
Problem 1.8-5 (1-18 in text): Optimizing a Fin  
Figure P1.8-5 illustrates a fin that is to be used in the evaporator of a space conditioning system 
for a space-craft.   
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Figure P1.8-5: Fin on an evaporator. 

 
The fin is a plate with a triangular shape.  The thickness of the plate is th = 1 mm and the width 
of the fin at the base is Wb = 1 cm.  The length of the fin is L = 2 cm.  The fin material has 
conductivity k = 50 W/m-K.  The average heat transfer coefficient between the fin surface and 
the air in the space-craft is h  = 120 W/m2-K.  The air is at T∞ = 20°C and the base of the fin is at 
Tb = 10°C.  Assume that the temperature distribution in the fin is 1-D in x.  Neglect convection 
from the edges of the fin. 
a.) Obtain an analytical solution for the temperature distribution in the fin.  Plot the temperature 

as a function of position. 
 
The inputs are entered in EES: 
 
$UnitSystem SI MASS RAD PA  K J 
$TABSTOPS   0.2 0.4 0.6 0.8 3.5 in 
 
h_bar=120 [W/m^2-K] "average heat transfer coefficient" 
k=50 [W/m-K]  "conductivity" 
T_infinity=converttemp(C,K,20[C]) "air material" 
T_b=converttemp(C,K,10[C]) "base temperature" 
th_mm= 1 [mm] "fin thickness in mm" 
th=th_mm*convert(mm,m) "fin thickness" 
L_cm=2 [cm]  "fin length in cm" 
L=L_cm*convert(cm,m) "fin length" 
W_b=1 [cm]*convert(cm,m) "fin base width" 
 
The differential control volume shown in Figure P1.8-5-2 is used to derive the governing 
differential equation: 
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Figure P1.8-5-2: Differential control volume. 

 
The rate of conduction and convection are: 
 

 x c
dTq k A
dx

= −  (2) 

 
 ( )convq h per T T dx∞= −  (3) 
 
where Ac is the cross-sectional area for conduction and per is the perimeter.  The width of the fin 
is a function of x: 
 

 b
xW W
L

=  (4) 

 
Therefore, Ac and per are: 
 

 c b
xA W th
L

=  (5) 

 

 2 b
xper W
L

=  (6) 

 
Substituting Eqs. (5) and (6) into Eq. (2) and (3) leads to: 
 

 x b
x dTq kW th
L dx

= −  (7) 

 

 ( )2conv b
xq h W T T dx
L ∞= −  (8) 

 
Substituting Eqs. (7) and (8) into Eq. (1) leads to: 
 

 ( )0 2b b
d x dT xkW th dx h W T T dx
dx L dx L ∞

⎡ ⎤= − + −⎢ ⎥⎣ ⎦
 (9) 

 
Simplifying: 



 

 2 2d dTx m xT m xT
dx dx ∞

⎛ ⎞ − = −⎜ ⎟
⎝ ⎠

 (10) 

 
where 
 

 2 2hm
k th

=  (11) 

 
m=sqrt(2*h_bar/(k*th)) "solution parameter" 
 
Maple is used to identify the solution to Eq. (10): 
 
> restart; 
> ODE:=diff(x*diff(T(x),x),x)-m^2*x*T(x)=-m^2*x*T_infinity; 

 := ODE  =  +  − ⎛
⎝
⎜⎜

⎞
⎠
⎟⎟d

d
x ( )T x x ⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟d

d2

x2 ( )T x m2 x ( )T x −m2 x T_infinity  

> Ts:=dsolve(ODE); 
 := Ts  = ( )T x  +  + ( )BesselI ,0 m x _C2 ( )BesselK ,0 m x _C1 T_infinity  

 
Therefore: 
 
 ( ) ( )2 1BesselI 0, BesselK 0,T C m x C m x T∞= + +  (12) 
 
The fin temperature at the tip must be bounded: 
 
 ( ) ( )0 2 1

1

BesselI 0, 0 BesselK 0, 0xT C m C m T= ∞

∞

= + + < ∞  (13) 

 
The limit of the 0th order modified Bessel functions as x → 0 are evaluated using Maple: 
 
> limit(BesselI(0,m*x),x=0); 

1  
> limit(BesselK(0,m*x),x=0); 

∞  

 
Therefore, C1 must be zero: 
 
 ( )2 BesselI 0,T C m x T∞= +  (14) 
 
The base temperature is specified; therefore: 
 



 ( )2 BesselI 0,bT C m L T∞= +  (15) 
 
so: 
 

 ( )
( )2 BesselI 0,

bT T
C

m L
∞−

=  (16) 

 
Substituting Eq. (16) into Eq. (14) leads to: 
 

 ( ) ( )
( )

BesselI 0,
BesselI 0,b

m x
T T T T

m L∞ ∞= − +  (17) 

 
x_bar=0.5 [-]  "dimensionless position" 
x=x_bar*L   "position" 
T=(T_b-T_infinity)*BesselI(0,m*x)/BesselI(0,m*L)+T_infinity "temperature" 
T_C=converttemp(K,C,T) "in C" 
 
Figure P1.8-5-3 illustrates the temperature as a function of position normalized by the fin length. 
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Figure P1.8-5-3: Fin temperature as a function of dimensionless position. 

 
b.) Calculate the rate of heat transfer to the fin. 
 
The rate of heat transfer to the fin is computed according to: 
 

 fin b
x L

dTq kW th
dx =

=  (18) 

 
Equation (18) is evaluated using Maple: 
 
> restart; 
> T:=(T_b-T_infinity)*BesselI(0,m*x)/BesselI(0,m*L)+T_infinity; 

 := T  + 
( ) − T_b T_infinity ( )BesselI ,0 m x

( )BesselI ,0 m L T_infinity  

> q_dot_fin=k*W_b*th*eval(diff(T,x),x=L); 



 = q_dot_fin
k W_b th ( ) − T_b T_infinity ( )BesselI ,1 m L m

( )BesselI ,0 m L  

 
Therefore: 
 

 ( ) ( )
( )

BesselI 1,
BesselI 0,fin b b

m L
q kW th m T T

m L∞= −  (19) 

 
q_dot_fin=k*W_b*th*(T_b-T_infinity)*m*BesselI(1,m*L)/BesselI(0,m*L)  "fin heat transfer rate" 
 
which leads to finq  = -0.196 W (the heat transfer is negative because the base temperature is less 
than the ambient temperature). 
 
c.) Determine the fin efficiency. 
 
The fin efficiency is defined according to: 
 

 
( )

fin
fin

s b

q
h A T T

η
∞

=
−

 (20) 

 
where As is the total surface area of the fin exposed to the fluid: 
 
 s bA W L=  (21) 
 
Substituting Eqs. (19) and (21) into Eq. (20) leads to: 
 

 ( )
( )

( )
( )

BesselI 1,
BesselI 0,

b b
fin

b b

kW th m T T m L
h W L T T m L

η ∞

∞

−
=

−
 (22) 

 
Substituting Eq. (11) into Eq. (22) and simplifying leads to: 
 

 ( )
( )

( )
( )

1/

BesselI 1, BesselI 1,2 2
BesselI 0, 2 BesselI 0,fin

m

m L m Lk th h th k
h L k th m L L h m L

η = =  (23) 

 
or 
 

 ( )
( )

2BesselI 1,
BesselI 0,fin

mL
mL mL

η =  (24) 

 
eta_fin=2*BesselI(1,m*L)/(m*L*BesselI(0,m*L)) "fin efficiency" 
 



which leads to ηfin = 0.8178.  Figure P1.8-5-4 illustrates the fin efficiency as a function of the fin 
parameter mL. 
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Problem P1.8-5-4: Fin efficiency as a function of the fin parameter, mL. 

              
The fin has density ρ = 3000 kg/m3.  The fin is installed on a base material with thickness thb = 2 
mm and density ρb = 8000 kg/m3.  The half-width between the gap between adjacent fins is thg = 
2 mm.  Therefore, the volume of the base material associated with each fin is thb Wb (th + 2 thg). 
d.) Determine the ratio of the absolute value of the rate of heat transfer to the fin to the total 

mass of material (fin and base material associated with the fin). 
  
The additional inputs are entered in EES: 
 
rho=3000 [kg/m^3] "density of fin material" 
th_b=2 [mm]*convert(mm,m) "thickness of base material" 
th_g=2 [mm]*convert(mm,m) "half-width of gap between adjacent fins" 
rho_b=8000 [kg/m^3] "base material density" 
 
The fin mass is given by: 
 

 
2
b

fin
W LM th ρ=  (25) 

 
The mass of the associated base material is: 
 
 ( )2b b g b bM W th th th ρ= +  (26) 
 
The ratio of rate of the fin heat transfer to mass is: 
 

 ( )
fin fin

fin b

q q
M M M

=
+

 (27) 

 
M_fin=W_b*L*th*rho/2 "fin mass" 
M_b=W_b*(th+2*th_g)*th_b*rho_b "mass of base material" 
q\M=abs(q_dot_fin)/(M_fin+M_b) "ratio of heat transfer to mass" 



 
which leads to finq /M = 178.4 W/kg. 
 
e.) Prepare a contour plot that shows the ratio of the heat transfer to the fin to the total mass of 

material as a function of the length of the fin (L) and the fin thickness (th).   
 
A parametric table is generated that contains the variables L_cm, th_mm and q\M and has 400 
rows.  The value of the variable L_cm is varied from 1 cm to 10 cm every 20 rows and the value 
of th_mm is varied from 0.2 mm to 2 mm in increments of 20 rows.  The table is run and used to 
generate the contour plot shown in Figure P1.8-5-5. 
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Figure P1.8-5-5: Contours of heat transfer per mass in the parameter space of fin length and thickness. 

 
f.) What is the optimal value of L and th that maximizes the absolute value of the fin heat 

transfer rate to the mass of material? 
 
According to Figure P1.8-5-5, the optimal design is approximately L = 3.3 cm and th = 0.58 mm.  
A more precise optimization can be carried out using EES' internal optimization feature.  
Maximizing finq /M by varying L and th leads to finq /M = 209.6 W/kg at L = 3.25 cm and th = 
0.56 mm. 
 


