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1.FUNDAMENTAL CONCEPTS

1.1. WHAT IS A GRAPH?

1.1.1. Complete bipartite graphs and complete graphs. The complete bipar-
tite graph Km,n is a complete graph if and only if m = n = 1 or {m, n} = {1, 0}.

1.1.2. Adjacency matrices and incidence matrices for a 3-vertex path.
(

0 1 1
1 0 0
1 0 0

) (

0 1 0
1 0 1
0 1 0

) (

0 0 1
0 0 1
1 1 0

)

(

1 1
1 0
0 1

) (

1 1
0 1
1 0

) (

1 0
1 1
0 1

) (

0 1
1 1
1 0

) (

1 0
0 1
1 1

) (

0 1
1 0
1 1

)

Adjacency matrices for a path and a cycle with six vertices.












0 1 0 0 0 0
1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1
0 0 0 0 1 0

























0 1 0 0 0 1
1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1
1 0 0 0 1 0













1.1.3. Adjacency matrix for Km,n .

m n

m 0 1

n 1 0

1.1.4. G ∼= H if and only if G ∼= H . If f is an isomorphism from G to H ,
then f is a vertex bijection preserving adjacency and nonadjacency, and
hence f preserves non-adjacency and adjacency in G and is an isomor-
phism from G to H . The same argument applies for the converse, since the
complement of G is G.

1.1.5. If every vertex of a graph G has degree 2, then G is a cycle—FALSE.
Such a graph can be a disconnected graph with each component a cycle. (If
infinite graphs are allowed, then the graph can be an infinite path.)

1.1.6. The graph below decomposes into copies of P4.

•

•

•

•

•

•

1.1.7. A graph with more than six vertices of odd degree cannot be decom-
posed into three paths. Every vertex of odd degree must be the endpoint
of some path in a decomposition into paths. Three paths have only six
endpoints.

1.1.8. Decompositions of a graph. The graph below decomposes into copies
of K1,3 with centers at the marked vertices. It decomposes into bold and
solid copies of P4 as shown.
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• •

•

1.1.9. A graph and its complement. With vertices labeled as shown, two
vertices are adjacent in the graph on the right if and only if they are not
adjacent in the graph on the left.
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1.1.10. The complement of a simple disconnected graph must be connected—
TRUE. A disconnected graph G has vertices x, y that do not belong to a
path. Hencex and y are adjacent in G. Furthermore, x and y have no com-
mon neighbor in G, since that would yield a path connecting them. Hence
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every vertex not in {x, y} is adjacent in G to at least one of {x, y}. Hence
every vertex can reach every other vertex in G using paths through {x, y}.

1.1.11. Maximum clique and maximum independent set. Since two ver-
tices have degree 3 and there are only four other vertices, there is no clique
of size 5. A complete subgraph with four vertices is shown in bold.

Since two vertices are adjacent to all others, an independent set con-
taining either of them has only one vertex. Deleting them leaves P4, in
which the maximum size of an independent set is two, as marked.

•

• • • •

•

1.1.12. The Petersen graph. The Petersen graph contains odd cycles, so it
is not bipartite; for example, the vertices 12, 34, 51, 23, 45 form a 5-cycle.

The vertices 12, 13, 14, 15 form an independent set of size 4, since any
two of these vertices have 1 as a common element and hence are nonadja-
cent. Visually, there is an independent set of size 4 marked on the drawing
of the Petersen graph on the cover of the book. There are many ways to
show that the graph has no larger independent set.

Proof 1. Two consecutive vertices on a cycle cannot both appear in an
independent set, so every cycle contributes at most half its vertices. Since
the vertex set is covered by two disjoint 5-cycles, every independent set has
size at most 4.

Proof 2. Let ab be a vertex in an independent set S, where a, b ∈ [5].
We show that S has at most three additional vertices. The vertices not
adjacent to ab are ac, bd, ae, bc, ad, be, and they form a cycle in that order.
Hence at most half of them can be added to S.

1.1.13. The graph with vertex set {0, 1}k and x ↔ y when x and y differ in
one place is bipartite. The partite sets are determined by the parity of the
number of 1’s. Adjacent vertices have opposite parity. (This graph is the
k-dimensional hypercube; see Section 1.3.)

1.1.14. Cutting opposite corner squares from an eight by eight checkerboard
leaves a subboard that cannot be partitioned into rectangles consisting of
two adjacent unit squares. 2-coloring the squares of a checkerboard so
that adjacent squares have opposite colors shows that the graph having
a vertex for each square and an edge for each pair of adjacent squares
is bipartite. The squares at opposite corners have the same color; when
these are deleted, there are 30 squares of that color and 32 of the other

color. Each pair of adjacent squares has one of each color, so the remaining
squares cannot be partitioned into sets of this type.

Generalization: the two partite sets of a bipartite graph cannot be
matched up using pairwise-disjoint edges if the two partite sets have un-
equal sizes.

1.1.15. Common graphs in four families: A = {paths}, B = {cycles}, C =
{complete graphs}, D = {bipartite graphs}.

A ∩ B = ∅: In a cycle, the numbers of vertices and edges are equal,
but this is false for a path.

A ∩ C = {K1, K2}: To be a path, a graph must contain no cycle.
A ∩ D = A: non-bipartite graphs have odd cycles.
B ∩ C = K3: Only when n = 3 does

(n
2

)

= n.
B ∩ D = {C2k : k ≥ 2}: odd cycles are not bipartite.
C ∩ D = {K1, K2}: bipartite graphs cannot have triangles.

1.1.16. The graphs below are not isomorphic. The graph on the left has four
cliques of size 4, and the graph on the right has only two. Alternatively, the
complement of the graph on the left is disconnected (two 4-cycles), while
the complement of the graph on the right is connected (one 8-cycle).
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1.1.17. There are exactly two isomorphism classes of 4-regular simple
graphs with 7 vertices. Simple graphs G and H are isomorphic if and
only if their complements G and H are isomorphic, because an isomor-
phism φ: V (G) → V (H) is also an isomorphism from G to H , and vice
versa. Hence it suffices to count the isomorphism classes of 2-regular sim-
ple graphs with 7 vertices. Every component of a finite 2-regular graph is a
cycle. In a simple graph, each cycle has at least three vertices. Hence each
class it determined by partitioning 7 into integers of size at least 3 to be
the sizes of the cycles. The only two graphs that result are C7 and C3 + C4
– a single cycle or two cycles of lengths three and four.

1.1.18. Isomorphism. Using the correspondence indicated below, the first
two graphs are isomorphic; the graphs are bipartite, with u i ↔ vj if and
only if i 6= j . The third graph contains odd cycles and hence is not isomor-
phic to the others.
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Visually, the first two graphs are Q3 and the graph obtained by delet-
ing four disjoint edges from K4,4. In Q3, each vertex is adjacent to the
vertices whose names have opposite parity of the number of 1s, except for
the complementary vertex. Hence Q3 also has the structure of K4,4 with
four disjoint edges deleted; this proves isomorphism without specifying an
explicit bijection.

1.1.19. Isomorphism of graphs. The rightmost two graphs below are iso-
morphic. The outside 10-cycle in the rightmost graph corresponds to the
intermediate ring in the second graph. Pulling one of the inner 5-cycles of
the rightmost graph out to the outside transforms the graph into the same
drawing as the second graph.

The graph on the left is bipartite, as shown by marking one partite set.
It cannot be isomorphic to the others, since they contain 5-cycles.
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1.1.20. Among the graphs below, the first (F) and third (H ) are isomorphic,
and the middle graph (G) is not isomorphic to either of these.

F and H are isomorphic. We exhibit an isomorphism (a bijection from
V (F) to V (H) that preserves the adjacency relation). To do this, we name
the vertices of F , write the name of each vertex of F on the corresponding
vertex in H , and show that the names of the edges are the same in H and
F . This proves that H is a way to redraw F . We have done this below using
the first eight letters and the first eight natural numbers as names.

To prove quickly that the adjacency relation is preserved, observe that
1, a, 2, b, 3, c, 4, d, 5, e, 6, f, 7, g, 8, h is a cycle in both drawings, and the ad-
ditional edges 1c, 2d, 3e, 4 f, 5g, 6h, 7a, 8b are also the same in both draw-
ings. Thus the two graphs have the same edges under this vertex corre-
spondence. Equivalently, if we list the vertices in this specified order for

the two drawings, the two adjacency matrices are the same, but that is
harder to verify.

G is not isomorphic to F or to H . In F and in H , the numbers form an
independent set, as do the letters. Thus F and H are bipartite. The graph
G cannot be bipartite, since it contains an odd cycle. The vertices above
the horizontal axis of the picture induce a cycle of length 7.

It is also true that the middle graph contains a 4-cycle and the others
do not, but it is harder to prove the absence of a 4-cycle than to prove the
absence of an odd cycle.
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1.1.21. Isomorphism. Both graphs are bipartite, as shown below by mark-
ing one partite set. In the graph on the right, every vertex appears in
eight 4-cycles. In the graph on the left, every vertex appears in only six
4-cycles (it is enough just to check one). Thus they are not isomorphic.
Alternatively, for every vertex in the right graph there are five vertices
having common neighbors with it, while in the left graph there are six
such vertices.
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1.1.22. Isomorphism of explicit graphs. Among the graphs below,
{G1, G2, G5} are pairwise isomorphic. Also G3 ∼= G4, and these are not
isomorphic to any of the others. Thus there are exactly two isomorphism
classes represented among these graphs.

To prove these statements, one can present explicit bijections between
vertex sets and verify that these preserve the adjacency relation (such as
by displaying the adjacency matrix, for example). One can also make other
structural arguments. For example, one can move the highest vertex in G3
down into the middle of the picture to obtain G4; from this one can list the
desired bijection.
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One can also recall that two graphs are isomorphic if and only if their
complements are isomorphic. The complements of G1, G2, and G5 are cy-
cles of length 7, which are pairwise isomorphic. Each of G3 and G4 consists
of two components that are cycles of lengths 3 and 4; these graphs are
isomorphic to each other but not to a 7-cycle.
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G1 G2 G3 G4 G5

1.1.23. Smallest pairs of nonisomorphic graphs with the same vertex de-
grees. For multigraphs, loopless multigraphs, and simple graphs, the re-
quired numbers of vertices are 2,4,5; constructions for the upper bounds
appear below. We must prove that these constructions are smallest.
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a) general b) loopless c) simple
a) With 1 vertex, every edge is a loop, and the isomorphism class is

determined by the number of edges, which is determined by the vertex
degree. Hence nonisomorphic graphs with the same vertex degrees have
at least two vertices.

b) Every loopless graph is a graph, so the answer for loopless graphs
is at least 2. The isomorphism class of a loopless graph with two vertices
is determined by the number of copies of the edge, which is determined
by the vertex degrees. The isomorphism class of a loopless graph with
three vertices is determined by the edge multiplicities. Let the three vertex
degrees be a, b, c, and let the multiplicities of the opposite edges be x, y, z,
where Since a = y + z, b = x + z, and c = x + y, we can solve for the
multiplicities in terms of the degrees by x = (b+ c−a)/2, y = (a+ c−b)/2,
and z = (a + b − c)/2. Hence the multiplicities are determined by the
degrees, and all loopless graphs with vertex degrees a, b, c are pairwise
isomorphic. Hence nonisomorphic loopless graphs with the same vertex
degrees have at least four vertices.

c) Since a simple graph is a loopless graph, the answer for simple
graphs is at least 4. There are 11 isomorphism classes of simple graphs
with four vertices. For each of 0,1,5, or 6 edges, there is only one isomor-
phism class. For 2 edges, there are two isomorphism classes, but they have

different lists of vertex degrees (similarly for 4 edges). For 3 edges, the
three isomorphism classes have degree lists 3111, 2220, and 2211, all dif-
ferent. Hence nonisomorphic simple graphs with the same vertex degrees
must have at least five vertices.

1.1.24. Isomorphisms for the Petersen graph. Isomorphism is proved by
giving an adjacency-preserving bijection between the vertex sets. For picto-
rial representations of graphs, this is equivalent to labeling the two graphs
with the same vertex labels so that the adjacency relation is the same
in both pictures; the labels correspond to a permutation of the rows and
columns of the adjacency matrices to make them identical. The various
drawings of the Petersen graph below illustrate its symmetries; the label-
ings indicate that these are all “the same” (unlabeled) graph. The number
of isomorphisms from one graph to another is the same as the number of
isomorphisms from the graph to itself.
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1.1.25. The Petersen graph has no cycle of length 7. Suppose that the Pe-
tersen graph has a cycle C of length 7. Since any two vertices of C are
connected by a path of length at most 3 on C , any additional edge with
endpoints on C would create a cycle of length at most 4. Hence the third
neighbor of each vertex on C is not on C .
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Thus there are seven edges from V (C) to the remaining three vertices.
By the pigeonhole principle, one of the remaining vertices receives at least
three of these edges. This vertex x not on C has three neighbors on C .
For any three vertices on C , either two are adjacent or two have a common
neighbor on C (again the pigeonhole principle applies). Using x , this com-
pletes a cycle of length at most 4. We have shown that the assumption of a
7-cycle leads to a contradiction.

Alternative completion of proof. Let u be a vertex on C , and let v, w

be the two vertices farthest from u on C . As argued earlier, no edges join
vertices of C that are not consecutive on C . Thus u is not adjacent to v or w.
Hence u, v have a common neighbor off C , as do u, w. Since u has only one
neighbor off C , these two common neighbors are the same. The resulting
vertex x is adjacent to all of u, v, w, and now x, v, w is a 3-cycle.

1.1.26. A k-regular graph of girth four has at least 2k vertices, with equality
only for Kk,k . Let G be k-regular of girth four, and chose xy ∈ E(G). Girth
4 implies that G is simple and that x and y have no common neighbors.
Thus the neighborhoods N (x) and N (y) are disjoint sets of size k, which
forces at least 2k vertices into G. Possibly there are others.

Note also that N (x) and N (y) are independent sets, since G has no
triangle. If G has no vertices other than these, then the vertices in N (x)

can have neighbors only in N (y). Since G is k-regular, every vertex of N (x)

must be adjacent to every vertex of N (y). Thus G is isomorphic to Kk,k ,
with partite sets N (x) and N (y). In other words, there is only one such
isomorphism class for each value of k.

Comment. One can also start with a vertex x , choose y from among
the k vertices in N (x), and observe that N (y) must have k−1 more vertices
not in N (x) ∪ {x}. The proof then proceeds as above.

(An alternative proof uses the methods of Section 1.3. A triangle-free
simple graph with n vertices has at most n2/4 edges. Since G is k-regular,
this yields n2/4 ≥ nk/2, and hence n ≥ 2k. Furthermore, equality holds
in the edge bound only for Kn/2,n/2, so this is the only such graph with 2k
vertices. (C. Pikscher))

•

•

•

•

•

N (x)− {y}

x

N (y)− {x}
•

•

•

•

•
y

1.1.27. A simple graph of girth 5 in which every vertex has degree at least
k has at least k2 + 1 vertices, with equality achieveable when k ∈ {2, 3}. Let
G be k-regular of girth five. Let S be the set consisting of a vertex x and

its neighbors. Since G has no cycle of length less than five, G is simple,
and any two neighbors of x are nonadjacent and have no common neighbor
other than x . Hence each y ∈ S − {x} has at least k − 1 neighbors that
are not in S and not neighbors of any vertex in S. Hence G has at least
k(k − 1) vertices outside S and at least k + 1 vertices in S for at least k2 + 1
altogether.

The 5-cycle achieves equality when k = 2. For k = 3, growing the graph
symmetrically from x permits completing the graph by adding edges among
the non-neighbors of x . The result is the Petersen graph. (Comment: For
k > 3, it is known that girth 5 with minimum degree k and exactly k2 + 1
vertices is impossible, except for k = 7 and possibly for k = 57.)

•

•
•

•
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••

•

•

•

x

1.1.28. The Odd Graph has girth 6. The Odd Graph Ok is the disjointness
graph of the set of k-element subsets of [2k + 1].

Vertices with a common neighbor correspond to k-sets with k − 1 com-
mon elements. Thus they have exactly one common neighbor, and Ok has
no 4-cycle. Two vertices at distance 2 from a single vertex have at least
k − 2 common neighbors. For k > 2, such vertices cannot be adjacent, and
thus Ok has no 5-cycle when k > 2. To form a 6-cycle when k ≥ 2, let
A = {2, . . . , k}, B = {k + 2, . . . , 2k}, a = 1, b = k + 1, c = 2k + 1. A 6-cycle is
A ∪ {a}, B ∪ {b}, A ∪ {c}, B ∪ {a}, A ∪ {b}, B ∪ {c}.

The Odd Graph also is not bipartite. The successive elements
{1, . . . , k}, {k + 1, . . . , 2k}, {2k + 1, 1, . . . , k − 1}, . . ., {k + 2, . . . , 2k + 1}
form an odd cycle.

1.1.29. Among any 6 people, there are 3 mutual acquaintances or 3 mutual
strangers. Let G be the graph of the acquaintance relation, and let x be one
of the people. Since x has 5 potential neighbors, x has at least 3 neighbors
or at least 3 nonneighbors. By symmetry (if we complement G, we still
have to prove the same statement), we may assume that x has at least 3
neighbors. If any pair of these people are acquainted, then with x we have
3 mutual acquaintances, but if no pair of neighbors of x is acquainted, then
the neighbors of x are three mutual strangers.

1.1.30. The number of edges incident to vi is the ith diagonal entry in M M T

and in A2. In both M MT and A2 this is the sum of the squares of the entries
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in the ith row. For M M T , this follows immediately from the definition of
matrix multiplication and transposition, but for A2 this uses the graph-
theoretic fact that A = AT ; i.e. column i is the same as row i . Because
G is simple, the entries of the matrix are all 0 or 1, so the sum of the
squares in a row equals the number of 1s in the row. In M , the 1s in a row
denote incident edges; in A they denote vertex neighbors. In either case,
the number of 1s is the degree of the vertex.

If i 6= j , then the entry in position (i, j) of A2 is the number of common
neighbors of vi and vj . The matrix multiplication puts into position (i, j)
the “product” of row i and column j ; that is

∑n
k=1 ai,kak, j . When G is simple,

entries in A are 1 or 0, depending on whether the corresponding vertices
are adjacent. Hence ai,kak, j = 1 if vk is a common neighbor of vi and vj ;
otherwise, the contribution is 0. Thus the number of contributions of 1 to
entry (i, j) is the number of common neighbos of vi and vj .

If i 6= j , then the entry in position (i, j) of M M T is the number of edges
joining vi and vj (0 or 1 when G has no multiple edges). The ith row of
M has 1s corresponding to the edges incident to vi . The jth column of
MT is the same as the jth row of M , which has 1s corresponding to the
edges incident to vj . Summing the products of corresponding entries will
contribute 1 for each edge incident to both vi and vj ; 0 otherwise.

Comment. For graphs without loops, both arguments for (i, j) in gen-
eral apply when i = j to explain the diagonal entries.

1.1.31. Kn decomposes into two isomorphic (“self-complementary”) sub-
graphs if and only if n or n − 1 is divisible by 4.

a) The number of vertices in a self-complementary graph is congruent
to 0 or 1 (mod 4). If G and G are isomorphic, then they have the same
number of edges, but together they have

(n
2

)

edges (with none repeated), so
the number of edges in each must be n(n − 1)/4. Since this is an integer
and the numbers n and n − 1 are not both even, one of {n, n − 1} must be
divisible by 4.

b) Construction of self-complementary graphs for all such n.
Proof 1 (explicit construction). We generalize the structure of the

self-complementary graphs on 4 and 5 vertices, which are P4 and C5. For
n = 4k, take four vertex sets of size k, say X1, X2, X3, X4, and join all
vertices of X i to those of X i+1, for i = 1, 2, 3. To specify the rest of G, within
these sets let X1 and X4 induce copies of a graph H with k vertices, and let
X2 and X3 induce H . (For example, H may be Kk .) In G, both X2 and X3
induce H , while X1 and X4 induce H , and the connections between sets are
X2 ↔ X4 ↔ X1 ↔ X3. Thus relabeling the subsets defines an isomorphism
between G and G. (There are still other constructions for G.)

H

H

H

H H

HH

H

For n = 4k + 1, we add a vertex x to the graph constructed above. Join
x to the 2k vertices in X1 and X4 to form G. The isomorphism showing that
G − x is self-complementary also works for G (with x mapped to itself),
since this isomorphism maps NG(x) = X1 ∪ X4 to NG(x) = X2 ∪ X3.

Proof 2 (inductive construction). If G is self-complementary, then let
H1 be the graph obtained from G and P4 by joining the two ends of P4 to
all vertices of G. Let H2 be the graph obtained from G and P4 by join-
ing the two center vertices of P4 to all vertices of G. Both H1 and H2
are self-complementary. Using this with G = K1 produces the two self-
complementary graphs of order 5, namely C5 and the bull.

Self-complementary graphs with order divisible by 4 arise from re-
peated use of the above using G = P4 as a starting point, and self-
complementary graphs of order congruent to 1 modulo 4 arise from repeated
use of the above using G = K1 as a starting point. This construction pro-
duces many more self-complementary graphs than the explicit construction
in Proof 1.

1.1.32. Km,n decomposes into two isomorphic subgraphs if and only if m
and n are not both odd. The condition is necessary because the number
of edges must be even. It is sufficient because Km,n decomposes into two
copies of Km,n/2 when n is even.

1.1.33. Decomposition of complete graphs into cycles through all vertices.
View the vertex set of Kn as Zn, the values 0, . . . , n−1 in cyclic order. Since
each vertex has degree n − 1 and each cycle uses two edges at each vertex,
the decomposition has (n − 1)/2 cycles.

For n = 5 and n = 7, it suffices to use cycles formed by traversing the
vertices with constant difference: (0, 1, 2, 3, 4) and (0, 2, 4, 1, 3) for n = 5
and (0, 1, 2, 3, 4, 5, 6), (0, 2, 4, 6, 1, 3, 5), and (0, 3, 6, 2, 5, 1, 4) for n = 7.

This construction fails for n = 9 since the edges with difference 3 form
three 3-cycles. The cyclically symmetric construction below treats the ver-
tex set as Z8 together with one special vertex.
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1.1.34. Decomposition of the Petersen graph into copies of P4. Consider
the drawing of the Petersen graph with an inner 5-cycle and outer 5-cycle.
Each P4 consists of one edge from each cycle and one cross edge joining
them. Extend each cross edge e to a copy of P4 by taking the edge on each
of the two 5-cycles that goes in a clockwise direction from e. In this way,
the edges on the outside 5-cycle are used in distinct copies of P4, and the
same holds for the edges on the inside 5-cycle.

Decomposition of the Petersen graph into three pairwise-isomorphic
connected subgraphs. Three such decompositions are shown below. We re-
stricted the search by seeking a decomposition that is unchanged by 120◦
rotations in a drawing of the Petersen graph with 3-fold rotational symme-
try. The edges in this drawing form classes of size 3 that are unchanged
under rotations of 120◦; each subgraph in the decomposition uses exactly
one edge from each class.
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1.1.35. Kn decomposes into three pairwise-isomorphic subgraphs if and
only if n+1 is not divisible by 3. The number of edges is n(n−1)/2. If n+1
is divisible by 3, then n and n−1 are not divisible by 3. Thus decomposition
into three subgraphs of equal size is impossible in this case.

If n+1 is not divisible by 3, then e(Kn) is divisible by 3, since n or n−1
is divisible by 3. We construct a decomposition into three subgraphs that
are pairwise isomorphic (there are many such decompositions).

When n is a multiple of 3, we partition the vertex set into three subsets
V1, V2, V3 of equal size. Edges now have two types: within a set or joining
two sets. Let the ith subgraph G i consist of all the edges within Vi and all
the edges joining the two other subsets. Each edge of Kn appears in exactly

one of these subgraphs, and each G i is isomorphic to the disjoint union of
Kn/3 and Kn/3,n/3.

When n ≡ 1 (mod 3), consider one vertex w. Since n − 1 is a multiple
of 3, we can form the subgraphs G i as above on the remaining n − 1 ver-
tices. Modify G i to form Hi by joining w to every vertex of Vi . Each edge
involving w has been added to exactly one of the three subgraphs. Each Hi

is isomorphic to the disjoint union of K1+(n−1)/3 and K(n−1)/3,(n−1)/3.

•

1.1.36. If Kn decomposes into triangles, then n− 1 or n− 3 is divisible by 6.
Such a decomposition requires that the degree of each vertex is even and
the number of edges is divisible by 3. To have even degree, n must be odd.
Also n(n − 1)/2 is a multiple of 3, so 3 divides n or n − 1. If 3 divides n and
n is odd, then n − 3 is divisible by 6. If 3 divides n − 1 and n is odd, then
n − 1 is divisible by 6.

1.1.37. A graph in which every vertex has degree 3 has no decomposition
into paths with at least five vertices each. Suppose that G has such a de-
composition. Since every vertex has degree 3, each vertex is an endpoint
of at least one of the paths and is an internal vertex on at most one of
them. Since every path in the decomposition has two endpoints and has at
least three internal vertices, we conclude that the number of paths in the
decomposition is at least n(G)/2 and is at most n(G)/3, which is impossible.

Alternatively, let k be the number of paths. There are 2k endpoints of
paths. On the other hand, since each internal vertex on a path in the de-
composition must be an endpoint of some other path in the decomposition,
there must be at least 3k endpoints of paths. The contradiction implies
that there cannot be such a decomposition.

1.1.38. A 3-regular graph G has a decomposition into claws if and only if
G is bipartite. When G is bipartite, we produce a decomposition into claws.
We use all claws obtained by taking the three edges incident with a single
vertex in the first partite set. Each claw uses all the edges incident to its
central vertex. Since each edge has exactly one endpoint in the first partite
set, each edge appears in exactly one of these claws.

When G has a decomposition into claws, we partition V (G) into two
independent sets. Let X be the set of centers of the claws in the decom-
position. Since every vertex has degree 3, each claw in the decomposition
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uses all edges incident to its center. Since each edge is in at most one claw,
this makes X an independent set. The remaining vertices also form an in-
dependent set, because every edge is in some claw in the decomposition,
which means that one of its endpoints must be the center of that claw.

1.1.39. Graphs that decompose K6.
Triangle—No. A graph decomposing into triangles must have even

degree at each vertex. (This excludes all decompositions into cycles.)
Paw, P5—No. K6 has 15 edges, but each paw or P5 has four edges.
House, Bowtie, Dart–No. K6 has 15 edges, but each house, bowtie, or

dart has six edges.
Claw—Yes. Put five vertices 0, 1, 2, 3, 4 on a circle and the other vertex

z in the center. For i ∈ {0, 1, 2, 3, 4}, use a claw with edges from i to i + 1,
i + 2, and z. Each edge appears in exactly one of these claws.

Kite—Yes. Put all six vertices on a circle. Each kite uses two opposite
edges on the outside, one diagonal, and two opposite edges of “length” 2.
Three rotations of the picture complete the decomposition.

Bull—Yes. The bull has five edges, so we need three bulls. Each bull
uses degrees 3, 3, 2, 1, 1, 0 at the six vertices. Each bull misses one vertex,
and each vertex of K6 has five incident edges, so three of the vertices will
receive degrees 3, 2, 0 from the three bulls, and the other three will receive
degrees 3, 1, 1. Thus we use vertices of two types, which leads us to position
them on the inside and outside as on the right below. The bold, solid, and
dashed bulls obtained by rotation complete the decomposition.
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1.1.40. Automorphisms of Pn, Cn, and Kn. A path can be left alone or
flipped, a cycle can be rotated or flipped, and a complete graph can be
permuted arbtrarily. The numbers of automorphisms are 2, 2n, n!, respec-
tively. Correspondingly, the numbers of distinct labelings using vertex set
[n] are n!/2, (n−1)!/2, 1, respectively. For Pn , these formulas require n > 1.

1.1.41. Graphs with one and three automorphisms. The two graphs on the
left have six vertices and only the identity automorphism. The two graphs
on the right have three automorphisms.
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1.1.42. The set of automorphisms of a graph G satisfies the following:
a) The composition of two automorphisms is an automorphism.
b) The identity permutation is an automorphism.
c) The inverse of an automorphism is also an automorphism.
d) Composition of automorphisms satisfies the associative property.

The first three properties are essentially the same as the transitive, reflex-
ive, and symmetric properties for the isomorphism relation; see the discus-
sion of these in the text. The fourth property holds because composition
of functions always satisfies the associative property (see the discussion of
composition in Appendix A).

1.1.43. Every automorphism of the Petersen graph maps the 5-cycle
(12,34,51,23,45) into a 5-cycle with vertices ab, cd, ea, bc, de by a permu-
tation of [5] taking 1,2,3,4,5 to a, b, c, d, e, respectively. Let σ denote the
automorphism, and let the vertex ab be the image of the vertex 12 under σ .
The image of 34 must be a pair disjoint from ab, so we may let cd = σ(34).
The third vertex must be disjoint from the second and share an element
with the first. We may select a to be the common element in the first and
third vertices. Similarly, we may select c to be the common element in the
second and fourth vertices. Since nonadjacent vertices correspond to sets
with a common element, the other element of the fourth vertex must be b,
and the fifth vertex can’t have a or b and must have d and e. Thus every
5-cycle must have this form and is the image of (12,34,51,23,45) under the
specified permutation σ .

The Peterson graph has 120 automorphisms. Every permutation of
[5] preserves the disjointness relation on 2-element subsets and therefore
defines an automorphism of the Petersen graph. Thus there are at least
120 automorphism. To show that there are no others, consider an arbi-
trary automorphism σ . By the preceding paragraph, the 5-cycle C maps
to some 5-cycle (ab, cd, ea, bc, de). This defines a permutation f mapping
1, 2, 3, 4, 5 to a, b, c, d, e, respectively. It suffices to show that the other
vertices must also have images under σ that are described by f .

The remaining vertices are pairs consisting of two nonconsecutive val-
ues modulo 5. By symmetry, it suffices to consider just one of them, say
24. The only vertex of C that 24 is adjacent to (disjoint from) is 51. Since
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σ(51) = ea, and the only vertex not on (ab, cd, ea, bc, de) that is adjacent
to ea is bd, we must have σ(24) = bd, as desired.

1.1.44. For each pair of 3-edge paths P = (u0, u1, u2, u3) and Q =

(v0, v1, v2, v3) in the Petersen graph, there is an automorphism of the Pe-
tersen graph that turns P into Q. In the disjointness representation of
the Petersen graph, suppose the pairs corresponding to the vertices of P
are ab, cd, e f, gh , respectively. Since consecutive pairs are disjoint and the
edges are unordered pairs, we may write the pairs so that a, b, c, d, e are
distinct, f = a, g = b, and h = c. Putting the vertex names of Q in the
same format AB, C D, E F, G H , we chose the isomorphism generated by
the permutation of [5] that turns a, b, c, d, e into A, B, C, D, E , respectively.

1.1.45. A graph with 12 vertices in which every vertex has degree 3 and the
only automorphism is the identity.

•

•

•

•

•

•

•

•

•

a

b

c

d

e

q

p

y

x

•

•

•

u

v

w

There are many ways to prove that an automorphism must fix all the
vertices. The graph has only two triangles (abc and uvw). Now an automor-
phism must fix p, since is the only vertex having no neighbor on a triangle,
and also e, since it is the only vertex with neighbors on both triangles. Now
d is the unique common neighbor of p and e. The remaining vertices can be
fixed iteratively in the same way, by finding each as the only unlabeled ver-
tex with a specified neighborhood among the vertices already fixed. (This
construction was provided by Luis Dissett, and the argument forbidding
nontrivial automorphisms was shortened by Fred Galvin. Another such
graph with three triangles was found by a student of Fred Galvin.)

1.1.46. Vertex-transitivity and edge-transitivity. The graph on the left in
Exercise 1.1.21 is isomorphic to the 4-dimensional hypercube (see Section
1.3), which is vertex-transitive and edge-transitive via the permutation
of coordinates. For the graph on the right, rotation and inside-out ex-
change takes care of vertex-transitivity. One further generating operation
is needed to get edge-transitivity; the two bottom outside vertices can be
switched with the two bottom inside vertices.

1.1.47. Edge-transitive versus vertex-transitive. a) If G is obtained from Kn

with n ≥ 4 by replacing each edge of Kn with a path of two edges through

a new vertex of degree 2, then G is edge-transitive but not vertex-transitive.
Every edge consists of an old vertex and a new vertex. The n! permutations
of old vertices yield automorphism. Let x&y denote the new vertex on the
path replacing the old edge xy; note that x&y = y&x . The edge joining x
and x&y is mapped to the edge joining u and u&v by any automorphism
that maps x to u and y to v. The graph is not vertex-transitive, since x&y
has degree 2, while x has degree n − 1.

b) If G is edge-transitive but not vertex-transitive and has no isolated
vertices, then G is bipartite. Let uv be an arbitrary edge of G. Let S be the
set of vertices to which u is mapped by automorphisms of G, and let T be the
set of vertices to which v is mapped. Since G is edge-transitive and has no
isolated vertex, S ∪ T = V (G). Since G is not vertex-transitive, S 6= V (G).
Together, these statements yield S ∩ T = ∅, since the composition of two
automorphisms is an automorphism. By edge-transitivity, every edge of G
contains one vertex of S and one vertex of T . Since S ∩ T = ∅, this implies
that G is bipartite with vertex bipartition S, T .

c) The graph below is vertex-transitive but not edge-transitive. A com-
position of left-right reflections and vertical rotations can take each vertex
to any other. The graph has some edges on triangles and some edges not
on triangles, so it cannot be edge-transitive.
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1.2. PATHS, CYCLES, AND TRAILS

1.2.1. Statements about connection.
a) Every disconnected graph has an isolated vertex—FALSE. A simple

4-vertex graph in which every vertex has degree 1 is disconnected and has
no isolated vertex.

b) A graph is connected if and only if some vertex is connected to all
other vertices—TRUE. A vertex is “connected to” another if they lie in a
common path. If G is connected, then by definition each vertex is con-
nected to every other. If some vertex x is connected to every other, then
because a u, x-path and x, v-path together contain a u, v-path, every vertex
is connected to every other, and G is connected.
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c) The edge set of every closed trail can be partitioned into edge sets of
cycles—TRUE. The vertices and edges of a closed trail form an even graph,
and Proposition 1.2.27 applies.

d) If a maximal trail in a graph is not closed, then its endpoints have
odd degree. If an endpoint v is different from the other endpoint, then the
trail uses an odd number of edges incident to v. If v has even degree, then
there remains an incident edge at v on which to extend the trail.

1.2.2. Walks in K4.
a) K4 has a walk that is not a trail; repeat an edge.
b) K4 has a trail that is not closed and is not a path; traverse a triangle

and then one additional edge.
c) The closed trails in K4 that are not cycles are single vertices. A closed

trail has even vertex degrees; in K4 this requires degrees 2 or 0, which
forbids connected nontrivial graphs that are not cycles. By convention, a
single vertex forms a closed trail that is not a cycle.

1.2.3. The non-coprimality graph with vertex set {1, . . . , 15}. Vertices
1,11,13 are isolated. The remainder induce a single component. It has
a spanning path 7,14,10,5,15,3,9,12,8,6,4,2. Thus there are four compo-
nents, and the maximal path length is 11.

1.2.4. Effect on the adjacency and incidence matrices of deleting a vertex or
edge. Assume that the graph has no loops.

Consider the vertex ordering v1, . . . , vn. Deleting edge vivj simply
deletes the corresponding column of the incidence matrix; in the adjacency
matrix it reduces positions i, j and j, i by one.

Deleting a vertex vi eliminates the ith row of the incidence matrix,
and it also deletes the column for each edge incident to vi . In the adjacency
matrix, the ith row and ith column vanish, and there is no effect on the
rest of the matrix.

1.2.5. If v is a vertex in a connected graph G, then v has a neighbor in every
component of G − v. Since G is connected, the vertices in one component of
G − v must have paths in G to every other component of G − v, and a path
can only leave a component of G − v via v. Hence v has a neighbor in each
component.

No cut-vertex has degree 1. If G is connected and G − v has k compo-
nents, then having a neighbor in each such component yields dG(v) ≥ k. If
v is a cut-vertex, then k ≥ 2, and hence dG(v) ≥ 2.

1.2.6. The paw. Maximal paths: acb, abcd, bacd (two are maximum paths).
Maximal cliques: abc, cd (one is a maximum clique). Maximal independent
sets: c, bd, ad (two are maximum independent sets).
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1.2.7. A bipartite graph has a unique bipartition (except for interchanging
the two partite sets) if and only if it is connected. Let G be a bipartite graph.
If u and v are vertices in distinct components, then there is a bipartition in
which u and v are in the same partite set and another in which they are in
opposite partite sets.

If G is connected, then from a fixed vertex u we can walk to all other
vertices. A vertex v must be in the same partite set as u if there is a u, v-
walk of even length, and it must be in the opposite set if there is a u, v-walk
of odd length.

1.2.8. The biclique Km,n is Eulerian if and only if m and n are both even or
one of them is 0. The graph is connected. It vertices have degrees m and
n (if both are nonzero), which are all even if and only if m and n are both
even. When m or n is 0, the graph has no edges and is Eulerian.

1.2.9. The minimum number of trails that decompose the Petersen graph is
5. The Petersen graph has exactly 10 vertices of odd degree, so it needs at
least 5 trails, and Theorem 1.2.33 implies that five trails suffice.

The Petersen graph does have a decomposition into five paths. Given
the drawing of the Petersen graph consisting of two disjoint 5-cycles and
edges between them, form paths consisting of one edge from each cycle and
one edge joining them.

1.2.10. Statements about Eulerian graphs.
a) Every Eulerian bipartite graph has an even number of edges—TRUE.
Proof 1. Every vertex has even degree. We can count the edges by

summing the degrees of the vertices in one partite set; this counts every
edge exactly once. Since the summands are all even, the total is also even.

Proof 2. Since every walk alternates between the partite sets, follow-
ing an Eulerian circuit and ending at the initial vertex requires taking an
even number of steps.

Proof 3. Every Eulerian graph has even vertex degrees and decom-
poses into cycles. In a bipartite graph, every cycle has even length. Hence
the number of edges is a sum of even numbers.

b) Every Eulerian simple graph with an even number of vertices has
an even number of edges—FALSE. The union of an even cycle and an odd
cycle that share one vertex is an Eulerian graph with an even number of
vertices and an odd number of edges.
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1.2.11. If G is an Eulerian graph with edges e, f that share a vertex, then
G need not have an Eulerian circuit in which e, f appear consecutively. If
G consists of two edge-disjoint cycles sharing one common vertex v, then
edges incident to v that belong to the same cycle cannot appear consecu-
tively on an Eulerian circuit.

1.2.12. Algorithm for Eulerian circuit. We convert the proof by extremal-
ity to an iterative algorithm. Assume that G is a connected even graph.
Initialize T to be a closed trail of length 0; a single vertex.

If T is not all of G, we traverse T to reach a vertex v on T that is
incident to an edge e not in T . Beginning from v along e, traversing an
arbitrary trail T ′ not using edges of T ; eventually the trail cannot be ex-
tended. Since G − E(T ) is an even graph, this can only happen upon a
return to the original vertex v, completing a closed trail. Splice T ′ into T
by traversing T up to v, then following T ′, then the rest of T .

If this new trail includes all of E(G), then it is an Eulerian circuit, and
we stop. Otherwise, let this new trail be T and repeat the iterative step.

Since each successive trail is longer and G has finitely many edges, the
procedure must terminate. It can only terminate when an Eulerian circuit
has been found.

1.2.13. Each u, v-walk contains a u, v-path.
a) (induction). We use ordinary induction on the length l of the walk,

proving the statement for all pairs of vertices. A u, v-walk of length 1 is
a u, v-path of length 1; this provides the basis. For the induction step,
suppose l > 1, and let W be a u, v-walk of length l; the induction hypothesis
is that walks of length less than l contain paths linking their endpoints. If
u = v, the desired path has length 0. If u 6= v, let wv be the last edge of W ,
and let W ′ be the u, w-walk obtained by deleting wv from W . Since W ′ has
length l − 1, the induction hypothesis guarantees a u, w-path P in W ′. If
w = v, then P is the desired u, v-path. If w 6= v and v is not on P, then we
extend P by the edge wv to obtain a u, v-path. If w 6= v and v is on P, then
P contains a u, v-path. In each case, the edges of the u, v-path we construct
all belong to W .

• •

•

u w

v

b) (extremality) Given a u, v-walk W , consider a shortest u, v-walk W ′

contained in W . If this is not a path, then it has a repeated vertex, and
the portion between the instances of one vertex can be removed to obtain a
shorter u, v-walk in W than W ′.

1.2.14. The union of the edge sets of distinct u, v-paths contains a cycle.
Proof 1 (extremality). Let P and Q be distinct u, v-paths. Since a

path in a simple graph is determined by its set of edges, we may assume
(by symmetry) that P has an edge e not belonging to Q. Within the portion
of P before P traverses e, let y be the last vertex that belongs to Q. Within
the portion of P after P traverses e, let z be the first vertex that belongs
to Q. The vertices y, z exist, because u, v ∈ V (Q). The y, z-subpath of
P combines with the y, z- or z, y-subpath of Q to form a cycle, since this
subpath of Q contains no vertex of P between y and z.

Proof 2 (induction). We use induction on the sum l of the lengths of
the two paths, for all vertex pairs simultaneously. If P and Q are u, v-
paths, then l ≥ 2. If l = 2, then we have distinct edges consisting of u and
v, and together they form a cycle of length 2. For the induction step, sup-
pose l > 2. If P and Q have no common internal vertices, then their union
is a cycle. If P and Q have a common internal vertex w, then let P ′, P ′′ be
the u, w-subpath of P and the w, v-subpath of P. Similarly define Q ′, Q ′′.
Then P ′, Q ′ are u, w-paths with total length less than l. Similarly, P ′′, Q ′′

are w, v-paths with total length less than l. Since P, Q are distinct, we
must have P ′, Q ′ distinct or P ′′, Q ′′ distinct. We can apply the induction
hypothesis to the pair that is a pair of distinct paths joining the same end-
points. This pair contains the edges of a cycle, by the induction hypothesis,
which in turn is contained in the union of P and Q.

The union of distinct u, v-walks need not contain a cycle. Let G =
P3, with vertices u, x, v in order. The distinct u, v-walks with vertex lists
u, x, u, x, v and u, x, v, x, v do not contain a cycle in their union.

1.2.15. If W is a nontrivial closed walk that does not contain a cycle, then
some edge of W occurs twice in succession (once in each direction).

Proof 1 (induction on the length l of W ). We are given l ≥ 1. A closed
walk of length 1 is a loop, which is a cycle. Thus we may assume l ≥ 2.

Basis step: l = 2. Since it contains no cycle, the walk must take a step
and return immediately on the same edge.

Induction step: l > 2. If there is no vertex repetition other than first
vertex = last vertex, then W traverses a cycle, which is forbidden. Hence
there is some other vertex repetition. Let W ′ be the portion of W between
the instances of such a repetition. The walk W ′ is a shorter closed walk
than W and contains no cycle, since W has none. By the induction hypoth-
esis, W ′ has an edge repeating twice in succession, and this repetition also
appears in W .

Proof 2. Let w be the first repetition of a vertex along W , arriving
from v on edge e. From the first occurrence of w to the visit to v is a w, v-
walk, which is a cycle if v = w or contains a nontrivial w, v-path P. This
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completes a cycle with e unless in fact P is the path of length 1 with edge
e, in which case e repeats immediately in opposite directions.

1.2.16. If edge e appears an odd number of times in a closed walk W , then
W contains the edges of a cycle through e.

Proof 1 (induction on the length of W , as in Lemma 1.2.7). The short-
est closed walk has length 1. Basis step (l = 1): The edge e in a closed walk
of length 1 is a loop and thus a cycle. Induction step (l > 1): If there is no
vertex repetition, then W is a cycle. If there is a vertex repetition, choose
two appearances of some vertex (other than the beginning and end of the
walk). This splits the walk into two closed walks shorter than W . Since
each step is in exactly one of these subwalks, one of them uses e an odd
number of times. By the induction hypothesis, that subwalk contains the
edges of a cycle through e, and this is contained in W .

Proof 2 (parity first, plus Lemma 1.2.6). Let x and y be the endpoints
of e. As we traverse the walk, every trip through e is x, e, y or y, e, x . Since
the number of trips is odd, the two types cannot alternate. Hence some two
successive trips through e have the same direction. By symmetry, we may
assume that this is x, e, y, . . . , x, e, y.

The portion of the walk between these two trips through e is a y, x-
walk that does not contain e. By Lemma 1.2.6, it contains a y, x-path (that
does not contain e. Adding e to this path completes a cycle with e consisting
of edges in W .

Proof 3 (contrapositive). If edge e in walk W does not lie on a cycle
consisting of edges in W , then by our characterization of cut-edges, e is a
cut-edge of the subgraph H consisting of the vertices and edges in W . This
means that the walk can only return to e at the endpoint from which it most
recently left e. This requires the traversals of e to alternate directions along
e. Since a closed walk ends where it starts (that is, in the same component
of H − e), the number of traversals of e by W must be even.

1.2.17. The “adjacent-transposition graph” Gn on permutations of [n] is
connected. Note that since every permutation of [n] has n − 1 adjacent
pairs that can be transposed, Gn is (n−1)-regular. Therefore, showing that
Gn is connected shows that it is Eulerian if and only if n is odd.

Proof 1 (path to fixed vertex). We show that every permutation has
a path to the identity permutation I = 1, . . . , n. By the transitivity of the
connection relation, this yields for all u, v ∈ V (G) a u, v-path in G. To
create a v, I -path, move element 1 to the front by adjacent interchanges,
then move 2 forward to position 2, and so on. This builds a walk to I , which
contains a path to I . (Actually, this builds a path.)

Proof 2 (direct u, v-path). Each vertex is a permutation of [n]. Let
u = a1, . . . , an and v = b1, . . . , bn; we construct at u, v-path. The element

b1 appears in u as some ai ; move it to the front by adjacent transpositions,
beginning a walk from u. Next find b2 among a2, . . . , an and move it to
position 2. Iterating this procedure brings the elements of v toward the
front, in order, while following a walk. It reaches v when all positions have
been “corrected”. (Actually, the walk is a u, v-path.) Note that since we
always bring the desired element forward, we never disturb the position of
the elements that were already moved to their desired positions.

Proof 3 (induction on n). If n = 1, then Gn
∼= K1 and G is connected

(we can also start with n = 2). For n > 1, assume that Gn−1 is connected.
In Gn, the subgraph H induced by the vertices having n at the end is iso-
morphic to Gn−1. Every vertex of G is connected to a vertex of H by a path
formed by moving element n to the end, one step at a time. For u, v ∈ V (G),
we thus have a path from u to a vertex u ′ ∈ V (H), a path from v to a vertex
v′ ∈ V (H), and a u ′, v′-path in H that exists by the induction hypothe-
sis. By the transitivity of the connection relation, there is a u, v-path in G.
This completes the proof of the induction step. (The part of G4 used in the
induction step appears below.)
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Proof 4 (induction on n). The basis is as in Proof 3. For n > 1, note
that for each i ∈ [n], the vertices with i at the end induce a copy Hi of
Gn−1. By the induction hypothesis, each such subgraph is connected. Also,
Hn has vertices with i in position n − 1 whenever 1 ≤ i ≤ n − 1. We can
interchange the last two positions to obtain a neighbor in Hi . Hence there
is an edge from each Hi to Hn, and transitivity of the connection relation
again completes the proof.

1.2.18. For k ≥ 1, there are two components in the graph Gk whose vertex
set is the set of binary k-tuples and whose edge set consists of the pairs that
differ in exactly two places. Changing two coordinates changes the number
of 1s in the name of the vertex by zero or by ±2. Thus the parity of the
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number of 1s remains the same along every edge. This implies that G k has
at least two components, because there is no edge from an k-tuple with an
even number of 1s to an k-tuple with an odd number of 1s.

To show that Gk has at most two components, there are several ap-
proaches. In each, we prove that any two vertices with the same parity lie
on a path, where “parity” means parity of the number of 1s.

Proof 1. If u and v are vertices with the same parity, then they differ
in an even number of places. This is true because each change of a bit in
obtaining one label from the other switches the parity. Since they differ
in an even number of places, we can change two places at a time to travel
from u to v along a path in Gk .

Proof 2. We use induction on k. Basis step (k = 1): G1 has two
components, each an isolated vertex. Induction step (k > 1): when k > 1,
Gk consists of two copies of Gk−1 plus additional edges. The two copies are
obtained by appending 0 to all the vertex names in Gk−1 or appending 1
to them all. Within a copy, the edges don’t change, since these vertices
all agree in the new place. By the induction hypothesis, each subgraph
has two components. The even piece in the 0-copy has 0 · · · 000, which is
adjacent to 0 · · · 011 in the odd piece of the 1-copy. The odd piece in the
0-copy has 0 · · · 010, which is adjacent to 0 · · · 001 in the even piece of the
1-copy. Thus the four pieces reduce to (at most) two components in G k .

1.2.19. For n, r, s ∈ N, the simple graph G with vertex set Zn and edge set
{i j : | j − i | ∈ {r, s}} has gcd(n, r, s) components. Note: The text gives the
vertex set incorrectly. When r = s = 2 and n is odd, it is necessary to go up
to n ≡ 0 to switch from odd to even.

Let k = gcd(n, r, s). Since k divides n, the congruence classes modulo n
fall into congruence classes modulo k in a well-defined way. All neighbors of
vertex i differ from i by a multiple of k. Thus all vertices in a component lie
in the same congruence class modulo k, which makes at least k components.

To show that there are only k components, we show that all vertices
with indices congruent to i (mod k) lie in one component (for each i). It
suffices to build a path from i to i + k. Let l = gcd(r, s), and let a = r/ l and
b = s/ l. Since there are integers (one positive and one negative) such that
pa+qb = 1, moving p edges with difference+r and q edges with difference
+s achieves a change of +l.

We thus have a path from i to i + l, for each i . Now, k = gcd(l, n). As
above, there exist integers p′, q ′ such that p′(l/k)+ q ′(n/k) = 1. Rewriting
this as p′l = k − q ′n means that if we use p′ of the paths that add l, then
we will have moved from i to i + k (mod n).

1.2.20. If v is a cut-vertex of a simple graph G, then v is not a cut-vertex
of G. Let V1, . . . , Vk be the vertex sets of the components of G − v; note

that k ≥ 2. Then G contains the complete multipartite graph with partite
sets V1, . . . , Vk . Since this includes all vertices of G − v, the graph G − v is
connected. Hence v is not a cut-vertex of G.

1.2.21. A self-complementary graph has a cut-vertex if and only if it has a
vertex of degree 1. If there is a vertex of degree 1, then its neighbor is a
cut-vertex (K2 is not self-complementary).

For the converse, let v be a cut-vertex in a self-complementary graph
G. The graph G − v has a spanning biclique, meaning a complete bipartite
subgraph that contains all its vertices. Since G is self-complementary, also
G must have a vertex u such that G − u has a spanning biclique.

Since each vertex of G − v is nonadjacent to all vertices in the other
components of G − v, a vertex other than u must be in the same partite set
of the spanning biclique of G−u as the vertices not in the same component
as u in G−v. Hence only v can be in the other partite set, and v has degree
at least n − 2. We conclude that v has degree at most 1 in G, so G has a
vertex of degree at most 1. Since a graph and its complement cannot both
be disconnected, G has a vertex of degree 1.

1.2.22. A graph is connected if and only if for every partition of its vertices
into two nonempty sets, there is an edge with endpoints in both sets.

Necessity. Let G be a connected graph. Given a partition of V (G) into
nonempty sets S, T , choose u ∈ S and v ∈ T . Since G is connected, G has a
u, v-path P. After its last vertex in S, P has an edge from S to T .

Sufficiency.
Proof 1 (contrapositive). We show that if G is not connected, then for

some partition there is no edge across. In particular, if G is disconnected,
then let H be a component of G. Since H is a maximal connected sub-
graph of G and the connection relation is transitive, there cannot be an
edges with one endpoint in V (H) and the other endpoint outside. Thus for
the partition of V (G) into V (H) and V (G) − V (H) there is no edge with
endpoints in both sets.

Proof 2 (algorithmic approach). We grow a set of vertices that lie in
the same equivalence class of the connection relation, eventually accumu-
lating all vertices. Start with one vertex in S. While S does not include all
vertices, there is an edge with endpoints x ∈ S and y /∈ S. Adding y to S
produces a larger set within the same equivalence class, using the transi-
tivity of the connection relation. This procedure ends only when there are
no more vertices outside S, in which case all of G is in the same equivalence
class, so G has only one component.

Proof 3 (extremality). Given a vertex x ∈ V (G), let S be the set of all
vertices that can be reached from x via paths. If S 6= V (G), consider the
partition into S and V (G)−S. By hypothesis, G has an edge with endpoints
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u ∈ S and v /∈ S. Now there is an x, v-path formed by extending an x, u-
path along the edge uv. This contradicts the choice of S, so in fact S is all
of V (G). Since there are paths from x to all other vertices, the transitivity
of the connection relation implies that G is connected.

1.2.23. a) If a connected simple graph G is not a complete graph, then every
vertex of G belongs to some induced subgraph isomorphic to P3. Let v be a
vertex of G. If the neighborhood of v is not a clique, then v has a pair x, y
of nonadjacent neighbors; {x, v, y} induces P3. If the neighborhood of v is a
clique, then since G is not complete there is some vertex y outside the set S
consisting of v and its neighbors. Since G is connected, there is some edge
between a neighbor w of v and a vertex x that is not a neighbor of v. Now
the set {v, w, x} induces P3, since x is not a neighbor of v.

One can also use cases according to whether v is adjacent to all other
vertices or not. The two cases are similar to those above.

b) When a connected simple graph G is not a complete graph, G may
have edges that belong to no induced subgraph isomorphic to P3. In the
graph below, e lies in no such subgraph.

•

•

• •e

1.2.24. If a simple graph with no isolated vertices has no induced subgraph
with exactly two edges, then it is a complete graph. Let G be such a graph.
If G is disconnected, then edges from two components yield four vertices
that induce a subgraph with two edges. If G is connected and not complete,
then G has nonadjacent vertices x and y. Let Q be a shortest x, y-path; it
has length at least 2. Any three successive vertices on Q induce P3, with
two edges.

Alternatively, one can use proof by contradiction. If G is not complete,
then G has two nonadjacent vertices. Considering several cases (common
neighbor or not, etc.) always yields an induced subgraph with two edges.

1.2.25. Inductive proof that every graph G with no odd cycles is bipartite.
Proof 1 (induction on e(G)). Basis step (e(G) = 0): Every graph with

no edges is bipartite, using any two sets covering V (G).
Induction step (e(G) > 0): Discarding an edge e introduces no odd

cycles. Thus the induction hypothesis implies that G − e is bipartite.
If e is a cut-edge, then combining bipartitions of the components of

G − e so that the endpoints of e are in opposite sets produces a bipartition
of G. If e is not a cut-edge of G, then let u and v be its endpoints, and let
X, Y be a bipartition of G − e. Adding e completes a cycle with a u, v-path

in G−e; by hypothesis, this cycle has even length. This forces u and v to be
in opposite sets in the bipartition X, Y . Hence the bipartition X, Y of G − e
is also a bipartition of G.

Proof 2 (induction on n(G)). Basis step (n(G) = 1): A graph with one
vertex and no odd cycles has no loop and hence no edge and is bipartite.

Induction step (n(G) > 1): When we discard a vertex v, we introduce
no odd cycles. Thus the induction hypothesis implies that G−v is bipartite.
Let G1, . . . , Gk be the components of G − v; each has a bipartition. If v has
neighbors u, w in both parts of the bipartition of G i , then the edges uv and
vw and a shortest u, w-path in G i form a cycle of odd length. Hence we can
specify the bipartition X i , Yi of G i so that X i contains all neighbors of v in
G i . We now have a bipartition of G by letting X =

⋃

X i and Y = {v}∪(
⋃

Yi ).

1.2.26. A graph G is bipartite if and only if for every subgraph H of G,
there is an independent set containing at least half of the vertices of H .
Every bipartite graph has a vertex partition into two independent sets, one
of which must contain at least half the vertices (though it need not be a
maximum independent set). Since every subgraph of a bipartite graph is
bipartite, the argument applies to all subgraphs of a bipartite graph, and
the condition is necessary.

For the converse, suppose that G is not bipartite. By the characteri-
zation of bipartite graphs, G contains an odd cycle H . This subgraph H
has no independent set containing at least half its vertices, because every
set consisting of at least half the vertices in an odd cycle must have two
consecutive vertices on the cycle.

1.2.27. The “transposition graph” on permutations of [n] is bipartite. The
partite sets are determined by the parity of the number of pairs i, j such
that i < j and ai > aj (these are called inversions). We claim that each
transposition changes the parity of the number of inversions, and there-
fore each edge in the graph joins vertices with opposite parity. Thus the
permutations with an even number of inversions form an independent set,
as do those with an odd number of inversions. This is a bipartition, and
thus the graph is bipartite.

Consider the transposition that interchanges the elements in position
r and position s, with r < s. No pairs involving elements that are before r
or after s have their order changed. If r < k < s, then interchanging ar and
as changes the order of ar and ak , and also it changes the order of ak and as .
Thus for each such k the number of inversions changes twice and retains
the same parity. This describes all changes in order except for the switch
of ar and as itself. Thus the total number of changes is odd, and the parity
of the number of inversions changes.
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1.2.28. a) The graph below has a unique largest bipartite subgraph, ob-
tained by deleting the central edge. Deleting the central edge leaves a
bipartite subgraph, since the indicated sets A and B are independent in
that subgraph. If deleting one edge makes a graph bipartite, then that
edge must belong to all odd cycles in the graph, since a bipartite subgraph
has no odd cycles. The two odd cycles in bold have only the central edge in
common, so no other edge belongs to all odd cycles.

•
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A
B
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b) In the graph below, the largest bipartite subgraph has 10 edges, and
it is not unique. Deleting edges bh and ag yields an X, Y -bigraph with X =
{b, c, e, h} and Y = {a, d, f, g}. Another bipartite subgraph with 10 edges is
obtained by deleting edges de and c f ; the bipartition is X = {b, c, f, g} and
Y = {a, d, e, h}. (Although these two subgraphs are isomorphic, they are
two subgraphs, just as the Petersen graph has ten claws, not one.)

It remains to show that we must delete at least two edges to obtain a
bipartite subgraph. By the characterization of bipartite graphs, we must
delete enough edges to break all odd cycles. We can do this with (at most)
one edge if and only if all the odd cycles have a common edge. The 5-cycles
(b, a, c, f, h) and (b, d, e, g, h) have only the edge bh in common. Therefore,
if there is a single edge lying in all odd cycles, it must be bh. However,
(a, c, f, h, g) is another 5-cycle that does not contain this. Therefore no
edge lies in all odd cycles, and at least two edges must be deleted.
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1.2.29. A connected simple graph not having P4 or C3 as an induced sub-
graph is a biclique. Choose a vertex x . Since G has no C3, N (x) is inde-
pendent. Let S = V (G)− N (X)− {x}. Every v ∈ S has a neighbor in N (x);
otherwise, a shortest v, x-path contains an induced P4. If v ∈ S is adjacent
to w but not z in N (x), then v, w, x, z is an induced P4. Hence all of S is ad-
jacent to all of N (x). Now S ∪ {x} is an independent set, since G has no C3.
We have proved that G is a biclique with bipartition N (x), S ∪ {x}.

1.2.30. Powers of the adjacency matrix.
a) In a simple graph G, the (i, j)th entry in the kth power of the ad-

jacency matrix A is the number of (vi , vj )-walks of length k in G. We use
induction on k. When k = 1, ai, j counts the edges (walks of length 1) from
i to j . When k > 1, every (vi , vj )-walk of length k has a unique vertex
vr reached one step before the end at vj . By the induction hypothesis, the
number of (vi , vr )-walks of length k−1 is entry (i, r) in Ak−1, which we write
as a(k−1)

i,r . The number of (vi , vj )-paths of length k that arrive via vr on the
last step is a(k−1)

i,r ar, j , since ar, j is the number of edges from vr to vj that can
complete the walk. Counting the (vi , vj )-walks of length k by which vertex
appears one step before vj yields

∑n
r=1 a(k−1)

i,r ar, j . By the definition of ma-
trix multiplication, this is the (i, j)th entry in Ak . (The proof allows loops
and multiple edges and applies without change for digraphs. When loops
are present, note that there is no choice of “direction” on a loop; a walk is
a list of edge traversals).

b) A simple graph G with adjacency matrix A is bipartite if and only
if, for each odd integer r , the diagonal entries of the matrix Ar are all 0. By
part (a), Ar

i,i counts the closed walks of length r beginning at vi . If this is
always 0, then G has no closed walks of odd length through any vertex; in
particular, G has no odd cycle and is bipartite. Conversely, if G is bipartite,
then G has no odd cycle and hence no closed odd walk, since every closed
odd walk contains an odd cycle.

1.2.31. Kn is the union of k bipartite graphs if and only if n ≤ 2k (without
using induction).

a) Construction when n ≤ 2k . Given n ≤ 2k , encode the vertices of
Kn as distinct binary k-tuples. Let G i be the complete bipartite subgraph
with bipartition X i , Yi , where X i is the set of vertices whose codes have 0
in position i , and Yi is the set of vertices whose codes have 1 in position i .
Since every two vertex codes differ in some position, G1 ∪ · · · ∪ Gk = Kn.

b) Upper bound. Given that Kn is a union of bipartite graphs
G1, . . . , Gk , we define a code for each vertex. For 1 ≤ i ≤ k, let X i , Yi

be a bipartition of G i . Assign vertex v the code (a1, . . . , ak), where ai = 0 if
v ∈ X i , and ai = 1 if v ∈ Yi or v /∈ X i ∪ Yi . Since every two vertices are ad-
jacent and the edge joining them must be covered in the union, they lie in
opposite partite sets in some G i . Therefore the codes assigned to the ver-
tices are distinct. Since the codes are binary k-tuples, there are at most 2k

of them, so n ≤ 2k .

1.2.32. “Every maximal trail in an even graph is an Eulerian circuit”—
FALSE. When an even graph has more than one component, each compo-
nent has a maximal trail, and it will not be an Eulerian circuit unless the
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other components have no edges. The added hypothesis needed is that the
graph is connected.

The proof of the corrected statement is essentially that of Theorem
1.2.32. If a maximal trail T is not an Eulerian circuit, then it is incident
to a missing edge e, and a maximal trail in the even graph G − E(T ) that
starts at e can be inserted to enlarge T , which contradicts the hypothesis
that T is a maximal trail.

1.2.33. The edges of a connected graph with 2k odd vertices can be parti-
tioned into k trails if k > 0. The assumption of connectedness is necessary,
because the conclusion is not true for G = H1 + H2 when H1 has some odd
vertices and H2 is Eulerian.

Proof 1 (induction on k). When k = 1, we add an edge between the
two odd vertices, obtain an Eulerian circuit, and delete the added edge.
When k > 1, let P be a path connecting two odd vertices. The graph G ′ =
G−E(P) has 2k−2 odd vertices, since deleting E(P) changes degree parity
only at the ends of P. The induction hypothesis applies to each component
of G ′ that has odd vertices. Any component not having odd vertices has
an Eulerian circuit that contains a vertex of P; we splice it into P to avoid
having an additional trail. In total, we have used the desired number of
trails to partition E(G).

Proof 2 (induction on e(G)). If e(G) = 1, then G = K2, and we have
one trail. If G has an even vertex x adjacent to an odd vertex y, then G ′ =
G − xy has the same number of odd vertices as G. The trail decomposition
of G ′ guaranteed by the induction hypothesis has one trail ending at x and
no trail ending at y. Add xy to the trail ending at x to obtain the desired
decomposition of G. If G has no even vertex adjacent to an odd vertex, then
G is Eulerian or every vertex of G is odd. In this case, deleting an edge xy
reduces k, and we can add xy as a trail of length one to the decomposition
of G − xy guaranteed by the induction hypothesis.

1.2.34. The graph below has 6 equivalence classes of Eulerian circuits. If
two Eulerian circuits follow the same circular arrangement of edges, dif-
fering only in the starting edges or the direction, then we consider them
equivalent. An equivalence class of circuits is characterized by the pairing
of edges at each vertex corresponding to visits through that vertex.

A 2-valent vertex has exactly one such pairing; a 4-valent vertex has
three possible pairings. The only restriction is that the pairings must yield
a single closed trail. Given a pairing at one 4-valent vertex below, there is a
forbidden pairing at the other, because it would produce two edge-disjoint
4-cycles instead of a single trail. The other two choices are okay. Thus the
answer is 3 · 2 = 6.
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Alternatively, think of making choices while following a circuit. Be-
cause each circuit uses each edge, and because the reversal of a circuit C
is in the same class as C , we may follow a canonical representative of the
class from a along ax . We now count the choices made to determine the cir-
cuit. After x we can follow one of 3 choices. This leads us through another
neighbor of x to y. Now we cannot use the edge ya or the edge just used,
so two choices remain. This determines the rest of the circuit. For each of
the three ways to make the initial choice, there was a choice of two later,
so there are 3 · 2 = 6 ways to specify distinct classes of circuits. (Distinct
ways of making the choices yields a distinct pairing at some vertex.)

1.2.35. Algorithm for Eulerian circuits. Let G be a connected even graph.
At each vertex partition the incident edges into pairs (each edge appears in
a pair at each endpoint). Start along some edge. At each arrival at a vertex,
there is an edge paired with the entering edge; use it to exit. This can end
only by arriving at the initial vertex along the edge paired with the initial
edge, and it must end since the graph is finite. At the point where the first
edge would be repeated, stop; this completes a closed trail. Furthermore,
there is no choice in assembling this trail, so every edge appears in exactly
one such trail. Therefore, the pairing decomposes G into closed trails.

If there is more than one trail in the decomposition, then there are
two trails with a common vertex, since G is connected. (A shortest path
connecting vertices in two of the trails first leaves the first trail at some
vertex v, and at v we have edges from two different trails.) Given edges
from trails A and B at v, change the pairing by taking a pair in A and a
pair in B and switching them to make two pairs that pair an edge of A with
an edge of B. Now when A is followed from v, the return to A does not end
the trail, but rather the trail continues and follows B before returning to
the original edge. Thus changing the pairing at v combines these two trails
into one trail and leaves the other trails unchanged.

We have shown that if the number of trails in the decomposition ex-
ceeds one, then we can obtain a decomposition with fewer trails be changing
the pairing. Repeating the argument produces a decomposition using one
closed trail. This trail is an Eulerian circuit.
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1.2.36. Alternative characterization of Eulerian graphs.
a) If G is loopless and Eulerian and G ′ = G − uv, then G ′ has an odd

number of u, v-trails that visit v only at the end.
Proof 1 (exhaustive counting and parity). Every extension of every

trail from u in G ′ eventually reaches v, because a maximal trail ends only
at a vertex of odd degree. We maintain a list of trails from u. The number
of choices for the first edge is odd. For a trail T that has not yet reached v,
there are an odd number of ways to extend T by one edge. We replace T in
the list by these extensions. This changes the number of trails in the list
by an even number. The process ends when all trails in the list end at v.
Since the list always has odd size, the total number of these trails is odd.

Proof 2 (induction and stronger result). We prove that the same con-
clusion holds whenever u and v are the only vertices of odd degree in a
graph H , regardless of whether they are adjacent. This is immediate if H
has only the edge uv. For larger graphs, we show that there are an odd
number of such trails starting with each edge e incident to u, so the sum is
odd. If e = uv, then there is one such trail. Otherwise, when e = uw with
w 6= v, we apply the induction hypothesis to H − e, in which w and v are
the only vertices of odd degree.

The number of non-paths in this list of trails is even. If T is such a trail
that is not a path, then let w be the first instance of a vertex repetition
on T . By traversing the edges between the first two occurrences of w in
the opposite order, we obtain another trail T ′ in the list. For T ′, the first
instance of a vertex repetition is again w, and thus T ′′ = T . This defines
an involution under which the fixed points are the u, v-paths. The trails
we wish to delete thus come in pairs, so there are an even number of them.

b) If v is a vertex of odd degree in a graph G, then some edge incident
to v lies in an even number of cycles. Let c(e) denote the number of cycles
containing e. Summing c(e) over edges incident to v counts each cycle
through v exactly twice, so the sum is even. Since there are an odd number
of terms in the sum, c(e) must be even for some e incident to v.

c) A nontrivial connected graph is Eulerian if and only if every edge
belongs to an odd number of cycles. Necessity: By part (a), the number of
u, v-paths in G − uv is odd. The cycles through uv in G correspond to the
u, v-paths in G − uv, so the number of these cycles is odd.

Sufficiency: We observe the contrapositive. If G is not Eulerian, then
G has a vertex v of odd degree. By part (b), some edge incident to v lies in
an even number of cycles.

1.2.37. The connection relation is transitive. It suffices to show that if P
is a u, v-path and P ′ is a v, w-path, then P and P ′ together contain a u, w-
path. At least one vertex of P is in P ′, since both contain v. Let x be the

first vertex of P that is in P ′. Following P from u to x and then P ′ from x
to w yields a u, w path, since no vertex of P before x belongs to P ′.

1.2.38. Every n-vertex graph with at least n edges contains a cycle.
Proof 1 (induction on n). A graph with one vertex that has an edge has

a loop, which is a cycle. For the induction step, suppose that n > 1. If our
graph G has a vertex v with degree at most 1, then G− v has n−1 vertices
and at least n − 1 edges. By the induction hypothesis, G − v contains a
cycle, and this cycle appears also in G. If G has no vertex of degree at
most 1, then every vertex of G has degree at least 2. Now Lemma 1.2.25
guarantees that G contains a cycle.

Proof 2 (use of cut-edges). If G has no cycle, then by Theorem 1.2.14 ev-
ery edge is a cut-edge, and this remains true as edges are deleted. Deleting
all the edges thus produces at least n+ 1 components, which is impossible.

1.2.39. If G is a loopless graph and δ(G) ≥ 3, then G has a cycle of even
length. An endpoint v of a maximal path P has at least three neighbors on
P. Let x, y, z be three such neighbors of v in order on P. Consider three
v, y-paths: the edge vy, the edge vx followed by the x, y-path in P, and the
edge vz followed by the z, y-path in P.

These paths share only their endpoints, so the union of any two is a
cycle. By the pigeonhole principle, two of these paths have lengths with
the same parity. The union of these two paths is an even cycle.

• • • • • •
v x y z

1.2.40. If P and Q are two paths of maximum length in a connected graph
G, then P and Q have a common vertex. Let m be the common length of P
and Q. Since G is connected, it has a shortest path R between V (P) and
V (Q). Let l be the length of R. Let the endpoints of R be r ∈ V (P) and
r ′ ∈ V (Q). The portion P ′ of P from r to the farther endpoint has length at
least m/2. The portion Q ′ of Q from r to the farther endpoint has length at
least m/2. Since R is a shortest path, R has no internal vertices in P or Q.

If P and Q are disjoint, then P ′ and Q ′ are disjoint, and the union of
P ′, Q ′, and R is a path of length at least m/2+ m/2+ l = m + l. Since the
maximum path length is m, we have l = 0. Thus r = r ′, and P and Q have
a common vertex.

The graph consisting of two edge-disjoint paths of length 2k sharing
their midpoint is connected and hence shows that P and Q need not have
a common edge.

1.2.41. A connected graph with at least three vertices has two vertices x, y
such that 1) G − {x, y} is connected and 2) x, y are adjacent or have a com-
mon neighbor. Let x be a endpoint of a longest path P in G, and let v be
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its neighbor on P. Note that P has at least three vertices. If G − x − v

is connected, let y = v. Otherwise, a component cut off from P − x − v in
G − x − v has at most one vertex; call it w. The vertex w must be adjacent
to v, since otherwise we could build a longer path. In this case, let y = w.

1.2.42. A connected simple graph having no 4-vertex induced subgraph that
is a path or a cycle has a vertex adjacent to every other vertex. Consider a
vertex x of maximum degree. If x has a nonneighbor y, let x, v, w be the
begining of a shortest path to y (w may equal y). Since d(v) ≤ d(x), some
neighbor z of x is not adjacent to v. If z ↔ w, then {z, x, v, w} induce C4;
otherwise, {z, x, v, w} induce P4. Thus x must have no nonneighbor.

1.2.43. The edges of a connected simple graph with 2k edges can be parti-
tioned into paths of length 2. The assumption of connectedness is necessary,
since the conclusion does not hold for a graph having components with an
odd number of edges.

We use induction on e(G); there is a single such path when e(G) = 2.
For e(G) > 2, let P = (x, y, z) be an arbitrary path of length two in G,
and let G ′ = G − {xy, yz}. If we can partition E(G) into smaller connected
subgraphs of even size, then we can apply the induction hypothesis to each
piece and combine the resulting decompositions. One way to do this is to
partition E(G ′) into connected subgraphs of even size and use P.

Hence we are finished unless G ′ has two components of odd size (G ′
cannot have more than three components, since an edge deletion increases
the number of components by at most one). Each odd component contains
at least one of {x, y, z}. Hence it is possible to add one of xy to one odd
component and yz to the other odd component to obtain a partition of G
into smaller connected subgraphs.

1.3. VERTEX DEGREES & COUNTING

1.3.1. A graph having exactly two vertices of odd degree must contain a
path from one to the other. The degree of a vertex in a component of G is
the same as its degree in G. If the vertices of odd degree are in different
components, then those components are graphs with odd degree sum.

1.3.2. In a class with nine students where each student sends valentine
cards to three others, it is not possible that each student sends to and receives
cards from the same people. The sending of a valentine can be represented
as a directed edge from the sender to the receiver. If each student sends to
and receives cards from the same people, then the graph has x → y if and

only if y → x . Modeling each opposed pair of edges by a single unoriented
edge yields a 3-regular graph with 9 vertices. This is impossible, since
every graph has an even number of vertices of odd degree.

1.3.3. If d(u)+ d(v) = n + k for an edge uv in a simple graph on n vertices,
then uv belongs to at least k triangles. This is the same as showing that
u and v have at least k common neighbors. Let S be the neighbors of u
and T the neighbors of v, and suppose |S ∩ T | = j . Every vertex of G
appears in S or T or none or both. Common neighbors are counted twice,
so n ≥ |S| + |T | − j = n + k − j . Hence j ≥ k. (Almost every proof of this
using induction or contradiction does not need it, and is essentially just
this counting argument.)

1.3.4. The graph below is isomorphic to Q4. It suffices to label the vertices
with the names of the vertices in Q4 so that vertices are adjacent if and
only if their labels differ in exactly one place.
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1.3.5. The k-dimensional cube Qk has
(k

2

)

2k copies of P3.
Proof 1. To specify a particular subgraph isomorphic to P3, the 3-

vertex path, we can specify the middle vertex and its two neighbors. For
each vertex of Qk , there are

(k
2

)

ways to choose two distinct neighbors, since
Qk is a simple k-regular graph. Thus the total number of P3’s is

(k
2

)

2k .
Proof 2. We can alternatively choose the starting vertex and the next

two. There are 2k ways to pick the first vertex. For each vertex, there are
k ways to pick a neighbor. For each way to pick these vertices, there are
k − 1 ways to pick a third vertex completing P3, since Qk has no multiple
edges. The product of these factors counts each P3 twice, since we build it
from each end. Thus the total number of them is 2kk(k − 1)/2.

Qk has
(k

2

)

2k−2 copies of C4.
Proof 1 (direct counting). The vertices two apart on a 4-cycle must

differ in two coordinates. Their two common neighbors each differ from
each in exactly one of these coordinates. Hence the vertices of a 4-cycle
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must use all 2-tuples in two coordinates while keeping the remaining coor-
dinates fixed. All such choices yield 4-cycles. There are

(k
2

)

ways to choose
the two coordinates that vary and 2k−2 ways to set a fixed value in the
remaining coordinates.

Proof 2 (prior result). Every 4-cycle contains four copies of P3, and ev-
ery P3 contains two vertices at distance 2 in the cube and hence extends to
exactly one 4-cycle. Hence the number of 4-cycles is one-fourth the number
of copies of P3.

1.3.6. Counting components. If G has k components and H has l compo-
nents, then G + H has k + l components. The maximum degree of G + H
is max{1(G), 1(H)}.

1.3.7. Largest bipartite subgraphs. Pn is already bipartite. Cn loses one
edge if n is odd, none if n is even. The largest bipartite subgraph of Kn is
Kbn/2c,dn/2e, which has

⌊

n2/4
⌋

edges.

1.3.8. The lists (5,5,4,3,2,2,2,1), (5,5,4,4,2,2,1,1), and (5,5,5,3,2,2,1,1) are
graphic, but (5,5,5,4,2,1,1,1) is not. The answers can be obtained from
the Havel-Hakimi test; a list is graphic if and only if the list obtained by
deleting the largest element and deleting that many next-largest elements
is graphic. Below are graphs realizing the first three lists, found by the
Havel-Hakimi algorithm.
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•
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From the last list, we test (4, 4, 3, 1, 0, 1, 1), reordered to (4, 4, 3, 1, 1, 1, 0),
then (3, 2, 0, 0, 1, 0). This is not the degree list of a simple graph, since a
vertex of degree 3 requires three other vertices with nonzero degree.

1.3.9. In a league with two divisions of 13 teams each, no schedule has
each team playing exactly nine games against teams in its own division and
four games against teams in the other division. If this were possible, then
we could form a graph with the teams as vertices, making two vertices
adjacent if those teams play a game in the schedule. We are asking for
the subgraph induced by the 13 teams in a single division to be 9-regular.
However, there is no regular graph of odd degree with an odd number of
vertices, since for every graph the sum of the degrees is even.

1.3.10. If l, m, n are nonnegative integers with l + m = n ≥ 1, then there
exists a connected simple n-vertex graph with l vertices of even degree and m

vertices of odd degree if and only if m is even, except for (l, m, n) = (2, 0, 2).
Since every graph has an even number of vertices of odd degree, and the
only simple connected graph with two vertices has both degrees odd, the
condition is necessary.

To prove sufficiency, we construct such a graph G. If m = 0, let G = Cl

(except G = K1 if l = 1). For m > 0, we can begin with K1,m−1, which has
m vertices of odd degree, and then add a path of length l beyond one of the
leaves. (Illustration shows l = 3, m = 4.)

Alternatively, start with a cycle of length l, and add m vertices of degree
one with a common neighbor on the cycle. That vertex of the cycle has even
degree because m is even. Many other constructions also work. It is also
possible to prove sufficiency by induction on n for n ≥ 3, but this approach
is longer and harder to get right than an explicit general construction.

•

•

•

• • • •

•

•

•

•

•

•

•

1.3.11. If C is a closed walk in a simple graph G, then the subgraph con-
sisting of the edges appearing an odd number of times in C is an even graph.
Consider an arbitrary vertex v ∈ V (G). Let S be the set of edges incident
to v, and let f (e) be the number of times an edge e is traversed by C . Each
time C passes through v it enters and leaves. Therefore,

∑

e∈S f (e) must
be even, since it equals twice the number of times that C visits v. Hence
there must an even number of odd contributions to the sum, which means
there are an even number of edges incident to v that appear an odd num-
ber of times in C . Since we can start a closed walk at any of its vertices,
this argument holds for every v ∈ V (G).

1.3.12. If every vertex of G has even degree, then G has no cut-edge.
Proof 1 (contradiction). If G has a cut-edge, deleting it leaves two

induced subgraphs whose degree sum is odd. This is impossible, since the
degree sum in every graph is even.

Proof 2 (construction/extremality). For an edge uv, a maximal trail in
G − uv starting at u can only end at v, since whenever we reach a vertex
we have use an odd number of edges there. Hence a maximal such trail is
a (u, v)-trail. Every (u, v)-trail is a (u, v)-walk and contains a (u, v)-path.
Hence there is still a (u, v)-path after deletion of uv, so uv is not a cut-edge.

Proof 3 (prior results). Let G be an even graph. By Proposition 1.2.27,
G decomposes into cycles. By the meaning of “decomposition”, every edge
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of G is in a cycle. By Theorem 1.2.14, every edge in a cycle is not a cut-edge.
Hence every edge of G is not a cut-edge.

For k ∈ N, some (2k + 1)-regular simple graph has a cut-edge.
Construction 1. Let H, H ′ be copies of K2k,2k with partite sets X, Y

for H and X ′, Y ′ for H ′. Add an isolated edge vv′ disjoint from these sets.
To H + H ′ + vv′, add edges from v to all of X and from v′ to all of X ′, and
add k disjoint edges within Y and k disjoint edges within Y ′. The resulting
graph Gk is (2k + 1)-regular with 8k + 2 vertices and has vv ′ as a cut-edge.
Below we sketch G2; the graph G1 is the graph in Example 1.3.26.

•
•
•
•

•
•
•
•

•

•
•
•
•

•
•
•
•

•

Y X

v

Y ′X ′

v′

Construction 2a (inductive). Let G1 be the graph at the end of Exam-
ple 1.3.26 (or in Construction 1). This graph is 3-regular with 10 vertices
and cut-edge xy; note that 10 = 4 · 1 + 6. From a (2k − 1)-regular graph
Gk−1 with 4k + 2 vertices such that Gk−1 − xy has two components of order
2k+1, we form Gk . Add two vertices for each component of Gk−1− xy, adja-
cent to all the vertices of that component. This adds degree two to each old
vertex, gives degree 2k+ 1 to each new vertex, and leaves xy as a cut-edge.
The result is a (2k + 1)-regular graph Gk of order 4k + 6 with cut-edge xy.

Construction 2b (explicit). Form Hk from K2k+2 by removing k pair-
wise disjoint edges and adding one vertex that is adjacent to all vertices
that lost an incident edge. Now Hk has 2k + 2 vertices of degree 2k + 1
and one of degree 2k. Form Gk by taking two disjoint copies of Hk and
adding an edge joining the vertices of degree 2k. The graphs produced in
Constructions 2a and 2b are identical.

1.3.13. Meeting on a mountain range. A mountain range is a polygonal
curve from (a, 0) to (b, 0) in the upper half-plane; we start A and B at
opposite endpoints. Let P be a highest peak; A and B will meet there. Let
the segments from P to (a, 0) be x1, . . . , xr , and let the segments from P
to (b, 0) be y1, . . . , ys . We define a graph to describe the positions; when
A is on xi and B is on yj , the corresponding vertex is (i, j). We start at
the vertex (r, s) and must reach (1, 1). We introduce edges for the possible
transitions. We can move from (i, j) to (i, j + 1) if the common endpoint of
yj and yj+1 has height between the heights of the endpoints of xi . Similarly,
(i, j) is adjacent to (i + 1, j) if the common endpoint of xi and xi+1 has
height between the heights of the endpoints of x j . To avoid triviality, we
may assume that r + s > 2.

We prove that (r, s) and (1, 1) are the only vertices of odd degree in
G. This suffices, because every graph has an even number of vertices of

odd degree, which implies that (r, s) and (1, 1) are in the same component,
connected by a path.

The possible neighbors of (i, j) are the pairs obtained by changing i
or j by 1. Let X and Y be the intervals of heights attained by xi and yj ,
and let I = X ∩ Y . If the high end of I is the high end of exactly one of X
and Y , then exactly one neighboring vertex can be reached by moving past
the end of the corresponding segment. If it is the high end of both, then
usually one or three neighboring vertices can be reached, the latter when
both segments reach “peaks” at their high ends. However, if (i, j) = (1, 1),
then the high end of both segments is P and there is no neighbor of this
type. Similarly, the low end of I generates one or three neighbors, except
that when (i, j) = (r, s) there is no neighbor of this type.

No neighbor of (i, j) is generated from both the low end and the high
end of I . Since the contributions from the high and low end of I to the
degree of (i, j) are both odd, each degree is even, except for (r, s) and (1, 1),
where exactly one of the contributions is odd.

1.3.14. Every simple graph with at least two vertices has two vertices of
equal degree. The degree of a vertex in an n-vertex simple graph is in
{0, . . . , n − 1}. These are n distinct values, so if no two are equal then all
appear. However, a graph cannot have both an isolated vertex and a vertex
adjacent to all others.

This does not hold for graphs allowing loops. In the 2-vertex graph
with one loop edge and one non-loop edge, the vertex degrees are 1 and 3.

This does not hold for loopless graphs. In the 3-vertex loopless graph
with pairs having multiplicity 0, 1, 2, the vertex degrees are 1, 3, 2.

1.3.15. Smallest k-regular graphs. A simple k-regular graph has at least
k+1 vertices, so Kk+1 is the smallest. This is the only isomorphism class of
k-regular graphs with k+1 vertices. With k+2 vertices, the complement of
a k-regular graph must be 1-regular. There is one such class when k is even
((k + 2)/2 isolated edges), none when k is odd. (Two graphs are isomorphic
if and only if their complements are isomorphic.)

With k + 3 vertices, the complement is 2-regular. For k ≥ 3, there are
distinct choices for such a graph: a (k + 3)-cycle or the disjoint union of a
3-cycle and a k-cycle. Since these two 2-regular graphs are nonisomorphic,
their complements are nonisomorphic k-regular graphs with k+3 vertices.

1.3.16. For k ≥ 2 and g ≥ 2, there exists a k-regular graph with girth g.
We use strong induction on g. For g = 2, take the graph consisting of two
vertices and k edges joining them.

For the induction step, consider g > 2. Here we use induction on k.
For k = 2, a cycle of length g suffices. For k > 2, the induction hypothesis
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provides a (k−1)-regular graph H with girth g. Since dg/2e < g, the global
induction hypothesis also provides a graph G with girth dg/2e that is n(H)-
regular. Replace each vertex v in G with a copy of H ; each vertex in the
copy of H is made incident to one of the edges incident to v in G.

Each vertex in the resulting graph inherits k − 1 incident edges from
H and one from G, so the graph is k-regular. It has cycles of length g in
copies of H . A cycle C in G is confined to a single copy of H or visits more
than one such copy. In the first case, its length is at least g, since H has
girth g. In the second case, the copies of H that C visits correspond to a
cycle in G, so C visits at least dg/2e such copies. For each copy, C must
enter on one edge and then move to another vertex before leaving, since
the copy is entered by only one edge at each vertex. Hence the length of
such a cycle is at least 2 dg/2e.

1.3.17. Deleting a vertex of maximum degree cannot increase the average
degree, but deleting a vertex of minimum degree can reduce the average de-
gree. Deleting any vertex of a nontrivial regular graph reduces the average
degree, which proves the second claim. For the first claim, suppose that G
has n vertices and m edges, and let a and a ′ be the average degrees of G
and G − x , respectively. Since G − x has m − d(x) edges and degree sum
2m − 2d(x), we have a ′ = na−2d(x)

n−1 ≤ (n−2)a
n−1 < a if d(x) ≥ a > 0. Hence delet-

ing a vertex of maximum degree in nontrivial graph reduces the average
degree and cannot increase it.

1.3.18. If k ≥ 2, then a k-regular bipartite graph has no cut-edge. Since
components of k-regular graphs are k-regular, it suffices to consider a con-
nected k-regular X, Y -bigraph. Let uv be a cut-edge, and let G and H be the
components formed by deleting uv. Let m = |V (G) ∩ X | and n = |V (G) ∩ Y |.
By symmetry, we may assume that u ∈ V (G) ∩ Y and v ∈ V (H) ∩ X .

We count the edges of G. The degree of each vertex of G in X is k, so G
has mk edges. The degree of each vertex of G in Y is k except for dG(u) =

k−1, so G has nk−1 edges. Hence mk = nk−1, which is impossible because
one side is divisible by k and the other is not. The proof doesn’t work if
k = 1, and the claim is false then.

If vertex degrees k and k + 1 are allowed, then a cut-edge may exist.
Consider the example of 2Kk,k plus one edge joining the two components.

1.3.19. A claw-free simple graph with maximum degree at least 5 has a 4-
cycle. Consider five edges incident to a vertex v of maximum degree in such
a graph G. Since G has no induced claw, the neighbors of v must induce at
least three edges. Since these three edges have six endpoints among the
five neighbors of v, two of them must be incident, say xy and yz. Adding
the edges xv and zv to these two completes a 4-cycle.

There are arbitrarily large 4-regular claw-free graphs with no 4-cycles.

Consider a vertex v in such a graph G. Since v has degree 4 and is not
the center of an induced claw and does not lie on a 4-cycle, the subgraph
induced by v and its neighbors consists of two edge-disjoint triangles shar-
ing v (a bowtie). Since this happens at each vertex, G consists of pairwise
edge-disjoint triangles, with each vertex lying in two of them. Hence each
triangle has three neighboring triangles. Furthermore, two triangles that
neighbor a given triangle in this way cannot neighbor each other; that
would create a 4-cycle in the graph.

Define a graph H with one vertex for each triangle in G; let vertices be
adjacent in H if the corresponding triangles share a vertex in G. Now H is
a 3-regular graph with no 3-cycles; a 3-cycle in H would yield a 4-cycle in
G using two edges from one of the corresponding triangles. Also H must
have no 4-cycles, because a 4-cycle in G could be built using one edge from
each of the four triangles corresponding to the vertices of a 4-cycle in H .
Note that e(G) = 2n(G) and n(H) = e(G)/3 = 2n(G)/3.

On the other hand, given any 3-regular graph H with girth at least 5,
reversing the construction yields G with the desired properties and 3n(H)/2
vertices. Hence it suffices to show that there are arbitrarily large 3-regular
graphs with girth at least 5. Disconnected such examples can be formed
by taking many copies of the Petersen graph as components. The graph G
is connected if and only if H is connected. Connected instances of H can be
obtained from multiple copies of the Petersen graph by applying 2-switches
(Definition 1.3.32).

Alternatively, arbitrarily large connected examples can be constructed
by taking two odd cycles (say length 2m + 1) and joining the ith vertex
on the first cycle to the 2ith vertex (modulo 2m + 1) on the second cycle
(this generalizes the Petersen graph). We have constructed a connected
3-regular graph. Since we add disjoint edges between the cycles, there is
no triangle. A 4-cycle would have to alternate edges between the two odd
cycles with one edge of each, but the neighbors of adjacent vertices on the
first cycle are two apart on the second cycle.

1.3.20. Kn has (n − 1)!/2 cycles of length n, and Kn,n has n!(n − 1)!/2 cycles
of length 2n. Each cycle in Kn is a listing of the vertices. These can be listed
in n! orders, but we obtain the same subgraph no matter where we start
the cycle and no matter which direction we follow, so each cycle is listed
2n times. In Kn,n , we can list the vertices in order on a cycle (alternating
between the partite sets), in 2(n!)2 ways, but by the same reasoning each
cycle appears (2n) · 2 times.

1.3.21. Km,n has 6
(m

3

)(n
3

)

6-cycles. To extend an edge in Km,n to a 6-cycle, we
choose two more vertices from each side to be visited in order as we follow
the cycle. Hence each edge in Kn,n appears in (m − 1)(n − 1)(m − 2)(n − 2)



43 Chapter 1: Fundamental Concepts Section 1.3: Vertex Degrees and Counting 44

6-cycles. Since each 6-cycle contains 6 edges, we conclude that Kn,n has
mn(m − 1)(n − 1)(m − 2)(n − 2)/6 6-cycles.

Alternatively, each 6-cycle uses three vertices from each partite set,
which we can choose in

(m
3

)(n
3

)

ways. Each such choice of vertices induces
a copy of K3,3 with 9 edges. There are 3! = 6 ways to pick three disjoint
edges to be omitted by a 6-cycle, so each K3,3 contains 6 6-cycles.

1.3.22. Odd girth and minimum degree in nonbipartite triangle-free n-
vertex graphs. Let k = δ(G), and let l be the minimum length of an odd
cycle in G. Let C be a cycle of length l in G.

a) Every vertex not in V (C) has at most two neighbors in V (C). It
suffices to show that any two neighbors of such a vertex v on C must have
distance 2 on C , since having three neighbors would then require l = 6.

Since G is triangle-free, v does not have consecutive neighbors on C .
If v has neighbors x and y on C separated by distance more than 2 on C ,
then the detour through v can replace the x, y-path of even length on C to
form a shorter odd cycle.

b) n ≥ kl/2 (and thus l ≤ 2n/k). Since C is a shortest odd cycle, it has
no chords (it is an induced cycle). Since δ(G) = k, each vertex of C thus has
at least k − 2 edges to vertices outside C . However, each vertex outside C
has at most two neighbors on C . Letting m be the number of edges from
V (C) to V (G) − V (C), we thus have l(k − 2) ≤ m ≤ 2(n − l). Simplifying
the inequality yields n ≥ kl/2.

c) The inequality of part (b) is sharp when k is even. Form G from the
cycle Cl by replacing each vertex of Cl with an independent set of size k/2
such that two vertices are adjacent if and only if the vertices they replaced
were adjacent. Each vertex is now adjacent to the vertices arising from the
two neighboring classes, so G is k-regular and has lk/2 vertices. Deleting
the copies of any one vertex of Cl leaves a bipartite graph, since the partite
sets can be labeled alternately around the classes arising from the rest of
Cl . Hence every odd cycle uses a copy of each vertex of Cl and has length
at least l, and taking one vertex from each class forms such a cycle.

1.3.23. Equivalent definitions of the k-dimensional cube. In the direct def-
inition of Qk , the vertices are the binary k-tuples, with edges consisting of
pairs differing in one place. The inductive definition gives the same graph.
For k = 0 both definitions specify K1. For the induction step, suppose k ≥ 1.
The inductive definition uses two copies of Qk−1, which by the induction
hypothesis is the “1-place difference” graph of the binary (k − 1)-tuples. If
we append 0 to the (k − 1)-tuples in one copy of Qk−1 and 1 to the (k − 1)-
tuples in the other copy, then within each set we still have edges between
the labels differing in exactly one place. The inductive construction now
adds edges consisting of corresponding vertices in the two copies. This is

also what the direction definition does, since k-tuples chosen from the two
copies differ in the last position and therefore differ in exactly one position
if and only if they are the same in all other positions.

e(Qk) = k2k−1 . By the inductive definition, e(Qk) = 2e(Qk−1)+2k−1 for
k ≥ 1, with e(Q0) = 0. Thus the inductive step for a proof of the formula is
e(Qk) = 2(k − 1)2k−2 + 2k−1 = kk−1

2 .

1.3.24. K2,3 is the smallest simple bipartite graph that is not a subgraph
of the k-dimensional cube for any k. Suppose the vectors x, y, a, b, c are the
vertices of a copy of K2,3 in Qk . Any one of a, b, c differs from x in exactly one
coordinate and from y in another (it can’t be the same coordinate, because
then x = y). This implies that x and y differ in two coordinate i, j . Paths
from x to y in two steps can be formed by changing i and then j or changing
j and then i ; these are the only ways. In a cube two vertices have at
most two common neighbors. Hence K2,3 is forbidden. Any bipartite graph
with fewer vertices or edges is contained in K2,3 − e or K1,5, but K2,3 − e
is a subgraph of Q3, and K1,5 is a subgraph of Q5, so K2,3 is the smallest
forbidden subgraph.

1.3.25. Every cycle of length 2r in a hypercube belongs to a subcube of
dimension at most r , uniquely if r ≤ 3. Let C be a cycle of length 2r in
Qk ; V (C) is a collection of binary vectors of length k. Let S be the set of
coordinates that change at some step while traversing the vectors in V (C).
In order to return to the first vector, each position must flip between 0 and
1 an even number of times. Thus traversing C changes each coordinate in
S at least twice, but only one coordinate changes with each edge. Hence
2 |S| ≤ 2r , or |S| ≤ r . Outside the coordinates of S, the vectors of V (C) all
agree. Hence V (C) is contained in a |S|-dimensional subcube.

As argued above, at most two coordinates vary among the vertices of
a 4-cycle; at least two coordinates vary, because otherwise there are not
enough vectors available to have four distinct vertices. By the same rea-
soning, exactly three three coordinates vary among the vertices of any
6-cycle; we cannot find six vertices in a 2-dimensional subcube. Thus the
r -dimensional subcube containing a particular cycle is unique when r ≤ 3.

Some 8-cycles are contained in 3-dimensional subcubes, such as 000x ,
001x , 011x , 010x , 110x , 111x , 101x , 100x , where x is a fixed vector of
length n− 3. Such an 8-cycle is contained in n− 3 4-dimensional subcubes,
obtained by letting some position in x vary.

1.3.26. A 3-dimensional cube contains 16 6-cycles, and the k-dimensional
cube Qk contains 16

(k
3

)

2k−3 6-cycles. If we show that every 6-cycle appears
in exactly one 3-dimensional subcube, then multiplying the number of 3-
dimensional subcubes by the number of 6-cycles in each subcube counts
each 6-cycle exactly once.
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For any set S of vertices not contained in a 3-dimensional subcube,
there must be four coordinates in the corresponding k-tuples that are not
constant within S. A cycle through S makes changes in four coordinates.
Completing the cycle requires returning to the original vertex, so any co-
ordinate that changes must change back. Hence at least eight changes
are needed, and each edge changes exactly one coordinate. The cycle has
length at least 8; hence 6-cycles are contained in 3-dimensional subcubes.

Furthermore, there are only four vertices possible when k − 2 coor-
dinates are fixed, so every 6-cycle involves changes in three coordinates.
Hence the only 3-dimensional subcube containing the 6-cycle is the one
that varies in the same three coordinates as the 6-cycle.

By Example 1.3.8, there are
(k

3

)

2k−3 3-dimensional subcubes, so it re-
mains only to show that Q3 has 16 cycles of length 6. We group them by
the two omitted vertices. The two omitted vertices may differ in 1, 2, or
3 coordinates. If they differ in one place (they are adjacent), then delet-
ing them leaves a 6-cycle plus one edge joining a pair of opposite vertices.
Since Q3 has 12 edges, there are 12 6-cycles of this type. Deleting two com-
plementary vertices (differing in every coordinate) leaves only a 6-cycle.
Since Q3 has four such pairs, there are four such 6-cycles. The remain-
ing pairs differ in two positions. Deleting such a pair leaves a 4-cycle plus
two pendant edges, containing no 6-cycle. This considers all choices for the
omitted vertices, so the number of 6-cycles in Q3 is 12+ 4.

1.3.27. Properties of the “middle-levels” graph. Let G be the subgraph of
Q2k+1 induced by vertices in which the numbers of 1s and 0s differs by 1.
These are the (2k + 1)-tuples of weight k and weight k + 1, where weight
denotes the number of 1s.

Each vertex of weight k has k + 1 neighbors of weight k + 1, and each
vertex of weight k + 1 has k + 1 neighbors of weight k. There are

(2k+1
k

)

vertices of each weight. Counting edges by the Degree-Sum Formula,

e(G) = (k + 1) n(G)

2 = (k + 1)
(2k+1

k+1

)

= (2k + 1)
(2k

k

)

.

The graph is bipartite and has no odd cycle. The 1s in two vertices of
weight k must be covered by the 1s of any common neighbor of weight k+1.
Since the union of distinct k-sets has size at least k + 1, there can only be
one common neighbor, and hence G has no 4-cycle. On the other hand, G
does have a 6-cycle. Given any arbitary fixed vector of weight k − 1 for the
last 2k − 2 positions, we can form a cycle of length six by using 110, 100,
101, 001, 011, 010 successively in the first three positions.

1.3.28. Alternative description of even-dimensional hypercubes. The sim-
ple graph Q ′k has vertex set {0, 1}k , with u ↔ v if and only if u and v agree

in exactly one coordinate. Let the odd vertices be the vertices whose name
has an odd number of 1s; the rest are even vertices.

When k is even, Q ′k ∼= Qk . To show this, rename all odd vertices by
changing 1s into 0s and 0s into 1s. Since k is even, the resulting labels
are still odd. Since k is even, every edge in Q ′k joins an even vertex to
an odd vertex. Under the new naming, it joins the even vertex to an odd
vertex that differs from it in one coordinate. Hence the adjacency relation
becomes precisely the adjacency relation of Qk .

When k is odd, Q ′k 6∼= Qk , because Q ′k contains an odd cycle and hence is
not bipartite. Starting from one vertex, form a closed walk by successively
following k edges where each coordinate is the coordinate of agreement
along exactly one of these edges. Hence each coordinate changes exactly
k−1 times and therefore ends with the value it had at the start. Thus this
is a closed walk of odd length and contains an odd cycle.

1.3.29. Automorphisms of Qk .
a) A subgraph H of Qk is isomorphic to Ql if and only if it is the sub-

graph induced by a set of vertices agreeing in some set of k − l coordinates.
Let f be an isomorphism from H to Ql , and let v be the vertex mapped to
the vertex 0 of Ql whose coordinates are all 0. Let u1, . . . , ul be the neigh-
bors of v in H mapped to neighbors of 0 in Q l by f . Each ui differs from v

in one coordinate; let S be the set of l coordinates where these vertices dif-
fer from v. It suffices to show that vertices of H differ from v only on the
coordinates of S. This is immediate for l ≤ 1.

For l ≥ 2, we prove that each vertex mapped by f to a vertex of Q l

having weight j differs from v in j positions of S, by induction on j . Let
x be a vertex mapped to a vertex of weight j in Q l . For j ≤ 1, we have
already argued that x differs from v in j positions of S. For j ≥ 2, let y
and z be two neighbors of x whose images under f have weight j − 1 in
Ql . By the induction hypothesis, y and z differ from v in j positions of S.
Since f (y) and f (z) differ in two places, they have two common neighbors
in Ql , which are x and another vertex w. Since w has weight j − 2, the
induction hypothesis yields that w differs from v in j − 1 positions of S.
Since the images of x, y, z, w induce a 4-cycle in Q l , also x, y, z, w induce
a 4-cycle in H . The only 4-cycle in Qk that contains all of y, z, w adds the
vertex that differs from v in the j − 2 positions of S where w differs, plus
the two positions where y and z differ from w. This completes the proof
that x has the desired property.

b) The k-dimensional cube Qk has exactly 2kk! automorphisms. (Part
(a) is unnecessary.) Form automorphisms of Qk by choosing a subset of
the k coordinates in which to complement 0 and 1 and, independently, a
permutation of the k coordinates. There are 2kk! such automorphisms.
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We prove that every automorphism has this form. Let 0 be the all-0
vertex. Let f be the inverse of an automorphism, and let v be the vertex
mapped to 0 by f . The neighbors of v must be mapped to the neighbors of
0. If these choices completely determine f , then f complements the coor-
dinates where v is nonzero, and the correspondence between the neighbors
of 0 and the neighbors of v determines the permutation of the coordinates
that expresses f as one of the maps listed above.

Suppose that x differs from v in coordinates r1, . . . , r j . Let u1, . . . , u j be
the neighbors of v differing from v in these coordinates. We prove that f (x)

is the k-tuple of weight j having 1 in the coordinates where f (u1), . . . , f (u j )

have 1. We use induction on j .
For j ≤ 1, the claim follows by the definition of u1, . . . , u j . For j ≥ 2,

let y and z be two neighbors of x that differ from v in j − 1 coordinates.
Let w be the common neighbor of y and z that differs from v in j − 2 coor-
dinates. By the induction hypothesis, f (y) and f (z) have weight j − 1 (in
the appropriate positions), and f (w) has weight j − 1. Since f (x) must be
the other common neighbor of f (y) and f (z), it has weight j , with 1s in the
desired positions.

1.3.30. The Petersen graph has twelve 5-cycles. Let G be the Petersen
graph. We show first that each edge of G appears in exactly four 5-cycles.
For each edge e = xy in G, there are two other edges incident to x and two
others incident to y. Since G has no 3-cycles, we can thus extend xy at both
ends to form a 4-vertex path in four ways. Since G has no 4-cycle, the end-
points of each such path are nonadjacent. By Proposition 1.1.38, there is
exactly one vertex to add to such a path to complete a 5-cycle. Thus e is in
exactly four 5-cycles.

When we sum this count over the 15 edges of G, we have counted 60
5-cycles. However, each 5-cycle has been counted five times—once for each
of its edges. Thus the total number of 5-cycles in G is 60/5 = 12.

•

•

••

• y

x

1.3.31. Combinatorial proofs with graphs.
a) For 0 ≤ k ≤ n,

(n
2

)

=
(k

2

)

+ k(n − k) +
(n−k

2

)

. Consider the complete
graph Kn, which has

(n
2

)

edges. If we partition the vertices of Kn into a k-
set and an (n − k)-set, then we can count the edges as those within one

block of the partition and those choosing a vertex from each. Hence the
total number of edges is

(k
2

)

+
(n−k

2

)

+ k(n − k).
b) If

∑

ni = n, then
∑
(ni

2

)

≤
(n

2

)

. Again consider the edges of Kn, and
partition the vertices into sets with ni being the size of the ith set. The left
side of the inequality counts the edges in Kn having both ends in the same
Si , which is at most all of E(Kn).

1.3.32. For n ≥ 1, there are 2(n−1
2 ) simple even graphs with a fixed ver-

tex set of size n. Let A be the set of simple even graphs with vertex set
v1, . . . , vn. Since 2(n−1

2 ) is the size of the set B of simple graphs with vertex
set v1, . . . , vn−1, we establish a bijection from A to B.

Given a graph in A, we obtain a graph in B by deleting vn. To show
that each graph in B arises exactly once, consider a graph G ∈ B. We form
a new graph G ′ by adding a vertex vn and making it adjacent to each vertex
with odd degree in G, as illustrated below.

The vertices with odd degree in G have even degree in G ′. Also, vn

itself has even degree because the number of vertices of odd degree in G
is even. Thus G ′ ∈ A. Furthermore, G is the graph obtained from G ′ by
deleting vn, and every simple even graph in which deleting vn yields G must
have vn adjacent to the same vertices as in G ′.

Since there is a bijection from A to B, the two sets have the same size.

•

•

•

•
•

•

•

•

•

•
•

•
•

G G ′

vn

1.3.33. Triangle-free graphs in which every two nonadjacent vertices have
exactly two common neighbors.

n(G) = 1 +
(k+1

2

)

, where k is the degree of a vertex x in G. For every
pair of neighbors of x , there is exactly one nonneighbor of x that they have
as a common neighbor. Conversely, every nonneighbor of x has exactly one
pair of neighbors of x in its neighborhood, because these are its common
neighbors with x . This establishes a bijective correspondence between the
pairs in N (x) and the nonneighbors of x . Counting x , N (x), and N (x), we
have n(G) = 1 + k +

(k
2

)

= 1 +
(k+1

2

)

. Since this argument holds for every
x ∈ V (G), we conclude that G is k-regular.

Comment: Such graphs exist only for isolated values of k. Unique
graphs exist for k = 1, 2, 5. Viewing the vertices as x , N (x) = [k], and
N (x) =

([k]
2

)

, we have i adjacent to the pair { j, k} if and only if i ∈ { j, k}. The
lack of triangles guarantees that only disjoint pairs in

([k]
2

)

can be adjacent,
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but each pair in
([k]

2

)

must have exactly k − 2 neighbors in
([k]

2

)

. For k =

5, this implies that N (x) induces the 3-regular disjointness graph of
([5]

2

)

,
which is the Petersen graph. Since the Petersen graph has girth 5 and
diameter 2, each intersecting pair has exactly one common neighbor in
N (x) in addition to its one common neighbor in N (x), so this graph has the
desired properties.

Numerical conditions eliminate k ≡ 3 (mod 4), because G would be
regular of odd degree with an odd number of vertices. There are stronger
necessary conditions. After k = 5, the next possibility is k = 10, then 26,
37, 82, etc. A realization for k = 10 is known to exist, but in general the
set of realizable values is not known.
1.3.34. If G is a kite-free simple n-vertex graph such that every pair of
nonadjacent vertices has exactly two common neighbors, then G is regular.
Since nonadjacent vertices have common neighbors, G is connected. Hence
it suffices to prove that adjacent vertices x and y have the same degree. To
prove this, we establish a bijection from A to B, where A = N (x) − N (y)

and B = N (y)− N (x).
Consider u ∈ A. Since u = y, there exists v ∈ N (u) ∩ N (y) with v 6= x .

Since G is kite-free, v = x , so v ∈ B. Since x and v have common neighbors
y and u, the vertex v cannot be generated in this way from another vertex
of A. Hence we have defined an injection from A to B. Interchanging the
roles of y and x yields an injection from B to A. Since these sets are finite,
the injections are bijections, and d(x) = d(y).
1.3.35. If every induced k-vertex subgraph of a simple n-vertex graph G has
the same number of edges, where 1 < k < n − 1, then G is a complete graph
or an empty graph.

a) If l ≥ k and G ′ is a graph on l vertices in which every induced k-
vertex subgraph has m edges, then e(G ′) = m

(l
k

)

/
(l−2

k−2

)

. Counting the edges
in all the k-vertex subgraphs of G ′ yields m

(l
k

)

, but each edge appears in
(l−2

k−2

)

of these subgraphs, once for each k-set of vertices containing it. (Both
sides of

(l−2
k−2

)

e(G ′) = m
(l

k

)

count the ways to pick an edge of G ′ and a k-set
of vertices in G ′ containing that edge. On the right, we pick the set first;
on the left, we pick the edge first.)

b) Under the stated conditions, G = Kn or G = K n. Given vertices u
and v, let A and B be the sets of edges incident to u and v, respectively. The
set of edges with endpoints u and v is A ∩ B. We compute
|A ∩ B| = e(G)−

∣

∣A ∩ B
∣

∣ = e(G)−
∣

∣A ∪ B
∣

∣ = e(G)−
∣

∣A
∣

∣−
∣

∣B
∣

∣+
∣

∣A ∩ B
∣

∣ .

In this formula, A and B are the edge sets of induced subgraphs of order
n − 1, and A ∩ B is the edge set of an induced subgraph of order n − 2. By
part (a), the sizes of these sets do not depend on the choice of u and v.

1.3.36. The unique reconstruction of the graph with vertex-deleted sub-
graphs below is the kite.

Proof 1. A vertex added to the first triangle may be joined to 0,1,2,
or 3 of its vertices. We eliminate 0 and 1 because no vertex-deleted sub-
graph has an isolated vertex. We eliminate 3 because every vertex-deleted
subgraph of K4 is a triangle. Joining it to 2 yields the kite.

•

••

•

••

•

••

•

••
→

•

••

•

Proof 2. The graph G must have four vertices, and by Proposition
1.3.11 it has five edges. The only such simple graph is the kite.

1.3.37. Retrieving a regular graph. Suppose that H is a graph formed
by deleting a vertex from a regular graph G. We have H , so we know
n(G) = n(H) + 1, but we don’t know the vertex degrees in G. If G is d-
regular, then G has dn(G)/2 edges, and H has dn(G)/2 − d edges. Thus
d = 2e(H)/(n(G)−2). Having determined d, we add one vertex w to H and
add d − dH (v) edges from w to v for each v ∈ V (H).

1.3.38. A graph with at least 3 vertices is connected if and only if at least
two of the subgraphs obtained by deleting one vertex are connected. The
endpoints of a maximal path are not cut-vertices. If G is connected, then
the subgraphs obtained by deleted such vertices are connected, and there
are at least of these.

Conversely, suppose that at least two vertex-deleted subgraphs are
connected. If G−v is connected, then G is connected unless v is an isolated
vertex. If v is an isolated vertex, then all the other subgraphs obtained by
deleting one vertex are disconnected. Hence v cannot be isolated, and G is
connected.

1.3.39. Disconnected graphs are reconstructible. First we show that G is
connected if and only if it has at least two connected vertex-deleted sub-
graphs. Necessity holds, because the endpoints of a maximal path cannot
be cut-vertices. If G is disconnected, then G − v is disconnected unless v is
an isolated vertex (degree 0) in G and G− v is connected. This happens for
at most one vertex in G.

After determining that G is disconnected, we obtain which discon-
nected graph it is from its vertex-deleted subgraphs. We aim to identify
a connected graph M that is a component of G and a vds in the deck that
arises by deleting a specified vertex u of M . Replacing M − u by M in that
subgraph will reconstruct G.
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Among all components of all graphs in the deck, let M be one with
maximum order. Since every component H of a potential reconstruction
G appears as a component of some G − v, M cannot belong to any larger
component of G. Hence M is a component of G. Let L be a fixed connected
subgraph of M obtained by deleting a leaf u of some spanning tree of M .
Then L is a component of G − u. We want to reconstruct G by substituting
M for L in G− u; we must identify G− u. There may be several isomorphic
copies of G − u.

As in the disconnected graph G shown above, M may appear as a com-
ponent of every vds G − v. However, since M cannot be created by a vertex
deletion, a vds with the fewest copies of M must arise by deleting a vertex
of M . Among these, we seek a subgraph with the most copies of L as com-
ponents, because in addition to occurrences of L as a component of G, we
obtain an additional copy if and only if the deleted vertex of M can play
the role of u. This identifies G − u, and we obtain G by replacing one of its
components isomorphic to L with a component isomorphic to M .

•

• •

• •

• •

• •

•• • •

•

1.3.40. Largest graphs of specified types.
a) Largest n-vertex simple graph with an independent set of size a.
Proof 1. Since there are no edges within the independent set, such a

graph has at most
(n

2

)

−
(a

2

)

edges, which equals
(n−a

2

)

+ (n−a)a. This bound
is achieved by the graph consisting of a copy H of Kn−a , an independent set
S of size a, and edges joining each vertex of H to each vertex of S.

Proof 2. Each vertex of an independent set of size a has degree at most
n−a. Each other vertex has degree at most n−1. Thus

∑

d(v) ≤ a(n−a)+

(n − a)(n − 1). By the Degree-Sum Formula, e(G) ≤ (n − a)(n − 1 + a)/2.
This formula equals those above and is achieved by the same graph, since
this graph achieves the bound for each vertex degree.

b) The maximum size of an n-vertex simple graph with k components is
(n−k+1

2

)

. The graph consisting of Kn−k+1 plus k − 1 isolated vertices has k

components and
(n−k+1

2

)

edges. We prove that other n-vertex graphs with k
components don’t have maximum size. Let G be such a graph.

If G has a component that is not complete, then adding edges to make
it complete does not change the number of components. Hence we may
assume that every component is complete.

If G has components with r and s vertices, where r ≥ s > 1, then we
move one vertex from the s-clique to the r -clique. This deletes s − 1 edges

and creates r edges, all incident to the moved vertex. The other edges
remain the same, so we gain r − s + 1 edges, which is positive.

Thus the number of edges is maximized only when every component is
a complete graph and only one component has more than one vertex.

c) The maximum number of edges in a disconnected simple n-vertex
graph is

(n−1
2

)

, with equality only for K1 + Kn−1.
Proof 1 (using part (b)). The maximum over graphs with k compo-

nents is
(n−k+1

2

)

, which decreases as k increases. For disconnected graphs,
k ≥ 2. We maximize the number of edges when k = 2, obtaining

(n−1
2

)

.
Proof 2 (direct argument). Given a disconnected simple graph G, let

S be the vertex set of one component of G, and let t = |S|. Since no edges
join S and S, e(G) ≤

(n
2

)

− t (n − t). This bound is weakest when t (n − t) is
smallest, which for 1 ≤ t ≤ n− 1 happens when t ∈ {1, n− 1}. Thus always
e(G) ≤

(n
2

)

− 1(n − 1) =
(n−1

2

)

, and equality holds when G = K1 + Kn−1.
Proof 3 (induction on n). When n = 2, the only simple graph with

e(G) >
(1

2

)

= 1 is K2, which is connected. For n > 2, suppose e(G) >
(n−1

2

)

.
If 1(G) = n − 1, then G is connected. Otherwise, we may select v with
d(v) ≤ n − 2. Then e(G − v) >

(n−1
2

)

− n + 2 =
(n−2

2

)

. By the induction
hypothesis, G−v is connected. Since e(G) >

(n−1
2

)

and G is simple, we have
d(v) > 0, so there is an edge from v to G − v, and G is also connected.

Proof 4 (complementation). If G is disconnected, then G is connected,
so e(G) ≥ n − 1 and e(G) ≤

(n
2

)

− (n − 1) =
(n−1

2

)

. In fact, G must contain
a spanning complete bipartite subgraph, which is as small as n − 1 edges
only when G = K1,n−1 and G = K1 + Kn−1.

1.3.41. Every n-vertex simple graph with maximum degree dn/2e and mini-
mum degree bn/2c−1 is connected. Let x be a vertex of maximum degree. It
suffices to show that every vertex not adjacent to x has a common neighbor
with x . Choose y /∈ N (x). We have |N (x)| = dn/2e and |N (y)| ≥ bn/2c − 1.
Since y = x , we have N (x), N (y) ⊆ V (G)− {x, y}. Thus

|N (x) ∩ N (y)| = |N (x)|+|N (y)|−|N (x) ∪ N (y)| ≥ dn/2e+bn/2c−1−(n−2) = 1.

1.3.42. Strongly independent sets. If S is an independent set with no com-
mon neighbors in a graph G, then the vertices of S have pairwise-disjoint
closed neighborhoods of size at least δ(G) + 1. Thus there are at most
bn(G)/(δ(G)+ 1)c of them. Equality is achievable for the 3-dimensional
cube using S = {000, 111}.

Equality is not achievable when G = Q4, since with 16 vertices and
minimum degree 4 it requires three parwise-disjoint closed neighborhoods
of size 5. If v ∈ S, then no vertex differing from v in at most two places is
in S. Also, at most one vertex differing from v in at least three places is in
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S, since such vertices differ from each other in at most two places. Thus
only two disjoint closed neighborhoods can be found in Q4.

1.3.43. Every simple graph has a vertex whose neighbors have average de-
gree as large as the overall average degree. Let t (w) be the average degree of
the neighbors of w. In the sum

∑

w∈V (G) t (w) =
∑

w∈V (G)

∑

y∈N (w) d(y)/d(w),
we have the terms d(u)/d(v) and d(v)/d(u) for each edge uv. Since
x/y + y/x ≥ 2 whenever x, y are positive real numbers (this is equiva-
lent to (x − y)2 ≥ 0), each such contribution is at least 2. Hence

∑

t (w) ≥
∑

uv∈E(G)
d(u)

d(v)
+ d(v)

d(u)
≥ 2e(G). Hence the average of the neighborhood av-

erage degrees is at least the average degree, and the pigeonhole principle
yields the desired vertex.

It is possible that every average neighborhood degree exceeds the av-
erage degree. Let G be the graph with 2n vertices formed by adding a
matching between a complete graph and an independent set. Since G has
(n

2

)

+ n edges and 2n vertices, G has average degree (n + 1)/2. For each
vertex of the n-clique, the neighborhood average degree is n − 1+ 1/n. For
each leaf, the neighborhood average degree is n.

1.3.44. Subgraphs with large minimum degree. Let G be a loopless graph
with average degree a.

a) If x ∈ V (G), then G ′ = G− x has average degree at least a if and only
if d(x) ≤ a/2. Let a ′ be the average degree of G ′, and let n be the order of
G. Deleting x reduces the degree sum by 2d(x), so (n − 1)a ′ = na − 2d(x).
Hence (n − 1)(a′ − a) = a − 2d(x). For n > 1, this implies that a ′ ≥ a if and
only if d(x) ≤ a/2.

Alternative presentation. The average degree of G is 2e(G)/n(G). Since
G ′ has e(G) − d(x) edges, the average degree is at least a if and only if
2[e(G)−d(x)]

n(G)−1 ≥ a. Since e(G) = n(G)a/2, we can rewrite this as n(G)a −
2d(x) = 2e(G) − 2d(x) ≥ an(G) − a. By canceling n(G)a, we find that the
original inequality is equivalent to d(x) ≤ a/2.

b) If a > 0, then G has a subgraph with minimum degree greater than
a/2. Iteratively delete vertices with degree at most half the current av-
erage degree, until no such vertex exists. By part (a), the average degree
never decreases. Since G is finite, the procedure must terminate. It ends
only by finding a subgraph where every vertex has degree greater than a/2.

c) The result of part (b) is best possible. To prove that no fraction of
a larger than 1

2 a can be guaranteed, let Gn be an n-vertex tree. We have
a(Gn) = 2(n − 1)/n = 2− 2/n, but subgraphs of Gn have minimum degree
at most 1. Given β > 1

2 , we can choose n large enough so that 1 ≤ βa(Gn).

1.3.45. Bipartite subgraphs of the Petersen graph.
a) Every edge of the Petersen graph is in four 5-cycles. In every 5-cycle

through an edge e, the edge e is the middle edge of a 4-vertex path. Such

a path can be obtained in four ways, since each edge extends two ways
at each endpoint. The neighbors at each endpoint of e are distinct and
nonadjacent, since the girth is 5.

Since the endpoints of each such P4 are nonadjacent, they have ex-
actly one common neighbor. Thus each P4 yields one 5-cycle, and each
5-cycle through e arises from such a P4, so there are exactly four 5-cycles
containing each edge.

b) The Petersen graph has twelve 5-cycles. Since there are 15 edges,
summing the number of 5-cycles through each edge yields 60. Since each
5-cycle is counted five times in this total, the number of 5-cycles is 12.

c) The largest bipartite subgraph has twelve edges.
Proof 1 (breaking odd cycles). Each edge is in four 5-cycles, so we

must delete at least 12/4 edges to break all 5-cycles. Hence we must delete
at least three edges to have a bipartite subgraph. The illustration shows
that deleting three is enough; the Petersen graph has a bipartite subgraph
with 12 edges (see also the cover of the text).

•
•

••

•

•

•

••

•
A

A
BB

A

A

B

AA

B

Proof 2 (study of bipartite subgraphs). The Petersen graph G has
an independent set of size 4, consisting of the vertices {ab, ac, ad, ae} in
the structural description. The 12 edges from these four vertices go to the
other six vertices, so this is a bipartite subgraph with 12 edges.

Let X and Y be the partite sets of a bipartite subgraph H . If |X | ≤
4, then e(H) ≤ 12, with equality only when X is an independent 4-set
in G. Hence we need only consider the case |X | = |Y | = 5. To obtain
e(G) > 10, some vertex x ∈ X must have three neighbors in Y . The two
nonneighbors of x in Y have common neighbors with x , and these must lie
in N (x), which is contained in Y . Hence e(G[Y ]) ≥ 2. Interchanging X and
Y in the argument shows that also e(G[X ]) ≥ 2. Hence e(H) ≤ 11.

1.3.46. When the algorithm of Theorem 1.4.2 is applied to a bipartite graph,
it need not find the bipartite subgraph with the most edges. For the bipar-
tite graph below, the algorithm may reach the partition between the upper
vertices and lower vertices.

•

•

•

•

•

•

•

•
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This bipartite subgraph with eight edges has more than half of the
edges at each vertex, and no further changes are made. However, the
bipartite subgraph with the most edges is the full graph.

1.3.47. Every nontrivial loopless graph G has a bipartite subgraph con-
taining more than half its edges. We use induction on n(G). If n(G) = 2,
then G consists of copies of a single edge and is bipartite. For n(G) > 2,
choose v ∈ V (G) that is not incident to all of E(G) (at most two vertices can
be incident to all of E(G)). Thus e(G−v) > 0. By the induction hypothesis,
G − v has a bipartite subgraph H containing more than e(G)/2 edges.

Let X, Y be a bipartition of H . If X contains at least half of NG(v),
then add v to Y ; otherwise add v to X . The augmented partition captures
a bipartite subgraph of G having more than half of E(G − v) and at least
half of the remaining edges, so it has more than half of E(G).

Comment. The statement can also be proved without induction. By
Theorem 1.3.19, G has a bipartite subgraph H with at least e(G)/2 edges.
By the proof of Theorem 1.3.19, equality holds only if dH (v) = dG(v)/2 for
every v ∈ V (G). Given an edge uv, each of u and v has exactly half its neigh-
bors in its own partite set. Switching both to the opposite set will capture
those edges while retaining the edge uv, so the new bipartite subgraph has
more edges.

1.3.48. No fraction of the edges larger than 1/2 can be guaranteed for the
largest bipartite subgraph. If Gn is the complete graph K2n, then e(Gn) =
(2n

2

)

= n(2n − 1), and the largest bipartite subgraph is Kn,n , which has n2

edges. Hence limn→∞ f (Gn)/e(Gn) = limn→∞
n2

2n2−n =
1
2 . For large enough

n, the fraction of the edges in the largest bipartite subgraph is arbitrarily
close to 1/2. (In fact, in every graph the largest bipartite subgraph has
more than half the edges.)

1.3.49. Every loopless graph G has a spanning k-partite subgraph H such
that e(H) ≥ (1− 1/k)e(G).

Proof 1 (local change). Begin with an arbitrary partition of V (G) into
k parts V1, . . . , Vk , and consider the k-partite subgraph H containing all
edges of G consisting of two vertices from distinct parts. Given a partition
of V (G), let V (x) denote the part containing x . If in G some vertex x has
more neighbors in Vj than in some other part, then shifting x to the other
part increases the number of edges captured by the k-partite subgraph.

Since G has finitely many edges, this shifting process must terminate.
It terminates when for each x ∈ V (G) the number |N (x)∩ Vi | is minimized
by Vi = V (x). Then dG(x) =

∑

i |NG(x)∩Vi | ≥ k|NG(x)∩V (x)|. We conclude
that |NG(x) ∩ V (x)| ≤ (1/k)dG(x), and hence dH (x) ≥ (1− 1/k)dG(x) for all
x ∈ V (G). By the degree-sum formula, e(H) ≥ (1− 1/k)e(G).

Proof 2 (induction on n). We prove that when G is nontrivial, some
such H has more than (1 − 1/k)e(G) edges. This is true when n = 2.
We procede by induction for n > 2. Choose a vertex v ∈ V (G). By the
induction hypothesis, G − v has a spanning k-partite subgraph with more
than (1 − 1/k)e(G − v) edges. This subgraph partitions V (G − v) into k
partite sets. One of these sets contains at most 1/k neighbors of v. Add
v to that set to obtain the desired k-partite subgraph H . Now e(H) >

(1− 1/k)e(G − v)+ (1− 1/k)dG(v) = (1− 1/k)e(G).

1.3.50. For n ≥ 3, the minimum number of edges in a connected n-vertex
graph in which every edge belongs to a triangle is d3(n − 1)/2e. To achieve
the minimum, we need only consider simple graphs. Say that connected
graphs with each edge in a triangle are good graphs. For n = 3, the only
such graph is K3, with three edges.

When n is odd, a construction with the claimed size consists of (n−1)/2
triangles sharing a common vertex. When n is even, add one vertex to the
construction for n − 1 and make it adjacent to both endpoints of one edge.

For the lower bound, let G be a smallest n-vertex good graph. Since G
has fewer than 3n/2 edges (by the construction), G has a vertex v of degree
2. Let x and y be its neighbors. Since each edge belongs to a triangle, x ↔
y. If n > 3, then we form G ′ by deleting v and, if xy have no other neighbor,
contracting xy. Every edge of G ′ belongs to a triangle that contained it
in G. The change reduces the number of vertices by 1 or 2 and reduces
the number of edges by at least 3/2 times the reduction in the number of
vertices. By the induction hypothesis, e(G ′) ≥

⌈

3(n(G ′)− 1)/2
⌉

, and hence
the desired bound holds for G.

1.3.51. Let G be a simple n-vertex graph.

a) e(G) =

∑

v∈V (G)
e(G−v)

n−2 . If we count up all the edges in all the subgraphs
obtained by deleting one vertex, then each edge of G is counted exactly n−2
times, because it shows up in the n − 2 subgraphs obtained by deleting a
vertex other than its endpoints.

b) If n ≥ 4 and G has more than n2/4 edges, then G has a vertex whose
deletion leaves a graph with more than (n − 1)2/4 edges. Since G has more
than n2/4 edges and e(G) is an integer, we have e(G) ≥ (n2 + 4)/4 when n
is even and e(G) ≥ (n2+ 3)/4 when n is odd (since (2k + 1)2 = 4k2+ 4k + 1,
every square of an odd number is one more than a multiple of 4). Thus
always we have e(G) ≥ (n2 + 3)/4.

By part (a), we have
∑

v∈V (G)
e(G−v)

n−2 ≥ (n2 + 3)/4. In the sum we have n
terms. Since the largest number in a set is at least the average, there is a
vertex v such that e(G−v)

n−2 ≥
1
n

n2+3
4 . We rewrite this as

e(G − v) ≥
(n2 + 3)(n − 2)

4n
=

n3 − 2n2 + 3n − 6
4n

=
n2 − 2n + 1

4
+

2n − 6
4n
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When n ≥ 4, the last term is positive, and we obtain the strict inequality
e(G − v) > (n − 1)2/4.

c) Inductive proof that G contains a triangle if e(G) > n2/4. We use
induction on n. When n ≤ 3, they only simple graph with more than n2/4
edges is when n = 3 and G = K3, which indeed contains a triangle. For
the induction step, consider n ≥ 4, and let G be an n-vertex simple graph
with more than n2/4 vertices. By part (b), G has a subgraph G − v with
n−1 vertices and more than (n−1)2/4 edges. By the induction hypothesis,
G − v therefore contains a triangle. This triangle appears also in G.

1.3.52. Kbn/2c,dn/2e is the only n-vertex triangle-free graph of maximum size.
As in the proof of Mantel’s result, let x be a vertex of maximum degree.
Since N (x) is an independent set, x and its non-neighbors capture all the
edges, and we have e(G) ≤ (n − 1(G))1(G). If equality holds, then sum-
ming the degrees in V (G) − N (x) counts each edge exactly once. This
requires that V (G)−N (x) also is an independent set, and hence G is bipar-
tite. If G is bipartite and has (n−1(G))1(G) edges, then G = K (n−1(G)),1(G).
Hence e(G) is maximized only by Kbn/2c,dn/2e.

1.3.53. The bridge club with 14 members (no game can be played if two of
the four people table have previously been partners): If each member has
played with four others and then six additional games have been played,
then the arrival of a new member allows a game to be played. We show that
the new player yields a set of four people among which no two have been
partners. This is true if and only if the previous games must leave three
people (in the original 14) among which no two have been partners.

The graph of pairs who have NOT been partners initially is K14. For
each game played, two edges are lost from this graph. At the breakpoint in
the session, each vertex has lost four incident edges, so 28 edges have been
deleted. In the remaining six games, 12 more edges are deleted. Hence
40 edges have been deleted. Since e(K14) = 91, there remain 51 edges for
pairs that have not yet been partners.

By Mantel’s Theorem (Theorem 1.3.23), the maximum number of edges
in a simple 14-vertex graph with no triangle is

⌊

142/4
⌋

. Since 51 > 49,
the graph of remaining edges has a triangle. Thus, when the 15th person
arrives, there will be four people of whom none have partnered each other.

1.3.54. The minimum number of triangles t (G) in an n-vertex graph G and
its complement.

a) t (G) =
(n

3

)

− (n−2)e+
∑

v∈V (G)

(d(v)

2

)

. Let d1, . . . , dn denote the vertex
degrees. We prove that the right side of the formula assigns weight 1 to
the vertex triples that induce a triangle in G or G and weight 0 to all
other triples. Among these terms,

(n
3

)

counts all triples, (n − 2)e counts
those determined by an edge of G and a vertex off that edge, and

∑
(di

2

)

counts 1 for each pair of incident edges. In the table below, we group these
contributions by how many edges the corresponding triple induces in G.

t (G) in G
(n

3

)

−(n − 2)e
∑
(di

2

)

1 3 edges 1 −3 3
0 2 edges 1 −2 1
0 1 edge 1 −1 0
1 0 edges 1 −0 0

b) t (G) ≥ n(n − 1)(n − 5)/24. Begin with the formula for k3(G)+ k3(G)

from part (a). Using the convexity of quadratic functions, we get a lower
bound for the sum on the right by replacing the vertex degrees by the av-
erage degree 2e/n. The bound is

(n
3

)

− (n − 2)e + n
(2e/n

2

)

, which reduces to
(n

3

)

−2e(
(n

2

)

−e)/n. As a function of e, this is minimized when e = 1
2

(n
2

)

. This
substitution and algebraic simplification produce t (G) ≥ n(n−1)(n−5)/24.

Comment. The proof of part (b) uses two minimizations. These imply
that equality can hold only for a regular graph (di = 2e/n for all i) with
e = 1

2

(n
2

)

. There is such a regular graph if and only if n is odd and (n − 1)/2
is even. Thus we need n = 4k + 1 and G is 2k-regular.

1.3.55. Maximum size with no induced P4. a) If G is a simple connected
graph and G is disconnected, then e(G) ≤ 1(G)2, with equality only for
K1(G),1(G). Since G is disconnected, 1(G) ≥ n(G)/2, with equality only if
G = K1(G),1(G). Thus e(G) =

∑

di/2 ≤ n(G)1(G)/2 ≤ 1(G)2. As observed,
equality when G is disconnected requires G = K1(G),1(G).

b) If G is a simple connected graph with maximum degree D and no
induced subgraph isomorphic to P4, then e(G) ≤ D2. It suffices by part (a)
to prove that G is disconnected when G is connected and P4-free. We use
induction on n(G) for n(G) ≥ 2; it is immediate when n(G) = 2. For the
induction step, let v be a non-cut-vertex of G. The graph G ′ = G − v is also
P4-free, so its complement is disconnected, by the induction hypothesis.
Thus V (G)− v has a vertex partition X, Y such that all of X is adjacent to
all of Y in G. Since G is connected, v has a neighbor z ∈ X ∪ Y ; we may
assume be symmetry that z ∈ Y . If G is connected, then G has a v, z-path.
Let y be the vertex before z on this path; note that y ∈ Y . Also G connected
requires x ∈ X such that vx ∈ E(G). Now {v, z, x, y} induces P4 in G.

1.3.56. Inductive proof that for
∑

di even there is a multigraph with vertex
degrees d1, . . . , dn.

Proof 1 (induction on
∑

di ). If
∑

di = 0, then all di are 0, and the
n-vertex graph with no edges has degree list d. For the induction step,
suppose

∑

di > 0. If only one di is nonzero, then it must be even, and the
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graph consisting of n − 1 isolated vertices plus di/2 loops at one vertex has
degree list d (multigraphs allow loops).

Otherwise, d has at least two nonzero entries, di and dj . Replacing
these with di − 1 and dj − 1 yeilds a list d ′ with smaller even sum. By
the induction hypothesis, some graph G ′ with degree list d ′. Form G by
adding an edge with endpoints u and v to G ′, where dG ′(u) = di − 1 and
dG ′(v) = dj − 1. Although u and v may already be adjacent in G ′, the
resulting multigraph G has degree list d.

Proof 2 (induction on n). For n = 1, put d1/2 loops at v1. If dn is even,
put dn/2 loops at vn and apply the induction hypothesis. Otherwise, put an
edge from vn to some other vertex corresponding to positive di (which exists
since

∑

di is even) and proceed as before.

1.3.57. An n-tuple of nonnegative integers with largest entry k is graphic if
the sum is even, k < n, and every entry is k or k−1. Let A(n) be the set of n-
tuples satisfying these conditions. Let B(n) be the set of graphic n-tuples.
We prove by induction on n that n-tuples in A(n) are also in B(n). When
n = 1, the only list in A(n) is (0), and it is graphic.

For the induction step, let d be an n-tuple in A(n), and let k be its
largest element. Form d ′ from d by deleting a copy of k and subtracting 1
from k largest remaining elements. The operation is doable because k < n.
To apply the induction hypothesis, we need to prove that d ′ ∈ A(n − 1).
Since we delete an instance of k and subtract one from k other values, we
reduce the sum by 2k to obtain d ′ from d, so d ′ does have even sum.

Let q be the number of copies of k in d. If q > k + 1, then d ′ has ks and
(k − 1)s. If q = k + 1, then d ′ has only (k − 1)s. If q < k + 1, then d ′ has
(k − 1)s and (k − 2)s. Also, if k = n − 1, then the first possibility cannot
occur. Thus d ′ has length n − 1, its largest value is less than n − 1, and its
largest and smallest values differ by at most 1. Thus d ′ ∈ A(n− 1), and we
can apply the induction hypothesis to d ′.

The induction hypothesis (d ′ ∈ A(n−1))⇒ (d ′ ∈ B(n−1)) tells us that
d ′ is graphic. Now the Havel-Hakimi Theorem implies that d is graphic.
(Actually, we use only the easy part of the HH Theorem, adding a vertex
joined to vertices with desired degrees.)

1.3.58. If d is a nonincreasing list of nonnegative integers, and d ′ is ob-
tained by deleting dk and subtracting 1 from the k largest other elements,
then d is graphic if and only if d ′ is graphic. The proof is like that of the
Havel–Hakimi Theorem. Sufficiency is immediate. For necessity, let w be
a vertex of degree dk in a simple graph with degree sequence d. Alter G by
2-switches to obtain a graph in which w has the dk highest-degree other ver-
tices as neighbors. The argument to find a 2-switch increasing the number
of desired neighbors of w is as in the proof of the Havel–Hakimi Theorem.

1.3.59. The list d = (d1, . . . , d2k) with d2i = d2i−1 = i for 1 ≤ i ≤ k is graphic.
This is the degree list for the bipartite graph with vertices x1, . . . , xk and
y1, . . . , yk defined by xr ↔ ys if and only if r+ s > k. Since the neighborhood
of xr is {yk, yk−1, . . . , yk−r+1}, the degree of xr is r . Thus the graph has two
vertices of each degree from 1 to k.

1.3.60. Necessary and sufficient conditions for a list d to be graphic when d
consists of k copies of a and n−k copies of b, with a ≥ b ≥ 0. Since the degree
sum must be even, the quantity ka + (n − k)b must be even. In addition,
the inequality ka ≤ k(k−1)+ (n− k) min{k, b}must hold, since each vertex
with degree b has at most min{k, b} incident edges whose other endpoint
has degree a. We construct graphs with the desired degree sequence when
these conditions hold. Note that the inequality implies a ≤ n − 1.

Case 1: b ≥ k and a ≥ n − k. Begin with Kk,n−k , having partite sets
X of size k and Y of size n − k. If k(a − n + k) and (n − k)(b − k) are even,
then add an (a − n + k)-regular graph on X and a (b − k)-regular graph on
Y . To show that this is possible, note first that 0 ≤ a − n + k ≤ k − 1 and
0 ≤ b − k ≤ a − k ≤ n − k − 1. Also, when pq is even, a q-regular graph on
p vertices in a circle can be constructed by making each vertex adjacent to
the bq/2c nearest vertices in each direction and also to the opposite vertex
if q is odd (since then p is even).

Note that k(a−n+k) and (n−k)(b−k) have the same parity, since their
difference ak− (n− k)b differs from the given even number ka+ (n− k)b by
an even amount. If they are both odd, then we delete one edge from Kk,n−k ,
and now one vertex in the subgraph on X should have degree a − n + k + 1
and one in the subgraph on Y should have degree b−k+1. When pq is odd,
such a graph on vertices v0, . . . , vp−1 in a circle (q-regular except for one
vertex of degree q + 1) can be constructed by making each vertex adjacent
to the (q−1)/2 nearest vertices in each direction and then adding the edges
{vivi+(p−1)/2: 0 ≤ i ≤ (p − 1)/2. Note that all vertices are incident to one of
the added edges, except that v(p−1)/2 is incident to two of them.

Case 2: k − 1 ≤ a < n − k. Begin by placing a complete graph on a set
S of k vertices. These vertices now have degree k − 1 and will become the
vertices of degree a, which is okay since a ≥ b. Put a set T of n−k additional
vertices in a circle. For each vertex in S, add a−k+1 consecutive neighbors
in T , starting the next set immediately after the previous set ends. Since
a ≤ n − 1, each vertex in S is assigned a − k + 1 distinct neighbors in T .
Since k(a − k + 1) ≤ (n − k)b and the edges are distributed nearly equally
to vertices of T , there is room to add these edges.

For the subgraph induced by T , we need a graph with n − k vertices
and [(n − k)b − k(a − k + 1)]/2 edges and degrees differing by at most 1.
The desired number of edges is integral, since ka + (n − k)b is even, and it
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is nonnegative, since k(a − k + 1) ≤ (n − k)b. The largest degree needed is
d(n − k)b − k(a − k + 1)e n − k. This is at most b, which is less than n − k
since b ≤ a < n − k. The desired graph now exists by Exercise 1.3.57.

Case 3: b < k and a ≥ n − k. Put the set S of size k in a circle. For
each vertex in the set T of size n − k, assign b consecutive neighbors in
S; these are distinct since b < k. Since a ≥ n − k, no vertex of S receives
too many edges. On S we put an almost-regular graph with k vertices and
[ak − b(n − k)]/2 edges. Again, this number of edges is integral, and in
the case specified it is nonnegative. Existence of such a graph requires
a− b(n− k)/k ≤ k−1, which is equivalent to the given inequality k(a− k+
1) ≤ (n − k)b. Now again Exercise 1.3.57 provides the needed graph.

Case 4: b < k and a < min{k−1, n−k}. Since a < n−k, also b < n−k.
Therefore, we can use the idea of Case 1 without the complete bipartite
graph. Again take disjoint vertex sets X of size k and Y of size n − k. If ka
and (n− k)b are even, then we use an a-regular graph on X and a b-regular
graph on Y . As observed before, these exist.

Note that ka and (n − k)b have the same parity, since their sum is
given to be even. If they are both odd, then we put min{k, n − k} disjoint
edges with endpoints in both X and Y . We now complete the graph with
a regular graph of even degree on one of these sets and an almost-regular
graph guaranteed by Exercise 1.3.57 on the other.

1.3.61. If G is a self-complementary n-vertex graph and n is odd, then G
has a vertex of degree (n − 1)/2. Let d1, . . . , dn be the degree list of G in
nonincreasing order. The degree list of G in nonincreasing order is n −
1 − dn, . . . , n − 1 − d1. Since G ∼= G, the lists are the same. Since n is
odd, the central elements in the list yield d(n+1)/2 = n − 1 − d(n+1)/2, so
d(n+1)/2 = (n − 1)/2.

1.3.62. When n is congruent to 0 or 1 modulo 4, there is an n-vertex simple
graph G with 1

2

(n
2

)

edges such that 1(G)− δ(G) ≤ 1. This is satisfied by the
construction given in the answer to Exercise 1.1.31.

More generally, let G be any 2k-regular simple graph with 4k + 1 ver-
tices, where n = 4k + 1. Such a graph can be constructed by placing 4k + 1
vertices around a circle and joining each vertex to the k closest vertices in
each direction. By the Degree-Sum Formula, e(G) = (4k + 1)(2k)/2 = 1

2

(n
2

)

.
For the case where n = 4k, delete one vertex from the graph con-

structed above to form G ′. Now e(G ′) = e(G)− 2k = (4k − 1)(2k)/2 = 1
2

(n
2

)

.

1.3.63. The non-negative integers d1 ≥ · · · ≥ dn are the vertex degrees of a
loopless graph if and only if

∑

di is even and d1 ≤ d2 + · · · + dn. Necessity.
If such a graph exists, then

∑

di counts two endpoints of each edge and
must be even. Also, every edge incident to the vertex of largest degree

has its other end counted among the degrees of the other vertices, so the
inequality holds.

Sufficiency. Specify vertices v1, . . . , vn and construct a graph so that
d(vi ) = di . Induction on n has problems: It is not enough to make
dn edges join v1 and vn degrees and apply the induction hypothesis to
(d1 − dn), d2, . . . , dn−1. Although d1 − dn ≤ d2 + · · · + dn−1 holds, d1 − dn

may not be the largest of these numbers.
Proof 1 (induction on

∑

di ). The basis step is
∑

di = 0, realized by
an independent set. Suppose that

∑

di > 0; we consider two cases. If d1 =
∑n

i=2 di , then the desired graph consists of d1 edges from v1 to v2, . . . , vn. If
d1 <

∑n
i=2 di , then the difference is at least 2, because the total degree sum

is even. Also, at least two of the values after d1 are nonzero, since d1 is the
largest. Thus we can subtract one from each of the last two nonzero values
to obtain a list d ′ to which we can apply the induction hypothesis (it has
even sum, and the largest value is at most the sum of the others. To the
resulting G ′, we add one edge joining the two vertices whose degrees are
the reduced values. (This can also be viewed as induction on (

∑n
i=2 di )−d1.)

Proof 2 (induction on
∑

di ). Basis as above. Consider
∑

di > 0. If
d1 > d2, then we can subtract 1 from d1 and from d2 to obtain d ′ with smaller
sum. Still d1 − 1 is a largest value in d ′ and is bounded by the sum of the
other values. If d1 = d2, then we subtract 1 from each of the two smallest
values to form d ′. If these are d1 and d2, then d ′ has the desired properties,
and otherwise

∑n
i=2 di exceeds d1 by at least 2, and again d ′ has the desired

properties. In each case, we can apply the induction hypothesis to d ′ and
complete the proof as in Proof 1.

Proof 3 (local change). Every nonnegative integer sequence with even
sum is realizable when loops and multiple edges are allowed. Given such a
realization with a loop, we change it to reduce the number of loops without
changing vertex degrees. Eliminating them all produces the desired real-
ization. If we have loops at distinct vertices u and v, then we replace two
loops with two copies of the edge uv. If we have loops only at v and have an
edge xy between two vertices other than v, then we replace one loop and
one copy of xy by edges vx and vy. Such an edge xy must exist because the
sum of the degrees of the other vertices is as large as the degree of v.

1.3.64. A simple graph with degree sequence d1 ≤ d2 ≤ · · · ≤ dn is connected
if dj ≥ j for all j such that j ≤ n − 1 − dn. Let V (G) = {v1, . . . , vn}, with
d(vi ) = di , and let H be the component of G containing vn; note that H
has at least 1 + dn vertices. If G is not connected, then G has another
component H ′. Let j be the number of vertices in H ′. Since H has at least
1+ dn vertices, we have j ≤ n − 1− dn. By the hypothesis, dj ≥ j . Since H ′

has j vertices, its maximum degree is at least dj . Since dj ≥ j , there are at
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least j + 1 vertices in H ′, which contradicts the definition of j . Hence G is
in fact connected.

1.3.65. If D = {ai } is a set of distinct positive integers, with 0 < a1 < · · · <

ak , then there is a simple graph on ak +1 vertices whose set of vertex degrees
(repetition allowed) is D.

Proof 1 (inductive construction). We use induction on k. For k = 1,
use Ka1+1. For k = 2, use the join Ka1 ∨ K a2−a1+1. That is, G consists of a
clique Q with a1 vertices, an independent set S with a2 − a1 + 1 vertices,
and all edges from Q to S. The vertices of S have degree a1, and those of Q
have degree a2.

For k ≥ 2, take a clique Q with a1 vertices and an independent set
S with ak − ak−1 vertices. Each vertex of S has neighborhood Q, and
each vertex of Q is adjacent to all other vertices. Other vertices have
a1 neighbors in Q and none in S, so the degree set of G − Q − S should
be {a2 − a1, . . . , ak−1 − a1}. By the induction hypthesis, there is a simple
graph H with ak−1 − a1 + 1 vertices having this degree set (the degree set
is smaller by 2). Using H for G − Q − S completes G as desired.

Proof 2 (induction and complementation). Again use induction on k,
using Ka1+1 when k = 1. For k > 1 and 0 < a1 · · · < ak , the complement
of the desired graph with a1 + 1 vertices has degree set {ak − a1, . . . , ak −

ak−1, 0}. By the induction hypothesis, there is a graph of order ak − a1 + 1
with degree set {ak − a1, · · · , ak − ak−1}. Add a1 isolated vertices and take
the complement to obtain the desired graph G.

1.3.66. Construction of cubic graphs not obtainable by expansion alone. A
simple cubic graph G that cannot be obtained from a smaller cubic graph by
the expansion operation is the same as a cubic graph on which no erasure
can be performed, since any erasure yielding a smaller H from G could be
inverted by an expansion to obtain G from H . An edge cannot be erased by
this operation if and only if one of the subsequent contractions produces a
multiple edge. This happens if the other edges incident to the edge being
erased belong to a triangle, or in one other case, as indicated below.

•

•

• •

•

•

→

•

•

•

•

and
•

• •

•

→

•

•

Finally, we need only provide a simple cubic graph with 4k vertices
where every edge is non-erasable in one of these two ways. To do this place
copies of G1, . . . , Gk of K4 − e (the unique 4-vertex graph with 5 edges)
around in a ring, and for each consecutive pair G i , G i+1 add an edge joining

a pair of vertices with degree two in the subgraphs, as indicated below,
where the wraparound edge has been cut.
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1.3.67. Construction of 3-regular simple graphs
a) A 2-switch can be performed by performing a sequence of expansions

and erasures. We achieve a 2-switch using two expansions and then two
erasures as shown below. If the 2-switch deletes xy and zw and introduces
xw and yz, then the first expansion places new vertices u and v on xy and
zw, the second introduces s and t on the resulting edges ux and vz, the first
erasure deletes su and its vertices, and the second erasure deletes tv and its
vertices. The resulting vertices are the same as in the original graph, the
erasures were legal because they created only edges that were not present
originally, and we have deleted xy and zw and introduced xw and yz.

•

• •

•x

y z

w

→

•

• •

•

• • →

x

y z

w

u v

•

• •

•

• •
• •

x

y z

w

u v
s t

→

•

• •

•

•
•

x

y z

w

v
t
→

•

• •

•x

y z

w

b) Every 3-regular simple graph can be obtained from K4 by a sequence
of expansions and erasures. Erasure is allowed only if no multiple edges
result. Suppose H is the desired 3-regular graph. Every 3-regular graph
has an even number of vertices, at least four. Any expansion of a 3-regular
graph is a 3-regular graph with two more vertices. Hence successive ex-
pansions from K4 produce a 3-regular graph G with n(H) vertices. Since G
and H have the same vertex degrees, there is a sequence of 2-switches from
G to H . Since every 2-switch can be produced by a sequence of expansions
and erasures, we can construct a sequence of expansions and erasures from
K4 to H by going through G.

1.3.68. If G and H are X, Y -bigraphs, then dG(v) = dH (v) for all v ∈ X ∪ Y
if and only if there is a sequence of 2-switches that transforms G into H
without ever changing the bipartition. The condition is sufficient, since 2-
switches do not change vertex degrees. For necessity, assume that dG(v) =

dH (v) for all v. We build a sequence of 2-switches transforming G to H .
Proof 1 (induction on |X |). If |X | = 1, then already G = H , so we

may assume that |X | > 1. Choose x ∈ X and let k = d(x). Let S be a
selection of k vertices of highest degree in Y . If N (x) 6= S, choose y ∈ S
and y ′ ∈ Y − S so that x = y and x ↔ y ′. Since d(y) ≥ d(y ′), there exists
x ′ ∈ X so that y ↔ x ′ and y ′ = x ′. Switching xy ′, x ′y for xy, x ′y′ increases
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|N (x) ∩ S| with the same bipartition. Iterating this reaches N (x) = S; let
G ′ be the resulting graph.

Doing the same in H yields graphs G ′ from G and H ′ from H such that
NG ′(x) = NH ′(x). Deleting x and applying the induction hypothesis to the
graphs G∗ = G ′ − x and H ∗ = H ′ − x completes the construction of the
desired sequence of 2-switches.

Proof 2 (induction on number of discrepancies). Let F be the X, Y -
bigraph whose edges are those belonging to exactly one of G and H . Let
d = e(F). Since G and H have identical vertex degrees, each vertex of F
has the same number of incident edges from E(G)−E(H) and E(H)−E(G).
When d > 0, F therefore has a cycle alternating between E(G) and E(H)

(when we enter a vertex on an edge of one type, we can exit on the other
type, we can’t continue forever, and all cycles have even length).

Let C be a shortest alternating cycle in F , with first xy ∈ E(G)− E(H)

and then yx ′ ∈ E(H) − E(G) and x ′y′ ∈ E(G) − E(H). We consider a 2-
switch involving {x, y, x ′, y′}. If y′x ∈ E(H) − E(G), then the 2-switch in
G reduces d by 4. If y ′x ∈ E(G) − E(H), then we would have a shorter
cycle in F . If y ′x /∈ E(G) ∪ E(H), then we perform the 2-switch in G; if
y′x ∈ E(G) ∪ E(H), then we perform the 2-switch in H . Each of these last
two cases yields a new pair of graphs with d reduced by 2, and the induction
hypothesis applies to this pair to provide the rest of the exchanges.

1.4. DIRECTED GRAPHS

1.4.1. Digraphs in the real world. Many digraphs based on temporal order
have no cycles. For example, given a set of football games, we can put an
edge from game x to game y if game x ends before game y begins. The
relation “is a parent of” also works.

Asymmetric digraphs without cycles often arise from tournaments.
Each team plays every other team, and there is an edge for each game from
the winner to the loser. The result can be without cycles, but usually cycles
exist. Another example is the relation “has sent a letter to”.

1.4.2. If the first switch becomes disconnected from the wiring in the
lightswitch system of Application 1.4.4, then the digraph for the resulting
system is that below.

DU+ UU+

U D−DD−

DU+ UU−

U D+DD+

1.4.3. Every u, v-walk in a digraph contains a u, v-path. The shortest u, v-
walk contained in a u, v-walk W is a u, v-path, since the shortest walk has
no vertex repetition.

1.4.4. Every closed walk of odd length in a digraph contains the edges of an
odd cycle. The proof follows that of the corresponding statement for graphs
in Lemma 1.2.15, given that the definitions of walk and cycle require the
head of each edge to be the tail of the next edge.

We use induction on the length l of a closed odd walk W . Basis step:
l = 1. A closed walk of length 1 traverses a cycle of length 1.

Induction step: l > 1. Assume the claim for closed odd walks shorter
than W . If W has no repeated vertex (other than first = last), then W itself
forms a cycle of odd length. If vertex v is repeated in W , then we view W as
starting at v and break W into two v, v-walks. Since W has odd length, one
of these is odd and the other is even. The odd one is shorter than W . By
the induction hypothesis, it contains an odd cycle, and this cycle appears
in order in W .

1.4.5. A finite directed graph contains a (directed) cycle if every vertex is
the tail of at least one edge (has positive outdegree). (The same conclusion
holds if every vertex is the head of at least one edge.) Let G be such a
graph, let P be a maximal (directed) path in G, and let x be the final vertex
of P. Since x has at least one edge going out, there is an edge xy. Since
P cannot be extended, y must belong to P. Now xy completes a cycle with
the y, x-subpath of P.

1.4.6. The De Bruijn graphs D2 and D3.

• •0 1 • •

•

•

01 10

00

11
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1.4.7. In an orientation of a simple graph with 10 vertices, the vertices can
have distinct outdegrees. Take the orientation of the complete graph with
vertices 0, . . . , 9 by orienting the edge i j from i to j if i > j . In this digraph,
the outdegree of vertex i is i .

1.4.8. There is an n-vertex tournament with d+(v) = d−(v) for every vertex
v if and only if n is odd. If n is even, then d+(v) + d−(v) = n − 1 is odd,
so the summands can’t be equal integers. For odd n, we construct such a
tournament.

Proof 1 (explicit construction). Place the n vertices equally spaced
around a circle, and direct the edges from v to the (n − 1)/2 vertices that
follow v in the clockwise direction. After doing this for each vertex, the
(n − 1)/2 nearest vertices in the counterclockwise direction from v have
edges directed to v, and each edge has been oriented.

Proof 2 (inductive construction). When n = 1, the 1-vertex tourna-
ment satisfies the degree condition. For k > 1, suppose that T is a tourna-
ment with 2k − 1 vertices that satisfies the condition. Partition V (T ) into
sets A and B with |A| = k and |B| = k − 1. Add two vertices x and y. Add
all edges from x to A, from A to y, from y to B, and from B to x . Each ver-
tex in V (T ) now has one predecessor and one successor in {x, y}. We have
d+(x) = k, d−(x) = k − 1, d+(y) = k − 1, d−(y) = k. Complete the con-
struction of T ′ by adding the edge yx . Now T ′ is a tournament with 2k + 1
vertices that satisfies the degree condition.

Proof 3 (Eulerian graphs). When n is odd, Kn is a connected even
graph and hence is Eulerian. Orienting edges of Kn in the forward direction
while following an Eulerian circuit yields the desired tournament.

1.4.9. For each n, there is an n-vertex digraph in which the vertices have
distinct indegrees and distinct outdegrees. Using vertices v1, . . . , vn, let the
edges be {vivj : 1 ≤ i < j ≤ n}. Now d−(vi ) = i − 1 and d+(vi ) = n − i . Thus
the indegrees are distinct, and the outdegrees are distinct.

1.4.10. A digraph is strongly connected if and only if for each partition of
the vertex set into nonempty sets S and T , there is an edge from S to T .
Given that D is strong, choose x ∈ S and y ∈ T . Since D has an x, y-path,
the path must leave S and enter T and do so along some edge.

Conversely, if there is such an edge for every partition, let S be the set
of all vertices reachable from vertex x . If S 6= V (D), then the hypothesis
yield an edge leaving S, which adds a vertex to S. Since x was arbitrary,
each vertex is reachable from every other, and D is strongly connected.

1.4.11. In every digraph, some strong component has no entering edges,
and some strong component has no exiting edges.

Proof 1 (using cycles). Given a digraph D, form a digraph D∗ with

one vertex for each strong component of D. Let the strong components of
D be X1, . . . , Xk , with corresponding vertices x1, . . . , xk in D∗. Put an edge
from xi to x j in D∗ if in D there is an edge from some vertex of X i to some
vertex of X j . The problem is to show that D∗ has a vertex with indegree 0
and a vertex with outdegree 0.

If such vertices do not exist, then D∗ has a cycle (by Lemma 1.4.23). If
D∗ has a cycle, then the union of the strong components of D corresponding
to the vertices of the cycle is a strongly connected subgraph of D containing
all those components. This is a contradiction, because they were maximal
strong subgraphs.

Proof 2 (extremality). For a vertex v in D, let R(v) be the set of ver-
tices reachable from v. Let u be a vertex minimizing |R(u)|. If v ∈ R(u),
then R(v) ⊆ R(u), so R(v) = R(u). Since u ∈ R(u), also u is reachable from
v. Thus R(u) induces a strong subdigraph. By the definition of R(u), no
edges leave it, so it is a strong component. Applying the same argument to
the reverse digraph yields a strong component with no entering edge.

1.4.12. In a digraph the connection relation is an equivalence relation, and
its equivalence classes are the vertex sets of the strong components. We are
defining x to be connected to y if the digraph has both an x, y-path and
a y, x-path. The reflexive property holds using paths of length 0. The
symmetric property holds by the definition.

For transitivity, consider an x, y-path P1 and a y, z-path P2. Let w be
the first vertex of P1 that belongs to P2. Following P1 from x to w and P2
from w to z yields an x, z-path, by the choice of w. Applying this to obtain
paths in both directions shows that the connection relation is transitive.

Since a strong component is a strongly connected subdigraph, its pairs
of vertices satisfy the connection relation. Hence every strong component
is contained in an equivalence class of the connection relation. In order to
show that every equivalence class is contained in a strong component, we
show that when x is connected to y, there is an x, y-path using only vertices
of the equivalence class.

Let P be an x, y-path, and let Q be a y, x-path. The concatenation of Q
with P is a closed walk in the digraph; let S be its vertex set. By following
the walk, we find a u, v-walk for all u, v ∈ S. Such a walk contains a u, v-
path. The same argument yields a v, u-path in the walk. Hence all pairs
of vertices on it satisfy the connection relation, and we have found an x, y-
path (and y, x-path) witin the equivalence class. Hence the subdigraph
induced by the equivalence class is strongly connected.

1.4.13. Strong components.
a) Two maximal strongly connected subgraphs of a directed graph share

no vertices. If strong components D1, D2 of D share a vertex v, then for all
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x ∈ V (D1) and y ∈ V (D2), the union of an x, v-path in D1 and a v, y-path in
D2 contains an x, y-path in D. Similarly, D has a y, x-path. Thus D1 ∪ D2
is strongly connected.

b) The digraph D∗ obtained by contracting the strong components of a
digraph D is acyclic (D∗ has a vertex vi for each strong component Di , with
vi → vj if and only if i 6= j and D has an edge from Di to Dj ). If D∗ has a cycle
with vertices d0, . . . , dl−1, then D has strong components D0, . . . , Dl−1 such
that D has an edge uivi+1 from Di to Di+1, for each i (modulo l). If x ∈ Di and
y ∈ Dj , this means that D contains an x, y-walk consisting of the concate-
nation of paths with successive endpoints x , u i , vi+1, ui+1, vi+2, . . . , u j−1, vj ,
y. This walk contains an x, y-path. Since x, y were chosen arbitrarily from
D0∪· · ·∪Dl−1, we conclude that D0∪· · ·∪Dl−1 is strongly connected, which
contradicts D0, . . . , Dl−1 being maximal strongly connected subgraphs.

1.4.14. If G is an n-vertex digraph with no cycles, then the vertices of G can
be ordered as v1, . . . , vn so that if vivj ∈ E(G), then i < j . If G has no cycles,
then some vertex v has outdegree 0. Put v last in the ordering. Now G − v

also has no cycles, and we proceed iteratively. When we choose v j , it has no
successors among v1, . . . , v j−1, so the desired condition on the edges holds.

1.4.15. In the simple digraph with vertex set {(i, j) ∈ Z
2: 0 ≤ i ≤ m and 0 ≤

n} and an edge from (i, j) to (i ′, j ′) if and only if (i ′, j ′) is obtained from (i, j)
by adding 1 to one coordinate, there are

(m+n
n

)

paths from (0, 0) to (m, n).
Traversing each edge adds one to each coordinate, so every such path has
m + n edges. We can record such a path as a 0, 1-list, recording 0 when we
follow an edge that increases the first coordinate, 1 when we follow an edge
that increases the second coordinate. Each list with m 0s and n 1s records
a unique path. Since there are

(m+n
n

)

ways to form such a list by choosing
positions for the 1s, the bijection implies that the number of paths is

(m+n
n

)

.

1.4.16. Fermat’s Little Theorem. Let Zn denote the set of congruence classes
of integers modulo a PRIME NUMBER n (the first printing of the second
edition omitted this!). Multiplication by a positive integer a that is not
a multiple of n defines a permutation of Zn, since ai ≡ aj (mod n) yields
a( j − i) ≡ 0 (mod n), which requires n to divide j − i when a and n are rel-
atively prime. The functional digraph consists of pairwise disjoint cycles.

a) If G is the functional digraph with vertex set Zn for the permutation
defined by multiplication by a, then all cycles in G (except the loop on n) have
length l − 1, where l is the least natural number such that a l ≡ a (mod n).
This is the length of the cycle containing the element 1. Traversing a cycle
of length k (not the cycle consisting of n) yields xak ≡ x (mod n), or x(ak −

1) ≡ 0 (mod n), for some x not divisible by n. Since n is prime, this requires
ak ≡ 1 (mod n), and hence k ≥ l − 1. On the other hand xal−1 = x , and
hence k ≤ l − 1.

b) an−1 ≡ 1 (mod n). Since all nontrivial cycles have the same length,
l − 1 divides n − 1. Let m = (n − 1)/(l − 1). Now an−1 = a(l−1)m = (al−1)m ≡

1m ≡ 1 (mod n).

1.4.17. A (directed) odd cycle is a digraph with no kernel. Let S be a kernel
in an odd cycle C . Every vertex must be in S or have a successor in S. Since
S is an independent set, exactly one of these two conditions holds at each
vertex. Hence we must alternate between vertices in S and vertices not in
S as we follow the C . We cannot alternate two conditions as we follow an
odd cycle, so there is no kernel.

A digraph having an odd cycle as an induced subgraph and having a
kernel. To an odd cycle, add one new vertex as a successor of each vertex
on the cycle. The new vertex forms a kernel by itself.

1.4.18. An acyclic digraph D has a unique kernel.
Proof 1 (parity of cycles). By Theorem 1.4.16, a digraph with no odd

cycles has at least one kernel. We show that a digraph with no even cycles
has at most one kernel, by proving the contrapositive. If K and L are
distinct kernels (each induces no edges), then every vertex of K − L has a
successor in L − K , and every vertex of L − K has a successor in K − L.

Proof 2 (induction on n(D)). In a digraph with one vertex and no cycle,
the vertex is a kernel. When n(D) > 1, the absence of cycles guarantees a
vertex with outdegree 0 (Lemma 1.4.23). Such a vertex lies in every kernel,
since it has no successor. Let S ′ = {v ∈ V (D): d+(v) = 0}. Note that S′

induces no edges. Let D′ be the subdigraph obtained from D by deleting S ′

and all vertices having successors in S ′. The digraph D′ has no cycles; by
the induction hypothesis, D′ has a unique kernel S′′.

Let S = S′ ∪ S′′. Since there are no edges from V (D ′) to S′, the set S
is a kernel in D. Furthermore, S is the only kernel. We have argued that
all of S′ is present in every kernel, and independence of the kernel implies
that no other vertex outside V (D ′) is present. The lack of edges from V (D ′)
to S′ implies that the remainder of the kernel must be a kernel in D ′, and
there is only one such set.

1.4.19. A digraph is Eulerian if and only if d+(v) = d−(v) for every vertex
v and the underlying graph has at most one nontrivial component.

Necessity. Each passage through a vertex by a circuit uses an entering
edge and an exiting edge; this applies also to the “last” and “first” edges of
the circuit. Also, two edges can be in the same trail only when they lie in
the same component of the underlying graph.

Sufficiency. We use induction on the number of edges, m. Basis step:
When m = 0, a closed trail consisting of one vertex contains all the edges.
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Induction step: Consider m > 0. With equal indegree and outdegree,
each vertex in the nontrivial component of the underlying graph of our
digraph G has outdegree at least 1 in G. By Lemma 1.2.25, G has a cycle
C . Let G ′ be the digraph obtained from G by deleting E(C).

Since C has 1 entering and 1 departing edge at each vertex, G ′ also
has equal indegree and outdegree at each vertex. Each component of the
underlying graph H ′ of G ′ is the underlying graph of some subgraph of
G ′. Since G ′ has fewer than m edges, the induction hypothesis yields an
Eulerian circuit of each such subgraph of G ′.

To form an Eulerian circuit of G, we traverse C , but when a component
of H ′ is entered for the first time we detour along an Eulerian circuit of the
corresponding subgraph of G ′, ending where the detour began. When we
complete the traversal of C , we have an Eulerian circuit of G.

1.4.20. A digraph is Eulerian if and only if indegree equals outdegree at
every vertex and the underlying graph has at most one nontrivial compo-
nent. The conditions are necessary, since each passage through a vertex
uses one entering edge and one departing edge.

For sufficiency, suppose that G is a digraph satisfying the conditions.
We prove first that every non-extendible trail in G is closed. Let T be a non-
extendible trail starting at u. Each time T passes through a vertex v other
than u, it uses one entering edge and one departing edge. Thus upon each
arrival at v, T has used one more edge entering v than departing v. Since
d+(v) = d−(v), there remains an edge on which T can continue. Hence a
non-extendible trail can only end at v and must be closed.

We now show that a trail of maximal length in G must be an Eulerian
circuit. Let T be a trail of maximum length; T must also be non-extendible,
and hence T is closed. Suppose that T omits some edge e of G. Since the
underlying graph of G has only one nontrivial component, it has a shortest
path from e to the vertex set of T . Hence some edge e′ not in T is incident
to some vertex v of T . It may enter or leave v.

Since T is closed, there is a trail T ′ that starts and ends at v and uses
the same edges as T . We now extend T ′ along e′ (forward or backward
depending on whether e leaves or enters v) to obtain a longer trail than T .
This contradicts the choice of T , and hence T traverses all edges of G.

1.4.21. A digraph has an Eulerian trail if and only if the underlying graph
has only one nontrivial component and d−(v) = d+(v) for all vertices or for
all but two vertices, in which case in-degree and out-degree differ by one for
the other two vertices. Sufficiency: since the total number of heads equals
the total number of tails, the vertices out of balance consist of x with an
extra head and y with an extra tail. Add the directed edge xy and apply
the characterization above for Eulerian digraphs.

1.4.22. If D is a digraph with d−(v) = d+(v) for every vertex v, except that
d+(x)−d−(x) = k = d−(y)−d+(y), then D contains k pairwise edge-disjoint
x, y-paths. Form a digraph D′ by adding k edges from y to x . Since indegree
equals outdegree for every vertex of D ′, the “component” of D′ containing x
and y is Eulerian. Deleting the added edges from an Eulerian circuit cuts
it at k places; the resulting k directed trails are x, y-trails in the digraph
D. As proved in Chapter 1, the edge set of every x, y-trail contains an
x, y-path; the proof in Chapter 1 applies to both graphs and digraphs.

1.4.23. Every graph G has an orientation such that |d+(v)− d−(v)| ≤ 1 for
all v.

Proof 1 (Eulerian circuits). Add edges to pair up vertices of odd de-
gree (if any exist). Each component of this supergraph G ′ is Eulerian.
Orient G ′ by following an Eulerian circuit in each component, orienting
each edge forward as the circuit is traversed. The circuit leaves each ver-
tex the same number of times as it enters, so the resulting orientation has
equal indegree and outdegree at each vertex.

Deleting the edges of E(G ′)− E(G) now yields the desired orientation
of G, because at most one edge was added at each vertex to pair the vertices
of odd degree. Deleting at most one incident edge at v produces difference
at most one between d+(v) and d−(v).

Proof 2 (induction on e(G)). If e(G) = 0, then the claim holds. For
e(G) > 0, if G has a cycle H , then orient H consistently, with no imbalance
anywhere. If G has no cycle, then find a maximal path H and orient it
consistently. This creates imbalance of 1 at the endpoints and 0 elsewhere.
The endpoints have degree 1, so no further imbalance occurs there. In
both cases, delete E(H) and apply the induction hypothesis to complete the
orientation.

1.4.24. Not every graph has an orientation such that for every vertex subset,
the numbers of edges entering and leaving differ by at most one. Let G be a
graph with at least four vertices such that every vertex degree is odd. Let
D be an orientation of G. In D, no vertex of G has the same number of
vertices entering and leaving. Let S = {v ∈ V : d+(v) > d−(v)}. Since each
edge within S contributes the same amount to

∑

v∈S d+(v) and
∑

v∈S d−(v),
there are

∑

v∈S d+(v)−
∑

v∈S d−(v) more edges leaving S than entering. The
difference is at least |S|. Similarly, for S the absolute difference is at least
∣

∣S
∣

∣, so always some set has difference at least n(G)/2.

1.4.25. Orientations and P3-decomposition. a) Every connected graph has
an orientation having at most one vertex with odd outdegree.

Proof 1 (local change). Given an orientation of G with vertices x and y
having odd outdegree, find an x, y-path P in the underlying graph and flip
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the orientation of every edge on P. This does not change the parity of the
outdegree for any internal vertex of P, but it changes the parity of the out-
degree for the endpoints, which previously had odd outdegree. Hence this
operation reduces the number of vertices of odd outdegree by 2. We can
apply this operation whenever at least two vertices have odd outdegree, so
we can reduce the number of vertices with odd outdegree to 0 or 1.

Proof 2 (application of Eulerian circuits). Suppose that G has 2k ver-
tices of odd degree. Add edges that pair these vertices to form an Eulerian
supergraph G ′. Follow an Eulerian circuit of G ′, starting from u along
uv ∈ E(G), producing an orientation of G as follows. Orient uv out from u;
now u has odd outdegree and all other vertices have even outdegree. Sub-
sequently, when the circuit traverses an edge xy ∈ E(G), orient it so that
x has even outdegree among the edges oriented so far. At each stage, the
only vertex that can have odd outdegree among edges of G is the current
vertex. The orientation chosen for the edges not in E(G) is unimportant.

b) A simple connected graph with an even number of edges can be de-
composed into paths with two edges. Since the sum of the outdegrees is the
number of edges, the parity of the number of vertices with odd outdegree
is the same as the parity of the number of edges. Hence part (a) implies
that a connected graph with an even number of edges has an orientation
in which every vertex has even outdegree. At each vertex, pair up exiting
edges arbitrarily. Since G is simple, this decomposes G into copies of P3.

1.4.26. De Bruijn cycle for binary words of length 4, avoiding 0101 and
1010. Make a vertex for each of the 8 sequences of length 3 from the alpha-
bet S = {0, 1}. Put an edge from sequence a to sequence b, with label α ∈ S,
if b is obtained from a by dropping the first letter of a and appending α to
the end. Traveling this edge from a corresponds to having α in sequence
after a. We want our digraph to have 14 edges corresponding to the de-
sired 14 words, and we want an Eulerian circuit through them to generate
the cyclic arrangement of labels. The difference between this digraph and
the De Bruijn digraph in Application 1.4.25 is omitting the two edges join-
ing 010 and 101. The resulting digraph still has indegree = outdegree at
every vertex, so it is Eulerian. One arrangement of labels generated by an
Eulerian circuit is 00001001101111.

1.4.27. De Bruijn cycle for any alphabet and length. When A is an alphabet
of size k, there exists a cyclic arrangement of k l characters chosen from A
such that the kl strings of length l in the sequence are all distinct.

Idea: The indegree and outdegree is k at each vertex of the digraph
constructed in the matter analogous to that for k = 2. Thus the digraph
is Eulerian, and recording the edge labels along an Eulerian circuit yields
the desired sequence. Below we repeat the details.

Define a digraph Dk,l whose vertices are the (l − 1)-tuples with ele-
ments in A. Place an edge from a to b if the last n − 2 entries of a agree
with the first n− 2 entries of b. Label the edge with the last entry of b. For
each vertex a, there are k ways to append a element of A to lengthen its
name, and hence there are k edges leaving each vertex.

Similarly, there are k choices for a character deleted from the front of a
predecessor’s name to obtain name b, so each vertex has indegree k. Also,
we can reach b = (b1, . . . , bn−1) from any vertex by successively following
the edges labeled b1, . . . , bn−1. Since Dk,l is strongly connected and has in-
degree equal to outdegree at every vertex, the characterization of Eulerian
digraphs implies that Dk,l is Eulerian.

Let C be an Eulerian circuit of Dk,l . When we are at the vertex with
name a = (a1, . . . , an−1) while traversing C , the most recent edge had label
an−1, because the label on an edge entering a vertex agrees with the last
digit of the sequence at the vertex. Since we delete the front and shift
the rest to obtain the rest of the label at the head, the successive earlier
labels (looking backward) must have been an−2, . . . , a1 in order. If C next
traverses an edge with label an, then the subsequence consisting of the n
most recent edge labels at that time is a1, . . . , an.

Since the kl−1 vertex labels are distinct, and the edges leaving each
vertex have distinct labels, and we traverse each edge from each vertex
exactly once along C , the k l strings of length l in the circular arrangement
given by the edge labels along C are distinct.

1.4.28. De Bruijn cycle for length 4 without the constant words. Make a
vertex for each of the m3 sequences of length 3 from the alphabet S. Put
an edge from sequence a to sequence b, with label α ∈ S, if b is obtained
from a by dropping the first letter and appending α to the end. Since there
are m ways to append a letter, the out-degree of each vertex is m. For each
sequence, there are m possible letters that could have been deleted to reach
it, so the in-degree of each vertex is m.

Deleting the loops at the m constant vertices (aaa, bbb, etc.) reduces
the indegree and outdegree at those vertices by 1, so the resulting digraph
has equal indegree and outdegree at every vertex. Also the underlying
graph is connected, since vertex abc can be reach from any other vertex by
following the edge labeled a, then b, then c.

Thus an Eulerian circuit exists. Recording the edge labels while fol-
lowing an Eulerian circuit yields the desired arrangement. The 4-digit
strings obtained are those formed by the 3-digit name of a vertex plus the
label on an exiting edge. These m4 − m strings are distinct and avoid the
constant words, since the loops were deleted from the digraph.

Alternative proof. If we know (from Exercise 1.4.27, for example) that
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there exists a De Bruijn cycle including the constant words, then we can
simply delete one letter from each string of four consecutive identical let-
ters, without using graph theory.

1.4.29. A strong orientation of a graph that has an odd cycle also has an
odd (directed) cycle. Suppose that D is a strong orientation of a graph G
that has an odd cycle v1, . . . , v2k+1. Since D is strongly connected, for each
i there is a vi , vi+1-path in D. If for some i every such path has even length,
then the edge between vi and vi+1 points from vi+1 to vi , since the other
orientation would be a vi , vi+1-path of length 1 (odd). In this case, we have
an odd cycle through vi and vi+1. Otherwise, we have a path of odd length
from each vi to vi+1. Combining these gives a closed trail of odd length.
In a digraph as well as in a graph (by the same proof), a closed odd trail
contains the edges of an odd cycle.

1.4.30. The maximum length of a shortest spanning closed walk in a
strongly-connected n-vertex digraph is

⌊

(n + 1)2/4
⌋

if n ≥ 3. For the lower
bound, let G consist of a u, v-path P of n − l vertices, plus l vertices with
edges from v and to u. When leaving a vertex not on P, P must be reached
and traversed before the next vertex off P. Hence G requires l(n − l + 1)

steps to walk through every vertex, maximized by setting l = b(n + 1)/2c.
The length of the walk is then

⌊

(n + 1)2/4
⌋

.
For any strongly-connected n-vertex digraph G, we obtain a spanning

closed walk of length at most
⌊

(n + 1)2/4
⌋

. Let m be the maximum length
of a path in G; from each vertex to every other, there is a path of length at
most m. Begin with a path P of length m; this visits m + 1 vertices. Next
use paths to reach each of the remaining vertices in turn, followed by a
path returning to the beginning of P. In this closed walk, 1+ (n−m−1)+1
paths have been followed, each of length at most m. The total length is at
most m(n + 1− m), which is bounded by

⌊

(n + 1)2/4
⌋

.

1.4.31. The smallest nonisomorphic pair of tournaments with the same
score sequences have five vertices.

At least five vertices are needed. The score sequence (outdegrees) of an
n-vertex tournament can have only one 0 or n − 1. Nonisomorphic tour-
naments with such a vertex must continue to be nonisomorphic when that
vertex is deleted. Hence a smallest nonisomorphic pair has no vertex with
score 0 or n − 1. The only such score sequences with fewer than 5 vertices
are 111 and 2211. The first is realized only by the 3-cycle. For 2211, name
the low-degree vertices as v1 and v2 such that v1 ← v2, and name the high-
degree vertices as v3 and v4 such that v3 ← v4. The only way to complete a
tournament with this score sequence is now N+(v1) = {v4}, N+(v2) = {v1},
N+(v3) = {v1, v2}, and N+(v4) = {v2, v3}.

Five vertices suffice, by construction. On five vertices, the sequences to

consider are 33211, 32221, and 22222. There is only one isomorphic class
with score sequence 22222, but there are more for the other two sequences.
In fact, there are 3 nonisomorphic tournaments with score sequence 32221.
They may be characterized as follows: (1) the bottom player beats the top
player, and the three middle players induce a cyclic subtournament; (2) the
top player beats the bottom player, and the three middle players induce a
cyclic subtournament; (3) the top player beats the bottom player, and the
three middle players induce a transitive subtournament.

•

•

••

•

2

2

13

2
•

•

••

•

2

2
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2
•

•

••

•

2

2

13
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Five vertices suffice, by counting. Each score sequence sums to 10 and
has maximum outdegree at most 4; also there is at most one 4 and at
most one 0. The possibilities are thus 43210, 43111, 42220, 42211, 33310,
33220, 33211, 32221, 22222. There are 210 tournaments on five vertices; we
show that they cannot fit into nine isomorphism classes. The isomorphism
class consisting of a 5-cycle plus edges from each vertex to the vertex two
later along the cycle occurs 4! times; once for each cyclic ordering of the
vertices. Each of the other isomorphism classes occurs at most 5! times.
Hence the nine isomorphism classes contain at most 24+ 8 · 120 of the 210

tournaments. Since 1024 > 984, there must be at least 10 isomorphism
classes among the nine score sequences.

1.4.32. Characterization of bigraphic sequences. With p = p1, . . . , pm and
q = q1, . . . , qn, the pair (p, q) is bigraphic if there is a simple bipartite
graph in which p1, . . . , pm are the degrees for one partite set and q1, . . . , qn

are the degrees for the other.
If p has positive sum, then (p, q) is bigraphic if and only if (p ′, q ′)

is bigraphic, where (p′, q ′) is obtained from (p, q) by deleting the largest
element 1 from p and subtracting 1 from each of the 1 largest elements of
q. We follow the method of Theorem 1.3.31. Sufficiency of the condition
follows by adding one vertex to a realization of the smaller pair.

For necessity, choose indices in a realization G so that p1 ≥ · · · ≥ pm ,
q1 ≥ · · · ≥ qn, d(xi ) = pi , and d(yj ) = qj . We produce a realization in
which x1 is adjacent to y1, . . . , yp1 . If yj = x1 for some j ≤ p1, then yk ↔

x1 for some k > p1. Since qj ≥ qk , there exists xi with i > 1 such that
xi ∈ N (yj ) − N (yk). We perform the 2-switch to replace {x1 yk, xi yj } with
{x1 yj , xi yk}. This reduces the number of missing neighbors, so we can obtain
the desired realization. (Comment: the statement also holds when m = 1.)
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1.4.33. Bipartite 2-switch and 0,1-matrices with fixed row and column
sums. With a simple X, Y -bigraph G, we associate a 0,1-matrix B(G) with
rows indexed by X and columns indexed by Y . The matrix has a 1 in po-
sition i, j if and only if xi ↔ yj . Applying a 2-switch to G that exchanges
xy, x ′y′ for xy ′, x ′y (preserving the bipartition) affects B(G) by interchang-
ing the 0’s and 1’s in the 2 by 2 permutation submatrix induced by rows x, x ′

and columns y, y ′. Hence there is a sequence of 2-switches transforming G
to H without changing the bipartition if and only if there is a sequence of
switches on 2 by 2 permutation submatrices that transforms B(G) to B(H).

Furthermore, G and H have the same bipartition and same vertex de-
grees if and only if B(G) and B(H) have the same row sums and the same
column sums. Therefore, in the language of bipartite graphs the statement
about matrices becomes “all bipartite graphs with the same bipartition and
vertex degrees can be reached from each other using 2-switches preserv-
ing the bipartition.” We prove either statement by induction. We use the
phrasing of bipartite graphs.

Proof 1 (induction on m). If m = 1, then already G = H . For m > 1,
let G be an X, Y -bigraph. Let x be a vertex of maximum degree in X ,
with d(x) = k. Let S be a set of k vertices of highest degree in Y . Using
bipartition-preserving 2-switches, we transform G so that N (x) = S. If
N (x) 6= S, we choose y ∈ S and y ′ ∈ Y − S so that x = y and x ↔ y ′. Since
d(y) ≥ d(y ′), we have x ′ ∈ X so that y ↔ x ′ and y ′ = x ′. Switching xy ′, x ′y
for xy, x ′y′ increases |N (x)∩ S|. Iterating this reaches N (x) = S. We can do
the same thing in H to reach graphs G ′ from G and H ′ from H such that
NG ′(x) = NH ′(x). Now we can delete x and apply the induction hypothesis
to the graphs G∗ = G ′ − x and H ∗ = H ′ − x to complete the construction of
the desired sequence of 2-switches.

Proof 2 (induction on number of discrepancies). Let F be the bipartite
graph with the same bipartition as G and H consisting of edges belonging
to exactly one of G and H . Let d = e(F). Orient F by directing each edge of
G − E(H) from X to Y and each edge of H − e(G) from Y to X . Since G, H
have identical vertex degrees, in-degree equals outdegree at each vertex
of F . If d > 0, this implies that F contains a cycle. There is a 2-switch
in G that introduces two edges of E(G) − E(H) and reduces d by 4 if and
only if F has a 4-cycle. Otherwise, Let C be a shortest cycle in F , and
let x, y, x ′, y′ be consecutive vertices on C . We have xy ∈ E(G) − E(H),
x ′y ∈ E(H)− E(G), and x ′y′ ∈ E(G)− E(H). We also have xy ′ /∈ E(G), else
we could replace these three edges of C by xy ′ to obtain a shorter cycle in F .
We can now perform the 2-switch in G that replaces xy, x ′y′ with xy ′, x ′y.
This reduces d by at least 2.

1.4.34. If G and H are two tournaments on a vertex set V , then d+G (v) =

d+H (v) for all v ∈ V if and only if G can be turned into H by a sequence of
direction-reversals on cycles of length 3. Reversal of a 3-cycle changes no
outdegree, so the condition is sufficient.

For necessity, let F be the subgraph of G consisting of edges oriented
the opposite way in H . Since d+G (v) = d+H (v) and d−G (v) = d−H (v) for all v,
every vertex has the same indegree and outdegree in F . Let x be a vertex
of maximum degree in F , and let S = N+F (x) and T = N−F (x).

An edge from S to T in G completes a 3-cycle with x whose reversal in
G reduces the number of pairs on which G and H disagree. An edge from
T to S in H completes a 3-cycle with x whose reversal in H reduces the
number of disagreements. If neither of these possibilities occurs, then G
orients every edge of S×T from T to S, and H orients every such edge from
S to T . Also F has edges from T to x . This gives every vertex of T higher
outdegree than x in F , contradicting the choice of x .

1.4.35. p1 ≤ · · · ≤ pn is the sequence of outdegrees of a tournament if and
only if

∑k
i=1 pi ≥

(k
2

)

and
∑n

i=1 pi =
(n

2

)

. Necessity. A tournament has
(n

2

)

edges in total, and any k vertices have out-degree-sum at least
(k

2

)

within
the subtournament they induce.

Sufficiency. Given a sequence p satisfying the conditions, let qk =
∑k

i=1 pk and ek = qk −
(k

2

)

. We prove sufficiency by induction on
∑

ek . The
only sequence p with

∑

ek = 0 is 0, 1, . . . , n − 1; this is realized by the
transitive tournament Tn having vk → vj if and only if k > j . If

∑

ek > 0,
let r be the least k with ek > 0, and let s be the least index above r with
ek = 0, which exists since en = 0. We have qs−1 >

(s−1
2

)

, qs =
(s

2

)

, and
qs+1 ≥

(s+1
2

)

. This yields ps+1 ≥ s and ps < s−1, or ps+1− ps ≥ 2. Similarly,
if r = 1 we have p1 ≥ 1, and if r > 1 we have pr − pr−1 ≥ 2.

Hence we can subtract one from pr and add one to ps to obtain a new
sequence p′ that is non-decreasing, satisfies the conditions, and reduces
∑

ek by s − r . By the induction hypothesis, there is a tournament with
score sequence p′. If vs → vr in this tournament, we can reverse this edge
to obtain the score sequence p. If not, then the fact that p′s ≥ p′r implies
there is another vertex u such that vs → u and u → vr ; obtain the desired
tournament by reversing these two edges.

1.4.36. Let T be a tournament having no vertex with indegree 0.
a) If x is a king in T , then T has another king in N−(x). The subdigraph

induced by the vertices of N−(x) is also a tournament; call it T ′. Since every
tournament has a king, T ′ has a king. Let y be a king in T ′. Since x is a
successor of y and every vertex of N+(x) is a successor of x , every vertex of
V (T )−V (T ′) is reachable from y by a path in T of length at most T . Hence
y is also a king in the original tournament T .

b) T has at least three kings. Since T is a tournament, it has some
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king, x . By part (a), T has another king y in N−(x). By part (a) again, T
has another king z in N−(y). Since y → x , we have x /∈ N−(y), and hence
z 6= x . Thus x, y, z are three distinct kings in T .

c) For n ≥ 3, an n-vertex tournament T with no source and only three
kings. Let S = {x, y, z} be a set of three vertices in V (T ). Let the subtour-
nament on S be a 3-cycle. For all edges joining S and V (T ) − S, let the
endpoint in S be the tail. Place any tournament on V (T ) − S. Now x, y, z
are kings, but no vertex outside S is a king, because no edge enters S.

1.4.37. Algorithm to find a king in a tournament T : Select x ∈ V (T ). If x
has indegree 0, call it a king and stop. Otherwise, delete {x} ∪ N+(x) from
T to form T ′, and call the output from T ′ a king in T . We prove the claims
by induction on the number of vertices. The algorithm terminates, because
it either stops by selecting a source (indegree 0) or moves to a smaller
tournament. By the induction hypothesis, it terminates on the smaller
tournament. Thus in each case it terminates and declares a king.

We prove by induction on the number of vertices that the vertex de-
clared a king is a king. When there is only one vertex, it is a king. Suppose
that n(T ) > 1. If the initial vertex x is declared a king immediately, then
it has outdegree n − 1 and is a king. Otherwise, the algorithm deletes x
and its successors and runs on the tournament T ′ induced by the set of
predecessors (in-neighbors) of x .

By the induction hypothesis, the vertex z that the algorithm selects as
king in T ′ is a king in T ′, reaching each vertex of T ′ in at most two steps.
It suffices to show that z is also a king in the full tournament. Since T ′

contains only predecessors of x , z→ x . Also, z reaches all successors of x in
two steps through x . Thus z also reaches all discarded vertices in at most
two steps and is a king in T .

1.4.38. Tournaments with all players kings. a) If n is odd, then there is an
tournament with n vertices such that every player is a king.

Proof 1 (explicit construction). Place the players around a circle. Let
each player defeat the (n − 1)/2 players closest to it in the clockwise direc-
tion, and lose to the (n − 1)/2 players closest to it in the counterclockwise
direction. Since every pair of players is separated by fewer players around
one side of the circle than the other, this gives a well-defined orientation
to each edge. All players have exactly (n − 1)/2 wins. Thus every outde-
gree is the maximum outdegree, and we have proved that every vertex of
maximum outdegree in a tournament is a king. It is also easy to construct
explicit paths. Each player beats the next (n − 1)/2 players. The remain-
ing (n− 1)/2 players all lose to the last of these first (n− 1)/2 players. The
construction is illustrated below for five players.

•

•

••

•

Proof 2 (induction on n). For n = 3, every vertex in the 3-cycle is a
king. For n ≥ 3, given a tournament on vertex set S of size n in which every
vertex is a king, we add two new vertices x, y. We orient S → x → y → S.
Every vertex of S reaches x in one step and y in two; x reaches y in one
step and each vertex of S in two. Every vertex is a king. (The resulting
tournaments are not regular.) Note: Since there is no such tournament
when n = 4, one must also give an explicit construction for n = 6 to include
in the basis. The next proof avoids this necessity.

Proof 3 (induction on n). For n = 3, we have the cyclic tournament.
For n = 5, we have the cyclically symmetric tournament in which each
vertex beats the two vertices that follow it on the circle. For n > 5, let T be
an (n−1)-vertex tournament in which every vertex is a king, as guaranteed
by the induction hypothesis. Add a new vertex x .

If n is odd, then partition V (T ) into pairs. For each pair, let a and b be
the tail and head of the edge joining them, and add the edges xa and bx .

If n is even, then among any four vertices of V (T ) we can find a triple
{u, v, w} that induces a non-cyclic tournament. Pick one such triple, and
partition the remaining vertices of V (T ) into pairs. Treat the edges joining
x to these pairs as in the other case. Letting u be the vertex of the special
triple with edges to the two other vertices, add edges xu, vx , and wx .

b) There is no tournament with four players in which every player is a
king. Suppose G is such a tournament. A player with no wins cannot be
a king. If some vertex has no losses, then no other vertex can be a king.
Hence every player of G has 1 or 2 wins. Since the total wins must equal
the total losses, there must be two players with 1 win and two players with
2 wins. Suppose x, y are the players with 1 win; by symmetry, suppose x
beats y. Since x has no other win and y has exactly one win, the fourth
player is not reached in two steps from x , and x is not a king.

1.4.39. Every loopless digraph D has a vertex subset S such that D[S] has
no edges but every vertex is reachable from S by a path of length at most 2.

Proof 1 (induction). The claim holds when n(D) = 1 and when there
is a vertex with edges to all others. Otherwise, consider an arbitrary vertex
x , and let D′ = D− x − N+(x). Let S′ be the subset of V (D′) guaranteed by
the induction hypothesis. Observe that S ′ ∩ N+(x) = ∅. If yx ∈ E(D) for
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some y ∈ S′, then x ∪ N+(x) is reachable from y within two steps, and S ′ is
the desired set S. Otherwise, the set S = S ′ ∪ {x} works.

Proof 2 (construction). Index the vertices as v1, . . . , vn. Process the list
in increasing order; when a vertex vi is reached that has not been deleted,
delete all successors of vi with higher indices. Next process the list in de-
creasing order; when a vertex vi is reached that has not been deleted (in
either pass), delete all successors of vi with lower indices.

The set S of vertices that are not deleted in either pass is independent.
Every vertex deleted in the second pass has a predecessor in S. Every
vertex deleted in the first pass can be reached from S directly or from a
vertex deleted in the second pass, giving it a path of length at most two
from S. Hence S has the desired properties.

Proof 3 (kernels). By looking at the reverse digraph, it suffices to
show that every loopless digraph D has an independent set S that can be
reached by a path of length at most 2 from each vertex outside S. Given
a vertex ordering v1, . . . , vn, decompose D into two acyclic spanning sub-
graphs G and H consisting of the edges that are forward and backwards in
the ordering, respectively. All subgraphs of G and H are acyclic, and hence
by Theorem 1.4.16 they have kernels. Let S be a kernel of the subgraph of
G induced by a kernel T of H . Every vertex not in T has a successor in T ,
and every vertex in T − S has a successor in S, so every vertex not in S has
a path of length at most 2 to S. (Comment: The set S produced in this way
is the same set produced in the reverse digraph by Proof 2. This proof is
attributed to S. Thomasse on p. 163 of J. A. Bondy, Short proofs of classical
theorems, J. Graph Theory 44 (2003), 159–165.)

1.4.40. The largest unipathic subgraphs of the transitive tournament have
⌊

n2/4
⌋

edges. If a subgraph of Tn contains all three edges of any 3-vertex
induced subtournament, then it contains two paths from the least-indexed
of these vertices to the highest. Hence a unipathic subgraph must have as
its underlying graph a triangle-free subgraph of Kn. By Mantel’s Theorem,
the maximum number of edges in such a subgraph is

⌊

n2/4
⌋

, achieved only
by the complete equibipartite graph.

This leaves the problem of finding unipathic orientations of Kbn/2c,dn/2e
in Tn. Suppose G is such a subgraph, with partite sets X, Y . If there are
four vertices, say i < j < k < l, that alternate from the two partite sets
of G or have i, l in one set and j, k in the other, then the oriented bipartite
subgraph induced by X, Y as partite sets has two i, l-paths. Hence when
n ≥ 4 all the vertices of X must precede all the vertices of Y , or vice versa.
To obtain Kbn/2c,dn/2e, we will have all edges i j such that i ≤ bn/2c and
j > bn/2c, or all edges such that i ≤ dn/2e and j > dn/2e. Hence for n ≥ 4
there are two extremal subgraphs when n is odd and only one when n is

even. (There is only one when n = 1, and there are three when n = 3.)

1.4.41. Given any listing of the vertices of a tournament, every sequence of
switchings of consecutive vertices that induce a reverse edge leads to a list
with no reverse edges in at most

(n
2

)

steps. Under this algorithm, each switch
changes the order of only one pair. Furthermore, the order of two elements
in the list can change only when they are consecutive and induce a reverse
edge. Hence each pair is interchanged at most once, and the algorithm
terminates after at most

(n
2

)

steps with a spanning path.

1.4.42. Every ordering of the vertices of a tournament that minimizes the
sum of lengths of the feedback edges puts the vertices in nonincreasing order
of outdegree. For the ordering v1, . . . , vn, the sum is the sum of j − i over
edges vjvi such that j > i . Consider the interchange of vi and vi+1. If some
vertex is a successor of both or predecessor of both, then the contribution
to the sum from the edges involving it remains unchanged. If x ∈ N+(vi )−

N+(vi+1), then the switch increases the contribution from these edges by 1.
If x ∈ N+(vi+1) − N+(vi ), then the switch decreases the contribution from
these edges by 1. If vi → vi+1, then the switch increases the cost by 1,
otherwise it decreases. Hence the net change in the sum of the lengths of
feedback edges is d+(vi )− d+(vi+1).

This implies that if the ordering has any vertex followed by a vertex
with larger outdegree, then the sum can be decreased. Hence minimizing
the sum puts the vertices in nonincreasing order of outdegree. Further-
more, permuting the vertices of a given outdegree among themselves does
not change the sum of the lengths of feedback edges, so every ordering in
nonincreasing order of outdegree minimizes the sum.


