Problem 1.8-8
Figure P1.8-8 illustrates a triangular fin with a circular cross-section.
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Figure P1.8-5: Fin on an evaporator.

The fin is surrounded by fluid at 7., with heat transfer coefficient # . The base of the fin is at T,
and the fin conductivity is .
a.) Derive the governing differential equation and the boundary conditions for the problem.

The x-coordinate is defined as starting from the tip of the fin and moving to the base. The cross-
sectional area is therefore:
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and the perimeter (assuming that L >> D) is:
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A differential energy balance leads to:
qx = q.x+dx + q.conv (3)
The rate of conduction and convection are:
dT
| =—k A — 4
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Goomn = Zper(T -T, )dx (5)

Substituting Egs. (1), (2), (4), and (5) into Eq. (3) and expanding the x+dx term leads to:
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Simplifying:

where

The boundary conditions are:
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T_, =T,

x=L

()

(8)

©)

(10)

b.) Normalize the governing differential equation and the boundary conditions. This process
should lead to the identification of a dimensionless fin parameter that governs the solution.

Identify the physical significance of this parameter.
Dimensionless position and temperature difference are defined:
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Substituting Egs. (11) and (12) into Eq. (7) leads to:
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is the dimensionless parameter identified by the process. The dimensionless parameter is
nominally equal to the ratio of the resistance to conduction along the fin (R...s) to the resistance
to convection from the fin surface (R.om):
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The normalized boundary conditions are:
6._, must be bounded (19)
01 =1 (20)
c.) Solve the differential equation subject to the boundary conditions.
The differential equation:
d| _,db 2\ <A
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is homogeneous and a form of the Bessel's equation:
i(x” ﬁj +c?x' =0 (22)
dx dx

where p =2, ¢ = m~L,ands=1. The parameter s - p + 2 is 1; therefore the solution parameters
are:

n= =-1 (23)
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n 1-2 1
r_—__= 25
a 2 2 (25)

The solution is therefore:

Bessell (—1, 2m \/Z);%)
NE

The same solution can be identified in Maple:

BesselK(—l,szZ x%)

0=C
' Ji

(26)

+C,

> restart;
> assume(m2L,positive);
> ODE:=diff(x"2*diff(q(x),x),x)-m2L*x*q(x)=0;

2
ODE :=2x (afi q(x)) i {;iz q(x)] -m2L~xq(x)=0

> gs:=dsolve(ODE);

. _CI Bessell(1, 2 /m2L~ +/x) _C2 BesselK(1, 2/ m2L~ +/x)
gs =q(x)= +
Al X A/ X

Note that Bessell(—1,x) is equal to Bessell(1,x) and so Maple has identified the same solution
that we found manually. The boundary condition:

6._, must be bounded (27)

requires that C, in Eq. (26) must be zero. To see this, take the limit of the second term as x¥ goes
to zero.

> limit(BesselK(-1,x)/x,x=0);

Therefore:

Bessell (—1, 2m \/Z;C%)
Ji

0=C, (28)

The second boundary condition:
O =1 (29)

leads to:



1=C, Bessell (—1, 2mL ) (30)
Substituting Eq. (30) into Eq. (28) leads to:

Bessell (—1,2mﬁ x%)
Bessell(—l,Zm\/Z)\/}

0= (31)

d.) Prepare a plot of dimensionless temperature as a function of dimensionless position for
various values of the remaining dimensionless parameter, identified in (b).

The solution is programmed in EES:

"P1.8-8"
$UnitSystem SI MASS RAD PA K J
$TABSTOPS 0.20.40.60.83.5in

msqrtL=10 [-] "fin parameter"
theta bar=Bessell(-1,2*msqrtL*sqrt(x_hat))/(Bessell(-1,2*msqrtL)*sqrt(x_hat)) "temperature solution

and used to generate Figure 2.
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Figure 2: Dimensionless temperature as a function of dimensionless position for various values of the fin
parameter.

e.) The fin efficiency is defined as the ratio of the heat transfer into the base of the fin to the heat
transfer that would occur if the entire fin were isothermal and at the base temperature (i.e., if
the fin material were infinitely conductive). Develop an equation for the fin efficiency and
plot the fin efficiency as a function of the dimensionless fin parameter identified in (b).

The fin heat transfer rate is:
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The fin efficiency is therefore:
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which can be simplified to:
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Substituting Eq. (31) into Eq. (35) leads to:
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The derivative in Eq. (36) is evaluated in Maple:
> restart;
> eval(diff(Bessell(-1,2*msqrtL*sqgrt(x))/sqrt(x),x),x=1);
1 Bessell(1, 2 msqrtL) 1
(Bessell( 0, 2 msqrtL) — > msqriL ) msqrtL — > Bessell(1, 2 msqrtL)

> simplify(%);
Bessell(0, 2 msqgrtL) msqrtL — Bessell(1, 2 msqrtL)

Therefore, the fin efficiency is:

Z[Bessell(O,me/Z)mx/Z— Bessell(l, 2m\/2)}

Bessell(—l, 2m\/Z)m2L

nﬁn =

eta_fin=2*(Bessell(0,2*msqrtL)*msqgrtL-Bessell(1,2*msqrtL))/(msqrtL"2*Bessell(-1,2*msqrtL))
"fin efficiency"

(32)

(33)

(34)

(35)

(36)

(37)



Figure 3 illustrates the fin efficiency as a function of the fin parameter mA/L .
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