Problem 1.8-6: Cryosurgical Probe

As an alternative to surgery, cancer tumors may be destroyed by placing cylindrically-shaped
cryoprobes into the body, as shown in Figure P1.8-6. The probe surface is cooled causing the
temperature of the surrounding tissue to drop to a lethal level, killing the tumor.
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Figure 1.8-6: Cryosurgical probe.

The probe radius is Iy, = 5 mm and the heat flux at the surface of the probe (leaving the tissue) is
g, = 30000 W/m®. The tissue has conductivity k = 0.6 W/m-K. The blood flow through the

tissue results in a volumetric heating effect (") that is proportional to the difference between
the local temperature and the blood temperature, T, = 37°C:

gm = ﬂ(Tb _T)

where = 40000 W/m’-K. The temperature of the tissue far from the probe is Tp. Assume that

the temperature distribution is 1-D and steady-state.

a.) Develop an analytical model that can be used to predict the temperature distribution in the
tissue. Implement your solution in EES and prepare a plot of the temperature distribution as
a function of radius.

The differential control volume shown in Figure 2 can be used to derive the governing equation.
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Figure 2: Differential control volume.

An energy balance for the control volume is:

g+qr :qr+dr (1)



or

. dg
=—dr
J dr
The conduction and blood perfusion terms are:
g=-k2zrL ar
dr

g=2zrdrLg(T,-T)

Combining these equations leads to:

2zrdrLS(T, —T):%{—kzyzr L(;—I}dr

which can be simplified to:

i{rd—T}— rﬁT :—rﬁTb
dr| dr k k

The solution is divided into a homogeneous and particular component:
T=T+T,

which leads to:

i{r—d (0 +Tp)} rE(Th +T,)= Ly
dr dr k P k

or

drl dr| k "'dr|] dr | k" K

=0 for homogeneous ODE whatever is left is particular ODE

i{r dT“}—rﬁThjt d {rdTp}—rﬁT =—r£Tb

The solution to the particular differential equation:

dT
i r—~ _rﬁT :_rﬁTb
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T, =T, (11)

The homogeneous differential equation is:

i{rﬂ}—rﬁﬂ =0 (12)
dr{ dr K
Equation (12) is a form of Bessel’s equation:
i(xpd—gjircz x*0=0 (13)
dx dx

where, by comparing Egs. (12) and (13), p=1,c= /#/k, and s = 1. Referring to the flow

chart presented in Section 1.8, the value of s-p+2 is equal to 2 and therefore the solution
parameters N and @ must be computed:

1-1
n= =0 14
1-1+2 (14)

2
a= =1 15
1-1+2 (15)

The last term in Eq. (12) is negative; therefore the homogeneous solution is given by:
T =C, X Besseu(n,cax%)+ c, x BesselK(n,c a x%’) (16)

or, for this problem:

T, =C, BesselI(O, r\/%J +C, BesselK(O, I\/%J (17)

Substituting Egs. (11) and (17) into Eq. (7) leads to:

T =C, BesselI(O, r\/%] +C, BesselK(O, r\/%j +T, (18)



Note that Maple could be used to identify this solution as well; it is necessary to specify that the

parameters S and Kk are positive so that Maple identifies the solution in terms of modified Bessel
functions (as opposed to Bessel functions with complex arguments):

> restart;
> assume(beta>0);
> assume(k>0);
> ODE:=diff(r*diff(T(r),r),r)-r*beta*T(r)/k=-r*beta*T_b/k;
_(d d? r B~ T(r) rp~T_b
ODE .—(drT(r)jJrr(drzT(r))— - =

> Ts:=dsolve(ODE);

Ts :=T(r)=Bessel] 0, W ' _C2 + BesselK| 0, MBT ' C1+Thb
= =

The boundary conditions must be used to obtain the constants C; and C,. As radius approaches
infinity, the body temperature is recovered:

T.,.=T, (19)

Substituting Eq. (18) into Eq. (19) leads to:

T.,,.=C, BesselI{O, oo\/%] +C, BesselK (O, oo\/%] +T, =T, (20)
C, BesselI(O,oo\/%j+C2 BesselK(O,oo\/%j:O (21)

0 0

or

The 0" order modified Bessel function of the 1% kind, Bessell(0,X), approaches oo as X — oo and
0™ order modified Bessel function of the 2™ kind, BesselK(0,x), approaches 0 as X — oo:

> limit(Bessell(0,x),x=infinity);

> limit(BesselK(0,x),x=infinity);

Therefore, C; must be zero and Eq. (18) becomes:

T=C, BesselK(O, r\/%] +T, (22)



The heat flux into the probe (i.e., in the negative r-direction) at r = r, is specified, providing the

additional boundary condition:

dT
k— —q"
dr G

T:Tp

Substituting Eq. (22) into Eq. (23) leads to:
d ﬁ s
k&[C2 BesselK(O,r‘/?J+Tb] 7 =q;

Using the rules for differentiating Bessel functions presented in Section 1.8.4 leads to:

-k C, \/%BesselK(l, r, é} =0,

which leads to:
i

\/ﬁ BesselK[l, r f]

C2

Substituting Eq. (26) into Eq. (22) leads to:

BesselK(O, r\/fl
T=T - %

b
\/ﬁ BesselK [1, r 'B]

k

(23)

(24)

(25)

(26)

(27)

The solution can also be identified using Maple. Substitute C, = 0 into the previously obtained

solution:

> Ts:=subs(_C2=0,Ts);

Ts=T(r)= BesselK{O, % J Cl1+Tohb

Obtain an equation for the boundary condition associated with Eq. (23):

> BC:=k*rhs(eval(diff(Ts,r),r=r_p))=adf_p;



BC :==—/k~ BesselK(l, %] /B~ _Cl=qgfp

Substitute the solution to the boundary condition equation into the general solution:

BesselK(O, P~ rJ agf p
+Tb

> subs(_C1l=solve(BC, C1),Ts);

ir=
k= BesselK(l, “TNWI—'O] VB~

T(r)=-

The solution is implemented in EES. The inputs are entered:

$UnitSystem SI MASS RAD PA KJ
$TABSTOPS 0.20.40.60.83.5in

"Inputs"

r_p_mm=5 [mm] "probe radius, in mm"
r_p=r_p_mm*convert(mm,m) "probe radius"

g _p=30000 [W/m"2] "probe heat flux"

k=0.6 [W/m-K] "tissue conductivity"
beta=40000 [W/m”3-K] "blood perfusion effect"
T_b=converttemp(C,K,37[C]) "blood temperature"

Equation (27) is implemented in EES; the radius and temperature are converted to mm and °C,
respectively.

T=T_b-q_p*BesselK(0,r*sqrt(beta/k))/(sqrt(beta*k)*BesselK(1,r_p*sqrt(beta/k))) "solution"
r_mms=r*convert(m,mm) "radius"
T_C=converttemp(K,C,T) "in C"

Figure 3 illustrates the temperature as a function of radius.
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Figure 3: Temperature in tissue as a function of radius.




b.) The lethal temperature for cell death is Tiemar = -30°C. Plot the radius of the cryolesion (i.e.,
the kill radius - all tissue inside of this radius is dead) as a function of the heat flux provided
by the cryoprobe.

The temperature is set to the lethal temperature. The variable r must be constrained to be
positive in the Variable Information Window to avoid convergence errors. The kill radius as a
function of heat flux is shown in Figure 4.
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Figure 4: Kill radius as a function of the cryoprobe heat flux.



