
Problem 1.8-4: Circular Fin 
Figure P1.8-4 shows a typical fin design that is fabricated by attaching a thin washer to the outer 
radius of a tube.  The inner and outer radii of the fin are rin and rout, respectively.  The thickness 
of the fin is th and the fin material has conductivity, k.  The fin is surrounded by fluid at T∞ and 
the average heat transfer coefficient is h .  The base of the fin is maintained at Tb and the tip is 
adiabatic. 
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Figure P1.8-4: Circular fin. 

 
Determine an analytical solution for the temperature distribution in the fin and the fin efficiency.   
 
The differential control volume shown in Figure 2 can be used to derive the governing equation. 
 

 
Figure 2: Differential control volume. 

 
An energy balance for the control volume is: 
 
 r r dr convq q q+= +   
 
or 
 

 0 conv
dq dr q
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= +   

 
The conduction and convection terms are: 
 



 2 dTq k r th
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π= −   

 
 ( )4convq r dr h T Tπ ∞= −   
 
Combining these equations leads to: 
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which can be simplified to: 
 

 2 2d dT r h r hr T T
dr dr k th k th ∞
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The solution is divided into a homogeneous and particular component: 
 
 h pT T T= +  
 
which leads to: 
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The solution to the particular differential equation: 
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is 
 
 pT T∞=  
 
The homogeneous differential equation is: 
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where m is the fin parameter, defined as:  
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Equation (1) is a form of Bessel’s equation: 
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where (by comparing Eqs. (1) and (2)),  p= 1, c = m, and s = 1.  Referring to the flow chart 
presented in Section 1.8.4, the value of s-p+2 is equal to 2 and therefore the solution parameters 
n and a must be computed: 
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The last term in Eq. (1) is negative and therefore the solution to Eq. (1) is given by: 
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or 
 
 ( ) ( )1 2BesselI 0, BesselK 0,hT C m r C m r= +   
 
The solution to the governing differential equation is: 
 
 ( ) ( )1 2BesselI 0, BesselK 0,T C m r C m r T∞= + +  (3)  
 
Note that Maple would provide this information as well:   
              
> restart; 
> ODE:=diff(r*diff(T(r),r),r)-m^2*r*T(r)=-m^2*r*T_infinity; 

 := ODE  =  +  − ⎛
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> Ts:=dsolve(ODE); 
 := Ts  = ( )T r  +  + ( )BesselI ,0 m r _C2 ( )BesselK ,0 m r _C1 T_infinity  

              
The boundary conditions must be used to obtain the constants C1 and C2.  The base temperature 
is specified: 
 



 
inr r bT T= =   

 
or: 
 
  ( ) ( )1 2BesselI 0, BesselK 0, bC m r C m r T T∞+ + =  (4) 
 
The tip of the fin is adiabatic: 
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or 
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out outr r r r

d dC m r C m r
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Using the rules for differentiating Bessel functions presented in Section 1.8.4 leads to: 
 
 ( ) ( )1 2Bessel_I 1, Bessel_K 1, 0out outC m m r C m m r− =  (5) 
 
The boundary condition equations, Eqs. (4) and (5), can be obtained using Maple: 
              
> BC1:=rhs(eval(Ts,r=r_in))=T_b; 

 := BC1  =  +  + ( )BesselI ,0 m r_in _C2 ( )BesselK ,0 m r_in _C1 T_infinity T_b  
> BC2:=rhs(eval(diff(Ts,r),r=r_out))=0; 

 := BC2  =  − ( )BesselI ,1 m r_out m _C2 ( )BesselK ,1 m r_out m _C1 0  

 
These equations can be copied into EES in order to obtain the solution for arbitrary conditions: 
              
"Boundary conditions" 
theta_b = C_1*BesselI(0, m*r_tube)+C_2*BesselK(0, m*r_tube) 
 0 = C_1*BesselI(1, m*r_fin)*m-C_2*BesselK(1, m*r_fin)*m 
 
"Temperature distribution" 
theta = C_1*BesselI(0, m*r)+C_2*BesselK(0, m*r) 
              
Given arbitrary values of the variables T_b, T_infinity, m, r_in, and r_out, the EES code above 
will provide the temperature distribution.   
 
It is convenient to solve for the two constants explicitly and substitute them into the temperature 
distribution; we can let Maple accomplish this process and avoid the algebra.  The first step is to 
solve the two boundary conditions equations simultaneously to obtain the unknown constants; 
this is done using the solve command in Maple where the first argument is the set of equations 
(BC1 and BC2) and the second are the arguments to be solved for (_C1 and _C2): 
              



> constants:=solve({BC1,BC2},{_C1,_C2}); 

constants  = _C2 ( )BesselK ,1 m r_out ( )−  + T_infinity T_b
 + ( )BesselK ,1 m r_out ( )BesselI ,0 m r_in ( )BesselK ,0 m r_in (BesselI{ := 

 = _C1 ( )BesselI ,1 m r_out ( )−  + T_infinity T_b
 + ( )BesselK ,1 m r_out ( )BesselI ,0 m r_in ( )BesselK ,0 m r_in (BesselI ,1 m r_o,

}

 

             
These equations for the constants can be substituted into the solution using the eval command, 
where the first argument is the base expression and the second contains the sub-expressions that 
must be substituted into the base expression: 
              
> Ts:=eval(Ts,constants); 

Ts ( )T r ( )BesselI ,0 m r ( )BesselK ,1 m r_out ( )−  + T_infinity T_b
 + ( )BesselK ,1 m r_out ( )BesselI ,0 m r_in ( )BesselK ,0 m r_in (BesselI ,1 m r_ =  := 

( )BesselK ,0 m r ( )BesselI ,1 m r_out ( )−  + T_infinity T_b
 + ( )BesselK ,1 m r_out ( )BesselI ,0 m r_in ( )BesselK ,0 m r_in ( )BesselI ,1 m r_out + 

T_infinity + 

 

 
which can be copied into EES in place of the 3 original equations: 
              
"Explicit solution" 
T = BesselI(0,m*r)*BesselK(1,m*r_out)*(-T_infinity+T_b)/(BesselK(1,m*r_out)*BesselI(0,m*r_in)+& 
 BesselK(0,m*r_in)*BesselI(1,m*r_out))+BesselK(0,m*r)*BesselI(1,m*r_out)*(-T_infinity+T_b)& 
 /(BesselK(1,m*r_out)*BesselI(0,m*r_in)+BesselK(0,m*r_in)*BesselI(1,m*r_out))+T_infinity   
 
So the temperature distribution through the circular fin is given by: 
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The heat transfer rate to the base of the fin, finq , is obtained by applying Fourier’s law to 
evaluate the conduction heat transfer rate at the base of the fin: 
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Substituting Eq. (6) into Eq. (7) leads to: 
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Using the rules for differentiating Bessel functions, presented in Section 1.8.4, to evaluate the 
derivatives leads to: 
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Maple achieves the same result: 
              
> q_dot_fin:=-k*2*pi*r_in*th*rhs(eval(diff(Ts,r),r=r_in)); 
q_dot_fin 2 k π r_in th ( )BesselI ,1 m r_in m ( )BesselK ,1 m r_out T_infinity−(− := 

( )BesselI ,1 m r_in m ( )BesselK ,1 m r_out T_b + 
( )BesselK ,1 m r_in m ( )BesselI ,1 m r_out T_infinity + 
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which can be cut and pasted directly into EES: 
              
"Fin heat transfer rate" 
q_dot_fin=-2*k*pi*r_in*th*(-BesselI(1,m*r_in)*m*BesselK(1,m*r_out)*T_infinity+& 
 BesselI(1,m*r_in)*m*BesselK(1,m*r_out)*T_b+BesselK(1,m*r_in)*m*BesselI(1,m*r_out)& 
 *T_infinity-BesselK(1,m*r_in)*m*BesselI(1,m*r_out)*T_b)/(BesselK(1,m*r_out)*& 
 BesselI(0,m*r_in)+BesselK(0,m*r_in)*BesselI(1,m*r_out))      
 
Finally, the fin efficiency (ηfin) is the ratio of the heat transfer rate to the heat transfer rate from 
an isothermal fin at the base temperature: 
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Substituting Eq. (8) into the definition of the fin efficiency leads to: 
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which can be expressed as a function of the tube-to-fin radius ratio (rin/rout) and the product of 
the fin parameter and the fin radius (m rout). 
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The fin efficiency for a circular fin is shown in Figure 3 as a function of m rout for various values 
of rin/rout.  Note that the fin radius can be corrected approximately to account for convection from 
the tip by adding the half-thickness of the fin; as previously discussed in Section 1.6.5, this 
correction is small and rarely worth considering. 
 

 
Figure 3: Fin efficiency of a circular fin as a function of m rout for various values of rin/rout. 

 


