
Problem 1.3-9 (1-9 in text): Mass Flow Meter 
Figure P1.3-9 illustrates a simple mass flow meter for use in an industrial refinery.  
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Figure P1.3-9: A simple mass flow meter. 

 
A flow of liquid passes through a test section consisting of an L = 3 inch section of pipe with 
inner and outer radii, rin = 0.75 inch and rout = 1.0 inch, respectively.  The test section is 
uniformly heated by electrical dissipation at a rate 7 31x10 W/mg′′′ =  and has conductivity k = 10 
W/m-K.  The pipe is surrounded with insulation that is thins = 0.25 inch thick and has 
conductivity kins = 1.5 W/m-K.  The external surface of the insulation experiences convection 
with air at T∞  = 20°C.  The heat transfer coefficient on the external surface is outh  = 20 W/m2-K.  
A thermocouple is embedded at the center of the pipe wall.  By measuring the temperature of the 
thermocouple, it is possible to infer the mass flow rate of fluid because the heat transfer 
coefficient on the inner surface of the pipe ( inh ) is strongly related to mass flow rate ( m ).  
Testing has shown that the heat transfer coefficient and mass flow rate are related according to: 
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where C= 2500 W/m2-K.  Under nominal conditions, the mass flow rate through the meter is m  
= 0.75 kg/s and the fluid temperature is Tf = 18°C.  Assume that the ends of the test section are 
insulated so that the problem is 1-D.  Neglect radiation and assume that the problem is steady-
state. 
a.) Develop an analytical model in EES that can predict the temperature distribution in the test 

section.  Plot the temperature as a function of radial position for the nominal conditions. 
 
The inputs are entered in EES: 
 
$UnitSystem SI MASS RAD PA  K J 
$TABSTOPS   0.2 0.4 0.6 0.8 3.5 in 
 
"Inputs" 
r_out=1.0 [inch]*convert(inch,m) "outer radius of measurement section" 
r_in=0.75 [inch]*convert(inch,m) "inner radius of measurement section" 
h_bar_out=20 [W/m^2-K] "external convection coefficient" 



T_infinity=converttemp(C,K,20 [C]) "ambient temperature" 
T_f=converttemp(C,K, 18 [C]) "fluid temperature" 
k=10 [W/m-K]  "conductivity" 
g```=1e7 [W/m^3] "volumetric rate of thermal energy generation" 
m_dot=0.75 [kg/s] "mass flow rate" 
th_ins=0.25 [inch]*convert(inch,m) "thickness of insulation" 
k_ins=1.5 [W/m-K] "insulation conductivity" 
L= 3 [inch]*convert(inch,m) "length of test section" 
 
The heat transfer coefficient on the internal surface is computed according to the specified mass 
flow rate: 
 
C=2500 [W/m^2-K] "constant for convection relationship" 
h_bar_in=C*(m_dot/1 [kg/s])^0.8 "internal convection coefficient" 
 
The general solution to a 1-D problem in cylindrical coordinates with constant volumetric 
thermal energy generation was provided in Table 1-3, to within the unknown constants C1 and 
C2: 
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The boundary condition at the outer edge of the test section is: 
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where Rins is the thermal resistance to conduction through the insulation (provided in Table 1-2): 
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and Rconv,out is the resistance to convection from the outer surface of the insulation: 
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R_ins=ln((r_out+th_ins)/r_out)/(2*pi*L*k_ins) "resistance to conduction through insulation" 
R_conv_out=1/(2*pi*(r_out+th_ins)*L*h_bar_out) "resistance to convection from outer surface" 
T_r_out=-g```*r_out^2/(4*k)+C_1*ln(r_out)+C_2 "temperature at outer surface of section" 
dTdr_r_out=-g```*r_out/(2*k)+C_1/r_out "temperature gradient at outer surface of section" 



-k*2*pi*r_out*L*dTdr_r_out=(T_r_out-T_infinity)/(R_ins+R_conv_out)  
 "boundary condition at r=r_out" 
 
The boundary condition at the inner edge of the test section is: 
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T_r_in=-g```*r_in^2/(4*k)+C_1*ln(r_in)+C_2 "temperature at inner surface of section" 
dTdr_r_in=-g```*r_in/(2*k)+C_1/r_in "temperature gradient at inner surface of section" 
h_bar_in*2*pi*r_in*L*(T_f-T_r_in)=-k*2*pi*r_in*L*dTdr_r_in  
 "boundary condition at r=r_in" 
 
The EES code will provide the solution to the constants C1 and C2; note that it is not possible to 
eliminate the unit warnings that are associated with the argument of the natural logarithm in Eq. 
(1).  In fact, if sufficient algebra was carried out, the equations could be placed in a form where 
the natural logarithm had a dimensionless argument. 
 
The location at which to evaluate the temperature (r) is specified in terms of a dimensionless 
radial position ( r ) that goes from 0 at the inner surface of the test section to 1 at the outer 
surface.  The temperature is evaluated using Eq. (1): 
 
r_bar=0.5 [-]  "dimensionless radial position" 
r=r_in+r_bar*(r_out-r_in) "radial position" 
T=-g```*r^2/(4*k)+C_1*ln(r)+C_2 "temperature" 
T_C=converttemp(K,C,T) "in C" 
 
Figure P1.3-9-2 illustrates the temperature as a function of radial position. 
 

0.019 0.02 0.021 0.022 0.023 0.024 0.025 0.026
50

55

60

65

70

75

80

Radius (m)

Te
m

pe
ra

tu
re

 (°
C

)

 
Figure 1.3-9-2: Temperature as a function of radius. 

 
b.) Using your model, develop a calibration curve for the meter; that is, prepare a plot of the 

mass flow rate as a function of the measured temperature at the mid-point of the pipe.  The 
range of the instrument is 0.2 kg/s to 2.0 kg/s. 

 



The dimensionless radial position is set to r =0.5, corresponding to the temperature of the center 
of the test section.  Figure 1.3-9-3 illustrates the mass flow rate through the meter as a function 
of the measured temperature. 
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Figure 1.3-9-3: Mass flow rate as a function of the temperature at the center of the pipe wall for several 

values of the fluid temperature. 
              
The meter must be robust to changes in the fluid temperature.  That is, the calibration curve 
developed in (b) must continue to be valid even as the fluid temperature changes by as much as 
10°C.   
c.) Overlay on your plot from (b) the mass flow rate as a function of the measured temperature 

for Tf = 8°C and Tf = 28°C.  Is your meter robust to changes in Tf? 
 
The calibration curves generated at Tf = 8°C and Tf = 28°C are also shown in Figure 1.3-9-3.  
Notice that the fluid temperature has a large effect on the device.  For example, if the measured 
temperature is 80°C then the mass flow rate could be anywhere from 0.45 kg/s to 0.75 kg/s 
depending on the fluid temperature.  The meter is not robust to changes in Tf. 
              
In order to improve the meters ability to operate over a range of fluid temperature, a temperature 
sensor is installed in the fluid in order to measure Tf  during operation.   
d.) Using your model, develop a calibration curve for the meter in terms of the mass flow rate as 

a function of ΔT, the difference between the measured temperatures at the mid-point of the 
pipe wall and the fluid.   

 
The temperature difference is calculated according to: 
 
 0.5r fT T TΔ == −  (7) 
 
DT=T-T_f   "measured temperature difference" 
 
Figure 1.3-9-4 illustrates the mass flow rate as a function of the temperature difference: 
 



30 40 50 60 70 80 90 100 110 120
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Temperature difference (K)
M

as
s 

flo
w

 ra
te

 (k
g/

s)

Tf = 18°CTf = 18°C

Tf = 28°CTf = 28°C

Tf = 8°CTf = 8°C

 
Figure 1.3-9-4: Mass flow rate as a function of the temperature difference between the measured temperature 

at the center of the pipe wall and the fluid temperature for several values of the fluid temperature. 
 
e.) Overlay on your plot from (d) the mass flow rate as a function of the difference between the 

measured temperatures at the mid-point of the pipe wall and the fluid if the fluid temperature 
is Tf = 8°C and Tf = 28°C.  Is the meter robust to changes in Tf? 

 
The calibration curves for Tf = 8°C and Tf = 28°C are also shown in Figure 1.3-9-4; notice that 
the fluid temperature has almost no effect on the calibration curves and so the meter is robust to 
changes in the fluid temperature. 
 
f.) If you can measure the temperature difference to within δΔT = 1 K then what is the 

uncertainty in the mass flow rate measurement? (Use your plot from part (d) to answer this 
question.)  

 
The uncertainty in the measured mass flow rate that corresponds to an uncertainty in the 
temperature difference is evaluated according to: 
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From Figure 1.3-9-4 we see that the partial derivative of mass flow rate with respect to 
temperature difference decreases with flow rate.  At high flow rates (around 2 kg/s), the partial 
derivative is approximately 0.08 kg/s-K which leads to an uncertainty of 0.08 kg/s.  At low flow 
rates (around 0.2 kg/s), the partial derivative is approximately 0.04 kg/s-K which leads to an 
uncertainty of 0.04 kg/s.    
              
You can use the built-in uncertainty propagation feature in EES to assess uncertainty 
automatically.   
 
g.) Set the temperature difference to the value you calculated at the nominal conditions and 

allow EES to calculate the associated mass flow rate.  Now, select Uncertainty Propagation 
from the Calculate menu and specify that the mass flow rate is the calculated variable while 
the temperature difference is the measured variable.  Set the uncertainty in the temperature 
difference to 1 K and verify that EES obtains an answer that is approximately consistent with 
part (f). 



 
The temperature difference is set to 50 K corresponding to approximately the middle of the range 
of the device.  The mass flow rate is commented out and EES is used to calculate the mass flow 
rate from the temperature difference: 
 
DT=50 [K] 
{m_dot=0.75 [kg/s]} "mass flow rate" 
 
Select Uncertainty Propagation from the Calculate menu (Figure P1.3-9-5) and select the 
variable m_dot as the calculated variable and the variable DT as the measured variable. 
 

 
Figure P1.3-9-5: Determine Propagation of Uncertainty dialog. 

 
Select Set uncertainties and indicate that the uncertainty of the measured temperature difference 
is 1 K (Figure P1.3-9-6). 
 

 
Figure P1.3-9-6: Uncertainties of Measured Variables dialog. 

 
Select OK and then then OK again to carry out the calculation.  The results are displayed in the 
Uncertainty Results tab of the Solution window (Figure P1.3-9-7). 
 

 
Figure P1.3-9-7: Uncertainties Results tab of the Solution window. 

 



The uncertainty calculated by EES is mδ  = 0.031 kg/s, which falls between the bounds 
identified in part (e). 
 
h.) The nice thing about using EES to determine the uncertainty is that it becomes easy to assess 

the impact of multiple sources of uncertainty.  In addition to the uncertainty δΔT, the 
constant C has an uncertainty of δC = 5% and the conductivity of the material is only known 
to within δk = 3%.  Use EES' built-in uncertainty propagation  to assess the resulting 
uncertainty in the mass flow rate measurement.  Which source of uncertainty is the most 
important? 

 
Select Uncertainty Propagation from the Calculate menu and select the variable m_dot as the 
calculated variable and the variables DT, C, and k as the measured variables.  Set the uncertainty 
of each of the measured variables according to the problem statement (Figure P1.3-9-8). 
 

 
Figure P1.3-9-8: Uncertainties of Measured Variables dialog. 

 
The results of the uncertainty calculation are shown in Figure P1.3-9-9. 
 

 
Figure P1.3-9-9: Uncertainties Results tab of the Solution window. 

 
Notice that the uncertainty has increased to mδ  = 0.062 kg/s and that the dominant source of the 
uncertainty is related to C.  The effect of the uncertainty in the conductivity is small (only 5.8% 
of the total). 
 
i.)  The meter must be used in areas where the ambient temperature and heat transfer coefficient 

may vary substantially.  Prepare a plot showing the mass flow rate predicted by your model 
for ΔT = 50 K as a function of T∞ for various values of outh .  If the operating range of your 



meter must include -5°C < T∞ < 35°C then use your plot to determine the range of outh  that 
can be tolerated without substantial loss of accuracy. 

 
Figure P1.3-9-10 illustrates the mass flow rate as a function of T∞ for various values of outh .   
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Figure P1.3-9-10: Mass flow rate predicted with ΔT = 50 K as a function of ambient temperature for various 
values of the air heat transfer coefficient. 
 
The shaded region in Figure P1.3-9-10 indicates the operating temperature range (in the x-
direction) and the region of acceptable accuracy (based approximately on the results of part (e)).  
Figure P1.3-9-10 shows that 5 W/m2-K < outh  < 50 W/m2-K will keep you within the shaded 
region and therefore this is, approximately, the range of outh  that can be tolerated without 
substantial loss of accuracy. 
 
 
 
 


