
Problem 1.4-5 
Solve the problem stated in EXAMPLE 1.3-2 numerically rather than analytically. 
a.) Develop a numerical model that can predict the temperature distribution within the lens.  

Prepare a plot of the temperature as a function of position. 
 
The inputs are entered in EES: 
 
"Problem 1.4-5" 
$UnitSystem SI MASS RAD PA  K J 
$TABSTOPS   0.2 0.4 0.6 0.8 3.5 in 
 
"Inputs" 
q``_rad=0.1 [W/cm^2]*convert(W/cm^2,W/m^2) "radiation incident on the lens" 
L=1.0 [cm]*convert(cm,m) "thickness of lens" 
T_a=converttemp(C,K,20) "ambient temperature" 
h=20 [W/m^2-K] "heat transfer coefficient" 
k=1.5 [W/m-K]  "conductivity of lens" 
alpha=0.1 [1/mm]*convert(1/mm,1/m)      "absorption coefficient" 
A=1 [m^2]   "per unit area" 
 
Nodes are distributed uniformly throughout the computational domain; the distance between 
adjacent nodes is: 
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where N is the number of nodes.  The position of each node is: 
 
 ( )1    for 1...ix x i i N= Δ − =  (2) 
 
N=10 [-]   "number of nodes" 
Dx=L/(N-1)  "distance between adjacent nodes" 
duplicate i=1,N 
 x[i]=Dx*(i-1) "position of each node" 
end 
 
An energy balance on an internal control volume is shown in Figure 1.   
 

 
Figure 1: Energy balance on an internal control volume 



 
The energy balance is: 
 
 0top bottomq q g+ + =  (3) 
 
Substituting rate equations into Eq. (3) leads to: 
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"internal control volume energy balances" 
duplicate i=2,(N-1) 
 k*A*(T[i-1]-T[i])/Dx+k*A*(T[i+1]-T[i])/Dx+A*Dx*q``_rad*alpha*exp(-alpha*x[i])=0 
end 
 
An energy balance on node 1 located at the upper surface is shown in Figure 2. 
 

 
Figure 2: Energy balance on the upper edge control volume 

 
The energy balance for node 1 is: 
 
 0conv bottomq q g+ + =  (5) 
 
Substituting rate equations into Eq. (5) leads to: 
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The corresponding energy balance for node N located at the lower surface is: 
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"upper edge" 
h*A*(T_a-T[1])+k*A*(T[2]-T[1])/Dx+A*Dx*q``_rad*alpha*exp(-alpha*x[1])/2=0 
 
"lower edge" 
h*A*(T_a-T[N])+k*A*(T[N-1]-T[N])/Dx+A*Dx*q``_rad*alpha*exp(-alpha*x[N])/2=0 
 



The temperature distribution in the lens is shown in Figure 3. 
 

 
Figure 3: Temperature as a function of position in the lens 

 
b.) Plot some characteristic of your solution as a function of the number of nodes to show that 

you are using a sufficient number of nodes. 
 
The maximum temperature in the lens is obtained using the Max command in EES: 
 
T_max=MAX(T[1..N])         "maximum temperature in lens" 
 
The maximum temperature and number of nodes are placed in a parametric table; the number of 
nodes is varied and the results are shown in Figure 4. 
 



 
Figure 4: Maximum temperature as a function of the number of nodes 

 
c.) Think of a sanity check that you can use to gain confidence in your model; that is, can you 

change some input parameter and show that the solution behaves as you would expect.  
Support your answer with a plot. 

 
As the lens conductivity becomes very large, the temperature rise within the lens should be 
reduced.  Figure 3 illustrates the predicted result when the conductivity is increased by a factor 
of 10, to 15 W/m-K. 
 
d.) Plot the maximum lens temperature as a function of the heat transfer coefficient, h .   
 
Figure 5 illustrates the maximum temperature in the lens as a function of the heat transfer 
coefficient. 
 



 
Figure 5: Maximum temperature as a function of the heat transfer coefficient 

 


