Problem 1.4-4: Storing Hay in a Barn

If you bale hay without allowing it to dry sufficiently then the hay bales will contain a lot of
water. Besides making the bales heavy and therefore difficult to put in the barn, the water in the
hay bails causes an exothermic chemical reaction to occur within the bale (i.e., the hay is
rotting). The chemical reaction proceeds at a rate that is related to temperature and the bales may
be thermally isolated (they are placed in a barn and surrounded by other hay bales); as a result,
the hay can become very hot and even start a barn fire. Figure P1.4-4 illustrates a cross-section
of a barn wall with hay stacked against it.
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Figure P1.4-4: Barn wall with hay.

The air within the barn is maintained at T, = 20°C and the heat transfer coefficient between the
air and the inner surface of the hay is h,,, = 15 W/m?K. The outside air is at T,y = -5°C with

hyow = 45 W/m?-K. Neglect radiation from the surfaces in this problem. The barn wall is

composed of wood (ky, = 0.11 W/m-K) and is th, = 1 cm thick. The hay has been stacked L =5
m thick against the wall. Hay is a composite structure composed of plant fiber and air.

However, hay can be modeled as a single material with an effective conductivity k, = 0.05 W/m-
K. The volumetric generation of the hay due to the chemical reaction is given by:
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where T is temperature in K.

a.) Develop a numerical model that can predict the temperature distribution within the hay.

The input information is entered in EES and a function is used to define the volumetric
generation:

$UnitSystem SI MASS RAD PA K J
$TABSTOPS 0.20.40.6 0.8 3.5in

function gen(T)
"volumetric heat generation in wall"
“Input - T, temperature [K]"
"Output - gen, volumetric rate of heat generation [W/m*3]"



gen=1.5 [W/m"3]*sqgrt(exp(T/320 [K]))
end

"Inputs"
T_a_in=converttemp(C,K,20)
h_a_in=15 [W/m"2-K]
T_a_out=converttemp(C,K,-5)
h_a_out=45 [W/m"2-K]
k_w=0.11 [W/m-K]

th_w=1.0 [cm]*convert(cm,m)
L=5.0 [m]

k_h=0.05 [W/m-K]

A =1[m"2]

"temperature of air within barn"
"internal heat transfer coefficient"
"temperature of air outside barn"
"external heat transfer coefficient"
"conductivity of barn wall"

"barn wall thickness"

"thickness of hay"

"conductivity of hay"

"per unit area of wall"

Nodes are distributed uniformly throughout the computational domain (which consists only of
the hay, not the barn wall), the location of each node (x;) is:

_ =9,
xi_(N_l)L i=1.N (1)

where N is the number of nodes used for the simulation. The distance between adjacent nodes
(AX) is:

L
AX=—— )
N-1
"Setup grid"
N=10 [] "number of nodes"
duplicate i=1,N
X[i]=(i-1)*L/(N-1) "position of each node"
end
Deltax=L/(N-1) "distance between adjacent nodes"

A control volume is defined around each node and an energy balance is written for each control
volume. The control volume for an arbitrary, internal node (i.e., a node that is not placed on the
edge of the hay) experiences conduction heat transfer passing through the internal surface (g, ).

conduction heat transfer passing through the external surface (g, ), and heat generation within

the control volume (g ). A steady-state energy balance for the control volume is shown in Fig. 2
and leads to:

qLHS + qRHS +0= 0 (3)
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Figure 2: An internal control volume

Each of the terms in the energy balance in Eqg. (3) must be modeled using a rate equation.
Conduction through the inner surface is driven by the temperature difference between nodes i-1
and i through the material that lies between these nodes.

ko A(T,—T;)

x (4)

Qs =

where A is the area of the wall (assumed to be 1 m?, corresponding to doing the problem on a per
unit area of wall basis). The conduction into the outer surface is:

k. A(T.,-T
Uris :% 5)

The generation is the product of the volume of the control volume and the volumetric generation
rate, which is approximately:

g = 97 AAX (6)

S m

where " must be evaluated at the nodal temperature T;. Substituting Eqgs. (4) through (6) into
Eq. (3) leads to:

k. A(T_,-T) k, A(T,-T
h ( i-1 ')+ h ( i+l ')+g§'_'AAX=O fori=2...(N-1) (7)
AX AX '

Figure 3 illustrates the control volume associated with the node that is placed on the outer
surface of the hay (i.e., node N).
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Figure 3: Control volume for node N located on hay outer surface

The energy balance for the control volume associated with node N is:

Qs +9+G,, =0

where the conduction term is:

ko A(Ty,—Ty)

Ouys = Ax

the generation term is:

AX
% — o m A_ ,
g =209, 5

(8)

©)

(10)

(note the factor of 2 corresponding to half the volume), and the heat transfer to the external air is:

q _ (Ta,out _TN )
o RW + Rconv,out
where
R = th,
k, A
and
R 1

conv,out = h

A

a,out

Substituting Egs. (9) through (11) into Eq. (8) leads to:

(11)

(12)

(13)



kh A(TNfl _TN ) o
A
Ax + Oy,

ng (Ta,out _TN)
2 R,+R

W conv,out

-0 (14)

A similar procedure applied to the control volume associated with node 1 leads to:

kK AT,-T) ., Ax
%"' gT1A7+ IF]a,in A(Ta,in _Tl) =0 (15)

Equations (7), (14), and (15) represent N equations in an equal number of unknowns; the solution
of these equations provides the numerical solution.

"Internal control volumes"
duplicate i=2,(N-1)
k_h*A*(T[i-1]-T[i])/Deltax+k_h*A*(T[i+1]-T[i])/Deltax+gen(T[i])*A*Deltax=0

end
R_w=th_w/(k_w*A) "conduction resistance of barn wall"
R_conv_out=1/(h_a_out*A) "convection resistance to external air"
k_h*A*(T[N-1]-T[N])/Deltax+gen(T[N])*A*Deltax/2+(T_a_out-T[N])/(R_w+R_conv_out)=0
"Node N"
k_h*A*(T[2]-T[1])/Deltax+gen(T[1])*A*Deltax/2+h_a_in*A*(T_a_in-T[1])=0
"Node 1"

If the EES program is solved then the temperature distribution will be placed in the Arrays
window.

b.) Prepare a plot that shows the temperature distribution as a function of position in the hay.
The information in the Arrays table is used to prepare the plot shown in Figure 4.

475

450

425

400

375

350

Temperature (K)

325

300

275

250

0 0.5 1 1.5 2 25 3 3.5 4 45 5
Position (m)
Figure 4: Temperature as a function of position in the wall.



c.) Prepare a plot that shows that you are using a sufficient number of nodes in your numerical
solution.

The most relevant result of the calculation is the maximum temperature within the wall.
T_max=MAX(T[1..N]) "Maximum temperature in the wall"
Comment out the number of nodes assignment:

{N=10 [-]}

and prepare a parametric table that contains N and T_max (Figure 5).

Table 1 |
D l N ji Tmax j
1.8 [l
Run 1 2 2935
Run 2 5 469.3
Run 3 10 466 2
Run 4 20 466 8
Run 5 a0 4667
Run B 100 406 8
Run 7 200 466,89
Run g S00 466.8

Figure 5: Parametric table

The information in the parametric table is used to create Figure 6 which shows the maximum
temperature as a function of the number of nodes; Figure 6 suggests that 50 nodes should be used
to obtain a numerically convergent solution.
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Figure 6: Predicted maximum temperature as a function of the number of nodes.



d.) Verify that your solution is correct by comparing it with an analytical solution in an
appropriate limit. Prepare a plot that overlays your numerical solution and the analytical

solution in this limit.

There are a few limits; the easiest one would be to turn the generation off (i.e., set it to zero).
Alternatively, set the generation rate to a constant value (e.g., 1 W/m®) and obtain the analytical

solution. Modify the function:

function gen(T)
"volumetric heat generation in wall"
“Input - T, temperature [K]"
"Output - gen, volumetric rate of heat generation [W/m”3]"

gen=1.0 [W/m"3] {1.5 [W/m"3]*sqrt(exp(T/320 [K]))}

end

The general solution for a plane wall subjected to a constant generation rate was provided in

Table 3-1:
T=-3 xycx+C,
2k,
The boundary condition at x = L is:
T - T
_kh Ad—T _ ( x=L a,out)
dX x=L RW + Rconv,out

where the temperature gradient can also be obtained from Table 3-1:

dT < m s m

— :{—g—x+Cl} -9 L+C,

dX x=L I(h x=L I(h
and

TX_L:{—g—x2+Clx+C2} :—g—L2+ClL+C2
2k, L 2k,

"Analytical solution for constant generation”
g _dot=gen(300 [K]) "obtain the rate of generation”
-k_h*A*dTdx_L=(T_L-T_a_ out)/(R_w+R_conv_out) "boundary condition at x=L"
dTdx_L=-g" " _dot*L/k_h+C 1 "temperature gradient at x=L"
T L=-g _dot*L"2/(2*k_h)+C_1*L+C 2 "temperature at x=L"

The boundary condition at x = 0 is:

(16)

(17)

(18)

(19)



dT
h AT . -T ,)=-k A— 20
a,in ( a,in xfo) h dx o ( )
where the temperature gradient can also be obtained from Table 3-1:
a9 -c (21)
dx |, K, o
and
T, =| -3 x2+C,x+C,| =C, (22)
2k, 0
h_a in*A*(T_a_in-T_0)=-k_h*A*dTdx_0 "boundary condition at x=0"
dTdx_0=C 1 "temperature gradient at x=0"
T 0=C 2 "temperature at x=0"

Solving the problem shows that C; = 45.0 K/m and C, = 293.3 K. The solution at each node is
obtained:

duplicate i=1,N
T_an[i]=-g " _dot*x[i]*2/(2*k_h)+C_1*x[i]+C_2
end

Figure 7 illustrates the analytical and numerical solutions and shows that they agree.

350

3405
3305
3205
3105

300}

Temperature (K)

290(

2801 ® numerical solution

1 —analytical solution
2701 1 1 1

260"

0o 05 1 15 2 25 3 35 4 45 5
Position (m)

s m

Figure 7: Numerical and analytical solutions in the limit that g~ is constant.



Temperatures above Trre= 200°F are considered to be a fire hazard and temperatures above Ty =
140°F will result in a degradation of the hay to the point where it is not usable.

e.) What is the maximum allowable thickness of hay (Lmax) based on keeping the maximum
temperature below Tye?

You can either manually adjust L until the variable Tyax is equal to Trire Or Simply set Tpax and
comment out the assignment of the variable L and let EES automatically determine the correct
value (note that you need to return the generation function to its original state).

{L=5.0 [m]} "thickness of hay"
T_fire=converttemp(F,K,200) "combustion temperature”
T_max=T_fire

Which leads to Liyax = 3.615 m.

f.) If L = Lmax from (e) then how much of the hay will remain usable (what percent of the hay is
lost to heat degradation)?

Figure 8 illustrates the temperature distribution for L = 3.615 m and shows the extent of the
region of the heat damaged hay.
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Figure 8: Temperature distribution for L = 3.615 m.

The region of usable hay extends from 0 to 0.63 m and from 2.73 m to 3.62 m. Therefore, only
43% of the hay will be useable when it is removed from the bar. Note that simple calculations
like this can be done easily using the Calculator function in EES (select Calculator from the
Windows menu). The calculator environment includes all of the variables from the last run of
EES. Therefore, typing ?L returns 3.615 (Figure 9).
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Figure 9: Calculator window.

To calculate the efficiency of the storage process, use the Calculator window as shown in Figure
10.

[Reocuotor ER=h
Hlusing an equal sign e.g.  Mewhar=xey -
| To evaluate an expression, enter ? as the first character, e, 02

|Fress the ENTER key after entering each line.
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Figure 10: Calculator window.




