
c© 2013 Cengage Learning. All Rights Reserved. This edition is intended for use outside of the U.S. only, with content that may be
different from the U.S. Edition. May not be scanned, copied, duplicated, or posted to a publicly accessible website, in whole or in part.

Instructor’s Solutions Manual for
Introduction to the Theory of Computation

third edition

Michael Sipser

Mathematics Department

MIT

c© 2013 Cengage Learning. All Rights Reserved. This edition is intended for use outside of the U.S. only, with content that may be
different from the U.S. Edition. May not be scanned, copied, duplicated, or posted to a publicly accessible website, in whole or in part.

c© 2013 Cengage Learning. All Rights Reserved. This edition is intended for use outside of the U.S. only, with content that may be
different from the U.S. Edition. May not be scanned, copied, duplicated, or posted to a publicly accessible website, in whole or in part.

Preface

This Instructor’s Manual is designed to accompany the textbook, Introduction to the Theory
of Computation, third edition, by Michael Sipser, published by Cengage, 2013. It contains
solutions to almost all of the exercises and problems in Chapters 0–9. Most of the omitted
solutions in the early chapters require figures, and producing these required more work that
we were able to put into this manual at this point. A few problems were omitted in the later
chapters without any good excuse.

Some of these solutions were based on solutions written by my teaching assistants and
by the authors of the Instructor’s Manual for the first edition.

This manual is available only to instructors.

c© 2013 Cengage Learning. All Rights Reserved. This edition is intended for use outside of the U.S. only, with content that may be
different from the U.S. Edition. May not be scanned, copied, duplicated, or posted to a publicly accessible website, in whole or in part.

c© 2013 Cengage Learning. All Rights Reserved. This edition is intended for use outside of the U.S. only, with content that may be
different from the U.S. Edition. May not be scanned, copied, duplicated, or posted to a publicly accessible website, in whole or in part.

Chapter 0

0.1 a. The odd positive integers.
b. The even integers.
c. The even positive integers.
d. The positive integers which are a multiple of 6.
e. The palindromes over {0,1}.
f. The empty set.

0.2 a. {1, 10, 100}.
b. {n| n > 5}.
c. {1, 2, 3, 4}.
d. {aba}.
e. {ε}.
f. ∅.

0.3 a. No.
b. Yes.
c. A.
d. B.
e. {(x, x), (x, y), (y, x), (y, y), (z, x), (z, y)}.
f. {∅, {x}, {y}, {x, y}}.

0.4 A × B has ab elements, because each element of A is paired with each element of B, so
A × B contains b elements for each of the a elements of A.

0.5 P(C) contains 2c elements because each element of C may either be in P(C) or not in
P(C), and so each element of C doubles the number of subsets of C. Alternatively, we
can view each subset S of C as corresponding to a binary string b of length c, where S
contains the ith element of C iff the ith place of b is 1. There are 2c strings of length c
and hence that many subsets of C.

0.6 a. f(2) = 7.
b. The range = {6, 7} and the domain = {1, 2, 3, 4, 5}.
c. g(2, 10) = 6.
d. The range = {1, 2, 3, 4, 5} × {6, 7, 8, 9, 10} and the domain = {6, 7, 8, 9, 10}.
e. f(4) = 7 so g(4, f(4)) = g(4, 7) = 8.

1

c© 2013 Cengage Learning. All Rights Reserved. This edition is intended for use outside of the U.S. only, with content that may be
different from the U.S. Edition. May not be scanned, copied, duplicated, or posted to a publicly accessible website, in whole or in part.

2 Theory of Computation, third edition

0.7 The underlying set is N in these examples.
a. Let R be the “within 1” relation, that is, R = {(a, b)| |a − b| ≤ 1}.
b. Let R be the “less than or equal to” relation, that is, R = {(a, b)| a ≤ b}.
c. Finding a R that is symmetric and transitive but not reflexive is tricky because of the

following “near proof” that R cannot exist! Assume that R is symmetric and transitive
and chose any member x in the underlying set. Pick any other member y in the underlying
set for which (x, y) ∈ R. Then (y, x) ∈ R because R is symmetric and so (x, x) ∈ R
because R is transitive, hence R is reflexive. This argument fails to be an actual proof
because y may fail to exist for x.

Let R be the “neither side is 1” relation, R = {(a, b)| a �= 1 and b �= 1}.

0.10 Let G be any graph with n nodes where n ≥ 2. The degree of every node in G is one
of the n possible values from 0 to n − 1. We would like to use the pigeon hole principle
to show that two of these values must be the same, but number of possible values is too
great. However, not all of the values can occur in the same graph because a node of
degree 0 cannot coexist with a node of degree n − 1. Hence G can exhibit at most n − 1
degree values among its n nodes, so two of the values must be the same.

0.11 The error occurs in the last sentence. If H contains at least 3 horses, H1 and H2 contain
a horse in common, so the argument works properly. But, if H contains exactly 2 horses,
then H1 and H2 each have exactly 1 horse, but do not have a horse in common. Hence
we cannot conclude that the horse in H1 has the same color as the horse in H2. So the 2
horses in H may not be colored the same.

0.12 a. Basis: Let n = 0. Then, S(n) = 0 by definition. Furthermore, 1
2n(n + 1) = 0. So

S(n) = 1
2n(n + 1) when n = 0.

Induction: Assume true for n = k where k ≥ 0 and prove true for n = k + 1. We
can use this series of equalities:

S(k + 1) = 1 + 2 + · · · + k + (k + 1) by definition

= S(k) + (k + 1) because S(k) = 1 + 2 + · · · + k

= 1
2k(k + 1) + (k + 1) by the induction hypothesis

= 1
2 (k + 1)(k + 2) by algebra

b. Basis: Let n = 0. Then, C(n) = 0 by definition, and 1
4 (n4 + 2n3 + n2) = 0. So

C(n) = 1
4 (n4 + 2n3 + n2) when n = 0.

Induction: Assume true for n = k where k ≥ 0 and prove true for n = k + 1. We
can use this series of equalities:

C(k + 1) = 13 + 23 + · · · + k3 + (k + 1)3 by definition

= C(k) + (k + 1)3 C(k) = 13 + · · · + k3

= 1
4 (n4 + 2n3 + n2) + (k + 1)3 induction hypothesis

= 1
4 ((n + 1)4 + 2(n + 1)3 + (n + 1)2) by algebra

0.13 Dividing by (a − b) is illegal, because a = b hence a − b = 0 and division by 0 is
undefined.

c© 2013 Cengage Learning. All Rights Reserved. This edition is intended for use outside of the U.S. only, with content that may be
different from the U.S. Edition. May not be scanned, copied, duplicated, or posted to a publicly accessible website, in whole or in part.

Chapter 1

1.12 Observe that D ⊆ b∗a∗ because D doesn’t contain strings that have ab as a substring.
Hence D is generated by the regular expression (aa)∗b(bb)∗. From this description,
finding the DFA for D is more easily done.

1.14 a. Let M ′ be the DFA M with the accept and non-accept states swapped. We show that M ′

recognizes the complement of B, where B is the language recognized by M . Suppose
M ′ accepts x. If we run M ′ on x we end in an accept state of M ′. Because M and M ′

have swapped accept/non-accept states, if we run M on x, we would end in a non-accept
state. Therefore, x �∈ B. Similarly, if x is not accepted by M ′, then it would be accepted
by M . So M ′ accepts exactly those strings not accepted by M . Therefore, M ′ recognizes
the complement of B.
Since B could be any arbitrary regular language and our construction shows how to
build an automaton to recognize its complement, it follows that the complement of any
regular language is also regular. Therefore, the class of regular languages is closed under
complement.

b. Consider the NFA in Exercise 1.16(a). The string a is accepted by this automaton. If we
swap the accept and reject states, the string a is still accepted. This shows that swapping
the accept and non-accept states of an NFA doesn’t necessarily yield a new NFA rec-
ognizing the complementary language. The class of languages recognized by NFAs is,
however, closed under complement. This follows from the fact that the class of languages
recognized by NFAs is precisely the class of languages recognized by DFAs which we
know is closed under complement from part (a).

1.18 Let Σ = {0, 1}.
a. 1Σ∗0
b. Σ∗1Σ∗1Σ∗1Σ∗

c. Σ∗0101Σ∗

d. ΣΣ0Σ∗

e. (0 ∪ 1Σ)(ΣΣ)∗

f. (0 ∪ (10)∗)∗1∗

g. (ε ∪ Σ)(ε ∪ Σ)(ε ∪ Σ)(ε ∪ Σ)(ε ∪ Σ)
h. Σ∗0Σ∗ ∪ 1111Σ∗ ∪ 1 ∪ ε

i. (1Σ)∗(1 ∪ ε)
j. 0∗(100 ∪ 010 ∪ 001 ∪ 00)0∗

k. ε ∪ 0

l. (1∗01∗01∗)∗ ∪ 0∗10∗10∗

3

c© 2013 Cengage Learning. All Rights Reserved. This edition is intended for use outside of the U.S. only, with content that may be
different from the U.S. Edition. May not be scanned, copied, duplicated, or posted to a publicly accessible website, in whole or in part.

4 Theory of Computation, third edition

m. ∅
n. Σ+

1.20 a. ab, ε; ba, aba
b. ab, abab; ε, aabb
c. ε, aa; ab, aabb
d. ε, aaa; aa, b
e. aba, aabbaa; ε, abbb
f. aba, bab; ε, ababab
g. b, ab; ε, bb
h. ba, bba; b, ε

1.21 In both parts we first add a new start state and a new accept state. Several solutions are
possible, depending on the order states are removed.

a. Here we remove state 1 then state 2 and we obtain
a∗b(a ∪ ba∗b)∗

b. Here we remove states 1, 2, then 3 and we obtain
ε ∪ ((a ∪ b)a∗b((b ∪ a(a ∪ b))a∗b)∗(ε ∪ a))

1.22 b. /#(#∗(a ∪ b) ∪ /)∗#+/

1.24 a. q1, q1, q1, q1; 000.
b. q1, q2, q2, q2; 111.
c. q1, q1, q2, q1, q2; 0101.
d. q1, q3; 1.
e. q1, q3, q2, q3, q2; 1111.
f. q1, q3, q2, q1, q3, q2, q1; 110110.
g. q1; ε.

1.25 A finite state transducer is a 5-tuple (Q,Σ,Γ, δ, q0), where
i) Q is a finite set called the states,

ii) Σ is a finite set called the alphabet,
iii) Γ is a finite set called the output alphabet,
iv) δ : Q × Σ−→Q × Γ is the transition function,
v) q0 ∈ Q is the start state.

Let M = (Q,Σ,Γ, δ, q0) be a finite state transducer, w = w1w2 · · ·wn be a string
over Σ, and v = v1v2 · · · vn be a string over the Γ. Then M outputs v if a sequence of
states r0, r1, . . . , rn exists in Q with the following two conditions:

i) r0 = qo

ii) δ(ri, wi+1) = (ri+1, vi+1) for i = 0, . . . , n − 1.

1.26 a. T1 = (Q,Σ,Γ, δ, q1), where
i) Q = {q1, q2},

ii) Σ = {0, 1, 2},
iii) Γ = {0, 1},
iv) δ is described as

0 1 2
q1 (q1,0) (q1,0) (q2,1)
q2 (q1,0) (q2,1) (q2,1)

v) q1 is the start state.

c© 2013 Cengage Learning. All Rights Reserved. This edition is intended for use outside of the U.S. only, with content that may be
different from the U.S. Edition. May not be scanned, copied, duplicated, or posted to a publicly accessible website, in whole or in part.

Instructor’s Manual 5

b. T2 = (Q,Σ,Γ, δ, q1), where
i) Q = {q1, q2, q3},

ii) Σ = {a, b},
iii) Γ = {0, 1},
iv) δ is described as

a b
q1 (q2,1) (q3,1)
q2 (q3,1) (q1,0)
q3 (q1,0) (q2,1)

v) q1 is the start state.

1.29 b. Let A2 = {www| w ∈ {0,1}∗}. We show that A2 is nonregular using the pumping
lemma. Assume to the contrary that A2 is regular. Let p be the pumping length given by
the pumping lemma. Let s be the string apbapbapb. Because s is a member of A2 and
s has length more than p, the pumping lemma guarantees that s can be split into three
pieces, s = xyz, satisfying the three conditions of the lemma. However, condition 3
implies that y must consist only of as, so xyyz �∈ A2 and one of the first two conditions
is violated. Therefore A2 is nonregular.

1.30 The error is that s = 0p1p can be pumped. Let s = xyz, where x = 0, y = 0 and
z = 0p−21p. The conditions are satisfied because

i) for any i ≥ 0, xyiz = 00i0p−21p is in 0∗1∗.
ii) |y| = 1 > 0, and

iii) |xy| = 2 ≤ p.

1.31 We construct a DFA which alternately simulates the DFAs for A and B, one step at a time.
The new DFA keeps track of which DFA is being simulated. Let M1 = (Q1, Σ, δ1, s1, F1)
and M2 = (Q2,Σ, δ2, s2, F2) be DFAs for A and B. We construct the following DFA
M = (Q,Σ, δ, s0, F) for the perfect shuffle of A and B.

i) Q = Q1 × Q2 × {1, 2}.
ii) For q1 ∈ Q1, q2 ∈ Q2, b ∈ {1, 2}, and a ∈ Σ:

δ((q1, q2, b), a) =

{
(δ1(q1, a), q2, 2) b = 1
(q1, δ1(q2, a), 1) b = 2.

iii) s0 = (s1, s2, 1).
iv) F = {(q1, q2, 1)| q1 ∈ F1 and q2 ∈ F2}.

1.32 We construct an NFA which simulates the DFAs for A and B, nondeterministically
switching back and forth from one to the other. Let M1 = (Q1,Σ, δ1, s1, F1) and
M2 = (Q2,Σ, δ2, s2, F2) be DFAs for A and B. We construct the following NFA
N = (Q,Σ, δ, s0, F) for the shuffle of A and B.

i) Q = Q1 × Q2.
ii) For q1 ∈ Q1, q2 ∈ Q2, and a ∈ Σ:

δ((q1, q2), a) = {(δ1(q1, a), q2), (q1, δ2(q2, a))}.
iii) s0 = (s1, s2).
iv) F = {(q1, q2)| q1 ∈ F1 and q2 ∈ F2}.

1.33 Let M = (Q,Σ, δ, q0, F) be a DFA that recognizes A. Then we construct NFA N =
(Q′, Σ, δ′, q′0, F

′) recognizing DROP-OUT(A). The idea behind the construction is
that N simulates M on its input, nondeterministically guessing the point at which the

c© 2013 Cengage Learning. All Rights Reserved. This edition is intended for use outside of the U.S. only, with content that may be
different from the U.S. Edition. May not be scanned, copied, duplicated, or posted to a publicly accessible website, in whole or in part.

6 Theory of Computation, third edition

dropped out symbol occurs. At that point N guesses the symbol to insert in that place,
without reading any actual input symbol at that step. Afterwards, it continues to simu-
late M .

We implement this idea in N by keeping two copies of M , called the top and bottom
copies. The start state is the start state of the top copy. The accept states of N are the
accept states of the bottom copy. Each copy contains the edges that would occur in M .
Additionally, include ε edges from each state q in the top copy to every state in the
bottom copy that q can reach.

We describe N formally. The states in the top copy are written with a T and the
bottom with a B, thus: (T, q) and (B, q).

i) Q′ = {T,B} × Q,
ii) q′0 = (T, q0),

iii) F ′ = {B} × F ,

iv) δ′((T, q), a) =

{
{(T, δ(q, a))} a ∈ Σ
{(B, δ(q, b))| b ∈ Σ} a = ε

δ′((B, q), a) =

{
{(B, δ(q, a))} a ∈ Σ
∅ a = ε

1.35 Let M = (Q,Σ, δ, q0, F) be a DFA that recognizes A. We construct a new DFA M ′ =
(Q,Σ, δ, q0, F

′) that recognizes A/B. Automata M and M ′ differ only in the sets of
accept states. Let F ′ = {r| starting at r and reading a string in B we get to an accept
state of M}. Thus M ′ accepts a string w iff there is a string x ∈ B where M accepts
wx. Hence M ′ recognizes A/B.

1.36 For any regular language A, let M1 be the DFA recognizing it. We need to find a DFA
that recognizes AR. Since any NFA can be converted to an equivalent DFA, it suffices to
find an NFA M2 that recognizes AR.

We keep all the states in M1 and reverse the direction of all the arrows in M1. We
set the accept state of M2 to be the start state in M1. Also, we introduce a new state q0

as the start state for M2 which goes to every accept state in M1 by an ε-transition.

1.39 The idea is that we start by comparing the most significant bit of the two rows. If the
bit in the top row is bigger, we know that the string is in the language. The string does
not belong to the language if the bit in the top row is smaller. If the bits on both rows
are the same, we move on to the next most significant bit until a difference is found. We
implement this idea with a DFA having states q0, q1, and q2. State q0 indicates the result
is not yet determined. States q1 and q2 indicate the top row is known to be larger, or
smaller, respectively. We start with q0. If the top bit in the input string is bigger, it goes
to q1, the only accept state, and stays there till the end of the input string. If the top bit
in the input string is smaller, it goes to q2 and stays there till the end of the input string.
Otherwise, it stays in state q0.

1.40 Assume language E is regular. Use the pumping lemma to a get a pumping length p
satisfying the conditions of the pumping lemma. Set s = [01]p [10]p. Obviously, s ∈ E
and |s| ≥ p. Thus, the pumping lemma implies that the string s can be written as xyz

with x = [01]a , y = [01]b , z = [01]c [10]p, where b ≥ 1 and a + b + c = p. However, the
string s′ = xy0z = [01]a+c [10]p �∈ E, since a + c < p. That contradicts the pumping
lemma. Thus E is not regular.

c© 2013 Cengage Learning. All Rights Reserved. This edition is intended for use outside of the U.S. only, with content that may be
different from the U.S. Edition. May not be scanned, copied, duplicated, or posted to a publicly accessible website, in whole or in part.

Instructor’s Manual 7

1.41 For each n ≥ 1, we build a DFA with the n states q0, q1, . . . , qn−1 to count the number
of consecutive a’s modulo n read so far. For each character a that is input, the counter
increments by 1 and jumps to the next state in M . It accepts the string if and only if the
machine stops at q0. That means the length of the string consists of all a’s and its length
is a multiple of n.

More formally, the set of states of M is Q = {q0, q1, . . . , qn−1}. The state q0 is
the start state and the only accept state. Define the transition function as: δ(qi, a) = qj

where j = i + 1 mod n.

1.42 By simulating binary division, we create a DFA M with n states that recognizes Cn. M
has n states which keep track of the n possible remainders of the division process. The
start state is the only accept state and corresponds to remainder 0.

The input string is fed into M starting from the most significant bit. For each input
bit, M doubles the remainder that its current state records, and then adds the input bit.
Its new state is the sum modulo n. We double the remainder because that corresponds
to the left shift of the computed remainder in the long division algorithm. If an input
string ends at the accept state (corresponding to remainder 0), the binary number has no
remainder on division by n and is therefore a member of Cn.

The formal definition of M is ({q0, . . . , qn−1}, {0, 1}, δ, q0, {q0}). For each qi ∈ Q
and b ∈ {0, 1}, define δ(qi, b) = qj where j = (2i + b) mod n.

1.43 Use the same construction given in the proof of Theorem 1.39, which shows the equiv-
alence of NFAs and DFAs. We need only change F ′, the set of accept states of the new
DFA. Here we let F ′ = P(F). The change means that the new DFA accepts only when
all of the possible states of the all-NFA are accepting.

1.44 Let Ak = Σ∗0k−10∗. A DFA with k states {q0, . . . , qk−1} can recognize Ak. The start
state is q0. For each i from 0 to k−2, state qi branches to qi+1 on 0 and to q0 on 1. State
qk−1 is the accept state and branches to itself on 0 and to q0 on 1.

In any DFA with fewer than k states, two of the k strings 1, 10, . . . , 10k−1 must
cause the machine to enter the same state, by the pigeon hole principle. But then, if we
add to both of these strings enough 0s to cause the longer of these two strings to have
exactly k − 1 0s, the two new strings will still cause the machine to enter the same state,
but one of these strings is in Ak and the other is not. Hence, the machine must fail to
produce the correct accept/reject response on one of these strings.

1.45 b. Let M = (Q,Σ, δ, q0, F) be an NFA recognizing A, where A is some regular language.
We construct M ′ = (Q′, Σ, δ, q′0, F

′) recognizing NOEXTEND(A) as follows:

i) Q′ = Q

ii) δ′ = δ

iii) q′0 = q0

iv) F ′ = {q| q ∈ F and there is no path of length ≥ 1 from q to an accept state}.

1.47 To show that ≡L is an equivalence relation we show it is reflexive, symmetric, and tran-
sitive. It is reflexive because no string can distinguish x from itself and hence x ≡L x for
every x. It is symmetric because x is distinguishable from y whenever y is distinguish-
able from x. It is transitive because if w ≡L x and x ≡L y, then for each z, wz ∈ L iff
xz ∈ L and xz ∈ L iff yz ∈ L, hence wz ∈ L iff yz ∈ L, and so w ≡L y.

c© 2013 Cengage Learning. All Rights Reserved. This edition is intended for use outside of the U.S. only, with content that may be
different from the U.S. Edition. May not be scanned, copied, duplicated, or posted to a publicly accessible website, in whole or in part.

8 Theory of Computation, third edition

1.49 a. F is not regular, because the nonregular language {abncn| n ≥ 0} is the same as F ∩
ab∗c∗, and the regular languages are closed under intersection.

b. Language F satisfies the conditions of the pumping lemma using pumping length 2. If
s ∈ F is of length 2 or more we show that it can be pumped by considering four cases,
depending on the number of a’s that s contains.

i) If s is of the form b∗c∗, let x = ε, y be the first symbol of s, and let z be the rest
of s.

ii) If s is of the form ab∗c∗, let x = ε, y be the first symbol of s, and let z be the rest
of s.

iii) If s is of the form aab∗c∗, let x = ε, y be the first two symbols of s, and let z be the
rest of s.

iv) If s is of the form aaa∗b∗c∗, let x = ε, y be the first symbol of s, and let z be the
rest of s.

In each case, the strings xyiz are members of F for every i ≥ 0. Hence F satisfies the
conditions of the pumping lemma.

c. The pumping lemma is not violated because it states only that regular languages satisfy
the three conditions, and it doesn’t state that nonregular languages fail to satisfy the three
conditions.

1.50 The objective of this problem is for the student to pay close attention to the exact formu-
lation of the pumping lemma.

c. This language is that same as the language in in part (b), so the solution is the same.
e. The minimum pumping length is 1. The pumping length cannot be 0, as in part (b). Any

string in (01)∗ of length 1 or more contains 01 and hence can be pumped by dividing it
so that x = ε, y = 01, and z is the rest.

f. The minimum pumping length is 1. The pumping length cannot be 0, as in part (b). The
language has no strings of length 1 or more so 1 is a pumping length. (the conditions
hold vacuously).

g. The minimum pumping length is 3. The string 00 is in the language and it cannot be
pumped, so the minimum pumping length cannot be 2. Every string in the language of
length 3 or more contains a 1 within the first 3 symbols so it can be pumped by letting y
be that 1 and letting x be the symbols to the left of y and z be the symbols to the right
of y.

h. The minimum pumping length is 4. The string 100 is in the language but it cannot be
pumped (down), therefore 3 is too small to be a pumping length. Any string of length 4
or more in the language must be of the form xyz where x is 10, y is in 11∗0 and z is in
(11∗0)∗0, which satisfies all of the conditions of the pumping lemma.

i. The minimum pumping length is 5. The string 1011 is in the language and it cannot
be pumped. Every string in the language of length 5 or more (there aren’t any) can be
pumped (vacuously).

j. The minimum pumping length is 1. It cannot be 0 as in part (b). Every other string can
be pumped, so 1 is a pumping length.

1.51 a. Assume L = {0n1m0n| m, n ≥ 0} is regular. Let p be the pumping length given by the
pumping lemma. The string s = 0p10p ∈ L, and |s| ≥ p. Thus the pumping lemma
implies that s can be divided as xyz with x = 0a, y = 0b, z = 0c10p, where b ≥ 1 and
a + b + c = p. However, the string s′ = xy0z = 0a+c10p �∈ L, since a + c < p. That
contradicts the pumping lemma.

c© 2013 Cengage Learning. All Rights Reserved. This edition is intended for use outside of the U.S. only, with content that may be
different from the U.S. Edition. May not be scanned, copied, duplicated, or posted to a publicly accessible website, in whole or in part.

Instructor’s Manual 9

c. Assume C = {w| w ∈ {0, 1}∗ is a palindrome} is regular. Let p be the pumping length
given by the pumping lemma. The string s = 0p10p ∈ C and |s| ≥ p. Follow the
argument as in part (a). Hence C isn’t regular, so neither is its complement.

1.52 One short solution is to observe that Y ∩ 1∗#1∗ = {1n#1n| n ≥ 0}. This language is
clearly not regular, as may be shown using a straightforward application of the pumping
lemma. However, if Y were regular, this language would be regular, too, because the
class of regular languages is closed under intersection and complementation. Hence Y
isn’t regular.

Alternatively, we can show Y isn’t regular directly using the pumping lemma. As-
sume to the contrary that Y is regular and obtain its pumping length p. Let s = 1p!#12p!.
The pumping lemma says that s = xyz satisfying the three conditions. By condition 3,
y appears among the left-hand 1s. Let l = |y| and let k = (p!/l). Observe that k is an
integer, because l must be a divisor of p!. Therefore, adding k copies of y to s will add
p! additional 1s to the left-hand 1s. Hence, xy1+kz = 12p!#12p! which isn’t a member
of Y . But condition 1 of the pumping lemma states that this string is a member of Y , a
contradiction.

1.53 The language D can be written alternatively as 0Σ∗0 ∪ 1Σ∗1 ∪ 0 ∪ 1 ∪ ε, which is
obviously regular.

1.54 The NFA Nk guesses when it has read an a that appears at most k symbols from the end,
then counts k − 1 more symbols and enters an accept state. It has an initial state q0 and
additional states q1 thru qk. State q0 has transitions on both a and b back to itself and on
a to state q1. For 1 ≤ i ≤ k − 1, state qi has transitions on a and b to state qi+1. State
qk is an accept state with no transition arrows coming out of it. More formally, NFA
Nk = (Q,Σ, δ, q0, F) where

i) Q = {q0, . . . , qk}

ii) δ(q, c) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
{q0} q = q0 and c = a

{q0, q1} q = q0 and c = b

{qi+1} q = qi for 1 ≤ i < k and c ∈ Σ
∅ q = qk or c = ε

iii) F = {qk}.

1.55 Let M be a DFA. Say that w leads to state q if M is in q after reading w. Notice that if
w1 and w2 lead to the same state, then w1p and w2p also lead to the same state, for all
strings p.

Assume that M recognizes Ck with fewer than 2k states, and derive a contradiction.
There are 2k different strings of length k. By the pigeonhole principle, two of these
strings w1 and w2 lead to the same state of M .

Let i be the index of the first bit on which w1 and w2 differ. Since w1 and w2 lead M
to the same state, w1bi−1 and w2bi−1 lead M to the same state. This cannot be the case,
however, since one of the strings should be rejected and the other accepted. Therefore,
any two distinct k bit strings lead to different states of M . Hence M has at least 2k

states.

1.60 a. We construct M ′ from M by converting each transition that is traversed on symbol a ∈ Σ
to a sequence of transitions that are traversed while reading string f(a) ∈ Γ∗. The formal
construction follows.

c© 2013 Cengage Learning. All Rights Reserved. This edition is intended for use outside of the U.S. only, with content that may be
different from the U.S. Edition. May not be scanned, copied, duplicated, or posted to a publicly accessible website, in whole or in part.

10 Theory of Computation, third edition

Let M = (Q,Σ, δ, q0, F). For each a ∈ Σ let za = f(a) and let ka = |za|.
We write za = za

1za
2 . . . za

ka
where za

i ∈ Γ. Construct M ′ = (Q′,Γ, δ′, q0, F). Q′ =
Q ∪ {qa

i | q ∈ Q, a ∈ Σ, 1 ≤ i ≤ ka}
For every q ∈ Q,

δ′(q, b) =

{
{r| δ(q, a) = r and za = ε} b = ε

{qa
1 | b = za

1} b �= ε

δ′(qa
i , b) =

{
{qa

i+1| b = za
i+1} 1 ≤ i < ka and b �= ε

{r| δ(q, a) = r} i = ka and b = ε

b. The above construction shows that the class of regular languages is closed under homo-
morphism. To show that the class of non-regular languages is not closed under homomor-
phism, let B = {0m1m| m ≥ 0} and let f : {0,1}−→{2} be the homomorphism where
f(0) = f(1) = 2. We know that B is a non-regular language but f(B) = {22m|m ≥ 0}
is a regular language.

1.61 a. RC(A) = {wi+1 · · ·wnw1 · · ·wi| w = w1 · · ·wn ∈ A and 1 ≤ i ≤ n}, because
we can let x = w1 · · ·wi and y = wi+1 · · ·wn. Then RC(RC(A)) gives the same
language because if st = wi+1 · · ·wnw1 · · ·wi for some strings s and t, then ts =
wj+1 · · ·wnw1 · · ·wj for some j where 1 ≤ j ≤ n.

b. Let A be a regular language that is recognized by DFA M . We construct a NFA N
that recognizes RC(A). In the idea behind the construction, N guesses the cut point
nondeterministically by starting M at any one of its states. Then N simulates M on
the input symbols it reads. If N finds that M is in one of its accept states then N may
nondeterministically reset M back to it’s start state prior to reading the next symbol.
Finally, N accepts its input if the simulation ends in the same state it started in, and
exactly one reset occurred during the simulation. Here is the formal construction. Let
M = (Q,Σ, δ, q0, F) recognize A and construct N = (Q′,Σ, δ′, r, F ′) to recognize
RC(A).

Set Q′ = (Q×Q×{1, 2})∪{r}. State (q, r, i) signifies that N started the simulation
in M ’s state q, it is currently simulating M in state r, and if i = 1 a reset hasn’t yet
occurred whereas if i = 2 then a reset has occurred.

Set δ′(r, ε) = {(q, q, 1)| q ∈ Q}. This starts simulating M in each of its states,
nondeterministically.

Set δ′((q, r, i), a) = {(q, δ(r, a), i)} for each q, r ∈ Q and i ∈ {1, 2}. This contin-
ues the simulation.

Set δ′((q, r, 1), ε) = {(q, q0, 2)} for r ∈ F and q ∈ Q. This allows N to reset the
simulation to q0 if M hasn’t yet been reset and M is currently in an accept state.

We set δ′ to ∅ if it is otherwise unset.
F ′ = {(q, q, 2)| q ∈ Q}.

1.62 Assume to the contrary that ADD is regular. Let p be the pumping length given by
the pumping lemma. Choose s to be the string 1p=0+1p, which is a member of ADD .
Because s has length greater than p, the pumping lemma guarantees that s can be split
into three pieces, s = xyz, satisfying the conditions of the lemma. By the third condition
in the pumping lemma have that |xy| ≤ p, it follows that y is 1k for some k ≥ 1. Then
xy2z is the string 1p+k=0+1p, which is not a member of ADD , violating the pumping
lemma. Hence ADD isn’t regular.

c© 2013 Cengage Learning. All Rights Reserved. This edition is intended for use outside of the U.S. only, with content that may be
different from the U.S. Edition. May not be scanned, copied, duplicated, or posted to a publicly accessible website, in whole or in part.

Instructor’s Manual 11

1.63 Let A = {2k| k ≥ 0}. Clearly B2(A) = 10∗ is regular. Use the pumping lemma to
show that B3(A) isn’t regular. Get the pumping length p and chose s ∈ B3(A) of length
p or more. We show s cannot be pumped. Let s = xyz. For string w, write (w)3 to be
the number that w represents in base 3. Then

lim
i→∞

(xyiz)3
(xyi)3

= 3|z| and lim
i→∞

(xyi+1z)3
(xyi)3

= 3|y|+|z|

so

lim
i→∞

(xyi+1z)3
(xyiz)3

= 3|y|.

Therefore for a sufficiently large i,

(xyi+1z)3
(xyiz)3

= 3|y| ± α

for some α < 1. But this fraction is a ratio of two members of A and is therefore a whole
number. Hence α = 0 and the ratio is a power of 3. But the ration of two members of
A also is a power of 2. No number greater than 1 can be both a power of 2 and of 3, a
contradiction.

1.64 Given an NFA M recognizing A we construct an NFA N accepting A 1
2− using the

following idea. M keeps track of two states in N using two “fingers”. As it reads each
input symbol, N uses one finger to simulate M on that symbol. Simultaneously, M
uses the other finger to run M backwards from an accept state on a guessed symbol. N
accepts whenever the forward simulation and the backward simulation are in the same
state, that is, whenever the two fingers are together. At those points we are sure that N
has found a string where another string of the same length can be appended to yield a
member of A, precisely the definition of A 1

2−.
In the formal construction, Exercise 1.11 allows us to assume for simplicity that the

NFA M recognizing A has a single accept state. Let M = (Q,Σ, δ,q0, qaccept). Construct
NFA N = (Q′,Σ, δ′, q′0, F

′) recognizing the first halves of the strings in A as follows:
i) Q′ = Q × Q.

ii) For q, r ∈ Q define
δ′((q, r), a) = {(u, v)| u ∈ δ(q, a) and r ∈ δ(v, b) for some b ∈ Σ}.

iii) q0
′ = (q0, qaccept).

iv) F ′ = {(q, q)| q ∈ Q}.

1.65 Let A = {0∗#1∗}. Thus, A 1
3− 1

3
∩ {0∗1∗} = {0n1n| n ≥ 0}. Regular sets are closed

under intersection, and {0n1n| n ≥ 0} is not regular, so A 1
3− 1

3
is not regular.

1.66 If M has a synchronizing sequence, then for any pair of states (p, q) there is a string
wp,q such that δ(p, wp,q) = δ(q, wp,q) = h, where h is the home state. Let us run two
copies of M starting at states p and q respectively. Consider the sequence of pairs of
states (u, v) that the two copies run through before reaching home state h. If some pair
appears in the sequence twice, we can delete the substring of wp,q that takes the copies
of M from one occurrence of the pair to the other, and thus obtain a new wp,q. We repeat
the process until all pairs of states in the sequence are distinct. The number of distinct
state pairs is k2, so |wp,q| ≤ k2.

Suppose we are running k copies of M and feeding in the same input string s. Each
copy starts at a different state. If two copies end up at the same state after some step,

c© 2013 Cengage Learning. All Rights Reserved. This edition is intended for use outside of the U.S. only, with content that may be
different from the U.S. Edition. May not be scanned, copied, duplicated, or posted to a publicly accessible website, in whole or in part.

12 Theory of Computation, third edition

they will do exactly the same thing for the rest of input, so we can get rid of one of them.
If s is a synchronizing sequence, we will end up with one copy of M after feeding in s.
Now we will show how to construct a synchronizing sequence s of length at most k3.

i) Start with s = ε. Start k copies of M , one at each of its states. Repeat the following
two steps until we are left with only a single copy of M .

ii) Pick two of M ’s remaining copies (Mp and Mq) that are now in states p and q after
reading s.

iii) Redefine s = swp,q. After reading this new s, Mp and Mq will be in the same state,
so we eliminate one of these copies.

At the end of the above procedure, s brings all states of M to a single state. Call that state
h. Stages 2 and 3 are repeated k − 1 times, because after each repetition we eliminate
one copy of M . Therefore |s| ≤ (k − 1)k2 < k3.

1.67 Let C = Σ∗BΣ∗. Then C is the language of all strings that contain some member of
B as a substring, If B is regular then C is also regular. We know from the solution to
Problem 1.14 that the complement of a regular language is regular, and so C is regular.
It is the language of all strings that do not contain some member of B as a substring.
Note that A avoids B = A ∩ C. Therefore A avoids B is regular because we showed
that the intersection of two regular languages is regular.

1.68 a. Any string that doesn’t begin and end with 0 obviously cannot be a member of A. If
string w does begin and end with 0 then w = 0u0 for some string u. Hence A = 0Σ∗0
and therefore A is regular.

b. Assume for contradiction that B is regular. Use the pumping lemma to get the pumping
length p. Letting s = 0p10p we have s ∈ B and so we can divide up s = xyz according
to the conditions of the pumping lemma. By condition 3, xy has only 0s, hence the string
xyyz is 0l10p for some l > p. But then 0l10p isn’t equal to 0k1u0k for any u and k,
because the left-hand part of the string requires k = l and the right-hand part requires
k ≤ p. Both together are impossible, because l > p. That contradicts the pumping
lemma and we conclude that B isn’t regular.

1.69 a. Let s be a string in U whose length is shortest among all strings in U . Assume (for
contradiction) that |s| ≥ max(k1, k2). One or both of the DFAs accept s because s ∈ U .
Say it is M1 that accepts s. Consider the states q0, q1, . . . , ql that M1 enters while
reading s, where l = |s|. We have l ≥ k1, so q0, q1, . . . , ql must repeat some state.
Remove the portion of s between the repeated state to yield a shorter string that M1

accepts. That string is in U , a contradiction. Thus |s| < max(k1, k2).
b. Let s be a string in U whose length is shortest among all strings in U . Assume (for

contradiction) that |s| ≥ k1k2. Both of the DFAs reject s because s ∈ U . Consider
the states q0, q1, . . . , ql and r0, r1, . . . , rl that M1 and M2 enter respectively while
reading s, where l = |s|. We have l ≥ k1k2, so in the sequence of ordered pairs
(q0, r0), (q1, r1), . . . , (ql, rl), some pair must repeat. Remove the portion of s between
the repeated pair to yield a shorter string that both M1 and M2 reject. That shorter string
is in U , a contradiction. Thus |s| < k1k2.

1.70 A PDA P that recognizes C operates by nondeterministically choosing one of three
cases. In the first case, P scans its input and accepts if it doesn’t contain exactly two
#s. In the second case, P looks for a mismatch between the first two strings that are
separated by #. It does so by reading its input while pushing those symbols onto the
stack until it reads #. At that point P continues reading input symbols and matching

c© 2013 Cengage Learning. All Rights Reserved. This edition is intended for use outside of the U.S. only, with content that may be
different from the U.S. Edition. May not be scanned, copied, duplicated, or posted to a publicly accessible website, in whole or in part.

Instructor’s Manual 13

them with symbols that are popped off the stack. If a mismatch occurs, or if the stack
empties before P reads the next #, or if P reads the next # before the stack empties, then
it accepts. In the third case, P looks for a mismatch between the last two strings that are
separated by #. It does so by reading its input until it reads # and the it continues reading
input symbols while pushing those symbols onto the stack until it reads a second #. At
that point P continues reading input symbols and matching them with symbols that are
popped off the stack. If a mismatch occurs, or if the stack empties before P reaches the
end of the input or if P reaches the end of the input before the stack empties, then it
accepts.

Alternatively, here is a CFG that generates C.

A → Y DY #Y | Y #Y DY | Y | Y #Y | Y #Y #Y #Z
D → XDX | 0E1 | 1E0
E → XEX | #
X → 0 | 1
Y → XY | ε
Z → Y #Z | ε

1.71 a. Observe that B = 1Σ∗1Σ∗ and thus is clearly regular.
b. We show C is nonregular using the pumping lemma. Assume C is regular and let p be

its pumping length. Let s = 1p01p. The pumping lemma says that s = xyz satisfying
the three conditions. Condition three says that y appears among the left-hand 1s. We
pump down to obtain the string xz which is not a member of C. Therefore C doesn’t
satisfy the pumping lemma and hence isn’t regular.

1.72 a. Let B = {0110}. Then CUT(B) = {0110, 1010, 0011, 1100, 1001} and
CUT(CUT(B)) = {0110, 1010, 0011, 1100, 1001, 0101}.

b. Let A be a regular language that is recognized by DFA M . We construct a NFA N that
recognizes CUT(A). This construction is similar to the construction in the solution to
Problem 1.61. Here, N begins by nondeterministically guessing two states q1 and q2 in
M . Then N simulates M on its input beginning at state q1. Whenever the simulation
reaches q2, nondeterministically N may switch to simulating M at its start state q0 and
if it reaches state q1, it again nondeterministically may switch to state q2. At the end of
the input, if N ’s simulation has made both switches and is now in one of M ’s accept
states, it has completed reading an input yxz where M accepts xyz, and so it accepts.

1.73 a. The idea here is to show that a DFA with fewer than 2k states must fail to give the right
answer on at least one string. Let A = (Q,Σ, δ, q0, F) be a DFA with m states. Fix the
value of k and let W = {w| w ∈ Σk} be the set of strings of length k.

For each of the 2k strings w ∈ W , let qw be the state that A enters after it starts in
state q0 and then reads w. If m < 2k then two different strings s and t must exist in W
where A enters the same state, i.e., qs = qt. The string ss is in WW so A must enter
an accepting state after reading ss. Similarly, st �∈ WW so A must enter a rejecting
string after reading st. But qs = qt, so A enters the same state after reading ss or st, a
contradiction. Therefore m ≥ 2k.

b. We can give an NFA N = (Q,Σ, δ, c0, F) with 4k + 4 states that recognizes WW . The
NFA N branches into two parts. One part accepts if the inputs length isn’t 2k. The other
part accepts if the input contains two unequal symbols that are k separated.

Formally, let Q = {c0, . . . , c2k+1, r, y1, . . . , yk, z1, . . . , zk} and
let F = {c0, . . . , c2k−1, c2k+1, yk, zk}.

c© 2013 Cengage Learning. All Rights Reserved. This edition is intended for use outside of the U.S. only, with content that may be
different from the U.S. Edition. May not be scanned, copied, duplicated, or posted to a publicly accessible website, in whole or in part.

14 Theory of Computation, third edition

For 0 ≤ i ≤ 2k and a ∈ Σ, set δ(ci, a) = {ci+1} and δ(ck+1, a) = {ck+1}.
Additionally, δ(c0, ε) = {r}, δ(r, 0) = {r, y1} and δ(r, 1) = {r, z1}.
Finally, for 0 ≤ i < k − 1, set δ(yi, a) = {yi+1} and δ(zi, a) = {zi+1},
δ(yk−1, 1) = {yk}, δ(yk, a) = {yk}, and
δ(zk−1, 1) = {zk}, δ(zk, a) = {zk}.

