Problem 1.8-5 (1-18 in text): Optimizing a Fin

Figure P1.8-5 illustrates a fin that is to be used in the evaporator of a space conditioning system
for a space-craft.
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Figure P1.8-5: Fin on an evaporator.

The fin is a plate with a triangular shape. The thickness of the plate is 4 = 1 mm and the width
of the fin at the base is W, = 1 cm. The length of the fin is L = 2 cm. The fin material has
conductivity £ = 50 W/m-K. The average heat transfer coefficient between the fin surface and
the air in the space-craft is & = 120 W/m*-K. The air is at 7., = 20°C and the base of the fin is at
T, = 10°C. Assume that the temperature distribution in the fin is 1-D in x. Neglect convection
from the edges of the fin.

a.) Obtain an analytical solution for the temperature distribution in the fin. Plot the temperature

as a function of position.

The inputs are entered in EES:

$UnitSystem SI MASS RAD PA K J
$TABSTOPS 0.20.40.60.83.5in

h_bar=120 [W/m"2-K] "average heat transfer coefficient"
k=50 [W/m-K] "conductivity"
T_infinity=converttemp(C,K,20[C]) "air material"
T_b=converttemp(C,K,10[C]) "base temperature”

th_mm=1 [mm] “fin thickness in mm"
th=th_mm*convert(mm,m) "fin thickness"

L_cm=2 [cm] "fin length in cm"
L=L_cm*convert(cm,m) "fin length"

W_b=1 [cm]*convert(cm,m) "fin base width"

The differential control volume shown in Figure P1.8-5-2 is used to derive the governing
differential equation:

qx = 6}Jcﬂbc + 6}conv (1)



Figure P1.8-5-2: Differential control volume.
The rate of conduction and convection are:
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where A, is the cross-sectional area for conduction and per is the perimeter. The width of the fin

1s a function of x:

w=w,>
L

Therefore, A, and per are:

A =W, th=
L

X
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Substituting Egs. (5) and (6) into Eq. (2) and (3) leads to:
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Substituting Egs. (7) and (8) into Eq. (1) leads to:
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where

m=sqrt(2*h_bar/(k*th)) "solution parameter"
Maple is used to identify the solution to Eq. (10):

> restart;
> ODE:=diff(x*diff(T(x),X),X)-m"2*x*T (X)=-m"2*x*T_infinity;
2

ODE = (acfic T(x)] +Xx [;;2 T(x)] —m?x T(x) =—m*x T _infinity

> Ts:=dsolve(ODE);
Ts :=T(x)=Bessell(0,mx) _C2 + BesselK(0, m x) _CI + T infinity

Therefore:
T = C, Bessell(0,mx)+C, BesselK (0,mx)+T,
The fin temperature at the tip must be bounded:

T._, =C, Bessell(0,m0)+C, BesselK (0,m0)+7, < oo

%/—J

1 )

The limit of the 0™ order modified Bessel functions as x — 0 are evaluated using Maple:

> limit(Bessell(0,m*x),x=0);

> limit(BesselK(0,m*x),x=0);

Therefore, C; must be zero:
T =C,Bessell(0,mx)+T,

The base temperature is specified; therefore:

(10)

(11)

(12)

(13)

(14)



T, = C,Bessell(0,m L)+T, (15)

SO:
T -T
) = 7,-T.) (16)
Bessell(0,m L)
Substituting Eq. (16) into Eq. (14) leads to:
Bessell( 0,
T=(T,-T,) ( mx)+Tw (17)
Bessell (0,m L)
x_bar=0.5 [-] "dimensionless position"
X=X_bar*L "position”
T=(T_b-T _infinity)*Bessell(0,m*x)/Bessell(0,m*L)+T_infinity "temperature”
T_C=converttemp(K,C,T) "in C"

Figure P1.8-5-3 illustrates the temperature as a function of position normalized by the fin length.
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Figure P1.8-5-3: Fin temperature as a function of dimensionless position.

b.) Calculate the rate of heat transfer to the fin.

The rate of heat transfer to the fin is computed according to:

) dT
Qﬁn:kVVbthg (18)
x=L

Equation (18) is evaluated using Maple:

> restart;
> T:=(T_b-T_infinity)*Bessell(0,m*x)/Bessell(0,m*L)+T _infinity;
7 (T _b—T infinity) Bessell(0, m x)
i Bessell(0, m L)

> g_dot_fin=k*W_b*th*eval(diff(T,x),x=L);

+ T infinity



kW bth(T b—T infinity) Bessell(1,m L) m
Bessell(0,m L)

q_dot fin =

Therefore:

Bessell(1,m L)
Bessell (0,m L)

G4, = kW, thm(T, -T,) (19)

g_dot_fin=k*W_b*th*(T_b-T_infinity)*m*Bessell(1,m*L)/Bessell(0,m*L) "fin heat transfer rate"

which leads to ¢ ,, =-0.196 W (the heat transfer is negative because the base temperature is less

than the ambient temperature).
c.) Determine the fin efficiency.

The fin efficiency is defined according to:

q'ﬁn
T 20
nﬁn h AS (];7 _ TOO) ( )

where A4; is the total surface area of the fin exposed to the fluid:
A=W, L (21)
Substituting Egs. (19) and (21) into Eq. (20) leads to:

_ kW, thm(T,-T,) Bessell(1,m L)

= — 22
T =, L(T,-T,) Bessell(0,mL) (22)
Substituting Eq. (11) into Eq. (22) and simplifying leads to:
_kth |27 Bessell(l,mL) 2 [thk Bessell(1,mL) 23)
Tin = h L\ kth Bessell (0,m L) AR Bessell(0,m L)
1/m
or
2Bessell (1,mL)
77()‘1‘71 = (24)
mL BesselI(O, mL)

eta_fin=2*Bessell(1,m*L)/(m*L*Bessell(0,m*L)) "fin efficiency"



which leads to 773, = 0.8178. Figure P1.8-5-4 illustrates the fin efficiency as a function of the fin
parameter mL.
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Problem P1.8-5-4: Fin efficiency as a function of the fin parameter, mL.

The fin has density p= 3000 kg/m3. The fin is installed on a base material with thickness th;, = 2

mm and density p, = 8000 kg/m’. The half-width between the gap between adjacent fins is the =

2 mm. Therefore, the volume of the base material associated with each fin is th, W), (th + 2 thy).

d.) Determine the ratio of the absolute value of the rate of heat transfer to the fin to the total
mass of material (fin and base material associated with the fin).

The additional inputs are entered in EES:

rho=3000 [kg/m"3] "density of fin material”

th_b=2 [mm]*convert(mm,m) "thickness of base material"

th_g=2 [mm]*convert(mm,m) "half-width of gap between adjacent fins"
rho_b=8000 [kg/m"3] "base material density"

The fin mass is given by:

W, L
M, = thh P (25)
The mass of the associated base material is:
M, =W, (th+2th,)th, p, (26)

The ratio of rate of the fin heat transfer to mass is:

q fin _ 4q fin 27)
M (M, +M,)

M_fin=W_b*L*th*rho/2 "fin mass"

M_b=W_b*(th+2*th_g)*th_b*rho_b "mass of base material"

g\M=abs(q_dot_fin)/(M_fin+M_b) "ratio of heat transfer to mass"



which leads to ¢,, /M =178.4 W/keg.

e.) Prepare a contour plot that shows the ratio of the heat transfer to the fin to the total mass of
material as a function of the length of the fin (L) and the fin thickness (¢4).

A parametric table is generated that contains the variables L_cm, th_mm and gq\M and has 400
rows. The value of the variable L_cm is varied from 1 cm to 10 cm every 20 rows and the value
of th_mm is varied from 0.2 mm to 2 mm in increments of 20 rows. The table is run and used to
generate the contour plot shown in Figure P1.8-5-5.
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Figure P1.8-5-5: Contours of heat transfer per mass in the parameter space of fin length and thickness.

f.) What is the optimal value of L and ¢k that maximizes the absolute value of the fin heat
transfer rate to the mass of material?

According to Figure P1.8-5-5, the optimal design is approximately L = 3.3 cm and ¢4 = 0.58 mm.
A more precise optimization can be carried out using EES' internal optimization feature.
Maximizing ¢,, /M by varying L and th leads to g, /M = 209.6 W/kg at L = 3.25 cm and th =

0.56 mm.



