


Chapter 1
Principles of Probability

1. Combining independent probabilities.

(a) The simplest way to solve this problem is to recall that when probabilities are
independent, and you want the probability of events A AND B, you can multiply them.
When events are mutually exclusive and you want the probability of events A OR B,
you can add the probabilities. Therefore we try to structure the problem into an AND
and OR problem. We want the probability of getting into H or DSM or UCSF. But
this doesn’t help, because these events are not mutually exclusive (mutually exclusive
means that if one happens, the other cannot happen). So we try again. The probability
of acceptance somewhere, P(a), is P(a) =1 — P(r), where P(r) is the probability that
you're rejected everywhere. (You're either accepted somewhere or you're not.) But this
probability can be put in the above terms. P(r) = the probability that you're rejected
at H AND at DSM AND at UCSF. These events are independent, so we have the answer.
The probability of rejection at H is p(rH) = 1 — 0.5 = 0.5. Rejection at DSM is
p(rDSM) = 1 — 0.3 = 0.7. Rejection at UCSF is p(rUCSF) =1 — 0.1 = 0.9. Therefore
P(r) =(0.5)(0.7)(0.9) = 0.315. Therefore the probability of at least one acceptance
= P(a) =1— P(r) = 0.685.



(b) The simple answer is that this is the intersection of two independent events:

p(aH)p(aDSM) = (0.50)(0.30)
= 0.15.

A more mechanical approach to either part (a) or this part is to write out all the
possible circumstances. Rejection and acceptance at H are mutually exclusive. Their
probabilities add to one. The same for the other two schools. Therefore all possible
circumstances are taken into account by adding the mutually exclusive events together,
and multiplying independent events:

[p(aH) + p(rH)|[p(aDSM) + p(rDSM)][p(aUCSF) + p(rUCSF)] = 1,

or, equivalently,

= p(aH)p(aDSM)p(aUCSF) + p(aH)p(aDSM)p(rUCSF)
+p(aH)p(rDSM)p(aUCSF) + - - -,

where the first term is the probability of acceptance at all three, the second term
represents acceptance at H and DSM but rejection at UCSF, the third term represents
acceptance at H and UCSF but rejection at DSM, etc. Each of these events is mutually
exclusive with respect to each other; therefore they are all added. Each individual term
represents independent events of, for example, aH and aDSM and aUCSF. Therefore it
is simple to read off the answer in this problem: we want aH and aDSM, but notice we
don’t care about UCSF. This probability is

p(aH)p(aDSM) = p(aH)p(aDSM)[p(aUCSF) + p(rUCSF)]

= (0.50)(0.30)
= 0.15.
Note that we could have solved part (a) the same way; it would have required adding

up all the appropriate possible mutually exclusive events. You can check that it gives
the same answer as above (but notice how much more tedious it is).



2. Probabilities of sequences.

(a) Each base occurs with probability 1/4. The probability of an A in position 1 is 1/4,
that of an A in position 2 is 1/4, that of an A in position 3 is 1/4, that of a T in
position 4 is 1/4, and so on. There are nine bases. The probability of this specific
sequence is (1/4)? = 3.8 x 1075.

(b) Same answer as (a).

(¢) Each specific sequence has the probability given above, but in this case there are many
possible sequences that satisfy the requirement that we have four A’s, two T’s, two
G’s, and one C. How many are there? We start as we have done before, by assuming
all nine objects are distinguishable. There are 9! arrangements of nine distinguishable
objects in a linear sequence. (The first one can be in any of nine places, the second in
any of the remaining eight places, and so on.) But we can’t distinguish the four A’s, so
we have overcounted by a factor of 4!, and must divide this out. We can’t distinguish
the two T’s, so we have overcounted by 2!, and must also divide this out. And so on.
So the probability of having this composition is

9! 1\?
[4!2!2!1!] <Z) - 00



3. The probability of a sequence (given a composition).

The S could be in any one of the six positions with equal likelihood. The probability that it
is in position 1 is 1/6. Given that S is in the first position, we have two E’s, which could
occur in any of the remaining five positions. The probability that one of them is in position 2
is 2/5. Given those two letters in position, the probability that the one C is in the next of
the four remaining positions is 1/4. The probability for the R is 1/3. For the remaining E, it
is 1/2, and for the last T, it is 1/1, so the probability is

11211111

6\
(1/6)(2/5)(1/4)(1/3)(1,/2) = 1360 — ( ) |

4. Combining independent probabilities.

5
q = 6= probability that a 2 does not appear on that roll.

¢" = probability that a 2 does not appear on &k INDEPENDENT rolls.

P(k) = 1— ¢* = probability that at least one 2 appears on k rolls.

2 2 1 1
Pk)y > 2. 1—-¢">2 — ¢F<Z — kIl <1<—)
()_ 3’ q_3 q_3 nq_n3

=6.03

!

Approximately six or more rolls will ensure with probability P > 2/3 that a 2 will appear.



5. Predicting compositions of independent events.

The probability of getting = 5’s on n rolls of the dice is

6 6 s

Note that this is a “2-outcome” problem (getting a 5 or not getting a 5). It is not a
“6-outcome” problem.

(a) So the probability of two 5’s on three dice rolls is

ONGERREIGE

216
= 6.94 x 1072,

(b) The probability of getting at least two 5’s is the probability of getting two 5’s or three
5’s. Since these two situations are mutually exclusive, we seek

1\2 /5\ 3! 1\? 75\% 3!
) h ) = — - i, - ~ BTt
p(two 5's) + p(three 5's) <6) (6) o+ <6) (6) 310!

15 1
216 216
16
216

= 7.41x 1072



6. Computing a mean and variance.

axn—i—l 1

1 1 a
(a) /Op(x)dx — /0 ax” dx N il " ntl
= 1 —= a=n+1.

1
0) @) = [ ap(e)de
1 1) +2]|! 1
= /(n+1)$n+1dl': (n+ )1’ :n'l‘ '
0 n -+ 2 0 n -+ 2

© @) = [ )

1
(n—l—l)/ "2 dx
0

_n+1

xn+3 1
1 = .
(n+ )<n—|—3>0 n+3

So




7. Computing the average of a probability distribution.

= 0(0.0) + 1(0.1) + 2(0.2) + 3(0.3) + 4(0.4)
=3

8. Predicting coincidence.

If you first find the probability ¢ that no two students have the same birthday, then the
quantity you want is

p(2 students have same birthday) =1 — ¢

The probability that a second student does not have the same birthday as the first is
(364/365). The probability that the third student has a birthday different than either of the
first two is (363/365), and so on. It is like a sequence problem in which each possible



birthday is one card drawn out of a barrel. The probability that no two people have the same
birthday, out of m people, is

1= () () o)~ ().

In factorial notation,

N
1= (N —m)INm

where N = 365. (Incidentally, this expression is identical to the expression for excluded
volume in the Flory—Huggins model of polymer solutions (see Chapter 31).) Using Stirling’s
approximation x! & (x/e)*, we get

(N/e)™

o N—m ’
(N m) Am
e

q:

Collecting together terms in e and dividing the numerator and denominator by NV
gives

e
m N—m"

1 — —

(-3

Substituting m = 25 students and N = 365 gives

q:

q = 0.4163,
SO
p = 1—gq
= 0.5837.

There is a better than 50% chance two students will have the same birthday!



9. The distribution of scores on dice.

6 on one die
6 X 6 on two dice

(a)
6™ on n dice.

(b) Number of ways a sum can occur:

7_
6 <—— Most probable sum
5_
4
3 L
2_
1_
[ 1 | | [ 1 1 | | | 1 |
123 56 7 1011 12
4 Sum of 2 dice

(1, 1)

(1,2)x 2 (1,6) x 2
1,3 x2 & X
(2)2) 2, (2,5) x 2

(3,4) x 2

When dice show different numbers, there is a degeneracy of two. When each of the dice
has the same number, the degeneracy equals one.

. B number of ways of getting 7
(c) Probability of 7= p(7) = total number of ways of all outcomes
(7) = 6 1
P 234 4+45+6+5+4+3+2+1 6



10. The probabilities of identical sequences of amino acids.

(a) For comparing one sequence, each position being assumed independent, the probability
of a perfect match of all n residues is

p" = (number of matched seqs/number of total seqs) =
number of matches in s sequences = sp”.

(b) m — 1 positions match, so the probability is p"~'; one position doesn’t match, which has

the probability (1 — p); and there are n different positions at which the mismatch could
occur; therefore the answer is

sp" (1 —p)n
Note that, in general, for k matches,

n!

(1) P(k)=sp(1 —p)”_km-

10



11. The combinatorics of disulfide bond formation.

Number the individual sulthydryl groups along the chain. The first sulfhydryl along the
sequence can bond to any of the other n — 1. This removes two sulthydryls from
consideration. The third sulthydryl can then bond to any of the remaining n — 3. Four
sulfhydryls are now removed from consideration. The fifth can now bond to any of the
remaining n — 5 sulfhydryls, etc., until all n/2 bonds are formed. Thus the total possible
number of arrangements of disulfide bonds is a product of n/2 terms:

Dn)=(n-1)(n—3)(n—>5)---1.

Another approach gives an expression that is easier to calculate. Consider placing the
sulfhydryls in a sequence. The first place may be occupied by any of n sulthydryls, the
second place by any of n — 1 sulthydryls, the third by any of n — 2 sulthydryls, etc. Thus, if
each sulthydryl were distinguishable from every other, there would be n! arrangements.
However, each sulthydryl has a mate from which it cannot be distinguished. We must divide
by a factor of 2 (per bond) to correct for the indistinguishability of the two ends of each
bond. Finally, since we cannot distinguish any of the n/2 bonds from any other, we must
also divide by (n/2)!. Hence the number of arrangements is

n!

W) = Sty

Although these two equations were derived in very different ways, they are numerically
identical for all n.

11



12. Predicting combinations of independent events.

The probability of four red heads in five coin flips is

() () =

The probability of two green tails is

(1)5 5010
2/ 2131 32°

Since the green coin flips are independent of the red coin flips, the probability we seek is
(5/32)(10/32) = (50/1024) = 4.88 x 1072

13. A pair of aces.

A deck has 52 cards and four aces. The probability of getting an ace on the first draw is
4/52 = 1/13. Since you draw without replacement, the probability of getting one of the
remaining three aces on the second draw is 3/51, so the probability of two aces on two
draws is

4 3 o -3



14. Average of a linear function.

qx) =cx

We can also find c:

1 = /Olq(x)daz:/olcxd:c

So,

o
I
N

wl o
Wl Do

13



15. The Maxwell-Boltzmann probability distribution function.

(a) To write the probability distribution p(v,) dv, so that the Maxwell-Boltzmann
distribution is correctly normalized, we require

C/oo e—mvg/QkT d’l)x -1
—00
From integral tables, we see that

00 1/2
1 :/ e~ dy = (I) .
—00 a

Aside To compute integrals of the form

I=/ emae? dx,

we use the following trick. It is easy to see that we can write

[e.e] o0 o0 o0
I’ = / o0z’ dx/ e~ dy = / / e~ (@ +y%) o dy.
—00 —00 —00 J —00

14



This is now an integral over the entire (x,y) plane. Converting to polar coordinates r
and 6 and recognizing that 72 = 22 + y2, the integral becomes

9 e’} 2 9 e’} 5 [2m e’} 9
1 :/ drr dfge " :/ drre " df = 27r/ drre "
0 0 0 0 0
Making the substitution v = —ar?, du = —2ar dr, we can finish the integral:
— 00 —00
12:—1/ due' = — "¢ =z
a Jo a o a
Hence

= (77)1/2.
a

For our integral, a = m/2kT.

1/2
= 2 kT 12
[m e MR/ 2T gy ( 7;1 ) = p(v,) dv, = <27:ZT> e~ M/ 2T gy,

To compute the average energy, ((1/2)muv?), we have

1 ] kT \/? oo
<m1}2> — / *mvzp(vx) dvx — m < T ) / Uie—mvg/QkT dvx

2 " —o0 2 2 m o0

Again consulting our table of integrals, we find

o0 2 T
/ e dr = ——
—00 2&3/2

1/2

Aside: Integrals of the form

o0 2 9
/ e ™ dx
— 00

can be computed by integration by parts. Recall that

b , b
/ udv:uv|a—/ vdu
a a

Choosing the substitutions v = x and dv = xe™
Our integral therefore becomes

/oo 2 —az2d ( 1 —axz)‘oo + 1 /oo —ax? 1 <7T>1/2 O~|» 771/2
xée r=|——ue — e =— (= = -
—o 2a oo 20 J-co 2a \a 2a3/?

15
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2 —
, we have du = dx and v = —ie



Note that we have used the result of the integral from part (a) above.

Therefore
1\ 1 (72N m N\ 1 [T\
<§mvx> — " 2a3/2 <27rkT> — " m

(c) To find the average velocity (v, ), we recall that for functions with odd symmetry
(f(x) = —f(—=x)), the integral under the curve for negative x cancels with that under
the curve for positive x. Using the fact that p(z) = p(—=z),

m D2 |
_Mm N
(Wl/sz> Qk

() = [ (o) do,

—00

0 00
= / Um’p(vm) dvm + / Ump(vm) dvm
—00 0
= /0 (—vg)p(—vy) dvg —1—/0 vp(v,) doy
= _ /Oo vep(vy) dvug + /OO Vp(vg) dvy.
0 0
= 0.
(d) The average momentum

(mu,) = m(v,) =0,

from the result above.

16. Predicting the rate of mutation based on the Poisson probability distribution
function.

16



(a) The probability that a fibrinopeptide has no mutations at a given site in ¢ = 1 billion
years is

Py(t) = e " = exp[—(9.0 per 10° years)(10° years)]
= ¢’=123x10""

(b) For lysozyme,
Art = (1.0 per 10% years)(10® years) = 0.1.

The probability that lysozyme has three mutations per site in 100 million years is then

e—ALt()\Lt)?» - (6_0'1)(0.1)3
3! N 6
= 151 x 1074

P(t) =

17



(c) Since the probabilities sum to 1,

Therefore
o (A"
o= Sgo ¢
@ (5 =35m0 =3
At = ()t
=e (At); 5-1)
-\t - ()‘t " —At
e ()\t)hz::() h') = (Ma)e ™,
(s) =\t

18



17. Probability in court.

(a) Since the fragments are independent,

p = p(4) p(B) p(C)
= (0.01)(0.04)(0.025) =1 x 107°.

(b)  p = p(A) p(B/A) p(C/A)
= (0.01)(0.40)(0.25) = 1 x 1073

18. Flat distribution.




1 [a® a*\] _ a®
., 2a|3 3)] 37

(c) By symmetry (as in (a)), (%) = 0. In fact, (") = 0 for all odd integers n.

a 4

@ = [ e de = (L)

—a
—a

19. Family probabilities.

The probability is about 1/2 for having either a boy or a girl. The binomial distribution
shows that the probabilities are:

3 girls :

2 girls, 1 boy :

1 girl, 2 boys :

3 boys :

20



20. Evolutionary fitness.

D|R DD: p?
(a) D | p* | pq DR: 2pq
R qp q2 RR q2

(b) The average fitness is

(fitness) = > (fitness);probability,

(2

= foop’ + 2fprp(1 — p) + frr(l —p)*.

21. Ion-channel events.

Channels are either open, with probability ¢, or closed, with probability (1 — ¢), so the
expression we want is the binomial distribution,

NI

P(m,N)=q"(1~- Q)N_mm-

21



22. Joint probabilities: balls in a barrel.

(a) We have
p(Gh) = 2/3,
p(Ry) = 1/3,
p(Ga | G1) = 1/2,
p(Gy | Ry) = 1,
p(Ry | Gr) = 1/2,

SO

p(RG) = p(Ri)p(Ga | R1) +p(G1)p(Re | Gh)
= (1/3)(1) +(2/3)(1/2)
= 9/3.

(b) p(GG) = p(G)p(Ge | G1)
= (2/3)(1/2) =1/3.

Note that since p(RR) = 0, the quantities in (a) and (b) sum to one.

22



23. Sports and weather.

(a) These chances of winning given in the problem are conditional probabilities (i.e., the
probability of winning) given that the weather is good or bad. The approach here is to
elucidate the four mutually exclusive and collectively exhaustive outcomes, winning and
good weather P(W,G), winning and bad weather P(W, B), losing and good weather
P(L,G), and losing and bad weather P(L, B). These joint probabilities can be related
to the conditional probabilities P(W|G), etc., and the weather probabilities P(G) and
P(B) by the following equations:

P(W,G) = P(W|G)P(G) = (0.7)(0.4) = 0.28,
P(W,B) = P(W|B)P(B) = (0.2)(0.6) = 0.12,
P(L,G) = P(LIG)P(G) = (0.3)(0.4) = 0.12,
P(L,B) = P(LIB)P(B) = (0.8)(0.6) = 0.48.

P(L) = P(L|G)P(G)+ P(L|B)P(B)
= (0.3)(0.4) + (0.8)(0.6)
= 06

Therefore, P(B|L) = 0.48/0.6 = 0.8—there is an 80% chance there was bad weather, given
that they lost.

23



24. The Monty Hall Dilemma.

A good way to illustrate how people sometimes try to tackle this problem is to consider a
similar one: Suppose three cards are lying face down on a table, only one of which is an ace.
The first card, A, is turned over, and is not an ace, so

—_
Ll
[ =

1
1i =—  p(C=ace) =

p(B = ace) = 1

Wl
Wl

So both remaining face-down cards are equally likely to be an ace. Using this type of
reasoning, many people will say that switching isn’t any more likely to win than staying with
the door you initially chose. But these problems are not equivalent — in the Monty Hall case,
the host has knowledge of both which door you initially picked and which door contains the
car.

A simple way to come to arrive at the correct solution is to break it down into two
separate questions:
1. What is the probability of winning if you don’t switch doors?
If you don’t switch doors, it means that you make no use of the information given by the host
revealing a goat. The only way you can win is if the door you initially chose has the car
behind it, and hence the probability of winning is 1/3.
2. What is the probability of winning if you do switch?
If you do switch doors, the only way you can lose is if the door you initially picked had the
car behind it, so you have a 1/3 probability of losing and your probability of winning is
therefore 2/3. So you should switch doors.

24



25. Probabilities of picking cards and rolling dice.

(a) P(Q of hearts) = 1/52, P(Q not of hearts) = 3/52, P(heart and not a Q) = 12/52, so
P = (1/52) + (3/52) + (12/52) = 16/52.

(b) P(2) = P(4) = 1/6, P(2)*P(4)? = (1/6)° = 1/7776 = 1.29 x 1074, so

P= (;) 1.29 x 1074 = 1.29 x 1073,

26. Probability and translational start codons.

25



()

(b)

(c)

P(mo A’s oR no U’s) = P(no A) + P(no U) — P(no A aND no U)

- ()@ -6

= 0.34
Use the multinomial probability distribution (1.33):
6! ¢ ¢
W=—r— P=(- = 0.0293.
sy <4> 111113!

Let us find W(AUG):

6 positions total:

3 positions are fixed: W; = 13,

3 positions are variable: W, = 43,

4 positions AUG can take in the sequence: W = 3

Note: We do not count this next AUG position because it has already been included in
the first A U G when we count the multiplicity of the variable positions:

Because Wiy is the product of independent sources of multiplicity,
W(AUG) = W;W,W,os = 1% - 4% . 3,

W, 3.45 3 3
= = = = 2 ~0.0469.
Wil 46— 43 64

P(AUG) =

We will calculate W for one A, one U, and one G for any ordering of the A, U, G
with respect to each other. Then we will divide this result by the number of ways of
ordering A, U, G with respect to each other, because we wish only to count the cases
where A appears before U appears before G. We have

6!

The number of ways of ordering A, U, G with respect to each other is 3!, and we have

6l/(1I13Y)  6-5-4

= = 20.
3! 3-2-1 0

W(1A,1U,1G) =

26



27. DNA synthesis.

(a) Let letter R stand for a right base and M stand for a mutant one.

1000!
p(1000R, 1000) = (0.999)'°°°(0.001)°—— ~ 0.368,

1000!
p(999R, 1M, 1000) = (0.999)"%(0.001) T 0.368,
908 , 1000!
p(998R, 2M,1000) = (0.999)?%(0.001) g0zl ™ 0.18,
p(997R,2M,1000) = (0.999)”7(0 001)3@ ~ 0.06
Y ' ' 997!3! o
% 0.37
é 0.18
&) 0.06
0 1 2 3
b 1000' Number of Mutant Bases
(b) ~998!12!

(¢) The probability of having a DNA strand with only 2 mutated bases is 0.18. The
probability of having mutations at places 500 and 888 of the strand is
998!2!
p(...M(500)......M(888)...) = 0.18 X

1000l = 018 x2x107°=3.6x10"".

998!2! 1
(d)  p(..MM..)=0.18 x X 999 = 0.18 x — = 3.6 x 10~*

1000! 500

27



28. Presidential election.

(a) For candidate A, this is like flipping a coin 5 times. Each head is like winning 20 points;
each tail is zero. Candidate A can win by getting 2 more more states (‘heads’), so

50 51 5 5l
o131 T 3121 T T sl

WA total = =10+10+5+1=26.

(b) Candidate B can win by getting 3 or more states, so

5! 51
WB,total=ﬁ+w=5+1=6.

WA,total 26

c P(Awins) = = =
( ) ( ) WA,total + WB,total 26 + 6

0.81.
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Chapter 2
Extremum Principles Predict
Equilibria

1. A lattice gas.

20! 20-19-18-17-16

() W=tV =20) =20 =TIy 50
b)) WN =15V =16) = _16

151!
©  WN=15V=15) — > _1

15!0!

29



2. Maximum of binomial distribution.

W is maximal where In W is maximal, and
InW =nlnp+ (N —-n)In(l —p)+InN!'—Inn! —In(N —n)!.
Now using Stirling’s approximation, In N! ~ NIn N — N, we obtain

InW ~ nhhp+(N—-n)ln(1—p)+(NInN —N)—(nlnn —n)
—[(N =n)In(N —n) = (N —n)]
= nlnp+(N—n)ln(l —p)+ NInN —nlnn — (N —n)In(N —n)

This function is maximal where

dln W
i 0.
We have

dln W
dn

1
= lnp—ln(l—p)—(n~g+lnn)

- l(zv =) gD =) (—1)]

= ln( P )—lnn+1n(N—n)—1—|—1
L=p

30



We add In N —In N to the right-hand side and rearrange terms to allow us to write In(n/N)
and In[(N —n)/N]:

dln W
dn

(
1n<N?z*n*> N ln(l fp>’

*

n —
N—nt  1—p
. p Np
1+ = 22
n < —I—l_p) 1—p
L /Ul )
N 1/1—p

3. Finding extrema.

To find the extrema, determine the values x = x* that cause the derivative to equal zero:

av

I B = (2* 45z —24)

— (" = 3)(a" +8) = 0

x*
To determine whether the extrema are maxima or minima, evaluate the second derivative at
the x* points:

>V
W = 2$+5,
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d*V

o —2(3)+5=11.

r*=3

Since this value is positive, £* = 3 is a minimum.

d*V
—_— =2(-8)+5=-09.
dz?| ._ ¢ (=8)+
This value is negative, so z* = —8 is a maximum.

4. The binomial distribution narrows as N increases.

< (4N)! )
o) _ (V)N
p(2N) (( (4N)! )

2N)I(2N)!
CenpE  [eve?)
~ONIBN) T (N/e)Y (3N e)*N
- 24NN4N
= NNy

- () -

Note that as N — oo,

L op(N) 16\
Nlﬂnoop(zzv) = (27) =0
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5. De-mixing is improbable.

The ratio r of the perfectly demixed to perfectly mixed configurations is

" ( 2V] >1< 2V] ) - ((‘;Y)") = (%) N (%)V N (1_16>V'

Note that as V' — oo,

1 N
lim r = lim <—) =0.

r—voo N—oco \ 16

6. Stable states.

)
W = —51119.

This derivative is zero when sin @ is zero. This occurs at § = nm, where n is an integer. To
determine which of these points are maxima and which are minima, we need to compute the
second derivative:

dQ—V— cos
oz —

This is negative for all even-numbered multiples of 7 and positive for all odd-numbered
multiples. Therefore, the unstable equilibria are given by 6, = 2km and the stable equilibria
by 0, = m + 2kw, where k is an integer.
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7. One-dimensional lattice.

W(Na, Np) = (NA+NB) _ <NA+NB> _ (Na+Np)!

Ny Ng NN
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