Problem 1.4-5

Solve the problem stated in EXAMPLE 1.3-2 numerically rather than analytically.
a.) Develop a numerical model that can predict the temperature distribution within the lens.
Prepare a plot of the temperature as a function of position.

The inputs are entered in EES:

"Problem 1.4-5"
$UnitSystem SI MASS RAD PA K J
$TABSTOPS 0.20.40.60.83.5in

"Inputs”

g _rad=0.1 [W/cm"2]*convert(W/cm”2,W/m"2) “radiation incident on the lens"
L=1.0 [cm]*convert(cm,m) "thickness of lens"
T_a=converttemp(C,K,20) "ambient temperature"

h=20 [W/m"2-K] "heat transfer coefficient"
k=1.5 [W/m-K] "conductivity of lens"
alpha=0.1 [1/mm]*convert(1/mm,1/m) "absorption coefficient”

A=1 [m"2] "per unit area"

Nodes are distributed uniformly throughout the computational domain; the distance between
adjacent nodes is:

L
AX = 1
(N-1) 1)
where N is the number of nodes. The position of each node is:
X =Ax(i—1) fori=1..N (2)
N=10 [-] "number of nodes"
Dx=L/(N-1) "distance between adjacent nodes"
duplicate i=1,N
X[i(]=Dx*(i-1) "position of each node"
end

An energy balance on an internal control volume is shown in Figure 1.
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Figure 1: Energy balance on an internal control volume



The energy balance is:
qtop + qbottom + g = 0
Substituting rate equations into Eq. (3) leads to:

kA
AX

kA T, —T)+AAXq, aexp(—ax)=0
AX

i rad

(Ti—l _Ti )+

“internal control volume energy balances"

duplicate i=2,(N-1)
k*A*(T[i-1]-T[i])/Dx+k*A*(T[i+1]-T[i])/Dx+A*Dx*q""_rad*alpha*exp(-alpha*x][i])=0

end

An energy balance on node 1 located at the upper surface is shown in Figure 2.
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Figure 2: Energy balance on the upper edge control volume

The energy balance for node 1 is:
qconv + qbottom + g = O
Substituting rate equations into Eg. (5) leads to:

k A AAX

hA(T, —T1)+E(T2 —T1)+Tq£'ad aexp(-ax)=0

The corresponding energy balance for node N located at the lower surface is:

hA(T, _TN)+‘<A_:‘(TN_1_TN )+%q;;d crexp(~ax,)=0

"upper edge"
h*A*(T_a-T[1])+k*A*(T[2]-T[1])/Dx+A*Dx*q""_rad*alpha*exp(-alpha*x[1])/2=0

"lower edge"
h*A*(T_a-T[N])+k*A*(T[N-1]-T[N])/Dx+A*Dx*q " _rad*alpha*exp(-alpha*x[N])/2=0

(3)

(4)

()

(6)

()



The temperature distribution in the lens is shown in Figure 3.
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Figure 3: Temperature as a function of position in the lens

b.) Plot some characteristic of your solution as a function of the number of nodes to show that
you are using a sufficient number of nodes.

The maximum temperature in the lens is obtained using the Max command in EES:
T_max=MAX(T[1..N]) "maximum temperature in lens"

The maximum temperature and number of nodes are placed in a parametric table; the number of
nodes is varied and the results are shown in Figure 4.
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Figure 4: Maximum temperature as a function of the number of nodes

Maximum temperature in lens (K)

c.) Think of a sanity check that you can use to gain confidence in your model; that is, can you
change some input parameter and show that the solution behaves as you would expect.
Support your answer with a plot.

As the lens conductivity becomes very large, the temperature rise within the lens should be

reduced. Figure 3 illustrates the predicted result when the conductivity is increased by a factor
of 10, to 15 W/m-K.

d.) Plot the maximum lens temperature as a function of the heat transfer coefficient, h .

Figure 5 illustrates the maximum temperature in the lens as a function of the heat transfer
coefficient.



Maximum temperature (K)

T —

4405 \

420 \
400 \
380 \
360 \
340 \

320 AN

300f

0 5 10 15 20 25 30 35 40 45 50
Heat transfer coefficient (W/m?-K)

Figure 5: Maximum temperature as a function of the heat transfer coefficient



