Problem 1.7-3 (1-15 in text): Material Processing
Figure P1.7-3 illustrates a material processing system.
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Figure P1.7-3: Material processing system.

Material is extruded and enters the oven at T;, = 300 K with velocity u = 0.75 m/s. The material
has velocity u = 0.75 m/s and diameter D = 5 cm. The conductivity of the material is k = 40
W/m-K and the thermal diffusivity is &= 0.001 m%s.

In order to precisely control the temperature of the material, the oven wall is placed very close to
the outer diameter of the extruded material and the oven wall temperature distribution is
carefully controlled. The gap between the oven wall and the material is th = 0.6 mm and the
oven-to-material gap is filled with gas that has conductivity ky = 0.03 W/m-K. Radiation can be
neglected in favor of convection through the gas from the oven wall to the material. For this
situation, the heat flux experienced by the material surface can be approximately modeled
according to:
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where T,, and T are the oven wall and material temperatures at that position. The oven wall
temperature varies with position x according to:

TW =Tf _(Tf _Tw,O)eXp(_LiJ

C

where Ty is the temperature of the wall at the inlet (at x = 0), Tr = 1000 K is the temperature of
the wall far from the inlet, and L. is a characteristic length that dictates how quickly the oven
wall temperature approaches Ts. Initially, assume that T, o = 500 K, Tf = 1000 K, and L, = 1 m.
Assume that the oven can be approximated as being infinitely long.

a.) Is an extended surface model appropriate for this problem?

The inputs are entered in EES:

$UnNitSystem SI MASS DEG PA CJ



$Tabstops 0.2 0.4 0.6 0.8 3.5

k=40 [W/m-K] "conductivity"

u=0.75 [m/s] "velocity"

T_f=1000 [K] "wall temperature far from the inlet"

T_w_0=500 [K] "wall temperature at the inlet"

L _c=1[m] "characteristic length which oven wall approaches T_f"
T_in=300 [K] "inlet temperature"

alpha=0.001 [m"2/s] "thermal diffusivity"

k_g=0.03 [W/m-K] "gas conductivity"

th=0.6 [mm]*convert(mm,m) "oven-to-material gap thickness"

D=5 [cm]*convert(cm,m) "diameter"

The Biot number is the ratio of the resistance that is neglected (internal conduction) to the
resistance that is considered (conduction across the gap):
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Bi=(k_g/th)*D/(2*k) "Biot number"

which leads to Bi = 0.031. This is sufficiently less than 1 to justify an extended surface model.

b.) Assume that your answer to (a) was yes. Develop an analytical solution that can be used to
predict the temperature of the material as a function of x.

An energy balance on a control volume differential for a differential (in x) segment of the
material is shown in Figure P1.7-3-2.

kg
o Per dx(T-T.)

|
=
(o), o g
ax ) dx 0 .o

Figure P1.7-3-2: Energy balance on a differential control volume.

The energy balance suggested by Figure P1.7-3-2 is:
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where c is the specific heat capacity, A. is the cross-sectional area and per is the perimeter of the
material:
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per =z D (4)
A_c=pi*D"2/4 "cro_ss-sectional area"
per=pi*D "perimeter"
Expanding the terms in Eg. (2) and simplifying:
Ozpuﬂci—l—kﬂz: +It(—;’]per(T—TW) (5)

Rearranging Eq. (5) and dividing through by k A. leads to:
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Substituting the wall temperature variation into Eq. (6) leads to:
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m=sqrt(4*k_g/(th*k*D)) "fin parameter"

The boundary conditions are the inlet temperature:
Tx:O =Tin (9)
and the temperature must approach T; as x approaches infinity:

T.,.,=T; (10)

The solution is broken into a homogeneous and particular component:

T=T,+T, (11)

and substituted into Eq. (7):
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The solution to the homogeneous differential equation is:
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The particular solution is obtained by the method of undetermined coefficients; the assumed
form of the particular solution is:

T, =C,exp [Lij +C, (14)
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and substituted into the particular differential equation:
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Equation (15) provides one equation for Cs that is obtained by considering the exponential terms:

C, = o) (16)

and another equation for C,4 that is obtained by considering the constant terms:
C,=T, (17)

Substituting Egs. (13), (14), (16), and (17) leads to:
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The constants C; and C, are obtained by considering the boundary conditions. Substituting Eqg.
(18) into Eq. (10) leads to:
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which can only be true if C; = 0. Therefore:
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C 2=T _in-T_f-m”2*(T_f-T_w_0)/(1/L_c"2+ul/(alpha*L_c)-m”2) "boundary condition at x=0"

The solution for the material temperature and the wall temperature are entered in EES:

x=0.5 [m] "position”
T=C_2*exp(((u-sqrt(u"2+4*alpha”2*m”2))/(2*alpha))*x)+m”2*(T_f-T_w_0)*&

exp(-x/L_c)/(1/L_c 2+u/(alpha*L_c)-m"2)+T _f "temperature of the material"
T w=T _f-(T_f-T_w_0)*exp(-x/L_c) "wall temperature"

c.) Plot the temperature of the material and the temperature of the wall as a function of position
for 0 < x <20 m. Plot the temperature gradient experienced by the material as a function of
position for 0 <x <20 m.

Figure P1.7-3-3 illustrates the temperature of the material and the wall as a function of position.
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Figure P1.7-3-3: Temperature of the material and the wall as a function of position.

The temperature gradient is evaluated by differentiating Eq. (20):
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dTdx=C_2*((u-sqrt(u"2+4*alpha”"2*m”2))/(2*alpha))*exp(((u-sqrt(u*2+4*alpha”2*m”2))/(2*alpha))*x) &
-m"2%(T_f-T_w_0)*exp(-x/L_c)/(1/L_c"2+ul/(alpha*L_c)-m”2)/L_c "temperature gradient"

Figure P1.7-3-4 illustrates the temperature gradient as a function of position.
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Figure P1.7-3-4: Temperature gradient in the material as a function of position.

The parameter L. can be controlled in order to control the maximum temperature gradient
experienced by the material as it moves through the oven.

d.) Prepare a plot showing the maximum temperature gradient as a function of L.. Overlay on
your plot the distance required to heat the material to T, = 800 K (Lp). [If the maximum
temperature gradient that is allowed is 60 K/m then what is the appropriate value of L. and
the corresponding value of L.

The value L, is obtained:



800 [K]
C_2*exp(((u-sqgrt(u2+4*alpha”2*m”2))/(2*alpha))*L_p)+&
m~2*(T_f-T_w_0)*exp(-L_p/L_c)/(1/L_c 2+u/(alpha*L_c)-m"2)+T _f

Tp
Tp
which leads to L, = 10.18 m.

The maximum temperature gradient can be obtained by using EES' optimization routines. Setup
a parametric table that includes the variables L_c, x, dTdx, L_p, and L_c. The value of L_c that
is set in the Equations window is commented out and the values of L_c in the table are varied
from 0.1 to 5 m. Min/Max Table is selected from the Calculate menu. The value of dTdx is
maximized by varying x with bounds from 0 to some large value. The maximum temperature
gradient and value of L, are shown Figure P1.7-3-5 as a function of L.. Figure P1.7-3-5 indicates
that L should be equal to 1.8 m in order to control the temperature gradient, which leads to L, =
11 m.
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Figure P1.7-3-5: Maximum temperature gradient and L, as a function of L..



