
Problem 1.5-2 (1-12 in text): Mass Flow Meter (re-visited) 
Reconsider the mass flow meter that was investigated in Problem 1.3-9 (1-9 in text).  Assume 
that the conductivity of the material that is used to make the test section is not actually constant 
as was assumed in Problem 1.3-9 (1-9 in text) but rather depends on temperature according to: 
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a.) Develop a numerical model of the mass flow meter using MATLAB.  Plot the temperature as 

a function of radial position for the conditions shown in Figure P1.3-9 (P1-9 in text) with the 
temperature-dependent conductivity. 

 
The inputs are entered in a MATLAB function that requires as an input the number of nodes (N): 
 
function[r,T_C]=P1p5_2(N) 
  
    r_out=0.0254;   %outer radius of test section (m) 
    r_in=0.01905;   %inner radius of test section (m) 
    h_bar_out=10;   %external convection coefficient (W/m^2-K) 
    T_infinity=293.2; %air temperature (K) 
    T_f=291.2;      %fluid temperature (K) 
    gv=1e7;         %rate of generation (W/m^3) 
    m_dot=0.75;     %mass flow rate (kg/s) 
    th_ins=0.00635; %thickness of the insulation (m) 
    k_ins=1.5;      %insulation conductivity (W/m-K) 
    L=0.0762;       %length of the test section (m) 
    C=2500;         %constant for convection relationship 
 
The convection coefficient on the internal surface is computed: 
 
    h_bar_in=C*m_dot^0.8;   %internal convection coefficient 
 
A function is defined that returns the conductivity of the material: 
 
function[k]=k_t(T) 
    %conductivity of the material 
    % 
    %Inputs: 
    % T: temperature (K) 
    % 
    %Outputs: 
    % k: conductivity (W/m-K) 
     
    k=10+0.035*(T-300); 
end 
 
A uniform distribution of nodes is used, the radial location of each node (ri) is: 
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where N is the number of nodes.  The radial distance between adjacent nodes (Δr) is: 
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    DELTAr=(r_out-r_in)/(N-1);   %distance between adjacent nodes (m) 
    for i=1:N 
        r(i)=r_in+(r_out-r_in)*(i-1)/(N-1); %position of each node (m) 
    end 
 
The system of equations is placed in matrix format.   
 
 A X b=  (3) 
 
The most logical technique for ordering the unknown temperatures in the vector X  is:  
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Equation (4) shows that the unknown temperature at node i (i.e., Ti) corresponds to element i of 
vector X  (i.e., Xi).  The most logical technique for placing the equations into the A  matrix is: 
 

 

row 1 = control volume 1 equation
row 2 = control volume 2 equation

...
row  = control volume  equation
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In Eq. (5), the equation for control volume i is placed into row i.   
 
An energy balance is carried out on a control volume surrounding each node.  For node 1, placed 
at the inner surface (Figure P1.5-2-1): 
 
 , 0conv in outerq q g+ + =  (6)  
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Figure P1.5-2-1: Control volume around node 1. 

 
The rate equation for convection is: 
 
 ( ), 12conv in in in fq h r L T Tπ= −  (7) 
 
The rate equation for conduction is: 
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The rate equation for generation is: 
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Substituting Eqs. (7) through (9) into Eq. (6) leads to: 
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Equation (10) is rearranged to identify the coefficients that multiply each unknown temperature: 
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An energy balance on an internal node is shown in Figure P1.5-2-2: 
 
 0inner outerq q g+ + =  (12) 
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Figure P1.5-2-2: Control volume around internal node i. 

 



The rate equations for conduction are: 
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The rate equation for generation is: 
 
 2 ig r r L gπ ′′′= Δ  (15) 
 
Substituting Eqs. (13) through (15) into Eq. (12) for all of the internal nodes leads to: 
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Equation (16) is rearranged to identify the coefficients that multiply each unknown temperature: 
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An energy balance on node N placed on the outer surface is shown in Figure P1.5-2-3: 
 
 0inner airq q g+ + =  (18) 
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Figure P1.5-2-3: Control volume around internal node N. 

 
The rate equation for the heat transfer with the air is: 
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    R_ins=log((r_out+th_ins)/r_out)/(2*pi*L*k_ins);   
 %resistance to conduction through insulation 
    R_conv_out=1/(2*pi*(r_out+th_ins)*L*h_bar_out);  
 %resistance to convection from the outside surface of the insulation 
 
The rate equation for conduction is: 
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The rate equation for generation is: 
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Substituting Eqs. (19), (22), and (23) into Eq. (18) leads to: 
 

 ( )
( ) ( )

( )1

1
/ 2

,

2 2 0
2 2N N

N N N
out outT T T

ins conv out

T T T Tr rk r L r L g
r R R

π π
−

− ∞
= +

− −Δ Δ⎛ ⎞ ′′′− + + =⎜ ⎟ Δ +⎝ ⎠
 (24) 

 
Equation (24) is rearranged to identify the coefficients that multiply each unknown temperature: 
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Equations (11), (17), and (25) are N equations in the N unknown temperatures.  Because they are 
non-linear, they must be linearized and a successive substitution method used.  A guess 
temperature distribution ( îT ) is assumed: 
 
    %initial guess for temperature distribution 
    for i=1:N 
        Tg(i,1)=T_f;  
    end 
 
The matrix A  is defined as a sparse matrix with at most 3N nonzero entries: 
 
    %initialize A and b 
    A=spalloc(N,N,3*N); 
    b=zeros(N,1); 
  
The solution is placed within a while loop that terminates when the error between the solution 
and the guess is less than some tolerance: 
 
    err=999;        %initial value for error (K), must be larger than tol 
    tol=0.01;       %tolerance for convergence (K) 
    while(err>tol) 
 
The equation for node 1, Eq. (11), is linearized by using the guess temperature distribution to 
compute the conductivity: 
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        A(1,1)=-h_bar_in*2*pi*r_in*L-...        
  k_t((Tg(1)+Tg(2))/2)*2*pi*(r_in+DELTAr/2)*L/DELTAr; 
        A(1,2)=k_t((Tg(1)+Tg(2))/2)*2*pi*(r_in+DELTAr/2)*L/DELTAr; 
        b(1)=-pi*r_in*DELTAr*L*gv-h_bar_in*2*pi*r_in*L*T_f; 
 
The equations for the internal nodes, Eq. (17), is also linearized: 
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        for i=2:(N-1) 
            A(i,i)=-k_t((Tg(i)+Tg(i-1))/2)*2*pi*(r(i)-DELTAr/2)*L/DELTAr... 
   -k_t((Tg(i)+Tg(i+1))/2)*2*pi*(r(i)+DELTAr/2)*L/DELTAr; 
            A(i,i-1)=k_t((Tg(i)+Tg(i-1))/2)*2*pi*(r(i)-DELTAr/2)*L/DELTAr; 
            A(i,i+1)=k_t((Tg(i)+Tg(i+1))/2)*2*pi*(r(i)+DELTAr/2)*L/DELTAr; 
            b(i)=-2*pi*r(i)*DELTAr*L*gv; 
        end 
 
The equation for node N, Eq. (25), is linearized: 
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        A(N,N)=-k_t((Tg(N)+Tg(N-1))/2)*2*pi*(r_in-DELTAr/2)*L/DELTAr-... 
   1/(R_ins+R_conv_out); 
        A(N,N-1)=k_t((Tg(N)+Tg(N-1))/2)*2*pi*(r_in-DELTAr/2)*L/DELTAr; 
        b(N)=-pi*r_out*DELTAr*L*gv-T_infinity/(R_ins+R_conv_out); 
 
The solution is obtained: 
 
        X=A\b; 
        T=X; 
 
and used to compute the error between the assumed and calculated solutions is obtained: 
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        err=sqrt(sum((T-Tg).^2)/N) %compute rms error 
 
The calculated solution becomes the guess value for the next iteration: 
 
        Tg=T;   %reset guess values used to setup A and b 
    end 
 
The solution is converted to degrees Celsius: 
 
    T_C=T-273.2;    %convert to C     
end 
 
The solution is illustrated in Figure P1.5-2-4. 
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Figure P1.5-2-4: Temperature as a function of radius. 

 
b.) Verify that your numerical solution limits to the analytical solution from Problem 1.3-9 (1-9 

in text) in the limit that the conductivity is constant. 
 
The conductivity function is modified temporarily so that it returns a constant value: 
 
function[k]=k_t(T) 
    %conductivity of the material 
    % 
    %Inputs: 
    % T: temperature (K) 
    % 
    %Outputs: 
    % k: conductivity (W/m-K) 
     
    k=10;%+0.035*(T-300); 
end 
 
Figure P1.5-2-5 illustrates the temperature distribution predicted by the numerical and analytical 
solutions in the limit that k is constant. 
 



0.019 0.02 0.021 0.022 0.023 0.024 0.025 0.026
50

55

60

65

70

75

80

Radius (m)
Te

m
pe

ra
tu

re
 (°

C
)

analytical modelanalytical model
numerical modelnumerical model

 
Figure P1.5-2-5: Temperature as a function of radius predicted by the analytical and numerical models in the 
limit that k is constant. 
 
 
 


