
Problem 1.8-2: Absorption in a Window 
Figure P1.8-2 illustrates a thin, disk-shaped window that is used to provide optical access to a 
combustion chamber.  The thickness of the window is b and the outer radius of the window is Ro.  
The window is composed of material with conductivity k and absorption coefficient α.  The 
combustion chamber side of the window is exposed to convection with hot gas at Tg and heat 
transfer coefficient h.  Convection with the air outside of the chamber can be neglected.  There is 
a radiation heat flux, radq′′ , that is incident on the combustion chamber side of the glass.  The 
amount of this radiation that is absorbed by the glass is, approximately, radq bα′′ .  The remainder 
of this radiation,  ( )1radq bα′′ − , exits the opposite surface of the glass.  The outer edge (at r = Ro) 
of the glass is held at temperature Tedge. 
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Figure P1.8-2: Disk-shaped window. 

 
You are to develop a 1-D, steady state analytical model that can predict the temperature 
distribution in the glass as a function of radial position, r.  
a.) How would you justify using a 1-D model of the glass?  What number would you calculate in 

order to verify that the temperature does not vary substantially in the x direction? 
 
The Biot number should be computed in order to justify the extended surface approximation.  
The Biot number is the ratio of conduction resistance in the axial direction to convection 
resistance from the inner surface of the window: 
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Anything within a factor of 2 of Eq. (1) would be sufficient 
 
b.) Derive the ordinary differential equation in r that must be solved.  Make sure that your 

differential equation includes the effect of conduction, convection with the gas within the 
chamber, and generation of thermal energy due to absorption. 

 
A differentially small control volume is shown in Figure 2. 
 



 
Figure 2: Differentially small control volume. 

 
The energy balance suggested by Figure 2 is: 
 
 ( )1r rad conv r dr radq q q q q bα++ + = + −  (2) 
 
Expanding the r + dr term and simplifying leads to: 
 

 ( )1rad conv rad
dqq q dr q b
dr

α+ = + −  (3) 

 
The rate equations are: 
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 ( )2conv fq h r dr T Tπ= −  (6) 
 
Substituting Eqs. (4) through (6) into Eq. (3) leads to: 
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Dividing through by (-k 2 π b dr) leads to: 
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c.) What are the boundary conditions for the ordinary differential equation that you derived in 

part (b)? 
 
At r = 0 the temperature must be finite.  At the edge, the temperature is specified: 
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d.) Solve the ordinary differential equation in order to obtain an expression for the temperature 

as a function of radius. 
 
The solution is split into its homogeneous (u) and particular (v) parts: 
 
 T u v= +  (10) 
 
The particular solution is a constant: 
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The homogeneous form of the differential equation is: 
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where 
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Equation (13) is a form of Bessel's equation: 
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where 
 
 uθ =  (16) 
 
 x r=  (17) 
 
 1p =  (18) 
 
 c m=  (19) 
 
 1s =  (20) 
 
The solution can be obtained by using the chart found in the notes: 
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so that 
 
 ( ) ( )1 2BesselI 0, BesselK 0,u C m r C m r= +  (1-24) 
 
and the solution is: 
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Because BesselK(0,0) becomes infinite, C2 = 0 and: 
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The boundary condition associated with Eq. (9) leads to: 
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so that: 
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