Problem 1.3-9 (1-9 in text): Mass Flow Meter
Figure P1.3-9 illustrates a simple mass flow meter for use in an industrial refinery.
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Figure P1.3-9: A simple mass flow meter.

A flow of liquid passes through a test section consisting of an L = 3 inch section of pipe with
inner and outer radii, »;, = 0.75 inch and r,, = 1.0 inch, respectively. The test section is

uniformly heated by electrical dissipation at a rate g” =1x10" W/m® and has conductivity & = 10
W/m-K. The pipe is surrounded with insulation that is t4;,, = 0.25 inch thick and has
conductivity k;,; = 1.5 W/m-K. The external surface of the insulation experiences convection
with air at 7., = 20°C. The heat transfer coefficient on the external surface is /,, =20 W/m*-K.
A thermocouple is embedded at the center of the pipe wall. By measuring the temperature of the
thermocouple, it is possible to infer the mass flow rate of fluid because the heat transfer
coefficient on the inner surface of the pipe (%, ) is strongly related to mass flow rate (7).

Testing has shown that the heat transfer coefficient and mass flow rate are related according to:
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where C= 2500 W/m?-K. Under nominal conditions, the mass flow rate through the meter is 7

= 0.75 kg/s and the fluid temperature is 7= 18°C. Assume that the ends of the test section are

insulated so that the problem is 1-D. Neglect radiation and assume that the problem is steady-

state.

a.) Develop an analytical model in EES that can predict the temperature distribution in the test
section. Plot the temperature as a function of radial position for the nominal conditions.

The inputs are entered in EES:

$UnitSystem SI MASS RAD PA K J
$TABSTOPS 0.20.40.60.83.5in

"Inputs"
r_out=1.0 [inch]*convert(inch,m) "outer radius of measurement section"
r_in=0.75 [inch]*convert(inch,m) "inner radius of measurement section"

h_bar_out=20 [W/m"2-K] "external convection coefficient”



T_infinity=converttemp(C,K,20 [C]) "ambient temperature"

T_f=converttemp(C,K, 18 [C]) "fluid temperature"

k=10 [W/m-K] "conductivity"

g =1e7 [W/m”3] "volumetric rate of thermal energy generation"
m_dot=0.75 [kg/s] "mass flow rate"

th_ins=0.25 [inch]*convert(inch,m) "thickness of insulation”

k_ins=1.5 [W/m-K] "insulation conductivity"

L= 3 [inch]*convert(inch,m) "length of test section”

The heat transfer coefficient on the internal surface is computed according to the specified mass
flow rate:

C=2500 [W/m"2-K] "constant for convection relationship"
h_bar_in=C*(m_dot/1 [kg/s])"0.8 "internal convection coefficient"

The general solution to a 1-D problem in cylindrical coordinates with constant volumetric
thermal energy generation was provided in Table 1-3, to within the unknown constants C; and
Cy:
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The boundary condition at the outer edge of the test section is:
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where R, is the thermal resistance to conduction through the insulation (provided in Table 1-2):
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and Rcon,0ue 1S the resistance to convection from the outer surface of the insulation:
1
Rconv ou = 7 (5)
o 2 7 (’:)ut + thins )L hout
R_ins=In((r_out+th_ins)/r_out)/(2*pi*L*k_ins) “"resistance to conduction through insulation"
R_conv_out=1/(2*pi*(r_out+th_ins)*L*h_bar_out) "resistance to convection from outer surface"
T_r_out=-g" *r_out"2/(4*k)+C_1*In(r_out)+C_2 "temperature at outer surface of section"

dTdr_r_out=-g *r_out/(2*k)+C_1/r_out "temperature gradient at outer surface of section"



-k*2*pi*r_out*L*dTdr_r_out=(T_r_out-T_infinity)/(R_ins+R_conv_out)
"boundary condition at r=r_out"

The boundary condition at the inner edge of the test section is:
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T_r_in=-g *r_in"2/(4*k)+C_1*In(r_in)+C_2 "temperature at inner surface of section"
dTdr_r_in=-g" *r_in/(2*k)+C_1/r_in "temperature gradient at inner surface of section"

h_bar_in*2*pi*r_in*L*(T_f-T_r_in)=-k*2*pi*r_in*L*dTdr_r_in
"boundary condition at r=r_in"

The EES code will provide the solution to the constants C; and Cy; note that it is not possible to
eliminate the unit warnings that are associated with the argument of the natural logarithm in Eq.
(1). In fact, if sufficient algebra was carried out, the equations could be placed in a form where
the natural logarithm had a dimensionless argument.

The location at which to evaluate the temperature (») is specified in terms of a dimensionless
radial position (7) that goes from 0 at the inner surface of the test section to 1 at the outer
surface. The temperature is evaluated using Eq. (1):

r_bar=0.5 [-] "dimensionless radial position"
r=r_in+r_bar*(r_out-r_in) “radial position”

T=-g " *r’*2/(4*k)+C_1*In(r)+C_2 "temperature"
T_C=converttemp(K,C,T) "in C"

Figure P1.3-9-2 illustrates the temperature as a function of radial position.
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Figure 1.3-9-2: Temperature as a function of radius.

b.) Using your model, develop a calibration curve for the meter; that is, prepare a plot of the
mass flow rate as a function of the measured temperature at the mid-point of the pipe. The
range of the instrument is 0.2 kg/s to 2.0 kg/s.



The dimensionless radial position is set to 7=0.5, corresponding to the temperature of the center
of the test section. Figure 1.3-9-3 illustrates the mass flow rate through the meter as a function
of the measured temperature.
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Figure 1.3-9-3: Mass flow rate as a function of the temperature at the center of the pipe wall for several
values of the fluid temperature.

The meter must be robust to changes in the fluid temperature. That is, the calibration curve

developed in (b) must continue to be valid even as the fluid temperature changes by as much as

10°C.

c.) Overlay on your plot from (b) the mass flow rate as a function of the measured temperature
for 7,=8°C and 7= 28°C. Is your meter robust to changes in 7;?

The calibration curves generated at 7y = 8°C and 7,= 28°C are also shown in Figure 1.3-9-3.
Notice that the fluid temperature has a large effect on the device. For example, if the measured
temperature is 80°C then the mass flow rate could be anywhere from 0.45 kg/s to 0.75 kg/s
depending on the fluid temperature. The meter is not robust to changes in 75

In order to improve the meters ability to operate over a range of fluid temperature, a temperature

sensor is installed in the fluid in order to measure 7 during operation.

d.) Using your model, develop a calibration curve for the meter in terms of the mass flow rate as
a function of AT, the difference between the measured temperatures at the mid-point of the
pipe wall and the fluid.

The temperature difference is calculated according to:

AT =T, 5 — Tf (7)

DT=T-T_f "measured temperature difference"

Figure 1.3-9-4 illustrates the mass flow rate as a function of the temperature difference:



2

1.8 3 o Ty=28°C
16 —Ty=18°C
7 o Ty=8°C
> 14 f
< iy
12
Y
3
8 os ™
[}
8 o6
(3]
= o4 e,
0.2 ]
0

30 40 50 60 70 80 90 100 110 120
Temperature difference (K)
Figure 1.3-9-4: Mass flow rate as a function of the temperature difference between the measured temperature
at the center of the pipe wall and the fluid temperature for several values of the fluid temperature.

e.) Overlay on your plot from (d) the mass flow rate as a function of the difference between the
measured temperatures at the mid-point of the pipe wall and the fluid if the fluid temperature
is Tr=8°C and Ty= 28°C. Is the meter robust to changes in 7;?

The calibration curves for 7, = 8°C and 7,= 28°C are also shown in Figure 1.3-9-4; notice that
the fluid temperature has almost no effect on the calibration curves and so the meter is robust to
changes in the fluid temperature.

f.) If you can measure the temperature difference to within 60AT = 1 K then what is the
uncertainty in the mass flow rate measurement? (Use your plot from part (d) to answer this
question.)

The uncertainty in the measured mass flow rate that corresponds to an uncertainty in the
temperature difference is evaluated according to:

Stir = (8_mj SAT (8)
oAT

From Figure 1.3-9-4 we see that the partial derivative of mass flow rate with respect to
temperature difference decreases with flow rate. At high flow rates (around 2 kg/s), the partial
derivative is approximately 0.08 kg/s-K which leads to an uncertainty of 0.08 kg/s. At low flow
rates (around 0.2 kg/s), the partial derivative is approximately 0.04 kg/s-K which leads to an
uncertainty of 0.04 kg/s.

You can use the built-in uncertainty propagation feature in EES to assess uncertainty
automatically.

g.) Set the temperature difference to the value you calculated at the nominal conditions and
allow EES to calculate the associated mass flow rate. Now, select Uncertainty Propagation
from the Calculate menu and specify that the mass flow rate is the calculated variable while
the temperature difference is the measured variable. Set the uncertainty in the temperature
difference to 1 K and verify that EES obtains an answer that is approximately consistent with

part (f).



The temperature difference is set to 50 K corresponding to approximately the middle of the range
of the device. The mass flow rate is commented out and EES is used to calculate the mass flow

rate from the temperature difference:

DT=50 [K]
{m_dot=0.75 [kg/s]}

"mass flow rate"

Select Uncertainty Propagation from the Calculate menu (Figure P1.3-9-5) and select the
variable m_dot as the calculated variable and the variable DT as the measured variable.
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Figure P1.3-9-5: Determine Propagation of Uncertainty dialog.

Select Set uncertainties and indicate that the uncertainty of the measured temperature difference

is 1 K (Figure P1.3-9-6).
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Figure P1.3-9-6: Uncertainties of Measured Variables dialog.

Select OK and then then OK again to carry out the calculation. The results are displayed in the
Uncertainty Results tab of the Solution window (Figure P1.3-9-7).
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Figure P1.3-9-7: Uncertainties Results tab of the Solution window.



The uncertainty calculated by EES is om = 0.031 kg/s, which falls between the bounds
identified in part (e).

h.) The nice thing about using EES to determine the uncertainty is that it becomes easy to assess
the impact of multiple sources of uncertainty. In addition to the uncertainty oA7, the
constant C has an uncertainty of 6C = 5% and the conductivity of the material is only known
to within ok = 3%. Use EES' built-in uncertainty propagation to assess the resulting

uncertainty in the mass flow rate measurement. Which source of uncertainty is the most
important?

Select Uncertainty Propagation from the Calculate menu and select the variable m_dot as the
calculated variable and the variables DT, C, and k as the measured variables. Set the uncertainty
of each of the measured variables according to the problem statement (Figure P1.3-9-8).

Determine Propagation of Uncertainty

21x]

Calculated variable Meazured variable[z]

' OK

Fied wariables may be rmaoved
to the Measured variables list.

Figure P1.3-9-8: Uncertainties of Measured Variables dialog.
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The results of the uncertainty calculation are shown in Figure P1.3-9-9.
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Figure P1.3-9-9: Uncertainties Results tab of the Solution window.

Notice that the uncertainty has increased to om = 0.062 kg/s and that the dominant source of the
uncertainty is related to C. The effect of the uncertainty in the conductivity is small (only 5.8%
of the total).

i.) The meter must be used in areas where the ambient temperature and heat transfer coefficient
may vary substantially. Prepare a plot showing the mass flow rate predicted by your model

for AT = 50 K as a function of 7., for various values of Eam . If the operating range of your



meter must include -5°C < T, < 35°C then use your plot to determine the range of 7, that
can be tolerated without substantial loss of accuracy.

Figure P1.3-9-10 illustrates the mass flow rate as a function of 7, for various values of 7, .
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Figure P1.3-9-10: Mass flow rate predicted with AT =50 K as a function of ambient temperature for various
values of the air heat transfer coefficient.

The shaded region in Figure P1.3-9-10 indicates the operating temperature range (in the x-
direction) and the region of acceptable accuracy (based approximately on the results of part (e)).

Figure P1.3-9-10 shows that 5 W/m*-K < % . < 50 W/m*-K will keep you within the shaded

region and therefore this is, approximately, the range of Et that can be tolerated without
substantial loss of accuracy.



