
MODERN
OPERATING

SYSTEMS
FOURTH EDITION

PROBLEM SOLUTIONS

ANDREW S. TANENBAUM

HERBERT BOS

Vrije Universiteit
Amsterdam, The Netherlands

PRENTICE HALL

UPPER SADDLE RIVER, NJ 07458

© Copyright 2015 Pearson Education, Inc. All Rights Reserved.

Copyright Pearson Education, Inc. 2014

© Copyright 2015 Pearson Education, Inc. All Rights Reserved.

SOLUTIONS TO CHAPTER 1 PROBLEMS

1. An operating system must provide the users with an extended machine, and it
must manage the I/O devices and other system resources. To some extent,
these are different functions.

2. Obviously, there are a lot of possible answers. Here are some.
Mainframe operating system: Claims processing in an insurance company.
Server operating system: Speech-to-text conversion service for Siri.
Multiprocessor operating system: Video editing and rendering.
Personal computer operating system: Word processing application.
Handheld computer operating system: Context-aware recommendation system.
Embedded operating system: Programming a DVD recorder for recording TV.
Sensor-node operating system: Monitoring temperature in a wilderness area.
Real-time operating system: Air traffic control system.
Smart-card operating system: Electronic payment.

3. In a timesharing system, multiple users can access and perform computations
on a computing system simultaneously using their own terminals. Multipro-
gramming systems allow a user to run multiple programs simultaneously. All
timesharing systems are multiprogramming systems but not all multiprogram-
ming systems are timesharing systems since a multiprogramming system may
run on a PC with only one user.

4. Empirical evidence shows that memory access exhibits the principle of locality
of reference, where if one location is read then the probability of accessing
nearby locations next is very high, particularly the following memory loca-
tions. So, by caching an entire cache line, the probability of a cache hit next is
increased. Also, modern hardware can do a block transfer of 32 or 64 bytes
into a cache line much faster than reading the same data as individual words.

5. The prime reason for multiprogramming is to give the CPU something to do
while waiting for I/O to complete. If there is no DMA, the CPU is fully occu-
pied doing I/O, so there is nothing to be gained (at least in terms of CPU utili-
zation) by multiprogramming. No matter how much I/O a program does, the
CPU will be 100% busy. This of course assumes the major delay is the wait
while data are copied. A CPU could do other work if the I/O were slow for
other reasons (arriving on a serial line, for instance).

6. Access to I/O devices (e.g., a printer) is typically restricted for different users.
Some users may be allowed to print as many pages as they like, some users
may not be allowed to print at all, while some users may be limited to printing
only a certain number of pages. These restrictions are set by system adminis-
trators based on some policies. Such policies need to be enforced so that user-
level programs cannot interfere with them.

© Copyright 2015 Pearson Education, Inc. All Rights Reserved.

2 PROBLEM SOLUTIONS FOR CHAPTER 1

7. It is still alive. For example, Intel makes Core i3, i5, and i7 CPUs with a varie-
ty of different properties including speed and power consumption. All of these
machines are architecturally compatible. They differ only in price and per-
formance, which is the essence of the family idea.

8. A 25 × 80 character monochrome text screen requires a 2000-byte buffer. The
1200 × 900 pixel 24-bit color bitmap requires 3,240,000 bytes. In 1980 these
two options would have cost $10 and $15,820, respectively. For current prices,
check on how much RAM currently costs, probably pennies per MB.

9. Consider fairness and real time. Fairness requires that each process be allo-
cated its resources in a fair way, with no process getting more than its fair
share. On the other hand, real time requires that resources be allocated based
on the times when different processes must complete their execution. A real-
time process may get a disproportionate share of the resources.

10. Most modern CPUs provide two modes of execution: kernel mode and user
mode. The CPU can execute every instruction in its instruction set and use
ev ery feature of the hardware when executing in kernel mode. However, it can
execute only a subset of instructions and use only subset of features when ex-
ecuting in the user mode. Having two modes allows designers to run user pro-
grams in user mode and thus deny them access to critical instructions.

11. Number of heads = 255 GB / (65536*255*512) = 16
Number of platters = 16/2 = 8
The time for a read operation to complete is seek time + rotational latency +
transfer time. The seek time is 11 ms, the rotational latency is 7 ms and the
transfer time is 4 ms, so the average transfer takes 22 msec.

12. Choices (a), (c), and (d) should be restricted to kernel mode.

13. It may take 20, 25 or 30 msec to complete the execution of these programs de-
pending on how the operating system schedules them. If P0 and P1 are sched-
uled on the same CPU and P2 is scheduled on the other CPU, it will take 20
msec. If P0 and P2 are scheduled on the same CPU and P1 is scheduled on the
other CPU, it will take 25 msec. If P1 and P2 are scheduled on the same CPU
and P0 is scheduled on the other CPU, it will take 30 msec. If all three are on
the same CPU, it will take 35 msec.

14. Every nanosecond one instruction emerges from the pipeline. This means the
machine is executing 1 billion instructions per second. It does not matter at all
how many stages the pipeline has. A 10-stage pipeline with 1 nsec per stage
would also execute 1 billion instructions per second. All that matters is how
often a finished instruction pops out the end of the pipeline.

© Copyright 2015 Pearson Education, Inc. All Rights Reserved.

PROBLEM SOLUTIONS FOR CHAPTER 1 3

15. Av erage access time =
0.95 × 1 nsec (word is in the cache)
+ 0.05 × 0.99 × 10 nsec (word is in RAM, but not in the cache)
+ 0.05 × 0.01 × 10,000,000 nsec (word on disk only)
= 5001.445 nsec
= 5.001445 μsec

16. Maybe. If the caller gets control back and immediately overwrites the data,
when the write finally occurs, the wrong data will be written. However, if the
driver first copies the data to a private buffer before returning, then the caller
can be allowed to continue immediately. Another possibility is to allow the
caller to continue and give it a signal when the buffer may be reused, but this
is tricky and error prone.

17. A trap instruction switches the execution mode of a CPU from the user mode
to the kernel mode. This instruction allows a user program to invoke functions
in the operating system kernel.

18. The process table is needed to store the state of a process that is currently sus-
pended, either ready or blocked. Modern personal computer systems have
dozens of processes running even when the user is doing nothing and no pro-
grams are open. They are checking for updates, loading email, and many other
things, On a UNIX system, use the ps -a command to see them. On a Windows
system, use the task manager.

19. Mounting a file system makes any files already in the mount-point directory
inaccessible, so mount points are normally empty. Howev er, a system adminis-
trator might want to copy some of the most important files normally located in
the mounted directory to the mount point so they could be found in their nor-
mal path in an emergency when the mounted device was being repaired.

20. Fork can fail if there are no free slots left in the process table (and possibly if
there is no memory or swap space left). Exec can fail if the file name given
does not exist or is not a valid executable file. Unlink can fail if the file to be
unlinked does not exist or the calling process does not have the authority to
unlink it.

21. Time multiplexing: CPU, network card, printer, keyboard.
Space multiplexing: memory, disk.
Both: display.

22. If the call fails, for example because fd is incorrect, it can return −1. It can
also fail because the disk is full and it is not possible to write the number of
bytes requested. On a correct termination, it always returns nbytes.

© Copyright 2015 Pearson Education, Inc. All Rights Reserved.

4 PROBLEM SOLUTIONS FOR CHAPTER 1

23. It contains the bytes: 1, 5, 9, 2.

24. Time to retrieve the file =
1 * 50 ms (Time to move the arm over track 50)
+ 5 ms (Time for the first sector to rotate under the head)
+ 10/200 * 1000 ms (Read 10 MB)
= 105 ms

25. Block special files consist of numbered blocks, each of which can be read or
written independently of all the other ones. It is possible to seek to any block
and start reading or writing. This is not possible with character special files.

26. System calls do not really have names, other than in a documentation sense.
When the library procedure read traps to the kernel, it puts the number of the
system call in a register or on the stack. This number is used to index into a ta-
ble. There is really no name used anywhere. On the other hand, the name of
the library procedure is very important, since that is what appears in the pro-
gram.

27. This allows an executable program to be loaded in different parts of the ma-
chine’s memory in different runs. Also, it enables program size to exceed the
size of the machine’s memory.

28. As far as program logic is concerned, it does not matter whether a call to a li-
brary procedure results in a system call. But if performance is an issue, if a
task can be accomplished without a system call the program will run faster.
Every system call involves overhead time in switching from the user context to
the kernel context. Furthermore, on a multiuser system the operating system
may schedule another process to run when a system call completes, further
slowing the progress in real time of a calling process.

29. Several UNIX calls have no counterpart in the Win32 API:

Link: a Win32 program cannot refer to a file by an alternative name or see it in
more than one directory. Also, attempting to create a link is a convenient way
to test for and create a lock on a file.

Mount and umount: a Windows program cannot make assumptions about stan-
dard path names because on systems with multiple disk drives the drive-name
part of the path may be different.

Chmod: Windows uses access control lists.

Kill: Windows programmers cannot kill a misbehaving program that is not co-
operating.

© Copyright 2015 Pearson Education, Inc. All Rights Reserved.

PROBLEM SOLUTIONS FOR CHAPTER 1 5

30. Every system architecture has its own set of instructions that it can execute.
Thus a Pentium cannot execute SPARC programs and a SPARC cannot ex-
ecute Pentium programs. Also, different architectures differ in bus architecture
used (such as VME, ISA, PCI, MCA, SBus, ...) as well as the word size of the
CPU (usually 32 or 64 bit). Because of these differences in hardware, it is not
feasible to build an operating system that is completely portable. A highly
portable operating system will consist of two high-level layers—-a ma-
chine-dependent layer and a machine-independent layer. The ma-
chine-dependent layer addresses the specifics of the hardware and must be im-
plemented separately for every architecture. This layer provides a uniform in-
terface on which the machine-independent layer is built. The machine-inde-
pendent layer has to be implemented only once. To be highly portable, the size
of the machine-dependent layer must be kept as small as possible.

31. Separation of policy and mechanism allows OS designers to implement a
small number of basic primitives in the kernel. These primitives are simplified,
because they are not dependent of any specific policy. They can then be used
to implement more complex mechanisms and policies at the user level.

32. The virtualization layer introduces increased memory usage and processor
overhead as well as increased performance overhead.

33. The conversions are straightforward:

(a) A nanoyear is 10−9 × 365 × 24 × 3600 = 31. 536 msec.
(b) 1 meter
(c) There are 250 bytes, which is 1,099,511,627,776 bytes.
(d) It is 6 × 1024 kg or 6 × 1027 g.

© Copyright 2015 Pearson Education, Inc. All Rights Reserved.

6 PROBLEM SOLUTIONS FOR CHAPTER 2

SOLUTIONS TO CHAPTER 2 PROBLEMS

1. The transition from blocked to running is conceivable. Suppose that a process
is blocked on I/O and the I/O finishes. If the CPU is otherwise idle, the proc-
ess could go directly from blocked to running. The other missing transition,
from ready to blocked, is impossible. A ready process cannot do I/O or any-
thing else that might block it. Only a running process can block.

2. You could have a register containing a pointer to the current process-table
entry. When I/O completed, the CPU would store the current machine state in
the current process-table entry. Then it would go to the interrupt vector for the
interrupting device and fetch a pointer to another process-table entry (the ser-
vice procedure). This process would then be started up.

3. Generally, high-level languages do not allow the kind of access to CPU hard-
ware that is required. For instance, an interrupt handler may be required to
enable and disable the interrupt servicing a particular device, or to manipulate
data within a process’ stack area. Also, interrupt service routines must execute
as rapidly as possible.

4. There are several reasons for using a separate stack for the kernel. Two of
them are as follows. First, you do not want the operating system to crash be-
cause a poorly written user program does not allow for enough stack space.
Second, if the kernel leaves stack data in a user program’s memory space upon
return from a system call, a malicious user might be able to use this data to
find out information about other processes.

5. The chance that all five processes are idle is 1/32, so the CPU idle time is 1/32.

6. There is enough room for 14 processes in memory. If a process has an I/O of
p, then the probability that they are all waiting for I/O is p14. By equating this
to 0.01, we get the equation p14 = 0. 01. Solving this, we get p = 0. 72, so we
can tolerate processes with up to 72% I/O wait.

7. If each job has 50% I/O wait, then it will take 40 minutes to complete in the
absence of competition. If run sequentially, the second one will finish 80 min-
utes after the first one starts. With two jobs, the approximate CPU utilization is
1 − 0. 52. Thus, each one gets 0.375 CPU minute per minute of real time. To
accumulate 20 minutes of CPU time, a job must run for 20/0.375 minutes, or
about 53.33 minutes. Thus running sequentially the jobs finish after 80 min-
utes, but running in parallel they finish after 53.33 minutes.

8. The probability that all processes are waiting for I/O is 0. 46 which is
0.004096. Therefore, CPU utilization = 1 − 0. 004096 = 0: 995904.

© Copyright 2015 Pearson Education, Inc. All Rights Reserved.

PROBLEM SOLUTIONS FOR CHAPTER 2 7

9. The client process can create separate threads; each thread can fetch a different
part of the file from one of the mirror servers. This can help reduce downtime.
Of course, there is a single network link being shared by all threads. This link
can become a bottleneck as the number of threads becomes very large.

10. It would be difficult, if not impossible, to keep the file system consistent. Sup-
pose that a client process sends a request to server process 1 to update a file.
This process updates the cache entry in its memory. Shortly thereafter, another
client process sends a request to server 2 to read that file. Unfortunately, if the
file is also cached there, server 2, in its innocence, will return obsolete data. If
the first process writes the file through to the disk after caching it, and server 2
checks the disk on every read to see if its cached copy is up-to-date, the system
can be made to work, but it is precisely all these disk accesses that the caching
system is trying to avoid.

11. No. If a single-threaded process is blocked on the keyboard, it cannot fork.

12. A worker thread will block when it has to read a Web page from the disk. If
user-level threads are being used, this action will block the entire process,
destroying the value of multithreading. Thus it is essential that kernel threads
are used to permit some threads to block without affecting the others.

13. Yes. If the server is entirely CPU bound, there is no need to have multiple
threads. It just adds unnecessary complexity. As an example, consider a tele-
phone directory assistance number (like 555-1212) for an area with 1 million
people. If each (name, telephone number) record is, say, 64 characters, the en-
tire database takes 64 megabytes and can easily be kept in the server’s memory
to provide fast lookup.

14. When a thread is stopped, it has values in the registers. They must be saved,
just as when the process is stopped. the registers must be saved. Multiprogram-
ming threads is no different than multiprogramming processes, so each thread
needs its own register save area.

15. Threads in a process cooperate. They are not hostile to one another. If yield-
ing is needed for the good of the application, then a thread will yield. After all,
it is usually the same programmer who writes the code for all of them.

16. User-level threads cannot be preempted by the clock unless the whole process’
quantum has been used up (although transparent clock interrupts can happen).
Kernel-level threads can be preempted individually. In the latter case, if a
thread runs too long, the clock will interrupt the current process and thus the
current thread. The kernel is free to pick a different thread from the same proc-
ess to run next if it so desires.

© Copyright 2015 Pearson Education, Inc. All Rights Reserved.

8 PROBLEM SOLUTIONS FOR CHAPTER 2

17. In the single-threaded case, the cache hits take 12 msec and cache misses take
87 msec. The weighted average is 2/3 × 12 + 1/3 × 87. Thus, the mean re-
quest takes 37 msec and the server can do about 27 per second. For a multi-
threaded server, all the waiting for the disk is overlapped, so every request
takes 12 msec, and the server can handle 83 1/3 requests per second.

18. The biggest advantage is the efficiency. No traps to the kernel are needed to
switch threads. The biggest disadvantage is that if one thread blocks, the entire
process blocks.

19. Yes, it can be done. After each call to pthread create, the main program could
do a pthread join to wait until the thread just created has exited before creat-
ing the next thread.

20. The pointers are really necessary because the size of the global variable is
unknown. It could be anything from a character to an array of floating-point
numbers. If the value were stored, one would have to giv e the size to cre-
ate global, which is all right, but what type should the second parameter of
set global be, and what type should the value of read global be?

21. It could happen that the runtime system is precisely at the point of blocking or
unblocking a thread, and is busy manipulating the scheduling queues. This
would be a very inopportune moment for the clock interrupt handler to begin
inspecting those queues to see if it was time to do thread switching, since they
might be in an inconsistent state. One solution is to set a flag when the runtime
system is entered. The clock handler would see this and set its own flag, then
return. When the runtime system finished, it would check the clock flag, see
that a clock interrupt occurred, and now run the clock handler.

22. Yes it is possible, but inefficient. A thread wanting to do a system call first
sets an alarm timer, then does the call. If the call blocks, the timer returns con-
trol to the threads package. Of course, most of the time the call will not block,
and the timer has to be cleared. Thus each system call that might block has to
be executed as three system calls. If timers go off prematurely, all kinds of
problems develop. This is not an attractive way to build a threads package.

23. Yes, it still works, but it still is busy waiting, of course.

24. It certainly works with preemptive scheduling. In fact, it was designed for that
case. When scheduling is nonpreemptive, it might fail. Consider the case in
which turn is initially 0 but process 1 runs first. It will just loop forever and
never release the CPU.

25. The priority inversion problem occurs when a low-priority process is in its
critical region and suddenly a high-priority process becomes ready and is
scheduled. If it uses busy waiting, it will run forever. With user-level threads,
it cannot happen that a low-priority thread is suddenly preempted to allow a

© Copyright 2015 Pearson Education, Inc. All Rights Reserved.

PROBLEM SOLUTIONS FOR CHAPTER 2 9

high-priority thread run. There is no preemption. With kernel-level threads
this problem can arise.

26. With round-robin scheduling it works. Sooner or later L will run, and eventual-
ly it will leave its critical region. The point is, with priority scheduling, L never
gets to run at all; with round robin, it gets a normal time slice periodically, so
it has the chance to leave its critical region.

27. Each thread calls procedures on its own, so it must have its own stack for the
local variables, return addresses, and so on. This is equally true for user-level
threads as for kernel-level threads.

28. Yes. The simulated computer could be multiprogrammed. For example, while
process A is running, it reads out some shared variable. Then a simulated
clock tick happens and process B runs. It also reads out the same variable.
Then it adds 1 to the variable. When process A runs, if it also adds 1 to the
variable, we have a race condition.

29. Yes, it will work as is. At a given time instant, only one producer (consumer)
can add (remove) an item to (from) the buffer.

30. The solution satisfies mutual exclusion since it is not possible for both proc-
esses to be in their critical section. That is, when turn is 0, P0 can execute its
critical section, but not P1. Likewise, when turn is 1. However, this assumes
P0 must run first. If P1 produces something and it puts it in a buffer, then
while P0 can get into its critical section, it will find the buffer empty and
block. Also, this solution requires strict alternation of the two processes, which
is undesirable.

31. To do a semaphore operation, the operating system first disables interrupts.
Then it reads the value of the semaphore. If it is doing a down and the sema-
phore is equal to zero, it puts the calling process on a list of blocked processes
associated with the semaphore. If it is doing an up, it must check to see if any
processes are blocked on the semaphore. If one or more processes are block-
ed, one of them is removed from the list of blocked processes and made run-
nable. When all these operations have been completed, interrupts can be
enabled again.

32. Associated with each counting semaphore are two binary semaphores, M, used
for mutual exclusion, and B, used for blocking. Also associated with each
counting semaphore is a counter that holds the number of ups minus the num-
ber of downs, and a list of processes blocked on that semaphore. To imple-
ment down, a process first gains exclusive access to the semaphores, counter,
and list by doing a down on M. It then decrements the counter. If it is zero or
more, it just does an up on M and exits. If M is negative, the process is put on
the list of blocked processes. Then an up is done on M and a down is done on
B to block the process. To implement up, first M is downed to get mutual

© Copyright 2015 Pearson Education, Inc. All Rights Reserved.

10 PROBLEM SOLUTIONS FOR CHAPTER 2

exclusion, and then the counter is incremented. If it is more than zero, no one
was blocked, so all that needs to be done is to up M. If, however, the counter
is now neg ative or zero, some process must be removed from the list. Finally,
an up is done on B and M in that order.

33. If the program operates in phases and neither process may enter the next phase
until both are finished with the current phase, it makes perfect sense to use a
barrier.

34. With kernel threads, a thread can block on a semaphore and the kernel can run
some other thread in the same process. Consequently, there is no problem
using semaphores. With user-level threads, when one thread blocks on a sem-
aphore, the kernel thinks the entire process is blocked and does not run it ever
again. Consequently, the process fails.

35. It is very expensive to implement. Each time any variable that appears in a
predicate on which some process is waiting changes, the run-time system must
re-evaluate the predicate to see if the process can be unblocked. With the
Hoare and Brinch Hansen monitors, processes can only be awakened on a sig-
nal primitive.

36. The employees communicate by passing messages: orders, food, and bags in
this case. In UNIX terms, the four processes are connected by pipes.

37. It does not lead to race conditions (nothing is ever lost), but it is effectively
busy waiting.

38. It will take nT sec.

39. Three processes are created. After the initial process forks, there are two proc-
esses running, a parent and a child. Each of them then forks, creating two addi-
tional processes. Then all the processes exit.

40. If a process occurs multiple times in the list, it will get multiple quanta per
cycle. This approach could be used to give more important processes a larger
share of the CPU. But when the process blocks, all entries had better be re-
moved from the list of runnable processes.

41. In simple cases it may be possible to see if I/O will be limiting by looking at
source code. For instance a program that reads all its input files into buffers at
the start will probably not be I/O bound, but a problem that reads and writes
incrementally to a number of different files (such as a compiler) is likely to be
I/O bound. If the operating system provides a facility such as the UNIX ps
command that can tell you the amount of CPU time used by a program, you
can compare this with the total time to complete execution of the program.
This is, of course, most meaningful on a system where you are the only user.

© Copyright 2015 Pearson Education, Inc. All Rights Reserved.

PROBLEM SOLUTIONS FOR CHAPTER 2 11

42. If the context switching time is large, then the time quantum value has to be
proportionally large. Otherwise, the overhead of context switching can be
quite high. Choosing large time quantum values can lead to an inefficient sys-
tem if the typical CPU burst times are less than the time quantum. If context
switching is very small or negligible, then the time quantum value can be cho-
sen with more freedom.

43. The CPU efficiency is the useful CPU time divided by the total CPU time.
When Q ≥ T , the basic cycle is for the process to run for T and undergo a
process switch for S. Thus, (a) and (b) have an efficiency of T /(S + T). When
the quantum is shorter than T, each run of T will require T /Q process switches,
wasting a time ST /Q. The efficiency here is then

T

T + ST /Q

which reduces to Q/(Q + S), which is the answer to (c). For (d), we just sub-
stitute Q for S and find that the efficiency is 50%. Finally, for (e), as Q → 0 the
efficiency goes to 0.

44. Shortest job first is the way to minimize average response time.
0 < X ≤ 3: X , 3, 5, 6, 9.
3 < X ≤ 5: 3, X , 5, 6, 9.
5 < X ≤ 6: 3, 5, X , 6, 9.
6 < X ≤ 9: 3, 5, 6, X , 9.
X > 9: 3, 5, 6, 9, X .

45. For round robin, during the first 10 minutes each job gets 1/5 of the CPU. At
the end of 10 minutes, C finishes. During the next 8 minutes, each job gets 1/4
of the CPU, after which time D finishes. Then each of the three remaining jobs
gets 1/3 of the CPU for 6 minutes, until B finishes, and so on. The finishing
times for the five jobs are 10, 18, 24, 28, and 30, for an average of 22 minutes.
For priority scheduling, B is run first. After 6 minutes it is finished. The other
jobs finish at 14, 24, 26, and 30, for an average of 18.8 minutes. If the jobs run
in the order A through E, they finish at 10, 16, 18, 22, and 30, for an average of
19.2 minutes. Finally, shortest job first yields finishing times of 2, 6, 12, 20,
and 30, for an average of 14 minutes.

46. The first time it gets 1 quantum. On succeeding runs it gets 2, 4, 8, and 15, so
it must be swapped in 5 times.

47. Each voice call needs 200 samples of 1 msec or 200 msec. Together they use
400 msec of CPU time. The video needs 11 msec 33 1/3 times a second for a
total of about 367 msec. The sum is 767 msec per second of real time so the
system is schedulable.

© Copyright 2015 Pearson Education, Inc. All Rights Reserved.

12 PROBLEM SOLUTIONS FOR CHAPTER 2

48. Another video stream consumes 367 msec of time per second for a total of
1134 msec per second of real time so the system is not schedulable.

49. The sequence of predictions is 40, 30, 35, and now 25.

50. The fraction of the CPU used is 35/50 + 20/100 + 10/200 + x/250. To be
schedulable, this must be less than 1. Thus x must be less than 12.5 msec.

51. Yes. There will be always at least one fork free and at least one philosopher
that can obtain both forks simultaneously. Hence, there will be no deadlock.
You can try this for N = 2, N = 3 and N = 4 and then generalize.

52. Each voice call runs 166.67 times/second and uses up 1 msec per burst, so
each voice call needs 166.67 msec per second or 333.33 msec for the two of
them. The video runs 25 times a second and uses up 20 msec each time, for a
total of 500 msec per second. Together they consume 833.33 msec per second,
so there is time left over and the system is schedulable.

53. The kernel could schedule processes by any means it wishes, but within each
process it runs threads strictly in priority order. By letting the user process set
the priority of its own threads, the user controls the policy but the kernel hand-
les the mechanism.

54. If a philosopher blocks, neighbors can later see that she is hungry by checking
his state, in test, so he can be awakened when the forks are available.

55. The change would mean that after a philosopher stopped eating, neither of his
neighbors could be chosen next. In fact, they would never be chosen. Sup-
pose that philosopher 2 finished eating. He would run test for philosophers 1
and 3, and neither would be started, even though both were hungry and both
forks were available. Similarly, if philosopher 4 finished eating, philosopher 3
would not be started. Nothing would start him.

56. Variation 1: readers have priority. No writer may start when a reader is active.
When a new reader appears, it may start immediately unless a writer is cur-
rently active. When a writer finishes, if readers are waiting, they are all started,
regardless of the presence of waiting writers. Variation 2: Writers have prior-
ity. No reader may start when a writer is waiting. When the last active process
finishes, a writer is started, if there is one; otherwise, all the readers (if any)
are started. Variation 3: symmetric version. When a reader is active, new
readers may start immediately. When a writer finishes, a new writer has prior-
ity, if one is waiting. In other words, once we have started reading, we keep
reading until there are no readers left. Similarly, once we have started writing,
all pending writers are allowed to run.

© Copyright 2015 Pearson Education, Inc. All Rights Reserved.

PROBLEM SOLUTIONS FOR CHAPTER 2 13

57. A possible shell script might be

if [! –f numbers]; then echo 0 > numbers; fi
count = 0
while (test $count != 200)
do
count=′expr $count + 1′
n=′tail –1 numbers′
expr $n + 1 >>numbers

done

Run the script twice simultaneously, by starting it once in the background
(using &) and again in the foreground. Then examine the file numbers. It will
probably start out looking like an orderly list of numbers, but at some point it
will lose its orderliness, due to the race condition created by running two cop-
ies of the script. The race can be avoided by having each copy of the script test
for and set a lock on the file before entering the critical area, and unlocking it
upon leaving the critical area. This can be done like this:

if ln numbers numbers.lock
then
n=′tail –1 numbers′
expr $n + 1 >>numbers
rm numbers.lock

fi

This version will just skip a turn when the file is inaccessible. Variant solu-
tions could put the process to sleep, do busy waiting, or count only loops in
which the operation is successful.

© Copyright 2015 Pearson Education, Inc. All Rights Reserved.

14 PROBLEM SOLUTIONS FOR CHAPTER 3

SOLUTIONS TO CHAPTER 3 PROBLEMS

1. First, special hardware is needed to do the comparisons, and it must be fast,
since it is used on every memory reference. Second, with 4-bit keys, only 16
programs can be in memory at once (one of which is the operating system).

2. It is an accident. The base register is 16,384 because the program happened to
be loaded at address 16,384. It could have been loaded anywhere. The limit
register is 16,384 because the program contains 16,384 bytes. It could have
been any length. That the load address happens to exactly match the program
length is pure coincidence.

3. Almost the entire memory has to be copied, which requires each word to be
read and then rewritten at a different location. Reading 4 bytes takes 4 nsec, so
reading 1 byte takes 1 nsec and writing it takes another 2 nsec, for a total of 2
nsec per byte compacted. This is a rate of 500,000,000 bytes/sec. To copy 4
GB (2232 bytes, which is about 4. 295 × 109 bytes), the computer needs
232/500, 000, 000 sec, which is about 859 msec. This number is slightly pes-
simistic because if the initial hole at the bottom of memory is k bytes, those k
bytes do not need to be copied. However, if there are many holes and many
data segments, the holes will be small, so k will be small and the error in the
calculation will also be small.

4. First fit takes 20 MB, 10 MB, 18 MB. Best fit takes 12 MB, 10 MB, and 9
MB. Worst fit takes 20 MB, 18 MB, and 15 MB. Next fit takes 20 MB, 18
MB, and 9 MB.

5. Real memory uses physical addresses. These are the numbers that the memory
chips react to on the bus. Virtual addresses are the logical addresses that refer
to a process’ address space. Thus a machine with a 32-bit word can generate
virtual addresses up to 4 GB regardless of whether the machine has more or
less memory than 4 GB.

6. For a 4-KB page size the (page, offset) pairs are (4, 3616), (8, 0), and (14,
2656). For an 8-KB page size they are (2, 3616), (4, 0), and (7, 2656).

7. (a) 8212. (b) 4100. (c) 24684.

8. They built an MMU and inserted it between the 8086 and the bus. Thus all
8086 physical addresses went into the MMU as virtual addresses. The MMU
then mapped them onto physical addresses, which went to the bus.

9. There needs to be an MMU that can remap virtual pages to physical pages.
Also, when a page not currently mapped is referenced, there needs to be a trap
to the operating system so it can fetch the page.

© Copyright 2015 Pearson Education, Inc. All Rights Reserved.

PROBLEM SOLUTIONS FOR CHAPTER 3 15

10. If the smartphone supports multiprogramming, which the iPhone, Android,
and Windows phones all do, then multiple processes are supported. If a proc-
ess forks and pages are shared between parent and child, copy on write defi-
nitely makes sense. A smartphone is smaller than a server, but logically it is
not so different.

11. For these sizes
(a) M has to be at least 4096 to ensure a TLB miss for every access to an ele-

ment of X. Since N affects only how many times X is accessed, any value of
N will do.

(b) M should still be at least 4,096 to ensure a TLB miss for every access to an
element of X. But now N should be greater than 64K to thrash the TLB, that
is, X should exceed 256 KB.

12. The total virtual address space for all the processes combined is nv, so this
much storage is needed for pages. However, an amount r can be in RAM, so
the amount of disk storage required is only nv − r. This amount is far more
than is ever needed in practice because rarely will there be n processes ac-
tually running and even more rarely will all of them need the maximum allow-
ed virtual memory.

13. A page fault every k instructions adds an extra overhead of n/k μsec to the
av erage, so the average instruction takes 1 + n/k nsec.

14. The page table contains 232/213 entries, which is 524,288. Loading the page
table takes 52 msec. If a process gets 100 msec, this consists of 52 msec for
loading the page table and 48 msec for running. Thus 52% of the time is spent
loading page tables.

15. Under these circumstances:
(a) We need one entry for each page, or 224 = 16 × 1024 × 1024 entries, since

there are 36 = 48 − 12 bits in the page number field.
(b) Instruction addresses will hit 100% in the TLB. The data pages will have a

100 hit rate until the program has moved onto the next data page. Since a
4-KB page contains 1,024 long integers, there will be one TLB miss and
one extra memory access for every 1,024 data references.

16. The chance of a hit is 0.99 for the TLB, 0.0099 for the page table, and 0.0001
for a page fault (i.e., only 1 in 10,000 references will cause a page fault). The
effective address translation time in nsec is then:

0. 99 × 1 + 0. 0099 × 100 + 0. 0001 × 6 × 106 ≈ 602 clock cycles.
Note that the effective address translation time is quite high because it is domi-
nated by the page replacement time even when page faults only occur once in
10,000 references.

© Copyright 2015 Pearson Education, Inc. All Rights Reserved.

16 PROBLEM SOLUTIONS FOR CHAPTER 3

17. Consider,
(a) A multilevel page table reduces the number of actual pages of the page ta-

ble that need to be in memory because of its hierarchic structure. In fact, in
a program with lots of instruction and data locality, we only need the top-
level page table (one page), one instruction page, and one data page.

(b) Allocate 12 bits for each of the three page fields. The offset field requires
14 bits to address 16 KB. That leaves 24 bits for the page fields. Since each
entry is 4 bytes, one page can hold 212 page table entries and therefore re-
quires 12 bits to index one page. So allocating 12 bits for each of the page
fields will address all 238 bytes.

18. The virtual address was changed from (PT1, PT2, Offset) to (PT1, PT2, PT3,
Offset). But the virtual address still used only 32 bits. The bit configuration
of a virtual address changed from (10, 10, 12) to (2, 9, 9, 12)

19. Twenty bits are used for the virtual page numbers, leaving 12 over for the off-
set. This yields a 4-KB page. Twenty bits for the virtual page implies 220

pages.

20. For a one-level page table, there are 232/212 or 1M pages needed. Thus the
page table must have 1M entries. For two-level paging, the main page table
has 1K entries, each of which points to a second page table. Only two of these
are used. Thus, in total only three page table entries are needed, one in the
top-level table and one in each of the lower-level tables.

21. The code and reference string are as follows

LOAD 6144,R0 1(I), 12(D)
PUSH R0 2(I), 15(D)
CALL 5120 2(I), 15(D)
JEQ 5152 10(I)

The code (I) indicates an instruction reference, whereas (D) indicates a data
reference.

22. The effective instruction time is 1h + 5(1 − h), where h is the hit rate. If we
equate this formula with 2 and solve for h, we find that h must be at least 0.75.

23. An associative memory essentially compares a key to the contents of multiple
registers simultaneously. For each register there must be a set of comparators
that compare each bit in the register contents to the key being searched for.
The number of gates (or transistors) needed to implement such a device is a
linear function of the number of registers, so expanding the design gets expen-
sive linearly.

© Copyright 2015 Pearson Education, Inc. All Rights Reserved.

PROBLEM SOLUTIONS FOR CHAPTER 3 17

24. With 8-KB pages and a 48-bit virtual address space, the number of virtual
pages is 248/213, which is 235 (about 34 billion).

25. The main memory has 228/213 = 32,768 pages. A 32K hash table will have a
mean chain length of 1. To get under 1, we have to go to the next size, 65,536
entries. Spreading 32,768 entries over 65,536 table slots will give a mean
chain length of 0.5, which ensures fast lookup.

26. This is probably not possible except for the unusual and not very useful case
of a program whose course of execution is completely predictable at compila-
tion time. If a compiler collects information about the locations in the code of
calls to procedures, this information might be used at link time to rearrange the
object code so that procedures were located close to the code that calls them.
This would make it more likely that a procedure would be on the same page as
the calling code. Of course this would not help much for procedures called
from many places in the program.

27. Under these circumstances
(a) Every reference will page fault unless the number of page frames is 512,

the length of the entire sequence.
(b) If there are 500 frames, map pages 0–498 to fixed frames and vary only one

frame.

28. The page frames for FIFO are as follows:

x0172333300
xx017222233
xxx01777722
xxxx0111177

The page frames for LRU are as follows:

x0172327103
xx017232710
xxx01773271
xxxx0111327

FIFO yields six page faults; LRU yields seven.

29. The first page with a 0 bit will be chosen, in this case D.

30. The counters are
Page 0: 0110110
Page 1: 01001001
Page 2: 00110111
Page 3: 10001011

© Copyright 2015 Pearson Education, Inc. All Rights Reserved.

18 PROBLEM SOLUTIONS FOR CHAPTER 3

31. The sequence: 0, 1, 2, 1, 2, 0, 3. In LRU, page 1 will be replaced by page 3. In
clock, page 1 will be replaced, since all pages will be marked and the cursor is
at page 0.

32. The age of the page is 2204 − 1213 = 991. If τ = 400, it is definitely out of the
working set and was not recently referenced so it will be evicted. The τ = 1000
situation is different. Now the page falls within the working set (barely), so it
is not removed.

33. Consider,
(a) For every R bit that is set, set the time-stamp value to 10 and clear all R

bits. You could also change the (0,1) R-M entries to (0,0*). So the entries
for pages 1 and 2 will change to:

Pa ge Time stamp V R M

0 6 1 0 0*

1 10 1 0 0

2 10 1 0 1

(b) Evict page 3 (R = 0 and M = 0) and load page 4:

Pa ge Time stamp V R M Notes

0 6 1 0 1

1 9 1 1 0

2 9 1 1 1

3 7 0 0 0 Changed from 7 (1,0,0)

4 10 1 1 0 Changed from 4 (0,0,0)

34. Consider,
(a) The attributes are: (FIFO) load time; (LRU) latest reference time; and

(Optimal) nearest reference time in the future.
(b) There is the labeling algorithm and the replacement algorithm. The label-

ing algorithm labels each page with the attribute given in part a. The re-
placement algorithm evicts the page with the smallest label.

35. The seek plus rotational latency is 10 msec. For 2-KB pages, the transfer time
is about 0.009766 msec, for a total of about 10.009766 msec. Loading 32 of
these pages will take about 320.21 msec. For 4-KB pages, the transfer time is
doubled to about 0.01953 msec, so the total time per page is 10.01953 msec.
Loading 16 of these pages takes about 160.3125 msec. With such fast disks,
all that matters is reducing the number of transfers (or putting the pages con-
secutively on the disk).

© Copyright 2015 Pearson Education, Inc. All Rights Reserved.

PROBLEM SOLUTIONS FOR CHAPTER 3 19

36. NRU removes page 2. FIFO removes page 3. LRU removes page 1. Second
chance removes page 2.

37. Sharing pages brings up all kinds of complications and options:

(a) The page table update should be delayed for process B if it will never ac-
cess the shared page or if it accesses it when the page has been swapped
out again. Unfortunately, in the general case, we do not know what process
B will do in the future.

(b) The cost is that this lazy page fault handling can incur more page faults.
The overhead of each page fault plays an important role in determining if
this strategy is more efficient. (Aside: This cost is similar to that faced by
the copy-on-write strategy for supporting some UNIX fork system call im-
plementations.)

38. Fragment B since the code has more spatial locality than Fragment A. The
inner loop causes only one page fault for every other iteration of the outer
loop. (There will be only 32 page faults.) [Aside (Fragment A): Since a frame
is 128 words, one row of the X array occupies half of a page (i.e., 64 words).
The entire array fits into 64 × 32/128 = 16 frames. The inner loop of the code
steps through consecutive rows of X for a given column. Thus, ev ery other
reference to X[i][j] will cause a page fault. The total number of page faults
will be 64 × 64/2 = 2, 048].

39. It can certainly be done.

(a) The approach has similarities to using flash memory as a paging device in
smartphones except now the virtual swap area is a RAM located on a re-
mote server. All of the software infrastructure for the virtual swap area
would have to be dev eloped.

(b) The approach might be worthwhile by noting that the access time of disk
drives is in the millisecond range while the access time of RAM via a net-
work connection is in the microsecond range if the software overhead is not
too high. But the approach might make sense only if there is lots of idle
RAM in the server farm. And then, there is also the issue of reliability.
Since RAM is volatile, the virtual swap area would be lost if the remote ser-
ver went down.

40. The PDP-1 paging drum had the advantage of no rotational latency. This saved
half a rotation each time memory was written to the drum.

41. The text is eight pages, the data are five pages, and the stack is four pages. The
program does not fit because it needs 17 4096-byte pages. With a 512-byte
page, the situation is different. Here the text is 64 pages, the data are 33 pages,
and the stack is 31 pages, for a total of 128 512-byte pages, which fits. With
the small page size it is OK, but not with the large one.

© Copyright 2015 Pearson Education, Inc. All Rights Reserved.

20 PROBLEM SOLUTIONS FOR CHAPTER 3

42. The program is getting 15,000 page faults, each of which uses 2 msec of extra
processing time. Together, the page fault overhead is 30 sec. This means that
of the 60 sec used, half was spent on page fault overhead, and half on running
the program. If we run the program with twice as much memory, we get half
as many memory page faults, and only 15 sec of page fault overhead, so the
total run time will be 45 sec.

43. It works for the program if the program cannot be modified. It works for the
data if the data cannot be modified. However, it is common that the program
cannot be modified and extremely rare that the data cannot be modified. If the
data area on the binary file were overwritten with updated pages, the next time
the program was started, it would not have the original data.

44. The instruction could lie astride a page boundary, causing two page faults just
to fetch the instruction. The word fetched could also span a page boundary,
generating two more faults, for a total of four. If words must be aligned in
memory, the data word can cause only one fault, but an instruction to load a
32-bit word at address 4094 on a machine with a 4-KB page is legal on some
machines (including the x86).

45. Internal fragmentation occurs when the last allocation unit is not full. External
fragmentation occurs when space is wasted between two allocation units. In a
paging system, the wasted space in the last page is lost to internal frag-
mentation. In a pure segmentation system, some space is invariably lost be-
tween the segments. This is due to external fragmentation.

46. No. The search key uses both the segment number and the virtual page num-
ber, so the exact page can be found in a single match.

47. Here are the results:

Address Fault?

(a) (14, 3) No (or 0xD3 or 1110 0011)

(b) NA Protection fault: Write to read/execute segment

(c) NA Page fault

(d) NA Protection fault: Jump to read/write segment

48. General virtual memory support is not needed when the memory requirements
of all applications are well known and controlled. Some examples are smart
cards, special-purpose processors (e.g., network processors), and embedded
processors. In these situations, we should always consider the possibility of
using more real memory. If the operating system did not have to support virtu-
al memory, the code would be much simpler and smaller. On the other hand,
some ideas from virtual memory may still be profitably exploited, although
with different design requirements. For example, program/thread isolation
might be paging to flash memory.

© Copyright 2015 Pearson Education, Inc. All Rights Reserved.

PROBLEM SOLUTIONS FOR CHAPTER 3 21

49. This question addresses one aspect of virtual machine support. Recent at-
tempts include Denali, Xen, and VMware. The fundamental hurdle is how to
achieve near-native performance, that is, as if the executing operating system
had memory to itself. The problem is how to quickly switch to another operat-
ing system and therefore how to deal with the TLB. Typically, you want to
give some number of TLB entries to each kernel and ensure that each kernel
operates within its proper virtual memory context. But sometimes the hard-
ware (e.g., some Intel architectures) wants to handle TLB misses without
knowledge of what you are trying to do. So, you need to either handle the TLB
miss in software or provide hardware support for tagging TLB entries with a
context ID.

© Copyright 2015 Pearson Education, Inc. All Rights Reserved.

22 PROBLEM SOLUTIONS FOR CHAPTER 4

SOLUTIONS TO CHAPTER 4 PROBLEMS

1. You can go up and down the tree as often as you want using ‘‘..’’. Some of the
many paths are

/etc/passwd
/./etc/passwd
/././etc/passwd
/./././etc/passwd
/etc/../etc/passwd
/etc/../etc/../etc/passwd
/etc/../etc/../etc/../etc/passwd
/etc/../etc/../etc/../etc/../etc/passwd

2. The Windows way is to use the file extension. Each extension corresponds to a
file type and to some program that handles that type. Another way is to
remember which program created the file and run that program. The Macin-
tosh works this way.

3. These systems loaded the program directly in memory and began executing at
word 0, which was the magic number. To avoid trying to execute the header as
code, the magic number was a BRANCH instruction with a target address just
above the header. In this way it was possible to read the binary file directly
into the new process’ address space and run it at 0, without even knowing how
big the header was.

4. To start with, if there were no open, on every read it would be necessary to
specify the name of the file to be opened. The system would then have to fetch
the i-node for it, although that could be cached. One issue that quickly arises is
when to flush the i-node back to disk. It could time out, however. It would be
a bit clumsy, but it might work.

5. No. If you want to read the file again, just randomly access byte 0.

6. Yes. The rename call does not change the creation time or the time of last
modification, but creating a new file causes it to get the current time as both
the creation time and the time of last modification. Also, if the disk is nearly
full, the copy might fail.

7. The mapped portion of the file must start at a page boundary and be an integral
number of pages in length. Each mapped page uses the file itself as backing
store. Unmapped memory uses a scratch file or partition as backing store.

8. Use file names such as /usr/ast/file. While it looks like a hierarchical path
name, it is really just a single name containing embedded slashes.

© Copyright 2015 Pearson Education, Inc. All Rights Reserved.

PROBLEM SOLUTIONS FOR CHAPTER 4 23

9. One way is to add an extra parameter to the read system call that tells what ad-
dress to read from. In effect, every read then has a potential for doing a seek
within the file. The disadvantages of this scheme are (1) an extra parameter in
ev ery read call, and (2) requiring the user to keep track of where the file point-
er is.

10. The dotdot component moves the search to /usr, so ../ast puts it in /usr/ast.
Thus ../ast/x is the same as /usr/ast/x.

11. Since the wasted storage is between the allocation units (files), not inside
them, this is external fragmentation. It is precisely analogous to the external
fragmentation of main memory that occurs with a swapping system or a sys-
tem using pure segmentation.

12. If a data block gets corrupted in a contiguous allocation system, then only this
block is affected; the remainder of the file’s blocks can be read. In the case of
linked allocation, the corrupted block cannot be read; also, location data about
all blocks starting from this corrupted block is lost. In case of indexed alloca-
tion, only the corrupted data block is affected.

13. It takes 9 msec to start the transfer. To read 213 bytes at a transfer rate of 80
MB/sec requires 0.0977 msec, for a total of 9.0977 msec. Writing it back takes
another 9.0977 msec. Thus, copying a file takes 18.1954 msec. To compact
half of a 16-GB disk would involve copying 8 GB of storage, which is 220

files. At 18.1954 msec per file, this takes 19,079.25 sec, which is 5.3 hours.
Clearly, compacting the disk after every file removal is not a great idea.

14. If done right, yes. While compacting, each file should be organized so that all
of its blocks are consecutive, for fast access. Windows has a program that
defragments and reorganizes the disk. Users are encouraged to run it periodi-
cally to improve system performance. But given how long it takes, running
once a month might be a good frequency.

15. A digital still camera records some number of photographs in sequence on a
nonvolatile storage medium (e.g., flash memory). When the camera is reset,
the medium is emptied. Thereafter, pictures are recorded one at a time in se-
quence until the medium is full, at which time they are uploaded to a hard
disk. For this application, a contiguous file system inside the camera (e.g., on
the picture storage medium) is ideal.

16. The indirect block can hold 128 disk addresses. Together with the 10 direct
disk addresses, the maximum file has 138 blocks. Since each block is 1 KB,
the largest file is 138 KB.

17. For random access, table/indexed and contiguous will be both appropriate,
while linked allocation is not as it typically requires multiple disk reads for a
given record.

© Copyright 2015 Pearson Education, Inc. All Rights Reserved.

24 PROBLEM SOLUTIONS FOR CHAPTER 4

18. Since the file size changes a lot, contiguous allocation will be inefficient re-
quiring reallocation of disk space as the file grows in size and compaction of
free blocks as the file shrinks in size. Both linked and table/indexed allocation
will be efficient; between the two, table/indexed allocation will be more effi-
cient for random-access scenarios.

19. There must be a way to signal that the address-block pointers hold data, rather
than pointers. If there is a bit left over somewhere among the attributes, it can
be used. This leaves all nine pointers for data. If the pointers are k bytes each,
the stored file could be up to 9k bytes long. If no bit is left over among the at-
tributes, the first disk address can hold an invalid address to mark the follow-
ing bytes as data rather than pointers. In that case, the maximum file is 8k
bytes.

20. Elinor is right. Having two copies of the i-node in the table at the same time is
a disaster, unless both are read only. The worst case is when both are being
updated simultaneously. When the i-nodes are written back to the disk,
whichever one gets written last will erase the changes made by the other one,
and disk blocks will be lost.

21. Hard links do not require any extra disk space, just a counter in the i-node to
keep track of how many there are. Symbolic links need space to store the name
of the file pointed to. Symbolic links can point to files on other machines,
ev en over the Internet. Hard links are restricted to pointing to files within their
own partition.

22. A single i-node is pointed to by all directory entries of hard links for a given
file. In the case of soft-links, a new i-node is created for the soft link and this
inode essentially points to the original file being linked.

23. The number of blocks on the disk = 4 TB / 4 KB = 230. Thus, each block ad-
dress can be 32 bits (4 bytes), the nearest power of 2. Thus, each block can
store 4 KB / 4 = 1024 addresses.

24. The bitmap requires B bits. The free list requires DF bits. The free list requires
fewer bits if DF < B. Alternatively, the free list is shorter if F /B < 1/D,
where F /B is the fraction of blocks free. For 16-bit disk addresses, the free list
is shorter if 6% or less of the disk is free.

25. The beginning of the bitmap looks like:

(a) After writing file B: 1111 1111 1111 0000
(b) After deleting file A: 1000 0001 1111 0000
(c) After writing file C: 1111 1111 1111 1100
(d) After deleting file B: 1111 1110 0000 1100

© Copyright 2015 Pearson Education, Inc. All Rights Reserved.

PROBLEM SOLUTIONS FOR CHAPTER 4 25

26. It is not a serious problem at all. Repair is straightforward; it just takes time.
The recovery algorithm is to make a list of all the blocks in all the files and
take the complement as the new free list. In UNIX this can be done by scan-
ning all the i-nodes. In the FAT file system, the problem cannot occur because
there is no free list. But even if there were, all that would have to be done to
recover it is to scan the FAT looking for free entries.

27. Ollie’s thesis may not be backed up as reliably as he might wish. A backup
program may pass over a file that is currently open for writing, as the state of
the data in such a file may be indeterminate.

28. They must keep track of the time of the last dump in a file on disk. At every
dump, an entry is appended to this file. At dump time, the file is read and the
time of the last entry noted. Any file changed since that time is dumped.

29. In (a) and (b), 21 would not be marked. In (c), there would be no change. In
(d), 21 would not be marked.

30. Many UNIX files are short. If the entire file fits in the same block as the i-
node, only one disk access would be needed to read the file, instead of two, as
is presently the case. Even for longer files there would be a gain, since one
fewer disk accesses would be needed.

31. It should not happen, but due to a bug somewhere it could happen. It means
that some block occurs in two files and also twice in the free list. The first step
in repairing the error is to remove both copies from the free list. Next a free
block has to be acquired and the contents of the sick block copied there. Final-
ly, the occurrence of the block in one of the files should be changed to refer to
the newly acquired copy of the block. At this point the system is once again
consistent.

32. The time needed is h + 40 × (1 − h). The plot is just a straight line.

33. In this case, it is better to use a write-through cache since it writes data to the
hard drive while also updating the cache. This will ensure that the updated file
is always on the external hard drive even if the user accidentally removes the
hard drive before disk sync is completed.

34. The block read-ahead technique reads blocks sequentially, ahead of their use,
in order to improve performance. In this application, the records will likely
not be accessed sequentially since the user can input any student ID at a given
instant. Thus, the read-ahead technique will not be very useful in this scenario.

35. The blocks allotted to f1 are: 22, 19, 15, 17, 21.
The blocks allotted to f2 are: 16, 23, 14, 18, 20.

© Copyright 2015 Pearson Education, Inc. All Rights Reserved.

26 PROBLEM SOLUTIONS FOR CHAPTER 4

36. At 15,000 rpm, the disk takes 4 msec to go around once. The average access
time (in msec) to read k bytes is then 6 + 2 + (k/1, 048, 576) × 4. For blocks
of 1 KB, 2 KB, and 4 KB, the access times are about 6.0039 msec, 6.0078
msec, and 6.0156 msec, respectively (hardly any different). These give rates
of about 170.556 KB/sec, 340.890 KB/sec, and 680.896 KB/sec, respectively.

37. If all files were 1 KB, then each 4-KB block would contain one file and 3 KB
of wasted space. Trying to put two files in a block is not allowed because the
unit used to keep track of data is the block, not the semiblock. This leads to
75% wasted space. In practice, every file system has large files as well as
many small ones, and these files use the disk much more efficiently. For ex-
ample, a 32,769-byte file would use 9 disk blocks for storage, given a space ef-
ficiency of 32,769/36,864, which is about 89%.

38. The indirect block can hold 1024 addresses. Added to the 10 direct addresses,
there are 1034 addresses in all. Since each one points to a 4-KB disk block, the
largest file is 4,235,264 bytes

39. It constrains the sum of all the file lengths to being no larger than the disk.
This is not a very serious constraint. If the files were collectively larger than
the disk, there would be no place to store all of them on the disk.

40. The i-node holds 10 pointers. The single indirect block holds 1024 pointers.
The double indirect block is good for 10242 pointers. The triple indirect block
is good for 10243 pointers. Adding these up, we get a maximum file size of
1,074,791,434 blocks, which is about 16.06 GB.

41. The following disk reads are needed:

directory for /
i-node for /usr
directory for /usr
i-node for /usr/ast
directory for /usr/ast
i-node for /usr/ast/courses
directory for /usr/ast/courses
i-node for /usr/ast/courses/os
directory for /usr/ast/courses/os
i-node for /usr/ast/courses/os/handout.t

In total, 10 disk reads are required.

42. Some pros are as follows. First, no disk space is wasted on unused i-nodes.
Second, it is not possible to run out of i-nodes. Third, less disk movement is
needed since the i-node and the initial data can be read in one operation. Some
cons are as follows. First, directory entries will now need a 32-bit disk address
instead of a 16-bit i-node number. Second, an entire disk will be used even for

© Copyright 2015 Pearson Education, Inc. All Rights Reserved.

PROBLEM SOLUTIONS FOR CHAPTER 4 27

files which contain no data (empty files, device files). Third, file-system integ-
rity checks will be slower because of the need to read an entire block for each
i-node and because i-nodes will be scattered all over the disk. Fourth, files
whose size has been carefully designed to fit the block size will no longer fit
the block size due to the i-node, messing up performance.

© Copyright 2015 Pearson Education, Inc. All Rights Reserved.

28 PROBLEM SOLUTIONS FOR CHAPTER 5

SOLUTIONS TO CHAPTER 5 PROBLEMS

1. In the figure, we see controllers and devices as separate units. The reason is to
allow a controller to handle multiple devices, and thus eliminate the need for
having a controller per device. If controllers become almost free, then it will
be simpler just to build the controller into the device itself. This design will
also allow multiple transfers in parallel and thus give better performance.

2. Easy. The scanner puts out 400 KB/sec maximum. The wireless network runs
at 6.75 MB/sec, so there is no problem at all.

3. It is not a good idea. The memory bus is surely faster than the I/O bus, other-
wise why bother with it? Consider what happens with a normal memory re-
quest. The memory bus finishes first, but the I/O bus is still busy. If the CPU
waits until the I/O bus finishes, it has reduced memory performance to that of
the I/O bus. If it just tries the memory bus for the second reference, it will fail
if this one is an I/O device reference. If there were some way to in-
stantaneously abort the previous I/O bus reference to try the second one, the
improvement might work, but there is never such an option. All in all, it is a
bad idea.

4. An advantage of precise interrupts is simplicity of code in the operating sys-
tem since the machine state is well defined. On the other hand, in imprecise in-
terrupts, OS writers have to figure out what instructions have been partially ex-
ecuted and up to what point. However, precise interrupts increase complexity
of chip design and chip area, which may result in slower CPU.

5. Each bus transaction has a request and a response, each taking 50 nsec, or 100
nsec per bus transaction. This gives 10 million bus transactions/sec. If each
one is good for 4 bytes, the bus has to handle 40 MB/sec. The fact that these
transactions may be sprayed over five I/O devices in round-robin fashion is
irrelevant. A bus transaction takes 100 nsec, regardless of whether consecutive
requests are to the same device or different devices, so the number of channels
the DMA controller has does not matter. The bus does not know or care.

6. (a) Word-at-a-time mode: 1000 × [(t1 + t2) + (t1 + t2) + (t1 + t2)]
Where the first term is for acquiring the bus and sending the command to the
disk controller, the second term is for transferring the word, and the third term
is for the acknowledgement. All in all, a total of 3000 × (t1 + t2) nsec.

(b) Burst mode: (t1 + t2) + t1 + 1000 times t2 + (t1 + t2)
where the first term is for acquiring the bus and sending the command to the
disk controller, the second term is for the disk controller to acquire the bus, the
third term is for the burst transfer, and the fourth term is for acquiring the bus
and doing the acknowledgement. All in all, a total of 3t1 + 1002t2.

© Copyright 2015 Pearson Education, Inc. All Rights Reserved.

PROBLEM SOLUTIONS FOR CHAPTER 5 29

7. Memory to memory copy can be performed by first issuing a read command
that will transfer the word from memory to DMA controller and then issuing a
write to memory to transfer the word from the DMA controller to a different
address in memory. This method has the advantage that the CPU can do other
useful work in parallel. The disadvantage is that this memory to memory copy
is likely to be slow since DMA controller is much slower than CPU and the
data transfer takes place over system bus as opposed to the dedicated
CPU-memory bus.

8. An interrupt requires pushing 34 words onto the stack. Returning from the in-
terrupt requires fetching 34 words from the stack. This overhead alone is 340
nsec. Thus the maximum number of interrupts per second is no more than
about 2.94 million, assuming no work for each interrupt.

9. The execution rate of a modern CPU is determined by the number of instruc-
tions that finish per second and has little to do with how long an instruction
takes. If a CPU can finish 1 billion instructions/sec it is a 1000 MIPS machine,
ev en if an instruction takes 30 nsec. Thus there is generally little attempt to
make instructions finish quickly. Holding the interrupt until the last instruction
currently executing finishes may increase the latency of interrupts appreciably.
Furthermore, some administration is required to get this right.

10. It could have been done at the start. A reason for doing it at the end is that the
code of the interrupt service procedure is very short. By first outputting anoth-
er character and then acknowledging the interrupt, if another interrupt happens
immediately, the printer will be working during the interrupt, making it print
slightly faster. A disadvantage of this approach is slightly longer dead time
when other interrupts may be disabled.

11. Yes. The stacked PC points to the first instruction not fetched. All instructions
before that have been executed and the instruction pointed to and its suc-
cessors have not been executed. This is the condition for precise interrupts.
Precise interrupts are not hard to achieve on machine with a single pipeline.
The trouble comes in when instructions are executed out of order, which is not
the case here.

12. The printer prints 50 × 80 × 6 = 24, 000 characters/min, which is 400 charac-
ters/sec. Each character uses 50 μsec of CPU time for the interrupt, so collec-
tively in each second the interrupt overhead is 20 msec. Using interrupt-driven
I/O, the remaining 980 msec of time is available for other work. In other
words, the interrupt overhead costs only 2% of the CPU, which will hardly
affect the running program at all.

© Copyright 2015 Pearson Education, Inc. All Rights Reserved.

30 PROBLEM SOLUTIONS FOR CHAPTER 5

13. UNIX does it as follows. There is a table indexed by device number, with each
table entry being a C struct containing pointers to the functions for opening,
closing, reading, and writing and a few other things from the device. To install
a new device, a new entry has to be made in this table and the pointers filled
in, often to the newly loaded device driver.

14. (a) Device driver.
(b) Device driver.
(c) Device-independent software.
(d) User-level software.

15. A packet must be copied four times during this process, which takes 4.1 msec.
There are also two interrupts, which account for 2 msec. Finally, the transmis-
sion time is 0.83 msec, for a total of 6.93 msec per 1024 bytes. The maximum
data rate is thus 147,763 bytes/sec, or about 12% of the nominal 10
megabit/sec network capacity. (If we include protocol overhead, the figures
get even worse.)

16. If the printer were assigned as soon as the output appeared, a process could tie
up the printer by printing a few characters and then going to sleep for a week.

17. The disk rotates at 120 RPS, so 1 rotation takes 1000/120 msec. With 200 sec-
tors per rotation, the sector time is 1/200 of this number or 5/120 = 1/24 msec.
During the 1-msec seek, 24 sectors pass under the head. Thus the cylinder
skew should be 24.

18. At 7200 RPM, there are 120 rotations per second, so I rotation takes about
8.33 msec. Dividing this by 500 we get a sector time of about 16.67 μsec.

19. There are 120 rotations in a second. During one of them, 500 × 512 bytes pass
under the head. So the disk can read 256,000 bytes per rotation or 30,720,000
bytes/sec.

20. RAID level 2 can not only recover from crashed drives, but also from unde-
tected transient errors. If one drive delivers a single bad bit, RAID level 2 will
correct this, but RAID level 3 will not.

21. The probability of 0 failures, P0, is (1 − p)k . The probability of 1 failure, P1,
is kp(1 − p)k−1. The probability of a RAID failure is then 1 − P0 − P1. This
is 1 − (1 − p)k − kp(1 − p)k−1.

22. Read performance: RAID levels 0, 2, 3, 4, and 5 allow for parallel reads to ser-
vice one read request. However, RAID level 1 further allows two read requests
to simultaneously proceed. Write performance: All RAID levels provide simi-
lar write performance. Space overhead: There is no space overhead in level 0
and 100% overhead in level 1. With 32-bit data word and six parity drives, the
space overhead is about 18.75% in level 2. For a 32-bit data word, the space
overhead in level 3 is about 3.13%. Finally, assuming 33 drives in lev els 4 and

© Copyright 2015 Pearson Education, Inc. All Rights Reserved.

PROBLEM SOLUTIONS FOR CHAPTER 5 31

5, the space overhead is 3.13% in them. Reliability: There is no reliability
support in level 0. All other RAID levels can survive one disk crash. In addi-
tion, in levels 3, 4 and 5, a single random bit error in a word can be detected,
while in level 2, a single random bit error in a word can be detected and cor-
rected.

23. A zebibyte is 270 bytes; a pebibyte is 250. 220 pebibytes fit in a zebibyte.

24. A magnetic field is generated between two poles. Not only is it difficult to
make the source of a magnetic field small, but also the field spreads rapidly,
which leads to mechanical problems trying to keep the surface of a magnetic
medium close to a magnetic source or sensor. A semiconductor laser generates
light in a very small place, and the light can be optically manipulated to illumi-
nate a very small spot at a relatively great distance from the source.

25. The main advantage of optical disks is that they hav e much higher recording
densities than magnetic disks. The main advantage of magnetic disks is that
they are an order of magnitude faster than the optical disks.

26. Possibly. If most files are stored in logically consecutive sectors, it might be
worthwhile interleaving the sectors to give programs time to process the data
just received, so that when the next request is issued, the disk would be in the
right place. Whether this is worth the trouble depends strongly on the kind of
programs run and how uniform their behavior is.

27. Maybe yes and maybe no. Double interleaving is effectively a cylinder skew of
two sectors. If the head can make a track-to-track seek in fewer than two sec-
tor times, than no additional cylinder skew is needed. If it cannot, then addi-
tional cylinder skew is needed to avoid missing a sector after a seek.

28. Consider,
(a) The capacity of a zone is tracks × cylinders × sectors/cylinder × bytes/sect.

Capacity of zone 1: 16 × 100 × 160 × 512 = 131072000 bytes
Capacity of zone 2: 16 × 100 × 200 × 512 = 163840000 bytes
Capacity of zone 3: 16 × 100 × 240 × 512 = 196608000 bytes
Capacity of zone 4: 16 × 100 × 280 × 512 = 229376000 bytes

Sum = 131072000 + 163840000 + 196608000 + 229376000 = 720896000

(b) A rotation rate of 7200 means there are 120 rotations/sec. In the 1 msec
track-to-track seek time, 0.120 of the sectors are covered. In zone 1, the
disk head will pass over 0.120 × 160 sectors in 1 msec, so, optimal track
skew for zone 1 is 19.2 sectors. In zone 2, the disk head will pass over
0.120 × 200 sectors in 1 msec, so, optimal track skew for zone 2 is 24 sec-
tors. In zone 3, the disk head will pass over 0.120 × 240 sectors in 1 msec,
so, optimal track skew for zone 3 is 28.8 sectors. In zone 4, the disk head
will pass over 0.120 × 280 sectors in 1 msec, so, optimal track skew for
zone 3 is 33.6 sectors.

© Copyright 2015 Pearson Education, Inc. All Rights Reserved.

32 PROBLEM SOLUTIONS FOR CHAPTER 5

(c) The maximum data transfer rate will be when the cylinders in the outermost
zone (zone 4) are being read/written. In that zone, in one second, 280 sec-
tors are read 120 times. Thus the data rate is 280 × 120 × 512 = 17,203,200
bytes/sec.

29. The drive capacity and transfer rates are doubled. The seek time and average
rotational delay are the same. No properties are worse.

30. One fairly obvious consequence is that no existing operating system will work
because they all look there to see where the disk partitions are. Changing the
format of the partition table will cause all the operating systems to fail. The
only way to change the partition table is to simultaneously change all the oper-
ating systems to use the new format.

31. (a) 10 + 12 + 2 + 18 + 38 + 34 + 32 = 146 cylinders = 876 msec.
(b) 0 + 2 + 12 + 4 + 4 + 36 +2 = 60 cylinders = 360 msec.
(c) 0 + 2 + 16 + 2 + 30 + 4 + 4 = 58 cylinders = 348 msec.

32. In the worst case, a read/write request is not serviced for almost two full disk
scans in the elevator algorithm, while it is at most one full disk scan in the
modified algorithm.

33. A disadvantage of one-shot mode is that the time consumed by interrupt hand-
ler is unaccounted for as the process of decrementing the counter is paused
during this time. A Disadvantage of square-wav e mode is that high clock fre-
quencies may result in multiple interrupts being queued when new interrupts
are raised before the previous ones have been serviced.

34. Not necessarily. A UNIX program that reads 10,000 blocks issues the requests
one at a time, blocking after each one is issued until after it is completed. Thus
the disk driver sees only one request at a time; it has no opportunity to do any-
thing but process them in the order of arrival. Harry should have started up
many processes at the same time to see if the elevator algorithm worked.

35. There is a race but it does not matter. Since the stable write itself has already
completed, the fact that the nonvolatile RAM has not been updated just means
that the recovery program will know which block was being written. It will
read both copies. Finding them identical, it will change neither, which is the
correct action. The effect of the crash just before the nonvolatile RAM was
updated just means the recovery program will have to make two disk reads
more than it should.

36. Yes the disk remains consistent even if the CPU crashes during a recovery pro-
cedure. Consider Fig. 5-31. There is no recovery involved in (a) or (e). Sup-
pose that the CPU crashes during recovery in (b). If CPU crashes before the
block from drive 2 has been completely copied to drive 1, the situation
remains same as earlier. The subsequent recovery procedure will detect an

© Copyright 2015 Pearson Education, Inc. All Rights Reserved.

PROBLEM SOLUTIONS FOR CHAPTER 5 33

ECC error in drive 1 and again copy the block from drive 2 to drive 1. If CPU
crashes after the block from drive 2 has been copied to drive 1, the situation is
same as that in case (e). Suppose that the CPU crashes during recovery in (c).
If CPU crashes before the block from drive 1 has been completely copied to
drive 2, the situation is same as that in case (d). The subsequent recovery pro-
cedure will detect an ECC error in drive 2 and copy the block from drive 1 to
drive 2. If CPU crashes after the block from drive 1 has been copied to drive 2,
the situation is same as that in case (e). Finally, suppose the CPU crashes dur-
ing recovery in (d). If CPU crashes before the block from drive 1 has been
completely copied to drive 2, the situation remains same as earlier. The subse-
quent recovery procedure will detect an ECC error in drive 2 and again copy
the block from drive 1 to drive 2. If CPU crashes after the block from drive 1
has been copied to drive 2, the situation is same as that in case (e).

37. Problems arise in scenarios shown in Figure 5-27 (b) and 5-27 (d), because
they may look like scenario 5-27 (c), if the ECC of the corrupted block is cor-
rect. In this case, it is not possible to detect which disk contains the valid (old
or new) lock, and a recovery is not possible.

38. Tw o msec 60 times a second is 120 msec/sec, or 12% of the CPU

39. With these parameters,
(a) Using a 500 MHz crystal, the counter can be decremented every 2 nsec. So,

for a tick every millisecond, the register should be 1000000/2 = 500,000.

(b) To get a clock tick every 100 μsec, holding register value should be 50,000.

40. At time 5000:
Current time = 5000; Next Signal = 8; Header → 8 → 4 → 3 → 14 → 8.

At time 5005:
Current time = 5005; Next Signal = 3; Header → 3 → 4 → 3 → 14 → 8.

At time 5013:
Current time = 5013; Next Signal = 2; Header 2 → 14 → 8.

At time 5023:
Current time = 5023; Next Signal = 6; Header → 6 → 4 → 5.

41. The number of seconds in a mean year is 365.25 × 24 × 3600. This number is
31,557,600. The counter wraps around after 232 seconds from 1 January 1970.
The value of 232/31,557,600 is 136.1 years, so wrapping will happen at
2106.1, which is early February 2106. Of course, by then, all computers will
be at least 64 bits, so it will not happen at all.

42. Scrolling the window requires copying 79 lines of 80 characters or 6320 char-
acters. Copying 1 character (16 bytes) takes 800 nsec, so the whole window
takes 5.056 msec. Writing 80 characters to the screen takes 400 nsec, so

© Copyright 2015 Pearson Education, Inc. All Rights Reserved.

34 PROBLEM SOLUTIONS FOR CHAPTER 5

scrolling and displaying a new line take 5.456 msec. This gives about 183.2
lines/sec.

43. Suppose that the user inadvertently asked the editor to print thousands of lines.
Then he hits DEL to stop it. If the driver did not discard output, output might
continue for several seconds after the DEL, which would make the user hit
DEL again and again and get frustrated when nothing happened.

44. It should move the cursor to line 5 position 7 and then delete 6 characters. The
sequence is ESC [5 ; 7 H ESC [6 P

45. The maximum rate the mouse can move is 200 mm/sec, which is 2000 mick-
eys/sec. If each report is 3 byte, the output rate is 6000 bytes/sec.

46. With a 24-bit color system, only 224 colors can be represented. This is not all
of them. For example, suppose that a photographer takes pictures of 300 cans
of pure blue paint, each with a slightly different amount of pigment. The first
might be represented by the (R, G, B) value (0, 0, 1). The next one might be
represented by (0, 0, 2), and so forth. Since the B coordinate is only 8 bits,
there is no way to represent 300 different values of pure blue. Some of the
photographs will have to be rendered as the wrong color. Another example is
the color (120.24, 150.47, 135.89). It cannot be represented, only approxi-
mated by (120, 150, 136).

47.
(a) Each pixel takes 3 bytes in RGB, so the table space is 16 × 24 × 3 bytes,

which is 1152 bytes.
(b) At 100 nsec per byte, each character takes 115.2 μsec. This gives an output

rate of about 8681 chars/sec.

48. Rewriting the text screen requires copying 2000 bytes, which can be done in 4
μseconds. Rewriting the graphics screen requires copying 1024 × 768 × 3 =
2,359,296 bytes, or about 4.72 msec.

49. In Windows, the OS calls the handler procedures itself. In X Windows, noth-
ing like this happens. X just gets a message and processes it internally.

50. The first parameter is essential. First of all, the coordinates are relative to some
window, so hdc is needed to specify the window and thus the origin. Second,
the rectangle will be clipped if it falls outside the window, so the window coor-
dinates are needed. Third, the color and other properties of the rectangle are
taken from the context specified by hdc. It is quite essential.

51. The display size is 400 × 160 × 3 bytes, which is 192,000 bytes. At 10 fps
this is 1,920,000 bytes/sec or 15,360,000 bits/sec. This consumes 15% of the
Fast Ethernet.

© Copyright 2015 Pearson Education, Inc. All Rights Reserved.

PROBLEM SOLUTIONS FOR CHAPTER 5 35

52. The bandwidth on a network segment is shared, so 100 users requesting dif-
ferent data simultaneously on a 1-Mbps network will each see a 10-Kbps ef-
fective speed. With a shared network, a TV program can be multicast, so the
video packets are only broadcast once, no matter how many users there are and
it should work well. With 100 users browsing the Web, each user will get
1/100 of the bandwidth, so performance may degrade very quickly.

53. Advantages of thin clients include low cost and no need for complex man-
agement for the clients. Disadvantages include (potentially) lower per-
formance due to network latency and (potential) loss of privacy because the
client’s data/information is shared with the server.

54. If n = 10, the CPU can still get its work done on time, but the energy used
drops appreciably. If the energy consumed in 1 sec at full speed is E, then
running at full speed for 100 msec then going idle for 900 msec uses E/10.
Running at 1/10 speed for a whole second uses E/100, a saving of 9E/100.
The percent savings by cutting the voltage is 90%.

55. The windowing system uses much more memory for its display and uses virtu-
al memory more than the text mode. This makes it less likely that the hard disk
will be inactive for a period long enough to cause it to be automatically pow-
ered down.

© Copyright 2015 Pearson Education, Inc. All Rights Reserved.

36 PROBLEM SOLUTIONS FOR CHAPTER 6

SOLUTIONS TO CHAPTER 6 PROBLEMS

1. In the U.S., consider a presidential election in which three or more candidates
are trying for the nomination of some party. After all the primary elections are
finished, when the delegates arrive at the party convention, it could happen that
no candidate has a majority and that no delegate is willing to change his or her
vote. This is a deadlock. Each candidate has some resources (votes) but needs
more to get the job done. In countries with multiple political parties in the
parliament, it could happen that each party supports a different version of the
annual budget and that it is impossible to assemble a majority to pass the bud-
get. This is also a deadlock.

2. Disk space on the spooling partition is a finite resource. Every block that
comes in de facto claims a resource and every new one arriving wants more re-
sources. If the spooling space is, say, 10 MB and the first half of ten 2-MB
jobs arrive, the disk will be full and no more blocks can be stored so we have a
deadlock. The deadlock can be avoided by allowing a job to start printing be-
fore it is fully spooled and reserving the space thus released for the rest of that
job. In this way, one job will actually print to completion, then the next one
can do the same thing. If jobs cannot start printing until they are fully spooled,
deadlock is possible.

3. The printer is nonpreemptable; the system cannot start printing another job
until the previous one is complete. The spool disk is preemptable; you can
delete an incomplete file that is growing too large and have the user send it
later, assuming the protocol allows that.

4. Yes. It does not make any difference whatsoever.

5. Suppose that there are three processes, A, B and C, and two resource types, R
and S. Further assume that there are one instance of R and two instance of S.
Consider the following execution scenario: A requests R and gets it; B requests
S and gets; C requests S and gets it (there are two instances of S); B requests R
and is blocked; A requests S and is blocked. At this stage all four conditions
hold. However, there is no deadlock. When C finishes, one instance of S is re-
leased that is allocated to A. Now A can complete its execution and release R
that can be allocated to B, which can then complete its execution. These four
conditions are enough if there is one resource of each type.

6. ‘‘Don’t block the box’’ is a pre-allocation strategy, neg ating the hold and wait
deadlock precondition, since we assume that cars can enter the street space fol-
lowing the intersection, thus freeing the intersection. Another strategy might
allow cars to temporarily pull into garages and release enough space to clear
the gridlock. Some cities have a traffic control policy to shape traffic; as city
streets become more congested, traffic supervisors adjust the settings for red
lights in order to throttle traffic entering heavily congested areas. Lighter traf-

© Copyright 2015 Pearson Education, Inc. All Rights Reserved.

PROBLEM SOLUTIONS FOR CHAPTER 6 37

fic ensures less competition over resources and thus lowers the probability of
gridlock occurring.

7. The above anomaly is not a communication deadlock since these cars are inde-
pendent of each other and would drive through the intersection with a minimal
delay if no competition occurred. It is not a resource deadlock, since no car is
holding a resource that is requested by another car. Nor would the mechan-
isms of resource pre-allocation or of resource preemption assist in controlling
this anomaly. This anomaly is one of competition synchronization, however, in
which cars are waiting for resources in a circular chain and traffic throttling
may be an effective strategy for control. To distinguish from resource dead-
lock, this anomaly might be termed a ‘‘scheduling deadlock.’’ A similar dead-
lock could occur following a law that required two trains merging onto a shar-
ed railroad track to wait for the other to proceed. Note that a policeman sig-
naling one of the competing cars or trains to proceed (and not the others) can
break this dead state without rollback or any other overhead.

8. It is possible that one process holds some or all of the units of one resource
type and requests another resource type, while another process holds the sec-
ond resource while requesting the available units of the first resource type. If
no other process can release units of the first resource type and the resource
cannot be preempted or used concurrently, the system is deadlocked. For ex-
ample, two processes are both allocated memory cells in a real memory sys-
tem. (We assume that swapping of pages or processes is not supported, while
dynamic requests for memory are supported.) The first process locks another
resource - perhaps a data cell. The second process requests the locked data
and is blocked. The first process needs more memory in order to execute the
code to release the data. Assuming that no other processes in the system can
complete and release memory cells, a deadlock exists in the system.

9. Yes, illegal graphs exist. We stated that a resource may only be held by a sin-
gle process. An arc from a resource square to a process circle indicates that
the process owns the resource. Thus, a square with arcs going from it to two
or more processes means that all those processes hold the resource, which vio-
lates the rules. Consequently, any graph in which multiple arcs leave a square
and end in different circles violates the rules unless there are multiple copies
of the resources. Arcs from squares to squares or from circles to circles also
violate the rules.

10. Neither change leads to deadlock. There is no circular wait in either case.

11. Consider three processes, A, B and C and two resources R and S. Suppose A is
waiting for I that is held by B, B is waiting for S held by A, and C is waiting
for R held by A. All three processes, A, B and C are deadlocked. However,
only A and B belong to the circular chain.

© Copyright 2015 Pearson Education, Inc. All Rights Reserved.

38 PROBLEM SOLUTIONS FOR CHAPTER 6

12. This is clearly a communication deadlock, and can be controlled by having A
time out and retransmit its enabling message (the one that increases the win-
dow size) after some period of time (a heuristic). It is possible, however, that
B has received both the original and the duplicate message. No harm will oc-
cur if the update on the window size is given as an absolute value and not as a
differential. Sequence numbers on such messages are also effective to detect
duplicates.

13. A portion of all such resources could be reserved for use only by processes
owned by the administrator, so he or she could always run a shell and pro-
grams needed to evaluate a deadlock and make decisions about which proc-
esses to kill to make the system usable again.

14. First, the set of unmarked processes, P = (P1 P2 P3 P4)
R1 is not less than or equal to A
R2 is less than A; Mark P2; A = (0 2 0 3 1); P = (P1 P3 P4)
R1 is not less than or equal to A
R3 is equal to A; Mark P3; A = (0 2 0 3 2); P = (P1 P4)
R1 is not less than or equal to A
R4 is not less than or equal to A

So, processes P1 and P4 remain unmarked. They are deadlocked.

15. Recovery through preemption: After processes P2 and P3 complete, process
P1 can be forced to preempt 1 unit of RS3. This will make A = (0 2 1 3 2),
and allow process P4 to complete. Once P4 completes and release its re-
sources P1 may complete. Recovery through rollback: Rollback P1 to the
state checkpointed before it acquired RS3. Recovery through killing proc-
esses: Kill P1.

16. The process is asking for more resources than the system has. There is no
conceivable way it can get these resources, so it can never finish, even if no
other processes want any resources at all.

17. If the system had two or more CPUs, two or more processes could run in par-
allel, leading to diagonal trajectories.

18. Yes. Do the whole thing in three dimensions. The z-axis measures the number
of instructions executed by the third process.

19. The method can only be used to guide the scheduling if the exact instant at
which a resource is going to be claimed is known in advance. In practice, this
is rarely the case.

20. There are states that are neither safe nor deadlocked, but which lead to dead-
locked states. As an example, suppose we have four resources: tapes, plotters,
scanners, and CD-ROMs, as in the text, and three processes competing for
them. We could have the following situation:

© Copyright 2015 Pearson Education, Inc. All Rights Reserved.

PROBLEM SOLUTIONS FOR CHAPTER 6 39

Has Needs Av ailable
A: 2 0 0 0 1 0 2 0 0 1 2 1
B: 1 0 0 0 0 1 3 1
C: 0 1 2 1 1 0 1 0

This state is not deadlocked because many actions can still occur, for example,
A can still get two printers. However, if each process asks for its remaining re-
quirements, we have a deadlock.

21. A request from D is unsafe, but one from C is safe.

22. The system is deadlock free. Suppose that each process has one resource.
There is one resource free. Either process can ask for it and get it, in which
case it can finish and release both resources. Consequently, deadlock is im-
possible.

23. If a process has m resources it can finish and cannot be involved in a deadlock.
Therefore, the worst case is where every process has m − 1 resources and
needs another one. If there is one resource left over, one process can finish
and release all its resources, letting the rest finish too. Therefore the condition
for avoiding deadlock is r ≥ p(m − 1) + 1.

24. No. D can still finish. When it finishes, it returns enough resources to allow E
(or A) to finish, and so on.

25. Comparing a row in the matrix to the vector of available resources takes m op-
erations. This step must be repeated on the order of n times to find a process
that can finish and be marked as done. Thus, marking a process as done takes
on the order of mn steps. Repeating the algorithm for all n processes means
that the number of steps is then mn2. Thus, a = 1 and b = 2.

26. The needs matrix is as follows:

0 1 0 0 2
0 2 1 0 0
1 0 3 0 0
0 0 1 1 1

If x is 0, we have a deadlock immediately. If x is 1, process D can run to com-
pletion. When it is finished, the available vector is 1 1 2 2 1. Unfortunately
we are now deadlocked. If x is 2, after D runs, the available vector is 1 1 3 2 1
and C can run. After it finishes and returns its resources the available vector is
2 2 3 3 1, which will allow B to run and complete, and then A to run and com-
plete. Therefore, the smallest value of x that avoids a deadlock is 2.

© Copyright 2015 Pearson Education, Inc. All Rights Reserved.

