
Problem 1.8-6: Cryosurgical Probe 
As an alternative to surgery, cancer tumors may be destroyed by placing cylindrically-shaped 
cryoprobes into the body, as shown in Figure P1.8-6.  The probe surface is cooled causing the 
temperature of the surrounding tissue to drop to a lethal level, killing the tumor. 
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Figure 1.8-6: Cryosurgical probe. 

 
The probe radius is rp = 5 mm and the heat flux at the surface of the probe (leaving the tissue) is 

pq′′  = 30000 W/m2.  The tissue has conductivity k = 0.6 W/m-K.  The blood flow through the 
tissue results in a volumetric heating effect ( g′′′ ) that is proportional to the difference between 
the local temperature and the blood temperature, Tb = 37ºC: 
 
 ( )bg T Tβ′′′ = −  
 
where β = 40000 W/m3-K.  The temperature of the tissue far from the probe is Tb.  Assume that 
the temperature distribution is 1-D and steady-state. 
a.) Develop an analytical model that can be used to predict the temperature distribution in the 

tissue.  Implement your solution in EES and prepare a plot of the temperature distribution as 
a function of radius. 

 
The differential control volume shown in Figure 2 can be used to derive the governing equation. 
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Figure 2: Differential control volume. 

 
An energy balance for the control volume is: 
 
 r r drg q q ++ =  (1)  



 
or 
 

 dqg dr
dr

=  (2) 

 
The conduction and blood perfusion terms are: 
 

 2 dTq k r L
dr

π= −  (3) 

 
 ( )2 bg r dr L T Tπ β= −  (4) 
 
Combining these equations leads to: 
 

 ( )2 2b
d dTr dr L T T k r L dr
dr dr

π β π⎡ ⎤− = −⎢ ⎥⎣ ⎦
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which can be simplified to: 
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d dTr r T r T
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The solution is divided into a homogeneous and particular component: 
 
 h pT T T= +  (7) 
 
which leads to: 
  

 
( ) ( )h p

h p b

d T Td r r T T r T
dr dr k k

β β⎡ ⎤+
− + = −⎢ ⎥

⎢ ⎥⎣ ⎦
 (8)  

 
or 
  

 

0 for homogeneous ODE whatever is left is particular ODE
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The solution to the particular differential equation: 
 

 p
p b

dTd r r T r T
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is 
 
 p bT T=  (11) 
 
The homogeneous differential equation is: 
 

 0h
h

dTd r r T
dr dr k

β⎡ ⎤ − =⎢ ⎥⎣ ⎦
 (12) 

 
Equation (12) is a form of Bessel’s equation: 
 

 2 0p sd dx c x
dx dx

θ θ⎛ ⎞ ± =⎜ ⎟
⎝ ⎠

 (13) 

 
where, by comparing Eqs. (12) and (13),  p = 1, c = / kβ , and s = 1.  Referring to the flow 
chart presented in Section 1.8, the value of s-p+2 is equal to 2 and therefore the solution 
parameters n and a must be computed: 
 

 1 1 0
1 1 2

n −
= =

− +
 (14)  

 

 2 1
1 1 2

a = =
− +

 (15)  

 
The last term in Eq. (12) is negative; therefore the homogeneous solution is given by: 
 

 ( ) ( )1 1

1 2BesselI , BesselK ,
n n

a a a a
hT C x n c a x C x n c a x= +  (16)  

 
or, for this problem: 
 

 1 2BesselI 0, BesselK 0,hT C r C r
k k
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Substituting Eqs. (11) and (17) into Eq. (7) leads to: 
 

 1 2BesselI 0, BesselK 0, bT C r C r T
k k
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Note that Maple could be used to identify this solution as well; it is necessary to specify that the 
parameters β and k are positive so that Maple identifies the solution in terms of modified Bessel 
functions (as opposed to Bessel functions with complex arguments):   
       
> restart; 
> assume(beta>0); 
> assume(k>0); 
> ODE:=diff(r*diff(T(r),r),r)-r*beta*T(r)/k=-r*beta*T_b/k; 
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> Ts:=dsolve(ODE); 
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The boundary conditions must be used to obtain the constants C1 and C2.  As radius approaches 
infinity, the body temperature is recovered: 
 
 r bT T→∞ =  (19)  
 
Substituting Eq. (18) into Eq. (19) leads to: 
 

 1 2BesselI 0, BesselK 0,r b bT C C T T
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β β
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or 
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The 0th order modified Bessel function of the 1st kind, BesselI(0,x), approaches ∞ as x → ∞ and 
0th order modified Bessel function of the 2nd kind, BesselK(0,x), approaches 0 as x → ∞: 
 
> limit(BesselI(0,x),x=infinity); 

∞  
> limit(BesselK(0,x),x=infinity); 

0  

 
Therefore, C1 must be zero and Eq. (18) becomes: 
 

 2 BesselK 0, bT C r T
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The heat flux into the probe (i.e., in the negative r-direction) at r = rp is specified, providing the 
additional boundary condition: 
 

 
p
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r r
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dr =
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Substituting Eq. (22) into Eq. (23) leads to: 
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Using the rules for differentiating Bessel functions presented in Section 1.8.4 leads to: 
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which leads to: 
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Substituting Eq. (26) into Eq. (22) leads to: 
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The solution can also be identified using Maple.  Substitute C2 = 0 into the previously obtained 
solution: 
 
> Ts:=subs(_C2=0,Ts); 
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Obtain an equation for the boundary condition associated with Eq. (23): 
 
> BC:=k*rhs(eval(diff(Ts,r),r=r_p))=qf_p; 
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Substitute the solution to the boundary condition equation into the general solution: 
 
> subs(_C1=solve(BC,_C1),Ts); 
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The solution is implemented in EES.  The inputs are entered: 
 
$UnitSystem SI MASS RAD PA  K J 
$TABSTOPS   0.2 0.4 0.6 0.8 3.5 in 
 
"Inputs" 
r_p_mm=5 [mm] "probe radius, in mm" 
r_p=r_p_mm*convert(mm,m) "probe radius" 
q``_p=30000 [W/m^2] "probe heat flux" 
k=0.6 [W/m-K]  "tissue conductivity" 
beta=40000 [W/m^3-K] "blood perfusion effect" 
T_b=converttemp(C,K,37[C]) "blood temperature" 
 
Equation (27) is implemented in EES; the radius and temperature are converted to mm and ºC, 
respectively. 
 
T=T_b-q``_p*BesselK(0,r*sqrt(beta/k))/(sqrt(beta*k)*BesselK(1,r_p*sqrt(beta/k)))  "solution" 
r_mm=r*convert(m,mm) "radius" 
T_C=converttemp(K,C,T) "in C" 
 
Figure 3 illustrates the temperature as a function of radius. 
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Figure 3: Temperature in tissue as a function of radius. 

 



b.) The lethal temperature for cell death is Tlethal = -30ºC.  Plot the radius of the cryolesion (i.e., 
the kill radius - all tissue inside of this radius is dead) as a function of the heat flux provided 
by the cryoprobe. 

 
The temperature is set to the lethal temperature.  The variable r must be constrained to be 
positive in the Variable Information Window to avoid convergence errors.  The kill radius as a 
function of heat flux is shown in Figure 4. 
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Figure 4: Kill radius as a function of the cryoprobe heat flux. 

 
 
 
 
 
 
 
 


