PROBLEM 1.2-1: Composite Wall

A plane wall is a composite of a low conductivity material (with thickness L; and conductivity
ki) and a high conductivity material (with thickness L, = L; and conductivity k;). The edge of
the wall at x = 0 is at temperature T; and the edge at x = L; + L, has temperature T,, as shown in
Figure P1.2-1(a). T; is greater than T,. The wall is at steady-state and the temperature
distribution in the wall is one-dimensional in x.
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Figure P1.2-1: (a) Composite wall with k; < k,, and (b) sketch of heat flux and temperature.

a.) Sketch the heat flux (§") and temperature (T) as a function of position within the wall on the
axes in Fig. 1.2-1(b). Make sure that your sketch reflects the fact that (1) the wall is at steady
state, and (2) ky < ko,

If the process is at steady state, then I can draw a control volume that extends from one surface to
any location x in the material, as shown in Figure 2.
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Figure 2: Control volume for solution

An energy balance on the control volume leads to:
Go A=Cy A (1)

Equation (1) shows that the heat fux at any location x must be constant. The heat flux associated
with conduction is governed by Fourier’s law:
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Solving Eqg. (2) for the temperature gradient leads to:
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The numerator of Eqg. (3), the heat flux, is constant while the denominator changes depending on
whether you are in material 1 or material 2. In the low conductivity material 1, the temperature
gradient will be higher than in the high conductivity material 2. Within each material, the
temperature gradient must be constant (i.e., the temperature must be linear with x). The solution
is shown in Figure 3.
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Figure 3: (a) Heat transfer rate and (b) temperature as a function of position within wall.



