
Problem 1.3-11: Nuclear Fuel Element 
Figure P1.3-11 illustrates a spherical, nuclear fuel element which consists of a sphere of 
fissionable material (fuel) with radius rfuel = 5 cm and kfuel = 2 W/m-K that is surrounded by a 
spherical shell of metal cladding with outer radius rclad = 7 cm and kclad = 0.25 W/m-K.  The 
outer surface of the cladding is exposed to fluid that is being heated by the reactor.  The 
convection coefficient between the fluid and the cladding surface is h  = 50 W/m2-K and the 
temperature of the fluid is T∞ = 500ºC.  Neglect radiation heat transfer from the surface. 
 
Inside the fuel element, thermal energy is being generated for the reactor.  This process can be 
modeled as a volumetric source of heat generation in the material that is not uniform throughout 
the fuel.  The volumetric generation ( g′′′ ) can be approximated by the function: 
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where β = 5x103 W/m2. 
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Figure P1.3-11:  Spherical fuel element surrounded by cladding 

 
a.) Determine an analytical solution for the temperature distribution within the fuel element.  

Implement your solution in EES and plot the temperature as a function of radius for 0 < r < 
rfuel. 

 
The inputs are entered according to: 
              
$UnitSystem SI MASS RAD PA K J 
$Tabstops 0.2 0.4 0.6 3.5 in 
 
"Inputs" 
r_fuel=5 [cm]*convert(cm,m) "radius of fuel element" 
k_fuel=2 [W/m-K] "conductivity of fuel element" 
r_clad=7 [cm]*convert(cm,m) "radius of cladding" 
k_clad=0.25 [W/m-K] "conductivity of cladding" 
h_bar=50 [W/m^2-K] "heat transfer coefficient" 
T_infinity=converttemp(C,K,500[C]) "temperature of fluid" 
beta=5e3 [W/m^2] "constant for volumetric generation" 
 



A differential control volume is shown in Figure 2 and includes conduction at r and r+dr at the 
inner and outer surfaces of the spherical shell as well as generation within the enclosed volume. 
 

 
Figure 2: Differential control volume 

 
The energy balance suggested by Figure 2 is: 
 
 r r drq g q ++ =  (1) 
 
The term at r + dr can be expanded: 
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and substituted into Eq. (1): 
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and simplified: 
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The conduction is governed by Fourier’s Law: 
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and the generation is the product of the volume and the local generation rate: 
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The rate equations, Eqs. (5) and (6), are substituted into Eq. (4): 
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which can be simplified: 
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Equation (8) can be separated and integrated: 
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which leads to: 
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where C1 is a constant of integration.  Equation (10) can be separated and integrated: 
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which leads to: 
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where C2 is the second constant of integration.  The boundary condition at r = 0 requires that the 
temperature remain finite and therefore C1 = 0.   
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The boundary condition at r = rfuel is obtained using an interface balance, as show in Figure 3.  
The interface energy balance includes conduction from the fuel and heat transfer into the 
cladding. 
 



 
Figure 3: Interface balance at r = rfuel 

 
The energy balance suggested by Figure 3 is: 
 
 

ruelr r outq q= =  (14) 
 
The conduction term on the left side of Eq. (14) is evaluated using Fourier’s law: 
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while the heat transfer out of the cladding is driven by the difference between the temperature at 
interface between the fuel and the cladding and the temperature of the surrounding gas.  The heat 
transfer is resisted by the sum of the conduction resistance of the cladding (Rcond,clad): 
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and the convection resistance (Rconv): 
 

 2

1
4conv

clad

R
r hπ

=  (17) 

 
so that: 
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Subsituting Eqs. (18) and (15) into Eq. (14) leads to: 
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Equation (19) provides a single equation for the unknown constant of integration, C2.  
Substituting Eq. (13) into Eq. (19) leads to: 
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 (20) 

 
The resistances are computed according to Eqs. (16) and (17) and the constant C2 is computed 
according to Eq. (20). 
 
R_cond_clad=(1/r_fuel-1/r_clad)/(4*pi*k_clad) "resistance to conduction through cladding" 
R_conv=1/(4*pi*r_clad^2*h_bar) "resistance to convection from cladding" 
k_fuel*4*pi*r_fuel^2*(beta/(2*k_fuel))=(-beta*r_fuel/(2*k_fuel)+C_2-T_infinity)/(R_cond_clad+R_conv) 
 "boundary condition" 
 
The temperature distribution is obtained using Eq. (13). 
 
r=0 [m]   "radius" 
T=-beta*r/(2*k_fuel)+C_2 "temperature distribution" 
T_C=converttemp(K,C,T) "in C" 
 
Figure 4 illustrates the temperature in the sphere as a function of position. 
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Figure 4: Temperature as a function of radius. 

 
b.) The maximum allowable temperature in the fuel element is Tmax = 1100ºC.  What is the 

maximum value of β that can be used?  What is the associated total rate that heat is 
transferred to the gas? 



 
The maximum temperature occurs at r = 0.  According to Eq. (13), the temperature at r = 0 is: 
 
 0 2rT C= =  (21) 
 
The guess values are updated and the specified value of β is commented out.  The temperature at 
the center is specified to be Tmax: 
 
{beta=5e3 [W/m^2]} "constant for volumetric generation" 
T_max_s=converttemp(C,K,1100 [C]) "maximum allowable temperature" 
T_max=C_2 "maximum temperature in fuel" 
T_max_s=T_max "adjust beta so that center temperature is equal to T_max_s" 
 
which leads to β = 1.3x104 W/m2.  The rate of heat transfer is given by Eq. (18): 
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q_dot=(-beta*r_fuel/(2*k_fuel)+C_2-T_infinity)/(R_cond_clad+R_conv) "heat transfer from fuel" 
  
which leads to outq = 204.1 W. 
 
c.) You are designing the fuel elements.  You can vary rfuel and β.  The cladding must always be 

2 cm thick (that is rclad = rfuel + 2 cm).  The constraint is that the fuel temperature cannot 
exceed Tmax = 1100ºC and the design target (the figure of merit to be maximized) is the rate 
of heat transfer per unit volume of material (fuel and cladding).  What values of rfuel and β are 
optimal? 

 
The volume of the fuel and the cladding is: 
 

 34
3 cladV rπ=  (23) 

 
and therefore the heat transfer per unit volume can be determined. 
 
V=4*pi*r_clad^3/3 "volume of fuel" 
q_dot\V=q_dot/V "heat transfer per volume" 
 
The cladding radius is specified based on the fuel radius: 
 
r_clad=r_fuel+2 [cm]*convert(cm,m) "radius of cladding" 
{r_clad=7 [cm]*convert(cm,m) "radius of cladding"} 
 
The fuel radius is varied in a parametric table and the heat transfer per unit volume as a function 
of fuel radius is shown in Figure 5. 
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Figure 5: Heat transfer per unit volume as a function of fuel element radius. 

 
Figure 5 shows that the optimal value of rfuel is approximately 1.6 cm.  A more exact value can 
be obtained using the Min/Max feature from the Calculate menu.  The optimal design is rfuel = 
1.57 cm with β = 2.6x104 W/m2. 


