
Problem 1.8-3: Cryogenic Thermal Standoff 
It is often necessary to provide a fluid outlet port that will allow very cold gas to escape from a 
cryogenic facility; for example, the boil-off of liquid nitrogen or liquid helium from within a 
vacuum vessel must be allowed to vent to the atmosphere.  The seal between the base of the 
flange that contains the fluid passage and the surrounding vessel is usually made with an o-ring; 
these seals are convenient in that they are hermetic and easily demountable.  However, most 
convenient o-ring materials do not retain their ductility at temperatures much below 0°C and 
therefore it is important that the o-ring be kept at or above this temperature so that it continues to 
provide a good seal; if the o-ring “freezes” then the cryogenic facility will lose its vacuum.  The 
o-ring temperature is maintained at an appropriate level using a thermal standoff, as shown in 
Figure P1.8-3   
 
The fluid passage is attached to the flange via a separate, slightly larger tube made of a stainless 
steel with thermal conductivity k = 15 W/m-K.  This thermal standoff has an outer radius, rts = 1 
cm, thickness tts = 1 mm, and length Lts = 5 cm.  The cryogenic gas is at 77 K and you may 
assume that the point x = 0 in Figure P1.8-3 is at Tcold = 77 K.  The inside of the tube is exposed 
to a vacuum and you may assume that it experiences negligible radiation heat transfer and no 
convective heat transfer.  The outside of the tube is exposed to air at Tair = 20°C with heat 
transfer coefficient, h = 7 W/m2-K.  The bottom of the tube (x = Lts) is welded to the flange.  The 
flange has an outer radius rfl = 8 cm and a thickness tfl = 1.5 mm.  The inside of the flange is 
exposed to vacuum and therefore, for the purposes of this problem, adiabatic.  The outside of the 
flange is exposed to the same 20°C air with the same 7 W/m2-K heat transfer coefficient. 
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Figure P1.8-3: Cryogenic thermal standoff. 

 
a.) Is it appropriate to treat the thermal standoff and the flange as extended surfaces?  That is, 

can the temperature within the stand-off be treated as being only a function of x and the 
temperature in the flange only a function of r? 

 
The input parameters are entered in EES: 
              
$UnitSystem SI MASS RAD PA K J 
$Tabstops 0.2 0.4 0.6 3.5 in 
 
"Inputs" 
k=15 [W/m-K]  "thermal conductivity" 
r_ts=1.0 [cm]*convert(cm,m) "outer radius of thermal standoff" 
t_ts=1.0 [mm]*convert(mm,m) "thickness of thermal standoff" 
L_ts=5.0 [cm]*convert(cm,m) "length of thermal standoff" 
T_cold=77 [K]  "cryogenic gas temperature" 
T_air=converttemp(C,K,20 [C]) "air temperature" 
h=7 [W/m^2-K]  "heat transfer coefficient" 
r_fl=8.0 [cm]*convert(cm,m) "radius of flange" 
t_fl=1.5 [mm]*convert(mm,m) "thickness of flange" 
               
The Biot numbers that must be calculated for the standoff and the flange (Bits and Bifl, 
respectively) are: 
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These are computed in EES: 
              
Bi_ts=t_ts*h/k "Biot number for thermal standoff" 
Bi_fl=t_fl*h/k "Biot number for flange" 
              
and found to be very small. 
 
b.)  Develop an analytical model of the problem that can predict the temperature distribution as a 

function of x in the thermal stand-off and as a function of r in the flange. 
 
An energy balance on the differential control volume within the thermal standoff leads to: 
 
 x x dx convq q q+= +   
 
or, after making the usual simplifications: 
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which becomes the governing differential equation for a constant cross-sectional area fin that 
was solved in Section 1.6: 
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Equation (1) is solved by exponentials (or equivalently by sinh and cosh): 
 



 ( ) ( )1 2exp expts ts tsC m x C m xθ = + −  (2) 
 
where C1 and C2 are determined by the boundary coefficients.  
 
An energy balance on the differential control volume within the flange (see Figure 1) is: 
 
 r r dr convq q q+= +   
 
or, after making the usual simplifications: 
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which becomes Bessel's equation: 
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where 
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Equation (3) is solved by 0th order modified Bessel functions: 
 
 ( ) ( )3 4BesselI 0, BesselK 0,fl fl flC m r C m r= +θ  (4) 
 
where C3 and C4 are determined by the boundary coefficients.  
 
There must be four boundary conditions; two for each of the 2nd order differential equations.  
The temperature at the top of the thermal stand-off is specified: 
 
 , 0ts x coldT T= =   
 
or, substituting into Eq. (2): 
 
 1 2 cold airC C T T+ = −   
 



The temperature at the bottom of the thermal standoff must be equal to the temperature at the 
inner edge of the flange: 
 
 , ,ts tsts x L fl r rT T= ==   
 
or 
 
 ( ) ( ) ( ) ( )1 2 3 4exp exp BesselI 0, BesselK 0,ts ts ts ts fl ts fl tsC m L C m L C m r C m r+ − = +   
 
The rate of heat transfer out of the bottom of the thermal standoff must be equal to the rate that 
heat that is transferred into the inner edge of the flange: 
 

 2 2
ts ts

flts
ts ts ts fl

L r

dTdTk r t k r t
dx dr

π π− = −   

 
or 
 

 
ts ts

flts
ts fl

L r

ddt t
dx dr

θθ
=   

 
whic leads to: 
 
 

( ) ( ) ( ) ( )1 2 3 4exp exp BesselI 1, BesselK 1,ts ts ts ts ts ts ts fl fl fl ts fl fl tst C m m L C m m L t C m m r C m m r⎡ ⎤− − = −⎡ ⎤⎣ ⎦ ⎣ ⎦
  
Finally, the outer edge of the flange is assumed to be adiabatic (the small amount of convection 
from the edge can be neglected with little error): 
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which leads to: 
 
 ( ) ( )3 4BesselI 1, BesselK 1, 0fl fl fl fl fl flC m m r C m m r− =   
 
The boundary condition equations are entered into EES: 



              
"Solution parameters" 
m_ts=sqrt(h/(t_ts*k))  
m_fl=sqrt(h/(t_fl*k)) 
 
"Boundary conditions" 
C_1+C_2=T_cold-T_air  
C_1*exp(m_ts*L_ts)+C_2*exp(-m_ts*L_ts)=C_3*BesselI(0,m_fl*r_ts)+C_4*BesselK(0,m_fl*r_ts) 
t_ts*(C_1*m_ts*exp(m_ts*L_ts)-C_2*m_ts*exp(-m_ts*L_ts))=t_fl*(C_3*m_fl*BesselI(1,m_fl*r_ts)-
C_4*m_fl*BesselK(1,m_fl*r_ts)) 
C_3*m_fl*BesselI(1,m_fl*r_fl)-C_4*m_fl*BesselK(1,m_fl*r_fl)=0 
              
The solution is provided in EES using two parametric tables for the thermal standoff and flange 
temperature distributions.  The first table is titled ‘Thermal Stand off’ and includes values of 
dimensionless position, x , ranging from 0 to 1; where: 
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The coordinate, s, is also computed; s goes from 0 to Lts + (rfl – rts) as you move from the top of 
the thermal stand off to the edge of the flange.  The use of s provides a convenient method for 
looking at the entire temperature distribution in the thermal standoff and flange. 
 
 s x=   
 
The ‘Thermal Stand off’ table includes columns that contain the values of θts and Tts.  The 
solution for the temperature within the thermal stand off is only calculated if you are running the 
parametric table entitled ‘Thermal Stand off’.  The selection of equations that are to be solved 
with each parametric table is facilitated by using the $IF PARAMETRICTABLE directive to check 
which table is being calculated.  The equations located between the $IF and $ENDIF in the EES 
code below are executed only if the ‘Thermal Stand off’ parametric table is being calculated.   
              
$IF PARAMETRICTABLE='Thermal Stand off' 
 x_bar=x/L_ts 
 s=x 
 theta_ts=C_1*exp(m_ts*x)+C_2*exp(-m_ts*x) 
 Temp_ts=theta_ts+T_air  
 Temp_ts_C=converttemp(K,C,Temp_ts) 
$ENDIF 
              
A second parametric table entitled ‘Flange’ is includes values of dimensionless position in the 
flange, r : 
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and the coordinate, s, which is computed in the flange as: 
 



 tss r r L= − +   
 
The table ‘Flange’ also includes the values θfl and Tfl.  The required commands are included in a 
separate $IF statement: 
              
$IF PARAMETRICTABLE='Flange' 
 r_bar=(r-r_ts)/(r_fl-r_ts) 
 s=L_ts+r-r_ts 
 theta_fl=C_3*BesselI(0,m_fl*r)+C_4*BesselK(0,m_fl*r) 
 Temp_fl=theta_fl+T_air 
 Temp_fl_C=converttemp(K,C,Temp_fl) 
$ENDIF 
              
By sequentially running parametric table ‘Thermal Stand off’ and ‘Flange’ it is possible to 
determine the entire temperature distribution; the result is shown in Figure 2. 
 

 
Figure 2: Temperature as a function of the coordinate s. 

 
Notice that the solution satisfies each of the boundary conditions.  The temperature at the top of 
the stand off is equal to 77 K and the temperature gradient at the edge of the flange is zero.  The 
temperature at the intersection of the flange and the thermal stand off is continuous but there is a 
discontinuity in the temperature gradient related to the fact that the flange is slightly thicker (and 
therefore has a lower temperature gradient for the same conduction heat transfer) than the 
thermal stand off. 
 
The value of the thermal stand off is clear.  If the o-ring seal is placed towards the outer radius of 
the flange then Figure 2 shows that the temperature will remain above freezing and therefore the 
o-ring will continue to function.  Using the EES model it is possible to evaluate alternative, more 
effective designs (i.e., thermal stand off geometries that keep the temperature at the outer edge of 
the flange higher).  Figure 3 illustrates the temperature at the edge of the flange (i.e., , flfl r rT = ) as a 
function of the thermal stand-off thickness for various values of its length. 
 



 
 Figure 3: Temperature at the edge of the flange as a function of the thermal stand off thickness for  
  various values of the thermal stand off length. 
 
Note that either increasing the thermal stand off length or decreasing its thickness will tend to 
make it a less efficient fin and therefore increase the temperature gradient due to conduction.  It 
turns out that a good thermal stand off is a bad fin, isolating the tip of the fin (i.e., the flange) 
from the base of the fin (i.e., the cryogenic temperature). 
 


