Problem 1.7-1: Furnace Manipulator Arm

You are designing a manipulator for use within a furnace. The arm must penetrate the side of the
furnace, as shown in Figure P1.7-1. The arm has a diameter of D = 0.8 cm and protrudes L; = 0.5
m into the furnace, terminating in the actuator that can be assumed to be adiabatic. The portion
of the arm in the manipulator is exposed to flame and hot gas; these effects can be represented by

a heat flux of §” =1x10* W/m? and convection to gas at Tr = 500°C with heat transfer coefficient
h, = 50 W/m*-K. The conductivity of the arm material is k = 150 W/m-K. The arm outside of
the furnace has the same diameter and conductivity, but is exposed to air at T, = 20°C with heat
transfer coefficient h, = 30 W/m?-K. The length of the arm outside of the furnace is L, = 0.75 m

and this portion of the arm terminates in the motor system which can also be considered to be
adiabatic.
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Figure P1.7-1: Manipulator arm for a furnace.
a.) Is an extended surface model appropriate for this problem? Justify your answer.

The inputs are entered in EES:

$UNitSystem SI MASS RAD PA K J
$TABSTOPS 0.20.4 0.6 0.83.5in

"Inputs"
gf_rad=1e4 [W/m"2] “radiant heat flux on arm"
T_f=converttemp(C,K,500) "air temperature within furnace"

h_f=50 [W/m"2-K]
"heat transfer coefficient within furnace"

L_i=0.5 [m] "manipulator arm length within furnace"
D=0.8 [cm]*convert(cm,m) "diameter of arm"

k=150 [W/m-K] "arm conductivity"
T_a=converttemp(C,K,20) "air temperature outside of furnace"

h_a=30 [W/m"2-K]

"heat transfer coefficient outside of furnace"
L_0=0.75 [m]

"manipulator arm length outside of furnace"

The Biot number based on the heat transfer coefficient within the furnace will be largest because
the highest heat transfer coefficient exists within the furnace:



. Dh,
Bi. =

T o 1)

Bi_i=(D/2)*h_f/k "Biot number based on internal heat transfer coefficient"

which leads to Bi; = 0.013 which is sufficiently less than unity to allow an extended surface
approximation model to be used.

b.) Develop an analytical model of the manipulator arm; implement your model in EES. Plot the
temperature as a function of axial position x (see Figure P1.7-1) for -L, < x < L;.

The differential equation that governs the temperature within the furnace (T;) is derived using the
differential energy balance shown in Figure 2.
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Figure 2: Differential energy balance on manipulator arm within furnace.

The energy balance suggested by Figure 2 is:
% N/ o dq
qx+qrad7fDdX=qx+&dx+hfnD(Ti_Tf)dx )

Substituting Fourier's law:

D? dT,
= k= = 3
into Eq. (2) leads to:
S d T D2 dTI
Gy 7 Ddx=&{—k 7 &} dx+h, 7 D(T, =T, )dx (4)

or



2T 4h 4h
d-|2-| fTi:__f-I-f_4qrad (5)
dx* kD kD kD

The solution to the ordinary differential equation is divided into its homogeneous (u;) and
particular (v;) parts:

Ti =U; +V (6)

and substituted into Eq. (5) in order to obtain:

u. 4h 2y, 4h 4h 1"
dlil_ fui"‘d\gl_ fVi:_ fo—4qrad (7)
dx* kD dx* kD kD kD
homogeneous equation particular equation

The solution to the homogeneous equation:

du.  4h,
L— u =0 8
dx* kD ' ®)
is
u; = C,exp(m, x)+C, exp(—-m, x) 9)
where
m = an, (10)
'\ kD
The solution to the particular equation:
2y, 4h 4h i
d \2 _ v, =— f -I-f _4qrad (11)
dx* kD kD kD
IS
V=T, 4 Jrat (12)
hy

So the general solution for T; is:



T = Cyexp(m, x) +C, exp(—m, x) + T, +qh—“’ (13)

f

A similar set of steps leads to the general solution for the temperature outside of the furnace, T,
which is valid for -L, < x < 0:

T, =C,exp(m, x)+C, exp(—m, x)+T, (14)
where
4h
m = a 15

The fin constants, m; and m,, are computed:

m_i=sqrt(4*h_f/(k*D)) "fin constant inside furnace”
m_o=sqrt(4*h_a/(k*D)) "fin constant outside of furnace"

The boundary conditions for the solution must be obtained at the edges of each of the
computational domains (i.e., at x= -Lo, x=0, and x=Lj;).

The two ends of the arm are adiabatic; therefore:

dT.

il =0 16
o (16)
aT, =0 (17)
dx =1,

The temperature at the interface between the two computational domains must be continuous:
(18)

Also, the rate of energy transferred from the furnace to the ambient air must be the same
regardless of which side of the interface between the computational domains you are on; that is,
an interface balance at x = 0 between the two computational domains leads to:

dm
dx

T,
x=0 dX

(19)

x=0



Substituting Egs. (13) and (14) into Egs. (16) through (19) leads to 4 equations for the constants
of integration C; and Cy:

C,mexp(m; L;)-C, m exp(-m; L;)=0 (20)
C,m,exp(-m, L,)—-C, m exp(m, L,) (21)
C,4+C,+T, + thad —C,+C, +T, 22)
f
C¢m-C,m=Cm,-C,m, (23)
These are entered in EES:
C_1*m_i*exp(m_i*L_i)-C_2*m_i*exp(-m_i*L_i)=0 "adiabatic end at L_i"
C_3*m_o*exp(-m_o*L_0)-C_4*m_o*exp(m_o*L_0)=0 "adiabatic end at -L_0"
C_1+C_2+T_f+qf _rad/h_f=C_3+C_4+T_a "continuity of temperatures at x=0"
C_1*m_i-C_2*m_i=C_3*m_o0-C 4*m_o "energy balance at x=0"

The solutions are entered; note that the variable x_bar is varied from 0 to 1 within a parametric
table which corresponds to x_i going from 0 to L_i and x_o going from 0 to -L_o.

X_i=x_bar*L_i

X_0=-x_bar*L_o

T i=C_1*exp(m_i*x_i)+C_2*exp(-m_i*x_i)+T_f+qf rad/h_f
T_0=C_3*exp(m_o*x_0)+C_4*exp(-m_o*x_0)+T_a

The temperature distribution in the arm is shown in Figure 3.
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Figure 3: Temperature distribution.



c.) Prepare a plot showing the maximum temperature at the end of the arm (within the furnace)
as a function of the internal length of the arm (L;) for various values of the diameter (D).
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Figure 4: Maximum temperature as a function of the arm length within the furnace for various values of the
diameter.



