
Problem 1.8-1 (1-17 in text): Disk Brake  
Figure P1.8-1 illustrates a disk brake for a rotating machine.  The temperature distribution within 
the brake can be assumed to be a function of radius only.  The brake is divided into two regions.  
In the outer region, from Rp = 3.0 cm to Rd = 4.0 cm, the stationary brake pads create frictional 
heating and the disk is not exposed to convection.  The clamping pressure applied to the pads is 
P = 1.0 MPa and the coefficient of friction between the pad and the disk is μ = 0.15.  You may 
assume that the pads are not conductive and therefore all of the frictional heating is conducted 
into the disk.  The disk rotates at N = 3600 rev/min and is b = 5.0 mm thick.  The conductivity of 
the disk is k = 75 W/m-K and you may assume that the outer rim of the disk is adiabatic.   
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Figure P1.8-1: Disk brake. 

 
In the inner region of the disk, from 0 to Rp, is exposed to air at Ta = 30°C.  The heat transfer 
coefficient between the air and disk surface depends on the angular velocity of the disk, ω, 
according to: 
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a.) Develop an analytical model of the temperature distribution in the disk brake; prepare a 
plot of the temperature as a function of radius for r = 0 to r = Rd. 
 
The inputs are entered in EES and the heat transfer coefficient is computed according to Eq. 
Error! Reference source not found.. 
 
$UnitSystem SI MASS RAD PA  K J 
$TABSTOPS   0.2 0.4 0.6 0.8 3.5 in 
 
b=5 [mm]*convert(mm,m) "thickness of disk" 
N=3600 [rev/min] "rotational velocity of disk" 
omega=N*convert(rev/min,rad/s) "angular velocity of disk" 
mu=0.15 [-]  "coefficient of friction" 
P=1 [MPa]*convert(MPa,Pa) "clamping pressure" 
k=75 [W/m-K]  "conductivity" 
Rd=4.0 [cm]*convert(cm,m) "outer radius of disk" 
Rp=3.0 [cm]*convert(cm,m) "inner radius of pad" 



Ta=converttemp(C,K,30) "air temperature" 
h=20[W/m^2-K]+1500 [W/m^2-K]*(omega/100 [rad/s])^1.25   "heat transfer coefficient" 
 
In the outer region, region 1, the energy balance on a differential control volume is shown in 
Figure 2. 
 

 
Figure 2: Differential energy balance in outer region, (region 1) 

 
The energy balance suggested by Figure 2 is: 
 
 r fh r drq q q ++ =  (1) 
 
where fhq  is the rate of thermal energy generated by frictional heating.  After expanding the r + 
dr term, Eq. (1) becomes: 
 

 fh
dqq dr
dr

=  (2) 

 
The rate equation for conduction is: 
 

 12 dTq b r k
dr

π= −  (3) 

 
where T1 is the temperature in region 1.  The force generated by the pad within the control 
volume is the product of the clamping pressure, the area of contact, and the coefficient of 
friction: 
 
 4F r dr Pπ μ=  (4) 
 
Note that the factor of 4 in Eq. (4) is due to their being contact on both sides of the disk.  The 
rate of frictional heating is the product of the force, the radius, and the angular velocity: 
 
 24fhq r dr Pπ μ ω=  (5) 
 
Substituting Eqs. (3) and (5) into Eq. (2) leads to: 
 



 2 14 2 dTdr dr P b r k dr
dr dr

π μ ω π⎡ ⎤= −⎢ ⎥⎣ ⎦
 (6) 

 
which can be rearranged: 
 

 21 2dTd Pr r
dr dr b k

μ ω⎡ ⎤ = −⎢ ⎥⎣ ⎦
 (7) 

 
or 
 

 21dTd r r
dr dr

β⎡ ⎤ = −⎢ ⎥⎣ ⎦
 (8) 

 
where 
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Equation (8) can be directly integrated: 
 

 21dTd r r dr
dr

β⎡ ⎤ = −⎢ ⎥⎣ ⎦∫ ∫  (10) 

 
to achieve: 
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Equation (11) can be directly integrated again: 
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to achieve: 
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Equation (13) is the general solution for the temperature in region 1; the constants of integration 
will be selected in order to satisfy the boundary conditions. 
 
In the inner region, region 2, the energy balance on a differential control volume is shown in 
Figure 3. 



 

 
Figure 3: Differential energy balance in inner region, (region 2) 

 
The energy balance suggested by Figure 2 is: 
 
 r r dr convq q q+= +  (14) 
 
After expanding the r + dr term, Eq. (14) becomes: 
 

 0 conv
dq dr q
dr

= +  (15) 

 
The rate equation for conduction remains the same: 
 

 22 dTq b r k
dr

π= −  (16) 

 
where T2 is the temperature in region 2.  The rate equation for convection is: 
 
 ( )24conv aq r dr h T Tπ= −  (17) 
 
 
  Substituting Eqs. (16) and (17) into Eq. (15) leads to: 
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or 
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where 
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The solution to Eq. (19) can be divided into its homogeneous (u2) and particular (v2) parts: 
 
 2 2 2T u v= +  (21) 
 
The solution to the particular equation: 
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is 
 
 2 av T=  (23) 
 
The homogeneous equation: 
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is a form of Bessel's equation: 
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θ θ⎛ ⎞ ± =⎜ ⎟
⎝ ⎠
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where 
 
 x r=  (26) 
 
 2uθ =  (27) 
 
 1p =  (28) 
 
 c m=  (29) 
 
 1s =  (30) 
 
and the last term is negative.  Following the flow chart provided in Section 1.8.4 of the book 
leads to n = 0, a = 1, and therefore the solution is: 
 
 ( ) ( )2 3 4BesselI 0, BesselK 0,u C m r C m r= +  (31) 
 



The general solution for the temperature distribution in region 2 is therefore: 
 
 ( ) ( )2 3 4BesselI 0, BesselK 0, aT C m r C m r T= + +  (32) 
 
Note that this could be obtained directly from Maple by entering Eq. (19): 
 
> restart; 
> ODE:=diff(r*diff(T2(r),r),r)-m^2*r*T2(r)=-m^2*r*Ta; 
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> T2s:=dsolve(ODE); 
 := T2s  = ( )T2 r  +  + ( )BesselI ,0 m r _C2 ( )BesselK ,0 m r _C1 Ta  

 
The constants C1 through C4 in Eqs. (13) and (32) are obtained by applying the correct boundary 
conditions.  At r = 0, the temperature must remain finite.  The figures provided in Section 1.8.4 
of the book or the limit capability in Maple show that BesselK(0,m r) will become infinite as r 
approaches zero: 
 
> limit(BesselI(0,m*r),r=0); 

1  
> limit(BesselK(0,m*r),r=0); 

∞  

 
therefore: 
 
 4 0C =  (33) 
 
The temperature and temperature gradient at the interface between the regions must be 
continuous: 
 
 2, 1,p pr R r RT T= ==  (34) 
 
and  
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The temperature gradient at the outer rim must be zero: 
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Substituting Eqs. (13) and (32) into Eqs. (33) through (36) leads to: 
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Equations (37) through (39) are 3 equations for the unknown constants and can be solved in 
EES.   
 
beta=2*mu*P*omega/(k*b) "generation parameter" 
m=sqrt(2*h/(k*b)) "fin parameter" 
BesselI(0,m*Rp)*C_3+Ta=-1/9*beta*Rp^3+C_1*ln(Rp)+C_2 "equality of temperature at r=Rp" 
BesselI(1,m*Rp)*m*C_3=-1/3*beta*Rp^2+1/Rp*C_1  
 "equality of temperature gradient at r=Rp" 
-1/3*beta*Rd^2+1/Rd*C_1=0       "zero temperature gradient at r=Rd" 
 
The general solutions are entered in EES: 
 
T2 = BesselI(0,m*r2)*C_3+Ta "solution in region 2" 
T1 = -1/9*beta*r1^3+C_1*ln(r1)+C_2      "solution in region 1" 
 
A dimensionless radius, the variable rbar, is defined in order to allow a Parametric Table to be 
generated where the variable r1 can be easily altered from Rp to Rd and the r2 can be easily 
altered from 0 to Rp: 
 
r1=Rp+(Rd-Rp)*rbar 
r2=rbar*Rp 
 
Figure 4 illustrates the temperature distribution in the disk. 
 



 
Figure 4: Temperature distribution in the disk 

 
b.) If the disk material can withstand a maximum safe operating temperature of 750°C then what 

is the maximum allowable clamping pressure that can be applied?  Plot the temperature 
distribution in the disk at this clamping pressure.  What is the braking torque that results? 

 
The maximum operating temperature is obtained at r = Rd (see Figure 4).  The clamping pressure 
that results in T1 at the outer rim reaching the maximum allowable temperature can be 
determined by commenting out the originally specified clamping pressure and specifying this 
temperature: 
  
{P=1 [MPa]*convert(MPa,Pa)}       "clamping pressure" 
T_max_allowed=converttemp(C,K,750) "maximum allowable temperature" 
rbar=1.0 
T1=T_max_allowed 
 
which leads to a clamping pressure of P = 0.57 MPa.  The temperature distribution for this 
clamping pressure is shown in Figure 4.  The torque applied by the pads (Tq) is obtained from 
the integral: 
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or 
 

 3 34
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which leads to Tq = 13.2 N-m. 
 
c.) Assume that you can control the clamping pressure so that as the machine slows down the 

maximum temperature is always kept at the maximum allowable temperature, 750°C.  Plot 
the torque as a function of rotational speed for 100 rev/min to 3600 rev/min. 

 
A parametric table is created that includes the variables N and Tq,; N is varied from 100 rev/min 
to 3600 rev/min.  The results are shown in Figure 5.  Notice that it is possible to dramatically 
improve the performance of the brake if you can adjust the clamping pressure with speed. 
 

 
Figure 5: Clamping pressure and torque as a function of rotational velocity. 

 


