
Problem 1.7-1: Furnace Manipulator Arm  
You are designing a manipulator for use within a furnace.  The arm must penetrate the side of the 
furnace, as shown in Figure P1.7-1.  The arm has a diameter of D = 0.8 cm and protrudes Li = 0.5 
m into the furnace, terminating in the actuator that can be assumed to be adiabatic.  The portion 
of the arm in the manipulator is exposed to flame and hot gas; these effects can be represented by 
a heat flux of 4 21x10 W/mq′′ =  and convection to gas at Tf = 500°C with heat transfer coefficient 

fh = 50 W/m2-K.  The conductivity of the arm material is k = 150 W/m-K.  The arm outside of 
the furnace has the same diameter and conductivity, but is exposed to air at Ta = 20°C with heat 
transfer coefficient ah  = 30 W/m2-K.  The length of the arm outside of the furnace is Lo = 0.75 m 
and this portion of the arm terminates in the motor system which can also be considered to be 
adiabatic. 
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Figure P1.7-1: Manipulator arm for a furnace. 

 
a.) Is an extended surface model appropriate for this problem?  Justify your answer. 
 
The inputs are entered in EES: 
 
$UnitSystem SI MASS RAD PA  K J 
$TABSTOPS   0.2 0.4 0.6 0.8 3.5 in 
 
"Inputs" 
qf_rad=1e4 [W/m^2] "radiant heat flux on arm" 
T_f=converttemp(C,K,500) "air temperature within furnace" 
h_f=50 [W/m^2-K]  
 "heat transfer coefficient within furnace" 
L_i=0.5 [m]  "manipulator arm length within furnace" 
D=0.8 [cm]*convert(cm,m) "diameter of arm" 
k=150 [W/m-K] "arm conductivity" 
T_a=converttemp(C,K,20) "air temperature outside of furnace" 
h_a=30 [W/m^2-K]  
 "heat transfer coefficient outside of furnace" 
L_o=0.75 [m]          
      "manipulator arm length outside of furnace" 
 
The Biot number based on the heat transfer coefficient within the furnace will be largest because 
the highest heat transfer coefficient exists within the furnace: 
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Bi_i=(D/2)*h_f/k     "Biot number based on internal heat transfer coefficient" 
 
which leads to Bii = 0.013 which is sufficiently less than unity to allow an extended surface 
approximation model to be used. 
 
b.) Develop an analytical model of the manipulator arm; implement your model in EES.  Plot the 

temperature as a function of axial position x (see Figure P1.7-1) for -Lo < x < Li.   
 
The differential equation that governs the temperature within the furnace (Ti) is derived using the 
differential energy balance shown in Figure 2. 
 

 
Figure 2: Differential energy balance on manipulator arm within furnace. 

 
The energy balance suggested by Figure 2 is: 
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Substituting Fourier's law: 
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into Eq. (2) leads to: 
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or 
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The solution to the ordinary differential equation is divided into its homogeneous (ui) and 
particular (vi) parts: 
 
 i i iT u v= +  (6) 
 
and substituted into Eq. (5) in order to obtain: 
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The solution to the homogeneous equation: 
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is 
 
 ( ) ( )1 2exp expi i iu C m x C m x= + −  (9) 
 
 
where  
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The solution to the particular equation: 
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So the general solution for Ti is: 
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A similar set of steps leads to the general solution for the temperature outside of the furnace, To, 
which is valid for -Lo < x < 0: 
 
 ( ) ( )3 4exp expo o o aT C m x C m x T= + − +  (14) 
 
where 
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The fin constants, mi and mo, are computed: 
 
m_i=sqrt(4*h_f/(k*D)) "fin constant inside furnace" 
m_o=sqrt(4*h_a/(k*D))         "fin constant outside of furnace" 
 
The boundary conditions for the solution must be obtained at the edges of each of the 
computational domains (i.e., at x= -Lo, x=0, and x=Li). 
 
The two ends of the arm are adiabatic; therefore: 
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The temperature at the interface between the two computational domains must be continuous: 
 
 , 0 , 0i x o xT T= ==  (18) 
 
Also, the rate of energy transferred from the furnace to the ambient air must be the same 
regardless of which side of the interface between the computational domains you are on; that is, 
an interface balance at x = 0 between the two computational domains leads to: 
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Substituting Eqs. (13) and (14) into Eqs. (16) through (19) leads to 4 equations for the constants 
of integration C1 and C4: 
 
 ( ) ( )1 2exp exp 0i i i i i iC m m L C m m L− − =  (20) 
 
 ( ) ( )3 4exp expo o o o o oC m m L C m m L− −  (21) 
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These are entered in EES: 
 
C_1*m_i*exp(m_i*L_i)-C_2*m_i*exp(-m_i*L_i)=0 "adiabatic end at L_i" 
C_3*m_o*exp(-m_o*L_o)-C_4*m_o*exp(m_o*L_o)=0 "adiabatic end at -L_o" 
C_1+C_2+T_f+qf_rad/h_f=C_3+C_4+T_a "continuity of temperatures at x=0" 
C_1*m_i-C_2*m_i=C_3*m_o-C_4*m_o       "energy balance at x=0" 
 
The solutions are entered; note that the variable x_bar is varied from 0 to 1 within a parametric 
table which corresponds to x_i going from 0 to L_i and x_o going from 0 to -L_o. 
 
x_i=x_bar*L_i 
x_o=-x_bar*L_o 
T_i=C_1*exp(m_i*x_i)+C_2*exp(-m_i*x_i)+T_f+qf_rad/h_f 
T_o=C_3*exp(m_o*x_o)+C_4*exp(-m_o*x_o)+T_a 
 
The temperature distribution in the arm is shown in Figure 3. 
 

 
Figure 3: Temperature distribution. 



 
c.)  Prepare a plot showing the maximum temperature at the end of the arm (within the furnace) 

as a function of the internal length of the arm (Li) for various values of the diameter (D). 
 

 
Figure 4: Maximum temperature as a function of the arm length within the furnace for various values of the 
diameter. 

 


