CHAPTER 2: MODELING OF SDOF
SYSTEMS

Short Answer Problems

2.1 True: the differential equations are the same because the resultant of gravity and the
static spring force is zero for the case of the hanging mass-spring-viscous damper system.

2.2 False: The differential equation governing the motion of a SDOF linear system is
second order.

2.3 False: Springs in parallel have an equivalent stiffness that is the sum of the individual
stiffnesses of these springs.

2.4 False: The equivalent stiffness of a uniform simply supported beam at its middle is
48EI

L3’

2.5 True: Viscous damping is often added to a system to add a linear term in the governing
differential equation.

2.6 False: When the equivalent systems method is used to derive the differential equation
for a system with an angular coordinate used as the generalized coordinate the kinetic
energy is used to derive the equivalent moment of inertia of the system.

2.7 True: The equivalent systems method applied only to linear systems.

2.8 False: The inertia effects of simply supported beam can be approximated by calculating
the kinetic energy of the beam in terms of the velocity of the generalized coordinate and
placing a particle of appropriate mass at the location whose displacement the generalized
coordinate represents.

2.9 False: The static deflection of the spring in the system of Fig. SP2.9 is %.

f L -]

~. — Slender bar

| - 'f- -

4 of mass m
k<

i
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Chapter 2: Modeling of SDOF Systems

iy
2.10 False: The springs in the system of Fig. SP2.10 are in parallel (the

springs have the same displacement, x, and the resultant force on the FBD of % k,
the block is the sum of the spring forces).

2.11 True: A shaft is an elastic member in which an angular displacement "
occurs when acted on by a torque. The angular displacement has a value of
0 =TL/(JG).

Zk
2.12 True: The equivalent viscous damping coefficient is calculated by
comparing the energy dissipation in the combination of viscous dampers to /777777777
that of an equivalent viscous damper.

2.13 False: The added mass of a fluid entrained by a vibrating system is determined by
calculating the kinetic energy developed in the fluid.

2.14 False: If it is desired to calculate the reactions at the support
of Fig SP2.14 the effects of the static spring force and gravity -
cancel and do need to be included on the FBD or in summing ?
forces on the FBD (the cancelling of static spring forces with
gravity only applies to the derivation of the differential equation).

2.15 False: Gravity does not cancel with the static spring force in the system of Figure
SP2.15 and hence the potential energy of both is included in potential

k
energy calculations. (Assuming small 8 the potential energy in the spring —(\/‘—E

2
is %k (% 9) . The potential energy due to gravity assuming the datum is

]
—

the pin support is mg é sin 6).

2.16 The small angle assumption is used to linearize nonlinear systems a %:
priori. If the angular displacement is small it is assumed that sin6 =
6,cos 0 = 1, tan O = O in derivation of the differential equation.

2.17 FBD's are drawn at an arbitrary instant for derivation of differential
equations.

2.18 A quadratic form is form of kinetic energy equal to %ms’cz when used to apply the
equivalent systems method to derive a differential equation. The potential energy has a
quadratic form of % kx?.

2.19 The inertia effects of the spring in a mass-spring-viscous damper system can be
approximated by adding a particle of 1/3 the mass of the spring to the point on the system
where the spring is attached.

2.20 Each spring in a parallel combination has the same displacement.

2.21 The equivalent stiffness of a combination of springs is calculated by requiring the
total potential energy of the combination when written in terms of the displacement of the
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Chapter 2: Modeling of SDOF Systems

particle where the equivalent spring is to be attached is equal to the potential energy of a
spring of equivalent stiffness placed at that location.

2.22 The FBD is shown at an arbitrary instant.

L

L L L
f— — — —-—
3 3 3

e
o

2.23 At an arbitrary instant the upper bar has rotated through an angle 6, measured positive
clockwise. The lower bar has an angular displacement ¢, measure counterclockwise. The

displacements of the particles must be the same where the rigid bar is attached, ge = %L [0)

or¢p = %9. The FBDs are shown at an arbitrary instant.

mn 1 LL_;_L_\:T/;E
W 3 e 2 R,
T I e

v

2.24 The equivalent systems method is used to derive the differential equation for linear
SDOF systems. It can be used to model a linear SDOF system with an equivalent mass-
spring-viscous damper model. Using a linear displacement as the generalized coordinate
the equivalent mass, the equivalent stiffness, the equivalent damping viscous damping
coefficient and the equivalent force are determined using the kinetic energy, potential
energy, energy dissipated by viscous dampers and the work done by non-conservative
forces.

2.25 Static spring forces not drawn on the FBD of external forces when they cancel with a
source of potential energy for a linear system and the generalized coordinate is measured
from the system's equilibrium position.

2.26 No, the equivalent systems method cannot be used for a nonlinear system.
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Chapter 2: Modeling of SDOF Systems

2.27 Given: Springs of individual stiffness’s k;and k,placed in series. The equivalent

. . . . 1
stiffness of the combination is —.
_+_
k1 ka

2.28 Given: System of Figure SP2.28. The diagrams showing the reduction to a single
spring of equivalent stiffness of %.

: (I 4K ak
%::j_i‘pw
3k

1 1 2k
iz = = kil — =
=, R 2k EH R 3
4k 4k 2k k
Key =2k +2—k = %k
2.29 Given: System of Figure 2.29. The aluminum shaft is in =350 cm——s=t=——60 cm ——=

series with the steel shaft (angular displacements add). The

stiffness of the aluminum shaft 1s % : ﬁ*
A]mninum‘/ Steel

3 4 9
kAl = JaiGa = 2(0.02) (40X10 ) == 210x104 N-m/rad . The r=20mm r=15mm
La; 0.5

JsiGse _ 5(0.015)*(80x10%)
Lst 0.6 -
1.06 x 10* N-m/rad. The equivalent stiffness is keq =

stiffness of the steel shaft is kg, =
1

— = 6.94 x 103 N-m/rad.
1/ka1+1/kst

2.30 Given: F =300 N Ax =1 mm. The stiffness of the element is k = Ai — 300N _

x  0001m
105 N/m.

2.31 Given: F=300 N Ax =1 mm. The potential energy is V=%k(Ax)2 =%(3 X
105 N/m20.001 m2=0.15].

2.32 Given: F=300 N Ax =1 mm. The potential energy is the same for a compressive force
as for a tensile force. The potential energy is

V= %k(Ax)Z = %(3 x 105 N/m)2(0.001 m)? = 0.15 J.

2.33 Given: k; = 250N - %, 6 = 2°. The potential energy developed in the spring is
_ 1 2 1 m o2mrad 2 _
V =1k = 5(250 N-2) (202220) = 0.153]).
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2.34 Given: G =80 x 10° N/'m? L=2.5m,r; = 10 cm, 7, = 15 cm The polar moment of
inertia is | = g(ro‘l - = g[(O.lS)4 — (0.1)*] = 6.38x10™* m*. The torsional stiffness

: 6.38x107* m*)(80x10° N/m?
oftheshaftlskt:%:( X ng(mx /m?) _

2.04 x 107 N - m/rad.

2.35 Given: G = 40 x 10° N/m?, L = 1.8 m, r = 25 cm. The polar moment of inertia is
] = §r4 = %(0.25)4 = 6.12 X 1073 m*. The torsional stiffness of the shaft is k, = % =

-3 .4 9 2
(6.13x10 mlf);(:lomo N/m?) _ 1.36 X 108 N - m/rad.

2.36 Given: E =200 x 10° N/m?,L = 2.3 m, rectangular cross-section 5 cm x 6 cm. The

9 2
longitudinal stiffness of the bar is k = AE _ (005 m)(0.06m)(200x107 N/m?) _ 2.61 x

L 2.3 m
108 N/m.

2.37 Given: E =200 x 10° N/m?, L = 10 um, beam of rectangular cross section of width

lum and height 0.5um. The stiffness of a cantilever beam at its end is k = L

L3
9 2 3
3(200x10° N/m*)(A pr) (0.5 wm)*/12 _ ¢ 55 3/
(10 um)3
2.38 Given: k = 4000 N/m, m=20 kg. The static deflection of the spring is A;= % -
2
(20 kg)(9.81 m/s?) =491 cm
4000 N/m

2.39 Given: £ =10 cm, p = 2.3 g/cm, m = 150 g. The mass of the spring is mg; = pf =
(2.3 g/cm) (J;‘ggg) (*) (0.1 m) = 0.023 kg = 23 g. The added mass is m = == =
7.67 g.

2.40 Given: System of Figure SP2.40. The inertia 7 imn disicat
effects of the springs are approximated by adding a %_&*;\ / '\m‘m 4

particle of mass m;/3 to the center of the disk and a [
particle of mass mg/3 to the suspended block. The
total kinetic energy of the system is T = Ty +
Tpulley + Tblock + Tspringl + Tspringz- The kinetic
energy of the block and the second spring is Tyjpcx +

No slip

m,
1 . 1mg . .
Tspringz = Emlxz + Efszhe angular displacement T\-

of the pulley is 6 =r1 and its kinetic energy is m,
2

1 (%\% 11 . .
Touttey = EI (;) = ngz The displacement of the

center of the disk is y =70 = :—1x . The disk rolls
2
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i iopi S S S Y PICIE SRC RS S S S Y Y C A
without slipping, Ty = Smve + - lw* = SMRY” +oompy” =2 (2 mz) (rz x) . The
o . 1mg . 1 [mg (r\?] . o
kinetic energy of the first spring is Tspring:s = E?Syz == [?5 (é) ]xz The total kinetic

T =1 ms L3 (m) o ms ()] 42
energy of the system is T = . [ml +5+ 7 tom; (TZ) t3 (rz) ]x .
2.41 Given: System of Figure SP2.41. The work done by uz[w
the viscous dampers as the system rotates through an :
angle 0 is }._f__,_‘_f_%’___*
6 (2L, 2L 6 (L L 3 3 3

Wi, =— fo c (? 9) d (? 9)2_ fo c (E 9) d (g 9) 2_ o <

0 (L, 12 . 2L I Yerazsnl '
(0c(b8)a (b6) = — [0 c(22) a6 = gy = L. |

| T, i
2.42 (a) sin 0.05 = 0.05; (b) cos 0.05 = 1; (¢) 1-cos 0.05 =

(0.05)%2/2 =0.00125; (d) tan 0.05 = 0.05; (e) cot 0.05 = 1/tan 0.05 = 1/0.05 = 20; (f) sec
0.05 = 1/cos 0.05 = 1; (g) csc 0.05 = 1/sin 0.05 =20

2
2.43 (a) sin 3° = 6m/360 =1 /60; (b) cos 3°=1; (¢) 1-cos 3°= (%) ; (d) tan 3°=m /60

2.44 Given: System of Figure 2.44. The kinetic X
. 2\ 2
energy of the system is T = E ]1 (91) + |
1 e nen T nGear with
_]2 (_1 1) + ]3( 1 301 []1 ', i n; teeth 5
Nyny - / - | Gear with

nn Gear with | ns teeth

( ) I+ ( - 3) ]3] 6, = Jeq =1+ fr_wlll.:cth AV,
2 .
w) 124 ) S5 ol N I
| J‘R

2.45 (a)-(vi); (b)-(iii); (c)-(iv); (d)-(vid); (e)-(1); ()-(iv); (2)-(v); (h)-(ii)
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Chapter Problems

- 1 m - I m -

2.1 Determine the equivalent stiffness
of a linear spring when a SDOF mass-
spring model is used for the system m/w\# T 0;727
shown in Figure P2.1 with x being the ’

chosen generalized coordinate.

E =200 x 10" N/m?
I=115x 10% m*

Given: L=2m, E=200 x 10°N/m* I=1.15x 10* m*, m =20 kg
Find: keq

Solution: The deflection of a pinned-pinned beam at its midspan is determined using Table
D.2witha=L/2,Z=1L/2 as

L3

Z=L/2)=
W=

The equivalent stiffness is the reciprocal of the deflection,

_48EI
eq L3

48(20x10° I:2)(1.15><10-4m4)
- (2m)’

=1.38><10SE
m

Problem 2.1 illustrates the determination of the equivalent stiffness of a structural member.

2.2 Determine the equivalent stiffness of a linear ™ L
spring when a SDOF mass-spring model is used for

the systems shown in Figure P2.2 with x being the g
chosen generalized coordinate.

Given: k, E, L L " T
Find: keq

Solution: The cantilever beam behaves as a linear spring. The displacement of the end of
the upper spring and the end of the cantilever beam are the same. Thus the beam is in

parallel with the upper spring. The equivalent stiffness of the cantilever beam at its end is
61
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3EI
S

Thus the equivalent stiffness of the beam and spring in parallel is

A :3EI

eq; L3

+k

The total deflection of the system is the deflection of the beam plus the change in length of
the lower spring. Thus the lower spring is in series with the beam and upper spring. Using
the equation for a series combination of springs

k 1

w7 ]
N + -
ko k,

~ ]

7 1

7+7
k k+3§[

k [k + 35?}

3EI

L3

2k +

Problem 2.2 illustrates (a) principles for determining parallel and series combination of
springs and (b) use of the formulas for series and parallel spring combinations.

[ 60 cm =t 40 cm wa— 4() cm —=

2.3 Determine the equivalent stiffness of a

linear spring when a SDOF mass-spring i
model is used for the the system shown in %
Figure P2.3 with x being the chosen ' ot
generalized coordinate.

E 0 Massless beam

Given: Fixed-pinned beam with overhang, dimensions shown
Find: keq.

Solution: The 20 kg machine is placed at A on the beam. Using the displacement of A as
the generalized coordinate, the equivalent stiffness is the reciprocal of the displacement at
A due to a unit concentrated load at A. From Table D2, with a = 0.6m, z; = 1.0 m, the
displacement at A due to a unit concentrated load at A is
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3 2
E]y(z=a):C,%+C2a7+C3a+C4 (1)
where
3 3a 1 ’
C=—2+2L 42| 1-2L | =_ 568 (2)
2 2z, 2 z,
2
c, _i(zi]IJ(li] ]—0.]68 (3)
2 z, z,
C,=0 (4)
C,=0 (5)
Substituting eqgs.(2)-(5) in eq.(1) leads to
(0.6) (0.6)

El(z=0.6)= — 5382 540168 7= = 01083

Hence the equivalent stiffness is

L 1
“ (z=0.6) 0.01083
EI

=923EI

Problem 2.3 illustrates the concept of equivalent stiffness for a one degree of freedom
model of a mass attached to a beam. The equations and entries of Table D2 are used to
determine the equivalent stiffness.

ST.'

1 10° Nfm E =210 % 10° Nfm?
2.4 Determine the equivalent stiffness of a linear . . | . o
spring when a SDOF mass-spring model is used for /*\ ()
the system shown in Figure P2.4 with x as the chosen 6% 10* Nim
generalized coordinate.
I

. & x 10* Nfm

Given: system shown

Solution: The stiffness of the fixed-free beam is
3EI B 3(210 x 10° N/m?)(6.1 X 1078 m*)

L3 (2.5m)3
63
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The stiffness of the pinned-pinned beam is

_ 48El _ 48(210 x 10° N/m?)(6.1 x 1078 m*)
273 T (2.5 m)3

=3.94x 10° N/m

The equivalent stiffness is given by the model shown below. The upper beam acts in series
with the upper spring (the displacements of the springs add to given the displacement of
the midspan of the simply supported beam). The lower beam acts in series with the middle
spring (their displacements add). The upper spring combination acts in parallel with the
lower beam-spring combination. Both act in parallel with the spring below the mass. The
equivalent stiffness of the upper beam and spring is

1
Kieq = — —=7.11x10*N/m

3.94 x 106 T 6 x 10°

The equivalent stiffness of the lower spring and beam is
1
Koea =7 L1
25x 105 " 1x10°5

=5.91 x 10* N/m

The equivalent stiffness of the combination is
N N N
keg = 7.11 X 10*—+5.91 x 10* =48 x 10* — = 2.10 X 10°N/m
m m m

Problem 2.4 illustrates the equivalent stiffness of a combination of springs.

2.5 Determine the equivalent stiffness of a linear

spring when a SDOF mass-spring model is used k
for the system shown in Figure P2.5 with x as the }‘%H-— ’% % s
chosen generalized coordinate. — ' '
T [ I~
3% k
Given: system shown
Given: keq

Solution: The potential energy of a spring of equivalent stiffness located at the point whose
displacement is X is

1 2
V= Ekeqx

The potential energy of the system, using x as a generalized coordinate, is
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V= L3k 2+1k<5 >2+1k(4 )2 = (196k)
T TR RZY) T =51

Thus the equivalent stiffness is

196
Kea =g

Problem 2.5 illustrates the equivalence of two systems of springs using potential energy.

2.6 Determine the equivalent stiffness of a linear spring A (/ﬂ\
when a SDOF mass-spring model is used for the system

shown in Figure P2.6 with x as the chosen generalized

coordinate.

Given: system shown k
Given: keq

Solution: The potential energy of a spring of equivalent stiffness located at the point whose
displacement is X is

1 2
V= Ekeqx

The potential energy of the system, using x as a generalized coordinate, is
1 1 1 /2% 1,10
— g2 4 222 (2) =2 2
V= Shx? 5 2kx? ok (3) 2(9k)x

Thus the equivalent stiffness is

10
keq - ?k

J‘T\_)

. . . L
2.7 Determine the equivalent stiffness of a 3

-
linear spring when a SDOF mass-spring i @

Problem 2.6 illustrates the equivalence of two systems of springs using potential energy.
Rigid link
model is used for the system shown in

Figure P2.7 with x as the chosen
generalized coordinate. i /if\
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Given: system shown
Given: keq

Solution: The potential energy of a spring of equivalent stiffness located at the point whose
displacement is x is

1 2
V= E keqx
The angular displacement of the upper bar is 8, measured positive clockwise. The angular
displacement of the lower bar is ¢, measured positive counterclockwise. The particles
attached to the rigid link have the same displacement

2L9 _
7 0=1Lo
Noting that
4L
X = 3 ¢
thus
o= 9
T

The potential energy of the system, using x as a generalized coordinate, is
polie, 1k(3x)2 N 1k<3x>2 N 12k(3x) B 1<127k> ,
20T g) T2 \w) T2 ) T2 )7
Thus the equivalent stiffness is

127
keq = Ek

Problem 2.7 illustrates the equivalence of two systems of springs using potential energy.

2.8 Determine the equivalent stiffness of a = X

linear spring when a SDOF mass-spring NN

model is used for the system shown in Figure 3k / )\ (H
P2.8 with x as the chosen generalized % N '\ /l

coordinate.
No slip J

Given: system shown
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Given: keq

Solution: The potential energy of a spring of equivalent stiffness located at the point whose
displacement is X is

1 2
V= Ekeqx

The spring attached to the disk and around the pulley has a displacement of 3x, x from the
displacement of the mass center and 2x (assuming no slip between the disk and the
surface) from the angular rotation of the disk. The potential energy of the system, using x
as a generalized coordinate, is

y=Lla 2+1k(3 )2—1(12k) 2
TR TR =y x

Thus the equivalent stiffness is
keq = 12k

Problem 2.8 illustrates the equivalence of two systems of springs using potential energy.

2.9 Two helical coil springs are made from a steel (E = 200 X 10°N/m?) bar of radius 20
mm. One spring has a coil diameter of 7 cm; the other has a coil diameter of 10 cm. The
springs have 20 turns each. The spring with the smaller coil diameter is placed inside the
spring with the larger coil diameter. What is the equivalent stiffness of the assembly?

Given: E = 200 X 10°N/m? (or G = 80 X 10° N/m?), r = 20 mm, d; = 7 cm, d, =
10 cm, N, = N, = 20

Find: k4
Solution: The stiffness of the inner spring is

Gd* (80 x 10° N/m?)(0.07 m)*

k= AN 64(20)(0.02)3

=1.88 x 108 N/m

The stiffness of the outer spring is

_ Gd* (80 x10°N/m?)(0.10 m)*
"~ 64NT3 64(20)(0.02)3

ky =7.81 x 108 N/m

The springs act in parallel, the displacements are the same and the force on the block is the
sum of the forces in the springs. Thus

N N N
keq = ky +k, = 1.88 X 108 —+ 7.81 x 108 — = 9.69 x 108 —
m m m
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Problem 2.9 illustrates springs acting in parallel.

(o

2.10 A thin disk attached to the end of % T @rom
an elastic beam has three uncoupled I, et d
modes of vibration. The longitudinal 1 65 cm

motion, the transverse motion, and the

torsional oscillations are kinematically independent. Calculate the following of Figure
P2.10. (a) The longitudinal stiffness; (b) The transverse stiffness; (c) The torsional stiffness

Given: L =65 cm, r= 10 mm, E = 200 x 10°N/m?, G = 80 x 10’ N/m’
Find: k,, kg, and k,
Solution: The geometric properties of the beam are
A=7zr*=n(0.0lm)’ =3.14x10* m’
J =%r4 =%(0.01m)“ =1.57x10*m*

I :%r4 =%(O.Olm)4 =7.58x10”m*

(a) The longitudinal stiffness is

i (3.14x10™ m2)(200x109 Nz) N
k== M J—9.67x10" —
L 0.65m m

(b) The transverse stiffness is

3(200><109 N j(7.85><109 m*)
i 3EI m

L == 5 ~1.72x10* Y
L (0.65m) m
(¢) The torsional stiffness is
(1.57><108m4)(80x109 NZJ
k=792 m’) _ 930N
° L 0.65m rad

Problem 2.10 illustrates three independent modes of vibration of a cantilever beam.
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2.11 Find the equivalent stiffness of the springs in Figure

P2.11 in the x direction. SKH«; 10° Nfm

30° N

5% 10° N/m

Given: springs shown

Find: k,

Solution: A FBD of the particle at an arbitrary instant is shown

4x10°x 5x10°x

3x10%x

Summing forces on the FBD in the x direction leads to
F, = —4 X 10°x(0.866) — 3 X 10°x(0.707) — 5 X 10°x(0.707) = —9.12 X 10°x

Hence the equivalent stiffness in the x direction is

N
k,=9.12x10°> —
m
Problem 2.11 illustrates the determination of an equivalent stiffness when springs act on a
particle at different angles.

|t I 20 um -

&

212 A bimetallic strip used as a MEMS (V¥ i — 4

sensor is shown in Figure P2.12. The strip has v _

a length of 20 um. The width of the strip is 1 : 4 !
T 0.2 yum Each |:1f\-'c!' is

um. It has an upper layer made of steel 0.1 gm thick

(E =210 x10°N/m?) and a lower layer

made of aluminum (E = 80 x 10° N/m?).

Each layer is 0.1 um thick. Determine the equivalent stiffness of the strip in the axial
direction.

Given: L=20 um, w =1 um, E;; = 210 X 10° N/m?, E;; = 80 x 10° N/m?,t=0.1 um
Find: k4
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Solution: The two layers behave as longitudinal springs in parallel. The layers have the
same displacement and the forces from the layers add. The equivalent stiffness of a
longitudinal spring is

k:T

The strips have the same area and same length. The equivalent stiffness is the sum of the
individual stiffnesses thus

(1 pm)(0.1 um)
20 um

wt o N o 5 N
keq = (Est + Ea)) - = (210 X 107 — + 80 x 10° N/m ) = 1450 —

Problem 2.12 illustrates equivalent stiffness of spring in series.

2.13 A gas spring consists of a piston of area 4 moving in a cylinder of gas. As the piston
moves, the gas expands and contracts, changing the pressure exerted on the piston. The
process occurs adiabatically (without heat transfer) so that

p=_Cp’

where p is the gas pressure, p is the gas density, ¥ is the constant ratio of specific heats,
and C is a constant dependent on the initial state. Consider a spring when the initial
pressure is py and the initial temperature is Ty. At this pressure, the height of the gas
column in the cylinder is 4. Let F = pyA + §F be the pressure force acting on the piston
when it has displaced a distance x into the gas from its initial height.

(a) Determine the relation between §F and x.

(b) Linearize the relationship of part (a) to approximate the air spring by a linear spring.
What is the equivalent stiffness of the spring?

(c) What is the required piston area for an air spring (y = 1.4) to have a stiffness of 300
N-m for a pressure of 150 kPa (absolute) with 2 =30 cm.

Given: A,po, Ty, h, v (¢) k=300 N/m, p, = 150 kPa, h=0.3 m,y = 1.4
Find: (a) §F and x relation (b) k (c) A
Solution: (a) The ideal gas law is used to find the density in the initial state

Po
= pRT = py = —
p=p Po RT,

The initial volume of gas in the spring is
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VO = Ah
The total mass of the air is

PoAh
RT,

m = p,Vy =

When the piston has moved a distance x from its equilibrium position at an arbitrary time
V=A—-x)
Since the total mass of the gas is constant the density becomes

m poh

P =Y T RTy(h—x)

The initial state is defined by
p _
po=Cpy = C= p—ﬁ = py " (RTo)
0

At an arbitrary time

14 14
_ -1 Poh ) _ ( h )
= RT, y<— =

(b) The force exerted on the piston is pA = pyA + 6F. Thus

o = poa| (25) -1

But from a binomial expansion

() =n(-5) " =n[1+5+0(G))]

Thus

_O6F _ ypoA

Keq x h

(c) Solving for A and substituting given values

_ kegh (300 N/m)(0.3 m)

- = 4.29 X 10~* m?
vpo _ 1.4 (150000 N/m?) m

Problem  2.13  illustrates the linearized stiffness for an air  spring.
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2.14 A wedge is floating stably on an interface
between a liquid of mass density p, as shown in
Figure P2.14. Let x be the displacement of the
wedge’s mass center when it is disturbed from
equilibrium. (a) What is the buoyant force
acting on the wedge? (b) What is the work done
by the buoyant force as the mass center of the
wedge moves from x; and x,? (c) What is the
equivalent stiffness of the spring if the motion of
the mass center of the wedge is modeled by a mass attached to a linear spring?

i
Lo

Length of wedge =L
Mass density of
wedge = p,.

i
|l

Given: p, pw, 1, L, h

Find: Fg, W, linear system
J mg = Py Lhr

Solution: (a) Consider a free-body diagram of the wedge as it
floats in equilibrium on the free surface. Let d be the depth of the
wedge into the liquid. In this state the buoyant force must
balance with the gravity force

F, =W =0 I Fo = PLdr( 1+d/h)

pLdr(] + %) = p,gLhr

d
pwh = pd(l—l—;j
(1

Now consider the wedge as it oscillates on the free surface. The buoyant force at an
arbitrary time is

F, :ng(d—i-x)r(]-i-dej
= pglLr a’(]+ij+2£x+x+x—2
re n) h

(b) The work done by the buoyant force as the center of mass moves between x; and x;
is

WHZZTFB dx =

X, 2
ngLr d(1+ij+2ix+x+x— dx
M h h h
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W, :ngr{d(]+%j (x2 —x1)+%(x§ —xf)+i(x22 —xf)+é(x§ —xf)}

(c)The system cannot be modeled as a mass attached to a linear spring. The buoyant force
is conservative. However when its potential energy function is formulated, it is not a
quadratic function of the generalized coordinate.

Problem 2.14 illustrates the nonlinear oscillations of a wedge on the interface between a
liquid and a gas.

Elastic

2.15 Consider a solid circular shaft of core
length L and radius ¢ made of an
elastoplastic material whose shear stress— G a ‘
shear strain diagram is shown in Figure \ , //Z -
P2.15(a). If the applied torque is such Y B shell
that the shear stress at the outer radius of @ (b)

the shaft is less than 1, a linear

relationship between the torque and angular displacement exists. When the applied torque
is large enough to cause plastic behavior, a plastic shell is developed around an elastic core
of radius » < ¢, as shown in Figure P2.15(b). Let

2
T ==L— 44T (1)
be the applied torque which results in an angular displacement of
Tt L
O=—"—+60 (2)
c
(a) The shear strain at the outer radius of the shaft is related to the angular displacement
QZM 3)
c
The shear strain distribution is linear over a given cross section. Show that this implies
Lty
0 = — 4)

(b) The torque is the resultant moment of the shear stress distribution over the cross section
of the shaft,

T:j2ﬁfp2 dp 5)
0

Use this to relate the torque to the radius of the elastic core.
(c) Determine the relationship between 67 and 6.

(d) Approximate the stiffness of the shaft by a linear torsional spring. What is the
equivalent torsional stiffness?
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Given: stress-strain diagram, t > 1,
Find: Show eq. (4), linear approximation to stiffness

Solution: (a) The shear stress is linear in the elastic core and at p =, y = 1, /G. The shear
strain is linear throughout the cross section. Thus

_ 5P 6
r=C (6)

Then evaluating eq. (6) at p = ¢ and using eq. (3)

TPC cl
}/C = =—
rG L
0 7, L
rG
(b) The shear stress distribution over the cross section ™p
is shown. The resisting torque is the resultant
moment of the shear stress distribution. But ) I
7, B,O <p<r
=< "r
T,,r<p=<c
Hence from eq.(5)
_ r 1% 2 r 2
T—;[(rp 7}27[@,0 dp+;[rp27zp dp
L (7)
cr
’ ( 3 ]2}
(c) Equating the torques from eq. (1) and eq. (7)
3 3 3
wr | -l \ear, SvoT
L3 12 72
T
6T=7r?”(c3—r3) (8)

Equating the angular displacement. from eqgs. (2) and (4)
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Tt L Tt L
L1+ 60=-—"— 9)
cG rG
Substituting eq.(8) into eq.(9)
L L
Ny (10)
cG &
3
G(Cj B 66Tj
7z,

(d) Note that

1 1

[ , 65]’} E 1[ 65T j 3
c - =—|1- 3
TTp c T pC

Then using the binomial theorem assuming small 8T and keeping only the first two terms
leads to

(03_@]3 =1(1+ 20T ] (11)

3
Tp c 7T HC

Substituting eq.(11) in eq. (10) leads to

ﬂme:TPL[H 20T j

cG cG zT,c’
or
00 = 254TL
e’ G
o _m'G _JG
o0 2L L

The above approximation neglected terms involving powers of 6T when the binomial
expansion was performed. Thus, a linear approximation to the stiffness is the same as the
linear stiffness.

Problem 2.15 illustrates a linear approximation to torsional stiffness for an elastoplastic
material when the elastic shear stress is exceeded.
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2.16 A bar of length L and cross-sectional area A is made of a material whose stress-strain
diagram is shown in Figure P2.16. If the internal force developed in the bar is such that ¢ <
G, then the bar’s stiffness for a SDOF model is

AE

k=" _

Consider the case when 6 > c,. Let P=,4 + 3P be the
applied load which results in a deflection A= %L + SA.

(a) The work done by the applied force is equal to the
strain energy developed in the bar. The strain energy per
unit volume is the area under the stress—strain curve. Use (a)

this information to relate 8P to dA.

(b) What is the equivalent stiffness when the bar is approximated as a linear spring for ¢ >
c,?

Given: stress-strain curve, 6P, E, o,
Find: 8A = £ (8P), linear stiffness approximation

Solution: The work done by application of a force P, resulting in a deflection A is
1
W= > PA (1)

When the stress exceeds the proportional limit, the work is written as

w=L(o,4+5P) [UPL + 6AJ
2 E
The work is also the area under the P- Acurve. ) Al J—
op OA - SA
1 L EoL +
W= E(GPA) (a,, Ej + J ALf(€)de ©) .
? ’ﬂ (e
2 'Tp LopA
Equating the work from egs.(1) and (2) leads to
op, oA
1 L 1 1 Bt
—0Po,—+—0,A04+—0PoA= | ALf|e)de 3
SOPO, oA+ j /(€) 3)
E
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(b) If A is small, then so is 0P. Hence the term with their product is much smaller than the
other terms in eq. (3) and is neglected. In addition the mean value theorem is used to
approximate the integral

op OA
EL
[411(e) de:iLAALf(a)
%
where
Op <z A9
E = E

Then eq. (5) becomes

1 L 1 1 o
Eapap = +30PA5A +E§P5A = ASAf(2)

Dividing by 0A leads to

A L Lo,

o AE 24E .
=+ f(e)

If the limit as A —0 is taken then

- O
S
E

f (E) —O0p
and

oP AE
—_ _) —_
oA L
Problem 2.16 illustrates the linear approximation to the stiffness when the elastic strength
is exceed for a bar undergoing longitudinal oscillations.

my |

k
% A
: : L Z
2.17 Calculate the static deflection of the spring in the
system of Figure P2.17. m
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Given: k, m;, my, 11, 12
Find: Agt

Solution: Summing moments about the center of the pulley using the free body diagram of
the system when it is equilibrium, e

SR

=m,gr, — kAgr,

m,gr.
_ m,&r
AST_

kr,

Problem 2.17 illustrates calculation of the static deflection of a
spring.

2.18 Determine the static deflection of the spring in the system - °* 10° N/m E
of Figure P2.18.

m=20kg

Given: L=1.6m,a=1.2m, m=20kg, k=5 x 10° N/m, spring l %w-_«
1s stretched 20 mm when bar is vertical. - Spring is stretched
J-4m 20 mm when bar
1 ./ is vertical

Find: Agt.

Solution: A free body diagram of the bar in its static equilibrium
position is shown. It is assumed the spring force is horizontal.

The equilibrium position is defined by 6, the clockwise angle

made by the bar with the vertical. Summing moments about the support

> M, =0

leads to

D —

. K(asinbg;— 8)
—mg (a - Ej sin O, + k(asin Osr — 5) acosty, =0

Substituting given values and rearranging leads to

tan6,, =91.74sin6y, —1.53

The above equation is solved by trial and error for &r. yielding

0, =0.965° = 0.0168 rad
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The static deflection in the spring is given by

Ay =asinfy, — o0 = 0.22mm

Problem 2.18 illustrates the application of the equations of equilibrium to determine the
static equilibrium position for a given system. The assumption that the spring force is
horizontal is good, in light of the result. Equation (1) was solved by trial and error. An
alternate method is to approximate tand by & and siné by 6.

2.19 A simplified SDOF model of a vehicle suspension system is shown in Figure P2.19.
The mass of the vehicle is 500 kg. The suspension spring has a stiffness of 100,000 N/m.
The wheel is modeled as a spring placed in series with the suspension spring. When the
vehicle is empty, its static deflection is measured as 5 cm.

m

(a) Determine the equivalent stiffness of the wheel

(b) Determine the equivalent stiffness of the spring combination k, ;;’;f’l;““i“”
L2 itmes

Given: m = 500 kg, k= 100,000 N/m, = 5 cm 1N

Find: (a) ky, (b) keq \/

Solution: (a) The wheel is in series with the suspension spring. The force developed in
each spring is the same while the total displacement of the series combination is the sum of
the displacements of the individual springs. When the system is in equilibrium, the springs
are subject to the empty weight of the vehicle. Hence the force developed in each spring is
equal to the weight of the vehicle W = mg = (500 kg)(9.81 m/s®) = 4.905 x 10 N. The total
displacement in the two springs is 5 cm,

0,+0, =5cm

But the force developed in a linear spring is kd. Thus

78 78 _sem
kS kW
Solving for ky, leads to
o 1 0.05m 1

mg k. 4.905x10° N 100,000 N/m

1
k,
k, =5.16x10° N/m

(b) The equivalent stiffness of the series combination is
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1 1

S A I

5 + 6
k. k, 1x10°N/m 5.16x10° N/m
k., =9.63x10* N/m

Problem 2.19 illustrates the equivalent stiffness of two springs placed in series.

2.20 The spring of the system in Figure P2.20 is unstretched in the position shown. What is
the deflection of the spring when the system is in

Im = E=210x% 10 N/m?
equilibrium? SRAERIT
g 150kg | j=82%10"m*
Given: m = 150 kg, k = 2000 N/m, < 2000 N/
E=210x 10° N/m2,1= 82x107"m* L=3m
77

Find: A,

Solution: The system behaves as two springs in parallel. The beam has the same
displacement as the spring. The equivalent stiffness is

3EI 3(210 x 10° N/m?)(8.2 x 1077 m*)
keq=kb+k=L_3+k= (31’1’1)3

N
+ 20005 =2.11x 10* N/m

The static deflection of the system is

_mg _ (150 kg)(9.81 m/s?)

_ = 6.97
St % 2.11 x 10* N/m cm

eq

Problem 2.20 illustrates springs in parallel and static deflection.

2.21 Determine the static deflection of the spring in the l— IT i !T —
system of Figure P2.21. - . - £
5 | _
AR &
Given:m, k, E, I, L
Find: A,

Solution: The system behaves as two springs in parallel. The beam has the same
displacement as the spring. The equivalent stiffness is

48E1

3 +k

Ko = kp +k =
80
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The static deflection is

A Mg __mg mgl3
" keq 4BEI __~ 48EI + kL?
eq N +k

Problem 2.21 illustrates the concepts of springs in parallel and static deflection of springs.

2.22 Determine the static deflections in each of " e b
( )4 ke

the springs in the system of Figure P2.22. -
i x 10° N/m i x 10° N/m

Given: k; = 1 X 10> N/m, k, = 2 X 10°> N/m,
m=4kg,a=04m,b=02m

Find: Ageq, Ager

Solution: A FBD of the system is shown when the system is in equilibrium

2 e b——]
. |
k1AS+1 mg k2’35+2

Summing forces on the FBD leads to

Z F =0=kiAg1 + kyAge, —mg

Summing moments about the mass center yields

D Mg =0 =~k (@) + kaiea(B)

Solution of the equations leads to

m 4ke)(9.81 m/s?
Agiq= g a (4ks)( / 0)4 = 0.131 mm
k1(1+b) (1><105N/m)(1+02m)
4 ke)(9.81 m/s2
Ager= 9 b = ( g)( m/so)z - =0.131 mm
5
k2(1+a) (2 % 10 N/m)(1+04m)

Problem 2.22 illustrates the determination of static deflections from the equations of static
equilibrium.
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2.23 A 30 kg compressor sits on four springs, each of stiffness 1 x 10* N/m. What is the
static deflection of each spring?

Given: m=30kg k =1x 10°N/m,n=4
Find: Ay,

Solution: The compressor sits on four identical springs. Thus the equivalent stiffness of the
springs is that of four springs in parallel or

keq = 4k = 4(1 x 10°N/m) = 4 x 10° N/m
The static deflection of the compressor is

_mg _ (30 kg)(9.81 m/s?)

A= =07
St g 4 % 105 N/m 0.736 mm

eq

Problem 2.23 illustrates the static deflection of a machine mounted on four springs in
parallel.

2.24 The propeller of a ship is a tapered circular cylinder, as shown in Figure P2.24. When
installed in the ship, one end of the propeller is constrained from longitudinal motion
relative to the ship while a 500-kg propeller mass is attached to its other end. (a) Determine
the equivalent longitudinal stiffness of the shaft for a SDOF model. (b) Assuming a linear
displacement function along the shaft, determine the equivalent mass of the shaft to use in
a SDOF model.

leen. r0:30 cm, r1:20 Cm’EZZIO JT’: e e R m "'AL rp=30cm

* 10N/’ mp = 500 ke, I VANE 3 T
QTSR o o T p=T7850 kg/m?

p=7350kg/m3,L210m \_J

10m
Find: Keq, Meq

Solution: The equivalent system is that of a mass m attached to a linear spring of stiffness
keq . The equivalent mass is calculated to include inertia effects of the shaft.

The equivalent stiffness is the reciprocal of the deflection at the end of the shaft due to the
application of a unit force. From strength of materials, the change in length of the shaft due
to a unit load is

L
dx
o=l

Let x be a coordinate along the axis of the shaft, measured from its fixed end. Then
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r(x)=r, -2 x=03-0.01x

is the local radius of the shaft. Thus

L

5= J‘ 53 .05

) 7r 0 3-0. 01x E

Hence the equivalent stiffness is
k, = £ 3961100
5305 m

Let u(x) represent the displacement of a particle in the cross section a distance x from the
fixed end due to a load P applied at the end. From strength of materials

J !@o3omﬂ
10P
T 03-0.01x 37

Let z=u(L), then

_1010P _ 10P
0.23zE ~ 3nE

IOP z
37Z'E 50
u()=Z %

500.3-0.01x

Consider a differential element of mass dm = pAdx, located a distance x from the fixed
end. The kinetic energy of the differential element is

dT = éaZ (x)p A(x)dx

The total kinetic energy of the shaft is
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L

T:% [ () p 4(x)dx

0

10m . \2 2
=2 (ij (;j 7(0.3-0.01) dx
2 3150) L03-0.01x

”’02 j dx
5000
_11000p7
~23(2500)
=%(3288kg)z'2

Hence the equivalent mass is 3288 kg.

Problem 2.24 illustrates the modeling of a non-uniform structural element using one-
degree-of-freedom

2.25 (a) Determine the equivalent f
torsional stiffness of the propeller ¢
shaft of Problem 2.24. (b) Determine
an equivalent moment of inertia of
the shaft to be placed on the end of 1 10m
the shaft for a SDOF model of

torsional oscillations.

ro=30cm

EI\;L ry=20cm
T E =210 10" N/m*

p=T7850 kg/m*

S S

Given: ro=30 cm, r; =20 cm, E = 80 x 10° N/m?, m, = 500 kg, p = 7350 kg/m®’, L =10m

Find: Kieq, Ieq

Solution: The equivalent system is that of a disk of moment of inertia I, attached to a
torsional spring of stiffness kiq . The equivalent mass is calculated to include inertia effects
of the shaft.

The equivalent stiffness is the reciprocal of the deflection at the end of the shaft due to the
application of a unit force. From strength of materials, the change in length of the shaft due
to a unit load is

Let x be a coordinate along the axis of the shaft, measured from its fixed end. Then

&4
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I/b_

r(x)=r, - o =0.3-0.01x

is the local radius of the shaft. Thus the moment of inertia of the shaft is J(x) = gr“'(x)

2dx 1866

L
0 = =
! 7(03-0.01x)'G G

Hence the equivalent stiffness is

=9

’ =4.28x10"N-m/rad
“ 1866

Let 6(x) represent the displacement of a particle in the cross section a distance x from the
fixed end due to a moment M applied at the end. From strength of materials

M dx 2M dx
ol _I I 7G(0.3-0.01x)’

~ 1 1 \20M
(0.3-0.01x) 0.3’ )32G
Let z=6(L), then

20MP
3IzG

z=87.96

! !
0(x)=— -
) 87.96((0.3—0.01x)3 0.33]

Consider a differential element of mass, located a distance x from the fixed end. The
kinetic energy of the differential element is

dT:%QZ () pJ (x)dx

The total kinetic energy of the shaft is

__f (8796) [ 1 B : ]'D (0.3 - 0.01x)*dx

(0.3-0.01x)® 0.33(0.3—0.01x)3 0.36

The equivalent moment of inertia is determined from

1
T=Zquz (3925kg m?)z?
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Problem 2.25 illustrates the modeling of a non-uniform structural element using one-
degree-of-freedom

2.26 A tightly wound helical coil spring is made from an 1.88-mm diameter bar made from
0.2 percent hardened steel (G = 80 x 10° N/m?, p = 7600 kg/m’). The spring has a coil
diameter of 1.6 cm with 80 active coils. Calculate (a) the stiffness of the spring, (b) the
static deflection when a 100 g particle is hung from the spring, and €b) (c) the equivalent
mass of the spring for a SDOF model.

Given: G =80 x 10° N/m? p = 7600 kg/m’, D =1.88 mm, r =8 mm, N=80, m=100 g
Find: (a) Agt (b) Meq

Solution: The stiffness of the helical coil spring is

_ GD*
T 64N
;. (80 10° N/m*)(0.00188 m)*
64(80)(0.008 m)’
k=381.2N/m

When the 100-g particle is hung from the spring its static deflection is
A, = 78 _38mm
‘ k
(b) The total mass of the spring is

m = p(27Nr) % 7D?
m,=T778¢g

The equivalent mass of the system is

m,, =m+ lmg
3
m, =1259¢
| | - -
Problem 2.26 illustrates (a) the stiffness of a helical coil

spring, (b) the static deflection of a spring, and (c) the
equivalent mass of a spring used to approximate its
inertia effects.
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2.27 One end of a spring of mass my and stiffness k; is connected to a fixed wall, while the
other end is connected to a spring of mass m;, and stiffness k,. The other end of the second
spring is connected to a particle of mass m. Determine the equivalent mass of these two

springs.
-
S1
Given: ki, mg, ko, mg>
Find: m,

Solution: Let x be the displacement of the block to which the series combination of springs
is attached. The inertia effects of the left spring can be approximated by placing a particle
of mass m;/3 at the joint between the two springs. Define a coordinate z;, measured along
the axis of the left spring and a coordinate z;, measured along the axis of the right spring.
Let ui(z;) be the displacement function the left spring and ux(z;) be the displacement
function in the right spring. It is assumed that the springs are linear and the displacements
are linear,

u, (zl)=az, +b

(1

u, (22)=cz2 +d
where the constants a, b, ¢, and d are determined from the following conditions
(a) Since the left end of the left spring is attached to the wall
u, (0)=0

This immediately yields b = 0.
(b) The right end of the right spring is attached to the block which has a displacement x

u, (¢,)=x @
where /5 is the unstretched length of the right spring.

(c) The displacement is continuous at the intersection between the two springs.
u; (€1):“2 (0) (3)
where 7 is the unstretched length of the left spring.

(d) Since the springs are in series, the forces developed in the springs must be the same.

ku, (&)zkz |_”2 (fz)_“z (O)J 4)

Using eq. (2)-(4) in eq. (1) leads to
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The kinetic energy of the left spring is

2
T, _1m i, (0,)= Im,| Kk 32
23 2 3 \k,+k,

Thus the contribution to the equivalent mass from the left spring is

2
m k
meq] =—t .
3 \ &, +k,

The displacement function in the right spring becomes

dm32

u, (zz)=L(k1i+k2J SR Aﬁ\f\,\/

k,+k,\ "0, | 0

Consider a differential element of length dz, in the right spring, a distance z; from the
spring’s left end. The kinetic energy of the element is

Img, .
dT, =3 fﬂ i,’ (z,)dz,

2

The total kinetic energy of the spring is

Hence the equivalent mass of the series spring combination is
I kY (kY
My, =———— kim ,+kim | | 1+-2| —| =%
3(k, +k,) k; k,
Problem 2.27 illustrates the equivalent mass of springs in series.
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2.28 A block of mass m is connected to two identical springs in series. Each spring has a
mass m and a stiffness k. Determine the equivalent mass of the two springs at the mass.

Given: Two identical springs in series
Find: m,,

Solution: Let x be the displacement of the block to which the series combination of
springs is attached. The inertia effects of the left spring can be approximated by placing a
particle of mass mg;/3 at the joint between the two springs. Define a coordinate z,
measured along the axis of the left spring and a coordinate z,, measured along the axis of
the right spring. Let u;(z;) be the displacement function the left spring and ux(z;) be the
displacement function in the right spring. It is assumed that the springs are linear and the
displacements are linear,

u, (zl)zazl +b

(1)

u, (22)=022 +d
where the constants a, b, ¢, and d are determined from the following conditions
(a) Since the left end of the left spring is attached to the wall
u, (0)=0

This immediately yields b = 0.
(b) The right end of the right spring is attached to the block which has a displacement x

u, (£)=x @)
where /, is the unstretched length of the right spring.

(c) The displacement is continuous at the intersection between the two springs.
u, (£)=u,(0) (3)
where 7 is the unstretched length of the left spring.

(d) Since the springs are in series, the forces developed in the springs must be the same.

ku, (E)zkluz (5)_”2 (O)J 4)
Using egs. (2)-(4) in eq. (1) leads to
w,(2) = g—’;z + g

The kinetic energy of the second spring is
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T_1ff’_2m2d _xzmsf*’(2z+1)2d _1(13 ),2
—2)," e " 18e ), 2 2=3\a7™s)*

The total kinetic energy is

Thus

14
meq = ﬁms

Problem 2.28 illustrates the calculation of the equivalent mass of a system.

2.29 Show that the inertia effects of a torsional shaft of polar mass moment of inertia J can
be approximated by adding a thin disk of moment of inertia J/3 at the end of the shaft.

Given: J
Find: I,

Solution: The angular displacement due to a moment M applied at the end of the shaft
varies over the length of the shaft according to
_ Mx
¢ = 76

At the end of the shaft ¢ (L) = 0 = % Thus the moment at the end of the shaft is M = GJTG

and

The differential element of the shaft is dI = %dx where J is the polar mass moment of
inertia of the shaft. The kinetic energy is

1t 1 (L 0x\%] 1]
i 247 — — N L 2T 2
T_zfod’dl 2L(L>de 23"
The kinetic energy of the shaft has the form T = %quéz. Hence

leg =

/
3

Problem 2.29 illustrates the equivalent moment of inertia of a shaft using a SDOF model of
the shaft.
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2.30 Use the static displacement of a simply supported beam | H2 . H2 |
to determine the mass of a particle that should be added at the Elm
midspan of the beam to approximate inertia effects in the 4

beam.
ya ya /)

Given: m = 20 kg, my = 12 kg, E =200 x 10° N/m?,
[=1.15x10"m*,L=2m

Find: meq

Solution: the inertia effects of the beam are approximated by placing a particle of
appropriate mass at the location of the block. The mass of the particle is determined by
equating the kinetic energy of the beam to the kinetic energy of a particle placed at the
location of the block. The kinetic energy of the beam is approximated using the static beam
deflection equation. For a pinned-pinned beam, the deflection equation valid between the
left support and the location of the block is obtained using Table D.2. In using Table D.2,
set a = L/2. Note that Table D.2 gives results for unit loads which can be multiplied by the
magnitude of the applied load to attain the deflection due to any concentrated load. Thus
the deflection of a pinned-pinned beam due to a concentrated load P applied ata=L/2 is

y(e)== (—Z—3+£j

TEI\ 12 16

Let w be the deflection of the block, located at z=L/2. Thus

pr’

=y(L/2)=—"—

w=y(/2) 48EI
P48z
El I

Hence

L I

y(2)=g(5’—4z—2j

Consider a differential element of mass dm = pAdz. The kinetic energy of the differential
mass is

T, = 5 (2)pddz

Since the beam is symmetric about its midspan the kinetic energy of the mass to the right
of the midspan is equivalent to the kinetic energy of the mass to the left of the midspan.
Thus the total kinetic energy of the beam is
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Evaluation of the integral yields

T, =—(0.492 pAL)w’ =§(0.492 m, )w’

N |~

Hence the equivalent mass is

m=m+0.486 m,

Problem 2.30 illustrates determination of the equivalent mass of a pinned-pinned beam.

Sphere of

2.31 Determine the equivalent mass or equivalent . 7 mass m
moment of inertia of the system shown in Figure P2.31 g—v [N I/}T'i\
when the indicated generalized coordinate is used.

No slip

Given: X, m, r m
. I:
Find: m,,

Solution: The kinetic energy of the system is the kinetic energy of the hanging block plus
the kinetic energy of the sphere. The velocity of the mass center of the sphere is related to
the velocity of the block by

USZE

The total kinetic energy of the system assuming no slip between the sphere and the surface
(v¢ = r;w) and knowing that the moment of inertia of a sphere is Emrsz

T—l _2+1 (9&>2+1(2 2)(3&)_1(27 ),2
—me M) T2 5™ o) T2\20™)"

The kinetic energy of the system is related to the equivalent mass by T = %meqicz. Thus

27

meq = %m

Problem 2.31 illustrates the equivalent mass of a system.
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2.32 Determine the equivalent mass or equivalent 3 AA .
moment of inertia of the system shown in Figure ]

P2.32 when the indicated generalized coordinate 1T %}
is used.

Slenderrod | | &

D ENUeT Tod 3 B

of mass m - e

. PR 2m —’\/‘—E
Given: X, m, L —
i

Find: me,

Solution: The total kinetic energy of the system is

T = Lomi? + Smy? + Sz 4 1162
=o2mi® +omys +oma’ + o
where y is the displacement of the cart of mass m, z is the displacement of the mass center
of the bar and 8 measures the angular rotation of the bar. Kinematics is employed to obtain
that if x is the displacement of the cart of mass 2m then assuming small 6

2L, _
3 =X
Lg— X
37TV 73
Lg— X
60 " %71

Thus the kinetic energy becomes noting that I = %mL2

N S (62+1 (32+1<1 Lﬂ(&32_1<&@)1
e mem) T2™e) To\n2™ )\ar) T2\ )*
The kinetic energy of the system is related to the equivalent mass by T = %meqfcz. Thus

5
meq = Em

Problem 2.32 illustrates the equivalent mass of a SDOF system.
2.33 Determine the equivalent mass or equivalent moment of

inertia of the system shown in Figure P2.33 when the
indicated generalized coordinate is used.

AB and BC are
slender bars
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Given:m, L, 0
Find: I,

Solution: The relative velocity equation is used to relate the angular velocity of bar BC and
the velocity of the collar at C to the angular velocity of bar AB.

vg = Ok X L(cos8 i+sin@j) = —LOsin Oi+ LOcoshj

Ve =Vg+ wBCkx%(cosﬁi —sinfj)
= (—Lé sin 6 + wBC%sinB>i + (Lé cos6 + wBCgcos B)i
The law of sines is used to determine that
sinff = 2sin6
Then
cosf = \/m
Setting the j component to zero leads to

_ 26 cos 6
WBC = 05 B

The x component leads to
. L .
ve = —LOsin 0 + wp, Esinﬁ = LO(—sin @ + cos O tan )

The relative velocity equation is used between particle B and the mass center of bar BC
leading to

. L . L
Vge = (—LH sin 0 + wge Zsin ﬁ)i + (LB cos 0 + wgc ZCOS B)j
The kinetic energy of the system is

r=tm(50) +2(Smir) o
—2™M\2 2\12™

1 . L \*
+-m (—LH sin 9+wBCZsm,8>

. L 2
2 +(L6cos€+wBCZcosﬁ> ]

1/1 .
+ > (EmLZ) [LG(—sin 6 + cos @ tan ,8)]2

The equivalent moment of inertia is calculated for a linear system by T = %quéz. This

system is linear only for small 6.
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Problem 2.33 illustrates that the concept of equivalent mass does not work for nonlinear
systems.

2.34 Determine the equivalent mass or g
equivalent moment of inertia of the system e L— =
shown in Figure 2.34 when the indicated 3I° )~L6
. . . Slender rod Rigid massless connector
generalized coordinate is used. of mass 3 4L N
5 'C-E
Slender n;lml r ._ L:‘ -
Given: system shown il A mo|
Find: I,
Solution: The total kinetic energy of the system is
1 1/1 . 1 1/1 o2 1
TZETYHZEB +§<EmL2) 02+§m17§D +E(EmLZ)¢CD +Emv,§

where ¢ is the angle made by the lower bar with the horizontal. The displacement of the
particle on the upper bar that is connected to the rigid link in the same as the displacement
of the lower bar that is connected to the link

Lo 4L 59
= — f—t = —
5¢ ¢ 4

Substituting into the kinetic energy leads to

2

b 0] 3 3 S 3G ) w2
=23 2\12™ 212 \2 2\12"™ )2 2™ 3\

The equivalent moment of inertia when 8is used as the generalized coordinate is

37
qu = %mL

Problem 2.34 illustrates calculation of an equivalent moment of inertia.

2.35 Determine the equivalent mass or equivalent moment of inertia of the system shown
in Figure P2.35 when the indicated generalized coordinate is used.
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6, J(;I
Given: shafting system with rotors lﬁ
| ™ Gear with
nd- 7 ny teeth
Find: ]eq L J L Gear with
/—_ ,’/—’ n; teeth
Given: The relation between the angular Gear with '
.. .. , teeth L] ny»
velocities of the shafts is given by the gear s oy Yas
. v f_r'_y
equatlon Gear with
ny teeth
ny i
Wy =—w J -
2 nz L J{q
n3 N3 Ny
W3 =—wy; = ——w;

2
[ ngn,

The kinetic energy of the shafting system is

1 , 1 ny 2 1 ns ny 2
T = 5(11 +Je1)wi + E(]GZ + Jr +Jg3) (n—2w1> + 5104 (n_4n_2w1)

1 2 2
=3 U1 +Je1) + Uz +Jr +Jg3) (%) + Jca (Z_j%) ]‘U%

2
The equivalent moment of inertia is

nznq

Jeq = Us +J61) + Usz +Jr +Jg3) (;l_:)z e (__)2

Nna My

Problem 2.35 illustrates calculation of an equivalent moment of inertia of a shafting
system.

2.36 Determine the kinetic energy of the gjr«/\m—/ /”?\ /\

system of Figure P2.36 at an arbitrary instant

in terms of x including inertia effects of the No slip
springs.

Given: system shown with x as generalized
coordinate

Find: T

Solution: Let 6 be the clockwise angular displacement of the pulley and let x; be the
displacement of the center of the disk, both measured from the equilibrium position of the
system. Inertia effects of a spring are approximated by imagining a particle of one-third of
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the mass of the spring at the location where the spring is attached to the system. The
kinetic energy of the system at an arbitrary instant is

T :lmxz + lI 0° + l2mxl2 + ll2m7f1§a),§ + llms)'c2 + llmbxl2
2 27 2 22 23 23
Kinematics leads to
0=
2r
X
X, = E
Since the disk rolls without slip
o =S %
P r, 21,

Substitution into the expression for kinetic energy leads to

. \2 .\ 2 . \2
T=lm)'c2 +ll X +l2m X +ll2mré X
2 2 P2r 2 2 22 2ry

Problem 2.36 illustrates the determination of the kinetic energy of a one-degree-of-freedom
system at an arbitrary instant in terms of a chosen generalized coordinate and the
approximation for inertia effects of springs.

block of mass m of Figure P2.36 is
x(t) =0.03¢™"** sin(4¢) m . Determine the

time-dependent force in the viscous damper if
¢ =125 N-s/m.

2.37 The time-dependent displacement of the 3__&_/ /r;?\ /\

k, m,
No slip

Given: x(t), ¢ = 125 N-s/m
Find: F
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Solution: The viscous damper is attached to the center of the disk. If x; is the displacement
of the center of the disk, then kinematics leads to x; = x/2. The force developed in the
viscous damper is

F=cx1=§x

Fe % [0.03)e %5 (~1.35 sin(47) + 4 cos(4r))]

Fo 125 Nz- s/m (0.03)e ™ (=1.35sin(4¢) + 4 cos(41))

F =1.875¢ "% (=1.45sin(4¢) + 4 cos(4t)) N

Problem 2.37 illustrates the force developed in a viscous damper.

2.38 Calculate the work done by the viscous % [ >
damper of Problem 2.37 betweent=0and = 1

k, m,
S.

Given: x(t), c=125 N-s/m, 0 <t<1s K m,

Find: W

F =1.875¢™% (~1.45sin(4¢) + 4 cos(4t)) N

Solution: The time dependent force in the viscous damper is determined in Chapter
Problem 2.37 as
The work done by the force is

W =—[F()dx,

where x; is the displacement of the point in the system where the viscous damper is
attached. It is noted that

x,(t) = %x(t) =0.015¢"*" sin4¢t m
Using the chain rule for differentials
v, =gt = s dr
dt

It is noted that ' =cx. Thus
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W=—Ic5cf dt

1
W =—[0.0281e"" sin’ (41) dt
0

W =-0.004211N-m

Problem 2.38 illustrates the work done by a viscous damping force.

2.39 Determine the torsional viscous-damping coefficient for the torsional viscous damper
of Figure P2.39. Assume a linear velocity profile between the bottom of the dish and the

disk.

Find: ¢;

Solution: Assume the disk is rotating with an
angular velocity @. The velocity of a particle on
the disk, a distance r away from the axis of
rotation is

Vzl’g

s NN
Given: 6, h // A
iven: 6, h, p, n ok el
v A

Disk of radius r
Oil of density p. viscosity i
Depth of oil = h

Solution: Assume the disk is rotating with an angular velocity 8. The velocity of a particle
on the disk, a distance r away from the axis of rotation is

v:r9

A velocity gradient exists in the fluid due to the rotation of the plate. Assume the depth of
the plate is small enough such that the fluid velocity profile is linear between the bottom of
the dish and the disk. The no-slip condition implies that a fluid particle adjacent to the
disk, a distance r from the center of rotation has a velocity rd while a fluid particle
adjacent to the bottom of the dish has zero velocity. Hence the velocity gradient is

dv_r_é"

dy h

The velocity gradient leads to a shear stress from the fluid on the
dish. The shear stress is calculated using Newton’s viscosity

law as

dm =trdA
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dv _ 1r0
dy h

The resisting moment acting on the disk due to the shear stress distribution is
27zR

M=IrrdA= Ijrr(rdrdﬁ)

27 R

= J'J':UT&’; drd0
00

7Z'/lR4 0
2h

Hence the torsional damping coefficient is
_ 7uR’

Ct
2h

Problem 2.39 illustrates a type of torsional viscous
damper.

2.40 Determine the torsional viscous-damping T
coefficient for the torsional viscous damper of Figure
P2.40. Assume a linear velocity profile in the liquid L

Qil of density p,

4 viscosity i

. Come of base radius r,
height /it

between the fixed surface and the rotating cone. e

Given: h,d, r, p, 1
Find: ¢;

Solution: Let y be a coordinate measured from the tip of the cone, positive upward.
Assume the cone is rotating with an angular velocity 6. The velocity of a particle on the
outer surface of the cone is

v=R(y)o
where R(y) is the distance from the surface to the axis of the cone. From geometry
ry
R _ 7
(v)==
Hence,
y=o
h
100
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Assume that d is small enough such that the velocity distribution in the fluid is linear. Let z
be a coordinate normal to the surface of the cone. Then using the no-slip condition between
the fluid and the cone’s surface and between the fluid and the fixed surface gives

6
05

The velocity gradient produces a shear stress on the surface of the cone. Using Newton’s
viscosity law

dv _ 1ry0
dz  hd

Consider a differential slice of the cone of thickness dy. The 0l
shear stress acts around the surface of the slice, causing a N g dy
resisting moment about the center of the cone of T

dM = y(27rR(y))rdy
B Zﬁr2y9y3
h’d

dy

Thus the total resisting moment is
2’ ,ué 1
2 2
_ nr IUh 0
2d
Hence the torsional viscous damping coefficient for this configuration is
2 2
¢ = Triuh
2d

Problem 2.40 illustrates determination of the torsional viscous damping coefficient for a
specific configuration.

2.41 Shock absorbers and other forms of viscous dampers use a piston moving in a
cylinder of viscous liquid as illustrated in Figure P2.41. For this configuration the force
developed on the piston is the sum of the viscous forces acting on the side of the piston and
the force due to the pressure difference between the top and bottom surfaces of the piston.
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(a) Assume the piston movers with a constant velocity
vp. Draw a free-body diagram of the piston and
mathematically relate the damping force, the viscous
force, and the pressure force.

— ] — } {
(b) Assume steady flow between the side of the piston !_ = . ’T’
and the side of the cylinder. Show that the equation , et e _ WS~
governing the velocity profile between the piston and density p
the cylinder is
a _ o
dx H ar? (1)

(c) Assume the vertical pressure gradient is constant. Use the preceding results to
determine the velocity profile in terms of the damping force and the shear stress on the side
of the piston.

(d) Use the results of part (c) to determine the wall shear stress in terms of the damping
force.

(e) Note that the flow rate between the piston and the cylinder is equal to the rate at which
the liquid is displaced by the piston. Use this information to determine the damping force
in terms of the velocity and thus the damping coefficient.

(f) Use the results of part (e) to design a shock absorber for a motorcycle that uses SAE
1040 oil and requires a damping coefficient of 1000 N-m/s.

Given: v,, d, D, h, u, p, (f) SAE 1040 oil, ¢ = 1000 N-m/s
Find: (a) - (€) ceq, () design damper

Solution: (a) The free body diagram of the piston at an arbitrary instant shown below
illustrates the pressure force acting on the upper top and bottom surfaces of the piston, the
viscous force which is the resultant of the shear stress distribution acting around the
circumference of the piston, and the reaction force in the piston rod.

Assuming the inertia force of the piston is small, summation of forces acting on the piston
leads to

F=F,~F, +F,

where
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2

D
Fp( _Fp :(p( _pu )72’-7

F =t 7 Dh
Hence

2

F =(p( - D, )7Z'D7+ 7,77 Dh

(b) Consider a differential ring of height dx and thickness dr, a distance r from the center of
the position. Consider a free body diagram of the element

p | p
1Ll | |
|
St T | T St
T4+ 2= dr « ! [‘r+dl’
5 3
r | L r i r J r
|
|
|
p+%§(dx p+%§(dx

Summation of forces acting of the element leads to

(p +Z—pdx—pj(Zﬂra’r)+(r+@dr—rj(27zrdx):0
X

or
dp_ oz
dx or
If the fluid is Newtonian
ov
T=— U—
or

where v( 1, x) is the velocity distribution in the fluid. Thus

a’_p 0’y

dx a o
(c) Assume dp/dx = C, a constant. Then from the preceding equation

c >
v=—-r"+c;r+c,
2u

where c¢; and c; are constants of integration. The boundary conditions are

v(RzD/Z)zv
v(R+d)=0

Application of the boundary conditions leads to
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¢, = —1+£(2R+d)
d 2u
c, = v(]+£j+£(R2 +Rd)
d) 2u
Using Newton’s viscosity law
dv v d
7, =—U—\r=R)=u—+C—
wm = R) =+ O
v
C=—|7,—u—
[ w ﬂdj
Note that since the pressure is constant
d_p — pé _pu
dx h

Hence the damping force becomes

2
F=rDh 1+ 2 | #Dh
2d) 2

(d) Note that the flow rate must be equal to the velocity of the piston times the area of the

piston
2

=7T—V
Q 4

The flow rate is also calculated by
R+d

0= J.v(r) 2mr dr

R

=2r L(TW —ﬂlj(—izw +3d4j+ivd2
pud d)\ 6 3 6

Equating Q from the previous two equations and solving for the wall shear stress leads to
__ w30’ ~2dp-124°)
2d*(D-84d)

and leads to
3 2 3
. ,uD7rh(3D3 —dD* ~24d°)
4d’(D-84d)

which leads to the damping coefficient
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_ wDh(3D° = D’d — 24’
4d’(D-8d)

If D>>d, the preceding equation is approximated by

3zuhD’
c="——
4d’

Corrections to the above equation in powers of d/D can be obtained by expanding the
reciprocal of the denominator in powers of d/D using a binomial expansion, multiplying by
the numerator, simplifying and collecting coefficients on like powers of d/D.

(e) The viscosity of SAE 1040 oil is approximately 0.4 N-s / m*

Assume h = 0.5 mm and d = 10 mm. Then setting ¢ = 1000 N-s/m and assuming D >>d
leads to

1000 = 0.472(0.0005) (60

4(0.01)

D=0.374 m

Problem 2.41 illustrates (a) the derivation of the viscous damping coefficient for a piston-
cylinder dashpot, and (b) the use of the equation for the viscous damping coefficient to
design a viscous damper for a given situation.

2.42 Derive the differential equation governing
the motion of the one degree-of-freedom system p a1

by applying the appropriate form(s) of Newton’s g_/\n_{ m ANAMA E
laws to the appropriate free-body diagrams. Use

the generalized coordinates shown in Figure

P2.42. Linearize nonlinear differential equations
by assuming small displacements.

Given: x as generalized coordinate, m, k
Find: differential equation

Solution: Free-body diagrams of the system at an arbitrary time are shown below.
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"

N

EXTERNAL FORCES EFFECTIVE FORCES

Summing forces acting on the block
Er).=EF),

gives
—kx — 2kx=mx
mx+3kx=0

X+§kx:0
m

Problem 2.42 illustrates application of Newton’s law to derive the differential equation
governing free vibration of a one-degree-of-freedom system.

2.43 Derive the differential equation governing the
motion of the one degree-of-freedom system by
applying the appropriate form(s) of Newton’s laws to U

the appropriate free-body diagrams. Use the generalized !
coordinates shown in Figure P2.43. Linearize nonlinear

differential equations by assuming small displacements.

m
Given: x as generalized coordinate, k, m, I, r "T
Find: differential equation

Solution: Since x is measured from the system’s equilibrium position, gravity cancels with
the static spring forces in the governing differential equation. Thus, for purposes of
deriving the differential equation, both are ignored. It is assumed there is no slip between
the cable and the pulley. Thus the angular rotation of the pulley is kinematically related to
the displacement of the block by

6=

2r

Free-body diagrams of the system are shown below at an arbitrary instant.
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&

Summing moments about the center of the pulley

(ch)exzz(sz)eﬁ

leads to

—%kx(r)zm%(ZrHLjé

2r

(2rm+ijjé+%er:0

2r

TR S

2(2711 + ]zj
2r

Problem 2.43 illustrates application of Newton’s law to derive the differential equation
governing free vibration of a one-degree-of- freedom system. This problem also illustrates
the benefits of using external and effective forces. Use of this method allows one free-body
diagram to be drawn showing all effective forces. If this method were not used, one free-
body diagram for the block and one free-body diagram of the pulley must be drawn. These
free-body diagrams expose the tension in the pulley cable. Application of Newton’s laws
to the free-body diagrams yield equations involving the unknown tension. The tension
must be eliminated between the equations in order to derive the differential equation.

Lo

2.44 Derive the differential equation governing the motion of
the one degree-of-freedom system by applying the appropriate %1’_.\
form(s) of Newton’s laws to the appropriate free-body ~
diagrams. Use the generalized coordinates shown in Figure Slender bar
P2.44. Linearize nonlinear differential equations by assuming S of mass m
small displacements.

| ]

U,
~

Given: k, L ,m, ¢

1

Find: differential equation >\
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Solution: The small angle assumption is used. Free-body diagrams of the bar at an arbitrary
instant are shown below.

EXTERNAL FORCES 4 EFFECTIVE FORCES

Summing moments about the point of support

(ZMo)ex, =(ZM0)eﬁr

leads to

N ESAREN IEY, —mgﬂezimLé L) Lo
4 4°) 4 4 4 4 4°) 12

LmL29+LcL26'?+ ikL2+mg£ 0=0
48 16 16 4
9+i£9+ ZE.FEE 9:0
7 m 7 m 7 L

Problem 2.44 illustrates application of Newton’s law to derive the differential equation
governing the free vibrations of a one-degree-of-freed- linear system with viscous
damping.

the motion of the one degree-of-freedom system
by applying the appropriate form(s) of Newton’s % )
laws to the appropriate free-body diagrams. Use b
the generalized coordinates shown in Figure Ce ?
P2.45. Linearize nonlinear differential equations |
by assuming small displacements. k ”I;'

2.45 Derive the differential equation governing il T

L L,
4 ‘

T

Slender bar of mass m

Bt~
£~
~

Given: m, c, k, L, 0 as generalized coordinate
Find: differential equation

Solution: The small angle assumption is used. It is also noted that gravity, which causes
static spring forces, causes with these static spring forces in the governing differential
equation and hence both are ignored. Free-body diagrams of the bar at an arbitrary instant
are shown below.

108

© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.



Chapter 2: Modeling of SDOF Systems

| 2c(Lo) L2y
t
\

KaL ¢ Yol
EXTERNAL FORCES EFFECTIVE FORCES

Summing moments about the point of support,

(ZMO)ext:(ZMO)Lﬂ

—ikLH(ELJ—£c9(£j—£k9(£)—£c0{£jzémé[£j+imﬁé
4 4 2 2) 4 4) 2 4) 4 4) 12
T B +3 20+ k20 =0
48 8 8

leads to

§+18¢5,30K 5

m T m

Problem 2.45 illustrates application of Newton’s law to derive the differential equation
governing the free vibration of a one-degree-of-freedom system with viscous damping.

2.46 Derive the differential equation governing the motion of
the one degree-of-freedom system by applying the appropriate
form(s) of Newton’s laws to the appropriate free-body
diagrams. Use the generalized coordinates shown in Figure
P2.46. Linearize nonlinear differential equations by assuming
small displacements.

Thin disk of mass m

. . . radius r rolls
Given: m, k, ¢, x as generalized coordinate without slip

Find: differential equation, ®,

Solution: The effect of the incline is to cause a non-zero static deflection in the spring.
Thus, neither the gravity force or the static spring force have any effect on the differential
equation and both are ignored in drawing the free body diagrams. Assuming the disk rolls
without slip, its angular acceleration is related to the acceleration of the mass center by

X
a==
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Consider the free body diagrams drawn below at an arbitrary instant

kx

%
v\\ h -
) ) Q\
. MX
EXTERNAL FORCES EFFECTIVE FORCES

Summing moments about the point of contact between the disk and the incline

), =Em.),

leads to

1 X

. 2 ..

—kxr —cxr=—mr* —+ mxr
v

%mﬁé+c§c+kx:0

. 2c . 2k
X+—x+—x=0
3m  3m

Problem 2.46 illustrates application of Newton’s law to determine the governing
differential equation for free vibrations of a one-degree-of-freedom system with viscous
damping.

2.47 Derive the differential equation governing the motion of one-degree-of-freedom
system by applying the appropriate form(s) of Newton’s laws to the appropriate free-body
diagrams. Use the generalized coordinate shown in Figure P.2.47. Linearize nonlinear
differential equations by assuming small displacements.

L

Given: system shown l

Find: differential equation

-~ L 2L
3

o~

Identical slender bars of mass m, length L

Solution: Free-body diagrams of the system at an arbitrary instant are shown below.
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me 6 B .

[§] L 2

%\um

L

L2

ms 9

B 2.2

b -
By i mL§
c%é2 l—mfﬂz&b 270

kLG, ¥

External Forces Effective Forces

The displacement of each end of the rigid rod is the same. Using the small angle
assumption

2L 3L
“o="0,
3 4

8
92 250

Summing moments about the pin support of the upper bar leads to
(ZMA )ext - (ZMA )eff
- c[£9j£ - 2k[2—L6’j2—L + F2—L = imLzé + m£l9£
3 )3 3 3 3 12 6 6

L T L)
6 6 3

Summing moments about the pin support of the lower bar leads to
(Z MB )ext = (ZMB )E/f

—kLO,L —c 592 £—F3—L=im/:2é2+m 59'2 L
2°%)2 4 12 2°%)2

Substitution for F and 67 leads to
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2mLzé +§cL29' +1—7kL26 =0
216 72 9

Rewriting the equation in standard form

é-l— 75¢ 9+408k9:0
91m 91m

Problem 2.47 illustrates the derivation of the differential equation governing the motion of
a linear one-degree-of-freedom system using the free-body diagram method.

2.48 Derive the differential equation governing the motion of one-degree-of-freedom
system by applying the appropriate form(s) of Newton’s laws to the appropriate free-body
diagrams. Use the generalized coordinate shown -

in Figure P2.48. Linearize nonlinear differential

}—n- X U
) W\
equations by assuming small displacements. g [ / /7;\ < >—E
VA

k

Given: system shown No slip

. . . . Thin disk of mass m, radius r
Find: differential equation ’

Solution: Free-body diagrams of the system at an arbitrary instant are shown below

X
S o
C
j—ﬂ (A (o
k \WW%
No slip
my e
2ki3%) \
kx+cx 2k(3x) @ mx
F
N
External Forces Effective Forces

Note that the force developed in the spring is proportional to the change in length of the
spring. When the center of the disk is displaced a distance x from equilibrium, the end of
the spring attached to the center of the disk compresses by x. When the center of the disk
displaces x, the point on the disk to which the spring is attached has translated a distance x
and rotated along the distance an angle 0. Assuming no slip between the disk and the
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surface, 0 = x/r. Hence this end of the spring has displaced 2x. The total change in length
of this spring is 3x.

Summing moments about the point of contact between the disk and surface leads to

Eme), =Emc),

— (kx + cx)r = 2k(3x)r = 2k(3x)(2r) = mx(r) + %mr2 X
r
Emr)'é +erx +19%rx =0

The differential equation is put into standard form by dividing by the coefficient of X
leading to

Problem 2.48 illustrates derivation of the differential equation governing the motion of a
one-degree-of-freedom system using the free-body diagram method, putting the
differential equation into a standard form, and determination of the natural frequency
from the differential equation.

I~J|:“‘

2.49 Derive the differential equation e ig e
governing the motion of the one-degree-of- aCe _,
freedom system by applying the appropriate i
form(s) of Newton’s laws to the appropriate _

free-body diagrams. Use the generalized m 2m
coordinate shown in Figure P2.49. Linearize ‘
nonlinear differential equations by assuming  ¢< ¢ k § ¢
small displacements. W;

Slender bar of mass m connected to

Given' system shown blocks through rigid links at A and B

Find: differential equation

Solution: Free-body diagrams of the system at an arbitrary instant are shown below
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fo— L2 —wfa— 12—
ke Le ks e

L

L
k§9+

VL

Lol
k§9+cjﬂ

Effective Forces

External Forces

Summing moments about the pin support leads to

(ZM 0 )ex, :(ZM 0 )eﬁ-
—(k£9+c£9j£—(k£9+c£9j£:imLzé+m£é£+2m£9£
2 2 )2 2 2 )2 12 2 2 2 2

émLzé +ch20' +lkL249 =0
6 2 2

The differential equation is put into standard form by dividing by the coefficient of &
leading to

§+¢0+3%9-0
Sm Sm

Problem 2.49 illustrates the use of the free-body diagram method to derive the differential
equation governing the motion of a one-degree-of-freedom system.

2.50 Derive the differential equation governing
the motion of the one degree-of-freedom system
by applying the appropriate form(s) of Newton’s
laws to the appropriate free-body diagrams. Use
the generalized coordinates shown in Figure
P2.50. Linearize nonlinear differential equations
by assuming small displacements.

VS Sphere of
/ mass m,
radius r,
no slip
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Given: R, r, m, ¢ as generalized coordinate
Find: differential equation, ®,

Solution: The generalized coordinate is chosen as ¢, the angle made between the normal to
the sphere and the surface at any instant of time. Let & be an angular coordinate
representing the angular displacement of the sphere. If the sphere rolls without slip, then
the distance traveled by the mass center of the sphere is

x=r6 (1)

However, the mass center of the sphere is also traveling in a circular path of radius (R-r).
Thus the distance traveled by the mass center is also equal to

x=(R-r)¢ 2)

Equating x from eqs.(1) and (2) leads to

Now consider free body diagrams of the sphere at an arbitrary instant.

%mr2 (Rﬁe

//k\

\\N m(R-r) ¢

~

FXTFRNAI FORCFS FFFFCTIVF FORCFS

Summing moments about the point of contact,
(Z Mc )ext = (Z Mc )eff'

leads to

R_rjé'er(R—r)é'r

—mgrsin¢=£mrz(
5 r

g(R—r)&5+gsin¢=0

Assuming small ¢
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%(R—V)é5+g¢=0

. dg
¢+7(R—r)¢_0

Problem 2.50 illustrates application of Newton’s law to derive the differential equation
governing free vibration of a one-degree-of-freedom system.

= 2k

2.51 Derive the differential equation
governing the motion of the one-degree-
of-freedom system by applying the
appropriate form(s) of Newton’s laws to L] g)
the appropriate free-body diagrams. Use e
the generalized coordinate shown in

LU Rl

Wl

f—x
Figure P2.51. Linearize nonlinear /‘_\ .
differential equations by assuming small ) [ [N _W]CE

Rigid

displacements. Sl e n .
f link “\

Thin disk

=

of mass m,

Given: system shown no slip

Find: differential equation
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Solution: Free-body diagrams of the system at an arbitrary instant are shown below

2k

A

Ny
W/

= k
igidlink /7 AN

Y e e

2kLo
Li:
) me ]
0, e m %9
F
1 2
j W mL &
myg _\ %m I'2 (%)
F koe+cx .
_ m¥
F
N T
External Forces Effective Forces

Summing moments about the point of support of the bar using the small angle assumption
leads to

(ZMo)ex, = (ZMo)eﬁr
L 1

—mgéé?—2k£t9£+F—=—mL265+m£t§£
6 3 3 3 12 6 6

Felmris 2k£+lmg 0
3 32

Summing moments about the point of contact between the disk and the surface leads to
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(ZMC)W :(ZMc)eﬁr

—Fr—er—ckr:mjér+lmr2[£j
2 r

Fz—%mjé—cx-kx

Kinematics is used to give

Equating the two expressions for F and substituting for 0 leads to

—ém)'c'—cfc—klemL 3% + 2k£+lmg 3x
2 3 L 3 2 L

Sirertl3k2" =0
2 2L

The differential equation is put into standard form by dividing by the coefficient of X
leading to

mﬁx{ﬁﬁ—g}c:o

Problem 2.51 illustrates the application of the free-body diagram method to derive the
differential equation governing the motion of a one-degree-of-freedom system.

2.52 Determine the differential equations governing

the motion of the system by using the equivalent i ) -
systems method. Use the generalized coordinates g—%—{ m }—'\/\N\/\,—E
shown in Figure P2.52.

Given: system shown

Find: differential equation using x as the generalized coordinate.

Solution: The springs attached to the mass act as two springs in parallel. The system can be
modeled by a mass attached to a spring of equivalent stiffness 3k. Thus the governing
differential equation is

mx +3kx=0
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or

)'c'+3£x:0
m

Problem 2.52 illustrates the application of the equivalent system approach to derive the
governing differential equation for a block attached to springs in parallel.

2.53 Determine the differential equations governing the
motion of the system by using the equivalent systems
method. Use the generalized coordinates shown in
Figure P2.53.

Given: x as generalized coordinate, k, m, I, r
Find: differential equation

Solution: Since x is measured from the system’s equilibrium position, gravity cancels with
the static spring forces in the governing differential equation. Thus, for purposes of
deriving the differential equation, both are ignored. It is assumed there is no slip between
the cable and the pulley. Thus the angular rotation of the pulley is kinematically related to
the displacement of the block by

0=—
2r

The equivalent systems method is used. The system is modeled by a mass-spring system of
an equivalent mass and equivalent stiffness, using the generalized coordinate, x. The
kinetic energy of the equivalent system at an arbitrary time is

1 2

T:Emeqx

The kinetic energy of the system at an arbitrary instant is

Requiring the kinetic energy of the equivalent system to be equal to the kinetic energy of
the original system at any instant leads to
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m,, =m+ 7
The potential energy of the equivalent system at an arbitrary instant is

Vzik x’
2

eq

The potential energy of the system at hand at an arbitrary instant is

2
403
2 \2

v:ikx2

24

Requiring the potential energies to be equal at any instant leads to

The differential equation governing free vibration is

m,X+k,x=0

Problem 2.53 illustrates use of the equivalent system method to derive the differential
equation governing free vibration of a one-degree-of-

freedom system. ¢
L
) g’.\
2.54 Determine the differential equations governing the )
motion of the system by using the equivalent systems Slender bar
method. Use the generalized coordinates shown in Figure S “of mass
P2.54.
Given: k, m, ¢, fas generalized coordinate W
& A
Find: differential equation, ®, P
0

Solution: The small angle assumption is used. Since the
generalized coordinate is an angular displacement the
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system is modeled by a disk of mass moment of inertia I.q attached to a shaft of torsional
stiffness ki q and connected to a torsional viscous damper of torsional damping coefficient

C[,eq.

The kinetic energy of the system at an arbitrary time is

Hence,

Using a horizontal plane through the pin support as the datum for potential energy
calculations due to gravity, the potential energy of the system at an arbitrary time is

2
V:ik(iLﬁj —mg£c0s49
2 \4 4

:iikﬁ&z—mgécos@
216 4

Using the small angle assumption and the Taylor series expansion for cosé, truncated after
the quadratic term, leads to

Hence
The work done by the damping force between two arbitrary times is
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= j L o126 a0
Hence
c, =icL2
v 16

The governing differential equation is

1,0+c, O+k_0=0
7 I

ZmlO+—
16

cL29+( 4 kL +mg = j@ 0
48 16

G+3C4, [27/{ 12gj0 0
7 m 7 m 7 L

Problem 2.54 illustrates application of the equivalent systems method to derive the
differential equation governing the motion of a one-degree-of-freedom system with viscous
damping.

2.55 Determine the differential equations R
governing the motion of the system by using the é ;
l‘ =l

equivalent systems method. Use the generalized !

coordinates shown in Figure P2.55. " 4
. k % L I L Slender bar of mass m
Given: system shown

Find: differential equation using & as the T

generalized coordinate

Solution: The small angle assumption is used. Since the generalized coordinate is an
angular coordinate, the appropriate equivalent system model is a thin disk of mass
moment-of inertia I.q. attached to a shaft of torsional stiffness k;.q. and torsional viscous
damper of damping coefficient c;¢q .The kinetic energy of the equivalent system is

T- ézeq_éz )
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b
\

Kteq

The kinetic energy of the system at hand is

comparing egs.(1) and (2) leads to
7

I, =—mL’
48

The potential energy of the equivalent system is

= éktmez

The potential energy of the system at hand, is

2 2
V:ik(iLHJ +lk(£ej
2 \4 2 \ 4

= i [i I’ ng
2\ 8
Comparing eqs. (4) and (5) leads to
k, = ki
eq. 8

The work done by the torsional viscous damper of the equivalent system is

U=-C_[6do

The work done by this viscous dampers in the system at hand is
123

)

3)

“4)

)

(6)

(7
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U= —chAdxA —_[2chde

:_jc[gejd[gej_pc(ggjd(g@j (8)
=—§cL2j0'de

Comparing eqs.(7) and (8) leads to

3

c, = chZ 9

The differential equation governing motion of the equivalent system is

LG+c, 0+k _0=0 (10)

Substituting egs.(3), (6), and (9) in eq.(10) leads to the differential equation governing the
system as

lmLzmi L29+£kL26’=0 (11)
48 8 8

Dividing eq.(11) by the coefficient of its highest derivative gives

G116, 30k, (12)
7 m 7 m

Problem 2.55 illustrates use of the equivalent system method to derive the differential
equation for a system with viscous damping when an angular coordinate is chosen as the
generalized coordinate.

2.56 Determine the differential equations governing the
motion of the system by using the equivalent systems
method. Use the generalized coordinates shown in Figure
P2.56.

Thin disk of mass m
radius r rolls
without slip

Given: m, k, ¢, x as generalized coordinate
Find: differential equation

Solution: The system is modeled by a mass-spring-dashpot system of equivalent mass,
stiffness, and viscous damping coefficient. The kinetic energy of the equivalent system is

I

ngmeqx
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If the disk rolls without slip then its angular velocity is related to the velocity of its mass
center by

X
w=—

In this case the kinetic energy of the system is

N2
T:im)'c2+iimr2 d
22 r
and hence

The potential energy of the equivalent system is

2
szkeqx

The gravity causes a static deflection in the spring, and does not contribute to any
additional potential energy. Thus, ignoring gravity and the initial potential energy in the

spring,

V:ikx2
2

and
k., =k
The work done by the damping force in the equivalent system is
W= —I C, Xdx
The work done by damping force in the system at hand is

W = —J. cxdx

Hence, c,, = ¢ . Thus the governing differential equation is

125

© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.



Chapter 2: Modeling of SDOF Systems

%mjé+c5c+kx=0

2c 2k
X+—x+—x=0
3m 3m

Problem 2.56 illustrates the use of the equivalent system method to derive the differential
equation for a one-degree-of-freedom system.

2.57 Determine the differential f

equations governing the motion l
of the system by using the £, ‘ ~Jo
equivalent systems method. Use — e = Rigid massless link
the generalized coordinates ' o Tt CE
shown in Figure P2.57. ¥ ! : I :
S 2 g
k2 A
J
. ST ST
Given: system shown _ :
Identical slender bars of mass m, length L

Find: differential equation
Solution: Let 0, be the counterclockwise angular displacement of the lower bar. Since the

displacement of each end of the rigid rod is the same, use of the small angle approximation
leads to

The kinetic energy of the system at an arbitrary instant is

2 2
r=twLo] +1lpe v Luf Lo, ) + 11,0
2 6 212 2 2 212

2 2
T:lm(£0j +limL29.2 +lm(£§8j +limL2(§6}j
2 (6 212 2 (29 212 9
TzlmLz(L+L+E+£)92
2 36 12 81 243

=12,
2243

Since an angular coordinate is chosen as the generalized coordinate the torsional system is
the appropriate model system with
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! 243

The potential energy of the system at an arbitrary instant is

2
v :12k(2—L9j +1k(1:<92)2
2 (3 2

2 2
v=Ltof Zto| + 110
2 3 2 9

v _lklf(g 64)9

2 9 81
V= 11361«&92
2 81
Thus,
k, 136,
@ 8]

The work done by the viscous damper between two arbitrary times is

L . L L. L
=50 50)-[{2 .50
2 2
WHZZ_J‘ig'dg_ i(§9jd£§9j

4 197)%
WHZ=—ch2[ 16J9d9_—j25i0d9

Thus the equivalent torsional damping coefficient is

25¢L?
Ct =
@ 81

The differential equation governing the motion of the system is

LIV NN
243 81 81

—kL’0=0

The equation is put into standard form by dividing through by the coefficient of the 8 term
leading to

b4 7506 324k0_0
91m 91m
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Problem 2.57 illustrates derivation of the governing differential equation using the
equivalent systems method.

l——- X 2%k

2.58 Determine the differential equations . / /‘N ( )_E
% k

governing the motion of the system by using the
equivalent systems method. Use the generalized ; ?/?
No slip

coordinates shown in Figure P2.58.

Thin disk of mass m, radius r

Given: system shown
Find: differential equation

Solution: It the disk rolls without slip then the velocity of the mass center is related to the

angular velocity of the disk by X=r® The kinetic energy of the system at an arbitrary
instant is

The potential energy developed in a spring is proportional to the square of the change in
length of the spring. If the center of the disk displaces a distance x from equilibrium the
end of the spring attached to the center of the disk displaces x. The point at the top of the
disk where the spring is attached translates a distance x and rotates through an angle 6.
Since the disk rolls without slip 6 = x/r. Thus the total displacement of that end of the
spring is x + r0=2x. Then the total change in length of the spring is 3x. The potential
energy of the system at an arbitrary instant is

V=lkx2 +12k(3x)2
2 2
1

V ==(19k)x>
2( )

Thus the equivalent stiffness of the system is
128

© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.



Chapter 2: Modeling of SDOF Systems

k., =19k

The work done by the viscous damper between two arbitrary positions is

= _’]z cx dx

X

74

1-2

The equivalent viscous damping coefficient for the system is

Cp =C

The differential equation governing the motion of the system is

%mﬁé+cx+l9kx=0

The differential equation is put into standard form by dividing by the coefficient of X
leading to

Problem 2.58 illustrates derivation of the differential equation governing the motion of a
linear one-degree-of-freedom system using the equivalent systems method.

/7% B Wﬁ

2.59 Determine the differential equations AQy
governing the motion of the system by

using the equivalent systems method. Use
the generalized coordinates shown in :
Figure P2.59. ‘

m 2m

Given: system shown Slender bar of mass m connected to
blocks through rigid links at A and B

Find: differential equation, mp

Solution: The kinetic energy of the system at an arbitrary instant is

2 2
limLzﬁ'2 +lm £9 +l2m £6’
21 2 \2 2 2

1

2
(2 mL? ]92
216

T =

T =
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Since an angular coordinate is chosen as the generalized coordinate the equivalent system
model is the torsional system. The equivalent moment of inertia of the system is

I, = > I
6

The potential energy of the system at an arbitrary instant is

2 2
V:lk(ie] +lk(£0]
2 (2 2 (2

V:l(lk[fjﬁz
202

The equivalent torsional stiffness is

ty

k =lkL2
2

The work done by the viscous dampers between two arbitrary positions is

e o)t 1428
W, = —gj(c%]ﬁ do

The equivalent torsional viscous damping coefficient is

1
=—cl’
eq 2

¢

The differential equation governing the motion of the system is
Smid+Leré+Lirro-o
6 2 2

The differential equation is put into standard form by dividing by the coefficient of ) leading to

§+0+3 90
Sm Sm

Problem 2.59 illustrates the application of the equivalent systems method to derive the
differential equation governing the motion of a linear one-degree-of-freedom system.
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2.60 Determine the differential equations
governing the motion of the system by using the
equivalent systems method. Use the generalized
coordinates shown in Figure P2.60.

\ /__ Sphere of
mass s,
radius r,
. no slip

Given: system shown :

Find: differential equation

Solution: The generalized coordinate is chosen as ¢ the angle made between the normal to
the sphere and the surface at any instant. Let 0 be an angular coordinate representing the
angular displacement of the sphere. If the sphere rolls without slip, then the distance
traveled by the mass center of the sphere is

x=r0

However the mass center of the sphere is also traveling in a circular path of radius (R-r).
Thus the distance traveled by the mass center is also equal to

x=(R-r)p
Equating x between the two equations leads to

R—r

r

0=

¢

The kinetic energy of the system at an arbitrary instant is

r=lmi 12,007
2 25

Hence the equivalent moment of inertia is

7 2
I, :gm(R—r)

The datum for potential energy calculations is taken as the position of the mass center of
the sphere when it is in equilibrium at the bottom of the circular path. The potential energy
at an arbitrary instant is
V=mg(R—-r)cos¢
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Use of the small angle assumption leads to
1 2
V= 5 mg(R —r)¢

Thus the equivalent torsional stiffness is

k

tog

= mg(R - r)

The differential equation governing the motion of the system is
7 -
gm(R -r)¢g+mg(R—r)p=0

The differential equation is put into standard form by dividing by the coefficient
multiplying the highest order derivative. This leads to

.. Sg _
¢+7(R—r)¢_0

Problem 2.60 illustrates the application of the equivalent systems method to derive the
differential equation governing the motion of a one-degree-of-freedom linear system with
an angular displacement as the chosen generalized coordinate.

.

s 2k E

2.61 Determine the differential equations governing
the motion of the system by using the equivalent 3
systems method. Use the generalized coordinates
shown in Figure P2.61. 1 %:\ ot
of mass m
3 —
Given: system shown ra /j iy ‘] E
. ) ) ) Rigid
Find: differential equation massless o % k
q L link i X
3 Thin disk
of mass m,
l no slip

Solution: The kinetic energy of the system is
T =Ty + Tswhere T, is the kinetic energy of the bar
and Ty is the kinetic energy of the sphere. The kinetic energy of the sphere is assuming no

slipping
1, 1/ \m\* 13m ,
no=gmit g (Gme) (2) =55

Let 0 (small) be the angular rotation of the bar. Both ends of the rigid link have the same
displacement, thus
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The kinetic energy of the bar is

T—l [L(35c>]2+1(1 L2>(3x> 1,
b= M6\ 2\12 L) 2™

Hence the total kinetic energy of the system is

The equivalent mass of the system is STm The potential energy of the system is

2

1 1 L /3x mglL
— 2 771 -
V—ka +22k[3<L)] + 6 (1—--cos8)

Using the small angle assumption and approximating 1 — cos fas = 92 = %(T) leads to
the potential energy of

3mg> )

<3k+ =

The equivalent stiffness of the system is 3k + %. The work done by the viscous damping

force is
U=- f cx dx

The equivalent viscous damping coefficient is c. The differential equation is

5m__+ '+<3k+ mg) 0
> %+ oL )%=

Problem 2.61 illustrates the application of the equivalent systems method to derive the
differential equation governing the motion of a one-degree-of-freedom linear system with a
liner displacement as the chosen generalized coordinate and gravity as a source of potential
energy.
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