Problem 1.8-9

One side of a thin circular membrane is subjected to a flux of energy that varies according to:
§"=ar’ 1)

One side of the membrane is exposed to fluid at 7., with heat transfer coefficient 4. The outer

edge of the membrane is held at 7. The radius of the membrane is », and the thickness is .

The conductivity of the membrane material is . Assume that the temperature distribution in the

membrane is only a function of radius.

a.) Derive the governing differential equation for the temperature in the membrane and the

boundary conditions.

A differential energy balance leads to:
G, +q"2xrdr=q,,, +2xrdrh(T-T,) (2)

Expanding the r+dr term leads to:
- dq 7
q Zﬂrdrzd—dr—i-Zﬂrdrh(T—Tw) (3)
r

The rate of conduction heat transfer is:

dT

g=—k2nrth— 4)
dr
Substituting Egs. (1) and (4) into Eq. (3) leads to:
a27zr3dr:i(—kZﬁrthd—Tjdr+27zrdr}7(T—Tw) (5)
dr dr
which can be simplified to:
ar’ :i(—krthd—Tj+rf7(T—Tw) (6)
dr dr
or
i(rd—Tj—Lr(T—Tm):—Lrs (7)
dr\ dr) kth kth

The boundary conditions are:



T =T (8)
T._, must be bounded 9)

b.) Define a dimensionless temperature difference and radius. Use them to non-dimensionalize
the governing differential equation and boundary conditions from (a). This process should
lead to the identification of another dimensionless parameter. Explain the significance of this
parameter.

A dimensionless temperature is defined:

f=—"= (10)

where AT is a normalizing temperature difference. The normalizing temperature difference is
defined based on the temperature difference that would be induced if the entire rate of energy
transfer from the heat flux were transferred convectively from the membrane. The total rate of
heat transfer from the flux is:

A 4
q'zjcgiandr:ﬁC;r” (11)
0 4"
The reference temperature difference is therefore:
AT = q _ 7[611’04 a 7/'02 (12)
xr’h 2xr’h 2h
which leads to:
~ 2h(T-T
5210 L) (13)
A dimensionless radius is defined:
7 =r1 (14)
Substituting Egs. (13) and (14) into Eq. (7) leads to:
ar, d fd_é _iaros,zé__a_rfﬁ (15)
2h di\ dF ) kth 2h kth



or

i(ﬁd—?]—mzféz—zmzf?’ (16)
dar\ dr
where
, hr?
m-=—2 17
kth (7

The parameter m? is, approximately, the ratio of the resistance to conduction along the membrane
in the radial direction to the resistance to convection from the membrane surface.

The nondimensional boundary conditions are:
0,,=0 (18)
6._, must be bounded (19)

c.) Solve the normalized problem from (b). Prepare a plot of the dimensionless temperature as a
function of the dimensionless radius for various values of the dimensionless parameter
identified in (b).

The solution is split into a homogeneous and nonhomogeneous component:
6=0,+0, (20)

Equation (20) is substituted into Eq. (16), leading to:

j N do ~
1(,761_@}_”12;@ +i{; p]_mz,:ep o @y

dr\ dr dr\ dr

=0 for homogeneous differential equation  whatever is left is the particular differential equation

The solution to the particular differential equation is considered first.

do N
%LF df }—mz 7O =-2m’ 7 (22)
r r

Based on the form of the left side, a second order polynomial is assumed for the particular
solution:



Hp —a+bF+ci?

Substituting Eq. (23) into Eq. (22) leads to:

g@owb+2cf»—nff(a+bf+c#)=—2m2#
=

or

b+4c77—m217(a+b17+0772)=—2m2 7

Equating like coefficients of 7 leads to:

-m*b=0

2 2
-m-c=-2m

which leads to a= 8/m? b =0, and ¢ = 2. Therefore, the particular solution is:

8 -
Hp =?+21"2

The solution to the homogeneous differential equation:

T AR
dr dr

is obtained using the flow chart:
8, = C, Bessell (0, m )+ C, BesselK (0, m 7 )

The solution is:

6 = C, Bessell (0,m7)+C, BesselK(o,mf)+i2+ 27

m

The same solution can be identified in Maple:

> restart;

(23)

(24)

(25)

(26)
(27)
(28)

(29)

(30)

(31)

(32)

(33)



> ODE:=diff(r*diff(q(r),r),r)-m"2*r*q(r)=-2*m"2*r"3;
2

ODE = (;i q(r)j +r(;iz q(r)} —m?rq(r)=-2m?*r

> gs:=dsolve(ODE);

The boundary condition:
6._, must be bounded

is satisfied by evaluating the limits of the two Bessel functions:

> limit(Bessell(0,r),r=0);

> limit(BesselK(0,r),r=0);

which means that C, in Eq. (33) must be zero:

6=C, Bessell(o,mf)+i2+2f2
m

The boundary condition:

D

=0

7

is enforced:

G BesseII(O,m)+i2+2=O

m

which leads to:
L
—__\m  J
© Bessell(0,m)

Substituting Eq. (38) into Eq. (35) leads to:

m

8 + 2 m? r?

2

(34)

(35)

(36)

(37)

(38)



8
(2+2J 3
é:—m—Bessell 0,mi)+—+27 39
Bessell (0, m) (0.m7) m* " (39)

Equation (39) is programmed in EES:

"P1.8-9"
$UnitSystem SI MASS RAD PA K J
$TABSTOPS 0.20.40.60.83.5in

"Inputs"
m=1 [-] "dimensionless parameter - ratio of conduction to convection"
theta_hat=-(8/m”2+2)*Bessell(0,m*r_hat)/Bessell(0,m)+8/m"2+2*r _hat"2 "solution"

and used to generate Figure 1, which shows the dimensionless temperature as a function of
dimensionless radius.
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Figure 1: Dimensionless temperature as a function of dimensionless radius for various values of m.



