
Problem 1.7-3 (1-15 in text): Material Processing 
Figure P1.7-3 illustrates a material processing system.   
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Figure P1.7-3: Material processing system. 

 
Material is extruded and enters the oven at Tin = 300 K with velocity u = 0.75 m/s.  The material 
has velocity u = 0.75 m/s and diameter D = 5 cm.  The conductivity of the material is k = 40 
W/m-K and the thermal diffusivity is α = 0.001 m2/s.   
 
In order to precisely control the temperature of the material, the oven wall is placed very close to 
the outer diameter of the extruded material and the oven wall temperature distribution is 
carefully controlled.  The gap between the oven wall and the material is th = 0.6 mm and the 
oven-to-material gap is filled with gas that has conductivity kg = 0.03 W/m-K.  Radiation can be 
neglected in favor of convection through the gas from the oven wall to the material.  For this 
situation, the heat flux experienced by the material surface can be approximately modeled 
according to: 
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where Tw and T are the oven wall and material temperatures at that position.  The oven wall 
temperature varies with position x according to: 
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where Tw,0 is the temperature of the wall at the inlet (at x = 0), Tf = 1000 K is the temperature of 
the wall far from the inlet, and Lc is a characteristic length that dictates how quickly the oven 
wall temperature approaches Tf.  Initially, assume that Tw,0 = 500 K, Tf = 1000 K, and Lc = 1 m.  
Assume that the oven can be approximated as being infinitely long.    
a.) Is an extended surface model appropriate for this problem? 
 
The inputs are entered in EES: 
 
$UnitSystem SI MASS  DEG PA C J 



$Tabstops 0.2 0.4 0.6 0.8 3.5 
 
k=40 [W/m-K]  "conductivity" 
u=0.75 [m/s]  "velocity" 
T_f=1000 [K]  "wall temperature far from the inlet" 
T_w_0=500 [K] "wall temperature at the inlet" 
L_c=1 [m]   "characteristic length which oven wall approaches T_f" 
T_in=300 [K]  "inlet temperature" 
alpha=0.001 [m^2/s] "thermal diffusivity" 
k_g=0.03 [W/m-K] "gas conductivity" 
th=0.6 [mm]*convert(mm,m) "oven-to-material gap thickness" 
D=5 [cm]*convert(cm,m) "diameter" 
 
The Biot number is the ratio of the resistance that is neglected (internal conduction) to the 
resistance that is considered (conduction across the gap): 
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Bi=(k_g/th)*D/(2*k)   "Biot number" 
 
which leads to Bi = 0.031.  This is sufficiently less than 1 to justify an extended surface model. 
 
b.) Assume that your answer to (a) was yes.  Develop an analytical solution that can be used to 

predict the temperature of the material as a function of x. 
 
An energy balance on a control volume differential for a differential (in x) segment of the 
material is shown in Figure P1.7-3-2. 
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Figure P1.7-3-2: Energy balance on a differential control volume. 

 
The energy balance suggested by Figure P1.7-3-2 is: 
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where c is the specific heat capacity, Ac is the cross-sectional area and per is the perimeter of the 
material: 
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A_c=pi*D^2/4  "cross-sectional area" 
per=pi*D "perimeter" 
 
Expanding the terms in Eq. (2) and simplifying: 
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Rearranging Eq. (5) and dividing through by k Ac leads to: 
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Substituting the wall temperature variation into Eq. (6) leads to: 
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where 
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m=sqrt(4*k_g/(th*k*D))    "fin parameter"       
 
The boundary conditions are the inlet temperature: 
 
 0x inT T= =  (9) 
 
and the temperature must approach Tf as x approaches infinity: 
 
 x fT T→∞ =  (10) 
 
The solution is broken into a homogeneous and particular component: 
 
 h pT T T= +  (11) 
 
and substituted into Eq. (7): 
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The solution to the homogeneous differential equation is: 
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The particular solution is obtained by the method of undetermined coefficients; the assumed 
form of the particular solution is: 
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and substituted into the particular differential equation: 
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Equation (15) provides one equation for C3 that is obtained by considering the exponential terms: 
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and another equation for C4 that is obtained by considering the constant terms: 
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Substituting Eqs. (13), (14), (16), and (17) leads to: 
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The constants C1 and C2 are obtained by considering the boundary conditions.  Substituting Eq. 
(18) into Eq. (10) leads to: 
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which can only be true if C1 = 0.  Therefore: 
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Substituting Eq. (20) into Eq. (9) leads to: 
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or 
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C_2=T_in-T_f-m^2*(T_f-T_w_0)/(1/L_c^2+u/(alpha*L_c)-m^2) "boundary condition at x=0" 
 
The solution for the material temperature and the wall temperature are entered in EES: 
 
x=0.5 [m]   "position" 
T=C_2*exp(((u-sqrt(u^2+4*alpha^2*m^2))/(2*alpha))*x)+m^2*(T_f-T_w_0)*& 
 exp(-x/L_c)/(1/L_c^2+u/(alpha*L_c)-m^2)+T_f "temperature of the material" 
T_w=T_f-(T_f-T_w_0)*exp(-x/L_c) "wall temperature" 
 
c.) Plot the temperature of the material and the temperature of the wall as a function of position 

for 0 < x < 20 m.  Plot the temperature gradient experienced by the material as a function of 
position for 0 < x < 20 m. 

 
Figure P1.7-3-3 illustrates the temperature of the material and the wall as a function of position. 
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Figure P1.7-3-3: Temperature of the material and the wall as a function of position. 

 
The temperature gradient is evaluated by differentiating Eq. (20): 
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dTdx=C_2*((u-sqrt(u^2+4*alpha^2*m^2))/(2*alpha))*exp(((u-sqrt(u^2+4*alpha^2*m^2))/(2*alpha))*x)& 
 -m^2*(T_f-T_w_0)*exp(-x/L_c)/(1/L_c^2+u/(alpha*L_c)-m^2)/L_c "temperature gradient" 
 
Figure P1.7-3-4 illustrates the temperature gradient as a function of position. 
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Figure P1.7-3-4: Temperature gradient in the material as a function of position. 

              
The parameter Lc can be controlled in order to control the maximum temperature gradient 
experienced by the material as it moves through the oven.   
 
d.) Prepare a plot showing the maximum temperature gradient as a function of Lc.  Overlay on 

your plot the distance required to heat the material to Tp = 800 K (Lp).  If the maximum 
temperature gradient that is allowed is 60 K/m then what is the appropriate value of Lc and 
the corresponding value of Lp. 

 
The value Lp is obtained: 
 



T_p=800 [K] 
T_p=C_2*exp(((u-sqrt(u^2+4*alpha^2*m^2))/(2*alpha))*L_p)+& 
 m^2*(T_f-T_w_0)*exp(-L_p/L_c)/(1/L_c^2+u/(alpha*L_c)-m^2)+T_f 
 
which leads to Lp = 10.18 m. 
 
The maximum temperature gradient can be obtained by using EES' optimization routines.  Setup 
a parametric table that includes the variables L_c, x, dTdx, L_p, and L_c.  The value of L_c that 
is set in the Equations window is commented out and the values of L_c in the table are varied 
from 0.1 to 5 m.  Min/Max Table is selected from the Calculate menu.  The value of dTdx is 
maximized by varying x with bounds from 0 to some large value.  The maximum temperature 
gradient and value of Lp are shown Figure P1.7-3-5 as a function of Lc.  Figure P1.7-3-5 indicates 
that Lc should be equal to 1.8 m in order to control the temperature gradient, which leads to Lp = 
11 m. 
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Figure P1.7-3-5: Maximum temperature gradient and Lp as a function of Lc.  

 
 
 
 
 
 
 
 
 


