + · · · .

b.
∑∞

k=0(−1)kx2k.

c. The absolute value of the ratio of consecutive terms is x2, so by the Ratio Test, the radius of convergence
is 1. The series diverges at the endpoints by the Divergence Test, so the interval of convergence is
(−1, 1).

9.3.12

a. Note that f(0) = 0, f ′(0) = 4, f ′′(0) = −16, f ′′′(0) = 128, and f ′′′′(0) = −1526. Thus, the series is

given by 4x− 16x2

2 + 128x3

6 − 1536x4

24 + · · · .

b.
∑∞

k=1(−1)k+1 (k−1)!(4x)k

k! =
∑∞

k=1(−1)k+1 (4x)k

k .

c. The absolute value of the ratio of consecutive terms is 4|x|k
k+1 , which has limit 4|x| as k → ∞, so the

interval of convergence is (−1/4, 1/4]. Note that for x = 1/4 we have the alternating harmonic series,
while for x = −1/4 we have negative 1 times the harmonic series, which diverges.

9.3.13

a. Note that f(0) = 1, and that f (n)(0) = 2n. Thus, the series is given by 1 + 2x+ 4x2

2 + 8x3

6 + · · · .
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b.
∑∞

k=0
(2x)k

k! .

c. The absolute value of the ratio of consecutive terms is 2|x|
n , which has limit 0 as n → ∞. So by the

Ratio Test, the interval of convergence is (−∞,∞).

9.3.14

a. Substitute 2x for x in the Taylor series for (1 + x)−1, to obtain the series 1− 2x+ 4x2 − 8x3 + · · · .
b.
∑∞

k=0(−1)k(2x)k.

c. The Root Test shows that the series converges absolutely for |2x| < 1, or |x| < 1/2. The interval of
convergence is (−1/2, 1/2), because the series at both endpoints diverge by the Divergence Test.

9.3.15

a. By integrating the Taylor series for 1
1+x2 (which is the derivative of tan−1(x)), we obtain the series

x− x3

3 + x5

5 − x7

7 + · · · . Then by replacing x by x/2 we have x
2 − x3

3·23 + x5

5·25 − x7

7·27 + · · · .
b.
∑∞

k=0(−1)k 1
(2k+1)·22k+1x

2k+1.

c. By the Ratio Test (the ratio of consecutive terms has limit x2

4 ), the radius of convergence is |x| < 2.
Also, at the endpoints we have convergence by the Alternating Series Test, so the interval of convergence
is [−2, 2].

9.3.16

a. Substitute 3x for x in the Taylor series for sinx, to obtain the series 3x− 9x3

2 + 81x5

40 − 243x7

560 + · · · .

b.
∑∞

k=0(−1)k 32k+1

(2k+1)!x
2k+1.

c. The ratio of successive terms is 9
2n(2n+1)x

2, which has limit zero as n → ∞, so the interval of conver-

gence is (−∞,∞).

9.3.17

a. Note that f(0) = 1, f ′(0) = ln 3, f ′′(0) = ln2 3, f ′′(0) = ln3 3. So the first four terms of the desired

series are 1 + (ln 3)x+ ln2 3
2 x2 + ln3 3

6 x3 + · · · .

b.
∑∞

k=0
(lnk 3)xk

k! .

c. The ratio of successive terms is (lnk+1 3)xk+1

(k+1)! · k!
(lnk 3)xk = ln 3

k+1x, and the limit as k → ∞ of this quantity

is 0, so the interval of convergence is (−∞,∞).

9.3.18

a. Note that f(0) = 0, f ′(0) = 1
ln 3 , f

′′(0) = − 1
ln 3 , f

′′′(0) = 2
ln3 , f

′′′′(0) = − 6
ln 3 . So the first terms of the

desired series are 0 + x
ln 3 − x2

2 ln 3 + x3

3 ln 3 − x4

4 ln 3 + · · · .

b.
∑∞

k=1
(−1)k+1xk

k ln 3 .

c. The absolute value of the ratio of successive terms is
∣∣∣ xk+1

(k+1) ln 3 · k ln 3
xk

∣∣∣ = k
k+1 |x|, which has limit |x|

as k → ∞. Thus the radius of convergence is 1. At x = −1 we have a multiple of the harmonic series
(which diverges) and at x = 1 we have a multiple of the alternating harmonic series (which converges)
so the interval of convergence is (−1, 1].
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9.3.19

a. Note that f(0) = 1, f ′(0) = 0, f ′′(0) = 9, f ′′′(0) = 0, etc. The first terms of the series are 1 + 9x2/2 +
81x4/4! + 36x6/6! + · · · .

b.
∑∞

k=0
(3x)2k

(2k)! .

c. The absolute value of the ratio of successive terms is
∣∣∣ (3x)2k+2

(2k+2)! · (2k)!
(3x)2k

∣∣∣ = 1
(2k+2)(2k+1) · 9x2, which has

limit 0 as x → ∞. The interval of convergence is therefore (−∞,∞).

9.3.20

a. Note that f(0) = 0, f ′(0) = 2, f ′′(0) = 0, f ′′′(0) = 8, etc. The first terms of the series are 2x+8x3/6+

32x5/5! + 128x7/7! + · · · , or 2x+ 4x3

3 + 4x5

15 + 8x7

315 + · · · .

b.
∑∞

k=0
22k+1x2k+1

(2k+1)! .

c. The absolute value of the ratio of successive terms is
∣∣∣ 22k+3x2k+3

(2k+3)! · (2k+1)!
22k+1x2k+1

∣∣∣ = 4
(2k+3)(2k+2)x

2, which

has limit 0 as x → ∞. The interval of convergence is therefore (−∞,∞).

9.3.21

a. Note that f(π/2) = 1, f ′(π/2) = cos(π/2) = 0, f ′′(π/2) = − sin(π/2) = −1, f ′′′(π/2) = − cos(π/2) =

0, and so on. Thus the series is given by 1− 1
2

(
x− π

2

)2
+ 1

24

(
x− π

2

)4 − 1
720

(
x− π

2

)6
+ · · · .

b.
∑∞

k=0(−1)k 1
(2k)!

(
x− π

2

)2k
.

9.3.22

a. Note that f(π) = −1, f ′(π) = − sinπ = 0, f ′′(π) = − cosπ = 1, f ′′′(π) = − sinπ = 0, and so on. Thus
the series is given by −1 + 1

2 (x− π)2 − 1
24 (x− π)4 + 1

720 (x− π)6 + · · · .
b.
∑∞

k=0(−1)k+1 1
(2k)! (x− π)2k.

9.3.23

a. Note that f (k)(1) = (−1)k k!
1k+1 = (−1)k ·k!. Thus the series is given by 1−(x−1)+(x−1)2−(x−1)3+· · · .

b.
∑∞

k=0(−1)k(x− 1)k.

9.3.24

a. Note that f (k)(2) = (−1)k k!
2k+1 . Thus the series is given by 1

2 − x−2
4 + 1

8 (x− 2)2 − 1
16 (x− 2)3 + 1

32 (x−
2)4 + · · · .

b.
∑∞

k=0(−1)k 1
2k+1 (x− 2)k.

9.3.25

a. Note that f (k)(3) = (−1)k−1 (k−1)!
3k

. Thus the series is given by ln(3)+ x−3
3 − 1

18 (x−3)2+ 1
81 (x−3)3+· · · .

b. ln 3 +
∑∞

k=1(−1)k+1 1
k·3k (x− 3)k.

9.3.26

a. Note that f (k)(ln 2) = 2. Thus the series is given by 2 + 2(x− ln(2)) + (x− ln(2))2 + 1
3 (x− ln(2))3 +

1
12 (x− ln(2))4 + · · · .

b.
∑∞

k=0
2
k! (x− ln(2))k.
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9.3.27

a. Note that f(1) = 2, f ′(1) = 2 ln 2, f ′′(1) = 2 ln2 2, f ′′′(1) = 2 ln3 2. The first terms of the series are

2 + (2 ln 2)(x− 1) + (ln2 2)(x− 1)2 + (ln3 2)(x−1)3

3 + · · · .

b.
∑∞

k=0
2(x−1)k lnk 2

k! .

9.3.28

a. Note that f(2) = 100, f ′(2) = 100 ln 10, f ′′(2) = 100 ln2 10, f ′′′(2) = 100 ln3 10. The first terms of the
series are 100 + 100(ln 10)(x− 2) + 50(ln2 10)(x− 2)2 + 50

3 (ln3 10)(x− 2)3 + · · · .

b.
∑∞

k=0
100(x−2)k lnk 10

k! .

9.3.29 Because the Taylor series for ln(1 + x) is x − x2

2 + x3

3 − x4

4 + · · · , the first four terms of the Taylor

series for ln(1 + x2) are x2 − x4

2 + x6

3 − x8

4 + · · ·, obtained by substituting x2 for x.

9.3.30 Because the Taylor series for sinx is x− x3

3! +
x5

5! − x7

7! + · · ·, the first four terms of the Taylor series

for sinx2 are x2 − x6

3! +
x10

5! − x14

7! + · · ·, obtained by substituting x2 for x.

9.3.31 Because the Taylor series for 1
1−x = 1+x+x2 +x3 + · · · , the first four terms of the Taylor series for

1
1−2x are 1 + 2x+ 4x2 + 8x3 + · · · obtained by substituting 2x for x.

9.3.32 Because the Taylor series for ln(1 + x) is x − x2/2 + x3/3 − x4/4 + · · · , the first four terms of the
Taylor series for 2x− 2x2 + 8x3/3− 4x4 + · · · obtained by substituting 2x for x.

9.3.33 The Taylor series for ex − 1 is the Taylor series for ex, less the constant term of 1, so it is x+ x2

2 +
x3

3! +
x4

4! + · · ·. Thus, the first four terms of the Taylor series for ex−1
x are 1+ x

2! +
x2

3! +
x3

4! + · · ·, obtained by
dividing the terms of the first series by x.

9.3.34 Because the Taylor series for cosx is 1− x2

2 + x4

4! − x6

6! + · · ·, the first four terms of the Taylor series

for cosx3 are 1− x6

2! +
x12

4! − x18

6! + · · ·, obtained by substituting x3 for x.

9.3.35 Because the Taylor series for (1 + x)−1 is 1− x+ x2 − x3 + · · ·, if we substitute x4 for x, we obtain
1− x4 + x8 − x12 + · · ·.

9.3.36 The Taylor series for tan−1 x is x − x3

3 + x5

5 − x7

7 − · · ·. Thus, the Taylor series for tan−1 x2 is

x2 − x6

3 + x10

5 − x14

7 − · · · and, multiplying by x, the Taylor series for x tan−1 x2 is x3 − x7

3 + x11

5 − x15

7 − · · ·.

9.3.37 The Taylor series for sinhx is x + x3

6 + x5

120 + x7

5040 + · · · . Thus, the Taylor series for sinhx2 is

x2 + x6

6 + x10

120 + x14

5040 + · · · obtained by substituting x2 for x.

9.3.38 The Taylor series for coshx is 1 + x2

2 + x4

24 + x6

720 + · · · . Thus, the Taylor series for cosh 3x is

1 + 9x2

2 + 81x4

24 + 729x6

720 + · · · , obtained by substituting 3x for x.

9.3.39

a. The binomial coefficients are
(−2

0

)
= 1,

(−2
1

)
= −2

1! = −2,
(−2

2

)
= (−2)(−3)

2! = 3,
(−2

3

)
= (−2)(−3)(−4)

3! =
−4.

Thus the first four terms of the series are 1− 2x+ 3x2 − 4x3 + · · ·.
b. 1− 2 · 0.1 + 3 · 0.01− 4 · 0.001 = 0.826
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9.3.40

a. The binomial coefficients are
(
1/2
0

)
= 1,

(
1/2
1

)
= 1/2

1! = 1
2 ,
(
1/2
2

)
= (1/2)(−1/2)

2! = − 1
8 ,
(
1/2
3

)
=

(1/2)(−1/2)(−3/2)
3! = 1

16 , so the first four terms of the series are 1 + 1
2x− 1

8x
2 + 1

16x
3 + · · ·.

b. 1 + 1
2 · .06− 1

8 · .062 + 1
16 · .063 ≈ 1.030

9.3.41

a. The binomial coefficients are
(
1/4
0

)
= 1,

(
1/4
1

)
= 1/4

1 = 1
4 ,
(
1/4
2

)
= (1/4)(−3/4)

2! = − 3
32 ,
(
1/4
3

)
=

(1/4)(−3/4)(−7/4)
3! = 7

128 , so the first four terms of the series are 1 + 1
4x− 3

32x
2 + 7

128x
3 + · · ·.

b. Substitute x = 0.12 to get approximately 1.029.

9.3.42

a. The binomial coefficients are
(−3

0

)
= 1,

(−3
1

)
= −3,

(−3
2

)
= (−3)(−4)

2! = 6,
(−3

3

)
= (−3)(−4)(−5)

3! = −10,
so the first four terms of the series are 1− 3x+ 6x2 − 10x3 + · · ·.

b. Substitute x = 0.1 to get 0.750.

9.3.43

a. The binomial coefficients are
(−2/3

0

)
= 1,

(−2/3
1

)
= − 2

3 ,
(−2/3

2

)
= (−2/3)(−5/3)

2! = 5
9 ,
(−2/3

3

)
=

(−2/3)(−5/3)(−8/3)
3! = − 40

81 , so the first four terms of the series are 1− 2
3x+ 5

9x
2 − 40

81x
3 + · · ·.

b. Substitute x = 0.18 to get 0.89512.

9.3.44

a. The binomial coefficients are
(
2/3
0

)
= 1,

(
2/3
1

)
= 2

3 ,
(
2/3
2

)
= (2/3)(−1/3)

2! = − 1
9 ,
(
2/3
3

)
= (2/3)(−1/3)(−4/3)

3! =
4
81 , so the first four terms of the series are 1 + 2

3x− 1
9x

2 + 4
81x

3 + · · ·
b. Substitute x = 0.02 to get ≈ 1.013289284.

9.3.45
√
1 + x2 = 1+ x2

2 − x4

8 + x6

16 −· · · . By the Ratio Test, the radius of convergence is 1. At the endpoints,
the series obtained are convergent by the Alternating Series Test. Thus, the interval of convergence is [−1, 1].

9.3.46
√
4 + x = 2

√
1 + x/4 = 2 + x

4 − x2

64 + x3

512 + · · · . The interval of convergence is (−4, 4].

9.3.47
√
9− 9x = 3

√
1− x = 3− 3

2x− 3
8x

2 − 3
16x

3 − · · · . The interval of convergence is [−1, 1].

9.3.48
√
1− 4x = 1− 2x− 2x2 − 4x3 − · · · , obtained by substituting −4x for x in the original series. The

interval of convergence of [−1/4, 1/4).

9.3.49
√
a2 + x2 = a

√
1 + x2

a2 = a + x2

2a − x4

8a3 + x6

16a5 − · · · . The series converges when x2

a2 is less than 1

in magnitude, so the radius of convergence is a. The series given by the endpoints is convergent by the
Alternating Series Test, so the interval of convergence is [−a, a].

9.3.50
√
4− 16x2 = 2

√
1− (2x)2 = 2− 4x2 − 4x4 − 8x6 − · · · . Because 2x was substituted for x to produce

this series, this series converges when −1 < 2x < 1, or − 1
2 < x < 1

2 . Because only even powers of x appear in
the series, the series at x = − 1

2 and x = 1
2 are identical, and are convergent. Thus the interval of convergence

is
[− 1

2 ,
1
2

]
.

9.3.51 (1 + 4x)−2 = 1− 2(4x) + 3(4x)2 − 4(4x)3 + · · · = 1− 8x+ 48x2 − 256x3 + · · · .

9.3.52 1
(1−4x)2 = (1− 4x)−2 = 1− 2(−4x) + 3(−4x)2 − 4(−4x)3 + · · · = 1 + 8x+ 48x2 + 256x3.
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9.3.53 1
(4+x2)2 = (4 + x2)−2 = 1

16 (1 + (x2/4))−2 = 1
16

(
1− 2 · x2

4 + 3 · x4

16 − 4 · x6

64 + · · ·
)

= 1
16 − 1

32x
2 +

3
256x

4 − 1
256x

6 + · · ·

9.3.54 Note that x2− 4x+5 = 1+(x− 2)2, so (1+ (x− 2)2)−2 = 1− 2(x− 2)2+3(x− 2)4− 4(x− 2)6+ · · ·.

9.3.55 (3 + 4x)−2 = 1
9

(
1 + 4x

3

)−2
= 1

9 − 2
9

(
4x
3

)
+ 3

9

(
4x
3

)2 − 4
9

(
4x
3

)3
+ · · · .

9.3.56 (1 + 4x2)−2 = (1 + (2x)2)−2 = 1− 2(2x)2 + 3(2x)4 − 4(2x)6 + · · · = 1− 8x2 + 48x4 − 256x6 + · · · .

9.3.57 The interval of convergence for the Taylor series for f(x) = sinx is (−∞,∞). The remainder is

Rn(x) =
f(n+1)(c)
(n+1)! xn+1 for some c. Because f (n+1)(x) is ± sinx or ± cosx, we have

lim
n→∞ |Rn(x)| ≤ lim

n→∞
1

(n+ 1)!

∣∣xn+1
∣∣ = 0

for any x.

9.3.58 The interval of convergence for the Taylor series for f(x) = cos 2x is (−∞,∞). The remainder is

Rn(x) =
f(n+1)(c)
(n+1)! xn+1 for some c. The nth derivative of cos 2x is 2n times either ± sinx or ± cosx, so that

f (n+1) is bounded by 2n+1 in magnitude. Thus lim
n→∞ |Rn(x)| ≤ lim

n→∞
2n+1

(n+1)!

∣∣xn+1
∣∣ = lim

n→∞
(2|x|)n+1

(n+1)! = 0 for
any x.

9.3.59 The interval of convergence for the Taylor series for e−x is (−∞,∞). The remainder is Rn(x) =
(−1)n+1e−c

(n+1)! xn+1 for some c. Thus lim
n→∞ |Rn(x)| = 0 for any x.

9.3.60 The interval of convergence for the Taylor series for f(x) = cosx is (−∞,∞). The remainder is

Rn(x) =
f(n+1)(c)
(n+1)! (x− π/2)n+1 for some c. Because fn+1(x) is ± cosx or ± sinx, we have

lim
n→∞ |Rn(x)| ≤ lim

n→∞
1

(n+ 1)!

∣∣(x− π/2)n+1
∣∣ = 0

for any x.

9.3.61

a. False. Not all of its derivatives are defined at zero - in fact, none of them are.

b. True. The derivatives of cscx involve positive powers of cscx and cotx, both of which are defined at
π/2, so that cscx has continuous derivatives at π/2.

c. False. For example, the Taylor series for f(x2) doesn’t converge at x = 1.9, because the Taylor series
for f(x) doesn’t converge at 1.92 = 3.61.

d. False. The Taylor series centered at 1 involves derivatives of f evaluated at 1, not at 0.

e. True. The follows because the Taylor series must itself be an even function.

9.3.62

a. The relevant Taylor series are: cos 2x = 1−2x2+ 2
3x

4− 4
45x

6+ · · · , and 2 sinx = 2x− 1
3x

3+ 1
60x

5−· · · .
Thus, the first four terms of the resulting series are cos 2x+ 2 sinx = 1 + 2x− 2x2 − 1

3x
3 + 2

3x
4 + · · ·.

b. Because each series converges (absolutely) on (−∞,∞), so does their sum. The radius of convergence
is ∞.
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9.3.63

a. The relevant Taylor series are: ex = 1+x+ x2

2! +
x3

3! +
x4

4! +
x5

5! +
x6

6! + · · · and e−x = 1−x+ x2

2! − x3

3! +
x4

4! −
x5

5! +
x6

6! + · · · . Thus the first four terms of the resulting series are 1
2 (e

x + e−x) = 1+ x2

2! +
x4

4! +
x6

6! + · · · .
b. Because each series converges (absolutely) on (−∞,∞), so does their sum. The radius of convergence

is ∞.

9.3.64

a. The first four terms of the Taylor series for sinx are x − x3

6 + x5

120 − x7

5040 , so the first four terms for
sin x
x are 1− x2

6 + x4

120 − x6

5040 .

b. The radius of convergence is the same as that for sinx, namely ∞.

9.3.65

a. Use the binomial theorem. The binomial coefficients are
(−2/3

0

)
= 1,

(−2/3
1

)
= − 2

3 ,
(−2/3

2

)
= (−2/3)(−5/3)

2!

= 5
9 ,
(−2/3

3

)
= (−2/3)(−5/3)(−8/3)

3! = − 40
81 and then, substituting x2 for x, we obtain 1 − 2

3x
2 + 5

9x
4 −

40
81x

6 + · · · .
b. From Theorem 9.6 the radius of convergence is determined from

∣∣x2
∣∣ < 1, so it is 1.

9.3.66

a. The first four terms of cosx are 1− x2

2 + x4

24 − x6

720 , so the first four terms of cosx2 are 1− x4

2 + x8

24 − x12

720 ,

and thus the first four terms of x2 cosx2 are x2 − x6

2 + x10

24 − x14

720 .

b. The radius of convergence is ∞.

9.3.67

a. From the binomial formula, the Taylor series for (1 − x)p is
∑(p

k

)
(−1)kxk, so the Taylor series for

(1−x2)p is
∑(p

k

)
(−1)kx2k. Here p = 1/2, and the binomial coefficients are

(
1/2
0

)
= 1,

(
1/2
1

)
= 1/2

1! = 1
2 ,(

1/2
2

)
= (1/2)(−1/2)

2! = − 1
8 ,
(
1/2
3

)
= (1/2)(−1/2)(−3/2)

3! = 1
16 so that (1−x2)1/2 = 1− 1

2x
2− 1

8x
4− 1

16x
6+· · ·.

b. From Theorem 9.6 the radius of convergence is determined from
∣∣x2
∣∣ < 1, so it is 1.

9.3.68

a. Because bx = ex ln b, the Taylor series is 1 + x ln b+ 1
2! (x ln b)

2 + 1
3! (x ln b)

3 + · · ·
b. Because the series for ex converges on (−∞,∞), the radius of convergence for the series in part a is

∞.

9.3.69

a. f(x) = (1+x2)−2; using the binomial series and substituting x2 for x we obtain 1−2x2+3x4−4x6+· · ·.
b. From Theorem 9.6 the radius of convergence is determined from

∣∣x2
∣∣ < 1, so it is 1.

9.3.70 Because f(36) = 6, and f ′(x) = 1
2x

−1/2, f ′(36) = 1
12 , f

′′(x) = − 1
4x

−3/2, f ′′(36) = − 1
864 , f

′′′(x) =
3
8x

−5/2, and f ′′′(36) = 3
62208 , the first four terms of the Taylor series are 6 + 1

12 (x− 36)− 1
864·2! (x− 36)2 +

3
62208·3! (x− 36)3. Evaluating at x = 39 we get 6.245008681.

9.3.71 Because f(64) = 4, and f ′(x) = 1
3x

−2/3, f ′(64) = 1
48 , f

′′(x) = − 2
9x

−5/3, f ′′(64) = − 1
4608 , f

′′′(x) =
10
27x

−8/3, and f ′′′(64) = 10
1769472 = 5

884736 , the first four terms of the Taylor series are 4 + 1
48 (x − 64) −

1
4608·2! (x− 64)2 + 5

884736·3! (x− 64)3. Evaluating at x = 60, we get 3.914870274.
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9.3.72 Because f(4) = 1
2 , and f ′(x) = − 1

2x
−3/2, f ′(4) = − 1

16 , f
′′(x) = 3

4x
−5/2, f ′′(4) = 3

128 , f
′′′(x) =

− 15
8 x−7/2, and f ′′′(4) = − 15

1024 , the first four terms of the Taylor series are 1
2 − 1

16 (x− 4) + 3
128·2! (x− 4)2 −

15
1024·3! (x− 4)3. Evaluating at x = 3, we get 0.5766601563.

9.3.73 Because f(16) = 2, and f ′(x) = 1
4x

−3/4, f ′(16) = 1
32 , f

′′(x) = − 3
16x

−7/4, f ′′(16) = − 3
2048 , f

′′′(x) =
21
64x

−11/4, and f ′′′(16) = 21
131072 , the first four terms of the Taylor series are 2+ 1

32 (x−16)− 3
2048·2! (x−16)2+

21
131072·3! (x− 16)3. Evaluating at x = 13, we get 1.898937225.

9.3.74 Evaluate the binomial coefficient
(−1

k

)
= (−1)(−2)···(−1−k+1)

k! = (−1)k, so that the binomial expansion
for (1 + x)−1 is

∑∞
k=0(−1)kxk. Substituting −x for x, we obtain (1− x)−1 =

∑∞
k=0(−1)k(−x)k =

∑∞
k=0 x

k.

9.3.75 Evaluate the binomial coefficient
(
1/2
k

)
= (1/2)(−1/2)(−3/2)···(1/2−k+1)

k! = (1/2)(−1/2)···((3−2k)/2)
k! =

(−1)k−12−k 1·3···(2k−3)
k! = (−1)k−12−k (2k−2)!

2k−1·(k−1)!·k! = (−1)k−121−2k · 1
k

(
2k−2
k−1

)
. This is the coefficient of xk

in the Taylor series for
√
1 + x. Substituting 4x for x, the Taylor series becomes

∑∞
k=0(−1)k−121−2k ·

1
k

(
2k−2
k−1

)
(4x)k =

∑∞
k=0(−1)k−1 2

k

(
2k−2
k−1

)
xk. If we can show that k divides

(
2k−2
k−1

)
, we will be done, for then the

coefficient of xk will be an integer. But
(
2k−2
k−1

)−(2k−2
k−2

)
= (2k−2)!

(k−1)!(k−1)!− (2k−2)!
(k−2)!k! =

(2k−2)!
(k−1)!(k−1)!− (2k−2)!(k−1)

(k−1)!(k−1)!k =
k(2k−2)!−(k−1)(2k−2)!

k(k−1)!(k−1)! = 1
k

(2k−2)!
(k−1)!(k−1)! =

1
k

(
2k−2
k−1

)
and thus we have shown that k divides

(
2k−2
k−1

)
.

9.3.76 The two Taylor series are:

8 +
1

16
(x− 64)− 1

4096
(x− 64)2 +

1

524288
(x− 64)3 − 5

268435456
(x− 64)4 + · · ·

9 +
1

18
(x− 81)− 1

5832
(x− 81)2 +

1

944784
(x− 81)3 − 5

612220032
(x− 81)4 + · · · .

Evaluating these Taylor series at n = 2, 3, 4 (after the quadratic, cubic, and quartic terms) we obtain the
errors:

n 64 81

2 9.064× 10−4 −8.297× 10−4

3 −7.019× 10−5 −5.813× 10−5

4 6.106× 10−6 −4.550× 10−6

The errors using the Taylor series centered at 81 are consistently smaller.

9.3.77

a. The Maclaurin series for sinx is x− 1
3!x

3 + 1
5!x

5 − 1
7!x

7 + · · · . Squaring the first four terms yields(
x− 1

3!
x3 +

1

5!
x5 − 1

7!
x7

)2

= x2 − 2

3!
x4 +

(
2

5!
+

1

3!3!

)
x6 +

(
−2 · 1

7!
− 2 · 1

3!5!

)
x8

= x2 − 1

3
x4 +

2

45
x6 − 1

315
x8.

b. The Maclaurin series for cosx is 1 − 1
2x

2 + 1
4!x

4 − 1
6!x

6 + 1
8!x

8 − · · · . Substituting 2x for x in the
Maclaurin series for cosx and then computing (1− cos 2x)/2, we obtain

(1− (1−1

2
(2x)2 +

1

4!
(2x)4 − 1

6!
(2x)6) +

1

8!
(2x)8)/2

= (2x2 − 2

3
x4 +

4

45
x6 − 2

315
x8)/2

= x2 − 1

3
x4 +

2

45
x6 − 1

315
x8,

and the two are the same.
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c. If f(x) = sin2 x, then f(0) = 0, f ′(x) = sin 2x, so f ′(0) = 0. f ′′(x) = 2 cos 2x, so f ′′(x) = 2,
f ′′′(x) = −4 sin 2x, so f ′′′(0) = 0. Note that from this point f (n)(0) = 0 if n is odd and f (n)(0) = ±2n−1

if n is even, with the signs alternating for every other even n. Thus, the series for sin2 x is

2x2/2− 8x4/4! + 32x6/6!− 128x8/8! + · · · = x2 − 1

3
x4 +

2

45
x6 − 1

315
x8 + · · · .

9.3.78

a. The Maclaurin series for cosx is 1− 1
2x

2+ 1
4!x

4− 1
6!x

6+ 1
8!x

8−· · ·. Squaring the first four terms yields

(1−1

2
x2 +

1

4!
x4 − 1

6!
x6)2

= 1− (
1

2
+

1

2
)x2 + (

1

4!
+

1

4!
+

1

4
)x4 + (− 1

6!
− 1

6!
− 1

2 · 4! −
1

2 · 4! )x
6

= 1− x2 +
1

3
x4 − 2

45
x6.

b. Substituting 2x for x in the Maclaurin series for cosx and then computing (1 + cos 2x)/2, we obtain

(1 + 1−1

2
(2x)2 +

1

4!
(2x)4 − 1

6!
(2x)6)/2

= (2− 2x2 +
2

3
x4 − 4

45
x6)/2

= 1− x2 +
1

3
x4 − 2

45
x6,

and the two are the same.

c. If f(x) = cos2 x, then f(0) = 1. Also, f ′(x) = −2 cosx sinx = − sin 2x. So f ′(0) = 0. f ′′(x) =
−2 cos 2x, so f ′′(0) = −2. f ′′′(x) = 8 sin 2x, so f ′′′(0) = 0. Note that from this point on, f (n)(0) = 0
if n is odd, and f (n)(0) = ±2n−1 if n is even, with the signs alternating for every other even n. Thus,
the series for cos2 x is

1− 2x2/2 + 8x4/4!− 32x6/6! + · · · = 1− x2 +
1

3
x4 − 2

45
x6 + · · · .

9.3.79 There are many solutions. For example, first find a series that has (−1, 1) as an interval of conver-

gence, say 1
1−x =

∑∞
k=0 x

k. Then the series 1
1−x/2 =

∑∞
k=0

(
x
2

)k
has (−2, 2) as its interval of convergence.

Now shift the series up so that it is centered at 4. We have
∑∞

k=0

(
x−4
2

)k
, which has interval of convergence

(2, 6).

9.3.80 − 1·3·5
2·4·6·8x

4 + 1·3·5·7
2·4·6·8·10x

5.

9.3.81 1·3·5·7
2·4·6·8x

4 − 1·3·5·7·9
2·4·6·8·10x

5.

9.3.82

a. The Maclaurin series in question are

sinx = x− 1

3!
x3 +

1

5!
x5 − · · ·

ex = 1 + x+
1

2!
x2 +

1

3!
x3 + · · · ,

so substituting the series for sinx for x in the series for ex (and considering only those terms that will
give us an exponent at most 3), we obtain esin x = 1+(x− 1

3!x
3)+ 1

2!x
2+ 1

3!x
3+ · · · = 1+x+ 1

2x
2+ · · · .
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b. The Maclaurin series in question are

tanx = x+
1

3
x3 +

2

15
x5 + · · ·

ex = 1 + x+
1

2!
x2 +

1

3!
x3 + · · · ,

so substituting the series for tanx for x in the series for ex (and considering only those terms that will
give us an exponent at most 3), we obtain etan x = 1+(x+ 1

3x
3)+ 1

2!x
2+ 1

3!x
3+ · · · = 1+x+ 1

2x
2+ · · · .

c. The Maclaurin series in question are

sinx = x− 1

3!
x3 +

1

5!
x5 − · · ·√

1 + x2 = 1 +
1

2
x2 − 1

8
x4 + · · · ,

so substituting the series for sinx for x in the series for
√
1 + x2 (and considering only those terms

that will give us an exponent at most 4), we obtain
√
1 + sin2 x = 1 + 1

2 (x − 1
3!x

3)2 − 1
8x

4 + · · · =
1 + 1

2x
2 − 7

24x
4 + · · · .

9.3.83 Use the Taylor series for cosx centered at π/4:
√
2
2 (1− (x−π/4)− 1

2 (x−π/4)2 + 1
6 (x−π/4)3 + · · · ).

The remainder after n terms (because the derivatives of cosx are bounded by 1 in magnitude) is |Rn(x)| ≤
1

(n+1)! ·
(
π
4 − 2π

9

)n+1
.

Solving for |Rn(x)| < 10−4, we obtain n = 3. Evaluating the first four terms (through n = 3) of the
series we get 0.7660427050. The true value is ≈ 0.7660444431.

9.3.84 Use the Taylor series for sinx centered at π: −(x − π) + 1
6 (x − π)3 − 1

120 (x − π)5 + · · · . The
remainder after n terms (because the derivatives of sinx are bounded by 1 in magnitude) is |Rn(x)| ≤

1
(n+1)! · (π − 0.98π)n+1.

Solving for |Rn(x)| < 10−4, we obtain n = 2. Evaluating the first term of the series gives 0.06283185307.
The true value is ≈ 0.06279051953.

9.3.85 Use the Taylor series for f(x) = x1/3 centered at 64: 4 + 1
48 (x− 64)− 1

9216 (x− 64)2 + · · · . Because
we wish to evaluate this series at x = 83, |Rn(x)| = |f(n+1)(c)|

(n+1)! (83− 64)n+1. We compute that |f (n+1)(c)| =
2·5····(3n−1)
3n+1c(3n+2)/3 , which is maximized at c = 64. Thus

|Rn(x)| ≤ 2 · 5 · · · (3n− 1)

3n+164(3n+2)/3(n+ 1)!
19n+1

Solving for |Rn(x)| < 10−4, we obtain n = 5. Evaluating the terms of the series through n = 5 gives
4.362122553. The true value is ≈ 4.362070671.

9.3.86 Use the Taylor series for f(x) = x−1/4 centered at 16: 1
2 − 1

128 (x − 16) + 5
16384 (x − 16)2 + · · · .

Because we wish to evaluate this series at x = 17, |Rn(x)| = |f(n+1)(c)|
(n+1)! (17 − 16)n+1. We compute that

|f (n+1)(c)| = 1·5···(4n+1)
4n+1c(4n+5)/4 which is maximized at c = 16. Thus

|Rn(x)| ≤ 1 · 5 · · · (4n+ 1)

4n+116(4n+5)/4(n+ 1)!
1n+1

Solving for |Rn(x)| < 10−4, we obtain n = 2. Evaluating the terms of the series through n = 2 gives
0.4924926758. The true value is ≈ 0.4924790605.

Copyright c© 2015 Pearson Education, Inc.



9.3. Taylor Series 99

9.3.87

a. Use the Taylor series for (125 + x)1/3 centered at x = 0. Using the first four terms and evaluating at
x = 3 gives a result (5.03968) accurate to within 10−4.

b. Use the Taylor series for x1/3 centered at x = 125. Note that this gives the identical Taylor series
except that the exponential terms are (x − 125)n rather than xn. Thus we need terms up through
(x− 125)3, just as before, evaluated at x = 128, and we obtain the identical result.

c. Because the two Taylor series are the same except for the shifting, the results are equivalent.

9.3.88 Suppose that f is differentiable.
Consider the remainder after the zeroth term of the Taylor series. Taylor’s Theorem says that

R0(x) =
f ′(c)
1!

(x− a)1 for some c between x and a,

but f(x) = f(a) +R0(x), which gives f(x) = f(a) + f ′(c)(x− a). Rearranging, we obtain f ′(c) = f(x)−f(a)
x−a

for some c between x and a, which is the conclusion of the Mean Value Theorem.

9.3.89 Consider the remainder after the first term of the Taylor series. Taylor’s Theorem indicates that

R1(x) = f ′′(c)
2 (x − a)2 for some c between x and a, so that f(x) = f(a) + f ′(a)(x − a) + f ′′(c)

2 (x − a)2.
But f ′(a) = 0, so that for every x in an interval containing a, there is a c between x and a such that

f(x) = f(a) + f ′′(c)
2 (x− a)2.

a. If f ′′(x) > 0 on the interval containing a, then for every x in that interval, we have f(x) = f(a) +
f ′′(c)

2 (x− a)2 for some c between x and a. But f ′′(c) > 0 and (x− a)2 > 0, so that f(x) > f(a) and a
is a local minimum.

b. If f ′′(x) < 0 on the interval containing a, then for every x in that interval, we have f(x) = f(a) +
f ′′(c)

2 (x− a)2 for some c between x and a. But f ′′(c) < 0 and (x− a)2 > 0, so that f(x) < f(a) and a
is a local maximum.

9.3.90

a. To show that f ′(0) = 0, we compute the limits of the left and right difference quotients and show that
they are both zero:

lim
x→0+

e−1/x2 − 0

x
= lim

x→0+

e−1/x2

x
and lim

x→0−

e−1/x2 − 0

x
= lim

x→0−

e−1/x2

x
.

For the limit from the right, use the substitution x = 1√
y ; then y = x2 and the limit becomes

lim
y→∞ e−y√y = lim

y→∞

√
y

ey
= 0,

because exponentials dominate power functions. Similarly, for the limit from the left, use the substi-
tution x = − 1√

y ; then again y = x2 and the limit becomes

lim
y→∞(−e−y√y) = − lim

y→∞

√
y

ey
= 0.

Since the left and right limits are both zero, it follows that f is differentiable at x = 0, and its derivative
is zero.

b. Because f (k)(0) = 0, the Taylor series centered at 0 has only one term:f(x) = f(0) = 0, so the Taylor
series is zero.

c. It does not converge to f(x) because f(x) �= 0 for all x �= 0.
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9.4 Working with Taylor Series

9.4.1 Replace f and g by their Taylor series centered at a, and evaluate the limit.

9.4.2 Integrate the Taylor series for f(x) centered at a, and evaluate it at the endpoints.

9.4.3 Substitute −0.6 for x in the Taylor series for ex centered at 0. Note that this series is an alternating
series, so the error can easily be estimated by looking at the magnitude of the first neglected term.

9.4.4 Take the Taylor series for sin−1(x) centered at 0 and evaluate it at x = 1, then multiply the result by
2.

9.4.5 The series is f ′(x) =
∑∞

k=1 kckx
k−1, which converges for |x| < b.

9.4.6 It must have derivatives of all orders on some interval containing a.

9.4.7 Because ex = 1 + x+ x2/2! + x3/3! + · · · , we have ex−1
x = 1 + x/2! + · · · , so limx→0

ex−1
x = 1.

9.4.8 Because tan−1 x = x− x3

3 + x5

5 − x7

7 + · · · , we have tan−1 x−x
x3 = −1

3 + x2

5 − · · · .
So limx→0

tan−1 x−x
3 = −1

3 .

9.4.9 Because − ln(1 − x) = x + x2

2 + x3

3 + x4

4 + x5

5 + · · · , we have −x−ln(1−x)
x2 = 1

2 + x
3 + x2

4 + · · · , so
limx→0

−x−ln(1−x)
x2 = 1

2 .

9.4.10 Because sin 2x = 2x− 4x3

3 + 4x5

15 + · · · , we have sin 2x
x = 2− 4x2

3 + 4x4

15 + · · · , so limx→0
sin 2x

x = 2.

9.4.11 We compute that

ex − e−x

x
=

1

x

((
1 + x+

x2

2
+

x3

6
+ · · ·

)
−
(
1− x+

x2

2
− x3

6
+ · · ·

))
=

1

x

(
2x+

x3

3
+ · · ·

)
= 2 +

x2

3
+ · · ·

so the limit of
ex − e−x

x
as x → 0 is 2.

9.4.12 Because −ex = −1−x−x2/2−x3/6+ · · · , we have 1+x−ex

4x2 = − 1
8 − x

24 + · · · , so limx→0
1+x−ex

4x2 = − 1
8 .

9.4.13 We compute that

2 cos 2x− 2 + 4x2

2x4
=

1

2x4

(
2(1− (2x)2

2
+

(2x)4

24
− (2x)6

720
+ · · · )− 2 + 4x2

)
=

1

2x4

(
(2x)4

12
− (2x)6

360
+ · · ·

)
=

2

3
− 4x2

45
+ · · ·

so the limit of
2 cos 2x− 2 + 4x2

2x4
as x → 0 is

2

3
.

9.4.14 We substitute t =
1

x
and find lim

t→0

sin t

t
. We compute that

sin t

t
=

1

t

(
t− t3

6
+ · · ·

)
= 1− t2

6
+ · · ·

so the limit of x sin

(
1

x

)
as x → ∞ is 1.

Copyright c© 2015 Pearson Education, Inc.



9.4. Working with Taylor Series 101

9.4.15 We have ln(1 + x) = x− 1
2x

2 + 1
3x

3 − 1
4x

4 + · · · , so that

ln(1 + x)− x+ x2/2

x3
=

x3/3− x4/4 + · · ·
x3

=
1

3
− x

4
+ · · ·

so that lim
x→0

ln(1 + x)− x+ x2/2

x3
=

1

3
.

9.4.16 The Taylor series for ln(x− 3) centered at x = 4 is

(x− 4)− 1

2
(x− 4)2 + · · · .

We compute that

x2 − 16

ln(x− 3)
=

x2 − 16

(x− 4)− 1
2 (x− 4)2 + · · · =

(x− 4)(x+ 4)

(x− 4)− 1
2 (x− 4)2 + · · ·

=
x+ 4

1− 1
2 (x− 4) + · · ·

so the limit of
x2 − 16

ln(x− 3)
as x → 4 is 8.

9.4.17 We compute that

3 tan−1 x− 3x+ x3

x5
=

1

x5

(
3

(
x− x3

3
+

x5

5
− x7

7
+ · · ·

)
− 3x+ x3

)
=

1

x5

(
3x5

5
− 3x7

7
+ · · ·

)
=

3

5
− 3x2

7
+ · · ·

so the limit of
3 tan−1 x− 3x+ x3

x5
as x → 0 is

3

5
.

9.4.18 The Taylor series for
√
1 + x centered at 0 is

√
1 + x = 1 +

1

2
x− 1

8
x2 +

1

16
x3 + · · · .

We compute that
√
1 + x− 1− (x/2)

4x2
=

1

4x2

((
1 +

x

2
− x2

8
+

x3

16
+ · · ·

)
− 1− x

2

)
=

1

4x2

(
−x2

8
+

x3

16
+ · · ·

)
= − 1

32
+

x

64
+ · · ·

so the limit of

√
1 + x− 1− (x/2)

4x2
as x → 0 is − 1

32
.

9.4.19 The Taylor series for sin 2x centered at 0 is

sin 2x = 2x− 1

3!
(2x)3 +

1

5!
(2x)5 − 1

7!
(2x)7 + · · · = 2x− 4

3
x3 +

4

15
x5 − 8

315
x7 + · · · .

Thus

12x− 8x3 − 6 sin 2x

x5
=

12− 8x3 − (12x− 8x3 + 8
5x

5 − 16
105x

7 + · · · )
x5

= −8

5
+

16

105
x2 − · · · ,

so lim
x→0

12x− 8x3 − 6 sin 2x

x5
= −8

5
.
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9.4.20 The Taylor series for lnx centered at 1 is

lnx = (x− 1)− 1

2
(x− 1)2 + · · · .

We compute that
x− 1

lnx
=

x− 1

(x− 1)− 1
2 (x− 1)2 + · · · =

1

1− 1
2 (x− 1) + · · ·

so the limit of
x− 1

lnx
as x → 1 is 1.

9.4.21 The Taylor series for ln(x− 1) centered at 2 is

ln(x− 1) = (x− 2)− 1

2
(x− 2)2 + · · · .

We compute that
x− 2

ln(x− 1)
=

x− 2

(x− 2)− 1
2 (x− 2)2 + · · · =

1

1− 1
2 (x− 2) + · · ·

so the limit of
x− 2

ln(x− 1)
as x → 2 is 1.

9.4.22 Because e1/x = 1 + (1/x) + 1/(2x2) + · · · , we have

x(e1/x − 1) = 1 + 1/(2x) + · · · .
Thus, limx→∞ x(e1/x − 1) = 1.

9.4.23 Computing Taylor series centers at 0 gives

e−2x = 1− 2x+
1

2!
(−2x)2 +

1

3!
(−2x)3 + · · · = 1− 2x+ 2x2 − 4

3
x3 + · · ·

e−x/2 = 1− x

2
+

1

2!

(
−x

2

)2
+

1

3!

(
−x

2

)3
+ · · · = 1− x

2
+

1

8
x2 − 1

48
x3 + · · · .

Thus

e−2x − 4e−x/2 + 3

2x2
=

1− 2x+ 2x2 − 4
3x

3 + · · · − (4− 2x+ 1
2x

2 − 1
12x

3 + · · · ) + 3

2x2

=
3
2x

2 − 5
4x

3 + · · ·
2x2

=
3

4
− 5

8
x+ · · ·

so lim
x→0

e−2x − 4e−x/2 + 3

2x2
=

3

4
.

9.4.24 The Taylor series for (1− 2x)−1/2 centered at 0 is

(1− 2x)−1/2 = 1 + x+
3x2

2
+

5x3

2
+ · · · .

We compute that

(1− 2x)−1/2 − ex

8x2
=

1

8x2

((
1 + x+

3x2

2
+

5x3

2
+ · · ·

)
−
(
1 + x+

x2

2
+

x3

6
+ · · ·

))
=

1

8x2

(
x2 +

7x3

3
+ · · ·

)
=

1

8
+

7x

24
+ · · ·

so the limit of
(1− 2x)−1/2 − ex

8x2
as x → 0 is

1

8
.
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9.4.25

a. f ′(x) = d
dx (
∑∞

k=0
xk

k! ) =
∑∞

k=1 k
xk−1

k! =
∑∞

k=0
xk

k! = f(x).

b. f ′(x) = ex as well.

c. The series converges on (−∞,∞).

9.4.26

a. f ′(x) = d
dx (
∑∞

k=0(−1)k x2k

(2k)! ) =
∑∞

k=1(−1)k(2k)x
2k−1

(2k)! =
∑∞

k=1(−1)k x2k−1

(2k−1)! = −∑∞
k=0(−1)k x2k+1

(2k+1)! .

b. f ′(x) = − sinx.

c. The series converges on (−∞,∞), because the series for cosx does.

9.4.27

a. f ′(x) = d
dx (ln(1 + x)) = d

dx (
∑∞

k=1(−1)k+1 1
kx

k) =
∑∞

k=1(−1)k+1xk−1 =
∑∞

k=0(−1)kxk.

b. This is the power series for 1
1+x .

c. The Taylor series for ln(1 + x) converges on (−1, 1), as does the Taylor series for 1
1+x .

9.4.28

a. f ′(x) = d
dx (sinx

2) = d
dx (
∑∞

k=0(−1)k x4k+2

(2k+1)! ) =
∑∞

k=0(−1)k · 2(2k + 1) x4k+1

(2k+1)! = 2
∑∞

k=0(−1)k x4k+1

(2k)! =

2x
∑∞

k=0(−1)k x4k

(2k)! .

b. This is the power series for 2x cosx2.

c. Because the Taylor series for sinx2 converges everywhere, the Taylor series for 2x cosx2 does as well.

9.4.29

a.

f ′(x) =
d

dx
(e−2x) =

d

dx
(

∞∑
k=0

(−2x)k

k!
) =

d

dx
(

∞∑
k=0

(−2)k
xk

k!
) = −2

∞∑
k=1

(−2)k−1 xk−1

(k − 1)!
= −2

∞∑
k=0

(−2x)k

k!
.

b. This is the Taylor series for −2e−2x.

c. Because the Taylor series for e−2x converges on (−∞,∞), so does this one.

9.4.30

a. We have

f ′(x) =
d

dx

(
1

1− x

)
=

d

dx

( ∞∑
k=0

xk

)
=

d

dx

(
1 +

∞∑
k=1

xk

)
=

∞∑
k=1

kxk−1 =

∞∑
k=0

(k + 1)xk.

b. From the formula for (1 + x)p in Table 9.5, we see that the Taylor series for 1
(1−x)2 is

∞∑
k=0

(−2)(−3) · · · (−2− k + 1)

k!
(−x)k =

∞∑
k=0

(−1)k(−1)k
(k + 1)!

k!
xk =

∞∑
k=0

(k + 1)xk,

so that f ′(x) is simply 1
(1−x)2 as expected.
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c. Since the Taylor series for 1
1−x converges on (−1, 1), so does the series for 1

(1−x)2 . Checking the

endpoints, we see that the series diverges at both endpoints by the Divergence test, so that the interval
of convergence for f ′(x) is also (−1, 1).

9.4.31

a. tan−1 x = x− x3

3 + x5

5 − · · · , so d
dx tan−1 x2 = 1− x2 + x4 − x6 + · · · .

b. This is the series for 1
1+x2 .

c. Because the series for tan−1 x has a radius of convergence of 1, this series does too. Checking the
endpoints shows that the interval of convergence is (−1, 1).

9.4.32

a. − ln(1− x) = x+ x2

2 + x3

3 + x4

4 + x5

5 + · · · , so d
dx [− ln(1− x)] = 1 + x+ x2 + x3 + · · · .

b. This is the series for 1
1−x .

c. The interval of convergence for 1
1−x is (−1, 1).

9.4.33

a. Because y(0) = 2, we have 0 = y′(0)− y(0) = y′(0)− 2 so that y′(0) = 2. Differentiating the equation
gives y′′(0) = y′(0), so that y′′(0) = 2. Successive derivatives also have the value 2 at 0, so the Taylor

series is 2
∑∞

k=0
tk

k! .

b. 2
∑∞

k=0
tk

k! = 2et.

9.4.34

a. Because y(0) = 0, we see that y′(0) = 8. Differentiating the equation gives y′′(0) + 4y′(0) = 0, so
y′′(0)+4 · 8 = 0, y′′(0) = −4 · 8. Continuing, y′′′(0)+4 · (−4 · 8) = 0, so y′′′(0) = 4 · 4 · 8, and in general

y(k)(0) = (−1)k+12 · 4k for k ≥ 1, so the Taylor series is 2
∑∞

k=1(−1)k+1 (4t)k

k! .

b. 2
∑∞

k=1(−1)k+1 (4t)k

k! = 2(1− e−4t).

9.4.35

a. y(0) = 2, so that y′(0) = 16. Differentiating, y′′(t) − 3y′(t) = 0, so that y′′(0) = 48, and in general

y(k)(0) = 3y(k−1)(0) = 3k−1 · 16. Thus the power series is 2 + 16
3

∑∞
k=1

(3t)k

k! = 2 +
∑∞

k=1
3k−116

k! tk.

b. 2 + 16
3

∑∞
k=1

(3t)k

k! = 2 + 16
3 (e3t − 1) = 16

3 e3t − 10
3 .

9.4.36

a. y(0) = 2, so y′(0) = 12 + 9 = 21. Differentiating, y(n)(0) = 6y(n−1)(0) for n > 1, so that y(n)(0) =

6n−1 · 21 for n ≥ 1. Thus the power series is 2 +
∑∞

k=1 21 · 6k−1 tk

k! = 2 + 7
2

∑∞
k=1

(6t)k

k! .

b. 2 + 7
2

∑∞
k=1

(6t)k

k! = 2 + 7
2 (e

6t − 1) = 7
2e

6t − 3
2 .

9.4.37 The Taylor series for e−x2

is
∑∞

k=0(−1)k x2k

k! . Thus, the desired integral is
∫ 0.25

0

∑∞
k=0(−1)k x2k

k! dx =∑∞
k=0(−1)k x2k+1

(2k+1)k!

∣∣∣∣0.25
0

=
∑∞

k=0(−1)k 1
(2k+1)k!42k+1 . Because this is an alternating series, to approximate it

to within 10−4, we must find n such that an+1 < 10−4, or 1
(2n+3)(n+1)!·42n+3 < 10−4. This occurs for n = 1,

so
∑1

k=0(−1)k 1
(2k+1)·k!·42k+1 = 1

4 − 1
192 ≈ 0.245.
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9.4.38 The Taylor series for sinx2 is
∑∞

k=0(−1)k x4k+2

(2k+1)! . Thus the desired integral is

∫ 0.2

0

∞∑
k=0

(−1)k
x4k+2

(2k + 1)!
dx =

∞∑
k=0

(−1)k
x4k+3

(4k + 3)(2k + 1)!

∣∣∣∣0.2
0

=

∞∑
k=0

(−1)k
0.24k+3

(4k + 3)(2k + 1)!
.

Because this is an alternating series, to approximate it to within 10−4, we must find n such that an+1 < 10−4,

or 0.24n+7

(4n+7)(2n+3)! < 10−4. This occurs first for n = 0, so we obtain 0.23

3·1! ≈ 2.67× 10−3.

9.4.39 The Taylor series for cos 2x2 is
∑∞

k=0(−1)k (2x2)2k

(2k)! =
∑∞

k=0(−1)k 4kx4k

(2k)! . Note that cosx is an even

function, so we compute the integral from 0 to 0.35 and double it:

2

∫ 0.35

0

∞∑
k=0

(−1)k
4kx4k

(2k)!
dx = 2

( ∞∑
k=0

(−1)k
4kx4k+1

(4k + 1)(2k)!

)∣∣∣∣0.35
0

= 2

( ∞∑
k=0

(−1)k
4k(0.35)4k+1

(4k + 1)(2k)!

)
.

Because this is an alternating series, to approximate it to within 1
2 · 10−4, we must find n such that an+1 <

1
2 · 10−4, or 4n+1(0.35)4n+5

(4n+3)(2n+2)! < 1
2 · 10−4. This occurs first for n = 1, and we have 2

(
.35− 4·(0.35)5

5·2!
)
≈ 0.696.

9.4.40 The Taylor series for (1 + x4)1/2 is
∑∞

k=0

(
1/2
k

)
x4k, so the desired integral is∫ 0.2

0

∞∑
k=0

(
1/2

k

)
x4k dx =

∞∑
k=0

1

4k + 1

(
1/2

k

)
x4k+1

∣∣∣∣0.2
0

=

∞∑
k=0

1

4k + 1

(
1/2

k

)
(0.2)4k+1.

This is an alternating series because the binomial coefficients alternate in sign, so to approximate it to

within 10−4, we must find n such that an+1 < 10−4, or
∣∣∣ 1
4n+5

(
1/2
n+1

)
(0.2)4n+5

∣∣∣ < 10−4. This happens first for

n = 0, so the approximation is
(
1/2
0

) · 0.2 = 0.2.

9.4.41 tan−1 x = x−x3/3+x5/5−x7/7+x9/9− · · · , so ∫ tan−1 x dx =
∫
(x−x3/3+x5/5−x7/7+x9/9−

· · · ) dx = C+ x2

2 − x4

12 +
x6

30 − x8

56 + · · · . Thus, ∫ 0.35

0
tan−1 x dx = (0.35)2

2 − (0.35)4

12 + (0.35)6

30 − (0.35)8

56 + · · · . Note

that this series is alternating, and (0.35)6

30 < 10−4, so we add the first two terms to approximate the integral
to the desired accuracy. Calculating gives approximately 0.060.

9.4.42 ln(1 + x2) = x2 − x4

2 + x6

3 − x8

4 + · · · , so
∫
ln(1 + x2) dx =

∫
(x2 − x4

2 + x6

3 − x8

4 + · · · ) dx =

C + x3

3 − x5

10 + x7

21 − x9

36 + x11

55 + · · · . Thus, ∫ 0.4

0
ln(1 + x2) dx = (0.4)3

3 − (0.4)5

10 + (0.4)7

21 − (0.4)9

36 + · · · . Because
(0.4)7

21 < 10−4, we add the first two terms to approximate the integral to the desired accuracy. Calculating
gives approximately 0.020.

9.4.43 The Taylor series for (1+x6)−1/2 is
∑∞

k=0

(−1/2
k

)
x6k, so the desired integral is

∫ 0.5

0

∑∞
k=0

(−1/2
k

)
x6k dx

=
∑∞

k=0
1

6k+1

(−1/2
k

)
x6k+1

∣∣∣∣0.5
0

=
∑∞

k=0
1

6k+1

(−1/2
k

)
(0.5)6k+1. This is an alternating series because the binomial

coefficients alternate in sign, so to approximate it to within 10−4, we must find n such that an+1 < 10−4, or∣∣∣ 1
6n+7

(−1/2
n+1

)
(0.5)6n+7

∣∣∣ < 10−4. This occurs first for n = 1, so we have
(−1/2

0

)
0.5 + 1

7

(−1/2
1

)
(0.5)7 ≈ 0.499.

9.4.44 The Taylor series for ln(1+t)
t centered at 0 is

∑∞
k=0(−1)k tk

k+1 . The desired integral is thus∫ 0.2

0

∑∞
k=0(−1)k tk

k+1 dt =
∑∞

k=0(−1)k tk+1

(k+1)2

∣∣∣∣0.2
0

=
∑∞

k=0(−1)k (0.2)k+1

(k+1)2 . This is an alternating series, so to

approximate it to within 10−4, we must find n such that an+1 < 10−4, or (0.2)n+2

(n+2)2 < 10−4. This occurs first

for n = 3, so we have
∑3

k=0(−1)k (0.2)k+1

(k+1)2 ≈ 0.191.

9.4.45 Use the Taylor series for ex at 0: 1 + 2
1! +

22

2! +
23

3! .
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9.4.46 Use the Taylor series for ex at 0: 1 + 1/2
1! + (1/2)2

2! + (1/2)3

3! = 1 + 1
2 + 1

8 + 1
8·3! .

9.4.47 Use the Taylor series for cosx at 0: 1− 22

2! +
24

4! − 26

6!

9.4.48 Use the Taylor series for sinx at 0: 1− 13

3! +
15

5! − 17

7! = 1− 1
3! +

1
5! − 1

7! .

9.4.49 Use the Taylor series for ln(1 + x) evaluated at x = 1/2: 1
2 − 1

2 · 1
4 + 1

3 · 1
8 − 1

4 · 1
16 .

9.4.50 Use the Taylor series for tan−1 x evaluated at 1/2: 1
2 − 1

3 · 1
8 + 1

5 · 1
32 − 1

7 · 1
128 .

9.4.51 The Taylor series for f centered at 0 is
−1+

∑∞
k=0

xk

k!

x =
∑∞

k=1
xk

k!

x =
∑∞

k=1
xk−1

k! =
∑∞

k=0
xk

(k+1)! .

Evaluating both sides at x = 1, we have e− 1 =
∑∞

k=0
1

(k+1)! .

9.4.52 The Taylor series for f centered at 0 is
−1+

∑∞
k=0

xk

k!

x =
∑∞

k=1
xk

k!

x =
∑∞

k=1
xk−1

k! =
∑∞

k=0
xk

(k+1)! .

Differentiating, the Taylor series for f ′(x) is f ′(x) = (x−1)ex+1
x2 =

∑∞
k=1

kxk−1

(k+1)! . Evaluating both sides

at 2 gives e2+1
4 =

∑∞
k=1

k·2k−1

(k+1)! .

9.4.53 The Maclaurin series for ln(1+x) is x− 1
2x

2+ 1
3x

3− 1
4x

4+ · · · =∑∞
k=1(−1)k+1 xk

k . By the Ratio Test,

lim
k→∞

∣∣∣ak+1

ak

∣∣∣ = lim
k→∞

∣∣∣ xk+1k
xk(k+1)

∣∣∣ = |x|, so the radius of convergence is 1. The series diverges at −1 and converges

at 1, so the interval of convergence is (−1, 1]. Evaluating at 1 gives ln 2 =
∑∞

k=1(−1)k+1 1
k = 1− 1

2+
1
3− 1

4+· · ·.

9.4.54 The Taylor series for ln(1 + x) at 0 is x − 1
2x

2 + 1
3x

3 − 1
4x

4 + · · · =
∑∞

k=1(−1)k+1 xk

k . By the

Ratio Test, lim
k→∞

∣∣∣ak+1

ak

∣∣∣ = lim
k→∞

∣∣∣ xk+1k
xk(k+1)

∣∣∣ = |x|, so the radius of convergence is 1. The series diverges

at −1 and converges at 1, so the interval of convergence is (−1, 1]. Evaluate both sides at −1/2 to get

f(−1
2 ) = ln(1/2) = − ln 2 =

∑∞
k=1(−1)k+1 (−1/2)k

k = −∑∞
k=1

1
k·2k , so that ln 2 =

∑∞
k=1

1
k·2k .

9.4.55
∑∞

k=0
xk

2k
=
∑∞

k=0

(
x
2

)k
= 1

1− x
2
= 2

2−x .

9.4.56
∑∞

k=0(−1)k xk

3k
=
∑∞

k=0

(−x
3

)k
= 1

1+ x
3
= 3

3+x .

9.4.57
∑∞

k=0(−1)k x2k

4k
=
∑∞

k=0

(
−x2

4

)k
= 1

1+ x2

4

= 4
4+x2 .

9.4.58
∑∞

k=0 2
kx2k+1 = x

∑∞
k=0(2x

2)k = x
1−2x2 .

9.4.59 ln(1 + x) = −∑∞
k=1(−1)k xk

k , so ln(1− x) = −∑∞
k=1

xk

k , and finally − ln(1− x) =
∑∞

k=1
xk

k .

9.4.60
∑∞

k=0
(−1)kxk+1

4k
= −4

∑∞
k=0

(−x
4

)k+1
= −4(−1 +

∑∞
k=0

(−x
4

)k
) = 4− 4

1+ x
4
= 4− 16

4+x = 4x
4+x

9.4.61

∞∑
k=1

(−1)k
kxk+1

3k
=

∞∑
k=1

(−1)k
k

3k
xk+1 =

∞∑
k=1

k

(
−1

3

)k

xk+1

= x2
∞∑
k=1

(
−1

3

)k

kxk−1 = x2
∞∑
k=1

(
−1

3

)k
d

dx
(xk)

= x2 d

dx

( ∞∑
k=1

(
−x

3

)k)
= x2 d

dx

(
1

1 + x
3

)
= − 3x2

(x+ 3)2
.

9.4.62 By Exercise 53,
∑∞

k=1
xk

k = − ln(1− x), so
∑∞

k=1
x2k

k =
∑∞

k=1
(x2)k

k = − ln(1− x2).
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9.4.63
∑∞

k=2
k(k−1)xk

3k
= x2

∑∞
k=2

k(k−1)xk−2

3k
= x2 d2

dx2

(∑∞
k=2

xk

3k

)
= x2 d2

dx2

(∑∞
k=2

(
x
3

)k)
= x2 d2

dx2

(
x2

9 · 1
1− x

3

)
= x2 d2

dx2

(
x2

9−3x

)
= x2 −6

(x−3)3 = −6x2

(x−3)3 .

9.4.64
∑∞

k=2
xk

k(k−1) =
∑∞

k=2
xk

k−1 −
∑∞

k=2
xk

k = x
∑∞

k=1
xk

k −∑∞
k=1

xk

k + x, = −x ln(1− x) + ln(1− x) + x =

x+ (1− x) ln(1− x).

9.4.65

a. False. This is because 1
1−x is not continuous at 1, which is in the interval of integration.

b. False. The Ratio Test shows that the radius of convergence for the Taylor series for tan−1 x centered
at 0 is 1.

c. True.
∑∞

k=0
xk

k! = ex. Substitute x = ln 2.

9.4.66 The Taylor series for eax centered at 0 is

eax = 1 + ax+
(ax)2

2
+

(ax)3

6
+ · · · .

We compute that

eax − 1

x
=

1

x

((
1 + ax+

(ax)2

2
+

(ax)3

6
+ · · ·

)
− 1

)
=

1

x

(
ax+

(ax)2

2
+

(ax)3

6
+ · · ·

)
= a+

a2x

2
+

a3x2

6
+ · · ·

so the limit of
eax − 1

x
as x → 0 is a.

9.4.67 The Taylor series for sinx centered at 0 is

sinx = x− x3

6
+

x5

120
− · · · .

We compute that

sin ax

sin bx
=

ax− (ax)3

6 + (ax)5

120 − · · ·
bx− (bx)3

6 + (bx)5

120 − · · ·

=
a− a3x2

6 + a5x4

120 − · · ·
b− b3x2

6 + b5x4

120 − · · ·

so the limit of
sin ax

sin bx
as x → 0 is

a

b
.

9.4.68 The Taylor series for sin ax centered at 0 is

sin ax = ax− (ax)3

6
+

(ax)5

120
− · · ·

and the Taylor series for tan−1 ax centered at 0 is

tan−1 ax = ax− (ax)3

3
+

(ax)5

5
− · · · .

We compute that

sin ax− tan−1 ax

bx3
=

1

bx3

((
ax− (ax)3

6
+

(ax)5

120
− · · ·

)
−
(
ax− (ax)3

3
+

(ax)5

5
− · · ·

))
=

1

bx3

(
(ax)3

6
− 23(ax)5

120
+ · · ·

)
=

a3

6b
− 23a5

120b
x2 + · · ·

so the limit of
sin ax− tan−1 ax

bx3
as x → 0 is

a3

6b
.
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9.4.69 Compute instead the limit of the log of this expression, lim
x→0

ln(sin x/x)
x2 . If the Taylor expansion of

ln(sinx/x) is
∑∞

k=0 ckx
k, then lim

x→0

ln(sin x/x)
x2 = lim

x→0

∑∞
k=0 ckx

k−2 = lim
x→0

c0x
−2 + c1x

−1 + c2, because the

higher-order terms have positive powers of x and thus approach zero as x does. So compute the terms
of the Taylor series of ln

(
sin x
x

)
up through the quadratic term. The relevant Taylor series are: sin x

x =

1− 1
6x

2 + 1
120x

4 − · · · , ln(1+ x) = x− 1
2x

2 + 1
3x

3 − · · · and we substitute the Taylor series for sin x
x − 1 for x

in the Taylor series for ln(1 + x). Because the lowest power of x in the first Taylor series is 2, it follows that
only the linear term in the series for ln(1 + x) will give any powers of x that are at most quadratic. The

only term that results is − 1
6x

2. Thus c0 = c1 = 0 in the above, and c2 = − 1
6 , so that lim

x→0

ln(sin x/x)
x2 = − 1

6

and thus lim
x→0

(
sin x
x

)1/x2

= e−1/6.

9.4.70 We can find the Taylor series for ln(x +
√
1 + x2) by substituting into ln(1 + t) the Taylor series

for x +
√
x2 + 1 − 1. The Taylor series in question are: x +

√
x2 + 1 − 1 = x + 1

2x
2 − 1

8x
4 + 1

16x
6 −

. . . , ln(1 + t) = t − 1
2 t

2 + 1
3 t

3 − 1
4 t

4 + 1
5 t

5 − 1
6 t

6 + 1
7 t

7 − . . . . Substituting the former into the latter and

simplifying (not a simple task!), we obtain ln(x+
√
x2 + 1) = x− 1

6x
3+ 3

40x
5− 5

112x
7+ . . .. Using the second

definition, start with the Taylor series for (1 + t2)−1/2, which is 1− 1
2 t

2 + 3
8 t

4 − 5
16 t

6 + . . . , and integrate it:∫ x

0

(
1− 1

2 t
2 + 3

8 t
4 − 5

16 t
6 + . . .

)
dt =

(
t− 1

6 t
3 + 3

40 t
5 − 5

112 t
7 + . . .

) ∣∣∣∣x
0

= x− 1
6x

3 + 3
40x

5 − 5
112x

7 + . . . .

9.4.71 The Taylor series we need are cosx = 1− 1
2x

2 + 1
24x

4 + . . . , et = 1+ t+ 1
2! t

2 + 1
3! t

3 + 1
4! t

4 + . . . . We
are looking for powers of x3 and x4 that occur when the first series is substituted for t in the second series.
Clearly there will be no odd powers of x, because cosx has only even powers. Thus the coefficient of x3 is
zero, so that f (3)(0) = 0. The coefficient of x4 comes from the expansion of 1− 1

2x
2 + 1

24x
4 in each term of

et. Higher powers of x clearly cannot contribute to the coefficient of x4. Thus consider
(
1− 1

2x
2 + 1

24x
4
)k

.

The term − 1
2x

2 generates
(
k
2

)
terms of value 1

4x
4 for k ≥ 2, while the other term generates k terms of value

1
24x

4 for k ≥ 1. These terms all have to be divided by the k! appearing in the series for et. So the total

coefficient of x4 is 1
24

∑∞
k=1

k
k!+

1
4

∑∞
k=2

(
k
2

)
1
k! , =

1
24

∑∞
k=1

1
(k−1)!+

1
4

∑∞
k=2

1
2·(k−2)! , =

1
24

∑∞
k=0

1
k!+

1
8

∑∞
k=0

1
k! ,

= 1
24e+

1
8e =

e
6 Thus f (4)(0) = e

6 · 4! = 4e.

9.4.72 The Taylor series for (1+ x)−1/3 is (1+ x)−1/3 = 1− 1
3x+ 2

9x
2 − 14

81x
3 + 35

243x
4 − . . . , so we want the

coefficients of x3 and x4 in (x2 +1)
(
1− 1

3x+ 2
9x

2 − 14
81x

3 + 35
243x

4
)
. The coefficient of x3 is − 1

3 − 14
81 = − 41

81 ,

and the coefficient of x4 is 2
9 + 35

243 = 89
243 . Thus f

(3)(0) = 6 · −41
81 = −82

27 , and f (4)(0) = 24 · 89
243 = 712

81 .

9.4.73 The Taylor series for sin t2 is sin t2 = t2− 1
3! t

6+ 1
5! t

10− . . ., so that
∫ x

0
sin t2 dt = 1

3 t
3− 1

7·3! t
7+ . . .

∣∣∣∣x
0

=

1
3x

3 − 1
7·3!x

7 + . . .. Thus f (3)(0) = 3!
3 = 2 and f (4)(0) = 0.

9.4.74 1
1+t4 = 1 − t4 + t8 + . . ., so that

∫ x

0
1

1+t4 dt = t − 1
5 t

5 + 1
9 t

9 + . . .

∣∣∣∣x
0

= x − 1
5x

5 + . . . . so that both

f (3)(0) and f (4)(0) are zero.

9.4.75 Consider the series
∑∞

k=1 x
k = x

1−x . Differentiating both sides gives 1
(1−x)2 =

∑∞
k=0 kx

k−1 =
1
x

∑∞
k=0 kx

k so that x
(1−x)2 =

∑∞
k=0 kx

k. Evaluate both sides at x = 1/2 to see that the sum of the se-

ries is 1/2
(1−1/2)2 = 2. Thus the expected number of tosses is 2.

9.4.76

a.
∑∞

k=0
1
6

(
5
6

)2k
= 1

6

∑∞
k=0

(
25
36

)k
= 1

6 · 1
1−25/36 = 6

11 .

b. Consider the series
∑∞

k=1 x
k = x

1−x . Differentiating both sides gives 1
(1−x)2 =

∑∞
k=1 kx

k−1 Evaluating

at x = 5/6 and multiplying the result by 1/6, we get 1
6 · 1

(1−5/6)2 = 6.
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9.4.77

a. We look first for a Taylor series for (1 − k2 sin2 θ)−1/2. Because (1 − k2x2)−1/2 = (1 − (kx)2)−1/2 =∑∞
i=0

(−1/2
i

)
(kx)2i, and sin θ = θ − 1

3!θ
3 + 1

5!θ
5 − . . . , substituting the second series into the first gives

1√
1−k2 sin2 θ

= 1 + 1
2k

2θ2 +
(− 1

6k
2 + 3

8k
4
)
θ4 +

(
1
45k

2 − 1
4k

4 + 5
16k

6
)
θ6 +( −1

630k
2 + 3

40k
4 − 5

16k
6 + 35

128k
8
)
θ8 + . . . .

Integrating with respect to θ and evaluating at π/2 (the value of the antiderivative is 0 at 0) gives 1
2π+

1
48k

2π3+ 1
160

(− 1
6k

2 + 3
8k

4
)
π5+ 1

896

(
1
45k

2 − 1
4k

4 + 5
16k

6
)
π7+ 1

4608

(− 1
630k

2 + 3
40k

4 − 5
16k

6 + 35
128k

8
)
π9.

Evaluating these terms for k = 0.1 gives F (0.1) ≈ 1.574749680. (The true value is approximately
1.574745562.)

b. The terms above, with coefficients of kn converted to decimal approximations, is 1.5707 + .3918 · k2 +
.3597 ·k4− .9682 ·k6+1.7689 ·k8. The coefficients are all less than 2 and do not appear to be increasing
very much if at all, so if we want the result to be accurate to within 10−3 we should probably take n
such that kn < 1

2 × 10−3 = .0005, so n = 4 for this value of k.

c. By the above analysis, we would need a larger n because 0.2n > 0.1n for a given value of n.

9.4.78

a. sin t
t =

∑∞
k=0(−1)k x2k

(2k+1)! = 1− x2

3! +
x4

5! − . . . .

b.
∫ x

0
sin t
t dt =

∑∞
k=0

∫ x

0
(−1)k t2k

(2k+1)! dt =
∑∞

k=0(−1)k x2k+1

(2k+1)(2k+1)! .

c. This is an alternating series, so we want n such that an+1 < 10−3, or 0.52n+3

(2n+3)(2n+3)! < 10−3 (resp.

12n+3

(2n+3)(2n+3)! < 10−3), which gives n = 1 (resp. n = 2). Thus Si(0.5) ≈ 0.5
1 − 0.53

3·3! ≈ 0.4930555556,

Si(1.0) ≈ 1− 1
3·3! +

1
5·5! ≈ 0.9461111111.

9.4.79

a. By the Fundamental Theorem, S′(x) = sinx2, C ′(x) = cosx2.

b. The relevant Taylor series are sin t2 = t2− 1
3! t

6+ 1
5! t

10− 1
7! t

14+. . . , and cos t2 = 1− 1
2! t

4+ 1
4! t

8− 1
6! t

12+. . . .
Integrating, we have S(x) = 1

3x
3 − 1

7·3!x
7 + 1

11·5!x
11 − 1

15·7!x
15 + . . . , and C(x) = x− 1

5·2!x
5 + 1

9·4!x
9 −

1
13·6!x

13 + . . . .

c. S(0.05) ≈ 1
3 (0.05)

3 − 1
42 (0.05)

7 + 1
1320 (0.05)

11 − 1
75600 (0.05)

15 ≈ 4.166664807 × 10−5. C(−0.25) ≈
(−0.25)− 1

10 (−0.25)5 + 1
216 (−0.25)9 − 1

9360 (−0.25)13 ≈ −.2499023616.

d. The series is alternating. Because an+1 = 1
(4n+7)(2n+3)! (0.05)

4n+7, and this is less than 10−4 for n = 0,

only one term is required.

e. The series is alternating. Because an+1 = 1
(4n+5)(2n+2)! (0.25)

4n+5, and this is less than 10−6 for n = 1,

two terms are required.

9.4.80

a. d
dxerf(x) =

2√
π
(e−x2

).

b. e−t2 = 1 − t2 + t4

2! − t6

3! + · · · = ∑∞
k=0(−1)k t2k

k! , so that the Maclaurin series for the error function is

erf(x) = 2√
π

(
x− x3

3 + x5

5·2! − x7

7·3! + . . .
)
.

c. erf(0.15) ≈ 2√
π

(
0.15− 0.153

3 + 0.155

10 − 0.157

42

)
≈ 0.1679959712.

erf(−0.09) ≈ 2√
π

(
−0.09 + 0.093

3 − 0.095

10 + 0.097

42

)
≈ −.1012805939.
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d. The first omitted term in each case is x9

9·5! =
x9

1080 . For x = 0.15, this is ≈ 3.56× 10−11. For x = −0.09,
this is (in absolute value) ≈ 3.59× 10−13.

9.4.81

a. J0(x) = 1− 1
4x

2 + 1
16·2!2x

4 − 1
26·3!2x

6 + . . . .

b. Using the Ratio Test:
∣∣∣ak+1

ak

∣∣∣ = x2k+2

22k+2((k+1)!)2
· 22k(k!)2

x2k = x2

4(k+1)2 , which has limit 0 as k → ∞ for any

x. Thus the radius of convergence is infinite and the interval of convergence is (−∞,∞).

c. Starting only with terms up through x8, we have J0(x) = 1 − 1
4x

2 + 1
64x

4 − 1
2304x

6 + 1
147456x

8 + . . . ,
J ′
0(x) = − 1

2x + 1
16x

3 − 1
384x

5 + 1
18432x

7 + . . . , J ′′
0 (x) = − 1

2 + 3
16x

2 − 5
384x

4 + 7
18432x

6 + . . . so that
x2J0(x) = x2 − 1

4x
4 + 1

64x
6 − 1

2304x
8 + 1

147456x
10 + . . . , xJ ′

0(x) = − 1
2x

2 + 1
16x

4 − 1
384x

6 + 1
18432x

8 + . . . ,
x2J ′′

0 (x) = − 1
2x

2 + 3
16x

4 − 5
384x

6 + 7
18432x

8 + . . . , and x2J ′′
0 (x) + xJ ′

0(x) + x2J0(x) = 0.

9.4.82 secx = 1
cos x = 1

1− x2

2 + x4

24 +...
= 1 + 1

2x
2 + 5

24x
4 + 61

720x
6 + . . .

9.4.83

a. The power series for cosx has only even powers of x, so that the power series has the same value
evaluated at −x as it does at x.

b. The power series for sinx has only odd powers of x, so that evaluating it at −x gives the opposite of
its value at x.

9.4.84 Long division gives cscx = 1
x + 1

6x+ 7
360x

3 + · · · , so that cscx ≈ 1
x + 1

6x as x → 0+.

9.4.85

a. Because f(a) = g(a) = 0, we use the Taylor series for f(x) and g(x) centered at a to compute that

lim
x→a

f(x)

g(x)
= lim

x→a

f(a) + f ′(a)(x− a) + 1
2f

′′(a)(x− a)2 + · · ·
g(a) + g′(a)(x− a) + 1

2g
′′(a)(x− a)2 + · · ·

= lim
x→a

f ′(a)(x− a) + 1
2f

′′(a)(x− a)2 + · · ·
g′(a)(x− a) + 1

2g
′′(a)(x− a)2 + · · ·

= lim
x→a

f ′(a) + 1
2f

′′(a)(x− a) + · · ·
g′(a) + 1

2g
′′(a)(x− a) + · · · =

f ′(a)
g′(a)

.

Because f ′(x) and g′(x) are assumed to be continuous at a and g′(a) �= 0,

f ′(a)
g′(a)

= lim
x→a

f ′(x)
g′(x)

and we have that

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)
g′(x)

which is one form of L’Hôpital’s Rule.

b. Because f(a) = g(a) = f ′(a) = g′(a) = 0, we use the Taylor series for f(x) and g(x) centered at a to
compute that

lim
x→a

f(x)

g(x)
= lim

x→a

f(a) + f ′(a)(x− a) + 1
2f

′′(a)(x− a)2 + 1
6f

′′′(a)(x− a)3 + · · ·
g(a) + g′(a)(x− a) + 1

2g
′′(a)(x− a)2 + 1

6g
′′′(a)(x− a)3 + · · ·

= lim
x→a

1
2f

′′(a)(x− a)2 + 1
6f

′′′(a)(x− a)3 + · · ·
1
2g

′′(a)(x− a)2 + 1
6g

′′′(a)(x− a)3 + · · ·

= lim
x→a

1
2f

′′(a) + 1
6f

′′′(a)(x− a) + · · ·
1
2g

′′(a) + 1
6g

′′′(a)(x− a) + · · · =
f ′′(a)
g′′(a)

.
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Because f ′′(x) and g′′(x) are assumed to be continuous at a and g′′(a) �= 0,

f ′′(a)
g′′(a)

= lim
x→a

f ′′(x)
g′′(x)

and we have that

lim
x→a

f(x)

g(x)
= lim

x→a

f ′′(x)
g′′(x)

which is consistent with two applications of L’Hôpital’s Rule.

9.4.86

a. Clearly x = sin s because BE, of length x, is the side opposite the angle measured by s in a right
triangle with unit length hypotenuse.

b. In the formula 1
2r

2θ for the formula for the area of a circular sector, we have r = 1, and θ = s, so that
the area is in fact s

2 . But the area can also be expressed as an integral as follows: the area of the sector
is the area under the circle between P and F (i.e. the area of the region PAEF ), minus the area of
the right triangle PEF . The area of the right triangle is 1

2x
√
1− x2 by the Pythagorean theorem and

the formula for the area of a triangle. Equating these two formulae for the area of the sector, we have
s
2 =

∫ x

0

√
1− t2 dt− 1

2x
√
1− x2, so s = 2

∫ x

0

√
1− t2 dt− x

√
1− x2.

c. The Taylor series for
√
1− t2 is 1− 1

2 t
2 − 1

8 t
4 − 1

16 t
6 − 5

128 t
8 − . . . . Integrating and evaluating at x we

have s = sin−1 x = 2
(
x− 1

6x
3 − 1

40x
5 − 1

112x
7 − 5

1152x
9
) − x

(
1− 1

2x
2 − 1

8x
4 − 1

16x
6 − 5

128x
8
)
+ · · · =

x+ 1
6x

3 + 3
40x

5 + 5
112x

7 + 35
1152x

9 + · · · .
d. Suppose x = sin s = a0 + a1s+ a2s

2 + . . . . Then x = sin(sin−1(x)) = a0 + a1(x+ 1
6x

3 + 3
40x

5 + . . . ) +
a2((x+ 1

6x
3 + 3

40x
5 + . . . )2 + . . . . Equating coefficients yields a0 = 0, a1 = 1, a2 = 0, a3 = −1

6 , and so
on.

Chapter Nine Review

1

a. True. The approximations tend to get better as n increases in size, and also when the value being
approximated is closer to the center of the series. Because 2.1 is closer to 2 than 2.2 is, and because
3 > 2, we should have |p3(2.1)− f(2.1)| < |p2(2.2)− f(2.2)|.

b. False. The interval of convergence may or may not include the endpoints.

c. True. The interval of convergence is an interval centered at 0, and the endpoints may or may not be
included.

d. True. Because f(x) is a polynomial, all its derivatives vanish after a certain point (in this case, f (12)(x)
is the last nonzero derivative).

2 p3(x) = 2x− (2x)3

3! .

3 p2(x) = 1.

4 p2(x) = 1− x+ x2

2 .

5 p3(x) = x− x2

2 + x3

3 .

6 p2(x) =
√
2
2

(
1− (x− π/4)− 1

2 (x− π/4)2
)
.
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7 p2(x) = x− 1− 1
2 (x− 1)2.

8 p4(x) = 8x3/3! + 2x = 4x3/3 + 2x.

9 p3(x) =
5
4 + 3(x−ln 2)

4 + 5(x−ln 2)2

8 + (x−ln 2)3

8 .

10

a. p0(x) = p1(x) = 1, and p2(x) = 1− x2

2 .

b.

n pn(−0.08) |pn(−0.08)− cos(−0.08)|
0 1 3.2× 10−3

1 1 3.2× 10−3

2 0.997 1.7× 10−6

11

a. p0(x) = 1, p1(x) = 1 + x, and p2(x) = 1 + x+ x2

2 .

b.

n pn(−0.08)
∣∣pn(−0.08)− e−0.08

∣∣
0 1 7.7× 10−2

1 0.92 3.1× 10−3

2 0.923 8.4× 10−5

12

a. p0(x) = 1, p1(x) = 1 + 1
2x, and p2(x) = 1 + 1

2x− 1
8x

2.

b.

n pn(0.08)
∣∣pn(0.08)−√

1 + 0.08
∣∣

0 1 3.9× 10−2

1 1.04 7.7× 10−4

2 1.039 3.0× 10−5

13

a. p0(x) =
√
2
2 , p1(x) =

√
2
2 (1 + (x− π/4)), and p2(x) =

√
2
2

(
1 + (x− π/4)− 1

2 (x− π/4)2
)
.

b.

n pn(π/5) |pn(π/5)− sin(π/5)|
0 0.707 1.2× 10−1

1 0.596 8.2× 10−3

2 0.587 4.7× 10−4

14 The bound is |Rn(x)| ≤ M |x|n+1

(n+1)! , where M is a bound for |ex| (because ex is its own derivative) on

[−1, 1]. Thus take M = 3 so that |R3(x)| ≤ 3x4

4! = x4

8 . But |x| < 1, so this is at most 1
8 .
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15 The derivatives of sinx are bounded in magnitude by 1, so |Rn(x)| ≤ M |x|n+1

(n+1)! ≤ |x|n+1

(n+1)! . But |x| < π, so

|R3(x)| ≤ π4

24 .

16 The third derivative of ln(1−x) is −2
(x−1)3 , which is bounded in magnitude by 16 on |x| < 1/2 (at x = 1/2).

Thus |R3(x)| ≤ 16 |x|4
4! ≤ 16 1

244! =
1
4! .

17 Using the Ratio Test, lim
k→∞

∣∣∣ak+1

ak

∣∣∣ = lim
k→∞

∣∣∣ (k+1)2xk+1

(k+1)! · k!
k2xk

∣∣∣ = lim
k→∞

(
k+1
k

)2 |x|
k+1 = 0, so the interval of

convergence is (−∞,∞).

18 Using the Ratio Test, lim
k→∞

∣∣∣ak+1

ak

∣∣∣ = lim
k→∞

∣∣∣ x4k+4

(k+1)2 · k2

x4k

∣∣∣ = lim
k→∞

(
k

k+1

)2
x4 = x4, so that the radius of

convergence is 1. Because
∑

1
k2 converges, the given power series converges at both endpoints, so its interval

of convergence is [−1, 1].

19 Using the Ratio Test, lim
k→∞

ak+1

ak
= lim

k→∞

∣∣∣ (x+1)2k+2

(k+1)! · k!
(x+1)2k

∣∣∣ = lim
k→∞

1
k+1 (x + 1)2 = 0, so the interval of

convergence is (−∞,∞).

20 Using the Ratio Test, lim
k→∞

∣∣∣ak+1

ak

∣∣∣ = lim
k→∞

∣∣∣ (x−1)k+1

(k+1)5k+1 · k5k

(x−1)k

∣∣∣ = lim
k→∞

k
5k+5 |x− 1| = 1

5 (|x− 1|), so the

series converges when |1/5(x− 1)| < 1, or −5 < x− 1 < 5, so that −4 < x < 6. At x = −4, the series is the
alternating harmonic series. At x = 6, it is the harmonic series, so the interval of convergence is [−4, 6).

21 By the Root Test, lim
k→∞

k
√|ak| = lim

k→∞

(
|x|
9

)3
=

|x3|
729 , so the series converges for |x| < 9. The series given

by letting x = ±9 are both divergent by the Divergence Test. Thus, (−9, 9) is the interval of convergence.

22 By the Ratio Test, lim
k→∞

∣∣∣ak+1

ak

∣∣∣ = lim
k→∞

∣∣∣ (x+2)k+1

√
k+1

·
√
k

(x+2)k

∣∣∣ = lim
k→∞

√
k

k+1 (|x+ 2|) = |x+ 2| , so that the

series converges for |x+ 2| < 1, so −3 < x < −1. At x = −3, we have a series which converges by the
Alternating Series Test. At x = −1, we have the divergent p−series with p = 1/2. Thus, [−3,−1) is the
interval of convergence.

23 By the Ratio Test, lim
k→∞

∣∣∣ (x+2)k+1

2k+1 ln(k+1)
· 2k ln k
(x+2)k

∣∣∣ = lim
k→∞

ln k
2 ln(k+1) |x+ 2| = |x+2|

2 . The radius of convergence

is thus 2, and a check of the endpoints gives the divergent series
∑

1
ln k at x = 0 and the convergent

alternating series
∑ (−1)k

ln k at x = −4. The interval of convergence is therefore [−4, 0).

24 By the Ratio Test, lim
k→∞

∣∣∣x2k+3

2k+3 · 2k+1
x2k+1

∣∣∣ = x2. The radius of convergence is thus 1. At each endpoint we

have a divergent series, so the interval of convergence is (−1, 1).

25 The Maclaurin series for f(x) is
∑∞

k=0 x
2k. By the Root Test, this converges for

∣∣x2
∣∣ < 1, so −1 < x < 1.

It diverges at both endpoints, so the interval of convergence is (−1, 1).

26 The Maclaurin series for f(x) is determined by replacing x by (−x)3 in the power series for 1
1−x , so it is∑∞

k=0(−1)kx3k. The radius of convergence is still 1. The series diverges at both endpoints, so the interval
of convergence is (−1, 1).

27 The Maclaurin series for f(x) is
∑∞

k=0(−5x)k =
∑∞

k=0(−5)kxk. By the Root Test, this has radius of
convergence 1/5. Checking the endpoints, we obtain an interval of convergence of (−1/5, 1/5).

28 Replace x by −x in the original power series, and multiply the result by 10x, to get the Maclaurin series
for f(x), which is

∑∞
k=0(−1)k10xk+1. By the Ratio Test, the radius of convergence is 1. Checking the

endpoints, we obtain an interval of convergence of (−1, 1).
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29 Note that 1
1−10x =

∑∞
k=0(10x)

k, so 1
10 · 1

1−10x = 1
10

∑∞
k=0(10x)

k. Taking the derivative of 1
10 · 1

1−10x gives

f(x). Thus, the Maclaurin series for f(x) is 1
10

∑∞
k=1 10k(10x)

k−1 =
∑∞

k=1 k(10x)
k−1. Using the Ratio Test,

we see that the radius of convergence is 1/10, and checking endpoints we obtain an interval of convergence
of (−1/10, 1/10).

30 Integrating 1
1−x and then replacing x by 4x gives −f(x), so the series for f(x) is −∑∞

k=0
1

k+1 (4x)
k+1.

The Ratio Test shows that the series has a radius of convergence of 1/4; checking the endpoints, we obtain
an interval of convergence of [−1/4, 1/4).

31 The first three terms are 1 + 3x+ 9x2

2 . The series is
∑∞

k=0
(3x)k

k! .

32 The first three terms are 1− (x− 1) + (x− 1)2. The series is
∑∞

k=0(−1)k(x− 1)k.

33 The first three terms are −(x− π/2) + 1
6 (x− π/2)3 − 1

120 (x− π/2)5. The series is

∞∑
k=0

(−1)k+1 1

(2k + 1)!

(
x− π

2

)2k+1

.

34 The first three terms for 1
1+x are 1 − x + x2, so the first three terms of x2 · 1

1+x are x2 − x3 + x4. The

series is
∑∞

k=0(−1)kxk+2.

35 The first three terms are 4x− 1
3 (4x)

3 + 1
5 (4x)

5. The series is
∑∞

k=0(−1)k (4x)2k+1

2k+1 .

36 The nth derivative of f(x) = sin(2x) is ±2n times either sin 2x or cos 2x. Evaluated at −π
2 , the

even derivatives are therefore zero, and the (2n + 1)st derivative is (−1)n+122n+1. The Taylor series for

sin 2x around x = −π
2 is thus −2

(
x+ π

2

)
+ 23

3!

(
x+ π

2

)3 − 25

5!

(
x+ π

2

)5
+ · · · , and the general series is∑∞

k=0(−1)k+1 22k+1

(2k+1)!

(
x+ π

2

)2k+1
.

37 The nth derivative of cosh 3x at x = 0 is 0 if n is odd and is 3n if n is even. The first 3 terms of the
series are thus 1 + 9x2

2! + 81x4

4! . The whole series can be written as
∑∞

k=0
(3x)2k

(2k)! .

38 f(0) = 1
4 , f

′(x) = −2x
(x2+4)2 , so f ′(0) = 0. f ′′(x) = 6x2−8

(x2+4)3
, so f ′′(0) = − 1

8 . f ′′′(0) = 0, and f ′′′′(0) = 3
8 .

The first three terms are 1
4 − x2

16 + x4

64 . The series is given by
∑∞

k=0
(−1)kx2k

4k+1 .

39 f(x) =
(
1/3
0

)
+
(
1/3
1

)
x+

(
1/3
2

)
x2 + · · · = 1 + 1

3x− 1
9x

2 + · · · .

40 f(x) =
(−1/2

0

)
+
(−1/2

1

)
x+

(−1/2
2

)
x2 + · · · = 1− 1

2x+ 3
8x

2 + · · · .

41 f(x) =
(−3

0

)
+
(−3

1

)
x
2 +

(−3
2

)
x2

4 + · · · = 1− 3
2x+ 3

2x
2 + · · · .

42 f(x) =
(−5

0

)
+
(−5

1

)
(2x) +

(−5
2

)
(2x)2 + · · · = 1− 10x+ 60x2 + · · · .

43 Rn(x) =
(−1)n+1e−c

(n+1)! xn+1 for some c between 0 and x, and lim
n→∞ |Rn(x)| ≤ e−|x| lim

n→∞
|x|n+1

(n+1)! = 0, because

n! grows faster than |x|n as n → ∞ for all x.

44 Rn(x) = f(n+1)(c)
(n+1)! xn+1 for some c between 0 and x. Because all derivatives of sinx are bounded in

magnitude by 1, we have lim
n→∞ |Rn(x)| ≤ lim

n→∞
|x|n+1

(n+1)! = 0 because n! grows faster than |x|n as n → ∞ for all
x.

45 Rn(x) = f(n+1)(c)
(n+1)! xn+1 for some c in (−1/2, 1/2). Now,

∣∣f (n+1)(c)
∣∣ = n!

(1+c)n+1 , so lim
n→∞ |Rn(x)| ≤

lim
n→∞ (2 |x|)n+1 · 1

n+1 ≤ lim
n→∞ 1n+1 1

n+1 = 0.
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46 Rn(x) =
f(n+1)(c)
(n+1)! xn+1 for some c in (−1/2, 1/2). Now the (n+ 1)st derivative of (

√
1 + x) is

± 1·3·5···(2n−1)
2n+1(1+x)(2n+1)/2 , so for c in (−1/2, 1/2), this is bounded in magnitude by 1·3·5···(2n−1)

2n+1(1/2)(2n+1)/2 = 1·3·5···(2n−1)
21/2

,

and thus

lim
n→∞ |Rn(x)| = lim

n→∞

∣∣∣∣f (n+1)(c)

(n+ 1)!
xn+1

∣∣∣∣
≤ lim

n→∞
1 · 3 · 5 · (2n− 1)√

2
· 1

2n+1 · (n+ 1)!

= lim
n→∞

1 · 3 · 5 · · · (2n− 1)√
2

· 1

2 · 4 · 6 · · · (2n+ 2)

= lim
n→∞

(
1√
2
· 1
2
· 3
4
· · · 2n− 1

2n
· 1

2n+ 2

)
= 0.

for x in (−1/2, 1/2).

47 The Taylor series for cosx centered at 0 is

cosx = 1− x2

2
+

x4

24
− x6

720
+ · · · .

We compute that

x2/2− 1 + cosx

x4
=

1

x4

(
x2/2− 1 +

(
1− x2

2
+

x4

24
− x6

720
+ · · ·

))
=

1

x4

(
x4

24
− x6

720
+ · · ·

)
=

1

24
− x2

720
+ · · ·

so the limit of
x2/2− 1 + cosx

x4
as x → 0 is

1

24
.

48 The Taylor series for sinx centered at 0 is

sinx = x− x3

6
+

x5

120
− x7

5040
+ · · ·

and the Taylor series for tan−1 x centered at 0 is

tan−1 x = x− x3

3
+

x5

5
− x7

7
+ · · · .

We compute that

2 sinx− tan−1 x− x

2x5

=
1

2x5

(
2

(
x− x3

6
+

x5

120
− x7

5040
+ · · ·

)
−
(
x− x3

3
+

x5

5
− x7

7
+ · · ·

)
− x

)
=

1

2x5

(
11x5

60
+

359x7

2520
− · · ·

)
= − 11

120
+

359x2

5040
− · · ·

so the limit of
2 sinx− tan−1 x− x

2x5
as x → 0 is − 11

120
.

49 The Taylor series for ln(x− 3) centered at 4 is

ln(x− 3) = (x− 4)− 1

2
(x− 4)2 +

1

3
(x− 4)3 − · · · .
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We compute that

ln(x− 3)

x2 − 16
=

1

(x− 4)(x+ 4)

(
(x− 4)− 1

2
(x− 4)2 +

1

3
(x− 4)3 − · · ·

)
=

1

(x− 4)(x+ 4)

(
(x− 4)

(
1− 1

2
(x− 4) +

1

3
(x− 4)2 − · · ·

))
=

1

x+ 4

(
1− 1

2
(x− 4) +

1

3
(x− 4)2 − · · ·

)

so the limit of
ln(x− 3)

x2 − 16
as x → 4 is

1

8
.

50 The Taylor series for
√
1 + 2x centered at 0 is

√
1 + 2x = 1 + x− x2

2
+

x3

2
− · · · .

We compute that

√
1 + 2x− 1− x

x2
=

1

x2

((
1 + x− x2

2
+

x3

2
− · · ·

)
− 1− x

)
=

1

x2

(
−x2

2
+

x3

2
− · · ·

)
= −1

2
+

x

2
− · · ·

so the limit of

√
1 + 2x− 1− x

x2
as x → 0 is −1

2
.

51 The Taylor series for secx centered at 0 is

secx = 1 +
x2

2
+

5x4

24
+

61x6

720
+ · · ·

and the Taylor series for cosx centered at 0 is

cosx = 1− x2

2
+

x4

24
− x6

720
+ · · · .

We compute that

secx− cosx− x2

x4

=
1

x4

((
1 +

x2

2
+

5x4

24
+

61x6

720
+ · · ·

)
−
(
1− x2

2
+

x4

24
− x6

720
+ · · ·

)
− x2

)
=

1

x4

(
x4

6
+

31x6

360
+ · · ·

)
=

1

6
+

31x2

360
+ · · ·

so the limit of
secx− cosx− x2

x4
as x → 0 is

1

6
.

52 The Taylor series for (1 + x)−2 centered at 0 is

(1 + x)−2 = 1− 2x+ 3x2 − 4x3 + · · ·

and the Taylor series for 3
√
1− 6x centered at 0 is

3
√
1− 6x = 1− 2x− 4x2 − 40x3

3
− · · · .
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