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Chapter 2: Mathematics for Microeconomics


CHAPTER 2

MATHEMATICS FOR MICROECONOMICS

The problems in this chapter are primarily mathematical.  They are intended to give students some practice with the concepts introduced in Chapter 2, but the problems in themselves offer few economic insights.  Consequently, no commentary is provided. Results from some of the analytical problems are used in later chapters, however, and in those cases the student will be directed to here.

Solutions

2.1
U (x, y) = 4x2 + 3y2
a.
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c.
dU = 
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d.
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g.
U = 16 contour line is an ellipse centered at the origin.  With equation 
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, slope of the line at (x, y) is 
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2.2
a.
Profits are given by   
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b.
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so profits are maximized

c.
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so q* = 10 obeys MR = MC = 50.

2.3
Substitution:  
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Note:  
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.  This is a local and global maximum.

Lagrangian Method:   
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so, x = y.
using the constraint gives 
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2.4     Setting up the Lagrangian:  
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So, x = y.  Using the constraint gives 
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2.5
a.  

[image: image26.wmf]2

()0.540

ftgtt

=-+


 

[image: image27.wmf]*

40

,

df

 = g t + 40 = 0t

dtg

-=

  .

b. Substituting for t*,  
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c.  

[image: image30.wmf]*

2

f1

 =  (

)

t

g2

¶

-

¶

 depends on g because t* depends on g.
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d.   
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 a reduction of .08.  Notice that 
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 so a 0.1 increase in g could be predicted to reduce height by 0.08 from the envelope theorem.

2.6
a.  This is the volume of a rectangular solid made from a piece of metal which is x by 3x      with the defined corner squares removed.

b.  
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.  Applying the quadratic formula to this expression yields 
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.  To determine true maximum must look at second derivative -- 
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 which is negative only for the first solution.

c. If 
[image: image37.wmf]3333

0.225,0.67.04.050.68

txVxxxx

=»-+»

 so V increases without limit.

d. This would require a solution using the Lagrangian method.  The optimal solution requires solving three non-linear simultaneous equations – a task not undertaken here.  But it seems clear that the solution would involve a different relationship between t and x than in parts a-c.

2.7
a.  Set up Lagrangian 
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Hence, 
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.  With k = 10, optimal solution is 
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b. With k = 4, solving the first order conditions yields 
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c. Optimal solution is 
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 Any positive value for x1 reduces y.
d.    If k = 20, optimal solution is 
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  Because x2 provides a diminishing marginal increment to y whereas x1 does not, all optimal solutions require that, once x2 reaches 5, any extra amounts be devoted entirely to x1. 

2.8
a. TC = 
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 The constant of integration here is fixed costs.


b. By profit maximization, p = MC(q).


    p = q +1 ; q = p -1 = 14

 
   If the firm is just breaking even , profits = total revenue – total costs = 0
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c. If p=20, q = 19. Following the same steps as in b., and using C=98, we get 


    
[image: image47.wmf]5

.

82

)

98

19

2

19

(

19

*

20

)

(

2

=

+

+

-

=

-

=

q

TC

pq

p



  So, profits increase by 82.5


d. Assuming profit maximization, we have p = MC(q)
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e. i. Using the above equation, π(20) - π(15) = 82.5


    ii. 
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The 2 approaches above demonstrate the envelope theorem. In the first case, we optimize q first and then substitute it into the profit function. In the second case, we directly vary the parameter (i.e., p) and essentially move along the firm’s supply curve.


Analytical Problems

2.9
Concave and Quasiconcave Functions


The proof is most easily accomplished through the use of the matrix algebra of quadratic forms.  See, for example, Mas Colell et al., pp. 937-939.  Intuitively, because concave functions lie below any tangent plane, their level curves must also be convex.  But the converse is not true.  Quasi-concave functions may exhibit “increasing returns to scale”; even though their level curves are convex, they may rise above the tangent plane when all variables are increased together.



A counter example would be the Cobb-Douglas function which is always quasi-concave, but convex when α+β > 1.

2.10
The Cobb-Douglas Function


a.
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Clearly, all the terms in Equation 2.114 are negative.

b.
If 
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 since α, β > 0, x2 is a convex function of x1 .

c.
Using equation 2.98,
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 which is negative for α + β > 1.

2.11
The Power Function



a.
Since 
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b.
Because 
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, Equation 2.98 is satisfied and the function is concave.  Because 
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 Equation 2.114 is also satisfied so the function is quasi-concave.



c.
y is quasi-concave as is 
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2.12
Taylor Approximations



a.
From Equation 2.85, a function in one variable is concave if 
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Using the quadratic Taylor to approximate 
[image: image68.wmf])

(

x

f

 near a point a:





[image: image69.wmf]2

)

)(

(

'

'

5

.

0

)

)(

(

'

)

(

)

(

a

x

a

f

a

x

a

f

a

f

x

f

-

+

-

+

»

  




         
[image: image70.wmf])

)(

(

'

)

(

a

x

a

f

a

f

-

+

£

 (because 
[image: image71.wmf]0

)

(

0

)

(

2

>

-

<

¢

¢

a

x

and

a

f

)





The RHS above is the equation of the line tangent to the point a and so, we have shown that any concave function must lie on or below the tangent to the function at that point.



b.
From Equation 2.98, a function in 2 variables is concave if 
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So, 0.5(
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This is the third term of the quadratic Taylor expansion where 
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Thus, we have 
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Which shows that any concave function must lie on or below its tangent plane.

2.13
More on Expected Value


a.
The tangent to g(x) at the point E(x) will have the form 
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But, 
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b.
Using the same procedure as before with ≥ instead of 
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The tangent to g(x) at the point E(x) will have the form 
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Now, 
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c.
Let 
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e.
1. 
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2. 
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3. E(x) = 
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4.
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Thus, Markov’s inequality holds.



f.
1. 
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2. 
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3. 
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4. 
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5. 
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          6. Eliminating the lowest values for x should increase the expected      value of the remaining values.

2.14
More on Variances and Covariances



a.
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c.
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   (From results of parts a. and b.)
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Remember that if 2 random variables x and y are independent, then 

Cov(x, y) = 0
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If x and y characterize 2 different assets with the properties 
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we have shown that the variance of a diversified portfolio is only half as large as for a portfolio invested in only one of the assets.  
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