
Problem 1.4-4: Storing Hay in a Barn 
If you bale hay without allowing it to dry sufficiently then the hay bales will contain a lot of 
water.  Besides making the bales heavy and therefore difficult to put in the barn, the water in the 
hay bails causes an exothermic chemical reaction to occur within the bale (i.e., the hay is 
rotting).  The chemical reaction proceeds at a rate that is related to temperature and the bales may 
be thermally isolated (they are placed in a barn and surrounded by other hay bales); as a result, 
the hay can become very hot and even start a barn fire.  Figure P1.4-4 illustrates a cross-section 
of a barn wall with hay stacked against it.   
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Figure P1.4-4: Barn wall with hay. 

 
The air within the barn is maintained at Ta,in = 20°C and the heat transfer coefficient between the 
air and the inner surface of the hay is ,a inh = 15 W/m2-K.  The outside air is at Ta,out = -5°C with 

,a outh  = 45 W/m2-K.  Neglect radiation from the surfaces in this problem.  The barn wall is 
composed of wood (kw = 0.11 W/m-K) and is thw = 1 cm thick.  The hay has been stacked L = 5 
m thick against the wall.  Hay is a composite structure composed of plant fiber and air.  
However, hay can be modeled as a single material with an effective conductivity kh = 0.05 W/m-
K.  The volumetric generation of the hay due to the chemical reaction is given by: 
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where T is temperature in K.   
a.) Develop a numerical model that can predict the temperature distribution within the hay. 
 
The input information is entered in EES and a function is used to define the volumetric 
generation: 
              
$UnitSystem SI MASS RAD PA  K J 
$TABSTOPS   0.2 0.4 0.6 0.8 3.5 in 
 
function gen(T) 
 "volumetric heat generation in wall" 
 "Input - T, temperature [K]" 
 "Output - gen, volumetric rate of heat generation [W/m^3]" 



  
 gen=1.5 [W/m^3]*sqrt(exp(T/320 [K])) 
 
end 
 
"Inputs" 
T_a_in=converttemp(C,K,20) "temperature of air within barn" 
h_a_in=15 [W/m^2-K] "internal heat transfer coefficient" 
T_a_out=converttemp(C,K,-5) "temperature of air outside barn" 
h_a_out=45 [W/m^2-K] "external heat transfer coefficient" 
k_w=0.11 [W/m-K] "conductivity of barn wall" 
th_w=1.0 [cm]*convert(cm,m) "barn wall thickness" 
L=5.0 [m]   "thickness of hay" 
k_h=0.05 [W/m-K] "conductivity of hay" 
A = 1 [m^2] "per unit area of wall" 
 
Nodes are distributed uniformly throughout the computational domain (which consists only of 
the hay, not the barn wall), the location of each node (xi) is: 
 

 
( )
( 1) 1..

1i
ix L i N
N

−
= =

−
 (1) 

 
where N is the number of nodes used for the simulation.  The distance between adjacent nodes 
(Δx) is: 
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"Setup grid" 
N=10 [-]   "number of nodes" 
duplicate i=1,N 
 x[i]=(i-1)*L/(N-1) "position of each node" 
end 
Deltax=L/(N-1)       "distance between adjacent nodes" 
 
A control volume is defined around each node and an energy balance is written for each control 
volume.  The control volume for an arbitrary, internal node (i.e., a node that is not placed on the 
edge of the hay) experiences conduction heat transfer passing through the internal surface ( LHSq ), 
conduction heat transfer passing through the external surface ( RHSq ), and heat generation within 
the control volume ( g ).  A steady-state energy balance for the control volume is shown in Fig. 2 
and leads to: 
 
 0LHS RHSq q g+ + =  (3) 
 



 
Figure 2: An internal control volume 

 
Each of the terms in the energy balance in Eq. (3) must be modeled using a rate equation.  
Conduction through the inner surface is driven by the temperature difference between nodes i-1 
and i through the material that lies between these nodes.   
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where A is the area of the wall (assumed to be 1 m2, corresponding to doing the problem on a per 
unit area of wall basis).  The conduction into the outer surface is: 
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The generation is the product of the volume of the control volume and the volumetric generation 
rate, which is approximately: 
 
 

iTg g A x′′′= Δ  (6) 
 
where g′′′  must be evaluated at the nodal temperature Ti.  Substituting Eqs. (4) through (6) into 
Eq. (3) leads to:   
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Figure 3 illustrates the control volume associated with the node that is placed on the outer 
surface of the hay (i.e., node N). 
 



 
Figure 3:  Control volume for node N located on hay outer surface 

 
The energy balance for the control volume associated with node N is: 
 
 0LHS outq g q+ + =  (8) 
 
where the conduction term is: 
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the generation term is: 
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(note the factor of 2 corresponding to half the volume), and the heat transfer to the external air is: 
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Substituting Eqs. (9) through (11) into Eq. (8) leads to: 
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A similar procedure applied to the control volume associated with node 1 leads to: 
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Equations (7), (14), and (15) represent N equations in an equal number of unknowns; the solution 
of these equations provides the numerical solution.  
              
"Internal control volumes" 
duplicate i=2,(N-1) 
 k_h*A*(T[i-1]-T[i])/Deltax+k_h*A*(T[i+1]-T[i])/Deltax+gen(T[i])*A*Deltax=0 
end 
R_w=th_w/(k_w*A) "conduction resistance of barn wall" 
R_conv_out=1/(h_a_out*A) "convection resistance to external air" 
k_h*A*(T[N-1]-T[N])/Deltax+gen(T[N])*A*Deltax/2+(T_a_out-T[N])/(R_w+R_conv_out)=0 
     "Node N" 
k_h*A*(T[2]-T[1])/Deltax+gen(T[1])*A*Deltax/2+h_a_in*A*(T_a_in-T[1])=0 
        "Node 1" 
 
If the EES program is solved then the temperature distribution will be placed in the Arrays 
window.   
 
b.) Prepare a plot that shows the temperature distribution as a function of position in the hay. 
 
The information in the Arrays table is used to prepare the plot shown in Figure 4. 
 

 
Figure 4: Temperature as a function of position in the wall. 

 



c.) Prepare a plot that shows that you are using a sufficient number of nodes in your numerical 
solution. 

 
The most relevant result of the calculation is the maximum temperature within the wall.   
              
T_max=MAX(T[1..N]) "Maximum temperature in the wall" 
 
Comment out the number of nodes assignment: 
              
{N=10 [-]}   
 
and prepare a parametric table that contains N and T_max (Figure 5).   
 

 
Figure 5: Parametric table 

 
The information in the parametric table is used to create Figure 6 which shows the maximum 
temperature as a function of the number of nodes; Figure 6 suggests that 50 nodes should be used 
to obtain a numerically convergent solution. 
 

 
Figure 6: Predicted maximum temperature as a function of the number of nodes. 

 



d.) Verify that your solution is correct by comparing it with an analytical solution in an 
appropriate limit.  Prepare a plot that overlays your numerical solution and the analytical 
solution in this limit. 

 
There are a few limits; the easiest one would be to turn the generation off (i.e., set it to zero).  
Alternatively, set the generation rate to a constant value (e.g., 1 W/m3) and obtain the analytical 
solution.  Modify the function: 
              
function gen(T) 
 "volumetric heat generation in wall" 
 "Input - T, temperature [K]" 
 "Output - gen, volumetric rate of heat generation [W/m^3]" 
  
 gen=1.0 [W/m^3] {1.5 [W/m^3]*sqrt(exp(T/320 [K]))} 
 
end 
 
The general solution for a plane wall subjected to a constant generation rate was provided in 
Table 3-1: 
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The boundary condition at x = L is: 
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where the temperature gradient can also be obtained from Table 3-1: 
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and 
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"Analytical solution for constant generation" 
g```_dot=gen(300 [K]) "obtain the rate of generation" 
-k_h*A*dTdx_L=(T_L-T_a_out)/(R_w+R_conv_out) "boundary condition at x=L" 
dTdx_L=-g```_dot*L/k_h+C_1 "temperature gradient at x=L" 
T_L=-g```_dot*L^2/(2*k_h)+C_1*L+C_2 "temperature at x=L" 
 
The boundary condition at x = 0 is: 
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where the temperature gradient can also be obtained from Table 3-1: 
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and 
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h_a_in*A*(T_a_in-T_0)=-k_h*A*dTdx_0 "boundary condition at x=0" 
dTdx_0=C_1  "temperature gradient at x=0" 
T_0=C_2 "temperature at x=0" 
 
Solving the problem shows that C1 = 45.0 K/m and C2 = 293.3 K.  The solution at each node is 
obtained: 
              
duplicate i=1,N 
 T_an[i]=-g```_dot*x[i]^2/(2*k_h)+C_1*x[i]+C_2  
end 
              
Figure 7 illustrates the analytical and numerical solutions and shows that they agree. 
 

 
Figure 7: Numerical and analytical solutions in the limit that g′′′  is constant. 

 



Temperatures above Tfire= 200°F are considered to be a fire hazard and temperatures above Td = 
140°F will result in a degradation of the hay to the point where it is not usable. 
 
e.) What is the maximum allowable thickness of hay (Lmax) based on keeping the maximum 

temperature below Tfire? 
 
You can either manually adjust L until the variable Tmax is equal to Tfire or simply set Tmax and 
comment out the assignment of the variable L and let EES automatically determine the correct 
value (note that you need to return the generation function to its original state). 
              
{L=5.0 [m]}   "thickness of hay" 
T_fire=converttemp(F,K,200) "combustion temperature" 
T_max=T_fire 
 
Which leads to Lmax = 3.615 m.   
 
f.) If L = Lmax from (e) then how much of the hay will remain usable (what percent of the hay is 

lost to heat degradation)? 
 
Figure 8 illustrates the temperature distribution for L = 3.615 m and shows the extent of the 
region of the heat damaged hay.   
 

 
Figure 8: Temperature distribution for L = 3.615 m. 

 
The region of usable hay extends from 0 to 0.63 m and from 2.73 m to 3.62 m.  Therefore, only 
43% of the hay will be useable when it is removed from the bar.  Note that simple calculations 
like this can be done easily using the Calculator function in EES (select Calculator from the 
Windows menu).  The calculator environment includes all of the variables from the last run of 
EES.  Therefore, typing ?L returns 3.615 (Figure 9). 
 



 
Figure 9: Calculator window. 

 
To calculate the efficiency of the storage process, use the Calculator window as shown in Figure 
10. 
 

 
Figure 10: Calculator window. 


