
PROBLEM 1.4-2 (1-10 in text): Mass Flow Meter (revisited) 
Reconsider the mass flow meter that was investigated in Problem 1.3-9 (1-9 in text).  The 
conductivity of the material that is used to make the test section is not actually constant as was 
assumed in Problem 1-9 but rather depends on temperature according to: 
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a.) Develop a numerical model of the mass flow meter using EES.  Plot the temperature as a 

function of radial position for the conditions shown in Figure P1.3-9 (Figure P1-9 in the text) 
with the temperature-dependent conductivity. 

 
The inputs are entered in EES: 
 
$UnitSystem SI MASS RAD PA  K J 
$TABSTOPS   0.2 0.4 0.6 0.8 3.5 in 
 
"Inputs" 
r_out=1.0 [inch]*convert(inch,m) "outer radius of measurement section" 
r_in=0.75 [inch]*convert(inch,m) "inner radius of measurement section" 
h_bar_out=10 [W/m^2-K] "external convection coefficient" 
T_infinity_C=20 [C] "ambient temperature in C" 
T_infinity=converttemp(C,K,T_infinity_C) "ambient temperature" 
T_f=converttemp(C,K, 18 [C]) "fluid temperature" 
g```=1e7 [W/m^3] "volumetric rate of thermal energy generation" 
m_dot=0.75 [kg/s] "mass flow rate" 
th_ins=0.25 [inch]*convert(inch,m) "thickness of insulation" 
k_ins=1.5 [W/m-K] "insulation conductivity" 
L= 3 [inch]*convert(inch,m) "length of test section" 
C=2500 [W/m^2-K] "constant for convection relationship" 
h_bar_in=C*(m_dot/1 [kg/s])^0.8 "internal convection coefficient" 
 
A function is defined that returns the conductivity of the material: 
 
Function k_t(T) 
 "This function returns the conductivity of the test section material as a function of temperature" 
 k_t=10 [W/m-K]+0.035 [W/m-K^2]*(T-300 [K]) 
end 
 
A uniform distribution of nodes is used, the radial location of each node (ri) is: 
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where N is the number of nodes.  The radial distance between adjacent nodes (Δr) is: 
 

 ( )
( )1
out inr r

r
N

−
Δ =

−
 (2)  



 
N=51 [-]   "number of nodes" 
DELTAr=(r_out-r_in)/(N-1) "distance between adjacent nodes (m)"  
"Set up nodes" 
duplicate i=1,N "this loop assigns the radial location to each node" 
 r[i]=r_in+(r_out-r_in)*(i-1)/(N-1) 
end 
 
An energy balance is carried out on a control volume surrounding each node.  For node 1, placed 
at the inner surface (Figure P1.4-2-1): 
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Figure P1.4-2-1: Control volume around node 1. 

 
The rate equation for convection is: 
 
 ( ), 12conv in in in fq h r L T Tπ= −  (4) 
 
The rate equation for conduction is: 
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The rate equation for generation is: 
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"Node 1" 
q_dot_conv_in=h_bar_in*2*pi*r_in*L*(T_f-T[1]) "convection from fluid" 
g_dot[1]=2*pi*r_in*L*DELTAr*g```/2 "generation" 
q_dot_outer[1]=k_t((T[1]+T[2])/2)*2*pi*(r[1]+DELTAr/2)*L*(T[2]-T[1])/DELTAr "conduction from node 2" 
q_dot_conv_in+q_dot_outer[1]+g_dot[1]=0 "energy balance on node 1" 
 
An energy balance on an internal node is shown in Figure P1.4-2-2: 
 
 0inner outerq q g+ + =  (7) 
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Figure P1.4-2-2: Control volume around internal node i. 

 
The rate equations for conduction are: 
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The rate equation for generation is: 
 
 2 ig r r L gπ ′′′= Δ  (10) 
 
"Internal nodes" 
duplicate i=2,(N-1) 
 q_dot_inner[i]=k_t((T[i]+T[i-1])/2)*2*pi*(r[i]-DELTAr/2)*L*(T[i-1]-T[i])/DELTAr  
     "conduction from inner node" 
 q_dot_outer[i]=k_t((T[i]+T[i+1])/2)*2*pi*(r[i]+DELTAr/2)*L*(T[i+1]-T[i])/DELTAr 
     "conduction from outer node" 
 g_dot[i]=2*pi*r[i]*L*DELTAr*g``` "generation" 
 q_dot_inner[i]+q_dot_outer[i]+g_dot[i]=0 "energy balance on node i" 
end 
 
An energy balance on node N placed on the outer surface is shown in Figure P1.4-2-3: 
 
 0inner airq q g+ + =  (11) 
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Figure P1.4-2-3: Control volume around internal node N. 

 
The rate equation for the heat transfer with the air is: 
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The rate equation for conduction is: 
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The rate equation for generation is: 
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"Node N" 
R_ins=ln((r_out+th_ins)/r_out)/(2*pi*L*k_ins) "resistance to conduction through insulation" 
R_conv_out=1/(2*pi*(r_out+th_ins)*L*h_bar_out) "resistance to convection from outer surface" 
q_dot_air=(T_infinity-T[N])/(R_ins+R_conv_out) "heat transfer from air" 
q_dot_inner[N]=k_t((T[N]+T[N-1])/2)*2*pi*(r_out-DELTAr/2)*L*(T[N-1]-T[N])/DELTAr  
     "conduction from node N-1" 
g_dot[N]=2*pi*r_out*L*DELTAr*g```/2 "generation" 
q_dot_air+q_dot_inner[N]+g_dot[N]=0 "energy balance on node N" 
 
The solution is converted to degrees Celsius: 
 
duplicate i=1,N 
 T_C[i]=converttemp(K,C,T[i]) "convert solution to deg. C" 
end 
 
The solution is illustrated in Figure P1.4-2-4. 
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Figure P1.4-2-4: Temperature as a function of radius. 

 
b.) Verify that your numerical solution limits to the analytical solution from Problem 1.3-9 (1-9 

in the text) in the limit that the conductivity is constant. 
 
The conductivity function is modified temporarily so that it returns a constant value: 
 
Function k_t(T) 
 "This function returns the conductivity of the test section material as a function of temperature" 
 k_t=10 [W/m-K]{+0.035 [W/m-K^2]*(T-300 [K])} 
end 
 
The analytical solution from P1.3-9 is programmed and used to compute the analytical solution 
at each node: 
 
"Analytical solution from P1.3-9" 
k=k_t(300 [K])  "conductivity to use in the solution" 
T_r_out=-g```*r_out^2/(4*k)+C_1*ln(r_out)+C_2 "temperature at outer surface of section" 
dTdr_r_out=-g```*r_out/(2*k)+C_1/r_out "temperature gradient at outer surface of section" 
-k*2*pi*r_out*L*dTdr_r_out=(T_r_out-T_infinity)/(R_ins+R_conv_out) "boundary condition at r=r_out" 
T_r_in=-g```*r_in^2/(4*k)+C_1*ln(r_in)+C_2 "temperature at inner surface of section" 
dTdr_r_in=-g```*r_in/(2*k)+C_1/r_in "temperature gradient at inner surface of section" 
h_bar_in*2*pi*r_in*L*(T_f-T_r_in)=-k*2*pi*r_in*L*dTdr_r_in  "boundary condition at r=r_in" 
 
duplicate i=1,N 
 T_an[i]=-g```*r[i]^2/(4*k)+C_1*ln(r[i])+C_2 "temperature" 
 T_an_C[i]=converttemp(K,C,T_an[i]) "in C" 
end 
 
Figure P1.4-2-5 illustrates the temperature distribution predicted by the numerical and analytical 
solutions in the limit that k is constant. 
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Figure P1.4-2-5: Temperature as a function of radius predicted by the analytical and numerical models in the 
limit that k is constant. 
 
c.) What effect does the temperature dependent conductivity have on the calibration curve that 

you generated in part (d) of Problem 1.3-9 (1-9)?   
 
The quantity measured by the meter is the difference between the temperature at the center of the 
pipe wall (T[26] when 51 nodes are used) and the fluid temperature: 
 
DT=T[26]-T_f  "temperature difference" 
 
Figure P1.4-2-6 illustrates the calibration curve (i.e., the relationship between the temperature 
difference and the mass flow rate) with and without the temperature dependent conductivity 
included. 
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Figure P1.4-2-6: Calibration curve generated with and without the temperature dependent conductivity 
included. 
 
 
 
 


