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Chapter 8

Sequences and Infinite Series

8.1 An Overview

8.1.1 A sequence is an ordered list of numbers a1, as, as, . . ., often written {ay, as, ...} or {a,}. For example,
the natural numbers {1,2,3,...} are a sequence where a,, = n for every n.

. _1
70/5_5-

PN,

; A4 =

Wl

8.1.2 alz%zl;agz%;agz

8.1.3 a; =1 (given); ae =1-a1=1;a3=2-a3=2;a4 =3 a3 =6; a5 =4-ay = 24.

8.1.4 A finite sum is the sum of a finite number of items, for example the sum of a finite number of terms
of a sequence.

8.1.5 An infinite series is an infinite sum of numbers. Thus if {a,, } is a sequence, then a;+as+--- =, | ay
. . . . . 1 o) _ o0 1 - . . .
is an infinite series. For example, if a = %, then >/~ ax = >~ £ is an infinite series.

816 5 =Y, k=18 =31 k=1+2=3 8=, k=1+2+3=06 S, =Y, k=
1+24+3+4=10.

817 8 =3, kK2 =1;8 =37 K =1+4=5 S =3, K =1+4+9=14; S, =>,_ k> =
14449+ 16 = 30.

: 4
8.1.8 512211:12%:%:1;52:Zi:1%=%+%:%; SS:Zz:1%:%+%+%:%;54:21@:1%:

1,1, 1,1
1tatszti=1n
1 1 1

1
8.1.9 a1 = —iay = — a3 = g = .
107" T 1000 T 1000° ™ T 10000

8.1.10 a; =3(1)+1=4. ap =3(2) +1=7, as = 3(3) + 1 = 10, ay = 3(4) + 1 = 13.

—1 1 1 —2 —1 1 1
8.1.11 a1:7,a2:2—2:1 agzﬁz?,CM:Qj:E.

8.1.12 a1:2—1:1. a2:2—|—1:3,a3:2—1:1,a4:2—|—1:3.

_ 22 4 2% 8 ot 16 _ 25 32
8.1.13 =3 =321 " B az = < - a4—m—17.

BF1 9
8lldai=1+1=2%a=2+1=3%a3=83+1=La0,=4+1=1T

8.1.15 a3 = 1+sin(7/2) = 2; ag = 1+sin(27/2) = 1+sinw = 1; ag = 1+sin(37/2) = 0; ag = 1+sin(4n/2) =
14sin27 =1.

81.16 a; =2-12-3-1+1=0;a2 =2-22-3-24+1=3;a3 =2-32-3-3+1=10; a4 = 2-42-3-4+1 = 21.



Chapter 8. Sequences and Infinite Series

8.1.17 ay =2, a3 =2-2=4, a3 =2(4) =8, ay =2 -8 = 16.

8.1.18 a; =32, ap = 32/2 =16, a5 = 16/2 = 8, ay = 8/2 = 4.

8.1.19 a; = 10 (given); as =3-a; —12=30—-12=18;a3 =3 -a2 —12=54 —12=42; a4 =3 - a3 — 12 =

126 — 12 = 114.

8.1.20 a; =1 (given); ag = a3 —1=0;a3 =a3 —1=-1;a,=a3 —1=0.

8.1.21 a; =0 (given); as =3-a?+1+1=2;a3=3-a3+2+1=15 a4 =3 a3 +3+1=0679.

8.1.22 ap =1 (given); a1 = 1 (given); as = a1 + ag = 2; a3 = as + a1 = 3; a4 = ag + az = 5.

8.1.23

1 1
- 35, 54

Qn

PER

b. ayp = ].; Ap+1 =

_ 1
C. an—w.

8.1.25
a. —9, 9.
b. a1 = =5, an+1 = —a,.

c. ap = (=1)"-5.

c. ap, =271
8.1.29
a. 243, 729.

b. a1 =1; ap4+1 = 3a,.

c. a, =3" L

8.1.24
a. —6, 7.
b. a1 =1; any1 = (—=1)"(|an| +1).
c. ap = (—=1)"in,
8.1.26
a. 14, 17.
b. a1 =2; apy1 = a, + 3.

c. a, =—143n.

8.1.28
a. 36, 49.
b. a1 =1; an1 = (Va, + 1)~
c. a, = n3.
8.1.30
a. 2, 1.

b. a; = 64; ani1 = %

c. p = 2%1 =927,

8.1.31 a1 =9, as =99, az = 999, aq4 = 9999. This sequence diverges, because the terms get larger without

bound.

8.1.32 a1 = 2, ay = 17, a3 = 82, ay = 257. This sequence diverges, because the terms get larger without

bound.

8.1.33 [¢5] %, as =

1 1 1
8.1.34 a1 = G/sz,ag:m,azl—

10°

1 1 1
8.1.35 a; = -3 as = g as = -3 a4 =

1 _ _1
1000 @3 = Too0> 44 =

. This sequence converges to zero.
. This sequence converges to zero.

This sequence converges to 0 because each term is smaller in

absolute value than the preceding term and they get arbitrarily close to zero.

8.1.36 a; = 0.9, as = 0.99, a3 = 0.999, a4 = .9999. This sequence converges to 1.

Copyright (©) 2015 Pearson Education, Inc.



8.1. An Overview 5

8137 a1 =1+1=2,a,=141=2, ag = 2, ay = 2. This constant sequence converges to 2.

8.1.38 a1 =9+ 5 =9.9, a2 =9+ 92 =9.99, a3 = 9+ %22 =9.999, ay = 9+ 2292 = 9.9999. This sequence
converges to 10.

8.1.39 a; = 29450 ~ 54.545, ap = 24345 450 &~ 54.959, a3 = 34399 450 ~ 54.996, ay = 2493964+ 50 ~ 55.000.
This sequence converges to 55.

8140 a; =0—-1=-1. ao =-10—-1=—-11, a3 = —110 -1 = —111, ay = —1110 — 1 = —1111. This
sequence diverges.

8.1.41

n 1 2 3 4 4 6 7 8 9 10
an | 0.4636 | 0.2450 | 0.1244 | 0.0624 | 0.0312 | 0.0156 | 0.0078 | 0.0039 | 0.0020 | 0.0010

This sequence appears to converge to 0.

8.1.42

n 1 2 3 4 5 6 7 8 9 10
an | 3.1396 | 3.1406 | 3.1409 | 3.1411 | 3.1412 | 3.1413 | 3.1413 | 3.1413 | 3.1414 | 3.1414

This sequence appears to converge to .

8.1.43

n 1|23 4|5 |6|7]8]|9]10
an | 0| 2]16] 12|20 |30 |42 |56 | 72 | 90

This sequence appears to diverge.

8.1.44

n 1 2 3 4 5 6 7 8 9 10
an | 9.9 1995 | 9.9667 | 9.975 | 9.98 | 9.9833 | 9.9857 | 9.9875 | 9.9889 | 9.99

This sequence appears to converge to 10.

8.1.45

n 1 2 3 4 ) 6 7 8 9 10
an | 0.83333 | 0.96154 | 0.99206 | 0.99840 | 0.99968 | 0.99994 | 0.99999 | 1.0000 | 1.0000 | 1.0000

This sequence appears to converge to 1.

8.1.46

n 1 2 3 4 ) 6 7 8 9 10 11
an | 0.9589 | 0.9896 | 0.9974 | 0.9993 | 0.9998 | 1.000 | 1.000 | 1.0000 | 1.000 | 1.000 | 1.000

This sequence converges to 1.

8.1.47 8.1.48
a. 2.5, 2.25, 2.125, 2.0625. a. 1.33333, 1.125, 1.06667, 1.04167.

b. The limit is 2. b. The limit is 1.

Copyright (© 2015 Pearson Education, Inc.



6 Chapter 8. Sequences and Infinite Series

8.1.49

n |0 1 2 3 4 5 6 7 8 9 10
an | 3 | 3.500 | 3.750 | 3.875 | 3.938 | 3.969 | 3.984 | 3.992 | 3.996 | 3.998 | 3.999

This sequence converges to 4.

8.1.50

n | 0 1 2 3 4 S 6 7 8 9
an | 1| =275 | —3.688 | —3.922 | —3.981 | —3.995 | —3.999 | —4.000 | —4.000 | —4.000

This sequence converges to —4.

8.1.51

n 01234 |5 |6 | 7 | 8| 9 | 10
anp | 0|1 | 3| 7|15 |31 63| 127 | 255 | 511 | 1023

This sequence diverges.

8.1.52

n | 0|1 2 3 4 5 6 7 8 9 10
an | 10 | 4| 3.4 ] 3.34 | 3.334 | 3.333 | 3.333 | 3.333 | 3.333 | 3.333 | 3.333

This sequence converges to 1—30.

8.1.53

n 0 1 2 3 4 ) 6 7 8 9
an | 1000 | 18.811 | 5.1686 | 4.1367 | 4.0169 | 4.0021 | 4.0003 | 4.0000 | 4.0000 | 4.0000

This sequence converges to 4.

8.1.54

n |0 1 2 3 4 5 6 7 8 9 10
an | 1| 1.4212 | 1.5538 | 1.5981 | 1.6119 | 1.6161 | 1.6174 | 1.6179 | 1.6180 | 1.6180 | 1.6180

This sequence converges to 1+T\/g ~ 1.618.

8.1.55 8.1.56

a. 20, 10, 5, 2.5. a. 10, 9, 8.1, 7.29.
b. hy, =20(0.5)". b. h, = 10(0.9)".
8.1.57 8.1.58

a. 30, 7.5, 1.875, 0.46875. a. 20, 15, 11.25, 8.438

b. h, = 30(0.25)". b. hy, = 20(0.75)".

8.1.59 S; = 0.3, So = 0.33, S3 = 0.333, Sy = 0.3333. It appears that the infinite series has a value of

_ 1
0.3333... = 1.

8.1.60 S; = 0.6, S2 = 0.66, S3 = 0.666, Sy

_ 2
0.6666... = 2.

0.6666. It appears that the infinite series has a value of

Copyright (© 2015 Pearson Education, Inc.



8.1. An Overview 7

8.1.61 S| =4, S9=4.9, S3 =4.99, S; = 4.999. The infinite series has a value of 4.999--- = 5.
8.1.62 Sy =1, 9 =3 =15, 89 =1 =175 9, =12 = 1.875. The infinite series has a value of 2.
8.1.63

2 4 6
a. 5125,5225;53277542

©Joo

b. It appears that S,, = %

c. The series has a value of 1 (the partial sums converge to 1).

8.1.64

a. 51:%,52:%,5‘3:%754:%'

b. S, =1- 2%

c. The partial sums converge to 1, so that is the value of the series.
8.1.65

R R e

b. Sy =55

c. The partial sums converge to %, which is the value of the series.

8.1.66
a. 51:%75223’5323—?’54:%,
b. S, =1- 4.

c. The partial sums converge to 1, which is the value of the series.
8.1.67

a. True. For example, So =1+2=3,and Sy =ay +as+az+as=1+2+3+4=10.

b. False. For example, %, %, %, .- where a, =1 — 5=

5= converges to 1, but each term is greater than the
previous one.

c. True. In order for the partial sums to converge, they must get closer and closer together. In order
for this to happen, the difference between successive partial sums, which is just the value of a,,, must
approach zero.

8.1.68 The height at the n'™ bounce is given by the recurrence h,, = r - h,_1; an explicit form for this
sequence is h,, = hg - ™. The distance traveled by the ball between the n'" and the (n + 1) bounce is thus
2hy, = 2hg - 7™, so that Sp,41 =Y i 2ho - 1.

a. Here hg = 20, r = 0.5, 50 Sy = 40, Sp = 40 + 40 - 0.5 = 60, S5 = So + 40 - (0.5)2 = 70, S; =
S5 +40-(0.5)3 =75, S5 = Sy + 40 - (0.5)* = 77.5

n 1 2 3 4 5 6
On, 40 60 70 I0) 77.5 78.75
n 7 8 9 10 11 12
b. Qn | 79.375 | 79.688 | 79.844 | 79.922 | 79.961 | 79.980
n 13 14 15 16 17 18
Gn | 79.990 | 79.995 | 79.998 | 79.999 | 79.999 | 80.000
n 19 20 21 22 23 24
an | 80.000 | 80.000 | 80.000 | 80.000 | 80.000 | 80.000

The sequence converges to 80.

Copyright (©) 2015 Pearson Education, Inc.



8 Chapter 8. Sequences and Infinite Series

8.1.69 Using the work from the previous problem:

a. Here hg = 20, 7 = 0.75, so S; = 40, Sy = 40 +40-0.75 = 70, S3 = Sy + 40 - (0.75)2 = 92.5,
Sy = Ss +40- (0.75)% = 109.375, S5 = Sy + 40 - (0.75)* = 122.03125

n 1 2 3 4 5 6
an, 40 70 92.5 109.375 | 122.031 | 131.523
n 7 8 9 10 11 12

b, |L9n 138.643 | 143.982 | 147.986 | 150.990 | 153.242 | 154.932
n 13 14 15 16 17 18
an | 156.199 | 157.149 | 157.862 | 158.396 | 158.797 | 159.098
n 19 20 21 22 23 24
an | 159.323 | 159.493 | 159.619 | 159.715 | 159.786 | 159.839

The sequence converges to 160.

8.1.70 8.1.71
a. s1=—1,8=0,s3=—1, 51 =0. a. 0.9, 0.99, 0.999, .9999.

b. The limit does not exist. b. The limit is 1.

8.1.72 8.1.73

a. 1.5, 3.75, 7.125, 12.1875. a %, %7 %7 ;1(1)_

b. The limit does not exist. b. The limit is 1/2.
8.1.74 8.1.75

a. 1, 3, 6, 10. a. —1,0, —1,0.

b. The limit does not exist. b. The limit does not exist.

8.1.76
a. —1,1, =2, 2.
b. The limit does not exist.

8.1.77

a. o5 =03, 33 =0.33, 335 =0.333, 3223 = (.3333.
b. The limit is 1/3.

8.1.78
a. po =250, p1 = 250-1.03 = 258, po = 250-1.032 = 265, ps = 250 1.033 = 273, p, = 250-1.03% = 281.

b. The initial population is 250, so that py = 250. Then p, = 250 - (1.03)™, because the population
increases by 3 percent each month.

C. Pnt+1 = pn - 1.03.

d. The population increases without bound.

Copyright (©) 2015 Pearson Education, Inc.



8.1. An Overview

8.1.79

a.
b.

C.

d.

M, =20-0.5".

My =05 M,, n>0.

8.1.80

a. ¢g = 100, ¢ =103, c2 =106.09, c3 =109.27, c4 = 112.55.

b
c

d

. ¢y, =100(1.03)™ for n > 0.

. We are given that ¢y = 100 (where year 0 is 1984); because it increases by 3% per year, ¢, 11 = 1.03-¢,,.

. The sequence diverges.

8.1.81

a.

d.

The amount of material goes to 0.

preceding amount is left every hour, so that d,+1 = 0.95-d,.

8.1.82

a. Using the recurrence a,41 = % (an +

b. The recurrence is now a,41 = % (

The sequence converges to 0.

A,

m), we build a table:

n

0

1

2

3

4

5

Qp

10

5.5

3.659090909

3.196005081

3.162455622

3.162277665

The true value is /10 &~ 3.162277660, so the sequence converges with an error of less than 0.01 after

only 4 iterations, and is within 0.0001 after only 5 iterations.

2

My =20, M; =20-0.5=10, My =20-0.52=5, My =20-0.5%=2.5, My =20-0.5%=1.25

The initial mass is My = 20. We are given that 50% of the mass is gone after each decade, so that

do =200, dy =200-.95 =190, dp = 200 -.95% = 180.5, d3 = 200 - .95 = 171.475, dy = 200 - .95* =
162.90125.

d, =200(0.95)", n > 0.
We are given dg = 200; because 5% of the drug is washed out every hour, that means that 95% of the

apn + E)

c Ve 0 1 2 3 4 5 6

2 | 1414 | 2 | 1.5 | 1.417 | 1.414 | 1.414 | 1.414 | 1.414
3| 1732 ] 3 2 | 1.750 | 1.732 | 1.732 | 1.732 | 1.732
4 12000 | 4 |25 | 2050 | 2.001 | 2.000 | 2.000 | 2.000
5 2236 | 5 3 2333 | 2.238 | 2.236 | 2.236 | 2.236
6 | 2449 | 6 | 3.6 | 2.607 | 2.454 | 2.449 | 2.449 | 2.449
712646 | 7 | 4 | 2.875 | 2.655 | 2.646 | 2.646 | 2.646
8 | 2.828 | 8 | 4.5 | 3.139 | 2.844 | 2.828 | 2.828 | 2.828
9 | 3.000 | 9 | 5.0/ 3.400 | 3.024 | 3.000 | 3.000 | 3.000
10 | 3.162 | 10 | 5.5 | 3.659 | 3.196 | 3.162 | 3.162 | 3.162

For ¢ = 2 the sequence converges to within 0.01 after two iterations.

For ¢ =3, 4, 5, 6, and 7 the sequence converges to within 0.01 after three iterations.

For ¢ = 8, 9, and 10 it requires four iterations.

Copyright (©) 2015 Pearson Education, Inc.




10 Chapter 8. Sequences and Infinite Series

8.2 Sequences

8.2.1 There are many examples; one is a, = % This sequence is nonincreasing (in fact, it is decreasing)
and has a limit of 0.

8.2.2 Again there are many examples; one is a,, = In(n). It is increasing, and has no limit.

8.2.3 There are many examples; one is a,, = % This sequence is nonincreasing (in fact, it is decreasing), is
bounded above by 1 and below by 0, and has a limit of 0.

8.2.4 For example, a,, = (—1)™. For all values of n we have |a,| = 1, so it is bounded. All the odd terms
are —1 and all the even terms are 1, so the sequence does not have a limit.

8.2.5 {r"} converges for —1 < r < 1. It diverges for all other values of r (see Theorem 8.3).

8.2.6 By Theorem 8.1, if we can find a function f(z) such that f(n) = a, for all positive integers n, then if

lim f(x) exists and is equal to L, we then have lim a, exists and is also equal to L. This means that we
xr—r 00 n—oo

can apply function-oriented limit methods such as L’Ho6pital’s rule to determine limits of sequences.
8.2.7 {100} grows faster than {n'%°} as n — oco.

8.2.8 The definition of the limit of a sequence involves only the behavior of the n*" term of a sequence as n
gets large (see the Definition of Limit of a Sequence). Thus suppose a,, b, differ in only finitely many terms,
and that M is large enough so that a,, = b, for n > M. Suppose a,, has limit L. Then for ¢ > 0, if N is
such that |a, — L| < ¢ for n > N, first increase N if required so that N > M as well. Then we also have
|b, — L| < ¢ for n > N. Thus a,, and b,, have the same limit. A similar argument applies if a,, has no limit.

8.2.9 Divide numerator and denominator by n* to get lim L/ T =0.
n—oo 1+77

v

8.2.10 Divide numerator and denominator by n'? to get lim —— = L.
n—oo 3+ 12 3

8.2.11 Divide numerator and denominator by n® to get lim % =3
n—oo

8.2.12 Divide numerator and denominator by €™ to get lim M =2.
n—oo

8.2.13 Divide numerator and denominator by 3™ to get lim w =3.
n—oo

.. . — 2 : 1 _ 1
8.2.14 Divide numerator by k& and denominator by k = VvV k? to get thm o B

oo

8.2.15 lim tan~'n = Z.

n—oo 2

vnZ+14+n
vn2+14+n

lim ( /n2—|—71—n) ~ lim (\/m—n) (\/n2+1+n) _ g 1

8.2.16 Multiply by to obtain

im ——— = 0.

n—oo vni+1l+4n Cnooo 2 14n

n— oo

tan !

= (.

8.2.17 Because lim tan~'n = 5, lim
n—roo n—roo

8.2.18 Let y = n*™. Thenlny = 2122 By I’Hopital’s rule we have lim 212Z = lim 2 =0,s0 lim n?/" =

¥ =
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8.2.19 Find the limit of the logarithm of the expression, which is nIn (1 + %) Using L'Hopital’s rule:

. . In(1+2) . 1+(12/n) () .
e, B (1 * n) e -y e B L Y B
Thus the limit of the original expression is e2.
8.2.20 Take the logarithm of the expression and use L’Hopital’s rule:
h«#L) nts 5 B
lim nln LI, lim A\ lim — 07 gy on = —5.
Thus the original limit is e 5.
8.2.21 Take the logarithm of the expression and use L’Hopital’s rule:
1 -1
1 In(1+(1/2 151 /2n)  2n? 1 1
fim P (14 L) = g ROAEA20)) o TR g L L
n—00 2n n—oo 2/n n—oo  —2/n? n—oo 4(1+(1/2n)) 4

Thus the original limit is e'/%.

8.2.22 Find the limit of the logarithm of the expression, which is 3n In (1 + %) Using L'Hopital’s rule:

4 3 (1+ 4 T (52 12
tim 3ntn (14 2) = g 20 g wow GE) 12
Thus the limit of the original expression is e'2.
3 ET AN ) . : n . 1 —
8.2.23 Using L’Hopital’s rule: nh—>Holo P nh_)n;o =3 0.
8.2.24 ln% = —Inn, so this is — lim 1“7” By L’Hopital’s rule, we have — lim IHT" = — lim % =0.
n—roo n—roo n—roo

8.2.25 Taking logs, we have lim %ln(l/n) = lim —1“7” = lim ’71 = 0 by L’Hopital’s rule. Thus the
n—oo n—oo n—oo
original sequence has limit e° = 1.

8.2.26 Find the limit of the logarithm of the expression, which is nln (1 — %)7 using L’Hopital’s rule:
—4

m(1-3) _ lim am G _ lim —=2—~ = —4. Thus the limit of the origi-
1/n ey —1/n? T oS 1-(@/n) T ’ g

. 4 _ .
A nin (1 - 5) = lim,

nal expression is e 4.

8.2.27 Except for a finite number of terms, this sequence is just a, = ne™™, so it has the same limit as this
sequence. Note that lim % = lim e% = 0, by L’Hopital’s rule.

n—oo € n— 00

8.2.28 In(n? + 1) — In(3n® + 10n) = In (%) =1n (;ﬁ%) , so the limit is In(1/3) = —In3.

8.2.29 In(sin(1/n)) + Inn = In(nsin(l/n)) = In (%) . Asn — oo, sin(l/n)/(1/n) — 1, so the limit of

the original sequence is In1 = 0.
8.2.30 Using L’Hopital’s rule:

1 —cos(1/n) _ lim —sin(1/n)(=1/n?)

nh_)rrgo n(l —cos(1/n)) = nh_>ngo /n Jim. 1 = —sin(0) = 0.
. . . sin(6/n) . _GLW .
8.2.31 nlgr;nsm(ﬁ/n) = nl;ngo = nl;ngo e = nl;n;oficos(ﬁ/n) =6-cos0=6.
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12 Chapter 8. Sequences and Infinite Series

8.2.32 Because f% < % < %L, and because both f% and %L have limit 0 as n — oo, the limit of the given

sequence is also 0 by the Squeeze Theorem.

8.2.33 The terms with odd-numbered subscripts have the form — 47 » S0 they approach —1, while the terms

with even-numbered subscripts have the form nLH so they approach 1. Thus, the sequence has no limit.

_qyn+1,2 o
8.2.34 Because 2;3”;1 < b n n’ _and because both have limit 0 as n — oo, the

2 2

— 2n34+n  — 2n34n? 2n3’rf|-n and 2ng+n

limit of the given sequence is also 0 by the Squeeze Theorem. Note that lim 35—
n—roo

y
When n is an integer, sin ("—2”) oscillates be-
8.2.35 tween the values +1 and 0, so this sequence
does not converge. 5 10 15 2"
y
The even terms form a sequence by, = %, Lo T

which converges to 1 (e.g. by L’Hopital’s
8.2.36 Iule); the odd terms form the sequence

bant1 = — 7, which converges to —1. Thus 5 10 15 0"
the sequence as a whole does not converge. .
Y
%
The numerator is bounded in absolute value Teell. ..
8.2.37 by 1, while the denominator goes to co, so . . OV n
the limit of this sequence is 0. % .. PR L P
L4
y
0.15F .
The reciprocal of this sequence is b,, = ai = ool
8.2.38 14 (%)n, which increases without bound as "
n — oo. Thus a, converges to zero. 0.0s| .
lb ..20 30 40 50 n
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y

2.0 e © © o o o o o

15 ®
8.2.39 nlLr&(l + cos(1/n)) =1+ cos(0) = 2. Lol
0.5
2 4 é 8 lb n

Yy
0.6

0.5 ® o o o o . e o o o
By L’Hopital’s rule we have: nlirrgo m = 04f

8.2.40 . _n 11 03}

nlLII;O QCos(e*i)(—e*") T 2cos0 2" sl
0.1
0 2 4 é 8 10 n
y
021 »
This is the sequence Cce)f,,”; the numerator is 0.1y
bounded in absolute value by 1 and the de-

8.2.41 wded n ! e aeee
nominator increases without bound, so the 2,0 68 012w
limit is zero. —0af

-0.2"
y
020F
Using L’Hopital’s rule, we have nh_{lgo 711“1_’} = osh
8.2.42 . Un . L "
A, e = 0 e = 0
0.05-
2‘0 4‘0 6‘0 8‘0 160”
15}i
Ignoring the factor of (—1)™ for the moment, I
we see, taking logs, that lim 1“7” =0, so 1o
0 n—oo 0.5
that lim {/n = e = 1. Taking the sign

8.2.43 et i, Vo B e e R
into account, the odd terms converge to —1 —ost
while the even terms converge to 1. Thus the _10le
sequence does not converge. P B
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14 Chapter 8. Sequences and Infinite Series

Yy
0.35F
0.30F )
| 0.25F ’
go4q M 57 = 7 using L'Hopital’s rule. Thus il
the sequence converges to cot(ﬂ/Q) =0. 0.15}
0.10F
- N

10 20 30 40

8.2.45 Because 0.2 < 1, this sequence converges to 0. Because 0.2 > 0, the convergence is monotone.
8.2.46 Because 1.2 > 1, this sequence diverges monotonically to oco.

8.2.47 Because |—0.7] < 1, the sequence converges to 0; because —0.7 < 0, it does not do so monotonically.
The sequence converges by oscillation.

8.2.48 Because |—1.01] > 1, the sequence diverges; because —1.01 < 0, the divergence is not monotone.

8.2.49 Because 1.00001 > 1, the sequence diverges; because 1.00001 > 0, the divergence is monotone.

2714_1 2 n
w2 (5)

because 0 < % < 1, the sequence converges monotonically to zero.

8.2.50 This is the sequence

8.2.51 Because |—2.5| > 1, the sequence diverges; because —2.5 < 0, the divergence is not monotone. The
sequence diverges by oscillation.

8.2.52 |—0.003| < 1, so the sequence converges to zero; because —.003 < 0, the convergence is not monotone.

8.2.53 Because —1 < cosn < 1, we have _71 < een L
the given sequence does as well.

%. Because both _71 and % have limit 0 as n — oo,

8.2.54 Because —1 < sin6n < 1, we have —% < SmG” < #. Because both ——n and have limit 0 as
n — 0o, the given sequence does as well.

8.2.55 Because —1 < sinn < 1 for all n, the given sequence satisfies — 2” < 5‘2“"" < %, and because both
:I:Qn — 0 as n — 00, the given sequence converges to zero as well by the Squeeze Theorem.

8.2.56 Because —1 < cos(nn/2) <1 for all n, we have \Fl < %\;/2) f and because both :i:\lf — 0 as
n — oo, the given sequence converges to 0 as well by the Squeeze Theorem.

8.2.57 The inverse tangent function takes values between —m/2 and 7/2, so the numerator is always between

—T 2tan” ' n s
344 < n3 44 < 344"

—m and 7. Thus
Zero.

and by the Squeeze Theorem, the given sequence converges to

8.2.58 This sequence diverges. To see this, call the given sequence a,,, and assume it converges to limit L.

Then because the sequence b, converges to 1, the sequence ¢,, = ‘g" would converge to L as well. But

_ n
T n+l
¢, = sin® %5t doesn’t converge (because it is 1, —1,1,—=1---), so the given sequence doesn’t converge either.

8.2.59

a. After the n*" dose is given, the amount of drug in the bloodstream is d,, = 0.5 - d,,_1 + 80, because the
half-life is one day. The initial condition is d; = 80.
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b. The limit of this sequence is 160 mg.

c. Let L = hm d,. Then from the recurrence relation, we have d,,

0.5- hm dn 1+80,s0 L =0.5-L+ 80, and therefore L = 160.

8.2.60

a.

By = $20,000
By = 1.005 - By — $200 = $19, 900

By =1.005- B
Bs = 1.005 - B

— $200 = $19,799.50
— $200 = $19,698.50

B, =1.005 - B3 — $200 = $19, 596.99
Bs =1.005 - By — $200 = $19,494.97

b. B, =1.005- B,,_1 — $200

=0.5-d,_1 + 80, and thus li_)m d, =

c. Using a calculator or computer program, B,, becomes negative after the 139*" payment, so 139 months

or almost 11 years.

8.2.61
a.
Bo =0
By =1.0075 -
By =1.0075 -
Bz =1.0075 -
B, =1.0075 -
Bs = 1.0075 -

b. B, = 1.0075- B,,_1 + $100.

By + $100 = $100

By + $100 = $200.75
Bs + $100 = $302.26
Bs + $100 = $404.52
By + $100 = $507.56

c. Using a calculator or computer program, B,, > $5,000 during the 43*¢ month.

8.2.62

a. Let D,, be the total number of liters of alcohol in the mixture after the n'®

replacement. At the next

step, 2 liters of the 100 liters is removed, thus leaving 0.98 - D,, liters of alcohol, and then 0.1-2 = 0.2
liters of alcohol are added. Thus D,, = 0.98-D,,_1 +0.2. Now, C,, = D,,/100, so we obtain a recurrence

relation for C,, by dividing this equation by 100: C,, = 0.98 - C,,_1 + 0.002.

Cop=04

C1 =098
Cy=10.98-
C;=0.98-
Cy =098
C5 =0.98-

The rounding is done to five decimal places.

0.4+ 0.002 = 0.394

C1 +0.002 = 0.38812
Cs +0.002 = 0.38236
Cs5+0.002 = 0.37671
Cy +0.002 = 0.37118
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16 Chapter 8. Sequences and Infinite Series

b. Using a calculator or a computer program, C,, < 0.15 after the 89*" replacement.

c. If the limit of C), is L, then taking the limit of both sides of the recurrence equation yields L =
0.98L + 0.002, so .02L = .002, and L = .1 = 10%.

n!

8.2.63 Because n! < n™ by Theorem 8.6, we have lim = = 0.
n—oo

8.2.64 {3"} < {n!} because {b"} < {n!} in Theorem 8.6. Thus, lim ?;]—7: = 0.
n—,oo

8.2.65 Theorem 8.6 indicates that In?n < n?, so In?°n < n'% so lim % = 0.
n— 00

1000 10

8.2.66 Theorem 8.6 indicates that In?n < n?, so In n < n'% so lim m%Wn = 00.
n— o0

000

8.2.67 By Theorem 8.6, n? < b", so n'%% « 2" and thus lim ";n =0.
n—roo
8.2.68 Note that el/10 = Yer 1.1. Let r = elgm and note that 0 < r < 1. Thus lim eg/"w = lim r™ =0.
n— o0 n— 00

8.2.69 Let e > 0 be given and let IV be an integer with N > % Then if n > N, we have }% — O| = % < ﬁ <e.

8.2.70 Let € > 0 be given. We wish to find N such that |[(1/n?) — 0| < € if n > N. This means that
n—lf‘\ — 0| = % < &. So choose N such that % < g, so that N2 > é, and then N > % This shows that such
an N always exists for each ¢ and thus that the limit is zero.

3n? 3

_3| _ -3 _ 3
In2+1 4‘ - ‘4(4n2+1) — A(@n?+1

8.2.71 Let & > 0 be given. We wish to find N such that forn > N,

3 <E.
But this means that 3 < 4(4n? + 1), or 16en® 4 (4e — 3) > 0. Solving the quadratic, we get n > /2 — 4,
provided € < 3/4. So let N = i\/g if e < 3/4 and let N = 1 otherwise.

8.2.72 Let ¢ > 0 be given. We wish to find N such that forn > N, [b7"—0| = b " < ¢, so that —nlnb < Ine.

: 1
So choose N to be any integer greater than — .

8.2.73 Let € > 0 be given. We wish to find N such that for n > N, |z — £ = ‘b(b;il)‘ = b(brf+1) <e.
But this means that ebn + (be — ¢) > 0, so that N > 5= will work.
8.2.74 Let € > 0 be given. We wish to find N such that for n > N, ‘ML-H — O‘ = 757 < ¢&. Thus we want

n < e(n?+1), or en? —n +e > 0. Whenever n is larger than the larger of the two roots of this quadratic,
14+/1—4e2

the desired inequality will hold. The roots of the quadratic are o

1++1—4e2
2¢e :

, so we choose N to be any integer

greater than

8.2.75
a. True. See Theorem 8.2 part 4.

b. False. For example, if a,, = 1/n and b,, = €", then nhﬁn;o anb, = oco.

c. True. The definition of the limit of a sequence involves only the behavior of the n'" term of a sequence
as n gets large (see the Definition of Limit of a Sequence). Thus suppose a,,, b, differ in only finitely
many terms, and that M is large enough so that a,, = b,, for n > M. Suppose a,, has limit L. Then
for € > 0, if N is such that |a, — L| < € for n > N, first increase N if required so that N > M as well.
Then we also have |b, — L| < € for n > N. Thus a,, and b,, have the same limit. A similar argument
applies if a,, has no limit.
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d. True. Note that a, converges to zero. Intuitively, the nonzero terms of b, are those of a,, which
converge to zero. More formally, given €, choose N7 such that for n > Ny, a, < €. Let N = 2N; + 1.
Then for n > N, consider b,. If n is even, then b, = 0 so certainly b, < e. If n is odd, then
bn = G(n—1y/2, and (n —1)/2 > ((2N; + 1) — 1)/2 = Ny so that ag,_1)/2 < €. Thus b, converges to
zero as well.

e. False. If {a,,} happens to converge to zero, the statement is true. But consider for example a,, = 2+ %
Then lim a, = 2, but (—1)"a, does not converge (it oscillates between positive and negative values
n—oo

increasingly close to +2).
f. True. Suppose {0.000001a,} converged to L, and let € > 0 be given. Choose N such that for n > N,

|0.000001a,, — L| < €-0.000001. Dividing through by 0.000001, we get that for n > N, |a,, —1000000L| <
€, so that a,, converges as well (to 1000000L).

8.2.76 {2n — 3},
8.2.77 {(n—2)2+6(n—2) -9}, = {n? +2n — 17} ,.

8.2.78 If f(t) = flt x~2dz, then Jim f(t) = lim a,. But
oo n oo

oo b
lim £(t) :/ 22dz = lim |-+ ] = lim <11) +1) =1
1 1 — 00

t—o0 b—o0 x

8.2.79 Evaluate the limit of each term separately: lim % = 9—19 lim (g—g)n_l = 0, while ’Sin < 5"5# <
571,

n—roo n—roo
37> 50 by the Squeeze Theorem, this second term converges to 0 as well. Thus the sum of the terms converges
to zero.

8.2.80 Because lim —2%_ = 1. and because the inverse tangent function is continuous, the given sequence
T0n+4 ) )
n— o0

has limit tan=! 1 = 7/4.

8.2.81 Because lim 0.99" = 0, and because cosine is continuous, the first term converges to cos0 = 1. The

n—roo
limit of the second term is lim 72;971' = lim (673)n + lim (6%)" = (. Thus the sum converges to 1.
n—oo n—roo n—roo
8.2.82 Dividing the numerator and denominator by n! gives a, = % By Theorem 8.6, we have

4" < n!and 2" < nl. Thus, lim a, = 2 = 5.
n— o0

8.2.83 Dividing the numerator and denominator by 6" gives a,, = % By Theorem 8.6, n'% < 6".

. _ 140 _
Thus nh_)n;<> an =19 = 1.
8.2.84 Dividing the numerator and denominator by n® gives a,, = (11/';()% . Because 1+ (1/n) — 1 as

n — oo and (1/n) 4+ Ilnn — oo as n — oo, we have lim a, = 0.
n—oo

8.2.85 We can write a,, = (725;)". Theorem 8.6 indicates that n” < ™ for b > 1, so lim a,, = oo.
n— o0

8.2.86 A graph shows that the sequence appears to converge. Assuming that it does, let its limit be L.
Then lim ap41 = % lim a, +2,s0 L = %L + 2, and thus %L =2,s0 L =4.
n—oo n—oo

8.2.87 A graph shows that the sequence appears to converge. Let its supposed limit be L, then lim a,; =
n—oo
lim (2a,(1—ay)) = 2(lim a,)(1- lim a,),so L =2L(1—L) =2L—2L? and thus 2L?~L =0,s0 L =0, 1.
n—oo n—oo

n—oo
Thus the limit appears to be either 0 or 1/2; with the given initial condition, doing a few iterations by hand

confirms that the sequence converges to 1/2: ap =0.3; a3 =2-0.3-0.7 = .42; ag = 2-0.42 - 0.58 = 0.4872.
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8.2.88 A graph shows that the sequence appears to converge, and to a value other than zero; let its limit be

: RTINS 2y _ 1 1 1 _ 1 1 2 _ 172
L. Then nh_}rgo Gpt1 = nh_)n;o slan+ =) = ingrgo an + Tin_an so L = 5L+ 1, and therefore L° = 5L° + 1.

So L? = 2, and thus L = /2.

8.2.89 Computing three terms gives ag = 0.5,a; =4-0.5-0.5 =1,a2 =4-1-(1 —1) = 0. All successive
terms are obviously zero, so the sequence converges to 0.

8.2.90 A graph shows that the sequence appears to converge. Let its limit be L. Then lim an41 =
n—oo
/2 + lim a,, so L =+/2+ L. Thus we have L? =2+ L, so L? — L —2 =0, and thus L = —1,2. A square
n— oo

root, can never be negative, so this sequence must converge to 2.

8.2.91 For b =2, 22 > 3! but 16 = 2* < 4! = 24, so the crossover point is n = 4. For e, €® ~ 148.41 > 5! =
120 while e® ~ 403.4 < 6! = 720, so the crossover point is n = 6. For 10, 24! ~ 6.2 x 10?3 < 10%*, while
25! & 1.55 x 10%® > 102%, so the crossover point is n = 25.

8.2.92
a. Rounded to the nearest fish, the populations are

Fy = 4000

Fy =1.015F — 80 = 3980
Fy =1.015F; — 80 ~ 3960
F5 =1.015F5 — 80 ~ 3939
F, =1.015F5 — 80 ~ 3918
F5 =1.015F, — 80 ~ 3897

b. F, =1.015F,,_1 — 80
c. The population decreases and eventually reaches zero.

d. With an initial population of 5500 fish, the population increases without bound.

e. If the initial population is less than 5333 fish, the population will decline to zero. This is essentially
because for a population of less than 5333, the natural increase of 1.5% does not make up for the loss
of 80 fish.

8.2.93

a. The profits for each of the first ten days, in dollars are:

n 0 1 2 3 4 5 6 7 8 9 10
h, | 130.00 | 130.75 | 131.40 | 131.95 | 132.40 | 132.75 | 133.00 | 133.15 | 133.20 | 133.15 | 133.00

b. The profit on an item is revenue minus cost. The total cost of keeping the heifer for n days is .45n,
and the revenue for selling the heifer on the n'! day is (200 + 5n) - (.65 — .01n), because the heifer
gains 5 pounds per day but is worth a penny less per pound each day. Thus the total profit on the n'®
day is h,, = (200 + 5n) - (.65 — .01n) — .45n = 130 + 0.8n — 0.05n2. The maximum profit occurs when
—.1n + .8 = 0, which occurs when n = 8. The maximum profit is achieved by selling the heifer on the
8t day.

8.2.94

a. 1o ="T,21 =0, 12 =65=23 23 =06.25 24 =6.375 = 5L, 5 = 6.3125 = 201 x5 = 6.34375 = 2.

Copyright (©) 2015 Pearson Education, Inc.



8.2. Sequences 19
b. For the formula given in the problem, we have g = % + % (—%)0 =7 x = % + % . _71 = % — % =6,
so that the formula holds for n = 0,1. Now assume the formula holds for all integers < k; then
im0, 2 1’“+19+2 1\
T m T IeU = 3 T3 U2 3 "3\ 2
_fss 2/ oL
S 2\3 3\ 2 2
1 (38 2/ 1\"" 1
= — J— + 4 — —_— . —
2\ 3 3 2 2
_1fss 2 1\
2\ 3 3\ 2
19 2/ 1\
3 3 2
c. Asn — oo, (=1/2)" — 0, so that the limit is 19/3, or 6 1/3.

8.2.95 The approximate first few values of this sequence are:

n 0 1 2 3 4 5 6
cn | 7071 | 6325 | .6136 | .6088 | .6076 | .6074 | .6073

The value of the constant appears to be around 0.607.

8.2.96 We first prove that d,, is bounded by 200. If d,, < 200, then d,,+1 = 0.5-d,,4+100 < 0.5-200+100 < 200.
Because dy = 100 < 200, all d,, are at most 200. Thus the sequence is bounded. To see that it is monotone,
look at

dp —dp—1=0.5-dyp—1+100 = dp,—; =100 — 0.5d,,—.

But we know that d,,_1; < 200, so that 100—0.5d,,_1; > 0. Thus d,, > d,,—1 and the sequence is nondecreasing.

8.2.97

a.

8.2.9
{3.3. 1 -} has limit zero.

If we “cut off” the expression after n square roots, we get a,, from the recurrence given. We can thus
define the infinite expression to be the limit of a,, as n — oco.

ao =1, a1 = V2, as = V1 +v/2~ 1.5538, a3 ~ 1.5981, ay ~ 1.6118, and a5 ~ 1.6161.

a1p ~ 1.618, which differs from 1+T‘/5 ~ 1.61803394 by less than .001.
Assume lim a, = L. Then lim apy; = lim /1+a, =  /1+ lim a,, so L = +/1+ L, and thus
n— o0 n—o00 n—00 n—oo

L? =1+ L. Therefore we have L? — L — 1 =0, SOLZ%

Because clearly the limit is positive, it must be the positive square root.

. Letting ay4+1 = \/p + v/a, with ag = p and assuming a limit exists we have nhﬁrr;O Up41 = nhﬁrr;o D+ an

= /p+ lim a,,so L =+/p+ L, and thus L? = p + L. Therefore, L>? =L —p =10, so L = 1xV1p V;“‘p,
n—r oo

and because we know that L is positive, we have L = V2P V24p+1. The limit exists for all positive p.
8 Note that 1 — % = i_Tl, so that the product is % . % . % . % -+, so that a, = % for n > 2. The sequence
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8.2.99

a. Define a,, as given in the problem statement. Then we can define the value of the continued fraction
to be lim a,,.
n—oo

b.ag=1,a1 =1+ =2 a =1+, =5=15a=1+_ =3~ 1667,as =1+ = =16,
a5:1+;—4:1§’:1.625.

c. From the list above, the values of the sequence alternately decrease and increase, so we would expect
that the limit is somewhere between 1.6 and 1.625.

d. Assume that the limit is equal to L. Then from a,4; = 1+ ai, we have lim apy1 =1+ ﬁ,
n n—00 n

SO

n— oo

L=1+ %, and thus L? — L — 1 = 0. Therefore, L = 1:|:2\/5, and because L is clearly positive, it must
be equal to 1+T‘/§ ~ 1.618.

e. Here ap = a and an+1 = a+ ai. Assuming that lim a, = L we have L = a + %, so L? = aL +b, and
n n—oo

thus L2 — aL — b = 0. Therefore, [ = a£va’+db ”§2+4b, and because L > 0 we have [ = ¢tva-+db Vf“‘b.

8.2.100

a. With p = 0.5 we have for a,11 = a:

n 1 2 3 4 ) 6 7
an | 0.707 | 0.841 | 0.971 | 0.958 | 0.979 | 0.989 | 0.995

Experimenting with recurrence (1) one sees that for 0 < p < 1 the sequence converges to 1, while for
p > 1 the sequence diverges to oo.

b. With p = 1.2 and a,, = p“"~! we obtain

n 1 2 3 4 ) 6 7 8 9 10
an | 1.2 | 1.2446 | 1.2547 | 1.2570 | 1.2577 | 1.2577 | 1.2577 | 1.2577 | 1.2577 | 1.2577

With recurrence (2), in addition to converging for p < 1 it also converges for values of p less than
approximately 1.444. Here is a table of approximate values for different values of p:

P 1.1 1.2 1.3 1.4 1.44 1.444 1.445
lim a, | 1.1118 | 1.25776 | 1.471 | 1.887 | 2.39385 | 2.587 | Diverges
n—oo

It appears that the upper limit of convergence is about 1.444.
8.2.101
a. fo=fi=1,/f2=2,f3=3,fa=05,f5 =8, f6 =13, fr = 21, fs = 34, fo = 55, f10 = 89.
b. The sequence is clearly not bounded.

c. CT ~ 1.61818
9
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d. We use induction. Note that % w+ i) = % <1+2\/g + 1+2\/5> = % (%) =1=f;. Also
1 2 1) _ L (3+V5 2 _ 1 (946Vb45-4
note that 7 (go — ) = —= ( — ) = (7)

%

1 = f5. Now note that

fo1 4 foa = %(@"‘1 — (=DM TR = (R 2P
= (" ) = (1T - )
Now, note that ¢ — 1 = =, so that
P =t (1 + ;) ="t p=¢"
and
P T =Tt ) = (el — 1)) =

Making these substitutions, we get

fn = fn—l +fn—2 = 7=

8.2.102

a. We show that the arithmetic mean of any two positive numbers exceeds their geometric mean. Let a,

b > 0; then “F* — Vab = (a —2Vab+b) = L(/a — vb)? > 0. Because in addition ag > by, we have
a, > b, for all n.

b. To see that {a,} is decreasing, note that

an +bn  an+ap
An1 = = Qp-

2 2

Similarly,
n+1 V anby, >/ bpby, = by,

so that {b,} is increasing.

c. {an} is monotone and nonincreasing by part (b), and bounded below by part (a) (it is bounded below
by any of the b,), so it converges by the monotone convergence theorem. Similarly, {b,} is monotone
and nondecreasing by part (b) and bounded above by part (a), so it too converges.

n + by 1 1 1
Ap+1 — bn+1 == GT - anbn == 5(0,” -2 V anbn + bn) < i(an - 2\/ b% + bn) = i(an - bn)

Thus the difference between a,, 1 and b, 11 is less than half the difference between a,, and b, so that
difference goes to zero and the two limits are the same.

e. The AGM of 12 and 20 is approximately 15.745; Gauss’ constant is ~ 0.8346.

1
AGM(1,v/2)
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8.2.103
a.

2: 1
3: 10, 5, 16, 8, 4, 2, 1
4: 2,1
5: 16, 8, 4, 2, 1
6: 3, 10, 5, 16, 8, 4, 2, 1
T 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1
8: 4,2, 1
9: 28, 14, 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1
10: 5, 16, 8, 4, 2, 1

b. From the above, Hy =1, H3 =7, and Hy = 2.

Yy
120
This plot is for 1 < n < 100. Like hailstones, 0
the numbers in the sequence a,, rise and fall 80
€. but eventually crash to the earth. The con- 60¢
jecture appears to be true. 40¢ . . - ..
W0F o e - = LT e -_".- .
0 2‘0 40 6‘0 80 160”

8.2.104 {a,} < {b,} means that lim #= =0. But lim $= = ¢ lim #* =0, so that {ca,} < {db,}.
n—oo " n— oo n

oo bn
8.2.105
a. Note that as = v/3a; = m > v/3 = ay. Now assume that V3 =a; < as < ...ax_1 < ax. Then
ak+1=m> MZC%-
Thus {a,} is increasing.

b. Clearly because a; = v/3 > 0 and {a,} is increasing, the sequence is bounded below by v/3 > 0.
Further, a; = V3 < 3; assume that ar < 3. Then ar11 = v/3ar < V3 -3 = 3, so that axy1 < 3. So by
induction, {ay} is bounded above by 3.

c. Because {a,} is bounded and monotonically increasing, lim a,, exists by Theorem 8.5.
n—oo
d. Because the limit exists, we have
lim ap41 = lim V3a, = V3 lim Va, = V3. / lim Q-
n—00 n—00 n—00 n—r00
Let L = lim an4; = lim a,; then L = \/gﬁ, so that L = 3.
n—oo n—oo

8.2.106 By Theorem 8.6,
I 2Inn 9 Inn
n1—>H<§o \/ﬁ o nl)ngo nl/2

:0,

so that y/n has the larger growth rate. Using computational software, we see that /74 ~ 8.60233 < 21n 74 ~
8.60813, while /75 ~ 8.66025 > 21n 75 ~ 8.63493.
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8.2.107 By Theorem 8.6,

5 5
. n’ s (/2
nll{r;o en/2 =2 nh—)ngo en/2 =0

so that €™/2 has the larger growth rate. Using computational software we see that e3*/2 ~ 3.982 x 107 <
355 ~ 5.252 x 107, while ¢36/2 ~ 6.566 x 107 > 36° ~ 6.047 x 107.

8.2.108 By Theorem 8.6, Inn!? < nt%01 5o that n':%% has the larger growth rate. Using computational
software we see that 3509 & 35.1247 < In35'" & 35.5535 while 36*09! ~ 36.1292 > In 36" ~ 35.8352.

8.2.109 Experiment with a few widely separated values of n:

n n! n0.7n

1 1 1
10 3.63 x 10° 107
100 | 9.33 x 101°7 | 10140
1000 | 4.02 x 102567 | 102100

It appears that n®™ starts out larger, but is overtaken by the factorial somewhere between n = 10 and

n = 100, and that the gap grows wider as n increases. Looking between n = 10 and n = 100 revels that for
n = 18, we have n! ~ 6.402 x 10" < n%™ ~ 6.553 x 10'® while for n = 19 we have n! ~ 1.216 x 107 >
n% "™ ~ 1.017 x 10'7.

8.2.110 By Theorem 8.6,
91n3 In®
im i 2,
n—00 nlo n—oo N

so that n'° has a larger growth rate. Using computational software we see that 93'0 ~ 4.840 x 109 <
93 1n® 93 ~ 4.846 x 10'? while 94'° ~ 5.386 x 101 > 94°In® 94 ~ 5.374 x 10'.

8.2.111 First note that for a = 1 we already know that {n"} grows fast than {n!}. So if @ > 1, then
n® > n" so that {n"} grows faster than {n!} for a > 1 as well. To settle the case a < 1, recall Stirling’s
formula which states that for large values of n,

n! ~V2mnn"e "
Thus
n! V2mnn"e ™

lim = lim
n—oo nan n—oo nan

=427 lim pzt-ang—n

n— oo

> 27 lim nt=®nen

n— oo

_ m lim e(l—a)nlnne—n

n— oo

_ \/% lim 6((170,) lnnfl)n'

n— oo

If a < 1then (1 —a)lnn—1 > 0 for large values of n because 1 —a > 0, so that this limit is infinite. Hence
{n!} grows faster than {n®"} exactly when a < 1.

8.3 Infinite Series

8.3.1 A geometric series is a series in which the ratio of successive terms in the underlying sequence is a
constant. Thus a geometric series has the form > ar® where r is the constant. One example is 3 4+ 6 + 12 +
24448+ --- in which ¢ = 3 and r = 2.
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8.3.2 A geometric sum is the sum of a finite number of terms which have a constant ratio; a geometric series
is the sum of an infinite number of such terms.

8.3.3 The ratio is the common ratio between successive terms in the sum.
8.3.4 Yes, because there are only a finite number of terms.
8.3.5 No. For example, the geometric series with a,, = 3 - 2" does not have a finite sum.

8.3.6 The series converges if and only if |r| < 1.

1-3% 19682
83.7 S=1- = " —9841.
1-3 2
1—(1/4)" 41 4194303 1398101
838 S=1- = = = ~ 1.333.
1—(1/4) 3-410 7 3.1048576 1048576
1—(4/25)* 2521 — 421
839 S=1- = ~ 1.1905.
1—4/25 2521 — 4. 2520
1—2°
8.3.10 § =16 —— =511-16 = 8176.
1—(=3/4)10 410 _ 310 141361
83.11 S=1- = = ~ 0.5392.
1+3/4 410 1 3.49 262144
1—(—25)°
8.3.12 S = (—2.5) - ———— = —70.46875.
S = (—2.5) ToF 70.46875
1—-n" @’ —1
8313 S=1-— " =T 72 ~1409.84.
1—m Tm—1
4 1—(4/1)'° 375235564
8.3.14 S=_- = ~ 1.328.
7 3/7 282475249
o 1)\21
8.3.15 S:l~%:1.
8.3.16 22 8.3.17 1093
27 2916
1/1-(3/5)¢ 7448 1 4
8.3.18 — — _ 8.3.19 ——— = —.
5< 1-3/5 15625 1-1/4 3
1 5 1
8320 —— == 8.3.21 = 10.
1-3/5 2 1-09
8.3.22 1 _ Z 8.3.23 Divergent, because r > 1.
1-2/7 5
1 T e? 1
8.3.24 = . _
1-1/7 =w-—1 8.3.25 1—e2 e2-1
5/4 5 273 1
8.3.26 = . 327 2 _
1—-1/2 2 8327 775577
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3-43/73 64 1/625 1
8328 —— = —. 8.3.29 = —.
1—-4/7 49 1-1/5 500
1
8.3.30 Note that this is the same as Z?io (%)k. Then S = m =4
1 . .
8.3.31 = . (Note that e < 7, so r < 1 for this series.)
l—e/m 7w—ce
1/16 1
8.3.32 =-.
1-3/4 4
833353 1 k53—k:_53i i k_53. 1 _5320_2500
e 4 B 20)  ° 1-1/20 19 19 °
k=0 k=0
36/86 729 1 10
8.3.34 = 8335 — = —.
1—(3/8) 248320 1+9/10 19
2/3 2 1 3m
3. - = ——. 8.3.37 3- = .
8.3.36 1+2/3 5 1+1/7 w41
[eS) k 2
1 1/e 1 0.15 9
8.3.38 -] =- =— . 8.3.39 —— = — ~ 0.0196.
;( e) 1+1/e e+1 1.15 460
3/83 1
8340 ———— = ———.
1+4+1/83 171
8.3.41 8.3.42

a. 0.3=0.333...=377,3(0.1)".

b. The limit of the sequence of partial sums is 1/3.

8.3.43
a. 0.T=0.111... =37 (0.1)%.

b. The limit of the sequence of partial sums is 1/9.

8.3.45
a. 0.09 = 0.0909...=>"77,9(0.01)".

b. The limit of the sequence of partial sums is
1/11.

8.3.47
a. 0.037 = 0.037037037... = 37°  37(0.001)*.

b. The limit of the sequence of partial sums is
37/999 = 1/27.

a. 0.6 =0.666... = >, 6(0.1)".

b. The limit of the sequence of partial sums is 2/3.

8.3.44
a. 0.5=0.555... =377, 5(0.1)k

b. The limit of the sequence of partial sums is 5/9.

8.3.46
a. 0.27 =0.272727... = >_72, 27(0.01)*.

b. The limit of the sequence of partial sums is
3/11.

8.3.48
a. 0.027 = 0.027027027... = >3° | 27(0.001)*

b. The limit of the sequence of partial sums is
27/999 = 1/37.

_ > 12 12 4
8.3.49 0.12 = 0.121212... = § 12107k = — = ="~ = |
~ 1-1/100 99 33
_ > .25 25 124
8.3.50 1.25 = 1.252525... =1 § 25107k =14 — = ==
b= 1.252525 +225-10 im0 o9 T 09

k=0
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— .456 456 152
8.3.51 0.456 = 0.456456456 . . . 45610730 = = — =
Z 1— 1/1000 999 333
_ = .0039 .39 39 9939 3313
8.3.52 1.0039 = 1.00393939...=1 00391072k = 14+ —— =14 =1 = = .
+kZ:0 * 1—1/100 + 99 + 9900 9900 3300
— 00952 9.52 952 238
8.3.53 0.00952 = 0.00952952 . . 00952 - 107%F = .
1;) 1- 1/1000 999 ~ 99900 24975
_ > .0083 512 .83 128 83
8.3.54 5.1283 = 5.12838383... =5.12 0083-1072F =512+ ———— = - 4~ = 4 —
+kZ=0 +171/100 100+ 99 25 +9900
50771
9900
8.3.55 The second part of each term cancels with the first part of the succeeding term, so .S,, = ﬁ — n%ﬂ =
n_ n 1
S and hm 0 5T = g
8.3.56 The second part of each term cancels with the first part of the succeeding term, so S, = 1_%2 - %—H} =
_n_ _ 1
Fnre and hm 3n+9 =3
8.3.57 ! ! ! so the series given is the same as Y7o ( L ) In that series,
3. = — ies given i == i
k+6)(k+7) k+t6 k+7 & por (s~
the second part of each term cancels with the first part of the succeeding term, so S, = 1_%6 — n-lw' Thus
lim S,, = %
n—oo
8.3.58 L L ! ! th ies gi b itt
3. == — so the series given can be written
Bk+1)(3k+4) 3\3k+1 3k+4) &V v
1 — 1 1
3 zz: (3/4;—&—1 — 314;—1—4) In that series, the second part of each term cancels with the first part of the
. . 1 (1 1 n+1
succeeding term (because 3(k + 1) + 1 = 3k + 4), so we are left with S, = 5 (T - 3n+4) = 3:1':4 and
: n+l __ 1
Jim 2 = 5
8.3.59 Note th k =t Thus th h ! !
.3.59 Note that @=3)(AkF1) — 163 4k+1 us the given series is the same as Z _3 " 1)
k=3
In that series, the second part of each term cancels with the first part of the succeeding term (because
1
4k +1) = 3 =4k + 1), so we have S, = § — 5, and thus nh_}rgoS 9
8.3.60 N h 2 = Thus th h 1 1
3. ote that D)@ FD) — 2h-T 2k+1 us the given series is the same as Z % —1 2%k 1)
In that series, the second part of each term cancels with the first part of the Succeedlng term (because
1
2(k+1)—1=2k+1), so we have S,, = 3 2n+1 Thus, hm S, = R
kE+1 L . ) . .
8.3.61 In )= In(k+1)—Ink, so the series given is the same as >~ ; (In(k+1)—In k), in which the first

part of each term cancels with the second part of the next term, so we have S,, =In(n+1)—In1 = In(n+1),
and thus the series diverges.

8.3.62 Note that S, = (v2— 1)+ (V3 —+2)+---+(v/n +1—/n). The second part of each term cancels
with the first part of the previous term. Thus, S,, = vn+ 1 — 1. and because lim vn+1—1 = oo, the
n—oo

series diverges.
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1 1 1 —( 1 1
8.3.63 that
(k+p)k+tp+1) k+p ktpti 0" Z k+p)(/€+p—|—1 ;( k+p k—|—p+1>

. . 1 o o L
and this series telescopes to give S, = m i n(p+1)+(p+1)2 so that nhﬂrr;o S, = PES|

8.3.64 ! Y- ! 0 that » ! =
T (ak+D)(ak+a+1)  al\ak+1 akt+a+l 5O T kzl(ak+1)(ak+a+1)_

1 1
— Z — . This series telescopes - the second term of each summand cancels with the
ak+1 ak+a+1

first term of the succeeding summage — so that S,, = % (a—il — ﬁ) , and thus the limit of the sequence
1

R TCESIE

8.3.65 Let a,, = — . Then the second term of a,, cancels with the first term of a,2, so the

series teleslcopes and S, = % + % - ﬁ - ﬁ and thus the sum of the series is the limit of S,,, which

1
s — + —.
V2 V3

8.3.66 The first term of the k" summand is sin(527): the second term of the (k + 1)** summand is

2k+1
—sin(%) these two are equal except for sign, so they cancel. Thus S, = —sin0 + sin((g;l_)lw) =
sin((g;:)lﬂ). Because (Z:i)lw has limit 7/2 as n — oo, and because the sine function is continuous, it follows

that lim S, is sin(§) = 1.
n—oo

2 _ 1 _ 1 _1(_1 1 -
8.3.67 16k° + 8k — 3 = (4k + 3)(4k — 1), 50 jgigri—3 = T @) — 1 (4k_1 — 4k+3> . Thus the series
1 1 1
given is equal to 1 Z (4k1 — 4k+3> This series telescopes, so S,, = i (—1 — ﬁ) , 8o the sum of
k=0
the series is equal to lim S,, = —i.
n—oo
8.3.68 This series clearly telescopes to give S, = —tan~1(1) —i— tan~'(n) = tan~'(n) — . Then because
lim tan~!(n) = %, the sum of the series is equal to lim S, = 7.
n—oo n—oo

8.3.69

T\ 7k e\k . . . . .
a. True. (7> = (f) ; because e < 7, this is a geometric series with ratio less than 1.
e T

00 o] 11
b. True. If Z a* = L, then Zak = (Z ak> + L
k=0 k=0

k=12

c. False. For example, let 0 < a <1 and b > 1.

= ﬁ Solving for r gives r = 1 — % Because a > 0

= —1. Thus |r| < 1 so that >, ,r* converges, and

d. True. Suppose a > l Then we want a = Zzo 0 ?"k

we have r < 1; because a > we have r > 1 —
it converges to a.

o
e. True. Suppose a > —32. Then we want a = > o, r* = 1 -

clearly 0 < r < 1 so that Y, ; 7 converges to a. For —% < a < 0, clearly r < 0, but |a| < |a + 1], so
that |r| < 1. Thus in this case >, ¥ also converges to a.

. Solving for r gives r = 247. For a > 0,

8.3.70 We have
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Note that the first part of each term cancels the second part of the previous term, so the nth partial sum

telescopes to be sin™'1 — sin™! #1 Because sin™'1 = 5 and lim sin™! —— = sin"'0 = 0, we have
n+ n—o00 n+1

lim S, = E.

n—oo 2
1/ 2\
8.3.71 This can be written as 3 Z (3) . This is a geometric series with ratio r = f% so the sum is
k=1
l.i_l.(_Z)__l
3 1-(-2/3) — 3 5) = T 15°
. . Lo /m\k o o
8.3.72 This can be written as — Z (7) . This is a geometric series with r = Z > 1, so the series diverges.
e e
k=1
8.3.73 Note that
In((k+1)k™1) In(k +1) Ink 1 1

(k) n(k+1) (nk)n(k+1) (nk)n(k+1) Ink In(k+1)

In the partial sum S,,, the first part of each term cancels the second part of the preceding term, so we have
1

_ 11 ; _
Sn = 13 TYCESIE Thus we have nll)n;o S, =

In2’
8.3.74
a. Because the first part of each term cancels the second part of the previous term, the nth partial sum
telescopes to be S, = % — 2,1% Thus, the sum of the series is lim 5, = 3
n—oo
o0
k+1_ok - . . Do
b. Note that 2% — 2,‘% = %7@21 = 2,9% Thus, the original series can be written as Z k7T which is
k=1
geometric with r = 1/2 and a = 1/4, so the sum is 11/1‘;2 =1
8.3.75
a. Because the first part of each term cancels the second part of the previous term, the nth partial sum
telescopes to be S, = % — 3;%. Thus, the sum of the series is lim S, = —.
n—oo 3
k k >
+1 .. . . .
b. Note that % - 3;% = “Wi,;ﬁ'?’ = %. Thus, the original series can be written as Z FI==) which
k=1

is geometric with r = 1/3 and a = 8/9, so the sum is % =3.2=-2
8.3.76 It will take Achilles 1/5 hour to cover the first mile. At this time, the tortoise has gone 1/5 mile
more, and it will take Achilles 1/25 hour to reach this new point. At that time, the tortoise has gone another
1/25 of a mile, and it will take Achilles 1/125 hour to reach this point. Adding the times up, we have

LR NS SNSRI VL
5 25 125 C1-1/5 4

so it will take Achilles 1/4 of an hour (15 minutes) to catch the tortoise.
8.3.77 At the n'" stage, there are 2"~ triangles of area A, = %An_l = 8,%1‘41, so the total area of the

n—1 1 n—1
triangles formed at the n'" stage is WAl = (4> Aq. Thus the total area under the parabola is

[e%s} n—1 [e’e} n—1
1 1 1 4
nzzl (4) ! 12(4) "T—1/4 371

n=1
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8.3.78

k
a. Note that MW = % . (3,6%1 — 3’“*711—1> . Then

(3k+L —1)(3k —1) 2 3k—1 3kt _1)°
k=1 k=1
This series telescopes to give S, = % (3%1 — ﬁ) , so that the sum of the series is lim 5, = i
n—oo
b. We mimic the above computations. First, WIM = a—il . (ﬁ — ﬁ) , S0 we see that

we cannot have a = 1, because the fraction would then be undefined. Continuing, we obtain S, =

ail (ﬁ — ﬁ) . Now, nh_}n;O aﬂ+711—1 converges if and only if the denominator grows without bound;

this happens if and only if |a| > 1. Thus, the original series converges for |a| > 1, when it converges to
ﬁ. Note that this is valid even for a negative.

It appears that the loan is paid off after about
470 months. Let B, be the loan balance
after n months. Then By = 180000 and

B, = 1.005- B,_y — 1000. Then B, = y
1.005 - By_y — 1000 = 1.005(1.005 - B,,_5 —
1000) — 1000 = (1.005)% - B,_5 — 1000(1 + 150000
1.005) = (1.005)2 - (1.005 - B,,—3 — 1000) — 100000
8:3-T9 " 1000(1 4 1.005) = (1.005)? - B,,_5 — 1000(1 + -
1.005 + (1.005)2) = -~ = (1.005)"By —

1000(1+1.005+(1.005)% +- - -+(1.005)" ') =

(1.005)" 180000~ 1000 ( 457 ) . Solving

this equation for B, = 0 gives n ~ 461.667
months, so the loan is paid off after 462
months.

It appears that the loan is paid off after
about 38 months. Let B, be the loan bal-
ance after n months. Then By = 20000 and
B, =1.0075- B,,_1 —60. Then B,, = 1.0075-
B,,—1 — 600 = 1.0075(1.0075 - B,,—2 — 600) — 20000{_
600 = (1.0075)% - B,,_ — 600(1 + 1.0075) = | "
(1.0075)2(1.0075 - B,_5 — 600) — 600(1 + 15000
8.3.80 1.0075) = (1.0075)3- B,,_3 —600(1+1.0075+ 10000}
(1.0075)%) = --- = (1.0075)" By — 600(1 +
1.0075 + (1.0075)? + --- + (1.0075)"" ') =

(1.0075)™ - 20000 — 600 (%) TR TR T

Solving this equation for B,, = 0 gives n =
38.501 months, so the loan is paid off after 39
months.

5000 -

8.3.81 F, = (1.015)F,_1 — 120 = (1.015)((1.015) F,,_ — 120) — 120 = (1.015)((1.015)((1.015) F,,_5 — 120) —
120) — 120 = - - - = (1.015)™(4000) — 120(1 + (1.015) + (1.015)2 4 - - - 4 (1.015)*~1). This is equal to

(1.015)" — 1

(1.015)"(4000) — 120 < COTE T

> = (—4000)(1.015)™ + 8000.
The long term population of the fish is 0.
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8.3.82 Let A, be the amount of antibiotic in your blood after n 6-hour periods. Then Ay = 200, 4,, =
0.54,,—1 +200. We have 4,, = .54,,_1 +200 = .5(.54,,_2 4+ 200) 4+ 200 = .5(.5(.5A,,—3 + 200) + 200) + 200 =
- =.5"(200) + 200(1 + .5+ .5% + --- + .57~ 1), This is equal to

51
57(200) + 200
(200) + ( 51

) = (.5™)(200 — 400) 4 400 = (—200)(.5") 4 400.

The limit of this expression as n — oo is 400, so the steady-state amount of antibiotic in your blood is 400
mg.

8.3.83 Under the one-child policy, each couple will have one child. Under the one-son policy, we compute the
expected number of children as follows: with probability 1/2 the first child will be a son; with probability
(1/2)?, the first child will be a daughter and the second child will be a son; in general, with probability
(1/2)", the first n — 1 children will be girls and the n** a boy. Thus the expected number of children

o0 K]
1
is the sum E i- () . To evaluate this series, use the following “trick”: Let f(x g iz’. Then

+Zz = Z (i + 1)x". Now, let

=1

o~ it o~ 1
m)Z;m :—1—x+iz=;x —1—x+?
and N
g/(x):f(x)+;xi: —1+Zx— —1+11x
Evaluate ¢'(z) = —1 — ﬁ; then
1 1 lt+z4+l @

A T R (= ER (=

Finally, evaluate at = =  to get f(3) = Y0 4" (%)l = % = 2. There will thus be twice as many

children under the one-son policy as under the one-child policy.

8.3.84 Let L,, be the amount of light transmitted through the window the n*" time the beam hits the second

L,
1-p’

1- p
is reflected back to the first pane, and %L; is then reflected back to the second pane. Of that, a fraction
equal to 1 — p is transmitted through the window. Thus

Ly,

2
=p°Ly.
1—p p

Lypy1=(1-p)

The amount of light transmitted through the window the first time is (1 — p)?. Thus the total amount is

Zan e _(d-p?® 1-p
1-p>  1+p

8.3.85 Ignoring the initial drop for the moment, the height after the n'" bounce is 10p", so the total
time spent in that bounce is 2 - \/2-10p™/g seconds. The total time before the ball comes to rest (now

including the time for the initial drop) is then /20/g+ Y ;0,2 /2-10p"/g = | /% +2 %0 S (V) =
20 20 _vP_ _ /20 2P 20 (1+vp
g+21/gl—\/§*1/ (1+ \[) 1/g(l_\/ﬁ> seconds.
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8.3.86

a. The fraction of available wealth spent each month is 1 — p, so the amount spent in the n'" month is

W (1 — p)™. The total amount spent is then > >~ W (1 —p)" = 1“1((1111;)) =W (1?%?) dollars.

b. As p — 1, the total amount spent approaches 0. This makes sense, because in the limit, if everyone
saves all of the money, none will be spent. As p — 0, the total amount spent gets larger and larger.
This also makes sense, because almost all of the available money is being respent each month.

8.3.87

a. I, y1 is obtained by I,, by dividing each edge into three equal parts, removing the middle part, and
adding two parts equal to it. Thus 3 equal parts turn into 4, so L,41 = %Ln. This is a geometric
sequence with a ratio greater than 1, so the n'" term grows without bound.

b. As the result of part (a), I, has 3-4™ sides of length 3%; each of those sides turns into an added triangle

in I,,41 of side length 3771, Thus the added area in I,,4+1 consists of 3-4™ equilateral triangles with side
2

3 on_
37"~!. The area of an equilateral triangle with side x is x \[ Thus Ay 41 = A, +3-4™- 324& =

Ay + L ()" and Ag = ¥3. Thus A,iq = Ao+ X7 Y2 - (4)", s0 that

12 9

=0

VBN (4N VB VB 1 VB 3 2
A=t 53 (5) =T B s Tt = 58

8.3.88

a. 5ilo—k:5§:<i}>k=5<%) :g.

i=1

> =/ 1\" 1/100 54
b. 54y 1072 =54 — ) =54 =—.
; ; (100) (99/100) 99

c. Suppose * = 0.niny...npning.... Then we can write this decimal as ning...n, Zfil 107 =
NN ... Np D ooy (ﬁ)z = ninsg.. .np(loplill(;jlop = "gg;:::g‘), where here ning...n, does not mean
multiplication but rather the digits in a decimal number, and where there are p 9’s in the denominator.

d. According to part (c), 0.12345678912345678912. .. = 123450789

e. Again using part (c), 0.9 = 3 = 1.

= T

8.3.89 |S—5,| = Zrk = ‘ T because the latter sum is simply a geometric series with first term r"
; —r
=n

and ratio 7.

8.3.90

a. Solve %% <1079 for n to get n = 29.

b. Solve %155 < 1076 for n to get n = 8.

0.85
8.3.91
a. Solve (73'88)” ‘ = % < 1075 for n to get n = 60.

b. Solve % <1076 for n to get n = 9.
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8.3.92

. 6
a. Solve 2 028 - < 1079 for n to get n = 46.

b. Solve ‘“0-25)" — 025" 10=6 for n to get n = 10.

1.25 125
8.3.93
a. Solve llff;; < 1076 for n to get n = 13.

b. Solve 11_/f/e < 1075 for n to get n = 15.

8.3.94

fl@) =Y 2h = & because fis represented by a geometric series, f(z) exists only for |z| < 1.
Then f(0) =1, f(0. 2) o5 = 1.25, f(0.5) = -t = 2. Neither f(1) nor f(1.5) exists.

b. The domain of fis {z : |z] < 1}.

8.3.95
a. f(x) = Z;’;O(—l)kxk = 1+ ; because f is a geometrlc series, f(z) exists only when the ratio, —z, is
such that |-z = |z| < 1. Then f(0) = 1, f(0.2) = {5 = 2, f(0.5) = 1+ 55 = 2. Neither f(1) nor
f(1.5) exists.
b. The domain of fis {z : |z| < 1}.
8.3.96
flz) =2 2 = ﬁ f is a geometric series, so f(x) is deﬁned only when the ratio, 22, is less
than 1, which means |z| < 1. Then f(0) =1, f(0.2) = —5; = 23, f(0.5) = (=455 = 3. Neither f(1)
nor f(1.5) exists.
b. The domain of fis {z : |z| < 1}.
1
8.3.97 f(x) is a geometric series with ratio 1+ ; thus f(x) converges when ’ ’ < 1.Forz > —1, e
x
1 1 1 1 -
—— and —— < 1lwhen1<1+2x, 2>0. Forz < —1, = , and this is less than 1 when
14z 1+ 1+ —1—-x
1< —-1—uaie o< —2. So f(x) converges for x > 0 and for < —2. When f(x) converges, its value is
L

—1+‘” , 50 f(z) =3 when 1 +2 =3z, z = L.

1— 2

1+L

8.3.98

a. Clearly for k < n, hy is a leg of a right triangle whose hypotenuse is r; and whose other leg is formed
where the vertical line (in the picture) meets a diameter of the next Smaller sphere; thus the other leg
of the triangle is r,1. The Pythagorean theorem then implies that h,C = rk TE_H.

b. The height is H, = 31" | h; =1, + 31—} \/r? —r?,; by part (a).

c. From part (b), because 7; = a’~ 1,
n—1 n—1
— 2 2 _ n—l1 i— i
Hn—rn—i—g \ri—ri=a —&—E Va?2i—2 — g2
i=1 i=1
n—1 n—1
=a" '+ Za“lv l—a?2=a""1"++1-a2 E a~!
= i=1

1— n—1
:an_1—|— 1_a2 (a)
1—a
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d. lim H, = lim a" '+ V1 —a? lim 1_“7471:04-\/1—(12(%):\/1: ta
n—s 60 nooo 1—a 1—a (1—a)(1—a) 1—a

n—oo

8.3.99

a. Using Theorem 8.7 in each case except for r = 0 gives

r | f(r)
—0.9 | 0.526
—0.7 | 0.588
—0.5 | 0.667
—-0.2 | 0.833

0 1
0.2 | 1.250
0.5 2
0.7 | 3.333
0.9 10

b. A plot of f is

-1.0 -0.5 0.5 1.0

c. For —1 < r < 1 we have f(r) = +2-, so that

1—r>

lim f(r)= lim

rs—1+ rs—1+1—7r 2’ r—1- rs1-1—r

8.3.100

a. In each case (except for r = 0 where N(r) is clearly 0), compute |S — S,,| for various values of n gives
the following results:
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r | N(r) | IS = SNney-1l | [S — SNl
—-0.9 | 81 1.0 x 107* 9.3 x107°
—0.7| 24 1.1 x 10~ 7.9 x 107
—0.5 | 12 1.6 x 1074 8.1x107°
—0.2 5 2.7 x 1074 5.3 x 107°

0 0 — 0
0.2 5 4.0 x107* | 8.0x107°
0.5 14 1.2x107% | 6.1 x107°
0.7 29 1.1x107% | 7.5 x107°
0.9 | 109 1.0x107% | 9.3 x107°

b. A plot of r versus N(r) for these values of r is

60f
40l

20+

c. The rate of convergence is faster for r closer to 0, since N(r) is smaller. The reason for this is that r*
gets smaller faster as k increases when |r| is closer to zero than when it is closer to 1.
8.4 The Divergence and Integral Tests

8.4.1 If the sequence of terms has limit 1, then the corresponding series diverges. It is necessary (but not
sufficient) that the sequence of terms has limit 0 in order for the corresponding series to be convergent.

8.4.2 No. For example, the harmonic serkes > -, % diverges although % — 0 as k — oo.

8.4.3 Yes. Either the series and the integral both converge, or both diverge, if the terms are positive and
decreasing.

8.4.4 It converges for p > 1, and diverges for all other values of p.

8.4.5 For the same values of p as in the previous problem — it converges for p > 1, and diverges for all other
values of p.

8.4.6 Let S, be the partial sums. Then S, 41 — S, = an4+1 > 0 because a,4+1 > 0. Thus the sequence of
partial sums is increasing.

8.4.7 The remainder of an infinite series is the error in approximating a convergent infinite series by a finite
number of terms.
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8.4.8 Yes. Suppose Y a converges to S, and let the sequence of partial sums be {S,,}. Then for any € > 0
there is some N such that for any n > N, |S — S, | < e. But |S — S, is simply the remainder R,, when the
series is approximated to n terms. Thus R,, — 0 as n — oo.

8.4.9 a; = £ and lim aj, = %, so the series diverges.
2k+1 o 2 g

8.4.10 ai = k%“ and klim ax = 0, so the divergence test is inconclusive.

— 00
8.4.11 a; = ﬁ and lim aj = oo, so the series diverges.
k—o0

2 . . . . .
8.4.12 a; = ’2% and lim aj = 0, so the divergence test is inconclusive.
k—o0

8.4.13 ai = m and lim aj = 0, so the divergence test is inconclusive.
k—o0

3 . . .
8.4.14 a; = kf—H and kli)ngo ar = 1, so the series diverges.

8.4.15 a; = 1\1/‘)Ek and lim ap = oo, so the series diverges.
n k— oo

8.4.16 a; = 7”“;“ and lim aj = 1, so the series diverges.
k—o0

8.4.17 a; = kY*. In order to compute limg oo ar, we let yp = Inax = % By Theorem 9.6, (or by

L’Hoépital’s rule), limg o0 yx = 0, 80 limy 00 g, = e® = 1. The given series thus diverges.
8.4.18 By Theorem 9.6 k3 < k!, so limy_,o0 ’Z—? = 0. The divergence test is inconclusive.

8.4.19 Clearly e% = e~ 7 is continuous, positive, and decreasing for x > 2 (in fact, for all x), so the integral
test applies. Because

o c c
e ¥dr = lim e dr = lim(—e ®)| = lim (e ?—e ¢ =e 2,
2 c— 00 2 c— 00 c—00

the Integral Test tells us that the original series converges as well.

8.4.20 Let f(z) = T f(z) is continuous for z > 1. Note that f'(z) = ﬁ > 0. Thus f

is increasing, and the conditions of the Integral Test aren’t satisfied. The given series diverges by the
Divergence Test.

8.4.21 Let f(x) =« - e~27"  This function is continuous for z > 1. Its derivative is 6_2”2(1 — 42?%) < 0 for

. . [e'e] _9,2 .
x > 1, so f(z) is decreasing. Because fl x-e 2 dr = -5 the series converges.

4e2>
8.4.22 Let f(x) = m. f(x) is obviously continuous and decreasing for 2 > 1. Because [~ é/ﬁ dx =
00, the series diverges.
8.4.23 Let f(z) = \/zlﬂ. f(z) is obviously continuous and decreasing for > 1. Because [, \/zlﬂ dzx = o0,

the series diverges.

8.4.24 Let f(x) = m f(z) is continuous and decreasing for x > 2. Because [, f(z)dx = 15 the
series converges.

x

8.4.25 Let f(x) = L. f(x) is clearly continuous for z > 1, and its derivative, f'(z) = €52 = (1 — r) 5%,

eT e2x

is negative for « > 1 so that f(z) is decreasing. Because [~ f(z)dz = 2e~', the series converges.

8.4.26 Let f(z) = ——1——. f(7) is continuous and decreasing for z > 3, and f;o ——L —dr = oco. The

: . z:lnz-Inlnz” z:lnz-Inlnx
given series therefore diverges.
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8.4.27 The integral test does not apply, because the sequence of terms is not decreasing.

8.4.28 f(x) = ﬁ is decreasing and continuous, and floo dx

verges.

x 1 . . )
(s = 1g- Thus, the given series con

8.4.29 This is a p-series with p = 10, so this series converges.

8.4.30 Y 77, k,r =Y i, 77— Note that 7 — e ~ 3.1416 — 2.71828 < 1, so this series diverges.
8.4.31 Y 3 e=2)7 2 P % which is a p-series with p = 4, thus convergent.

8.4.32 Y 0 2k73/2 =230 ks/Q is a p-series with p = 3/2, thus convergent.

8.4.33 > 7, S%/E =Y iey 715 is a p-series with p = 1/3, thus divergent.

8.4.34 > 12, ﬁ = 3> 0., =75 Is a p-series with p = 2/3, thus divergent.

8.4.35
a. The remainder R,, is bounded by f i@ = #
b. We solve W <1073 to get n = 3.
¢ Ly =8y + [ 35 dz = Sn + g5pqyss and Uy = Sy + [ 5 dw = Sn + 515

d. Sio ~ 1.017341512, so Lyg ~ 1.017341512 4+ 55 ~ 1.017342754, and Uyp ~ 1.017341512 + {5 ~
1.017343512.

8.4.36
a. The remainder R,, is bounded by [ X dz = -1
b. We solve =17 < 1073 to obtain n = 3.
c. L,=25, —|—f+1w18dx Sn—l—m,andUnzsn—i-f:Ox%dx:Sn—&—#.

d. S10 &~ 1.004077346, so Lip ~ 1.004077346 + - 17 ~ 1.004077353, and U;p ~ 1.004077346 +
1.004077360.

7107 ~

8.4.37

a. The remainder R,, is bounded by foo % dr = ﬁ

b. We solve < 1073 to obtain n = 7.

3"1 3

c. L,=3S, +f+1 Ldr = SnJrﬁ,andUn:SnJrfn —dr =S, +3n1n3

d. Si0 =~ 0.4999915325, so L1y ~ 0.4999915325 + ﬁ ~ 0.4999966708, and U;p =~ 0.4999915325 +
~ 0.5000069475.

310In3 1113
8.4.38
a. The remainder R, is bounded by [ —l—dz = L.

b. We solve ﬁ < 1073 to get n = 1990 ~ 10434,

C. S +f+1 "cln T S +ln(n+l)7andU _S +f S +lnn

d. Si1 = 4L, iy ~ 1700396385, so Ly ~ 1.700396385 + ﬁ ~ 2.102825989, and
Uny ~ 1.700396385 + 47 ~ 2.117428776.
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8.4.39

a. The remainder R,, is bounded by f de = 2n~1/2,

x3/2

b. We solve 2n~/2 < 1073 to get n > 4 x 10%, so let n =4 x 10% + 1.

c. L,=S8, + j:j_l 13% de =8, +2(n+1)"Y2 and U, = S, + f;o wslﬂ dx = S, +2n~1/2,

d. Sio = Sul, pe ~ 1995336493, so Lig ~ 1.995336493 + 2 - 1171/2 ~ 2.508359182, and Uy ~
1.995336493 4 2 - 10~ /2 ~ 2.627792025.

8.4.40
a. The remainder R,, is bounded by f;o e Tdr=e".
b. We solve e~ < 1073 to get n = 7.
c. L,=8,+ f;j_l e dr=S,+e " and U, =S, + [ e dx =5, +e "

d. S = Ziil e % ~ 0.5819502852, so Liy =~ 0.5819502852 + e~ ~ 0.5819669869, and Ujy =~
0.5819502852 + e~ 10 ~ 0.5819956851.

8.4.41
a. The remainder R,, is bounded by f % = #
b. We solve 2 > < 1073 to get n = 23.
¢ Ly =8, + [ 35 dv = Sn+ giigyzs and Uy = Sy + [ 5 da = Sn + 507
d. Sy ~ 1.197531986, so Lo ~ 1.197531986 + 515 =~ 1.201664217, and Uyo ~ 1.197531986 + o 102 R~
1.202531986.
8.4.42
a. The remainder R,, is bounded by f;o e dx = 2;2 .
b. We solv
c. L,=8,+ f;il re = de =8, + W’ and U, = S, + [° re® dg =
d. S0 ~ 04048813986, so Lo ~ 0.4048813986 + ; 112 ~ 0.4048813986, and Uy ~ 0.4048813986 + - o~
0.4048813986.
8.4.43 This is a geometric series with a = % and r = %, SO > poy % = % = % = %.
8.4.44 This is a geometric series with a = 3/e? and r = 1/e, so > ;7 , 3¢ = - 3{16/6) (63/16)/6 e(il).

Mg

o S () ()] 5 () 2
ICORSGIEDORS
s 3 (1)

0() (3/5) 2(2}7>=5—7=—2.
() +()s() 27
0SR-S
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o0

Ly 3 1/1 3/1 5 15 65
= = .2k — 0, sz —_ — - — _ = ==
2kZ:O(o ) +2k§:;( 8) 2<0.8>+2(0'2> -t

(5) =Hiran-ir

raso 553 (5-5) 22 () -5 6) () -k

8.4.51

@
IS
I
©
[~]e
/N
7 N
S| =
N—
= =
/——l_\ +
Wl = |
N—
. §
L -
N——— N———
Il
[~]e
7N\
=
SN—
e
+
[]e

a. True. The two series differ by a finite amount (22:1 a), so if one converges, so does the other.
b. True. The same argument applies as in part (a).

c. False. If > ay converges, then ap — 0 as k — oo, so that a; + 0.0001 — 0.0001 as k — oo, so that
> (ar +0.0001) cannot converge.

d. False. Suppose p = —1.0001. Then Y p* diverges but p + 0.001 = —0.9991 so that > (p + .0001)*
converges.

e. False. Let p = 1.0005; then —p +.001 = —(p —.001) = —.9995, so that > k~P converges (p-series) but
S k=PT00L diverges.

f. False. Let a, = %, the harmonic series.

k
8.4.52 Diverges by the Divergence Test because lim a; = lim Erl_ 1#0.
k—o0 k—o0 k

° 1 e 1 1
8.4.53 by the Int 1 Test b ———dx = — dr =
Converges by the Integral Test because /1 G+ 1)(Er+4) x /1 3Gz 1) 3031 4) x

ot 1 1 o1 3z+1\\|
lim — dr= lim - (In
b—oo J1 \3(3x+1) 3(Bz+4) b—oo 9 3r+4 1

1
= lim = —5 - In(4/7) ~ 0.06217 < oo,

b—o0

Alternatively, this is a telescoping series with nth partial sum equal to S, = % (% — 3n1+ 7 ) Which con-
verges to 1—12
8.4.54 C by the Tntegral Test b /Oo 0 =10y (tan~"(2/3)];) W07 5236 <
4. onverges e Integral Test because ———dr=— lim (tan™ (z = ——=
8es by & o 22+9 3 bone 0) =32
00.
8.4.55 Diverges by the Divergence Test because lim ap = lim ————==1#0
k—o00 k—oo k2 4+ 1
8.4.56 Converges because it is the sum of two geometric series. In fact, > oo, 4k3k =Y (2/4)F +
00 E_ _1/2 _3/4 —
Zk:1(3/4) — 1-(1/2) 1 1—(3/4) — 1+3=4.
<y 4 4
8.4.57 Converges by the Integral Test because / ———dz = lim | — — < 00.
o xln"zx b—oo \ Inz |, 2

8.4.58

a. In order for the series to converge, the integral f2 dx must exist. But

x(ln z)P

/ ! dx = 1 (Inz)'~?,
x(Inz)P 1-p

so in order for this improper integral to exist, we must have that 1 —p <0 or p > 1.
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b. The series converges faster for p = 3 because the terms of the series get smaller faster.

8.4.59

a. Note that [ m de = 1Tlp(ha Inz)' =P, and thus the improper integral with bounds n and oo

exists only if p > 1 because Inlnx > 0 for > e. So this series converges for p > 1.

b. For large values of z, clearly \/z > Inz, so that z > (Inz)?. Write 2 = Inz; then for large z,
Inz > (Inln z)2; multiplying both sides by zInz we have that #In? 2 > 2 Inz(Inln z)2, so that the first
series converges faster because the terms get smaller faster.

8.4.60
a. Y s
1
b. Z W.
c. > 163%

8.4.61 Let S, =Y ;_; ﬁ Then this looks like a left Riemann sum for the function y = ﬁ on [1,n+1].
Because each rectangle lies above the curve itself, we see that S,, is bounded below by the integral of ﬁ on

[1,n + 1]. Now,

n+1 1 n+1 n+1
/ —d:v:/ V2 de = 2\/x =2/n+1-2.
1 VT 1 1

This integral diverges as n — 0o, so the series does as well by the bound above.

8.4.62 22021(% + bk) = llmnﬂoo Zzzl(ak + bk) = llmnﬂoo (ZZ:l (075 + ZZ:l bk) = llmn*)m ZZ:l ar +
lim,, oo Zzzl b, = A+ B.

8.4.63 > ° cap = lim Y, _jcap = lim ¢ ;_jar = ¢ lim > 7, ay, so that one sum diverges if and
- n—oo - n—00 - n—oo -

only if the other one does.

zlnx

o~ 1
8.4.64 Z Tk diverges by the Integral Test, because f;o L —limy 0 (ln In x|g) = Q.
k=2

8.4.65 To approximate the sequence for {(m), note that the remainder R,, after n terms is bounded by

1 1
/ —dr = nt=m,
n xrm m—1

. 1
For m = 3, if we wish to approximate the value to within 1073, we must solve 57172 < 1073, so that n = 23,

23
1
and » 75 ~ 1.201151926. The true value is ~ 1.202056903.
k=1
1
For m = 5, if we wish to approximate the value to within 1073, we must solve Zn_4 <1073, so that n = 4,

4
1
and Z 5~ 1.036341789. The true value is ~ 1.036927755.
k=1
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8.4.66

1
a. Starting with cot? z < — <1+ cot? x, substitute k6 for x:
x

1
2
cot (k‘@) < W 1 + cot (k@),
> cot?(kf) < Z (k6))
k=1 k=1 k::]

2
S ot (i) < 53 i <0 Yoo
k=1 k=1 k=1
Note that the identity is valid because we are only summing for k up to n, so that k6 < 7.

b. Substitute for the sum, using the identity:

n(2n —1)
3

n(2n—1) 1 1 n(2n —1)
n(2n — 1)

02— <

. <0 n(2n + 2)

L
< k2 3 ’
n(2n — 1)

- n(2n + 2)m?
3(2n + 1)2

1
k2 " 3(2n+1)2

c. By the Squeeze Theorem, if the expressions on either end have equal limits as n — oo, the expression
in the middle does as well, and its limit is the same. The expression on the left is
9 2n? —n 9 2—-nt
T = ,
12n2 4+ 12n+3 12+ 12n=1 4 3n—2

2
0
which has a limit of 5 as n — 0o. The expression on the right is

9 2n2 + 2n 9 24 2n7 1
T =7 ,
12n%2 +12n+3 12+ 12n— 1 +3n—3

2

n—o0 6

n o0 1
which has the same limit. Thus lim Z Z w2 =

8.4.67 Z =i kz o) Qk 5+ splitting the series into even and odd terms. But )72, (Qk)Q =
i Zk:l 7z- Thus %2 = i% Zk:l m, so that the sum in question is % = %2.

8.4.68

a. {F,} is a decreasing sequence because each term in F), is smaller than the corresponding term in F,,_;
and thus the sum of terms in F;, is smaller than the sum of terms in F,,_.
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107 -
08f
06 e
T c. It appears that lim F, = 0.
04+ LI n—o00
02} e,
b, o 5 10 15 20"

8.4.69
_Ny2 1_1 ¢4 1_1,1_7 _ N6 1 _ 1,1, 1_ 37

A T1=) g0k T 2T sk T8 I T BT kma k= 1T 576 = g0

b. x, has n terms. Each term is bounded below byﬁ and bounded above by nLH Thus z, 2n~% = %,
andxngn-%ﬂ<n-%:1.

c. The right Riemann sum for f12 % using n subintervals has n rectangles of width %; the right edges of

those rectangles are at 1+ * = "T“ for i =1,2,...,n. The height of such a rectangle is the value of %
at the right endpoint, which is %=. Thus the area of the rectangle is % e = n+_z Adding up over

all the rectangles gives x,,.

d. The limit lim =, is the limit of the right Riemann sum as the width of the rectangles approaches zero.
n—0o0
2
This is precisely f12 4z —nz| =In2.
1

8.4.70

The first diagram is a left Riemann sum for
f(xz) = 1 on the interval [1,11] (we assume
n = 10 for purposes of drawing a graph). The
area under the curve is fln—H L dz = In(n+1),
and the sum of the areas of the rectangles is
obviously 1 + % + % 4+ 4 % Thus

1 1 1
In(n+1) < 1+2 + 3+---+n.
The second diagram is a right Riemann sum
for the same function on the same interval.
Considering only [1,n], we see that, compar-
ing the area under the curve and the sum of
the areas of the rectangles, that

1 + L + -4 1 <1

— — ... _— nn.

2 3 n
Adding 1 to both sides gives the desired in-
equality.

b. According to part (a), In(n + 1) < S, for n =1,2,3,...,, so that E,, =S, —In(n+1) > 0.

c. Using the second figure above and assuming n = 9, the final rectangle corresponds to and the

area under the curve between n + 1 and n + 2 is clearly In(n + 2) — In(n + 1).

1
n+1?
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d. Epy1— Epn=Sp1—In(n+2)— (S, —In(n+1)) = — (In(n+42) —In(n+1)). But this is positive
because of the bound established in part (c).

e. Using part (a), B, =S, —In(n+1)<1l4+Inn—-In(n+1) <1
f. E, is a monotone (increasing) sequence that is bounded, so it has a limit.
g. The first ten values (E; through Fp) are

3068528194, .401387711, .447038972, .473895421, .491573864,
.504089851, .513415601, .520632566, .526383161, .531072981.

ElOOO ~ 0.576716082.
h. For S,, > 10 we need 10 —0.5772 = 9.4228 > In(n+ 1). Solving for n gives n ~ 12366.16, so n = 12367.
8.4.71

a. Note that the center of gravity of any stack of dominoes is the average of the locations of their centers.
Define the midpoint of the zeroth (top) domino to be x = 0, and stack additional dominoes down and
to its right (to increasingly positive z-coordinates). Let m(n) be the z-coordinate of the midpoint of
the n'" domino. Then in order for the stack not to fall over, the left edge of the n'" dommo must
be placed directly under the center of gravity of dominos 0 through n — 1, which is = El o m(i),

so that m(n) = 1+ 13" "' m(i). We claim that in fact m(n) = Si i3 Use 1nduct10n. This is
certainly true for n = 1. Note first that m(O) =0, so we can start the sum at 1 rather than at 0.
Now, m(n) = 1+ L3707 "m(i) =1+ 1 Ly ZJ 1 j- Now, 1 appears n — 1 times in the double

sum, 2 appears n — 2 times, and so forth, so we can rewrite this sum as m(n) = 1+ - Zn ! e :

14 iynmh(n 1) :1+%(n2?;11%7(n71)) =yt sl =5 L and we are done
by induction (noting that the statement is clearly true for n =0, n = 1). Thus the maximum overhang
is 3 7

b. For an infinite number of dominos, because the overhang is the harmonic series, the distance is poten-
tially infinite.

8.4.72

a. The mrcumference of the kth layer is 27 - k, so its area is 27 - k and thus the total vertical surface area
Spei2m- ¢ =2mY ;2 + = oo. The horizontal surface area, however, is m, since looking at the cake
from above, the horizontal surface covers the circle of radius 1, which has area 7 - 12 = 7.

T

b. The volume of a cylinder of radius r and height & is 7r2h, so the volume of the kth layer is 7- % -1 = 5.

k2
Thus the volume of the cake is

o

o0 o0
T 1 71'3
E —2 = k— — =~ 5.168.

c. This cake has infinite surface area, yet it has finite volume!
8.4.73

a. Dividing both sides of the recurrence equation by f, gives f’}—“ =1+ % Let the limit of the ratio
of successive terms be L. Taking the limit of the previous equation gives L =1+ % Thus L? = L +1,

liw/l 4-(

so L? — L — 1 = 0. The quadratic formula gives L = , but we know that all the terms are

positive, so we must have L = % = ¢ ~ 1.618.

b. Write the recurrence in the form f,, 1 = an — fn and divide both sides by f,+1. Then we have

f{l+1 =1- f” . Taking the limit gives 1 — = on the right-hand side.
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c. Consider the harmonic series with the given groupings, and compare it with the sum of J;i—: as shown.
The first three terms match exactly. The sum of the next two are % + % > % + % = % The sum of the
nextthreeare%—}-%—i—% > %—5—%—1—%:%. Thesumofthenextﬁveare§+--~—|—% >5-11—3:1%.

Thus the harmonic series is bounded below by the series Y - ch’;: .

d. The result above implies that the harmonic series diverges, because the series 220:1 ;’;: diverges,

since its general term has limit 1 — é #0.

8.5 The Ratio, Root, and Comparison Tests

8.5.1 Given a series Y ay of positive terms, compute limg_, o a(’;zl and call it 7. If 0 < r < 1, the given
series converges. If r > 1 (including r = 00), the given series diverges. If r = 1, the test is inconclusive.

8.5.2 Given a series Y ay of positive terms, compute limy_,~ /ar and call it r. If 0 < r < 1, the given
series converges. If r > 1 (including r = o), the given series diverges. If » = 1, the test is inconclusive.

8.5.3 Given a series of positive terms > aj that you suspect converges, find a series ) by that you know
converges, for which limg_, ‘Z—: = L where L > 0 is a finite number. If you are successful, you will have
shown that the series > ag converges.

Given a series of positive terms » | aj that you suspect diverges, find a series ) by that you know diverges,
for which limg_, ‘;—: = L where L > 0 (including the case L = 00). If you are successful, you will have
shown that > aj diverges.

8.5.4 The Divergence Test.
8.5.5 The Ratio Test.
8.5.6 The Comparison Test or the Limit Comparison Test.

8.5.7 The difference between successive partial sums is a term in the sequence. Because the terms are
positive, differences between successive partial sums are as well, so the sequence of partial sums is increasing.

8.5.8 No. They all determine convergence or divergence by approximating or bounding the series by some
other series known to converge or diverge; thus, the actual value of the series cannot be determined.
Q1 1 (K)! _ 1

8.5.9 The ratio between successive terms is o T DT T AT which goes to zero as k — 0o, so the

given series converges by the Ratio Test.

8.5.10 The ratio between successive terms is a(’;—;’l = (i’j:)! . % = kiﬂ; the limit of this ratio is zero, so the
given series converges by the Ratio Test.

8.5.11 The ratio between ive terms is 455 = (UL 0 — 4 (E1)°. The limit is 1/4 as k —
.5. e ratio between successive terms is == = oy - gy = 1 (50) e s as 0,

so the given series converges by the Ratio Test.

8.5.12 The ratio between successive terms is

apyr  (k+ 1D 2k k41 (k41 ¥
i oy s el g

. k . . . . .
Note that limy_, o (%) = e, but limy_, % = 00, so the given series diverges by the Ratio Test.

—(k+1)
8.5.13 The ratio between successive terms is <= = % = ’(“,j)i The limit of this ratio as & — oo

is 1/e < 1, so the given series converges by the Ratio Test.
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41 (kDR (M)k

8.5.14 The ratio between successive terms is L = Enr = Uk
the limit of the ratio of successive terms is e > 1, so the given series diverges by the Ratio Test.

. This has limit e as k — o0, so

99
8.5.15 The ratio between successive terms is % . (];)

99
=2 (k+1) ; the limit as k& — oo is 2, so the

given series diverges by the Ratio Test.

8.5.16 The ratio between successive terms is % . ((:)):5 = %H (%)6; the limit as k — oo is zero, so the
given series converges by the Ratio Test.
8.5.17 The ratio between successive terms is Egzlji)l!)); : (Ei’)cl))! (%J(f;)'(lz)k T ; the limit as k — oo is 1/4, so

the given series converges by the Ratio Test.

4
8.5.18 Note that this series is > -, %: The ratio between successive terms is % =2 (kL—H) — 2 as

k — 00. So the given series diverges by the ratio test.

8.5.19 The kth root of the kth term is %. The limit of this as k& — oo is 2 > 1, so the given series
diverges by the Root Test.

8.5.20 The kth root of the kth term is k-s-l The limit of this as k — 0o is 2 > 1, so the given series diverges
by the Root Test.

8.5.21 The kth root of the kth term is @ The limit of this as k — oo is % < 1, so the given series
converges by the Root Test.

8.5.22 The kth root of the kth term is (1 + %)k The limit of this as k — 0o is = e3 > 1, so the given series
diverges by the Root Test.

2k
8.5.23 The kth root of the kth term is (ki—',-l) . The limit of this as k — oo is e72 < 1, so the given series
converges by the Root Test.

8.5.24 The kth root of the kth term is The limit of this as k — oo is 0, so the given series converges

by the Root Test.

(k+1)

8.5.25 The kth root of the kth term 15(,6%) The limit of this as &k — oo is 0, so the given series converges
by the Root Test.

8.5.26 The kth root of the kth term is % The limit of this as k — oo is é < 1, so the given series
converges by the Root Test.

8.5.27 < k%, and Y o7, 1%2 converges, S0 >, k%ﬂ converges as well, by the Comparison Test.

k2+4

8.5.28 Use the Limit Comparison Test with {k—g} The ratio of the terms of the two series is m%

which has limit 1 as k — oco. Because the comparison series converges, the given series does as well.

8.5.29 Use the Limit Comparison Test with {%} The ratio of the terms of the two series is zz—jri which has
limit 1 as & — oo. Because the comparison series diverges, the given series does as well.

8.5.30 Use the Limit Comparison Test with {%} The ratio of the terms of the two series is 0‘2(_)&1’“ which

has limit 0.0001 as k — oco. Because the comparison series diverges, the given series does as well.

8.5.31 For all k, /2 T <% /2 The series whose terms are 13 /2 is a p-series which converges, so the given
series converges as well by the Comparison Test.

8.5.32 Use the Limit Comparison Test with {1/k}. The ratio of the terms of the two series is k k37]:-1 =

3 . . . . . . . .
kf—ﬂ, which has limit 1 as k — co. Because the comparison series diverges, the given series does as well.
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8.5.33 sin(1/k) > 0 for k > 1, so we can apply the Comparison Test with 1/k2. sin(1/k) < 1, so Sing/k) < 75
Because the comparison series converges, the given series converges as well.
8.5.34 Use the Limit Comparison Test with {1/3¥}. The ratio of the terms of the two series is 3’;)%2’“ =

T (12k , which has limit 1 as k¥ — oo. Because the comparison series converges, the given series does as well.
=6

8.5.35 Use the Limit Comparison Test with {1/k}. The ratio of the terms of the two series is ﬁ =
m, which has limit 1/2 as k — co. Because the comparison series diverges, the given series does as
well.

8.5.36 Wﬁ < ki\l/E = # Because the series whose terms are le/z is a p—series with p > 1, it converges.

Because the comparison series converges, the given series converges as well.

8.5.37 Use the Limit Comparison Test with ’,zi% The ratio of corresponding terms of the two series is
VEZET K2 YRZH1 . VES
VESHL k23T R VRS
are k2/373/2 = |:=5/6 which is a p-series with p < 1, so it, and the given series, both diverge.

, which has limit 1 as £ — oo. The comparison series is the series whose terms

8.5.38 For all k, m < k% Because the series whose terms are k% converges, the given series converges
as well.

8.5.39
a. False. For example, let {a;} be all zeros, and {b;} be all 1’s.
b. True. This is a result of the Comparison Test.
c. True. Both of these statements follow from the Comparison Test.

d. True. The limit of the ratio is always 1 in the case, so the test is inconclusive.

8.5.40 Use the Divergence Test: lim ap = lim (1 — E)k = % # 0, so the given series diverges.
k— o0 k—o0

8.5.41 Use the Divergence Test: lim ap = lim (1 + %)k = €2 #£ 0, so the given series diverges.
k—o0 k—o0

8.5.42 Use the Root Test: The kth root of the kth term is % The limit of this as k — oo is % <1, so
the given series converges by the Root Test.

. . . . 100 100
8.5.43 Use the Ratio Test: the ratio of successive terms is (]Z,:i)g), : (12-510)! = (%) :

%H. This has limit

1199.0 =0 as k — oo, so the given series converges by the Ratio Test.

8.5.44 Use the Comparison Test. Note that sin k < 1 for all k, so Sizz k< k% for all k. Because Z;ozl k%
converges, so does the given series.

8.5.45 Use the Root Test. The kth root of the kth term is (k'/* — 1)2, which has limit 0 as k — oo, so the
given series converges by the Root Test.

k

8.5.46 Use the Limit Comparison Test with the series whose kth term is (Q)k Note that limy_ o of et

e ek—1 2k
2

k k
. e o . s 00 ol s .
limg 00 zi— = 1. The given series thus converges because )~ (g) converges (because it is a geometric

series with r = % < 1). Note that it is also possible to show convergence with the Ratio Test.

k2 42k+1

8.5.47 Use the Divergence Test: limy—,o0 5577 = % # 0, so the given series diverges.

Copyright (©) 2015 Pearson Education, Inc.



46 Chapter 8. Sequences and Infinite Series

8.5.48 Use the Limit Comparlson Test with the series whose kth term is z. Note that limy o0 5k =1
and the series Zk:l £& converges because it is a geometric series Wlth r = % Thus, the given series also
converges.

1

8.5.49 Use the Limit Comparison Test with the harmonic series. Note that limy_, o, 5£
i

: k
= limp o0 miE — 9O

and because the harmonic series diverges, the given series does as well.

8.5.50 Use the Limit Comparison Test with the series whose kth term is zz. Note that limy oo zr—gr 3k . % =
limg 00 W = 1, and the series Zk:3 £& converges because it is a geometrlc series with r = g. Thus,

the given series also converges.

8.5.51 Use the Limit Comparison Test with the series whose kth term is kg/z Note that limg_ o ﬁ .

@ = limy k?,fiz“ = /1 =1, and the series ey ks% converges because it is a p-series with p = %
Thus, the given series also converges.
8.5.52 Use the Ratio Test: @t — (BHDD? GRL _ (kt1)> which has limit 1/27 as k — .

an Bkta)l (k)3 (3k+1)(3k+2)(3k+3) ’
Thus the given series converges.

8.5.53 Use the Comparison Test. Each term % + 27k > % Because the harmonic series diverges, so does
this series.

8.5.54 Use the Comparison Test with {5/k}. Note that 22& > 2 for k > 1. Because the series whose terms
are 5/k diverges, the given series diverges as well.

2P (k1) (R)F
TR 2R (R)!

k
8.5.55 Use the Ratio Test. a(’;;“ = 2 (kiﬂ) , which has limit % as k — 00, so the given

series converges.

8.5.56 Use the Root Test. lim (1 - %)k = e~ ! < 1, so the given series converges.

k—o0

8.5.57 Use the Limit Comparison Test with {1/k%}. The ratio of corresponding terms is kﬁ—t:}, which has
limit 1 as & — oo. Because the comparison series converges, so does the given series.

8.5.58 Use the Root Test. lim ﬁ = 155 < 1 because p > 0, so the given series converges.
k— o0 P +p

8.5.59 This is a p-series with exponent greater than 1, so it converges.

: . 1 1
8.5.60 Use the Comparison Test: 7 < 7.

p—series, the given series converges as well.

Because the series whose terms are k% is a convergent

k41 E+1
Because lim,,_, o In(n+2) —In 2 = oo, the sequence of partial sums diverges, so the given series is divergent.

8.5.61 In <k+2) = In(k +2) — In(k + 1), so this series telescopes. We get >, In (“2) =In(n+2) —In2.

8.5.62 Use the Divergence Test. Note that limy_oo k=% = limy_,o0
diverges.

. . .
Ve = 1 # 0, so the given series

8.5.63 For k > 7, Ink > 2 so note that ﬁ < k—lz Because Y -, k% converges, the given series converges
as well.

8.5.64 Use the Limit Comparison Test with {1/k?}. Note that Sml/(l/k) (Sinl(/llék)> Because lim snr
r—r

the limit of this expression is 12 = 1 as k — oco. Because Zzozl 7z converges, the given series does as well.

tan(1/k)

8.5.65 Use the Limit Comparison Test with the harmonic series. i has limit 1 as £ — oo because
hn}J tanz _ 1 Thus the original series diverges.
T—
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8.5.66 Use the Root Test. lim #ap = lim /100 - % = 0, so the given series converges.
k—o00 k—o0

1 1 1 1
(2k+1)-(2k+3) 2\2k+1 2k+3

i—gi L S S W O A B
2k +1)(2k+3)  24\2k+1 2k+3) 2 2 +3

k:O

8.5.67 Note that

>. Thus this series telescopes.

so the given series converges to 1/2, because that is the limit of the sequence of partial sums.

8.5.68 This series is Y ;- k2 Zk 1 ( klz). Because Y, kg converges, if the original series also
converged, we would have that >~ E converged, which is false. Thus the original series diverges.

2
8.5.69 This series is > o, %": By the Ratio Test, a(’;zl = ((]12111))' . % = k%_l (%) , which has limit 0 as

k — o0, so the given series converges.

8.5.70 For any p, if k is sufficently large then k'/? > Ink because powers grow faster than logs, so that
k> (Ink)? and thus 1/k < 1/(Ink)P. Because > 1/k diverges, we see that the original series diverges for all

D.
8.5.71 Forp<1landk >e, % > 75 The series ooy kip diverges, so the given series diverges For p>1,
let ¢ < p—1; then for sufficiently large k, Ink < k9, so that by the Comparison Test, lzpk < kp = But

kp q-
p—gq>1,sothat -, ﬁ is a convergent p-series. Thus the original series is convergent precisely when

p> 1
b
2>.
b

8.5.72 For p # 1,
= 00.

2

/OO dx . (Inlnz)t=P
———— = lim | ————
5 zlnz(Inlnz)P  b-oo 1—p

This improper integral converges if and only p > 1. If p = 1, we have

> dx .
/ ———————— = lim Inlnlnx
o z(lnz)lnlnz  booo

Thus the original series converges for p > 1.

(ln k)

8.5.73 For p <1, > kp for k>3, and > 1, kp diverges for p < 1, so the orlglnal series diverges. For

p>1Lletg<p—1; then for sufficiently large k, (In k)P < k9. Note that (ln k) < == kp . Butp—q>1,
oo 1 . .
SO ) ,_y =7 converges, so the given series converges. Thus, the given serles converges exactly for p > 1.

k+1D)pF ! (kt1)k k+1)p(k+1)* k+1 k+1
8.5.74 Using the Ratio Test, <02 = ((k+;)1’1+1 ' ((k)!p)k = { (kJ)rg()kﬂ) =P (%) - P (1+%) ’

which has limit pe™". The series converges if the ratio limit is less than 1, so if p < e. If p > e, the given
series diverges by the Ratio Test. If p = e, the given series diverges by the Divergence Test.

8.5.75 Use the Ratio Test:
. agyr . (B+DpMt k41
lim —— = lim . =

k—oo Qg k—o0 k + 2 kpk

9

so the given series converges for p < 1 and diverges for p > 1. For p = 1 the given series diverges by limit
comparison with the harmonic series.

8.5.76 In (kﬂ)p = p(In(k) — In(k + 1)), so

o] k P o]
In| —— = (In(k) —In(k + 1))
() =2

which telescopes, and the n*® partial sum is —pln(n + 1), and lim,, o, —pIn(n + 1) is not a finite number
for any value of p other than 0. The given series diverges for all values of p other than p = 0.
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8.5.77 lim ar = lim (1 — %)k = e P =£ 0, so this sequence diverges for all p by the Divergence Test.
k— o0 k—o0

2
8.5.78 Use the Limit Comparison Test: lim ¢ = lim a; = 0, because Y ajy converges. By the Limit
k—o0 %k k— oo

Comparison Test, the series Y a? must converge as well.

8.5.79 These tests apply only for series with positive terms, so assume r > 0. Clearly the series do not
converge for r = 1, so we assume r # 1 in what follows. Using the Integral Test, >_r* converges if and

. e . . rl‘ ’ 3 1
only if / r®dx converges. This improper integral has value lim , which converges only when bhm rb
1 —00

b—oo INT 1
. . . . apyr T . .
exists, which occurs only for r < 1. Using the Ratio Test, = —5— =, so by the Ratio Test, the series
Qg r
converges if and only if r < 1. Using the Root Test, lim §ay = lim V/r¥ = lim r = r, so again we have
k—o0 k—o0 k—o0

convergence if and only if » < 1. By the Divergence Test, we know that a geometric series diverges if |r| > 1.

8.5.80
a. Use the Limit Comparison Test with the divergent harmonic series. Note that klim % = 1,
— 00
because lim *2* = 1. Because the comparison series diverges, the given series does as well.

z—0

b. We use the Limit Comparison Test with the convergent series k% Note that klim (1/1@);# =
—00

. sin(1/k : .
khm % =1, so the given series converges.
—00

8.5.81 To prove case (2), assume L = 0 and that > by converges. Because L = 0, for every € > 0, there is
some N such that for all n > N, [§] <. Take £ = 1; this then says that there is some N such that for all
n > N, 0 < ar < by. By the Comparison Test, because > by converges, so does Y ap. To prove case (3),

because L = oo, then klim 2—’; = 0, so by the argument above, we have 0 < by < aj for sufficient large k.
c—o0 R

But > b, diverges, so by the Comparison Test, > a; does as well.

k+1 k!
8.5.82 The series clearly converges for x = 0. For = # 0, we have QZ? = h TR ki—i-l This has

limit 0 as k& — oo for any value of x, so the series converges for all x > 0.

k+1
a x
8.5.83 The series clearly converges for x = 0. For x # 0, we have AL = .— = x. This has limit = as
Q. X
k — 00, so the series converges for z < 1. It clearly does not converge for x = 1. So the series converges for

x €10,1).

gyl [

= - —_— = x - —
ag k+1 xk kE+1’
has limit z as kK — oco. Thus this series converges for x < 1; additionally, for z = 1 (where the Ratio Test is
inconclusive), the series is the harmonic series which diverges. So the series converges for x € [0, 1).

8.5.84 The series clearly converges for x = 0. For x # 0, we have which

Apy1 k1 k2 EO\?
8.5.85 The series clearly converges for x = 0. For z # 0, we have . = CESIE TR x (k—l—l) ,

which has limit x as & — oo. Thus the series converges for x < 1. When x = 1, the series is 17127 which
converges. Thus the original series converges for 0 <z < 1.

Qi 22k +2 2 5 k 2
8.5.86 The series clearly converges for x = 0. For x # 0, we have o = CESIE Tl T i)
which has limit x* as k — o0, so the series converges for x < 1. When x = 1, the series is k%, which

converges. Thus this series converges for 0 < x < 1.

2
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apr1 Tt 28 g . ..
8.5.87 The series clearly converges for x = 0. For x # 0, we have = - — = —, which has limit
ay 2k+1 ok 2

x/2 as k — oco. Thus the series converges for 0 < z < 2. For x = 2, it is obviously divergent.

8.5.88

a. Let P, be the n'® partial product of the ay: P, = [[}_, ax. Then > 7 Inay = In[[,_, ax = In P,.

If Y Inay is a convergent series, then Y ;- Inay = lim In P, = L < co. But then el = lim e =
n—oo n— oo

lim P,, so that the infinite product converges.

n— oo
b n 2 3 4 5 6 7 8
P, |3/412/3 5/8 3/5 | 7/12 | 4)7 9/16
It appears that P, , so that hm P, =3

: 1y _ 1 - : .
c. Because nhHH;O [Th_s (1 — %) = 3, taking logs and using part (a) we see that nl;rr;o Sholn(l1-4) =
In % =—In2.

8.5.89

a. InJ[7, el/2 = > reo 35 = 2, so that the original product converges to €.

b. mJ[5, (1—32) =[], 52t = Y, In 52t = 3°7° ,(In(k — 1) — In(k)). This series telescopes to
give S, = —1In(n), so the original series has hmlt lim P, = lim e~ (" =0.
n—oQ n—oo

8.5.90 The sum on the left is simply the left Riemann sum over n equal intervals between 0 and 1 for
1

f(z) = 2P. The limit of the sum is thus fol xPdr = Iﬁxﬁl . = +1’ because p is positive.

8.5.91

a. Use the Ratio Test:

agr1 _ 1-3-5---(2k+1) Pk (k)! ~ (2k+1)
arp  pFrL(E+1)! 1-3-5---(2k—1)  (k+1)p

and this expression has limit % as k — oo. Thus the series converges for p > 2.

2k —  (2k)!
b. Following the hint, when p = 2 we have Z FEI(2 (4 )6 o) = Z (215)2()]{;1)2 Using Stirling’s
k=1 ’

formula, the numerator is asymptotic to 2f\f(2k)2k —2k = 2 /mVk(2F)? (k*)2e~%F while the denom-
inator is asymptotic to (2¥)227k(k*)2e=2* so the quotient is asymptotic to ﬁ Thus the original

series diverges for p = 2 by the Limit Comparison Test with the divergent p-series > -, I&%

8.6 Alternating Series
8.6.1 Because S,1+1 — S, = (—1)"ay,41 alternates signs.

8.6.2 Check that the terms of the series are nonincreasing in magnitude after some finite number of terms,
and that lim ap = 0.
k—o0
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8.6.3 We have
S = Sont1 + (a2, — aont1) + (a2n42 — G2pys) + -

and each term of the form asg — asx41 > 0, so that So,11 < S. Also
S = Son + (—a2n+1 + G2n42) + (—a2n43 + G2pga) + -+

and each term of the form —agr+1 + ask4+2 < 0, so that S < Sa,. Thus the sum of the series is trapped
between the odd partial sums and the even partial sums.

8.6.4 The difference between L and S,, is bounded in magnitude by a,41.
8.6.5 The remainder is less than the first neglected term because
S-Sy ( )W—H(an-i-l + (_an+2 + an+3) + - )

so that the sum of the series after the first disregarded term has the opposite sign from the first disregarded
term.

8.6.6 The alternating harmonic series }_(—1)¥4 converges, but not absolutely.

8.6.7 No. If the terms are positive, then the absolute value of each term is the term itself, so convergence
and absolute convergence would mean the same thing in this context.

8.6.8 The idea of the proof is to note that 0 < |ax|+ ar < 2]ag| and apply the Comparison Test to conclude
that if > |ax| converges, then so does > 2 |ay|, and thus so must > (|ax|+ ax), and then conclude that > ay
must converge as well.

8.6.9 Yes. For example, Y ( converges absolutely and thus not conditionally (see the definition).

8.6.10 The alternating harmonic series Z(fl)k% converges conditionally, but not absolutely.

8.6.11 The terms of the series decrease in magnitude, and limg_,~, T{H = 0, so the given series converges.

8.6.12 The terms of the series decrease in magnitude, and limg_, ﬁ = 0, so the given series converges.
8.6.13 limy oo %H = % # 0, so the given series diverges.

8.6.14 limy oo (1 + %)k = e # 0, so the given series diverges.

8.6.15 The terms of the series decrease in magnitude, and klim k% = 0, so the given series converges.
—00

8.6.16 The terms of the series decrease in magnitude, and hm 10 +10 = 0, so the given series converges.

8.6.17 The terms of the series decrease in magnitude, and hm k3 T = klggo 1-:1/% = 0, so the given series

converges.

8.6.18 The terms of the series eventually decrease in magnitude, because if f(z) = 2, then f'(z) =

m(l_ﬁllnx) = 1227 which is negative for large enough z. Further, hm bk = lim 12—]6 = lim 55 =
k— o0 k—o0 k—o0

Thus the given series converges.

8.6.19 hm k2_

3 =180 the terms of the series do not tend to zero and thus the given series diverges.

8.6.20 > .-, (—%)k =Y (=1 (%)k (1/5)% is decreasing, and tends to zero as k — 0o, so the given
series converges.
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8.6.21 lim (1 + %) = 1, so the given series diverges.
k—o00

8.6.22 Note that cos(mk) = (—1)*, and so the given series is alternating. Because hm 7z = 0and 5 is

k—o00
decreasing, the given series is convergent.
20 10 15 5
8.6.23 The derivative of f(k) = % is f/(k) = =& +2£2(;%ik1) —8k+1) " The numerator is negative

for large enough values of k, and the denominator is always positive, so the derivative is negative for large
s K042k 41 s 142k 04 kT0 ; ;
enough k. Also, klin;o R = lim “=5"—F5— = 0. Thus the given series converges.

8.6.24 Clearly lek is nonincreasing, and klim = 0, so the given series converges.
—00

1
kln? k

8.6.25 klim EV/k =1 (for example, take logs and apply L’'Hopital’s rule), so the given series diverges by the
—> 00

Divergence Test.

(k+1)! kR k
k+1

k
= GBI AT —) < 1. Additionally, ,’:—,L — 0 as kK — o0, so the given
series converges.

8.6.27 ——— is decreasing and tends to zero as k — 0o, so the given series converges.

%2+
8.6.28 klim ksin(1/k) = klim % = 1, so the given series diverges.
— 00 — 00

8.6.29 We want —5 < 107, or n+1 > 10*, so n = 10*,

8.6.30 The series starts with k& = 0, so we want n, < 107%, or n! > 10* = 10000. This happens for n = 8.

8.6.31 The series starts with k£ = 0, so we want <107, or 2n + 1 > 10%, n = 5000.

2n+1

8.6.32 We want <107*, or (n+ 1)% > 10*, so n = 100.

1
+1)°

8.6.33 We want <107, or (n+ 1)* > 10*, so n = 10.

1
(n+1)%

8.6.34 The series starts with £ = 0, so we want erEsyL <1074, or2n+1 > 104/3 son =11.

)

8.6.35 The series starts with £ = 0, so we want <1074, or 3n + 1 > 10%, n = 3334.

3+1

8.6.36 We want ;s < 107, or (n+1)° > 10* = 10000, so n = 4.

< 104, op AM@ntD@ne2)(Ants)

8.6.37 The series starts with £ = 0, so we want 1(20n2121n+5)

10000, which occurs first for n = 6.

2 2 1
4" <4n+1 + 4n+2 + 4n+3)

8.6.38 The series starts with £ = 0, so we want < 1074, so 3n + 2 > 10000, n = 3333.

3n+2

8.6.39 To figure out how many terms we need to sum, we must find n such that < 1073, so that

(n 4 1)® > 1000; this occurs first for n = 3. Thus =2 + % — &5 ~ —0.973.

(n+1)% +1)

1 _
@G < 1077 or

(2n +3)% > 103, so 2n + 3 > 10 and n = 4. Thus the approximation is 22:1 % ~ —0.306.

8.6.40 To figure out how many terms we need to sum, we must find n such that

8.6.41 To figure out how many terms we need to sum, we must find n so that —2tl — < 1073, so that

nr1)241
% n+1+ T—H > 1000. This occurs first for n = 999. We have 22991 ;zllkl ~ —0.269.

Copyright (©) 2015 Pearson Education, Inc.



52 Chapter 8. Sequences and Infinite Series

8.6.42 To figure out how many terms we need to sum, we must find n such that ﬁ < 1073, so that

()1 (n+1)%+ > 1000, which occurs for n = 9. We have 3} D'k 0.409
n+l T n+1 - k=1 k4+1 ~ TR

8.6.43 To figure how many terms we need to sum, we must find n such that W <1073, or (n+1)"*! >

1000, so n = 4 (5% = 3125). Thus the approximation is 21:1 —U" ~ —.783.

nm

8.6.44 To figure how many terms we need to sum, we must find n such that m <1073, or (2n+3)! >

1000, so 2n + 3 > 7 and n = 2. The approximation is Zk 1 % ~ 0.158

8.6.45 The series of absolute values is a p-series with p = 2/3, so it diverges. The given alternating series
does converge, though, by the Alternating Series Test. Thus, the given series is conditionally convergent.

8.6.46 The series of absolute values is a p-series with p = 1/2, so it diverges. The given alternating series
does converge, though, by the Alternating Series Test. Thus, the given series is conditionally convergent.

8.6.47 The series of absolute values is a p-series with p = 3/2, so it converges absolutely.

8.6.48 The series of absolute values is ) 3%, which converges, so the series converges absolutely.

8.6.49 The series of absolute values is > |C0:gk)‘ , which converges by the Comparison Test because k",:ﬁ

% Thus the series converges absolutely.

IN

8.6.50 The series of absolute values is ) % The limit comparison test with + 7 gives khm ST
—00

lim

R = 1. Because the comparison series diverges, so does the series of absolute values. The
—00

k6
k641
k2
original series converges conditionally, however, because the terms are nonincreasing and hm ol
k— o0

=0.

lim

k—o0 kGJrl

8.6.51 The absolute value of the kth term of this series has limit 7/2 as k — oo, so the given series is
divergent by the Divergence Test.

8.6.52 The series of absolute values is a geometric series with r = % and |r| < 1, so the given series converges
absolutely

8.6.53 The series of absolute values is > 2k+1, but hm m = %, so by the Divergence Test, this series

diverges. The original series does not converge condltlonally, either, because lim aj = % #0.
k— o0

8.6.54 The series of absolute values is ) ﬁ, which diverges, so the series does not converge absolutely.
However, because klim ﬁ — 0 and the terms are nonincreasing, the series does converge conditionally.
— 00

8.6.55 The series of absolute values is ) 5~ tan , which converges by the Comparison Test because
—1
w g > and Yo 7 F converges becaube it is a constant multiple of a convergent p—series. So the

original series converges absolutely.

8.6.56 The series of absolute values is Z k+1)' Using the ratio test, a;:l _ (z’j;l)! . (k:-kl)! = 343, which
tends to zero as k — oo, so the original series converges absolutely.

8.6.57

a. False. For example, consider the alternating harmonic series.

b. True. This is part of Theorem 8.21.
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c. True. This statement is simply saying that a convergent series converges.
d. True. This is part of Theorem 8.21.

e. False. Let a; = %

2
f. True. Use the Comparison Test: lim %&£ = lim a, = 0 because Y ay converges, so > a2 and Y ay
k—oo @k k—o00
converge or diverge together. Because the latter converges, so does the former.

g. True, by definition. If " |ax| converged, the original series would converge absolutely, not conditionally.

a _ (k+1)(2k+1) _ 2k?+43k+1 . _ 1

8.6.58 Neither condition is satisfied. ’““ = @Ak T gk 1, and kl;rrgo ag = 5.
00 (=pFtt oo 1 1 oo (=)t p2 g g2 2
8.6.59 Zk:l %2 — et =220 @K = Zk 1 77> and thus 357 ) —5— = 52 % =13
) ( 1 k+1 o) 1 jo%s) 1 )’\‘Fl o 4 1 4 o 7 4
8.6.60 Zk:l kT Zk 1 k4 =235 @Kt — =2 16 k=1 77> and thus Zk 1 T =968 90 = 720"

8.6.61 Writer = —s;then0 < s < Land >_r* = 3 (—1)¥s*. Because |s| < 1, the terms s* are nonincreasing

and tend to zero, so by the Alternating Series Test, the series Y (—1)¥s* = 3" r* converges.
8.6.62
N
1x10°F .
8x 1071
6x107F
4%107F
2%107F
2 3 4 ; 6 & é r
p=1
N
10000 .
8000 -
6000 -
As p gets larger, fewer terms are needed to
4. achieve a particular level of accuracy; this 4000¢ .
means that for larger p, the series converge 2000
faster. Ly
2 3 4 5 6 7 8
p=2
N
400 -
300}
200f °
100} .
et oy
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N
10+
8,
This graph shows that > % converges much 6f .
faster than any of the powers of k. af .
Ao
2 4 6 é r
8.6.63 Let S=1—45+ 5 —---. Then
_ 1 11 11 11
S = (-3) + G-3) + -5 + (G-5) +
lg _ 1 1 1 1
35 = 3 - 1+t 5 - 5 *
Add these two series together to get
3 3 1 1 1
28 ="In2=1+4-——4—+4--
PR A A

To see that the results are as desired, consider a collection of four terms:
1 1 1 1
ot <4k+1 - 4k+2) + <4k+3 - 4k+4> +

1 1
+ 4k+2 4k+4 +

Adding these results in the desired sign pattern. This repeats for each group of four elements.
8.6.64

a. Note that we can write

so that

n+1 n
S, + (—1) . Ant1 _ _% +% (Z(_l)de)
k=1
where d; = a; — a;+1. Now consider the expression on the right-hand side of this last equation as the
nth partial sum of a series which converges to S. Because the d;’s are decreasing and positive, the error
made by stopping the sum after n terms is less than the absolute value of the first omitted term, which
would be % |dpi1] = % |ant1 — ant2|. The method in the text for approximating the error simply takes
the absolute value of the first unused term as an approximation of |S — S,|. Here, S,, is modified by
adding half the next term. Because the terms are decreasing in magnitude, this should be a better
approximation to S than just S, itself; the right side shows that this intuition is correct, because
% |apt1 — anto| is at most a,41 and is generally less than that (because generally a,+0 < dpnt1).

b. i. Using the method from the text, we need n such that n%rl <1079, i.e. n > 105 — 1. Using the
modified method from this problem, we want % lant1 — anga| < 1079, so

2\n+1 n+2) 2n+1)(n+2)

This is true when 10° < 2(n + 1)(n + 2), which requires n > 705.6, so n > 706.
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ii. Using the method from the book, we need n such that klnk > 10%, which means k > 87848.
Using the method of this problem, we want

1 1 1 |k +1)In(k+1) — klnk
2‘(klnk a (k+1)1n(k+1))’ - ‘ 2k(k+ 1) InkIn(k + 1)

<1076,

so that [2k(k + 1) InkIn(k + 1)| > [10°(kInk — (k + 1)In(k + 1))|, which means k > 319.

iii. Using the method from the book, we need k such that vk > 10, so k > 10'2. Using the method
of this problem, we want

1/ 1 1\ VEr1-VE g
2<\/Efk+1> NG

which means that k > 3968.002 so that k£ > 3969.

8.6.65 Both series diverge, so comparisons of their values are not meaningful.

8.6.66

a. The first ten terms are

e ()63 (-9 Gs)

Suppose that k = 27 is even (and so k — 1 = 2i — 1 is odd). Then the sum of the (k — 1)st term and

the kth term is % — % = % = % Then the sum of the first 2n terms of the given series is ;" ; %

b. Note that limy_, %_H = limg_, % = 0. Thus given € > 0 there exists N; so that for £ > Ny, we have

ki+1 < €. Also, there exist Ny so that for k > Ns, % < €. Let N be the larger of Ny or Ny. Then for

k > N, we have aj, < €, as desired.

c. The series can be seen to diverge because the even partial sums have limit co. This does not contradict
the alternating series test because the terms aj; are not nonincreasing.

Chapter Eight Review
1
a. False. Let a,, =1 — % This sequence has limit 1.

b. False. The terms of a sequence tending to zero is necessary but not sufficient for convergence of the
series.

c. True. This is the definition of convergence of a series.
d. False. If a series converges absolutely, the definition says that it does not converge conditionally.
e. True. It has limit 1 as n — oo.

f. False. The subsequence of the even terms has limit 1 and the subsequence of odd terms has limit —1,
so the sequence does not have a limit.

g. False. It diverges by the Divergence Test because limy_, kf—il =1#0.
h. True. The given series converges by the Limit Comparison Test with the series Y ;- #, and thus its
sequence of partial sums converges.
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244 1+4n~2 1
2 lim = im0

n—oo0 \/4n4 +1 n—00 /4 4 n—4 2

n

3 lim - = 0 because exponentials grow more slowly than factorials.
n—oo n!

4 After taking logs, we want to compute
) .. In(1+3/n)

By L’Hopital’s rule, this is lim :%:3 (after some algebraic manipulations), which is 6. Thus the original
n—oo
limit is e®.
5 Take logs and compute lim (1/n)Inn = lim (Inn)/n = lim 1 =0 by L'Hopital’s rule. Thus the original
n—00 n—00 n—r00

limit is €® = 1.

: _ 2 _ _ n—vn?-1 ntvn2-1 _
6 Jim (n=vin? = 1) = fim 20T T = I, e =0
7 Take logs, and then evaluate lim —-1In(1/n) = lim (—1) = —1, so the original limit is e~*.
n—roo n—oQ

8 This series oscillates among the values 4+1/2,4+/3/2, 41, and 0, so it has no limit.

9 a, =(—1/0.9)" = (—10/9)". The terms grow without bound so the sequence does not converge.

10 lim tan " 'n = lim tan 'z = g

n—oo Tr—r0o0
11
a 51:%,522%,53_%754_%.
1/1 1 1 1
b. S, = B (1 + 5" m — Tl—|—2> , because the series telescopes.

c. From part (b), lim S, = §, which is the sum of the series.
n—oo

12 This is a geometric series with ratio 9/10, so the sum is 1%1/(;0 =9.

13 72, 3(1.001)F = 33°72 (1.001)%. This is a geometric series with ratio greater than 1, so it diverges.

14 This is a geometric series with ratio —1/5, so the sum is Tll/5 =3

15 ﬁ = % — kil, so the series telescopes, and S, = 1 — . Thus hm S,, = 1, which is the value of

the series.

16 This series clearly telescopes, and S, = ﬁ —1,s0 lim S, =—1.

n— oo

17 This series telescopes. S, = 3 — so that lim S,, = 3, which is the value of the series.
n—roo

3n+1’

1/64 1

18 Y2, 473k =377 (1/64)%. This is a geometric series with ratio 1/64, so its sum is /61 = &5

oo

o] k
2 1 2/3 2
19 = 2) 2. _2
Z3k+2 2(3) 9 1-2/3 9
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20 This is the difference of two convergent geometric series (because both have ratios less than 1). Thus the
sum of the series is equal to

i (é)k_i (g)k“ B 1—11/3 - 13/3/3 22_2:_%'

k=0 k=0

21
a. It appears that the series converges, because the sequence of partial sums appears to converge to 1.5.
b. The convergence is uncertain.
c. This series clearly appears to diverge, because the partial sums seem to be growing without bound.
22 This is p-series with p = 3/2 > 1, so this series is convergent.

23 The series can be written »_ kz—l/g, which is a p-series with p = 2/3 < 1, so this series diverges.

VEk3+2
diverges as well.

2 4 2 . . . .
24 qp = 2LL — | [4k ;g‘f&“, so the sequence of terms diverges. By the Divergence Test, the given series

25 This is a geometric series with ratio 2/e < 1, so the series converges.

k—o0 A k—o00

2 1 3\" 1
26 Note that i = ((1—|— %)k) , 80 lim — = lim <<1+ k) > = (e%)?, so kli_}noloak =% # 0, so the
given series diverges by the Divergence Test.

27 Applying the Ratio Test:

gk+1 1)1 k k 92
lim 2L — i (kt DUk Ry 22
k—oo Qg k—o00 (k‘ + 1)k+1 2k k! k— o0 kE+1

so the given series converges.

28 Use the Limit Comparison Test with %:

1 1 k k2
\/m/k_\/m_\/k2+k’

which has limit 1 as k¥ — oo. Because > 1/k diverges, the original series does as well.

3
24k

% < 1. Thus the original series converges as well.

29 Use the Comparison Test: < 3 but 3 3 converges because it is a geometric series with ratio
€ €

30 klim ay = klim ksin(1/k) = klim % =1, so the given series diverges by the Divergence Test.
—00 —00 —00

1/k . .
31 a, = kk3 = ﬁ For k > 2, then, a; < k—lz Because > 1%2 converges, the given series also converges,

by the Comparison Test.

32 Use the Comparison Test: > % for k > 1. Because ) % diverges, the given series does as well.

_1
1+Ink

. 5 5 . .. .
33 Use the Ratio Test: az—:l = (’Zﬂf . z—z = é . (%) , which has limit 1/e < 1 as k — co. Thus the given
series converges.

34 For k > 5, we have k? — 10 > (k — 1)2, so that a; = ﬁ < ﬁ Because Y ﬁ converges, the
original series does as well.
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Ink
35 Use the Comparison Test. Because hm 0 i = 0, we have that for sufficiently large k, Ink < k'/2, so
that ap = 2};;’“ < 1212/2 = kS/Q Now Z 757z Is convergent, because it is a p-series with p = 3/2 > 1. Thus
the original series is convergent.
. . . a BRT k+1 k BERT 1 k+1 1 . .
36 By the Ratio Test: kIL%o % = klgr()lo T = kl;rrgo 2 = = 3 < 1. Thus the given series converges.
37 Use the Ratio Test. The ratio of successive terms is (21?42),;' . (251’,3)! = (2k+3;‘(2k+2). This has limit 0 as

k — 00, so the given series converges.

B (2R)!

38 Use the Ratio Test. The ratio of successive term is % CAoE = m.

This has limit 0 as
k — o0, so the given series converges.
cothk &k

39 Use the Limit Comparison Test with the harmonic series. Note that lim - = hm cothk = 1.
k—o0 1 k—o0

Because the harmonic series diverges, the given series does as well.

40 Use the Limit Comparison Test with the convergent geometric series whose kth term is e% We have
. 1 ke . 2¢eF . 1 . . .
limy oo gopg - T = Mg oo o= = 2limg 00 7— = = 2. The given series is therefore convergent.

—k

41 Use the Divergence Test. limy_, o tanh k = limy_, % =1+ 0, so the given series diverges.

42 Use the Limit Comparison Test with the convergent geometric series whose kth term is eik We have
limy oo ﬁ g = limy o eki% =2limy_ He%% = 2. The given series is therefore convergent.

1

43 |ag| = 5. Use the Limit Comparison Test with the convergent series Y ;. Because klim S
—00 2
kh—>n;o kf—il = 1, the given series converges absolutely.
44 This series does not converge, because klin;o lax| = hm 2’“;2141 =1
45 Use the Ratio Test on the absolute values of the sequence of terms: lim |2+ | = lim £tl . e =
k—oo | @k k—oo € k
lim L. % =1 < 1. Thus, the original series is absolutely convergent.
k—oo © ¢
k
46 Using the Limit Comparison Test with the harmonic series, we consider hm ap/(1/k) = hm /= En1

= hm = 1; because the comparison series diverges, so does the original series. Thus the series is not

k2+1
absolutely convergent. However, the terms are clearly decreasing to zero, so it is conditionally convergent.

47 Use the Ratio Test on the absolute values of the sequence of terms: lim |“*L| = lim % =0, so the
k—oo | 9k k—oo FT

series converges absolutely.
oo

48 > ﬁ does not converge because f2 zlnz dz = limp_ o In(lnx) = 00, so the improper integral

diverges. Thus the given series does not converge absolutely. However, it does converge conditionally
because the terms are decreasing and approach zero.

2

49 Because k% < 2F, limp_, o0 %52)16 # 0. The given series thus diverges by the Divergence Test.

50 The series of absolute values converges, by the Limit Comparison Test with the convergent geometric

series whose kth term is =. This follows because limy_, ﬁ -5 = limg e He%% =1.
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51

a. For |z| < 1, lim 2% =0, so this limit is zero.
k— o0

b. This is a geometric series with ratio —4/5, so the sum is ﬁ = g.
52
& klggo (% B k%rl) - klggo m =0
b. This series telescopes, and S,, =1 — n%rl, ) nh_}n;o S, = 1, which is the sum of the series.
53 Consider the constant sequence with ap = 1 for all k. The sequence {ax} converges to 1, but the

corresponding series »_ ay diverges by the divergence test.
54 This is not possible. If the series 2;0:1 ap converges, then we must have limg_, ar = 0.
55

a. This sequence converges because limy_, kL_H =limg 00 ﬁ = 1.

1
1+0 —

b. Because the sequence of terms has limit 1 (which means its limit isn’t zero) this series diverges by the
divergence test.

56 No. The geometric sequence converges for —1 < r < 1, while the geometric series converges for —1 <
r < 1. So the geometric sequence converges for » = 1 but the geometric series does not.

57 Because the series converges, we must have lim a; = 0. Because it converges to 8, the partial sums

k—o00
b
1 1 1
< | Zdr=1lim [——| | = .
< /n x® dr bli>nolo < 4zt n) 4nt

Thus to approximate the sum to within 10™4, we need # <1074, so 4n* > 10* and n = 8.

converge to 8, so that lim Sy = 8.
k— o0

58 R, is given by

59 The series converges absolutely for p > 1, conditionally for 0 < p < 1 in which case {k™P} is decreasing
to zero.

60 By the Integral Test, the series converges if and only if the following integral converges:

/w;dl«: lim 1 ln(lfp)(x) ' — lim 1 ln(lfp)(b) (1 -ln(lfp)(2)
5 xln’(x) b—oo \ 1 —p 9 b—oo 1 —p 1—p '

This limit exists only if 1 — p < 0, i.e. p > 1. Note that the above calculation is for the case p # 1. In the
case p = 1, the integral also diverges.

61 The sum is 0.2500000000 to ten decimal places. The maximum error is

oS b
1 1 1
/ —dr=lim [ ———— ~ 6.5 x 10715,
20 51 b— o0 51 1115

20 520In5
62 The sum is 1.037. The maximum error is
1 1
/ L= tim (-1
20 I° b—o00 4t
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63 The maximum error is a1, SO we want G, = (k+1)4 <1078, or (k+ 1)* > 10%, so k = 100.

64

a. Y pget =3(e") = 55 = 2,50 1 —¢” = 1/2. Thus e” =1/2 and @ = — In(2).
b Y2 ,(31)F = A =4,s0that 1 — 3z = 1, o= 1.

c. The z’s cancel, so the equation reads Y -, (k%l/? — ﬁ) = 6. The series telescopes, so that the

left side, up to n, is

z”: I R SR SN S B
k—1/2 k+1/2) —1/2 n+1/2 n+1/2

k=0
and in the limit the equation then reads —2 = 6, so that there is no solution.
65

a. Let T;, be the amount of additional tunnel dug during week n. Then Ty = 100 and T,, = .95-T,,_1 =
(.95)™Ty = 100(0.95)™, so the total distance dug in N weeks is

N—-1
1—(0.95)N
Sy = 100 0.95)% =100 [ ————2— ) =2000(1 — 0.95").
v =100 3(095) (FCae ) = 20000 )

Then S1p &~ 802.5 meters and Soy &~ 1283.03 meters.

b. The longest possible tunnel is S = 10077 (0.95)% = 1% = 2000 meters.

66 Let ¢, be the time required to dig meters (n — 1) - 100 through n - 100, so that t; = 1 week. Then
tn =1.1-t,_1 = (1.1)""'t; = (1.1)" ! weeks. The time required to dig 1500 meters is then

15

Ztk = Z k=1 ~ 31.77 weeks.

k=1
So it is not possible.
67

a. The area of a circle of radius r is 77?2 For r = 217" this is 2272%7. There are 2! circles on the n'P
page, so the total area of circles on the nth page is 2” Log2=2n = gl—ng

b. The sum of the areas on all pages is > ;o 2! *r =27 Y77 27k =27 i?g = 27.
68 1o =1, 11 ~ 1.540302, 22 =~ 1.57079, x3 ~ 1.570796327, which is 7 to nine decimal places. Thus p = 2.
69

a. B, =1.0025B8,_; + 100 and By = 100.

b. B, = 100 -1.0025" + 100 - 1=10025" — 100 . 1.0025" — 40000(1 — 1.0025") = 40000(1.0025"+1 — 1).

1—-1.0025
70

! 1 ! 1

a. ap :/ xndq; = xn—i—l = , SO lim Ay = 0.
0 n+1 0 n-+1 n—00
| 1 " 1

b. b, = / —dz = —z'7P| = (n'™? —1). Because p > 1, n'™? — 0 as n — oo, so that
1 2P 1—p R a4

. _ 1
Jim b = 5
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71

d.

L= Y2 and Tp = T3

16 64 °

. At stage n, 3"~ ! triangles of side length 1/2" are removed. Each of those triangles has an area of

V3 V3

44~ qntD

so a total of

T4ntl T 16\ 4

is removed at each stage. Thus
_ @ n § k—1 B \/§ n—1 § k @ - 3 n
"16 £ \4 16 4 4 4 '

lim T, = % because (%)n — 0 as n — oo.
n—oo

The area of the triangle was originally @, so none of the original area is left.

72 Because the given sequence is non-decreasing and bounded above by 1, it must have a limit. A reasonable
conjecture is that the limit is 1.
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Chapter 9

Power Series

9.1 Approximating Functions With Polynomials
9.1.1 Let the polynomial be p(z). Then p(0) = f£(0), p’(0) = f'(0), and p”(0) = f”(0).

9.1.2 It generally increases, because the more derivatives of f are taken into consideration, the better “fit”
the polynomial will provide to f.

9.1.3 The approximations are py(0.1) = 1, p1(0.1) = 1 + %! = 1.05, and p2(0.1) = 1+ %' — -9 = 1.04875.
9.1.4 The first three terms: f(a) + f'(a)(z — a) + 5 f"(a)(z — a)?.

9.1.5 The remainder is the difference between the value of the Taylor polynomial at a point and the true
value of the function at that point, R, (z) = f(z) — pn(z).

9.1.6 This is explained in Theorem 9.2. The idea is that the error when using an nth order Taylor polynomial

—_ n+l . . .
centered at a is |R,(x)| < M - % where M is an upper bound for the (n+ 1)st derivative of f for values

between a and .
9.1.7
a. Note that f(1) =8, and f'(z) = 124/x, so f'(1) = 12. Thus, pi(x) = 8+ 12(z — 1).
b. f"(z) =6/y/z, so f"(1) = 6. Thus pa(x) = 8 + 12(z — 2) + 3(z — 1)%.
c. pr(11) =12-0.1+8=9.2. pp(1.1) = 3(.1)2 +12- 0.1 + 8 = 9.23.
9.1.8
a. Note that f(1) =1, and that f'(x) = —1/2%, so f'(1) = —1. Thus, p1(z) =1— (z — 1) = —2 + 2.
b. f"(z) =2/2%, so (1) = 2. Thus, pa(z) =2 — 2 + (v — 1)2.
c. p1(1.05) = 0.95. p(1.05) = (0.05)? — 0.05 + 2 = .953.
9.1.9
a. f'(z) =—e*, 80 p1(x) = f(0)+ f'(0)x =1 —z.
b. f/(z) =e"" so pa(z) = f(0) + f(0)z + 5 f"(0)z* =1 -z + 122

c. pi1(0.2) = 0.8, and p2(0.2) = 1 — 0.2 + 1(0.04) = 0.82.

63
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9.1.10
a. f'(z) = 127V% sopi(z) = f(4) + f/(4)(xz —4) =2+ 1 (z — 4).
b. f(x) = —327%%, s0 pa(z) = f(4) + f/(4) (& — 4) + 3/ (D) (z = 4> =2+ J(z — 4) — gy (z —4)*.
c. p1(3.9) =2+ $(—0.1) =2 —0.025 = 1.975, and p2(3.9) = 2 — 0.025 — £;(0.001) = 1.975.
9.1.11
a. f'(2) = — e o pi(z) = f(0) + f'(0)z =1 —=.
b. f"(x) = s, s0 pa(2) = f(0) + f'(0)x + 3 f"(0)a® = 1 -z + 2.
c. p1(0.05) = 0.95, and p(0.05) = 1 — 0.05 + 0.0025 = 0.953.
9.1.12
a. f'(x) = —sinz, so p1(x) = cos(m/4) — sin(n/4)(x — w/4) = L2(1 — (x — 7/4)).

b. f"(x) = —cosz, so

p2(x) = cos(m/4) — sin(w/4)(x — 7/4) — %cos(w/él)(x — m/4)?

— g (1—(%—#/4)—;(55—77/4)2)-

c. p1(0.247) ~ 0.729, po(0.247) ~ 0.729.
9.1.13
a. f'(x) = (1/3)x7%/3, 50 pi(a) = f(8) + ['(8)(x — 8) = 2+ f5(a — 8).
b. f"(x) = (=2/9)z75/3, 50 pa(x) = F(8) + f'(8)(x — 8) + 3 /" (8)(z — 8)* = 2+ {5 (2 — 8) — 55w — 8)%.
c. pr(7.5) ~ 1.958, pa(7.5) ~ 1.957.
9.1.14
a. f'(x) = 13, s0 pu(x) = f(0) + f'(0)a = z.
b. f'(x) = — gz, so pa(z) = f(0) + f'(0)x + 3£ (0)a® = .
c. p1(0.1) = p(0.1) = 0.1.

9.1.15 f(0) =1, f/(0) = —sin0 =10, f”(0) = —cos0 = —1, so that po(x) =1, p1(x) =1, pa(z) =1 — %mz.

y = py) = p,(x)

o
2

1 1
T T
— 0 T X
T y = oS x
71__

¥ =py)

9.1.16 f(0)=1, f'(0) = —e’ = —1, f”(0) = e =1, so that po(z) =1, p1(z) =1 —a, pa(z) =1 —z + ””—22
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65

9.1.17 f(0) =0, f'(0) = —1
pe(r) = —x —

9.1.18 f(0) =

p1()

1.2
3T

L, f(0) = (=1/2)(

17%,])2(.’,5):1*

9.1.19 £(0) = 0.

p(x) ==, p2(x) =

= —1, so that po(z) =0, p1(x) = —x,

y
6,
y:eix 4t
2l

) O N—

-2 -1 1 2 3 4
_al y=p1(x)
= _17f//(0) = _(1,0)2

Y =py(0)

y=p,®

y
2.0+
bl y=pa(x)
y=po(X)
=(1+x)"?
0.5F
y=p1(x)
- i.O - 6.5 OiS 1:0 liS 2.0

y =tanx

f'(z) = sec®x, f"(xr) = 2tanwsec’ z, so that f/(0) = 1, f’(0) = 0. Thus po(z)
.

Y =p,x) = p,yx)

Y = pyx)

X

NEE o

0+ 1)7%2 = —1/2, f"(0) = (3/4)(0 + 1)~%/2 = 3/4, so that py(z) = 1,
2

0,

9.1.20 f(0) =1, f(0) = (=2)(1 +0)=3 = =2, f(0) = 6(1 +0)~* = 6. Thus po(x) = 1, p1(z) = 1 — 2,

pa(x) =1 — 2z + 322,
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y=po(x)

-1.0 -0.5

9‘1'21 f(O) = 17 f/(o) = _3(1 +0)74 =
pa(x) =1 — 3z + 622,

=X
0N0

=3, f7(0) = 12(1 4+ 0)~° = 12, so that po(x) = 1, p1(z) = 1 — 3z,

y
34 Y =p,x)
+2
Y = pyx)
y=010+x"3
} }
—1 0 1 X
y=p®

9.1.22 f(0) =0, f'(z) = =

A f'(x) = {Ta5y572 S0 that f/(0) =1, f”(0) = 0. Thus py(z) =0, p1(x) = =,

pa(x) = .

1.5F

1.0

0.5F

y=sin"D(x)

y=po(x)

-1.0 -0.5
y=p1(X)=p

-1.0f

-15}

9.1.23

a. p2(0.05) &~ 1.025.

-0.5F

0.5 1.0

b. The absolute error is v/1.05 — p2(0.05) ~ 7.68 x 1075.

9.1.24
a. p2(0.1) ~ 1.032.

b. The absolute error is 1.1'/3 — py(0.1) &~ 5.8 x 107°.

9.1.25
a. p2(0.08) ~ 0.962.

b. The absolute error is ps(0.08) — \/11_@

~1.5x 1074
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9.1.26

a. p2(0.06) = 0.058.

b. The absolute error is In1.06 — p(0.06) ~ 6.9 x 1075,
9.1.27

a. p2(0.15) ~ 0.861.

b. The absolute error is p»(0.15) — e™ %15 ~ 5.4 x 1072
9.1.28

a. p2(0.12) ~ 0.726.

b. The absolute error is p2(0.12) = 5 ~ 1.5 x 1072.

9.1.29

a. Note that f(1) =1, f/(1) = 3, and f”(1) = 6. Thus, po(z) = 1, p1(z) = 1+ 3(z — 1), and pa(z) =
14+3(x—1)+3(z—1)>~%

b.
Z‘Oy»
po(X)
sl p2(X)
£(x) P1(x)
0.0 0.2 0:4 0i6 0t8 110 ltZ x
9.1.30
a. Note that f(1) =8, f/(1) = \% =4, and f'(1) = (1;32/2 = —2 Thus, po(z) = 8, p1(z) = 8+ 4(x — 1),
pa(r) =8+4(x — 1) — (z — 1)%
b.
y
15} pl(X)
“r po(x) P2(X)
sk
0.5 1.0 15 20 25 30 %
9.1.31
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b.
y
\y:sinx
T
4 2 4
9.1.32
s s 2
apo(@) = Popi(@) =P~ (x-F) @) =P -5 (@ F) - L (2-F)
b.
y
y=po(x)
X
9.1.33

y=p,
Y =p,()
y=Vx

Y =py0)

T T T T T T T T
+ 2 4 6 8 10 12 14 16 18 20 22 24 X

9.1.34
a. po(x) =2, p1(x) =2+ f5(x — 8), pa(x) = v + 75(x — 8) — 5i5(x — 8)°
b.
y
2 y=po(x) Y =P

y=p1(x)
1.5F

1.0}

0.5
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9.1.35

a. po(@) =1, pi(x) =1+ (xz—e), pa(z) =1+ L(z —€) — 5z (2 — ).

b.

y
5__
T y=p,®)
3__
1 ¥ =pyx)
NN S G
1245 678 09 X
72_
_3_.

9.1.36

a. po(x) =2, p1(x) =2+ 55 (2 — 16), p2(x) = 2+ 35(x — 16) — 3555 (z — 16)%

b.
¥
20 y=polx)
y=p2(x)
15
10}
0.5
: x
5 10 15 20
9.1.37
A f) =542 F)=b42=5 )= —442=% m@) =2+ 5 mle) =24 3 + 3@ D),
pa(x) =2+ F + 3z — 1)+ J(z - 1)
b.
Y y=tan 'x+2’+1
¥ =py(x)
0 05 10 Ls x
9.1.38
a. f(In2) =2, f'(In2) =2, f"(In2) =2. So po(x) =2, p1(x) =2+ 2(x —In2), pa(x) =2+ 2(x — In2) +
(x —In2)2.
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70

¥

70

6F

sk

4F

% y=pox)

1‘/

b. 05 10 15 20 %
9.1.39

a. Ue the Taylor polynomial centered at 0 with f(z) = e*. We have ps(z) = 1+ x + %x2 —+ %x3.

p3(0.12) =~ 1.127.
b. [£(0.12) — p3(0.12)] ~ 8.9 x 10~5.

9.1.40
a. Use the Taylor polynomial centered at 0 with f(z) = cos(z). We have p3(z) = 1—322. p3(—0.2) = 0.98.

b. [£(0.12) — p3(0.12)| ~ 6.7 x 107

9.1.41
a. Use the Taylor polynomial centered at 0 with f(x) = tan(z). We have p3(z) = = + 2.

p3(—0.1) ~ —0.100.
b. |ps(—0.1) — f(—0.1)| = 1.3 x 1076.

9.1.42
a. Use the Taylor polynomial centered at 0 with f(z) = In(1 + z). We have ps(z) = = — 2% + 2%
p3(0.05) ~ 0.0488.
b. |p3(0.05) — £(0.05)| ~ 1.5 x 1076.
9.1.43
a. Use the Taylor polynomial centered at 0 with f(z) = /1 + 2. We have p3(x) = 1+ %x _ %xg " %x?’.

p3(0.06) ~ 1.030.
b. | £(0.06) — ps(0.06)| ~ 4.9 x 1077,

9.1.44
a. Use the Taylor polynomial centered at 81 with f(z) = /z. We have p3(z) = 3+ 15 (2 —81) — gpi (z—

81)2 + sysmaars (T — 81)3. p3(79) ~ 2.981.
b. |p3(79) — f(79)| ~ 4.3 x 1078,

9.1.45
a. Use the Taylor polynomial centered at 100 with f(z) = /z. We have p3(z) = 10 + 55(z — 100) —

555 (= — 100)? 4 1556055 (= — 100)3. p3(101) ~ 10.050.
b. |p3(101) — f(101) ~ 3.9 x 107°.

9.1.46

a. Use the Taylor polynomial centered at 125 with f(x) = Jx. We have p3(z)

gats (. — 125)? + =l (2 — 125)3. p3(125) ~ 5.013.

=5+ ==(z — 125) —
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b. |ps(126) — £(126)] ~ 8.4 x 1010,
9.1.47

a. Use the Taylor polynomial centered at 0 with f(z) = sinh(z). Note that f(0) =0, f/(0) =1, f”(0) =0
~ (0.521.

and f"”'(0) = 1. Then we have p3(z) = x + 23 /6, so sinh(.5) ~ (.5)3/6 + .5 2
b. |p3(.5) — sinh(.5)| ~ 2.6 x 1074
9.1.48

a. Use the Taylor polynomial centered at 0 with f(z) = tanh(z), Note that f(0) =0, f/(0) = 1, f”(0) = 0,
7"(0) = —2. Then we have p3(z) = —2®/3 + x, so tanh(.5) ~ —(.5)?/3 + .5 &~ 0.449.

b. |ps(x) — tanh(.5)| ~ 3.8 x 1073.

(n+1)
9.1.49 With f(x) = sinz we have R, (z) = f(n_'_l()c')mnﬂ for ¢ between 0 and .
Fr ()
9.1.50 With f(z) = cos2x we have R, (x) = mx”“ for ¢ between 0 and z.
n !
. _ 1 1,— (_1)n+16_c n+1
9.1.51 With f(z) = e™® we have f("*1)(2) = (—1)"*'e™?, so that R, (z) = ~————~—a" 1! for ¢ between
we hav CES

0 and .

and z.

w3

FrtD (¢) \ ntl
9.1.52 With f(z) = cosz we have R, (z) = ) (SE - 5) for ¢ between
n !

(n+1)
9.1.53 With f(z) = sinz we have R, (z) = fi(c) (x il

n+1
— 7> for ¢ between Z and x.

(n+1)! 2 2
_1\n+1
9.1.54 With f(z) = = we have f(**)(z) = (=1)"*' =—L o5 so that R,(z) = =D (") for ¢
1—z (1—z)nt2 n (1 _ c>n+2

between 0 and .

9.1.55 f(x) = sinz, so f®)(x) = cosz. Because cosz is bounded in magnitude by 1, the remainder is
bounded by [Ry(z)] < %3 ~ 2.0 x 107°.

9.1.56 f(x) = cosxz, so f(x) = cosx. Because cosz is bounded in magnitude by 1, the remainder is
bounded by |R3(z)| < 0‘2!54 ~1.7x 1073,

9.1.57 f(x) =e, so fO)(z) = e*. Because e’? is bounded by 2, |Ry(z)| < 2- Og—?o ~ 1.63 x 107°.

9.1.58 f(z) =tanz, so f® (x) = 2sec? z(sec’ x + 2tan’ x). Now, since both tanz and sec z are increasing
on [0,7/2], and 0.3 < Z ~ 0.524, we can get an upper bound on f)(z) on [0,0.3] by evaluating at Z; this
gives f)(z) < 18 on [0,0.3]. Thus [Ry(z)| < i¢ - 03% — 9.4 %1072

3!
9.1.59 f(z)=e"7,s0 f(5)(gc) = —e~*. Because f(®) achieves its maximum magnitude in the range at = = 0,
which has absolute value 1, |Ry(z)| <1 %3 ~ 2.6 x 1074
9.1.60 f(z) = In(1 + ), so fW(z) = —ﬁ. On [0,0.4], the maximum magnitude is 6, so |R3(x)| <

6- 24 = 6.4 x 1073,

9.1.61 Here n = 3 or 4, so use n = 4, and M = 1 because f®) () = cosxz, so that Ry(z) < (”g!l)s
2.49 x 1073,

Q

Copyright (©) 2015 Pearson Education, Inc.



72 Chapter 9. Power Series

9.1.62 n =2 or 3, so use n = 3, and M = 1 because f*)(z) = cosx, so that |Rs(z)| < ("1?)4 ~ 1.6 x 1072,

9.1.63 n =2 and M = /2 < 2, 50 [Ro(z)] < 2- LL2° ~ 42 x 1072,

9.1.64 n =1 or 2, so use 2, and f)(x) = 2sec? z(sec?  + 2tan®z). On [, §] this achieves its maximum
value at +%; that value is 2. Thus [Ry(z)| < 48 - (Wéi?)a ~1.28 x 1071

9.1.65 n = 2; fO)(z) = ﬁ, which achieves its maximum at = —0.2: |f®)(z)| = ;% < 4. Then

|Ry(z)] <4- %2 ~ 54 %1073,

9.1.66 n =1, f”(z) = —%(1+2)~3/2, which achieves its maximum magnitude at = —0.1, where it is less
than 1/3. Thus Ry(z) < & &% ~ 1.7 x 1073,

9.1.67 Use the Taylor series for e” at x = 0. The derivatives of e” are e*. On [-0.5,0], the maximum

magzitude of any derivative is thus 1 at = 0, so |R,(—0.5)| < %, so for R, (—0.5) < 102 we need
n=4.

9.1.68 Use the Taylor series at = 0 for sinz. The magnitude of any derivative of sinx is bounded by 1,
0.2"*!

so |R,(0.2)] < Tt so for R,(0.2) < 1072 we need n = 3.

9.1.69 Use the Taylor series for cosx at x = 0. The magnitude of any derivative of cosz is bounded by 1,
n+1
so |R,(—0.25)| < %, so for |R,,(—0.25)| < 1073 we need n = 3.

9.1.70 Use the Taylor series for f(x) = In(1 +z) at # = 0. Then |f"*V(z)| = W, which for x €

[—0.15, 0] achieves its maximum at @ = —.15. This maximum is less than (1.2)"*! - nl. Thus |R,(—0.15)| <
n . n+1
(1.2)7*t . pl. '(28_‘_:)1! =12 (0'715) . , so for |R,(—0.15)| < 1073 we need n = 3.

9.1.71 Use the Taylor series for f(z) = /z at x = 1. Then |+ ()| = 1'3"'2;7(3?71%’(2"“)/2, which
achieves its maximum on [1,1.06] at 2 = 1. Then
1-3---(2n—1) (1.06—1)"*!

n 1. < . )
HBn(1.06)] < gnt (n+1)!

and for |R,,(0.06)| < 1073 we need n = 1.

1-3----(2n+1)

9.1.72 Use the Taylor series for f(z) = \/1/(1 — ) at = 0. Then |f"*V(z)| = S (1-

x)(73720)/2 which achieves its maximum on [0,0.15] at = = 0.15. Thus

R,015)] < L3 @ntD) < L >(2"+3)/2  015mH!
" - 2n+1 1-0.15 (n+1)!
1-3----(2n41) 0.157+!
- 2+ (n + 1)1 <0.85<2n+3>/2> ’

and for |R,,(0.15)| < 1073 we need n = 3.
9.1.73

a. False. If f(2) = =27, then f("(x) = (=1)"2" 2%, so0 that f(")(0) # 0 and all powers of x are present
in the Taylor series.

b. True. The constant term of the Taylor series is f(0) = 1. Higher-order terms all involve derivatives of
f(z) = 2° — 1 evaluated at = = 0; clearly for n < 5, f(™)(0) = 0, and for n > 5, the derivative itself
vanishes. Only for n = 5, where f®)(z) = 5!, is the derivative nonzero, so the coefficient of x° in the
Taylor series is £ (0)/5! = 1 and the Taylor polynomial of order 10 is in fact 2> — 1. Note that this
statement is true of any polynomial of degree at most 10.
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c. True. The odd derivatives of v/1 + x2 vanish at x = 0, while the even ones do not.

d. True. Clearly the second-order Taylor polynomial for f at a has degree at most 2. However, the
coefficient of (z — a)? is f”'(a), which is zero because f has an inflection point at a.

9.1.74 Let p(z) = >_1_, ck(x —a)* be the n' polynomial for f(z) at a. Because f(a) = p(a), it follows that
co = f(0). Now, the k' derivative of p(z), 1 < k < n, is p*) () = kleg + terms involving (z — a)?, i > 0, so

that f*)(a) = p®)(a) = k! - ¢} so that ¢, = %
9.1.75
a. This matches (C) because for f(x) = (1 4+ 2x)"/2, f"(z) = —(1+22)73/2 s0 w =—1.
b. This matches (E) because for f(z) = (1 +2x)~'/2, f"(z) = 3(1 + 22)~%/2, s0 % =32
c. This matches (A) because f(")(x) = 2"e?*, so that f(™(0) = 2", which is (A)’s pattern.
d. This matches (D) because f”(x) = 8(1 + 2x)~2 and f”(0) = 8, so that f”(0)/2! = 4
e. This matches (B) because f'(z) = —6(1 + 2z)~* so that f’(0) = —6.
(F)

f. This matches (F) because f((z) = (=2)"e~2* so f(™(0) = (—2)", which is (F)’s pattern.

9.1.76

y y

0.06 F 0.015+

0.05F

0.041 0.010

0.03F

0.02F 0.005+

0.01F

a.  -0a -0z 02 04" Tod -0z 2 ea o *
[In(1 — ) — pa(z)] In(1 — x) — p3(x)|

b. The error seems to be largest at x = % and smallest at x = 0.

¢. The error bound found in Example 7 for |In(1 — x) — ps(x)| was 0.25. The actual error seems much
less than that, about 0.02.

9.1.77

a. p2(0.1) = 0.1. The maximum error in the approximation is 1 - 0'3—1!3 ~ 1.67 x 1074

b. p2(0.2) = 0.2. The maximum error in the approximation is 1 - 0'3—2!3 ~1.33 x 1073,

9.1.78

a. p1(0.1) = 0.1. f”(z) = 2tanx(1 + tan?z). Because tan(0.1) < 0.2, |f"(c)| < 2(.2)(1 + .22) = 0.416.

Thus the maximum error is % -0.12 ~ 2.1 x 1073.

b. p1(0.2) = 0.2. The maximum error is >3 . 0.2% ~ 8.3 x 107,

9.1.79
a. p3(0.1) = 1 —.01/2 = 0.995. The maximum error is 1- 1 ~ 4.2 x 1076,

b. p3(0.2) =1 —.04/2 = 0.98. The maximum error is 1- %2- ~ 6.7 x 10~°.
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9.1.80

a. p2(0.1) = 0.1 (we can take n = 2 because the coefficient of 22 in py(z) is 0). f&)(z) = % has a

0.13
!

maximum magnitude value of 2, the maximum error is 2 - &~ ~ 3.3 x 104,

b. p2(0.2) = 0.2. The maximum error is 2 - %2

9.1.81

a. p1(0.1) = 1.05. Because |f"(z)| =
0% ~ 1.3 x 1075,

fe L
€rror 1S 1

0.2°
3l

3!

~ 2.7 x 1073,

1(1 + 2)7%/% has a maximum value of 1/4 at # = 0, the maximum

b. p1(0.2) = 1.1. The maximum error is 1 - 2% = 5 x 1073,

9.1.82

i

a. p2(0.1) = 0.1 — 0.01/2 = 0.095. Because |f®)(x)| = —2+5 achieves a maximum of 2 at = = 0, the

. . 3 J—
maximum error is 2 - % ~3.3x 1074

EESWE

b. p2(0.2) = 0.2 — 0.04/2 = 0.18. The maximum error is 2 - 032,3 ~ 2.7 x 1073,

9.1.83

a. p1(0.1) = 1.1. Because f”(x) = e” is less than 2 on [0, 0.1], the maximum error is less than 2 -

10~2.

0.12
21

b. p1(0.2) = 1.2. The maximum error is less than 2 - % =.04=4x10"2,

9.1.84

a. p1(0.1) = 0.1. Because f”(x)

1.7 x 10~ 4.

— X
= T

b. p1(0.2) = 0.2. The maximum error is 1 - 03—2!3

9.1.85

[secz — po(z)|

[sec z — py(z)|

5 is less than 1 on [0,0.2], the maximum error is 1 -

-0.2
-0.1
0.0
0.1
0.2

9.1.86

3.4 x10~*
2.1x107°

0
2.1x107°
3.4x1074

|cos & — pa(x)]

5.5 % 1076
8.5 x 1078

0
8.5x 1078
5.5 x 1076

|cos & — pa(x)]

-0.2
—0.1
0.0
0.1
0.2

6.66 x 107
4.17x 106

0
4.17 x 1076
6.66 x 10~°

8.88 x 1078
1.39 x 1079

0
1.39 x 1079
8.88 x 1078

0.1%
3l

Q

~1.3x 1073

b. The errors are equal for positive and negative x.
This makes sense, because sec(—x) = seczx and
pn(—2) = pp(z) for n = 2,4. The errors appear
to get larger as = gets farther from zero.

b. The errors are equal for positive and negative z.
This makes sense, because cos(—x) = cosz and
pn(—2) = pu(z) for n = 2,4. The errors appear
to get larger as x gets farther from zero.
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(0]

9.1.87
le”" —pi(@)| | [e7" — pa()|
-0.2 2.14 x 1072 1.40 x 1073 ) o .
01 517 % 10-3 171 x 10-4 b. T-he errors are different for positive and negative
displacements from zero, and appear to get larger
0.0 0 0 as = gets farther from zero.
01| 4.84x107% | 1.63x107*
02| 1.87x107%| 127x1073
9.1.88
[f (@) =pi(@)] | |f(x) = pa()]
—0.2 | 231x107%| 314x107* . N _
01 5.36 x 10-3 361 x 10— b. T'he errors are different for positive and negative
displacements from zero, and appear to get larger
0.0 0 0 as x gets farther from zero.
0.1 | 4.69x1073 3.10 x 107*
0.2 1.77 x 1072 2.32 x 1073
9.1.89
tana — pi(2)| | |tanz — p3(z)|
—0.2 271 x 1073 4.34 % 107° b. The errors are equal for positive and negative .
-0.1 3.35 x 1074 1.34 x 1076 This makes sense, because tan(—x) = —tanz and
0.0 0 0 Pn(—x) = —pn(x) for n = 1,3. The errors appear
to get larger as = gets farther from zero.
0.1 3.35 x 1074 1.34 x 1076
0.2 2.71 x 1073 4.34 x 107°
T 1++3 th .
9.1.90 The true value of cos 5= ﬁ ~ 0.966. The 6""-order Taylor polynomial for cosx centered at
r=01s ) A 6
x x x
=1-= 4=
po () > T30 0
Evaluating the polynomials at x = w/12 produces the following table:
n|  pa(f5) | Ipa(f5) —cos;
1 | 1.0000000000 3.41 x 1072
2 | 0.9657305403 1.95 x 1074
3 | 0.9657305403 1.95 x 1074
4 | 0.9659262729 4.47 x 1077
5 | 0.9659262729 4.47 x 1077
6 | 0.9659258257 5.47 x 10710

The 6'1-order Taylor polynomial for cosz centered at x = 7/6 is

V3 ™ V3 T\ 2 -
@ =555 -F -5 +56-F)

V3 V3
t e f) a8 T ()
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Evaluating the polynomials at @ = /12 produces the following table:

n|  pn(f5) | Ipn(75) — cos 7
1 | 0.9969250977 3.10 x 1072
2 | 0.9672468750 1.32x 1073
3 | 0.9657515877 1.74 x 1074
4 | 0.9659210972 4.73 x 106
5 | 0.9659262214 3.95 x 1077
6 | 0.9659258342 7.88 x 107°

Comparing the tables shows that using the polynomial centered at x = 0 is more accurate when n is
even while using the polynomial centered at = 7/6 is more accurate when n is odd. To see why, consider
the remainder. Let f(z) = cosz. By Theorem 9.2, the magnitude of the remainder when approximating
f(7/12) by the polynomial p,, centered at 0 is:

™
2 (53)] =
for some ¢ with 0 < ¢ < {5, while the magnitude of the remainder when approximating f(7/12) by the
polynomial p,, centered at 7/6 is:

() (c)| /w7t
et &)

71' () (c)| /w7t
7 (33)] = W (13) ’

for some ¢ with 75 < ¢ < §. When n is odd, |+ (¢)| = | cos¢|. Because cos x is a positive and decreasing
function over [0,7/6], the magnitude of the remainder in using the polynomial centered at 7/6 will be less
than the remainder in using the polynomial centered at 0, and the former polynomial will be more accurate.
When 7 is even, |f("*1(c)| = |sinc|. Because sinz is a positive and increasing function over [0,7/6], the
remainder in using the polynomial centered at 0 will be less than the remainder in using the polynomial
centered at 7/6, and the former polynomial will be more accurate.

9.1.91 The true value of €*3° ~ 1.419067549. The 6" -order Taylor polynomial for e® centered at 2 = 0 is

2 mS 1‘4 1‘5 IG

xXr
-1 T A R AR
e () R T S YR T B oY)

Evaluating the polynomials at = = 0.35 produces the following table:

n | py(0.35) |pn (0.35) — €9-37]
1 | 1.350000000 6.91 x 1072
2 | 1.411250000 7.82 x 1073
3 | 1.418395833 6.72 x 1074
4 | 1.419021094 4.65 x 1075
5 | 1.419064862 2.69 x 1076
6 | 1.419067415 1.33 x 1077

The 6'"-order Taylor polynomial for e centered at = In2 is

pe(z) =

[

1 - 1
2+2(z—1In2)+ (z —n2)* + g(z71n2)3+ E(xfln2)4

1 1
+ —(z—1n2)° + — (2 — In2)°.

60 360

Evaluating the polynomials at * = 0.35 produces the following table:
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n | pn(0.35) |pn (0.35) — €937
1 | 1.313705639 1.05 x 101
2 | 1.431455626 1.24 x 1072
3 | 1.417987101 1.08 x 1073
4 | 1.419142523 7.50 x 1075
5 | 1.419063227 4.32 x 1076
6 | 1.419067762 2.13 x 1077

Comparing the tables shows that using the polynomial centered at x = 0 is more accurate for all n. To
see why, consider the remainder. Let f(z) = e”. By Theorem 9.2, the magnitude of the remainder when
approximating f(0.35) by the polynomial p,, centered at 0 is:

I 0 o
| R (0.35)] = =——=2(0.35)" " = D

(n+ 1!
for some ¢ with 0 < ¢ < 0.35 while the magnitude of the remainder when approximating f(0.35) by the
polynomial p,, centered at In 2 is:

f ()] 1 a
R,(0.35)| = ——>10.35 — In2|"*! =
| B (0-35)] (n+1)!‘ n2| (n+1)!

for some ¢ with 0.35 < ¢ < In2. Because In2 — 0.35 ~ 0.35, the relative size of the magnitudes of the
remainders is determined by e in each remainder. Because e” is an increasing function, the remainder in

using the polynomial centered at 0 will be less than the remainder in using the polynomial centered at In 2,
and the former polynomial will be more accurate.

(0.35)"*1

(In2 — 0.35)" 1

9.1.92

a. Let x be a point in the interval on which the derivatives of f are assumed continuous. Then f’ is con-
tinuous on [a, 2], and the Fundamental Theorem of Calculus implies that because f is an antiderivative

of f/, then [” f/(t)dt = f(z) — f(a), or f(z) = f(a)+ [ f'(t)dt.

b. Using integration by parts with u = f/(¢) and dv = dt, note that we may choose any antiderivative of
dv; we choose t — x = —(z — t). Then

x

fl@) = f(a) = f(t)(x — 1)

+ [

t=

= @) - @)+ [ -0

. ; 3 _ _ . N €
c. Integrate by parts again, using u = f”(t), dv = (x —t) dt, so that v = — =5~

x

f(@) = F@) + fa)(x —a) + / (x— 1) (1) dt

(z —t)*
2

— @)+ fa@a -+ @ a5 [ a

T

= f(a) + f'(a)(x — a) - f(@)

+ ;/:(m — )2 f"(t) dt

a

It is clear that continuing this process will give the desired result, because successive integral of = — ¢
give — 5 (z — t)k.
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d. Lemma: Let g and h be continuous functions on the interval [a,b] with g(t) > 0. Then there is a

number c in [a, b] with
b b
/ h(#)g(t) dt = h(c) / o(t) dt.

Proof: We note first that if g(¢t) = 0 for all ¢ in [a,b], then the result is clearly true. We can thus
assume that there is some t in [a,b] for which g(¢) > 0. Because g is continuous, there must be an
interval about this ¢t on which g is strictly positive, so we may assume that

b
/ g(t)dt > 0.

Because h is continuous on [a, b], the Extreme Value Theorem shows that h has an absolute minimum
value m and an absolute maximum value M on the interval [a,b]. Thus

m < h(t) <M

m/bg(t) dt < /b h(t)g(t)dt < M/bg(t) dt

Because f g(t)dt > 0, we have

for all ¢ in [a, b], so

fh
_fg

Now there are points in [a, b] at which h(t) equals m and M, so the Intermediate Value Theorem shows
that there is a point ¢ in [a, b] at which

Y h(t)g(t) dt

[P g(t)dt

b b
/ h(#)g(t) dt = h(c) / o(t) dt.

Applying the lemma with h(t) = 1 )( ),g(t) = (z—1t)", we see that R, (x)

f("“)(c) 1 +1 f(n+1)(p)
n! T+l a)ﬂ —  (n+1)! (.1?

9.1.93

h(c) =

or

f(n+1)

c)f _

(x— —a)"*! for some c € [a, b].

a. The slope of the tangent line to f(z) at © = a is by definition f’(a); by the point-slope form for the
equation of a line, we have y — f(a) = f'(a)(x —a), or y = f(a) + f'(a)(z — a).

b. The Taylor polynomial centered at a is pi(x) = f(a) + f'(a)(z — a), which is the tangent line at a.
9.1.94

a. pa(7) = f(a) + f'(a)(w — a) + 152 (3 — 0)?, 50 that ph(a
If f has a local maximum at a, then f/'(a) = 0, f”(a)
above, so that py(z) also has a local maximum at a.

) = f'(a) + f"(a)(z — a) and p5(z) = f"(a).
< 0, but then p4(a) = 0 and pj(a) < 0 by the

b. Similarly, if f has a local minimum at a, then f’(a) = 0, f”(a) > 0, but then pj(a) = 0 and pj(a) >0
by the above, so that ps(z) also has a local minimum at a.

c. Recall that f has an inflection point at a if the second derivative of f changes sign at a. But pj(z) is
a constant, so pa does not have an inflection point at a (or anywhere else).
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d. No. For example, let f(x) = x3. Then py(x) = 0, so that the second-order Taylor polynomial has a
local maximum at « = 0, but f(z) does not. It also has a local minimum at = = 0, but f(z) does not.

9.1.95
a. We have
f(0) = fD(0) =sin0=0 f(m) = fW(x) =sin7T =0
F1(0) = f®(0) = cos0 =1 f'(m) = fO0) = cosm = —1
77(0) = —sin0 = f(m)=—sinT =0
F7(0) = —cos0 = —1 f"(m) = —cosm = 1.
Thus
3 5
ps(z) = % + %
g5(x) = —(x —m) + %(m —m)? - %(w —)°.

b. A plot of the three functions, with sin « the black solid line, ps(z) the dashed line, and ¢5(x) the dotted
line is below.

ps(x) and sinz are almost indistinguishable on [—m /2, 7/2], after which ps(x) diverges pretty quickly
from sinx. gs(x) is reasonably close to sinz over the entire range, but the two are almost indistin-
guishable on [7/2,37/2]. ps(z) is a better approximation than ¢s(x) on about [—7,7/2), while ¢5(z)
is better on about (7/2, 27].

c. Evaluating the errors gives

x | |sinz —ps(x)| | |sinz — g5(z)]
z 3.6 x 1075 7.4 %1072
z 4.5 %1073 4.5 %1073
3 74x1072 3.6 x 107°
on 2.3 3.6 x 1077
In 20.4 7.4 x 1072

d. ps(x) is a better approximation than ¢s(x) only at z =
equal at x = 7, after which ¢s(z) is a substantially better approximation than ps(z).

s
4
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9.1.96
a. We have
f(1)=In1=0 fle)=lne=1
Fy=1 fe =5
()= -1 ) = -
) =2 (e = 2
Thus
ps@) = (2~ 1)~ (=1 + 2@~ 1P = (2~ 1)~ 5z~ 1+ 3 (&~ 1)
da(@) = 1+ ~(z—e) — %(x e 4w —e)?

b. A plot of the three functions, with In z the black solid line, ps(x) the dashed line, and g3(x) the dotted
line is below.

c. Evaluating the errors gives

r | |Inz—p3(x)] | Inz —g3(x)]
05| 2.6x1072 3.6 x 107!
1.0 0 8.4 x 1072
1.5 | 1.1x1072 1.6 x 1072
20| 14x107! 1.5 x 1073
2.5 | 5.8x1071 1.1 x 1072
3.0 1.6 2.7x107°
3.5 3.3 1.4 x 1073

d. ps(z) is a better approximation than ¢3(z) for x = 0.5, 1.0, and 1.5, and ¢3(z) is a better approximation
for the other points. To see why this is true, note that on [0.5,4] that f*)(z) = —5 is bounded in
magnitude by % = 96, so that (using P; for the error term for p; and @3 as the error term for ¢3)

o — 1 I

4!

|z —e
4!

Ps(z) < 96 -

=4z -1, Qs(x) < 96 - 4

=4lx—e

Thus the relative sizes of P3(z) and Q3(z) are governed by the distance of x from 1 and e. Looking at
the different possibilities for = reveals why the results in part (c¢) hold.
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9.1.97
a. We have
£(36) = /36 =6 f(49) = V49 =7
R e HAC R v
Thus . .
pi(z) = 6+ 5 (z = 36) 1 (x) =T+ ;(z—49)

b. Evaluating the errors gives

z | Ve —pi(@)] | Ve —a@)
37 | 5.7x107* 6.0 x 1072
39 | 5.0x1073 4.1 x 1072
41 | 1.4x1072 2.5 x 1072
43 | 2.6 x1072 1.4 %1072
45 | 4.2x1072 6.1 x 1073
47 | 6.1 x 1072 1.5x 1073

c. p1(z) is a better approximation than ¢ (z) for z < 41, and ¢ (z) is a better approximation for x > 43.
To see why this is true, note that f"(z) = —ix‘i‘/z, so that on [36,49] it is bounded in magnitude by

i -3673/2 = ﬁ. . Thus (using P; for the error term for p; and @) for the error term for ¢)
1 o491

(x=367% Qi) < gop T = g @ 49

1 |z — 36/ 1
Pilz) < — . —
1) < g5 1728

It follows that the relative sizes of P(z) and Qq(x) are governed by the distance of = from 36 and 49.
Looking at the different possibilities for x reveals why the results in part (b) hold.

9.1.98

a. The quadratic Taylor polynomial for sinz centered at 7 is

(@) n T ( 77) 1 T ( 71')2
= gin — — |z —-= —sin—-(xz— =
pa(x S 5 cos2 T 5 25 5 T 5
1 T\ 2
-1-36-3
2 "7 3
2
5 T
= — — —_ 1—7
R Tar oy

b. Let g(x) = ax?® + bx + c. Because ¢(0) = sin 0 = 0, we must have ¢ = 0, so that ¢(z) = az? + bx. Then
the other two conditions give us a pair of linear equation in a and b:

2

™ ™

—a+-b=1

19773

7%a +mh =0
where the first equation comes from the fact that ¢(7/2) = sin(mw/2) = 1 and the second from the fact
that ¢(m) = sin7 = 0. Solving the linear system of equations gives b = % and a = f%, so that

4, 4
q(z) = 3% + —z.
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c. A plot of the three function,

line is below.

08l
06l
04l

2 S/

—02ff

d. Evaluating the errors gives

sy

x | |sinz — pa(z)| | |sinx — q(z)]
z 1.6 x 1072 4.3 x 1072
0 0

iz 1.6 x 1072 4.3 x 1072
7 2.3 x 107! 0

with sinz the black solid line, py(z) the dashed line, and g(x) the dotted

e. q is a better approximation than p at z = =, and the two are equal at x = 5. At the other two
points, however, ps(x) is a better approximation than ¢(x). Clearly g(x) will be exact at x =0, z = 7,
and x = 7, because it was chosen that way. Also clearly po(x) will be exact at x = 7 since it is the
Taylor polynomial centered at 7. The fact that py(z) is a better approximation than g(z) at the two
intermediate points is a result of the way the polynomials were constructed: the goal of ps(x) was to
be as good an approximation as possible near = 7, while the goal of ¢(x) was to match sinz at three
given points. Overall, it appears that ¢(z) does a better job over the full range (the total area between

¢(z) and sinz is certainly smaller than the total area between po(z) and sin ).
9.2 Properties of Power Series
9.2.1 ¢y + 12 + cox? + cga®.
9.2.2 ¢y +c1(z — 3) + ca(w — 3)? + c3(x — 3)3.
9.2.3 Generally the Ratio Test or Root Test is used.
9.2.4 Theorem 9.3 says that on the interior of the interval of convergence, a power series centered at a
converges absolutely, and that the interval of convergence is symmetric about a. So it makes sense to try to

find this interval using the Ratio Test, and check the endpoints individually.

9.2.5 The radius of convergence does not change, but the interval of convergence may change at the end-
points.

9.2.6 2R, because for |z| < 2R we have |z/2| < R so that _ cx(2/2)* converges.
9.2.7 |z] < %

9.2.8 (—1)Fcpa® = ¢ (—x)*, so the two series have the same radius of convergence, because |—xz| = |z|.
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9.2.9 Using the Root Test: limyg_oo ¥/|ax| = limg_ o0 |22] = |22|. So the radius of convergence is % At
x = 1/2 the series is Y 1 which diverges, and at z = —1/2 the series is Y_(—1)* which also diverges. So the
interval of convergence is (—1/2,1/2).

(2z)*

9.2.10 Using the Ratio Test: klirrgo = klirrgo DT @

convergence is co and the interval of convergence is (—o00, ).

Gk+41 — : 2x
ak klgrolo ‘ k+1

= 0. So the radius of

9.2.11 Using the Root Test, lim {/|ax| = lim |]ff/i‘ = |z — 1]. So the radius of convergence is 1. At z = 2,
k—o0 k—oc0

we have the harmonic series (which diverges) and at © = 0 we have the alternating harmonic series (which
converges). Thus the interval of convergence is [0, 2).

: - T — lim |@E=DE R
9.2.12 Using the Ratio Test: khﬁrgo = khﬁrgo FEDT @ DF
convergence is oo and the interval of convergence is (—o00, 00).

= lim

A1
d k—o0

ag

%’ = 0. Thus the radius of

(k4 1)kt g1
kkaxk

Ak41
ag

9.2.13 Using the Ratio Test: lim

k—o00

= lim
k—o00

: k
= khﬁngo(k +1) (B2)" 2] = oo (for z # 0)

. k . . .
because khm (%) = e. Thus, the radius of convergence is 0, the series only converges at = = 0.
—00

9.2.14 Using the Ratio Test: klin;o GZ% = kl;n;o % = kllrgo(k +1) |z — 10| = oo (for x # 10).
Thus, the radius of convergence is 0, the series only converges at x = 10.

9.2.15 Using the Root Test: klim ¥ ak| = klim sin(1/k)|z| = sin(0)|z| = 0. Thus, the radius of convergence
—00 —00

is 0o and the interval of convergence is (—o0, 00).

9.2.16 Using the Root Test: kli_{rolo {ag| = kli_{go 2?175' = 2|z — 3|. Thus, the radius of convergence is 1/2.

When x = 7/2, we have the harmonic series (which diverges), and when z = 5/2, we have the alternating
harmonic series which converges. The interval of convergence is thus [5/2,7/2).

9.2.17 Using the Root Test: ¥ ag| = klim % = lig‘, so the radius of convergence is 3. At —3, the
—00

I
Foo
series is > (—1)*, which diverges. At 3, the series is >_ 1, which diverges. So the interval of convergence is
(=3,3).

9.2.18 Using the Root Test: klim ¥ ak| = klirn ‘fg—l = %, so the radius of convergence is 5. At 5, we obtain
—00 —00
> (—1)* which diverges. At —5, we have >_ 1, which also diverges. So the interval of convergence is (-5, 5).

9.2.19 Using the Root Test: ¥V ak| = klim % = 0, so the radius of convergence is infinite and the
—00

lim
k—o0
interval of convergence is (—o0, 00).

Ak+1
[e2

9.2.20 Using the Ratio Test: lim — lim ((’““)2(,?;4)“1 2" ) — lim (ﬂ ‘””‘4‘) _ l=—4|

k—o00 k—o00 'k@—ﬁk k— 00 k 2 2
so that the radius of convergence is 2. The interval is (2, 6), because at the left endpoint, the series becomes
S~k (which diverges) and at the right endpoint, it becomes > (—1)*k (which diverges).

. . . 2, 2k+2
9.2.21 Using the Ratio Test: kl:nolo (kJr(}c):f)! . kzlf,;lzk

infinite, and the interval of convergence is (—o0, 00).

= lim
k—o00

E£l2? = 0, so the radius of convergence is

9.2.22 Using the Root Test: klim Y ax| = klim EY¥ |z — 1| = |x — 1]. The radius of convergence is therefore
— 00 — 00

1. At both x = 2 and = = 0 the series diverges by the Divergence Test. The interval of convergence is therefore
(0,2).

p2kF3 k-1

2 . .
il — = Zzrgr | = % so that the radius of convergence is V3. At

ag

9.2.23 Using the Ratio Test: lim

k—o0
x = /3, the series is 3. 3/3, which diverges. At x = —/3, the series is 3_(—3+/3), which also diverges, so
the interval of convergence is (—v/3,v/3).
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a2k 2\ F . . . 2 2 .

9.2.24 Y (35)" =% (ﬁ) . Using the Root Test: kl;r& Y ax| = khﬂn;(} 166 = 105, SO that the radius of
convergence is 10. At x = £10, the series is then ) 1, which diverges, so the interval of convergence is
(—10,10).

9.2.25 Using the Root Test: hm ¥ ak| = khm W = |z — 1|, so the series converges when |x — 1] < 1,

k—s o0 — 00

so for 0 < & < 2. The radius of convergence is 1. At = = 2, the series diverges by the Divergence Test. At
x = 0, the series diverges as well by the Divergence Test. Thus the interval of convergence is (0, 2).

9.2.26 Using the Ratio Test:

| k+1‘ _ (_2)k+1(w+3)k+1 . gk+1
32 (—2)F(z + 3)F

2
lim :§\x+3|.

k— o0 |ak\

Thus the series converges When |33 +3] <1, or —% <z < —%. At x = , the series diverges by the

Divergence Test. At x = —5, the series dlvergeb by the Divergence Test. ThIlb the interval of convergence is

(-3.-9)

. . o (k+1)202% k41| . k+1)20 |] —
9.2.27 Using the Ratio Test: klgrgo = ‘ e klgrolo (T) m = 0, so the

radius of convergence is infinite, and the interval of convergence is (—oo, 00).

Qk+1
[£23

3 3
9.2.28 Using the Root Test: klim ¥ ak| = klim @ = |27| , so the radius of convergence is 3. The series is
bde el — 00

divergent by the Divergence Test for # = +3, so the interval of convergence is (—3, 3).

9.2.29 f(3z) = 5= = Y52 3"z*, which converges for |z| < 1/3, and diverges at the endpoints.

9.2.30 g(z) = £ =Y 7=, "3, which converges for |z| < 1 and is divergent at the endpoints.
9.2.31 h(z) = 22 > he 2273, which converges for |z| < 1 and is divergent at the endpoints.

9.2.32 f(2%) = L5 = > 77, 2%, By the Root Test, kli_)n;C {/lax] = |23|, so this series also converges for
|z| < 1. Tt is divergent at the endpoints.

9.2.33 p(z) = ‘i””_lz = > pe g 4xk 12 = 43572 JaF 12 which converges for |z| < 1. It is divergent at the
endpoints.
9.2.34 f(—4z) = ﬁ =Yoo (—4x)F =377 (—1)F4Fa* which converges for |z| < 1/4 and is divergent
at the endpoints.
9.2.35 f(3z) =In(1 —3z)=—-> -, (?i =-Y, % " 2% Using the Ratio Test:
. Af+1 3ki
1 = =3
hvoo | ay hvoo b+ 1 21 ol

so the radius of convergence is 1/3. The series diverges at 1/3 (harmonic series), and converges at —1/3
(alternating harmonic series).

9.2.36 g(z) = 2®In(1 —z) = — Y72, “—. Using the Ratio Test: lim |“L| = lim ki-',-l |x| = |z|, so the
k— o0 k— o0

radius of convergence is 1. The series dlverges at 1 and converges at —1.

9.2.37 h(z) = zIn(1 —z) = —>_7~, “—. Using the Ratio Test: kli_}nolo | = khm lc+1 |z| = |z|, so the

radius of convergence is 1, and the series dlverges at 1 (harmonic series) but converges at —1 (alternating
harmonic series).
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Ak+1
ag

9.2.38 f(z3) =In(l —2%) = - >}, % Using the Ratio Test: klirn
— 00

the radius of convergence is 1. The series diverges at 1 (harmonic series) but converges at —1 (alternating
harmonic series).

- k]er;OkLH |w3| = |x3‘, S0

Ap41

k+6 . . .
Z_— . Using the Ratio Test: lim = hrn g [zl = |z, so
k—oo | @k +

9.2.39 p(z) = 22°In(1 —z) = —23 77, T i

the radius of convergence is 1. The series diverges at 1 (harmonic series) but converges at —1 (alternating
harmonic series).

Ok+1
(2

9.2.40 f(—4z)=In(1+4z)=—-> " 1 )k. Using the Ratio Test: klim = hm k+1
—00

the radius of convergence is 1/4. The series converges at 1/4 (alternating harmonlc serles) but diverges at
—1/4 (harmonic series).

4|z| = 4|z, so

9.2.41 The power series for f(z) is > po,(22)k, convergent for —1 < 2z < 1, so for —1/2 < z < 1/2. The
k=1 K
i

)
power series for g(z) = f/(z) is Y pey k(22)F71 -2 =237 k(22)*~1, also convergent on |z| < 1/2.
)

9.2.42 The power series for f(x
$f(x) is £ 300, k(k — 1)ah—2

9.2.43 The power series for f(z) is Zk Ox , convergent for —1 < x < 1, so the power series for g(x) =

is Yo z”, convergent for —1 < < 1, so the power series for g(x) =
5> neo(k+1)(k + 2)a*, also convergent on |z| < 1.

(@) is § 3 pla k(k —1)(k —2)ah3 = £ 3707 (k4 1)(k + 2)(k + 3)z*, also convergent on |z| < 1.
9.2.44 The power serlee for f(x) is > po 0( 1)k22?* convergent on |z| < 1. Because g(z) = —3 f'(x), the
power series for g is —2 377 (—1)F2ka?* =1 = 3777 | (—=1)k+1k2?*~1 also convergent on |z] < 1.

9.2.45 The power series for 1— is Y pe(32)k, convergent on |z| < 1/3. Because g(z) = In(1 — 3z) =
—3 [ 1255 da and because g(0) = 0, the power series for g(z) is =3 ;2 3F Agah ™t = =372 %xk, also

convergent on [—1/3,1/3).

9.2.46 The power series for %5 is @) ;7 o(=1)* 2 = 3777 (=1)*2* ! convergent on [z| < 1. Be-
cause g(x) = 2 [ f(z)dx, and because g(0) = 0, the power series for g(x) is 23,2 (—=1)* gz a2 =

Y opeo(— )k a2, This can be written as Y2 (=1)F+! 12?%, which is convergent on [-1,1].

9.2.47 Start with g(x) = 1+ . The power series for g(z) is Y p—,(—1)*z*. Because f(z) = g(z?), its power
series is Z;‘;O(—l)kx%. The radius of convergence is still 1, and the series is divergent at both endpoints.
The interval of convergence is (—1,1).

9.2.48 Start with g(z) = . The power series for g(z) is Y_po, 2*. Because f(z) = g(z*), its power series

is o0 F—0 x2**. The radius of convergence is still 1, and the series is divergent at both endpoints. The interval
of convergence is (—1,1).

9.2.49 Note that f(z) = 57 = 17735
power series for f(z) = g((1/3)z) is Y_pey(—1)%3 =30 (5 ) Using the Ratio Test: lim

k—o00

Let g(x) = 1+$ The power series for g(z) is Y, (—1)*z*, so the

rt1 | _

3= (k1) L ht1
3—kgk

klim = @—I, so the radius of convergence is 3. The series diverges at both endpoints. The
— 00

interval of convergence is (—3, 3).

9.2.50 Note that f(z) = £ In(1 — 2?). The power series for g(z) = In(1 — z) is — Y~ +z¥, so the power
series for f(z) = $g(2?) is 5 -5 | 2%, The radius of convergence is still 1. The series diverges at both
1 and —1, its interval of convergence is (—1,1).

9.2.51 Note that f(2) = InvI—a? = Jin(4~2?) =} (nd+ I (1- %)) =2+ {In (1 ~ %) Now,

the power series for g(z) = In(1 — z) is — Y ;7 +2¥, so the power series for f(z) is In2 — 3377, }Cff: =

. 2k+2 k,22k+1 2 ’L‘2
= lim L . —| = lim = 2. so that the radius
el NSy P L I Eaer vl 4(k+1) 1

of convergence is 2. The series diverges at both endpoints, so its interval of convergence is (—2,2).

ap41
ag

0o 22k .
In2—3"", o Now, khﬁn;o
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9.2.52 By Example 5, the Taylor series for g(x) = tan~lz is 200 ¢ , so that f(z) = g((27)?) has

2k+1
. _ 4k+2 2k+1
Taylor series 3°5° % =3, 21@1 a**+2. Using the Ratio Test: lim |*&5L| =
o= k— o0
. 2k+3, 4k+6 . : 1 1
lim |4 2kw3 . 42k$’§+jk+2 = lim %’“gl) = 162*, so that the radius of convergence is 1/2. The interval
k—o0 + x k—o0 +

of convergence is (—1/2,1/2).

9.2.53
a. True. This power series is centered at x = 3, so its interval of convergence will be symmetric about 3.
b. True. Use the Root Test.
c. True. Substitute 22 for x in the series.

d. True. Because the power series is zero on the interval, all its derivatives are as well, which implies
(differentiating the power series) that all the ¢ are zero.

9.2.54 Using the Root Test: lim {/|ax| = lim (1+ %)k |z| = ex. Thus, the radius of convergence is L.
k— o0 k—r o0 e

(k+1)!mk+1 Kk

9.2.55 Using the Ratio Test: lim DT RlaF

k—o0

= hm ( ) x| = L|z|. The radius
& 1) |2l = clal
of convergence is therefore e.

9.2.56 1+ 7 5-a”
9.2.57 Y 7 o (—1)F gt

0o 22k+1
9.2.58 Y07\ (—D* iy

9.2.59 Y7 (-1)F 4

9.2.60 The power series for f(ax) is Y. cx(ax)®. Then 3" ¢k (az)¥ converges if and only if |ax| < R (because
> exa® converges for |z| < R), which happens if and only if |z| < %.

9.2.61 The power series for f(x—a)is Y. cx(r—a)*. Then 3 cp(z—a)* converges if and only if |z — a| < R,
which happens if and only if a — R < x < a + R, so the radius of convergence is the same.

9.2.62 Let’s first consider where this series converges. By the Root Test, klim ¥ ax| = klim (22 4+1)? =
— 00 — 00

(22 + 1)2, which is always greater than 1 for  # 0. This series also diverges when x = 0, because there
we have the divergent series Y 1. Because this series diverges everywhere, it doesn’t represent any function,
except perhaps the empty function.

9.2.63 This is a geometric series with ratio /x — 2, so its sum is 1_(\/15_2) o= f Again using the Root
Test, hm ¥/|ar| = |v/x — 2|, so the interval of convergence is given by |/ —2| < 1,s0 1 < /z < 3 and
1<z < 9 The series diverges at both endpoints.

9.2.64 This series is - > 77 “—. Because Y 7, = is the power series for — In(1—x), the power series given
. . . . apy1| . p2k+2 4k | qs k 2 .
is —% ln(l — 2?%). Using the Ratio Test: klingo | = k}li)HC}O T o | = kl;rrgo e = 22, so the radius of

convergence is 1. The series diverges at both endpoints (it is a multiple of the harmonic series). The interval
of convergence is (—1,1).

—x

9.2.65 This is a geometric series with ratio e™7, so its sum is

——=- By the Root Test, lim Y ag| = e,
k—o00

so the power series converges for z > 0.
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9.2.66 This is a geometric series with ratio %72 so its sum is g (z(w 2)2/)39 5 ?;22) 11— Using the Root

Test: hm ax| = hm |252| = |%52|, so the series converges for [z — 2| < 9, or =7 < x < 11. It diverges

at both endpomts

—1)/3, so its sum is 1_7,12_1 = 37(;’271) = 932 Using the
3

2

9.2.67 This is a geometric series with ratio (x

Root Test, the series converges for |x2 — 1’ < 3,s0 that —2 < 22 < 4 or —2 < x < 2. It diverges at both
endpoints.

k k
9.2.68 Replacing x by x — 1 gives Inz = >~ % Using the Ratio Test: klim =
—00
k
kliﬁgo % : ﬁ = kILH;O kiﬂ |z — 1] = |z — 1], so that the series converges for | — 1| < 1. Checking

the endpoints, the interval of convergence is (0, 2].

Zk

9.2.69 The power series for e® is .~ &+, Substitute —z for x to get e = Y27 ((—1)* % The series
converges for all z.

9.2.70 Substitute 2z for = in the power series for e” to get €** = Y ;7 (2;, = 332, Za¥. The series
converges for all x.

9.2.71 Substitute —3z for = in the power series for e* to get e 3% = > 72 = 3T =3 (=1)k %xk The
series converges for all z.

9.2.72 Multiply the power series for e® by 22 to get z2e” =3 0 k, , which converges for all x.

9.2.73 The power series for 2™ f(z) is Y cxz*+t™. The radius of convergence of this power series is deter-

mined by the limit

k+1+m k+1

Ck+1T
crpxk

Ck+1T

lim
Ck;.’L‘k+m

k—oc0

= lim

k—oc0

and the right-hand side is the limit used to determine the radius of convergence for the power series for f(z).
Thus the two have the same radius of convergence.

9.2.74

a. R, = f(z) — S,(x) = > 50—, x*. This is a geometric series with ratio x. Its sum is then R, = %

desired.

as

b. R,(x) increases without bound as x approaches 1, and its absolute value smallest at © = 0 (where it
is zero). In general, for z > 0, R, (z) < R,_1(z), so the approximations get better the more terms of
the series are included.

y
y
St 2.5F
ar 20F
3r 15f
2f 1.0f
't \0.5 '
“ X L n L — X
- 0.5 1.0 -1.0 -0.5 0.5 1.0

- W 0.5 1.0
—05fF
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PR O el ST )
c. To minimize |R,(z)|, set its derivative to zero. Assuming n > 1, we have R} (z) = %7

which is zero for z = 0. There is a minimum at this critical point.

The following is a plot that shows, for each z € 150]
(0,1), the n required so that R, (z) < 1075. The
d. closer z gets to 1, the more terms are required in 100}

order for the estimate given by the power series
to be accurate. The number of terms increases
rapidly as x — 1.

50F

0.2 0.4 0.6 0.8 1.0

9.2.75
a. f(.’l?)g(l‘) = codpy + (Cod1 + Cld())QT + (Codg + c1dy + ngo)fL’Q + ...
b. The coefficient of 2" in f(z)g(x) is D1 cidn—;-

9.2.76 The function \/11_7 is the derivative of the inverse sine function, and sin~'(0) = 0, so the power

series for sin~! z is the integral of the given power series, or z + %x?’ + %w‘r) + 2?5’('3?7:107 4+ .... This can also
be written z + > -, 22372152(162221) p2k+L
9.2.77
y
14f
12+
10+
8t
6F
4f
For both graphs, the difference between the true \ 2t
value and the estimate is greatest at the two ends 1o ~0s 05 10"
a.  of the range; the difference at 0.9 is greater than
that at —0.9. !
15+
10+
5»
- )/ —05 05 10~
-5F
b. The difference between f(z) and S, (x) is greatest for = 0.9; at that point, f(x) = m = 100,

so we want to find n such that S, (z) is within 0.01 of 100. We find that S11; &~ 99.98991435 and
S112 &~ 99.99084790, so n = 112.

9.3 Taylor Series
9.3.1 The nth Taylor Polynomial is the nth sum of the corresponding Taylor Series.

9.3.2 In order to have a Taylor series centered at a, a function f must have derivatives of all orders on some
interval containing a.
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9.3.3 The n'? coefficient is %

9.3.4 The interval of convergence is found in the same manner that it is found for a more general power
series.

9.3.5 Substitute 22 for x in the Taylor series. By theorems proved in the previous section about power
series, the interval of convergence does not change except perhaps at the endpoints of the interval.

9.3.6 The Taylor series terminates if f(™(0) = 0 for n > N for some N. For (1 + )P, this occurs if and
only if p is an integer > 0.

9.3.7 It means that the limit of the remainder term is zero.

9.3.8 The Maclaurin series is e*” = Y77 (2;!)k . This is determined by substituting 2z for = in the Maclaurin
series for e”.

9.3.9

a. Note that f(0) =1, f/(0) = —1, f(0) = 1, and f”’(0) = —1. So the Maclaurin series is 1 — z +22/2 —
236+ ---.

k

b 3o (=D g
c. The series converges on (—o0, 00), as can be seen from the Ratio Test.
9.3.10

a. Note that f(0) =1, f/(0) =0, f”(0) = —4, f7(0) = 0, f*(0) = 16, .... Thus the Maclaurin series is
1— 222 4 20 422 4

)2k

[e's) 2x
b o (—1)F s

c¢. The series converges on (—oo, 00), as can be seen from the Ratio Test.

9.3.11
a. Because the series for ﬁ is1—a+4a%—23+- -, the series for ﬁ isl—a?+at—ab4....
b. Z;ozo(_l)kxzk-

c. The absolute value of the ratio of consecutive terms is 22, so by the Ratio Test, the radius of convergence
is 1. The series diverges at the endpoints by the Divergence Test, so the interval of convergence is
(—1,1).

9.3.12

a. Note that f(0) =0, f(0) =4, f”(0) = =16, f”(0) = 128, and f"””(0) = —1526. Thus, the series is

. 162> 128z° 1536z
glVany4iE—T+T—T+"'.

9] k—1)!(4z)" 9] 4z)*
b, S (_1)k+1( L!( ) :Zk_l(_l)k-H( k) )

4|z|k

c. The absolute value of the ratio of consecutive terms is which has limit 4|z| as k& — oo, so the

k11’
interval of convergence is (—1/4,1/4]. Note that for z = 1/4 we have the alternating harmonic series,
while for © = —1/4 we have negative 1 times the harmonic series, which diverges.
9.3.13

a. Note that f(0) = 1, and that f(™)(0) = 2". Thus, the series is given by 1 4 2z + % + % +ee
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T k
b Y, 2

c. The absolute value of the ratio of consecutive terms is
Ratio Test, the interval of convergence is (—00, 00).

%, which has limit 0 as n — oo. So by the
9.3.14
a. Substitute 2z for z in the Taylor series for (1 + z)~!, to obtain the series 1 — 2z + 42?2 — 823 + - - -.
b. Y hlo(—1)k(2x)".

c. The Root Test shows that the series converges absolutely for |2z| < 1, or |z| < 1/2. The interval of
convergence is (—1/2,1/2), because the series at both endpoints diverge by the Divergence Test.

9.3.15

a. By mtegratlng the Taylor series for which is the derivative of tan_l(ac)), we obtain the series

a (
7
x—?—i—?—?—l- Thenbyreplacmgzbyx/2wehave5—32g+525 — 2yt

b. Zzio(_l)kmm%ﬁ-l.

c. By the Ratio Test (the ratio of consecutive terms has limit %2), the radius of convergence is |z| < 2.
Also, at the endpoints we have convergence by the Alternating Series Test, so the interval of convergence
s [-2,2].

9.3.16

a. Substitute 3z for x in the Taylor series for sin x, to obtain the series 3z — % + 8}{55 2?237 + -

32k+1

o 1\k 2k+1
b > o (=D aErre™
c. The ratio of successive terms is ﬁﬁ, which has limit zero as n — oo, so the interval of conver-

2n+1
gence is (—00, 00).

9.3.17
a. Note that f(0) =1, f/(0) = In3, f”(0) = In®3, f”(0) = In*3. So the first four terms of the desired

. b 3
series are 1 + (In3)z 4 2822 4 2853 4 ..

2
In*
b. Tp,

i i i (In*Tt3)ghtt . k! _ In3
c. The ratio of successive terms is =) =S}

is 0, so the interval of convergence is (—o0, 00).

x, and the limit as £ — oo of this quantity

9.3.18

a. Note that f(0) =0, f/(0) = 15, f”(0) = 1n3, f7(0) = 25, f"(0) = —:%. So the first terms of the
desiredseriesareO—&—ﬁ—%—k% 41n3+...,

( 1)k+1 k
b >l T Tms
c. The absolute value of the ratio of successive terms is ‘ﬁ k;ﬁi‘g‘ = k+1 |z|, which has limit |z|
as k — o0o. Thus the radius of convergence is 1. At x = —1 we have a multiple of the harmonic series

(which diverges) and at = 1 we have a multiple of the alternating harmonic series (which converges)
so the interval of convergence is (—1,1].
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9.3.19

a. Note that f(0) =1, f/(0) =0, f(0) =9, f”(0) = 0, etc. The first terms of the series are 1 + 922 /2 +
81xt /4! + 3520 /6! +

00 3z)2k
b. > kim0 ((213)1 ~

(3z)%F 2 (2k)! | _ 1
CE+2)T " (Bx)2F | — (2k+2)(2k+1)
limit 0 as @ — oo. The interval of convergence is therefore (—o0, c0).

c. The absolute value of the ratio of successive terms is - 922, which has

9.3.20
a. Note that f(0) =0, f/(0) =2, f(0) =0, f”’( ) = 8, etc. The first terms of the series are 2z + 823 /6 +
3225 /5! + 12827 /7 + - - -, or 2x+—+—+m+

22k+1 2k+1

b. > ito Tarrr

. . .| g2k+3,2k+3 k+1)! | 4 2 :
c. The absolute value of the ratio of successive terms is @Ra)l 2T IR | T RT3 (2R L which

has limit 0 as  — oco. The interval of convergence is therefore (—oo, 00).

9.3.21
a. Note that f(7/2) =1, f'(w/2) = cos(w/2) =0, f"(7/2) = —sin(7/2 ) 1, f"(w/2) = fcos(w/Q)
0, and so on. Thus the series is given by 1 — 1 (z — g)2 = (2 — %) — =5 (- g)ﬁ +-
o) o\ 2k
b. Zk:o(_l)k(ﬁc)! (x—3)""
9.3.22

a. Note that f(7) = —1, f'(« ): —sinw =0, f’(7) = —cosm =1, f"(n) = —sinm = 0, and so on. Thus
the series is given by —1 + 5 (x—w) 24(35_7r) +%(w—w)6+---.

b. Zk— ( )k+1 (2}4;)!('1:_71-)216'

9.3.23

a. Note that f(*)(1) = (—1)* £ = (—1)*-kl. Thus the series is given by 1—(z—1)+(2—1)?—(z—1)%+

b. Z;o:o(_l)k(x - 1)k~

9.3.24
a. Note that f*)(2) = (—1)k zH+. Thus the series is given by 2 — 272 + L(z - 2)2 — L(z -2 + L(z —
2)4 4 ...
b. Yo (=1) e (@ = 2)%.
9.3.25

a. Note that f*)(3) = (—1)’“_1@. Thus the series is given by In(3)+ 252 — & (z—3)%+ g1 (x—3)3+-- -
b. In3+ 302 (—1)F = (z — 3)k.
9.3.26

a. Note that f*)(In2) = 2. Thus the series is given by 2 + 2(x — In(2)) + (z — In(2))? + 3(x —In(2))% +
112(x—1n( ))4+

b. Y02, &z —In(2))*.
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9.3.27
a. Note that f(1) =2, f/(1) = 2In2, f”(1) = 2In*2, (1) = 2In®2. The first terms of the series are
24 (2In2)(x — 1) + (In®2)(w — 1)2 4 WDV 4

2(z—1)" In* 2
b, 37, %
9.3.28

a. Note that f(2) = 100, f/(2) = 1001n10, f”(2) = 1001n? 10, f’(2) = 1001n® 10. The first terms of the
series are 100 + 100(In 10)(z — 2) 4 50(In* 10)(z — 2)® + %(ln?’ 10)(z —2)% +---.

oo 100(z—2)F In* 10
b > ko k! :

9.3.29 Because the Taylor series for In(1 + z) is « — I—; + 963—3 — % + -+, the first four terms of the Taylor

series for In(1 + z?) are 2% — %4 + % - % + - -+, obtained by substituting z? for x.

9.3.30 Because the Taylor series for sinx is © — z—? + é — ﬁ + -+, the first four terms of the Taylor series
3T T B T

for sin z? are 22 — “’3—? ‘”5—1,0 - ””7—1,4 + - -, obtained by substituting 22 for z.

9.3.31 Because the Taylor series for ﬁ =14+xz+2>+23+---, the first four terms of the Taylor series for

171296 are 1+ 2z + 422 + 823 4 - - - obtained by substituting 2z for z.

9.3.32 Because the Taylor series for In(1 + z) is @ — 2%/2 + 23/3 — 2 /4 + - - -, the first four terms of the
Taylor series for 2z — 222 + 823/3 — 42* + - .- obtained by substituting 2z for z.

9.3.33 The Taylor series for e* — 1 is the Taylor series for e*, less the constant term of 1, so it is =z + ‘"”2—2 +

% + % + -+ . Thus, the first four terms of the Taylor series for % are 1+ 57 + g—? + Z—? + - -+, obtained by
dividing the terms of the first series by x.

9.3.34 Because the Taylor series for coszx is 1 — “"—; + % — %(; + - -+, the first four terms of the Taylor series
for cosx® are 1 — fg—? + ””4—1!2 - %8 + - -, obtained by substituting 2 for .
9.3.35 Because the Taylor series for (1 +z)7'is 1 — 2 + 2% — 2% + - - -, if we substitute 2 for x, we obtain
1—at+a8 -2+
9.3.36 The Taylor series for tan™ 'z is « — % + x—; — "”—77 — -... Thus, the Taylor series for tan™!z? is
% — %6 + L;) — $ — .-+ and, multiplying by z, the Taylor series for ztan™! 22 is % — ’”3—7 + “”5: — 7‘—;5 —
9.3.376 ThewTaylo11“4series for sinhz is  + "’”—; + % + ﬁ + ---. Thus, the Taylor series for sinhz? is
2% + % t 150 T 5010 T - obtained by substituting z? for .
9.3.38 The Taylor series for coshz is 1 + ””—22 + g—z + %60 + ---. Thus, the Taylor series for cosh3z is
1+ % + 8;2”4 + 7?336 + -+ -, obtained by substituting 3« for z.
9.3.39
. . . - - - - —2)(=3 - —2)(=3)(—4
a. Tie binomial coefficients are (02) =1, ( 12) = 1—,2 = -2, (22) = { )2(, ) = 3, (32) = { )(3!)( ) =

Thus the first four terms of the series are 1 — 2z + 3x2 — 423 + - - -.

b.1-2-0.1+43-0.01 —4-0.001 =0.826
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9.3.40
a. The binomial coefficients are (1(/)2) =1, (1{2) = 1%,2 = %, (lf) = W = *é, (142) =
—(1/2)(_1?{!2)(_3/2) = i so the first four terms of the series are 1 4+ 1z — 22% + La® + ...
b. 1+4-.06 — 3 -.06% + 55 - .06% ~ 1.030
9.3.41
a. The binomial coefficients are (164) = 1, (1{4) = # = %, (1é4) = W = —33—27 (144) =
W,)M = 123, so the first four terms of the series are 1+ o — 2% + ;Lca® + .

b. Substitute x = 0.12 to get approximately 1.029.

9.3.42

a. The binomial coefficients are (53) =1, (713) = -3, (73) = (_3)2(,_4) = 6, (73) = % = —10,

2 T
so the first four terms of the series are 1 — 3z + 622 — 1023 + - - -.

b. Substitute z = 0.1 to get 0.750.

9.3.43
a. The binomial coefficients are (72/%) = 1, (7%/%) = -2, (7%%) = (2BEE) _ 50 (=2/3)
(72/3)(72{3)(78/3) = —3—27 so the first four terms of the series are 1 — %x + gxz — g—?x + -

b. Substitute x = 0.18 to get 0.89512.

9.3.44
a. The binomial coefficients are (2(/)3) =1, (2{3) =2 (2é3) = 7(2/3);71/3) = f%, (243) = —(2/3)(71:,{!3)(74/3) =
%, so the first four terms of the series are 1+ 52 — %xz + %x?’ + e
b. Substitute x = 0.02 to get ~ 1.013289284.
9.3.45 V1422 =1+ % - % + % —---. By the Ratio Test, the radius of convergence is 1. At the endpoints,

the series obtained are convergent by the Alternating Series Test. Thus, the interval of convergence is [—1, 1].

9.3.46 Vi+z=2\/14+z/4=2+2— g—i + ;—;2 + - --. The interval of convergence is (—4,4].

9.3.47 /09— 92 =3y1—2=3— 32— 32% — 24% — ... The interval of convergence is [—1, 1].

9.3.48 /1 —4xr =1 — 2x — 222 — 423 — - - | obtained by substituting —4z for x in the original series. The
interval of convergence of [—1/4,1/4).

9.3.49 Va4 2?2 = ay/1+ i—i =a+ % — % + % — ---. The series converges when 2—2 is less than 1

in magnitude, so the radius of convergence is a. The series given by the endpoints is convergent by the
Alternating Series Test, so the interval of convergence is [—a, a.

9.3.50 V4 — 1622 = 2,/1 — (22)% = 2 — 42? — 42* — 82° — - - .. Because 2z was substituted for  to produce
this series, this series converges when —1 < 2z < 1, or —% <z < % Because only even powers of z appear in

the series, the series at x = —% and x = % are identical, and are convergent. Thus the interval of convergence
is -1, 1],

272
9.3.51 (1+4z) 2 =1-2(4x) +3(4x)® — 4(4x)3 +--- = 1 — 8z + 4822 — 2562 + - - -.
9.3.52 m =(1—4x) 2 =1-2(—4x) + 3(—4x)? — 4(—4x)3 + - -+ = 1 + 8z + 4822 + 25623.

Copyright (©) 2015 Pearson Education, Inc.



94 Chapter 9. Power Series

9.3.53 (rmyr = (4+2%) 72 = (L + (2?/4))7% = %(1—2~%+3-f—6—4~”g—z+~-> =L - La?+

16 ~ 32
3 4 1 64 ..
2567 6L +

9.3.54 Note that 22 — 4z +5=1+(r—2)%,s0 (1+(x—-2))2=1-2(z—2)2+3(z—2)* —4(z —2)0 +- - ..

2

2 3
SR ICORIC O ICTIERs

9.3.56 (1+42%)72=(1+(22)?)"2=1-2(22)% + 3(22)* — 4(22)5 +--- =1 — 822 + 48x* — 2562° + - - - .

9.3.55 3+4z) =1 (1+4)"

9.3.57 The interval of convergence for the Taylor series for f(z) = sinz is (—o0,00). The remainder is

(n+1) (., . .
R, (z) = f(nﬂ)(f) 2"+ for some c. Because f("+t1)(z) is +sinz or +cosx, we have

: . 1 n
lim |R,(z)| < lim 71),|x =0

for any x.

9.3.58 The interval of convergence for the Taylor series for f(x) = cos2z is (—o00,00). The remainder is

(n+1)
R.(z) = f(n+1)(!c) 2"t for some c. The nth derivative of cos2x is 2" times either +sinax or & cosx, so that

f 1) is bounded by 2"*! in magnitude. Thus lim |R,(z)| < lim 2 }x"“’ = lim (2‘1‘)n+,1 = 0 for
n—oo n=soo (M+1)! n—oo (ntL)!
any .

9.3.59 The interval of convergence for the Taylor series for e™* is (—oo,00). The remainder is R, (z) =
(—1)"+le—e

CESY) 2™ *! for some c. Thus nh_}rr;o |R,,(z)] = 0 for any x.

9.3.60 The interval of convergence for the Taylor series for f(z) = cosz is (—00,00). The remainder is

R,(7) = %(x — 7m/2)"*! for some c. Because f"*1(x) is & cosx or 4 sinx, we have

lim |R,(z)| < lim %M(z—n/z)"“\ =0

=00 n—oo (n +
for any .
9.3.61
a. False. Not all of its derivatives are defined at zero - in fact, none of them are.

b. True. The derivatives of cscx involve positive powers of cscx and cot z, both of which are defined at
/2, so that cscz has continuous derivatives at 7/2.

c. False. For example, the Taylor series for f(z?) doesn’t converge at & = 1.9, because the Taylor series
for f(x) doesn’t converge at 1.9% = 3.61.

d. False. The Taylor series centered at 1 involves derivatives of f evaluated at 1, not at 0.

e. True. The follows because the Taylor series must itself be an even function.

9.3.62
a. The relevant Taylor series are: cos2z = 1—222+ 22* — Lab+. .. and 2sinz = 22— f23 + %:ﬁ —
Thus, the first four terms of the resulting series are cos 2z + 2sinz = 1 + 2z — 222 — %xg + 5:04 + -

b. Because each series converges (absolutely) on (—oo, 00), so does their sum. The radius of convergence
is oo.
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9.3.63

a. The relevant Taylor series are: e” = 1+x+ %T +20 4 ; 4242y

. 4 cande ® =1-— x+?_§+%_
+ %—? +---. Thus the first four terms of the resulting series are 1

2(e””—l—e’gﬁ)—l—km+4!+6!+ .
b. Because each series converges (absolutely) on (—o0, 00), so does their sum. The radius of convergence
is oo.
9.3.64
a.

5 7
The first four terms of the Taylor series for sinz are = — % + 155 — =610 SO the first four terms for
4 6
sin z T
o are 1 — % -+ £ 120 ~ 5040°

b.

The radius of convergence is the same as that for sin z, namely oo
9.3.65

a. Use the binomial theorem. The binomial coefficients are ( 2/ ‘3)

-1 (—2/3) _ 2 (—2/3) _ (=2/3)(=5/3)
U 30\ 2 2!
=3, (_2/3) = (’2/3)(72,/3)(78/3) = —12 and then, substituting 2 for z, we obtain 1 — Zz% +
40 26 ’
+

b. From Theorem 9.6 the radius of convergence is determined from |x2‘ <1,s0itis 1
9.3.66

a. The first four terms of cosx are 1 — ﬁ +351

2 zt 2% o?
720, soﬁthe fligst f0}14r terms of cos x“ are 1 — 5+ 51— 7350
and thus the first four terms of z2 cos a?2 are x2 — L + ST —720.

b. The radius of convergence is co

9.3.67

a. From the binomial formula, the Taylor series for (1 — z)? is > (¥)(—1)*z*, so the Taylor series for
(1—2?)Pis > (¥)(—1)k22*. Here p = 1/2, and the binomial coefficients are (1/2)
(M2 = w 1

L (f ) =1

1 (1/2) _ 1/2
/ ) _ (1/2)(—1?{12)(—3/2) — % so that (
b. From Theorem 9.6 the radius of convergence is determined from |x2‘ <1,soitis 1

1.4 1.6
sT — 1Tt

10 27
9.3.68

a. Because b® = e®!*? the Taylor series is 1 + zInb + &

4 (xInb)? + & (zInb)® +

b. Because the series for e converges on (—oo,00), the radius of convergence for the series in part a is
00.

9.3.69
a. f(z) = (1+2%)~?; using the binomial series and substituting 2 for z we obtain 1—2z2+3z* — 425+

b. From Theorem 9.6 the radius of convergence is determined from |x2‘ <1,s0itis 1

9.3.70 Because f(36) = 6 and f'(z) = 12712 f(36) = &, f'(z) = —
3475/2 and f"(36) =

_ 1 73/2 f//(36) 8647 f’”(llf) _

) . G305 the first four terms of the Taylor series are 6 + 5 (z — 36) — gerzr(z — 36)% +
330531 (€ — 36)°. Evaluating at x = 39 we get 6.245008681.

9.3.71 Because f(64) = 4, and f'(z) = 2273, f'(64) = &, f"(z) = —2275/3, f"(64) = — 3¢, f"(x) =
3 *8/‘3, and f’”(64) = a3 = sgieges the first four terms of the Taylor series are 4 + j5(z — 64) —

To0531 (@ — 64)2 + g (¢ — 64)3. Evaluating at « = 60, we get 3.914870274.
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9.3.72 Because f(4) = % nd f(x) = ; —3/2, (4 = 16, (z) = 3 x5/2, 14 = %, " (x) =

7?%77/2, and f///(4) _ 10247 1 1

the first four terms of the Taylor series are & — (2 — 4) + oz (z — 4)? —
102723!(90 — 4)3. Evaluating at x = 3, we get 0.5766601563.

9.8.73 Because £(16) =2, and f'(a) = ko=, F(16) = . f(a) =~ 7%, F(10) = s, 1) -
2lp—11/4, and f”’(16) = 13475 the first four terms of the Taylor series are 24 g5 (2 — 16) — 551 (m 16)2 +

ﬁ( 16)3. Evaluating at z = 13, we get 1.898937225.

9.3.74 Evaluate the blnomlal coefficient ( ) (=1)(=2 )"k',(_l_kH) (—1) , so that the binomial expansion
for (1+z) s >0 (—1)Fz Substltutmg —x for z, we obtain (1 —z)~t = Y77 (—1)F(—z)k = 32, 2.

9.3.75 Evaluate the binomial coefficient (1/2) = W22 3’/2) (1/2=k+1) (1/2)(71/2),;'I'((372k)/2) =

(—1)k—12-k 1'3‘“;2!’“3) - (_1)k—12—k72k (12’& 2;'), 5= (- 1)k—121- Qk k(Qkk:12). This is the coefficient of z*

in the Taylor series for \/1+xz. Substituting 4z for z, the Taylor series becomes >, (—1)¥~121-2F .

LEF2Y (da)k = 3002 o (—1)F =12 (352 2) 2 If we can show that k divides (2~72), we will be done, for then the

. koo . 2k—2\ _ (2k—2 (2k—2)! 2k—2)! _ (2k—2)! k-2 (k—1) _
coeflicient of 2" will be an integer. But (k | ) — ( k_2) = 1),(k) ol ((k72)13€! = (kfl)!(k)fl)! — ((kfl)!zk(fl)li =
k(%;?,l!:l(ﬁ(_kljgf_w i ® (21];(}3)'1), = (2,5 12) and thus we have shown that k& divides (Zkk:f).

9.3.76 The two Taylor series are:

1 1

1 1 1 5
94+ —(2—81) — ——=(x—81)* + ——(z —81)> - ————
+ 5@ =8 — ey (v = 817+ s (0~ 87  Graan00:

Evaluating these Taylor series at n = 2,3,4 (after the quadratic, cubic, and quartic terms) we obtain the
erTors:

x —64) +

1 5
— 64)? —64)3 - —
6"+ 551oas * ~ 0" ~ 265135456 ¢

r—81)* ...

n \ 64 \ 81
2| 9.064 x107* | —8.297 x 104
3| —7.019x107° | —5.813 x 107
4 6.106 x 1076 | —4.550 x 10~

The errors using the Taylor series centered at 81 are consistently smaller.

9.3.77
a. The Maclaurin series for sinz is x — ,x + ,x — 1337 + .-+ . Squaring the first four terms yields
1 2
3 5 7
(ac — gw + gaz ﬁx )
2 2 1 1 1
a2 24 Il P B, DR B
R T (5' +3!3|)$ +< 2oq 2 3!5!)36
1 2 1
_ .2t L6 .8
R AR T T
b. The Maclaurin series for cosz is 1 — %1’2 + %x‘l — éxﬁ + éms — -+ . Substituting 2z for = in the
Maclaurin series for cosz and then computing (1 — cos 2x)/2, we obtain
1 2, 1 a1 6 1 8
(1= (=5 (22)" + 5 (22)" - a(%) )+ 5 (22)%)/2
2 4
= (222 —a5 — —18)/2
(207 = gt g5 3159” 0/
1 2 1
=22 — -2+ —2% - —a8

3 45 315

and the two are the same.
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c. If f(z) = sin®x, then f(0) = 0, f'(z) = sin2zx, so f/(0) = 0. f"(x) = 2cos2z, so f'(z) = 2,
f"(x) = —4sin2x, so f(0) = 0. Note that from this point £ (0) = 0if n is odd and £ (0) = +27~1
if n is even, with the signs alternating for every other even n. Thus, the series for sin? z is

222 /2 — 821 /4! + 3220 /6! — 1282% /8! 4 - - = 2% — §x4 + %xﬁ — 31—551;8 SR
9.3.78
a. The Maclaurin series for cosx is 1 — %xz + %x‘* — élmﬁ + éxs — -+, Squaring the first four terms yields
by L Ly
1 2
*1f:n2+§x4f£a:6

b. Substituting 2z for z in the Maclaurin series for cosz and then computing (1 + cos 2x)/2, we obtain

1 2 1 4 1 6
(1+1—§(2a:) +4!(2x) fa(n) )/2
2 4
=(2—222+ 2ot — —2%)/2
(2= 227 4 g0 = )/
1 2
:1—x2+§m4_£$6,

and the two are the same.

c. If f(x) = cos?x, then f(0) = 1. Also, f'(x) = —2coszsinz = —sin2x. So f/(0) = 0. f"(x) =
—2cos 2, so f7(0) = —2. f"(x) = 8sin2x, so f"(0) = 0. Note that from this point on, ™ (0) =0
if n is odd, and f(™(0) = 2"~ if n is even, with the signs alternating for every other even n. Thus,
the series for cos? z is

1 2
1 —22%/2 4+ 824 /4! — 3220 /6! + --- = 1—x2+§m4—4—5x6+--~ .
9.3.79 There are many solutions. For example, first find a series that has (—1,1) as an interval of conver-
gence, say 1~ = > .~ 2*. Then the series ﬁ =Y (%)k has (—2,2) as its interval of convergence.

Now shift the series up so that it is centered at 4. We have ZZ’;O (L;L)k, which has interval of convergence
(2,6).

1357 5
2.4.6.8 2.4.6.810°7 *
13574 _ 13579 5
9.3.81 55T 2468107 °
9.3.82

a. The Maclaurin series in question are

S L s 15
Slnx—x—ix —&—gx —
ex—1+x+la:2+lx3+~-~
B 2! 3! ’

so substituting the series for sinx for 2 in the series for ¢ (and considering only those terms that will
give us an exponent at most 3), we obtain ¥ = 1+ (z — g12%) + 22 + La® 4+ = 14z + 12?4+
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98 Chapter 9. Power Series

b. The Maclaurin series in question are

t iy 2y
anr =r+ -x —x
37 15

1 1
T __ 02 - .3 L
e f1+x+2!x +3!:c+ ,
so substituting the series for tanz for x in the series for ¢* (and considering only those terms that will
give us an exponent at most 3), we obtain e'™% = 1+ (z+ f2%) + a2 + J2° +- - = 1+z+ 12?4+

c. The Maclaurin series in question are

, 1, 1 4
smz—z—ix Jrazzz —

1 1
\/1+x2:1+§x27§z4+~~,

so substituting the series for sinz for x in the series for /1 + 22 (and considering only those terms

that will give us an exponent at most 4), we obtain \/1+sin*z = 1+ 2(z — H23)2 — tat + ... =

1.2 7.4, . ..
1+2x 51" + .

9.3.83 Use the Taylor series for cosx centered at 7/4: ?(1 —(z—7/4)— J(x—7/4)?+ L —m/4)3 +--).
The remainder after n terms (because the derivatives of cosz are bounded by 1 in magnitude) is | R, (z)| <

1
(1)1~ (4 9

Solving for |R,(x)| < 10~*, we obtain n = 3. Evaluating the first four terms (through n = 3) of the
series we get 0.7660427050. The true value is ~ 0.7660444431.

T 27r)"+1.

9.3.84 Use the Taylor series for sinz centered at m: —(z — m) + §(z — m)® — 35(# — 7)° + -+ . The
remainder after n terms (because the derivatives of sinz are bounded by 1 in magnitude) is |R,(x)| <
1 n+1

Solving for |R,(x)| < 107%, we obtain n = 2. Evaluating the first term of the series gives 0.06283185307.
The true value is ~ 0.06279051953.

9.3.85 Use the Taylor series for f(z) = 2'/3 centered at 64: 4+ % (z — 64) — 555 (z — 64)> + - - -. Because

we wish to evaluate this series at x = 83, |R,,(z)| = M(% — 64)"t1. We compute that |1 (c)| =

(n+1)!
m%, which is maximized at ¢ = 64. Thus

2.5---(3n—1)

| < n+1
— 3n+164(3n+2)/3(n + 1)[

| R ()

Solving for |R,(x)| < 1074, we obtain n = 5. Evaluating the terms of the series through n = 5 gives
4.362122553. The true value is ~ 4.362070671.

9.3.86 Use the Taylor series for f(z) = a71/* centered at 16: 3+ — 7o (2 — 16) + 1oags (z — 16)2 + -+ -.

(nt1)
Because we wish to evaluate this series at z = 17, |R,(z)| = m(l? —16)"T1. We compute that

(n+1)!
|f D (c)] = % which is maximized at ¢ = 16. Thus

15 (dn+1) .

|Rn(.2?)‘ < 4n+116(4n+5)/4(n + 1)|

Solving for |R,(x)| < 1074, we obtain n = 2. Evaluating the terms of the series through n = 2 gives
0.4924926758. The true value is ~ 0.4924790605.
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9.3.87

a. Use the Taylor series for (125 + x)/3 centered at = 0. Using the first four terms and evaluating at
x = 3 gives a result (5.03968) accurate to within 10~%.

b. Use the Taylor series for z'/% centered at x = 125. Note that this gives the identical Taylor series
except that the exponential terms are (x — 125)™ rather than z™. Thus we need terms up through
(r —125)3, just as before, evaluated at x = 128, and we obtain the identical result.

c. Because the two Taylor series are the same except for the shifting, the results are equivalent.

9.3.88 Suppose that f is differentiable.
Consider the remainder after the zeroth term of the Taylor series. Taylor’s Theorem says that

!/
Ry(z) = J(e) (r —a)'  for some ¢ between x and a,

but f(x) = f(a) + Ro(x), which gives f(z) = f(a) + f'(¢)(z — a). Rearranging, we obtain f/(c) = W
for some ¢ between x and a, which is the conclusion of the Mean Value Theorem.

9.3.89 Consider the remainder after the first term of the Taylor series. Taylor’s Theorem indicates that
Ri(z) = fT(C)(x —a)? for some ¢ between x and a, so that f(z) = f(a) + f'(a)(z — a) + fT(C)(x —a)%
But f’(a) = 0, so that for every z in an interval containing a, there is a ¢ between x and a such that

b. If f”(x) < 0 on the interval containing a, then for every x in that interval, we have f(z) = f(a) +

f/lz(c) (x — a)? for some ¢ between x and a. But f”(¢) < 0 and (z — a)? > 0, so that f(z) < f(a) and a

is a local maximum.

9.3.90

a. To show that f/(0) = 0, we compute the limits of the left and right difference quotients and show that
they are both zero:

2 2 2 2

) e—l/x —0 ] e—1/z ) e—l/x -0 ) e—l/ac
lim — = lim and lim — = lim
r—0t x z—0t €T r—0— xT z—0— X

For the limit from the right, use the substitution z = iy; then y = 2 and the limit becomes

im e~V /5= lim Y =
VY= e =0

because exponentials dominate power functions. Similarly, for the limit from the left, use the substi-

tution z = ﬁ; then again y = 2 and the limit becomes

oy o VY

Since the left and right limits are both zero, it follows that f is differentiable at = 0, and its derivative
is zero.

b. Because f*)(0) = 0, the Taylor series centered at 0 has only one term:f(x) = f(0) = 0, so the Taylor
series is zero.

c. It does not converge to f(x) because f(z) # 0 for all  # 0.
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100 Chapter 9. Power Series

9.4 Working with Taylor Series

9.4.1 Replace f and g by their Taylor series centered at a, and evaluate the limit.

9.4.2 Integrate the Taylor series for f(x) centered at a, and evaluate it at the endpoints.

9.4.3 Substitute —0.6 for = in the Taylor series for e” centered at 0. Note that this series is an alternating

series, so the error can easily be estimated by looking at the magnitude of the first neglected term.

9.4.4 Take the Taylor series for sin_l(x) centered at 0 and evaluate it at x = 1, then multiply the result by

2.
9.4.5 The series is f/(z) = Y p, kegaz® ™1, which converges for |z| < b.

9.4.6 It must have derivatives of all orders on some interval containing a.

9.4.7 Because e* = 1 + & + 22/2! + 23 /3! 4+ -- -, we have &=L =1+ z/2! 4+ - s0 lim,_,q “=L = 1.

T z

3 5 7 —1 2
4. ecause tan” " r=xr— %+ +=— % +---,we have —5— = —/— + &+ — -+
9.4.8 B t 1 x3+ai5 w7+ , h tanxza: 31+x5
: tan " lz—z —1
SO llmLAOf:?
2 3 4 5 —r—In(1— 2
9.4.9Because—1n(1—x):x+%+%+%+%+-~-,wehave%:%—i—%—i—%—&—
. —z—In(l—-z) _ 1
hmr—>0x72*§~
. 3 5 : 2 4 . .
9.4.10 Because51n2x:2x—%+%+~-~,Wehave%z?—%—i—%—k--,sohmwﬁosmmh:

9.4.11 We compute that

et —e ? 1 14 +x2+x3+ 1 +w2 x3+
— — € J— J— “e . — —x R — N
T T 2 6 2 6
1 a3 22
= Z (2 Yo =242 4.
. ( T+ 3 + ) + 3 +
. e —e * .
so the limit of —— as  — 0 is 2.
T
9.4.12 Because —e® = —1—x—22/2—23/6+-- -, we have Hszem =—3—&+ -, s0lim, fogem
9.4.13 We compute that
2 cos 2z — 2 + 42 1 (2z)%  (22)*  (22)° 9
= — (20— - ) =244
924 227 (( 2 21 o )Tt
L [(2z)* (22)° 2 4a?
— _ 4+ )= - = 4 ...
2w 12 360 3 45
2cos 2z — 2 + 42
so the limit of cosar A asx — 01is —.
274 3

1 int
9.4.14 We substitute t = — and find tlir% % We compute that
X —

Lm_l t £+ _1 ﬁ+
t ot 6 N 6

1
so the limit of x sin <) as ¢ — oo is 1.
T
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9.4.15 We have In(1 + z) =z — $2? + 2% — 12" + .. so that

In(l+z)—x+2?/2 2*/3—az*/4+4--- _1_£+
a3 B a3 3 4
_ 2
so that lim Il +z)—z+a’/2 = 1
x—0 .’1,‘3 3
9.4.16 The Taylor series for In(x — 3) centered at z =4 is
(x—4)— =(z—4)% +
We compute that
e 2 — 16 7 (x —4)(x+4)
In(z—-3)  (z—4)—3@@—-42+ (z—4)—3@x—-42+ -
_ r+4
Col-ie-4+
x? —
so the limit of —— asz — 4 is 8.
In(x — 3)
9.4.17 We compute that
3tan~'z — 3z + 2? 33 xs z’ 3
1 33:5 327 3 3a?
= (=& 22 L) =222 4
x> \ 5 7 5 7
-1, _ 3
so the limit of stan’ o 5 Sv e as x — 0 is g
x

9.4.18 The Taylor series for /1 + x centered at 0 is

1 1 1
Vidr=14 -z — —2? + —23

2" 8 6" "
We compute that
vi+zr—1—(x/2 1 z oz 23 T
(2/2) = —S|(|1+z——=+—=+ -1-=
422 42 2 8 16 2
B 1 x2 " x5 n 1 + T "
o 4a? 8 16 32 64
V1 —-1- 2 1
so the limit of T (z/2) asz — 0is ——
422 32
9.4.19 The Taylor series for sin 2z centered at 0 is
. 1 1 1 7 4 4 8
bln2x:2x—§(2x) 5'(233) 7|( x)' - —2x—§a: —|—Bx —ﬁx +-
Thus
122 — 82° — 6sin2x 12— 8z% — (120 — 82 + 8a® — {&a7 + - .-
xd - xd
8 16 ,
= —— —_—xrT — . ,
5 105
. 122 — 8% — 6sin 2z 8
so lim - = ——.
x—0 x® 5
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9.4.20 The Taylor series for Inx centered at 1 is

lnx:(l‘_l)—%(l‘—l)Q—l—"'

We compute that
z—1 z—1 1

Inx _(g;_1)_%(x_1)2+..._1_%(x_1)+,_.

r—1

so the limit of as z — 11is 1.

9.4.21 The Taylor series for In(x — 1) centered at 2 is
1 2
ln(xfl):(fo)fi(fo) +ee

We compute that
r—2 r—2 1

In(z—-1) (z-2)—3(@@-22+- 1-%(z—-2)+--

-2
so the limit of _res asx — 21is 1.

In(x — 1)
9.4.22 Because /% = 1+ (1/x) 4+ 1/(22%) 4 - - -, we have
z(eT —1)=1+1/2z) +---.
Thus, lim, 00 2(e'/* —1) = 1.

9.4.23 Computing Taylor series centers at 0 gives

1 1 4
e =1-20+ —(—22)° 4+ (22> 4+ =1—-22 422> — —23 ..
2! 3! 3
1 x\2 1 x\3 z 1 1
—e/2 _q_ % f<_,) f<_f> o=l =SS 3
‘ 2 Ta\Ta) TalTy) SRR TR
Thus
e —4e™/2 43 1-2w+22% -0+ — (424327 — Had 4 )43
222 B 222
okt
N 222
—§—§x+
48
ol e —4e7®/2 43 3
boxli}%) 21‘2 _4
9.4.24 The Taylor series for (1 — 2x)~'/2 centered at 0 is
322 a3
(172x)71/2:1+1’+i+i+~'.
2 2
We compute that
(1—2z)"1/2 —¢® 1 14 +3z2+5z3+ 14 +z2+x3+
= _ x _ _ cen — x J— JR— PN
8x2 812 2 2 2 6
1 2+7x3+ B +7IL'+
82 3 S8 24

(1—2z)" /2 —¢"
82

1
so the limit of asx — 0 1is 3
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9.4.25
a. f/(CE) = %(ZZO 0 T]T) Zk 1 T Zk 0 % = (33)
b. f'(z) = e* as well.
c. The series converges on (—o0, 00).

9.4.26

2k—1 oo 2k—1 k $2k,+1

a. f'(x) = %(Zio(_l)kéi’;!) = Zil(_l)k@k) m(%)! = k:l(_l)k% = —EZio(—l) [eEsR

b. f(z) = —sinax.

c. The series converges on (—o00, 00), because the series for cosz does.
9.4.27
a. f'(x) = £l + ) = L0 (DM pab) = 02 ()RR = 0 (<)t

b. This is the power series for T

¢. The Taylor series for In(1 + x) converges on (—1, 1), as does the Taylor series for ﬁ

9.4.28

k Z4k+2 4k+1 )k:$4k+1

o f(2) = (sine?) = (00~ 1)F ) = Sito(—DF 22k + 1)y = 257507 (-1
QIZk o(

b. This is the power series for 2z cos z*.

@R

) k)"

c. Because the Taylor series for sinz? converges everywhere, the Taylor series for 2z cos 22 does as well.
9.4.29

a.

d d > d & = mk ! 2. (—2z)F

/ —2z k 1
= = — —2 _— =2 —_—.
Fa) =25 = 2 )= Q2 D> (-2 1)1 D
k=0 k=0 k=1 k=0

b. This is the Taylor series for —2e~2%.

2z

c. Because the Taylor series for e™** converges on (—o0,00), so does this one.

9.4.30

a. We have

L d 1\ d [« d G -
f(x)_d:v<1—x>_dm(kz_oxk>_dx<1+kz_:lzk> kakl kZQk—FI)JJk

b. From the formula for (1 + z)? in Table 9.5, we see that the Taylor series for ﬁ is

Z (' 2—k+1)(_m)kzz(_1)k(_1) (k+1 S (ke
k=0 ’ k=0 k=0

so that f/(z) is simply = )2 as expected.

Copyright (©) 2015 Pearson Education, Inc.



104 Chapter 9. Power Series

1

c. Since the Taylor series for = converges on (—1,1), so does the series for 1%1)2 Checking the

endpoints, we see that the series diverges at both endpoints by the Divergence test, so that the interval
of convergence for f'(x) is also (—1,1).
9.4.31

1

3 5
a. tan" r=x— % + % —- 80 %tan*1x2:1—x2+x4_gg6+..._

b. This is the series for 1%
“+x

c. Because the series for tan~!z has a radius of convergence of 1, this series does too. Checking the
endpoints shows that the interval of convergence is (—1,1).

9.4.32
a. —1n(1—1:):x+%2+%3+%+%—5+~-~,so Ll -a))=1+z+22+2°+ .
b. This is the series for ﬁ
c. The interval of convergence for 2 is (—1,1).

9.4.33

a. Because y(0) = 2, we have 0 = y/(0) — y(0) = 3/ (0) — 2 so that y'(0) = 2. Differentiating the equation
gives y”(0) = y/(0), so that y”(0) = 2. Successive derivatives also have the value 2 at 0, so the Taylor
series is 277 %

b. 2307, %k, = 2¢'.
9.4.34
a. Because y(0) = 0, we see that y'(0) = 8. Differentiating the equation gives y”(0) + 4y'(0) = 0, so

y"(0)+4-8=0, y”(0) = —4-8. Continuing, y""(0) +4-(—4-8) =0, so y"/(0) =4-4-8, and in general

y®)(0) = (—1)F+12 . 4% for k > 1, so the Taylor series is 2 Z:‘;l(—l)k*l%.

b, 23020 (—1)k+1 UL g1 et

9.4.35

a. y(0) = 2, so that y/(0) = 16. Differentiating, y"(t) — 3y'(t) = 0, so that y”(0) = 48, and in general

y*)(0) = 3y*=1)(0) = 3k~1 . 16. Thus the power series is 2 + 18 57>, (35!)16 =2+> 77, 3k;16tk.

3t)*
b 241050 BOT — 9 16(e3 1) = 16630 10,

9.4.36

a. y(0) = 2, so ¥/(0) = 12 + 9 = 21. Differentiating, y(™ (0) = 6y"~1(0) for n > 1, so that y(™(0) =
. k
6"~ !-21 for n > 1. Thus the power series is 2+ >~ 21 - 6’“_1% =2+ %Z;‘;l (6];) .

00 k
b2+ 535 (6;!) =24 5(eM —1) = Tef — 3.

9.4.37 The Taylor series for e~ is Z,;“;O(—l)k%k. Thus, the desired integral is f00.25 Zio(—l)k% dx =

0.25
2k+41 . . . . .
Zio:o(*l)km = Zﬁo(*l)km' Because this is an alternating series, to approximate it
0

to within 10™%, we must find n such that a,,; < 1074, or 4

1 1 -
S0 Zk:o(*l)km =1 155 ~0.245.

2n+3)(n<1kl)l-42“+3 < 10~%. This occurs for n =1,
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9.4.38 The Taylor series for sinz? is Z;io(—l)k%. Thus the desired integral is
00 o0 0.2 00
/0 2 - k42 o Z(fl)’“ k43 _ Z(fl)k 0.94k+3 .
2k;+1)! P (4k +3)(2k + 1), P (4k + 3)(2k + 1)!

Because this is an alternating series, to approximate it to within 10*4 we must find n such that a,, 1 < 1074,

or % < 10~*. This occurs first for n = 0, so we obtain 2 T 1, ~ 2.67 x 1073.
9.4.39 The Taylor series for cos2z? is 2;10(—1)’“(2&:2)? > heo(— )’“{2 ;k Note that cosz is an even

function, so we compute the integral from 0 to 0.35 and double it:

0.35 oo l,4k oo 4k pAk+1 0.35 oo 41@(0'35)4“1
/ ok =2 <Z(_1)k (4k + 1)(2k)!> L7 (Z(_l)k (4k + 1)(2k)!> '

k=0 k=0

—4

Because this is an alternating series, to approximate it to within % -107%, we must find n such that a, 11 <

% -1074, or % < % -10~*. This occurs first for n = 1, and we have 2 (.35 — 4'(2'%)5) ~ 0.696.

9.4.40 The Taylor series for (1 + x%)1/2is 3°77 (11/3) 2% so the desired integral is

/02 > (1]{;2>x4kdx:]§)4k‘1+1(1]/§2>m4k+1 kf: 1 (1/2>(0.2)4k+1.

This is an alternating series because the binomial coefficients alternate in sign, so to approximate it to

within 10™#, we must find n such that a,,.; < 107%, or (iﬁ) (0.2)*"+5| < 10~%. This happens first for

0

An+5
n = 0, so the approximation is (1/2) 0.2=0.2.

9.4.41 tan’lx:x—x3/3+x5/5—x7/7+x9/9— -+, 80 ftan’lxda::f(x—x3/3+x5/5—x7/7+x9/9—
q 2 - 4 -
-~)dx:C+ﬁf%+%f%+ . Thus, 035 nlrdr = (0“55) 7(0'525) Jr(o':fé’) (05365) +---. Note
(035)

that this series is alternating, and < 10 4 so we add the ﬁrst two terms to approximate the integral

to the desired accuracy. Calculating glves appr0x1mately 0.060.

9.4.42 In(1 + 2?) = z* — %4 + %6 - %8 + -, s0 [In(l + 2?)dx = f(x2 2 4 % - % + - )de =
5 3 9

C+ % ~ Tt % - % + % +---. Thus, f00'4 In(1 + 2?) doe = (O;) - (Ofé) (Oﬁ) (Oéz) + ---. Because

(0;)7 < 107*, we add the first two terms to approximate the integral to the desired accuracy. Calculating

gives approximately 0.020.

9.4.43 The Taylor series for (1+2%)~1/2 is Y52 (7}/?)a5%, so the desired integral is foo‘s S, (1) a0 da
0.5

_ \"© 1 (—1/2\,.6k+1
=2 k=0 6k+1( Ko .
coefficients alternate in sign, so to approximate it to within 10~#, we must find n such that a, y; < 107%, or

6n1+7 (:Li/f) (0.5)6n*7| < 10=%. This occurs first for n = 1, so we have (_B/Z)O.E) + %(_11/2) (0.5)7 ~ 0.499.

=> 1o ﬁ (_}C/Q) (0.5)85*1. This is an alternating series because the binomial

9.4.44 The Taylor series for M centered at 0 is Z,;“;O(—l)kkt—;. The desired integral is thus

0.2
f00<2 S (1 )kktjl dt = Y0 o(— )k(é’%; = Z/iio(_l)k(?ki):;‘ This is an alternating series, so to
0

0.2 n+2

approximate it to within 10™4, we must find n such that a,; < 1074, or ﬁ < 107*. This occurs first

for n = 3, so we have Zizo(—l)k% ~ 0.191.
9.4.45 Use the Taylor series for e* at 0: 1+ % + 27? + %—?
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9.4.46 Use the Taylor series for e” at 0: 1+ 1/2 + (1/2)2 + (1/2)3 =1+ % + % + ﬁ
9.4.47 Use the Taylor series for cosz at 0: 1 — 22—7 + % — %T
9.4.48 Use the Taylor series for sinz at 0: 1 — % + 155, — 17—7 =1- % + é — %

9.4.49 Use the Taylor series for In(1 + z) evaluated at # =1/2: § — -1+ 3 1 — 1 1.

9.4.50 Use the Taylor series for tan™' x evaluated at 1/2: § — 4. L+ 1. — 1.1
o ak o ak _
9.4.51 The Taylor series for f centered at 0 is 71+Z;:0 L — Z’“:ml o= 3 ””2—,1 = > (kkal)‘

Evaluating both sides at =1, we have e — 1 =37, ﬁ

R D Sy, - $ b=t $o z*
z - z - k=1 k! k=0 (k+1)!"

9.4.52 The Taylor series for f centered at 0 is
Differentiating, the Taylor series for f'(x) is f'(z) = % =S, % Evaluating both sides

2 k—1
: 241 _ k-2
at 2 gives < =57 k=1 (hFT)T

9.4.53 The Maclaurin series for In(1+ ) is  — 222+ 128 — fat+. .. = 307 (—1)F 1 2" By the Ratio Test,
lim %+ = lim ﬁ’ = |z, so the radius of convergence is 1. The series diverges at —1 and converges
k—oo | @k koo | 2F(k+1)

at 1, so the interval of convergence is (—1,1]. Evaluating at 1 givesIn2 = >"77 | (=1)*14 =1-14+1—1+...

9.4.54 The Taylor series for In(1 + z) at 0 is  — 32 4+ $2° — Ja* + -+ = Z,:il(—l)k"’l%. By the

: . Q41 _ 2FtlE
Ratio Test, kli)ngo | = khm syl
at —1 and converges at 1, so the interval of convergence is (—1,1]. Evaluate both sides at —1/2 to get

o0 — k o0 oo
F(F) =In(1/2) = —In2 =30 (~ R0 = 5 L g0 that In2 = 3007 | e

= |z|, so the radius of convergence is 1. The series diverges

T iEk
9.4.55 Zk oT:ZI?;o(i) :1—1 :ﬁ'

00 zk 0o —x
9.4.56 > (—1)FE =37 () = 1+1§ =52

2k 2\ k
4

9.4.58 307 2kt — 2370 (20?)F = .

9.4.59 In(1+2) = — Zzoil(—l)k%, soln(l—2)=->72, %, and finally —In(1 —z) = 72 | £

( 1)k' k+1

00 — 0o e\ k+1 00 —z\k T
9.4.60 Zk:O 413c = _4Zk:0 (T) =—4(-1+ Zk:O (T) )=4- ﬁ =% 4% = ﬁTgp

9.4.61

k=1 k=1 k=1
oo k 0 k
1 1 d
_ 2 - k k—lz 2 - ok
"L () # =k ()

9.4.62 By Exercise 53, >~ % =—In(l—x),s0 Y 15 => 10, (wi)k = —In(1 — 2?).
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9.4.63 Y00, Kbl _ agheo h(koLalE o d” (Zk ) %)
=a? dcf2 (ZI?;Z (%)k> a? dcfz (% : 1j§> = ﬁ% (gfzz) = a? (z:g)3 = (;Eg;'
9.4.64 3,7 2k(k = =2k 21@ T~ ke & —$Zk T e 1% z,=—zln(l-z)+In(l-z)+z=
x4+ (1—2)In(l —2).
9.4.65
a. False. This is because ﬁ is not continuous at 1, which is in the interval of integration.

b. False. The Ratio Test shows that the radius of convergence for the Taylor series for tan~! z centered
at 01is 1.

c. True. Y 07, %]: = e”. Substitute z = In 2.
9.4.66 The Taylor series for e®* centered at 0 is

) | oy

<<1+ax+(a;)2+ (a?Ser) 1)

(ax)?  (az)? a? a’x
axr+-—F—+-——+ | =a+—F + + e

e =1+ax+

We compute that
e —1

T

|l 8|~

2 6
ar __
as ¢ — 0 1is a.

so the limit of

9.4.67 The Taylor series for sinx centered at 0 is

x> b
Slnl‘—l‘—g—‘rm—'“.
We compute that
sinar  ax — (a§)3 (‘g()f -
sinbr  pp— (bﬂé)B + (’32)5 .
a- a® 3: a1236 .
- b—b3§2+bf§<f

sinax a
so the limit of asz — 01is —.
sin bx b

9.4.68 The Taylor series for sin ax centered at 0 is

(az)® | (ax)®

smaxza:z:—T—l—W—-“
and the Taylor series for tan~! az centered at 0 is
- (az)®  (ax)®
t 1 — = L
an - ar = ar 3 + 5
We compute that
: tan—1 1 3 5 3 5
sinar —tan""ax 1 ax_(a;v) +(ax) N ax_(ax) +(aw) o
ba3 ba3 6 120 3 5
1 3 23(ax)® 3 23d°
() B\ m
ba3 6 120 60 1200
3 —t -1 3
so the limit of 2% b:vjn O sz = 0 s %
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9.4.69 Compute instead the limit of the log of this expression, hm M. If the Taylor expansion of
In(sinz/z) is Y pocka®, then lim M = lim Zk 0 CRTFT 2 = lim coz=2 + c1z7! + c9, because the
x—0 z—0 x—0

higher-order terms have positive powers of & and thus approach zero as x does. So compute the terms
of the Taylor series of In (S““”) up through the quadratic term. The relevant Taylor series are: % =
1— 22?4 st — - In(1+2) =2 — 12% + £2% — - and we substitute the Taylor series for S22 — 1 for x
in the Taylor series for In(1+ x). Because the lowest power of  in the first Taylor series is 2, it follows that
only the linear term in the series for In(1 4 z) will give any powers of that are at most quadratic. The

In(sinz/z) 1
6

only term that results is —gz Thus ¢y = ¢; = 0 in the above, and ¢y = so that hm T

6’
and thus lim (%)1/1 =e /6,
x—0

9.4.70 We can find the Taylor series for In(xz + /1 + 22) by substituting into In(1 + ¢) the Taylor series
for # + Va2 +1 — 1. The Taylor series in question are: = + Vz2+1—1 = = + %xQ — éx‘l + %xf’ —

cIn(1+t) =t — 3624+ 23 — Lt 4 L5 — 146 4 147 — . Substituting the former into the latter and
simplifying (not a simple task!), we obtain In(z ++v2? + 1) =z — %x?’ + %xs — 1—‘;’2967 +.... Using the second
definition, start with the Taylor series for (1 + t2)’1/2, which is 1 — %tQ + %t4 - 1—56156 + ..., and integrate it:

T 142 344 56 1,3 3 45 7 _ 1.3 3 .5 5 .7
Jo =32+ 3¢t — 246 4 Ndt=(t— g3+ 5t° - 3517 +...)| =2 — b+ Fab — S5a" + .

9.4.71 The Taylor series we need are cosz =1 — %xz + ix‘* +...,et=1+t¢ + 3 A %t?’ + %t‘l +.... We
are looking for powers of 23 and z* that occur when the first series is substltuted for t in the second series.
Clearly there will be no odd powers of x, because cosz has only even powers. Thus the coefficient of 23 is
zero, so that f(*)(0) = 0. The coefficient of 2* comes from the expansion of 1 — 322 + Lz* in each term of
e?. Higher powers of z clearly cannot contribute to the coefficient of 2. Thus consider (1 — %xQ + iw‘l)k .

The term f%xz generates (’2“) terms of value %;LA for k£ > 2, while the other term generates k terms of value

x* for k > 1. These terms all have to be divided by the k! appearing in the series for e’. So the total

Coefﬁment(’fz IS 57 > pe 11<r+ 12 2( )3 = 21 e 1 1)'+ DI = z)lv:ﬁzz):o%*%zz):o%v
= e+ te= ¢ Thus fW(0) = & -4l = de.

9.4.72 The Taylor series for (14+x)"/3is (14+2) /3 =1— 1o+ 222 — B+ 32at — . so we want the
coefficients of #® and 2* in (2% +1) (1 1:3 + 2:10 - é—%x?’ + 243 ) The coefficient of a? is % — ;—‘11 = g},
and the coefficient of z* is 2 4+ 3% = 2. Thus f@0) =62 =52 and fW(0) =24 % = 12
xT
9.4.73 The Taylor series for sin ¢? is sint? = 2 — %tﬁ + étlo —..., so that fom sint? dt = % 713,t7 +. =
0
ta® — 2" 4 .. Thus f8(0) = %’ =2 and f®(0) = 0.
x
9.4.74 ;L =1—t* + 5+ .. sothat [ gdt =t — 15+ 5%+ ...| = — 1a°+.... so that both
0

f(3)(0) and f™)(0) are zero.

9.4.75 Consider the series > ;- 2% = %-. Differentiating both sides gives (1790 = > ok =
Ly e o ka® so that e = > e ka*. Evaluate both sides at = 1/2 to see that the sum of the se-

ries is % = 2. Thus the expected number of tosses is 2.
9.4.76
1 2k _ 15~oo (25\k 1 1 _ 6
a. Y 6 (*> =5 2k=0 (%) =6 1-25/36  11°

k _

b. Consider the series Y ;- x —£. Differentiating both sides glves =z = =3k 2#~1 Evaluating

at x = 5/6 and multiplying the result by 1/6, we get 1 5" m = 6.
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9.4.77

a. We look first for a Taylor series for (1 — k?sin? 9)*1/2. Because (1 — k222)"1/2 = (1 — (kz)?)~V/?% =

Yco (_11./2) (kx)?, and sin = 0 — 793 + 5 165 — ... substituting the second series into the first gives
1 _ 202 4 (—1p2 4 Y314 4 2 114, 516\ g6

\/m—l-i—sz (=K% + k)9 (& k—zk + ZkS) 6% +
(Gaok? + aok" — 16K° + 55K°) 0° +
Integratlng with respect to # and evaluating at 7/2 (the value of the antiderivative is 0 at 0) gives 17+
LR+ gl (— 57 + SR8 w0 gy (R — LK 4 SRO) w7 g (—ghok? + kY — A 4+ B8 n9
Evaluating these terms for k& = 0.1 gives F(0.1) &~ 1.574749680. (The true value is approximately
1.574745562.)

b. The terms above, with coefficients of k™ converted to decimal approximations, is 1.5707 + .3918 - k2 +
3597 - k* —.9682- k6 +1.7689 - k®. The coefficients are all less than 2 and do not appear to be increasing
very much if at all, so if we want the result to be accurate to within 10~3 we should probably take n
such that £" < % x 1073 = .0005, so n = 4 for this value of k.

c. By the above analysis, we would need a larger n because 0.2" > 0.1" for a given value of n.

9.4.78

2k 2 4

a. Smt =2 o= 1)* (Z:Jrl)! =l-G5+5 -

T gin 2k 22k+1
b. [y Stdt =32 [ (- (2124—1 = io(-D* ROk
c. This is an alternating series, so we want n such that a,,; < 1073, % < 1073 (resp.
2n+3 _ . .
m < 1073), which gives n = 1 (resp. n = 2). Thus Si(0. 5) ~ 05— 85 &~ 0.4930555556,

Si(1.0) 2 1 — by + = & 0.9461111111.
9.4.79
a. By the Fundamental Theorem, S’(z) = sin2?, C'(x) = cos 2.

b. The relevant Taylor series are sin t = t?— 4 t6+ L0 t14—|—. ..,and cost® = 1—%t4+%t8—ét12+. e

In;uegr%ting, we have S(z) = %x?’ — 7.13133 —|— 111_5!;1011 — 151.719315 +...,and C(x) = T — ﬁ:ﬁ + ﬁxg —
Bal s e

c. 5(0.05) ~ 1%(0.05)3 - 510.05)7 + 91320 (0.05)1 — 5(1).00(0 05)!% ~ 4.166664807 x 107°. C(—0.25) ~
(—0.25) — 15(—0.25)° + 515(—0.25)% — 555 (—0.25)'% ~ —.2499023616.

d. The series is alternating. Because a1 = m(o.%)‘m”, and this is less than 10=4 for n = 0,
only one term is required.

e. The series is alternating. Because a,11 = W(O.%)‘l”%, and this is less than 1076 for n =1,
two terms are required.
9.4.80
a. “Lerf(z) = %(e_’”2).
b. et =1—12+ 2—4, Lo =3 (1) kf, so that the Maclaurin series for the error function is

2 _
3!
_ 2 23 5
erf(x)——w(x—g—k—a! 73,+

c. erf(0.15) & 2 (0.15 - &42 4 045 0~41§7) ~ 0.1679959712.

erf(~0.09) & 2 (~0.00 + %47 — 008 4 0007) & 1012805939,
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d. The first omitted term in each case is 9“_7—; = 1os0- For @ = (.15, this is ~ 3.56 x 10~ For z = —0.09,
this is (in absolute value) ~ 3.59 x 10713,

9.4.81
a. Jo(z) =1— 32° + 5pa? — gemmal + ...
¢ 2k 2

b. Using the Ratio Test: |2+l | = 22“5?8:;)!)2 L2 m(zlz!) — 4(kf1)2’ which has limit 0 as £ — oo for any
2. Thus the radius of convergence is infinite and the interval of convergence is (—oo, 00).

c. Starting only Wlth terms up through x7, we have Jy(x) = - %39)52 ;— 6—143;4 2304:10 + 1474561‘8 +...,
Jg( ) = 2235 + Gx - 3%45” T 18432$ i‘ 10J 0(x) = —5 + Exl . @x + 118432x .. SO that
w2 Jo(r) = a® — Zx +5i% —52304x +7147456x +. 335]0( r) = =3 +T6x2 — 3572° + 1843233 +.

2?2 J (x) = —4a? + Sat — Fpab + Tt 4. and 2?J (z) + xJh(x) + 2% Jp(x) = 0.
_ 1 _ 1 1.2
9.4.82 secr = -~ = T =1+ 327 + Fa* + FH5al +.
9.4.83

a. The power series for cosz has only even powers of x, so that the power series has the same value
evaluated at —z as it does at x.

b. The power series for sinx has only odd powers of x, so that evaluating it at —x gives the opposite of
its value at z.

9.4.84 Long division gives cscx = % + %m + 3—(7;0303 + -+, so that cscz =~ % + %m asx — 0F.
9.4.85

a. Because f(a) = g(a) =0, we use the Taylor series for f(z) and g(x) centered at a to compute that

i 10 JO @ —0) ¢ @ 0
z—a g() a=a g(a) +g'(a)(z — a) + 59"(a)(x — a)? + - -
o P@E -0+ @) - a)?
a=a g'(a)(z — a) + 59"(a)(x —a)? + -
o S @0 )
z=a g'(a) + 39" (@) (@ —a) +-- g'(a)
Because f’(z) and ¢'(z) are assumed to be continuous at a and ¢'(a) # 0,

and we have that

which is one form of L’Hopital’s Rule.

Because f(a) = g(a) = f'(a) = ¢'(a) = 0, we use the Taylor series for f(z) and g(x) centered at a to
compute that

L f@) @)+ ) - a) 3@ - o + ) a) 4
—a g(x) =a g(a) +g'(a)(z — a) + 39" (a)(z — a)* + 59" (a)(z — a)® + -
M@ aP )
L@ — o s )0+
M@ @ )
T—a %g//<a) + 1g///(a)($ —a)+ g//(a)
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Because f”(x) and ¢"’(z) are assumed to be continuous at a and g”(a) # 0,

and we have that .
lim —f(x) = lim ! (x)
2 g(e) ~ w e g(a)

which is consistent with two applications of L’Hopital’s Rule.

9.4.86

. In the formula

a. Clearly © = sins because BE, of length z, is the side opposite the angle measured by s in a right

triangle with unit length hypotenuse.

%7"29 for the formula for the area of a circular sector, we have r = 1, and # = s, so that

the area is in fact 5. But the area can also be expressed as an integral as follows: the area of the sector
is the area under the circle between P and F' (i.e. the area of the region PAEF), minus the area of
the right triangle PEF. The area of the right triangle is %x\/ 1 — 22 by the Pythagorean theorem and
the formula for the area of a triangle. Equating these two formulae for the area of the sector, we have

s= g VI=8dt— Jav/1—2a2 505 =2 VI—t2dt — av1— a2

. The Taylor series for v1— 2 is 1 — 1¢% — 14 — L6 — 248 — . Integrating and evaluating at x we
have s = sin 'z = 2(3:— %x3—4—%m5—1—%2x7—%52x9) —x(l—%xQ—%m‘l—%xG— 12—8:138) + =
ST S e

. Suppose z = sins = ag +a1s+azs®+.... Then z =sin(sin™'(2)) = ao +ar(z + 22° + Z2°+...) +
az((z + t2® + 32+ ...)? + ... Equating coefficients yields ag = 0, a; =1, az = 0, a3 = 3+, and so

o1.

Chapter Nine Review

1

. True. The approximations tend to get better as n increases in size, and also when the value being

approximated is closer to the center of the series. Because 2.1 is closer to 2 than 2.2 is, and because
3 > 2, we should have |p3(2.1) — f(2.1)] < |[p2(2.2) — f(2.2)].

. False. The interval of convergence may or may not include the endpoints.

. True. The interval of convergence is an interval centered at 0, and the endpoints may or may not be

included.

. True. Because f(x) is a polynomial, all its derivatives vanish after a certain point (in this case, f(1?)(z)

is the last nonzero derivative).

2 p3(z) =22 — (20)°

3!

3 pa(z) = 1.

4p2(x):17x+12—2.
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7 poz)=x—1-3(z—1)%

8 pa(z) =823 /3! + 22 = 423 /3 + 2x.

2 3
9 pg(x) _ % + 3(m—41n2) + 5(r—81n2) 1 (1_18112) .

10

2

a. po(r) = pi(z) =1, and pa(x) = 1 — %-.

b.
n | pp(—0.08) | |p,(—0.08) — cos(—0.08)|
0 1 3.2x 1073
1 1 3.2x 1073
2 0.997 1.7 x 10~
11

a. po(e) =1, p1(z) =1+ z, and po(z) = 1 + 2 + %

b.
n | pn(—0.08) | |pn(—0.08) — =008
0 1 7.7x1072
1 0.92 3.1x107?
2 0.923 8.4 x107°
12
a. po(x) =1, pi(x) =1+ Jz, and pa(x) = 1+ o — §2°.
b.
n | pn(0.08) | |pn(0.08) — /1 +0.08]
0 1 3.9 %1072
1| 104 7.7 x 1071
2 1.039 3.0x107°
13
a. po(z) = 2, pr(x) = R+ (x — 7/4)), and ps(e) = L (1 + (& — 7/4) — §(z — 7/4)?).
b.
n_| pa(r/5) | lpn(7/5) — sin(x/5)]
0| 0.707 1.2 x 107!
1 0.596 8.2x 1073
2 0.587 4.7 x 1074
14 The bound is |R,(z)| < M%, where M is a bound for |e”| (because e® is its own derivative) on

[—1,1]. Thus take M = 3 so that |Rs(z)| < 34%4 = % But || < 1, so this is at most 3.
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. m+1 n+1
15 The derivatives of sinz are bounded in magnitude by 1, so |R,(z)| < M2 B But |z| < 7, so

. = (n+1)! = (n+1)!"
| Rs(x)| < 37

16 The third derivative of In(1—z) is ﬁ, which is bounded in magnitude by 16 on |z| < 1/2 (at z = 1/2).
Thus |Rs(z)| < 16125 <1654, = L.

2941 — 4l
. . . . . +1)2 R . 1102 .
17 Using the Ratio Test, klin;o a;:l = klggo % . % = klggo (EEL) % = 0, so the interval of
convergence is (—00, 00).
. . . A : Akt k2 : k 2 4 4 3
18 Using the Ratio Test, klgg() —| = klir{:o FDz " 2% | = khj& (m) x* = x%, so that the radius of

convergence is 1. Because > k% converges, the given power series converges at both endpoints, so its interval
of convergence is [—1, 1].

. . s app1r 1 (z41)2F+2 k! o 1 2 _ ;
19 Using the Ratio Test, khﬁr{)lo = khﬁrgo DT | = kIL%o 1@+ 1)° = 0, so the interval of
convergence is (—o0, 00).

. . . . —1)k+1 k5" . k 1
20 Using the Ratio Test, klgrolo L] = klggo ((’f+1))53k+1 e | = kli)n;om |z — 1] = L(Jz —1]), so the

series converges when [1/5(z — 1)] < 1, or =5 <z — 1 < 5, so that —4 < x < 6. At © = —4, the series is the
alternating harmonic series. At z = 6, it is the harmonic series, so the interval of convergence is [—4,6).

3 3
21 By the Root Test, lim {/|ax| = lim (%) = %, so the series converges for |x| < 9. The series given
k— o0 k— o0
by letting = £9 are both divergent by the Divergence Test. Thus, (—9,9) is the interval of convergence.

: . ; k1| _ 1 @+2" Ve | _k_ _
22 By the Ratio Test, kll)ngo = klggo T G| = klinolo’/k+1(|x+2|) = |z + 2|, so that the

series converges for |z + 2| < 1, so =3 < z < —1. At o = —3, we have a series which converges by the
Alternating Series Test. At = —1, we have the divergent p—series with p = 1/2. Thus, [—3,—1) is the
interval of convergence.

(42" ok | Ink _
R (k1) (@+2)F | kli{go 2In(k+1) |z +2| =

23 By the Ratio Test, lim \r;r?\
k—o0

. The radius of convergence

is thus 2, and a check of the endpoints gives the divergent series > ﬁ at * = 0 and the convergent

k
alternating series (;112 at x = —4. The interval of convergence is therefore [—4,0).
24 By the Ratio Test, klingo IZZC—:; . jfk—tll = 22. The radius of convergence is thus 1. At each endpoint we

have a divergent series, so the interval of convergence is (—1,1).

25 The Maclaurin series for f(z) is > pe, 22F. By the Root Test, this converges for |a:2| <l,so-l<z<l.
It diverges at both endpoints, so the interval of convergence is (—1,1).

26 The Maclaurin series for f(z) is determined by replacing « by (—2)? in the power series for 12—, so it is
Yt o(=1)*23%. The radius of convergence is still 1. The series diverges at both endpoints, so the interval
of convergence is (—1,1).

27 The Maclaurin series for f(z) is Y, (—5z)F = S°72 (—=5)*z*. By the Root Test, this has radius of
convergence 1/5. Checking the endpoints, we obtain an interval of convergence of (—1/5,1/5).

28 Replace x by —z in the original power series, and multiply the result by 10z, to get the Maclaurin series

for f(x), which is ;7 (—1)¥10z*T!. By the Ratio Test, the radius of convergence is 1. Checking the
endpoints, we obtain an interval of convergence of (—1,1).
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29 Note that —— =377 ((102)*, so 15 - — 1101 = & 307 ,(10z)*. Taking the derivative of {1 gives
f(x). Thus, the Maclaurin series for f(z) is 15 Y pe; 10k(102)*~! = 3777 | k(10x)F~!. Using the Ratio Test,

we see that the radius of convergence is 1/10, and checking endpoints we obtain an interval of convergence
of (=1/10,1/10).

30 Integrating ;- and then replacing x by 4z gives —f(z), so the series for f(z) is — Y2, k%rl(élx)k“.
The Ratio Test shows that the series has a radius of convergence of 1/4; checking the endpoints, we obtain
an interval of convergence of [—1/4,1/4).

92> g (3x)"
31 The first three terms are 1+ 3z + 22-. The series is Y, ) ““7i—.

32 The first three terms are 1 — (x — 1) + (z — 1)2. The series is Y ;o (—1)(z — 1)~.

33 The first three terms are —(z — m/2) + ¢(z — 7/2)* — 35 (¢ — 7/2)°. The series is

WK

(_1)k+1 1 ((E _

N 2k+1
2k + 1)! )

2

b
I

0

34 The first three terms for
series is Yo (—1)kaht2,

are 1 — z + 22, so the first three terms of z? - —— are 22 — z® + z*. The

1
1+x 1+x

35 The first three terms are 4z — §(4z)® + 1 (4z)°. The series is ZZOZO(—I)’“M.

2k+1
36 The nth derivative of f(z) = sin(2x) is £2" times either sin2z or cos2x. Evaluated at —7, the
even derivatives are therefore zero, and the (2n + 1) derivative is (—1)"T122nT1 The Taylor series for
sin2z around x = —7% is thus —2 (x—l— g) + é—j, (a:+ g)g — 25—0, (m+ g)5 + -+, and the general series is

92k+1 o\ 2k+1
Dheo(—1)FH! k1! (z+3) :

37 The nth derlvatlve of cosh 3r at x = 01is 0if n is odd and is 3" if n is even. The first 3 terms of the

series are thus 1 + 921, + 811 . The whole series can be written as > p— 0 (Eo’;,z) .

38 f(0) = 1, /(&) = Gaktym, so 1(0) = 0. f"(2) = £33, 50 7(0) =~ f”(0) = 0, and f"(0) = 3.

The first three t L _ 2 L o The series is given by 3.5 (=™
e 1rs ree terms are Z_E—’—M € series 1S given yzk:(] AkF1

39 f(2) = (") + ("P)a+ ()a? + - =14 o — ga” + -
o) = () + (Ve + () =1 Jat+ga® 4o
=)+ (D3 + (D E+=1-da+ 32+
42 f(z) = () + () 22) + () (22)2 + -+ =1 — 10z + 602 + - --
43 R, (x) = S a4 for some ¢ between 0 and z, and Tim Ry (2)] < e lim {2 I = 0, because

n! grows faster than |z|" as n — oo for all .

(n+1)
44 R, (z) = L @ +1)(!C )zn+1 for some ¢ between 0 and z. Because all derivatives of sinz are bounded in

magnitude by 1, we have lim |R,(z)| < hm 21‘:; = 0 because n! grows faster than |z|" as n — oo for all
n— o0
x.
() . n n! :
45 R,(z) = f(n+1)(,)x +1 for some ¢ in (—1/2,1/2). Now, |f("*V(c)| = W, SO nh_)rréo\Rn(a:H <
lim (2|z)"" L < lim 17 =0,
n—o0
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46 R,(x) = LD(€) pnt for some ¢ in (—1/2,1/2). Now the (n + 1)** derivative of (v/1+ ) is

(n+1)!
i%, so for ¢ in (—1/2,1/2), this is bounded in magnitude by 2%1?5/2()%3@11))/2 = 1'3'5;(/22”*1)’
and thus
(n+1)
lim |R,(z)| = lim fi(c)xm'l
<1 1-3:5-(2n—1) 1
im .
T n—oo \/E on+l . (n + 1)'
. 1-3:5---(2n—-1) 1
= lim .
. 1 1 3 2n-1 1
fr— llm —_— e — s — e e . = 0
nsoo \ /2 2 4 2n  2n+2
for x in (—1/2,1/2).
47 The Taylor series for cosz centered at 0 is
2?2 xt b
— 1 4
Ccos T 3 + 51 720 +
We compute that
2?/2 — 1+ cosx 1/, x?2  zt af
/e o TR 2 21 ) P e H
ot x4(z/ +< > "o 70 " >)

- 1 /(24 x6+ 71 x2+
ozt \ 24 720 24 720
2/9 -1 1
@/2-1tcosz .01

the limit of .
so the limit o o o

48 The Taylor series for sinx centered at 0 is

3 x® z7

sint =2 — — + —

6 T120 5010 T

and the Taylor series for tan~! x centered at 0 is

tan-1 x3+x5 x7+
an r=r— —+———+--.
3 5 7

We compute that

2sinz —tan" 'z — z

225

1 9 x3 n x° x’ " x3 n z® 2’ n
R w [ — —_— ... J— x —_— — —_—— — PEEEEY _ x
225 6 120 5040 3 5 7

1 /11 N 35927 __u 359z
o225\ 60 2520 120 5040
2sinx — tan~lz — 11
so the limit of St an row asz — 0is ———.
215 120

49 The Taylor series for In(z — 3) centered at 4 is
1 2, 1 3
In(z —3) =(x—4) (x—4)"+-(x—4)°—---.
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We compute that

w1 - (x—4)1(33+4) <(m_4)_;($_4)2+(x_4)3‘ )
_ xi4<1—;(m—4)+;(x—4)2— )

so the limit of lng:ci—i%)
z? — 16

1
asx —4is —.
8
50 The Taylor series for v/1 + 2x centered at 0 is
2 3

\/1—}—233:1—1—30—%4—%—---.

We compute that

Vi+2r—1—2 1
- 2 2

2

Vi+2r—1—=x

so the limit of 5
T

asx%()isfﬁ.

51 The Taylor series for sec x centered at 0 is

x?  5z* 61z
secr =14+ —+ — +

2 24 720
and the Taylor series for cosx centered at 0 is
2?2 2t af
cosle—?+ﬂ—%+

We compute that

secx — cos T — 2

4

- L 1+x—2+5—ﬁ+61x6+ - 1—x—2+x—4—x—6+ -a°
g 2 24 720 2 24 720

- 1 4 + 3126 n - 1 31x2 n
o2t \ 6 360 6 360

secx — cos T — x>

1
so the limit of 7 asx — 01is —.
T 6

52 The Taylor series for (1 + x)~2 centered at 0 is
(1+2)2=1-2x+32% —4a® 4 -
and the Taylor series for /1 — 6z centered at 0 is

4023
\3/1—6x=1—2x—4x2—Tx—--~.
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