
Problem 1.6-5 
A cylindrical bracket that is L = 4 cm long with diameter D = 5 mm extends between a wall at TH 
= 100°C (at x= 0) and a wall at TC  = 20°C (at x= L).  The conductivity of the bracket is k = 25 
W/m2-K.  The cylinder is surrounded by gas at T∞ = 200°C and the heat transfer coefficient is 
h = 250 W/m2-K. 
a.) Is an extended surface approximation appropriate for this problem?  Justify your answer. 
 
The inputs are entered in EES: 
 
$UnitSystem SI MASS RAD PA  K J 
$TABSTOPS   0.2 0.4 0.6 0.8 3.5 in 
 
"Inputs" 
D=5 [mm]*convert(mm,m) "diameter of strut" 
L=4 [cm]*convert(cm,m) "length of strut" 
k=25 [W/m-K]  "conductivity of strut" 
h_bar=250 [W/m^2-K] "heat transfer coefficient" 
T_H=converttemp(C,K,100 [C]) "hot end temperature" 
T_C=converttemp(C,K,20 [C]) "cold end temperature" 
T_infinity=converttemp(C,K,200 [C]) "ambient temperature" 
 
The Biot number is: 
 

 h DBi
k

=  (1) 

 
Bi=h_bar*D/k "Biot number" 
 
which leads to Bi = 0.05, justifying the extended surface approximation. 
 
b.) Assume that your answer to (a) was yes.  Develop an analytical model in EES.  Plot the 

temperature as a function of position within the bracket. 
 
The development of the governing differential equation and the derivation of the general solution 
proceeds as discussed in Section 1.6.2 and leads to: 
 
 ( ) ( )1 2exp expT C m x C m x T∞= + − +  (2) 
 
where C1 and C2 are undetermined constants and m is the fin constant: 
 

 
c

per hm
k A

=  (3) 

 
where per is the perimeter of the bracket and Ac is the cross-sectional area of the bracket. 
 
 per Dπ=  (4) 



 

 
2

4c
DA π=  (5) 

 
per=pi*D   "perimeter" 
A_c=pi*D^2/4  "cross-sectional area" 
m=sqrt(per*h_bar/(k*A_c)) "fin constant" 
 
The boundary conditions at x = 0 and x = L lead to: 
 
 1 2HT C C T∞= + +  (6) 
 
 ( ) ( )1 2exp expCT C mL C mL T∞= + − +  (7) 
 
Equations (6) and (7) are entered in EES in order to determine C1 and C2: 
 
T_H=C_1+C_2+T_infinity "boundary condition at x=0" 
T_C=C_1*exp(m*L)+C_2*exp(-m*L)+T_infinity "boundary condition at x=L" 
 
and the solution is entered in EES: 
 
x=0 [m]   "axial position" 
T=C_1*exp(m*x)+C_2*exp(-m*x)+T_infinity "solution" 
T_degC=converttemp(K,C,T) "in C" 
 
Figure 1 illustrates the temperature as a function of position in the bracket. 
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Figure 1: Temperature as a function of position for various values of the heat transfer coefficient. 

 
c.) Overlay on your plot from (b) the temperature as a function of position with h = 2.5, 25 and 

2500 W/m2-K.  Explain the shape of your plots. 
 



The requested plots are shown in Figure 1.  As the heat transfer coefficient increases, the 
resistance between the bracket and the surrounding gas: 
 

 1
convR

h per L
=  (8) 

 
diminishes while the resistance to conduction along the bracket: 
 

 cond
c

LR
k A

=  (9) 

 
does not change. 
 
R_cond=L/(k*A_c) "conduction resistance from T_H to T_C" 
R_conv=1/(h_bar*per*L) "convection resistance from surface to ambient" 
R_cond\R_conv=R_cond/R_conv "ratio of conduction to convection resistances" 
 
At h = 2500 W/m2-K, Rcond/Rconv = 128 and therefore the bracket material very quickly 
equilibrates with the gas (see Figure 1).  At h = 2.5 W/m2-K, Rcond/Rconv = 0.128 and therefore 
convection is not very important and the bracket material temperature distribution is nearly linear 
(i.e., the situation is close to conduction through a plane wall). 
 
d.) Plot the heat transfer from the wall at TH into the bracket (i.e., the heat transfer into the 

bracket at x = 0) as a function of h .  Explain the shape of your plot. 
 
The heat transfer into the bracket at x = 0 is: 
 

 
0

H c
x

dTq k A
dx =

⎛ ⎞= − ⎜ ⎟
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 (10) 

 
Substituting Eq. (2) into Eq. (10) leads to: 
 
 ( )1 2H cq k A mC mC= − −  (11) 
 
q_dot_H=-k*(m*C_1-m*C_2)*A_c "heat transfer rate at x=0" 
 
Figure 2 illustrates the rate of heat transfer as a function of h  and shows that as h approaches 
zero the rate of heat transfer approaches a constant value, consistent with conduction through a 
plane wall: 
 

 ( ), 0
c

H CH h

k Aq T T
L→ = −  (12) 

 



As h becomes large, the heat transfer is reduced and eventually changes sign as heat is 
transferred into the wall from the warmer gas. 
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Figure 2: Heat transfer from hot wall as a function of the heat transfer coefficient. 

 
 
 


