Problem 1.5-2 (1-12 in text): Mass Flow Meter (re-visited)

Reconsider the mass flow meter that was investigated in Problem 1.3-9 (1-9 in text). Assume
that the conductivity of the material that is used to make the test section is not actually constant
as was assumed in Problem 1.3-9 (1-9 in text) but rather depends on temperature according to:

k =1oﬂ+o.035{ W }(T ~300[K])
m-K K

a.) Develop a numerical model of the mass flow meter using MATLAB. Plot the temperature as
a function of radial position for the conditions shown in Figure P1.3-9 (P1-9 in text) with the
temperature-dependent conductivity.

The inputs are entered in a MATLAB function that requires as an input the number of nodes (N):
function[r,T_C]=P1p5_2(N)

r_out=0.0254; %outer radius of test section (m)
r_in=0.01905; %inner radius of test section (m)
h_bar_out=10; %external convection coefficient (W/m"2-K)
T _infinity=293.2; %air temperature (K)

T £=291.2; %Fluid temperature (K)

gv=le7; %rate of generation (W/m"3)
m_dot=0.75; %mass Flow rate (kg/s)
th_ins=0.00635; %thickness of the insulation (m)
k_ins=1.5; %insulation conductivity (W/m-K)
L=0.0762; %length of the test section (m)
C=2500; %constant for convection relationship

The convection coefficient on the internal surface is computed:

h_bar_in=C*m_dot"0.8; %internal convection coefficient

A function is defined that returns the conductivity of the material:

function[k]=k_t(T)
%conductivity of the material
%
%lnputs:
% T: temperature (K)
%
%Outputs:
% k: conductivity (W/m-K)

k=10+0.035*(T-300) ;
end

A uniform distribution of nodes is used, the radial location of each node (r;) is:



(i-1) (r, —1,) for i=1.N (1)

where N is the number of nodes. The radial distance between adjacent nodes (Ar) is:

Ar = M )
(N-1)
DELTAr=(r_out-r_in)/(N-1); %distance between adjacent nodes (m)
for 1=1:N
r(i)=r_in+(r_out-r_in)*(i-1)/(N-1); %position of each node (m)
end

The system of equations is placed in matrix format.

AX =b (3)

The most logical technique for ordering the unknown temperatures in the vector X is:

(4)

Equation (4) shows that the unknown temperature at node i (i.e., T;) corresponds to element i of
vector X (i.e., X). The most logical technique for placing the equations into the A matrix is:

row 1 = control volume 1 equation
row 2 = control volume 2 equation

B T (5)

row N = control volume N equation

1>

In Eq. (5), the equation for control volume i is placed into row i.

An energy balance is carried out on a control volume surrounding each node. For node 1, placed
at the inner surface (Figure P1.5-2-1):

qconv,in + qouter + g = O (6)
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Figure P1.5-2-1: Control volume around node 1.

The rate equation for convection is:

= Hin 27Z-r|n L(Tf _Tl) (7)

qconv,in

The rate equation for conduction is:

Qoser = Kr 1712 zﬂ(rm +%) L (TZA_rTl) ®)
The rate equation for generation is:
g=27, 5 Lg" ©)
Substituting Eqgs. (7) through (9) into Eqg. (6) leads to:
h 270, L(T =T)+ K rr Zﬂ[l’m +%) L%+7rl’m ArLg"=0 (10)

Equation (10) is rearranged to identify the coefficients that multiply each unknown temperature:
= Ar) L Ar) L
T |:_hin 2mn, L= kT:(T1+T2)/2 Zﬂ[ﬁn +7JE} +T, |:kT—(T1+T2)/2 27[(rin +7j§j| = (1)
—zr, ArLg"—h 27zr LT,
An energy balance on an internal node is shown in Figure P1.5-2-2:

qinner + qouter + g = O (12)
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Figure P1.5-2-2: Control volume around internal node i.



The rate equations for conduction are:

. AI’ (Ti+ _Ti )
Goveer = kT:(Ti +Tia)/2 Zﬂ(rm +7j ) 1Ar (13)
. Ar (Ti— _Ti )
Uinner = |(T:(Ti+TH)/2 2ﬂ-[rin _?) L 1Ar (14)

The rate equation for generation is:

g=2zrArLg" (15)

Substituting Egs. (13) through (15) into Eq. (12) for all of the internal nodes leads to:

Ty =T, T -7
Zﬁ(nn—ﬁjLM-kkTT_ . /227[(rin +£j|_w
2 Ar _( it |+1) 2 Ar (16)
+27ArLg"=0 fori:2..(N—1)

Equation (16) is rearranged to identify the coefficients that multiply each unknown temperature:

Ar) L Ar ) L
T |:_kT=(Ti+Ti1)/2 2”(']n _?jE_ kT:(Ti+TM)/2 Zﬂ(ﬁn +7JE}

Ar) L Ar) L
+Ti—l |:_kT—(Ti +Tiy)/2 Zﬂ(rin _7)5} +Ti+1 |:_kT—(Ti+TM)/2 27[(% + ?j E} (17)

=—2zrArLg" fori=2.(N-1)
An energy balance on node N placed on the outer surface is shown in Figure P1.5-2-3:

qinner + qair + g = O (18)
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Figure P1.5-2-3: Control volume around internal node N.

The rate equation for the heat transfer with the air is:

, (T, -Ty)
Qair _(RT

Ins conv,out )

(19)



where

e

r-ou
Rins = 2 P L kt (20)

R

1
convout 9 z(r, +th,)Lh (21)

out Ins out
R_ins=log((r_out+th_ins)/r_out)/(2*pi*L*k_ins);

%resistance to conduction through insulation
R _conv_out=1/(2*pi*(r_out+th_ins)*L*h_bar_out);

%resistance to convection from the outside surface of the insulation

The rate equation for conduction is:

: A (Tyu—Ty)
Girer = kT:(TN o)l 2 ﬂ(rom —7j L% (22)
The rate equation for generation is:
g=271,, 5 Lg" @)

Substituting Egs. (19), (22), and (23) into Eg. (18) leads to:

(TN—l _TN)+ (Too _TN)
Ar (Rps + R

Ins conv,out )

Ar Ar "
Ke (1, 470012 27z(rout —7J L +27 Ty, > Lg"=0 (24)

Equation (24) is rearranged to identify the coefficients that multiply each unknown temperature:

Ar) L 1
Ty {—kT—(TN +Tya)/2 27 ( Fout — 7JE - m}
ins conv,out

Ar) L
+Tyy |:_kT=(TN +Ty)/2 2 ﬂ'(rout - ?J E} (25)

TOO
(R. +R

ins conv,out )

s m
=-7zr,ArLg" -



Equations (11), (17), and (25) are N equations in the N unknown temperatures. Because they are
non-linear, they must be linearized and a successive substitution method used. A guess

temperature distribution (ﬂ) is assumed:

%initial guess for temperature distribution
for i=1:N

Tg(i,1)=T_F;
end

The matrix A is defined as a sparse matrix with at most 3N nonzero entries:

%initialize A and b
A=spalloc(N,N,3*N);
b=zeros(N,1);

The solution is placed within a while loop that terminates when the error between the solution
and the guess is less than some tolerance:

err=999; %initial value for error (K), must be larger than tol
tol=0.01; %tolerance for convergence (K)
while(err>tol)

The equation for node 1, Eqg. (11), is linearized by using the guess temperature distribution to
compute the conductivity:

= Ar) L Ar) L
Tl |:_hin 2 L, L- kT:('I:l+'I:2)/2 Zﬁ(rm +7j§}+1—2 |:k_|__(_|:1+_|:2)/2 272'(rm +?)E:| =

Ay Ao (26)
—zr ArLg"—h 27r LT,
by

A(1,1)=-h_bar_in*2*pi*r_in*L-...
k_t((Tg(1)+Tg(2))/2)*2*pi*(r_in+DELTAr/2)*L/DELTAr ;
A(1,2)=k_t((Tg(1)+Tg(2))/2)*2*pi*(r_in+DELTAr/2)*L/DELTAr;

b(1)=-pi*r_in*DELTAr*L*gv-h_bar_in*2*pi*r_in*L*T_T;

The equations for the internal nodes, Eq. (17), is also linearized:



Ar) L Ar) L
T |:_kT_(Ti+Ti1)/2 Zﬂ[rin _7JE_ kT:(Ti+TM)/2 Zﬂ(ﬁn +?]E}

A
ryL Ar ) L
+Tiy kT:(Ti+TH)/2 2 (rm __j_ Tia _kT:(Ti+TM)/2 Zﬁ(rm + j_ (27)
2 JAr 2
Aﬁ,i—l AI 1
=27t ArLg" fori=2.(N-1)
| S ———

b

for i1=2:(N-1)
ACi, 1D)=-k_t((Tg()+Tg(i-1))/2)*2*pi*(r(i)-DELTAr/2)*L/DELTAr. ..
-k _€((Tg(1)+Tg(i+1))/2)*2*pi*(r(i)+DELTAr/2)*L/DELTAr;
A(i,i-1)=k t((Tg(i)+Tg(i-1))/2)*2*pi*(r(i)-DELTAr/2)*L/DELTAr;
A(r,1+1)=k t((Tg(i)+Tg(i+1))/2)*2*pi*(r(i)+DELTAr/2)*L/DELTAr;
b(i)=-2*pi*r(i)*DELTAr*L*gv;
end

The equation for node N, Eq. (25), is linearized:

Ar\ L 1
Ty |:_kT—(TN +Tya)/2 Zﬁ(rout —7jg—m}
ins conv,out

AN

Ar) L
+Ty |:_kT=(TN +Tya)/2 2 ”(rout - ?) E} (28)

AN‘N—l

0

:—ﬂroutArLg'"’—(R —

conv,out )

by
AN,N)=-k_t((Tg(N)+Tg(N-1))/2)*2*pi*(r_in-DELTAr/2)*L/DELTAr-. ..
1/(R_ins+R_conv_out);

AN,N-D)=k_t((Tg(N)+Tg(N-1))/2)*2*pi*(r_in-DELTAr/2)*L/DELTAr;
b(N)=-pi*r_out*DELTAr*L*gv-T_infinity/(R_ins+R_conv_out);

The solution is obtained:

=A\b;

X
T=X;

and used to compute the error between the assumed and calculated solutions is obtained:

err = %Z(Ti T, )2 (29)



err=sqrt(sum((T-Tg) -~2)/N) %compute rms error

The calculated solution becomes the guess value for the next iteration:

Tg=T; %reset guess values used to setup A and b
end

The solution is converted to degrees Celsius:

T C=T-273.2; %convert to C
end

The solution is illustrated in Figure P1.5-2-4.
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Figure P1.5-2-4: Temperature as a function of radius.

b.) Verify that your numerical solution limits to the analytical solution from Problem 1.3-9 (1-9
in text) in the limit that the conductivity is constant.

The conductivity function is modified temporarily so that it returns a constant value:

function[k]=k_t(T)
%conductivity of the material
%
%lnputs:
% T: temperature (K)
%
%Outputs:
% k: conductivity (W/m-K)

k=10;%+0.035*(T-300) ;
end

Figure P1.5-2-5 illustrates the temperature distribution predicted by the numerical and analytical
solutions in the limit that k is constant.
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Figure P1.5-2-5: Temperature as a function of radius predicted by the analytical and numerical models in the
limit that k is constant.
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