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Problem 2.1 

Starting from Eq. (2.22), show that for a parallelflow heat exchanger, Eq. (2.26a) becomes 
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SOLUTION: 

 

The heat transferred across the area dA is: 
( )δQ = U T T dAh c−       (1) 

The heat transfer rate can also be written as the change in enthalpy of each fluid (with the 
correct sign) between the area A and A+dA: 

* for the hot fluid (dTh

δQ = -m c dTh p,h h

<0) 
       (2) 

* for the cold fluid (dTc

δQ = m c dTc p,c c

>0) 
       (3) 

The notion of heat capacity can be introduced as: 
C = mc p        (4) 

This parameter represents the rate of heat transferred by a fluid when its temperature varies 
with one degree. 

The equation (2) and (3) give: 
δQ = -C dT C dTh h c c=       (5) 

Equations (1) and (5) give: 
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= −       (6) 

dT
T T

U
C

dAc

h c c−
= −       (7) 

Subtracting equation (7) from (6): 
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Considering the overall heat transfer coefficient U=constant, equation (8) can be integrated: 
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The constant of integration, K is obtained from the boundary condition at the inlet: 
at A=0, T Th c− = T Th1 c2−        (11) 

K= T Th1 c2−        (12) 
Introducing equation (12) in (10) we have: 
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At the outlet the heat transfer area is At=A and Th-Tc=Th2-Tc2
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Problem 2.2 

Show that for a parallel flow heat exchanger the variation of the hot fluid temperature along the heat 
exchanger is given by 
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Obtain a similar expression for the variation of the cold fluid temperature along the heat exchanger. 
Also show that for A→∞ , the temperature will be equal to mixing-cup temperature of the fluids 
which is given by 

ch
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TCTC

T
+
+
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SOLUTION: 

 

The heat transferred across the area dA is: 
( )δQ = U T T dAh c−       (1) 

The heat transfer rate can also be written as the change in enthalpy of each fluid (with the 
correct sign) between the area A and A+dA: 

* for the hot fluid (dTh

δQ = -m c dTh p,h h

<0) 
       (2) 

* for the cold fluid (dTc

δQ = m c dTc p,c c

>0) 
       (3) 

The notion of heat capacity can be introduced as: 
C = mc p        (4) 

Equation (2) and (3) give: 
δQ = -C dT C dTh h c c=       (5) 

Equations (1) and (5) give: 
dT
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Subtracting equation (7) from (6): 
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Considering the overall heat transfer coefficient U=constant, equation (8) can be integrated: 
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     (10) 

The constant of integration, K is obtained from the boundary condition at the inlet: 
at A=0, T Th c− = T Th1 c2−        (11) 

K= T Th1 c2−        (12) 
Introducing equation (12) in (10) we have: 
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From equation (10) it can be observed that the temperature difference Th-Tc is an exponential 
function of surface area A, and Th-Tc
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→0 when A→0. The variation of the hot fluid temperature 
and that of the cold fluid temperature can be obtained separately. By multiplying equations (6) 
and (13): 

    (14) 

Integrating: 
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The constant of integration, B is obtained from the boundary condition: 
at A=0,   Th=Th1
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From (16) and (17) we have: 
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From equations (7) and (13) following the same procedure we obtain: 
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Equation (10) shows that for A→∞,  Th=Tc=T
The value of T

∞. 

∞ can be calculated, for example, from equation (19): 
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Problem 2.3 

Show that the variation of the hot and cold fluid temperature along a counterflow heat exchanger is 
given by 
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SOLUTION: 
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Subtracting equation (2) from (1): 
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Integrating for constant values of U, Cc and Ch
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where B the constant of integration results from the boundary condition: 
at A=0, T Th c− = T Th1 c2−          

B= T Th1 c2−        (5) 
Introducing equation (5) in (4): 
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Examining the evolution of Th and Tc separately by multiplying equations (1) and (6), (2) 
and (6) respectively,  we have: 
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Integrating: 
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For A=0,   Th=Th1, Tc = Tc2
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Substituting (9.1) in (8.1), (9.2) in (8.2), respectively: 
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Problem 2.4 

From problem 2.3, show that for the case Ch<Cc, 
d T
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2 > , and therefore temperature 

curves are convex and for the case Ch>Cc, 
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2
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< , therefore, the temperature curves 

are concave (see Figure 2.6). 

 

SOLUTION: 

 

The hot fluid has a smaller heat capacity than the cold fluid, that is why it is the one who “commands 
the transfer” 

Differentiating equation (10.1) in problem 2.3: 
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Similarly, from equation (10.2): 

dT
dA

(T T ) - 1
C

Uexp 1
C

- 1
C

UAc
h1 c2

c c h
= −

































 

( )d T
dA

(T T ) C - C

C C
U exp 1

C
- 1

C
UA

2
c
2

h1 c2 c h

c
2

h

2

c h
=

− 




















> 0   (2) 

Since, the second derivatives with respect to area of both Th and Tc

 

 are positive as seen in 
equations (1) and (2), both the temperature curves are convex. 

 
 



 

 

Problem 2.5 

Show that when the heat capacities of hot and cold fluids are equal (Cc=Ch=C), the variation of the hot 
and cold fluid temperature along a counter flow heat exchanger are linear with the surface area as: 

Tc − Tc2

Th1
− Tc2

=
Th − Th1

Th1
− Tc2

= −
UA
C

 

 

SOLUTION: 

 

When the two fluids have the same heat capacity, from equation (6) in problem 2.3: 

( )δQ U T T dA C dTh c h h= − = −      (1) 

In equation (10.2) in problem 2.3 when Cc→Ch we have: 

chc
h

UA
CC
CC

hc

h

c2h1

c2c

C
UA

CC
UAClim1e

CC
Clim

TT
TT

hc

ch

−=







−=














−

−
=

−
−

−

 (2) 

Similarly, from equation (10.1) in problem 2.3: 
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     (4) 

 
 



 

 

Problem 2.6 

Assume that in a condenser, there will be no-subcooling and condensate leaves the condenser at 
saturation temperature, Th. Show that variation of the coolant temperature along the condenser is 
given by 
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SOLUTION: 

 

The heat transferred along a surface element dA is: 

( )δQ U T T dA C dTh c h h= − = −      (1) 

Because Th = constant in a condenser, we can write: 
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Using equations (1) and (2): 
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Integrating: 

( )ln T T UA
C

lnDh c
h

− = − +  

T T Bexp U
C

Ah c
c

− = −








       (4) 

The constant of integration, B can be calculated with the boundary condition: 
Tc=Tc1

T
,  for A=0. 

h-Tc1

The temperature distribution for the cold fluid can be obtained by introducing (5) in (4) as: 
=B       (5) 

( )T T T T exp UA
Ch c h c1

c
− = − −









  

T T
T T

exp UA
C

c c1

h c1 c

−
−

= − −








1  

 



 

 

Problem 2.7 

In a boiler (evaporator), the temperature of hot gases decreases from Th1 to Th2, while boiling occurs at 
a constant temperature Tc. Obtain an expression, as in Problem 2.6, for the variation of hot fluid 
temperature with the surface area. 

 

SOLUTION: 

 

The rate of heat transfer δQ across the heat transfer area dA can be expressed as: 

( )δQ U T T dA C dTh c h h= − = −      (1) 

In an evaporator Tc = constant and  
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The boundary condition at A=0 gives the value of the constant D: 
at A=0     Th = T
T

h1 
h1 - Tc 

Introducing (5) in (4): 
= D       (5) 

( )T T T T exp U
C

Ah c h1 c
h

− = − −








      (6) 

Rearranging: 

1-
T T
T T

exp U
C

Ah c

h1 c h

−
−

= − −








1  

T T
T T

exp U
C

Ah h1

h1 c h

−
−

= − − −






















1      (7) 

 
 



 

 

Problem 2.8 

Show that Eq. (2.46) is also applicable for Ch>Cc, that is C*=Cc/Ch. 

 

SOLUTION: 

 

From Eq. (2.26b) 

2 1 1 2
1 1( )exph c h c

c h

T T T T UA
C C

  
− = − −  

  
       (1) 

For the case h cC C> , mincC C= , maxhC C= , 

2 1 1 2
min

( ) exp 1 c
h c h c

h

CUAT T T T
C C
  

− = − −  
  

                                               (2) 

*
1 2( ) exp[ (1 )]h cT T NTU C= − −  

From heat balance equation 

2 1 1 2( ) ( )c c c h h hC T T C T T− = −                                                                     (3) 

or 
*

2 1 1 2( ) ( )c c h hC T T T T− = −                                                                        (4) 

The heat exchanger efficiency 

min 2 1 2 1

max min 1 1 1 1

( )
( )

c c c c

h c h c

C T T T TQ
Q C T T T T

ε − −
= = =

− −  

*
2 1

*
1 1

( )(1 )
( )(1 )

c c

h c

T T C
T T C

− −
=

− −
 

*
2 1 2 1

*
1 1 1 1

( )
( )

c c c c

h c h c

T T C T T
T T C T T

− − −
=

− − −
                                                                      (5) 

2 1 1 2
* * *

2 1 1 2 2 1 2 1( )
c c h h

h c h c h h c c

T T T T
T T C T T T T C T C T

− − +
=

− − − − + − +  

2 1 1 2
*

2 1 1 2

( )
( )

h c h c

h c h c

T T T T
T T C T T

− − −
=

− − −  

or 



 

 

1 2

2 1

* 1 2

2 1

1

1

h c

h c

h c

h c

T T
T T

T TC
T T

ε

−
−

−
=

−
−

−

                                                                               (6) 

*

* *

1 exp[ (1 )]
1 exp[ (1 )]

NTU C
C NTU C
− − −

=
− − −

 

This proves that for h cC C> , Eq. (2.46) can also be derived from Eq. (2.16b). 

 



 

 

Problem 2.9 

Obtain the expression for exchanger heat transfer effectiveness, ε, for parallel flow given by Eq. 
(2.47). 

 

SOLUTION: 

 

From Eq. (2.26c) 

2 2 1 1
1 1( )exph c h c

c h

T T T T UA
C C

  
− = − − +  

  
       (1) 

Assume h cC C> , mincC C= , maxhC C= , 

2 2 1 1
min

( ) exp 1 c
h c h c

h

CUAT T T T
C C

  
− = − − +  

  
                                          (2) 

*
1 1( ) exp[ (1 )]h cT T NTU C= − − +  

From heat balance equation 

2 1 1 2( ) ( )c c c h h hC T T C T T− = −                                                                (3) 

or 
*

2 1 1 2( ) ( )c c h hC T T T T− = −                                                                     (4) 

The heat exchanger efficiency 

min 2 1 2 1

max min 1 1 1 1

( )
( )

c c c c

h c h c

C T T T TQ
Q C T T T T

ε − −
= = =

− −
 

*
2 1

*
1 1

( )(1 )
( )(1 )

c c

h c

T T C
T T C

− +
=

− +
 

1 2
2 1

2 1
*

1 1

( ) 1

( )(1 )

h h
c c

c c

h c

T TT T
T T

T T C

 −
− + − =

− +
                                                                (5) 

2 1 1 2
*

1 1( )(1 )
c c h h

h c

T T T T
T T C
− + −

=
− +

 

1 1 2 2
*

1 1

( ) ( )
( )(1 )
h c h c

h c

T T T T
T T C
− − −

=
− +

 



 

 

*

*

1 exp[ (1 )]
1
NTU C

C
− − +

=
+

 

This proves that for h cC C> , Eq. (2.47) can be derived from Eq. (2.16c). For case h cC C< , 

similar result can also be obtained. 

 

 



 

 

Problem 2.10 

5,000 kg/hr of water will be heated from 20oC to 35oC by hot water at 140oC. A 15oC hot water 
temperature drop is allowed. A number of double-pipe heat exchangers with annuli and pipes each 
connected in series will be used. Hot water flows through the inner tube. The thermal conductivity of 
the material is 50 W/m.K. 

Fouling factors:   Rfi 0.000176 m2.K/W 

  Rfo = 0.000352 m2.K/W. 

Inner tube diameters:     ID = 0.0525m, OD = 0.0603m 

Annulus diameters:        ID = 0.0779m, OD = 0.0889m. 

The heat transfer coefficients in the inner tube and in the annulus are 4620 W / m2 · K and 1600 W / 
m2 · K, respectively. Calculate the overall heat transfer coefficient and the surface area of the heat 
exchanger for both parallel and counter flow arrangements. 

 

GIVEN: 

-A double pipe heat exchanger, with hot water flows through the inner tube. 

-Cold water inlet temperature (Tc1) = 20oC 

-Cold water outlet temperature (Tc2) = 35oC 

-Cold water mass flow rate ( m h ) = 5000 kg/hr = 1.3889 kg/s 

-Hot Water inlet temperature (Th1) = 140oC 

-Hot water temperature drop (∆Th) = 15oC 

-Thermal conductivity of tube material (kw) = 50 W/m.K 

-Heat transfer coefficient in the inner tube (hi) = 4620 W/m2.K 

-Heat transfer coefficient in the annulus (ho) = 1600 W/m2.K 

-Fouling factors: (Rfi) = 0.000176 m2.K/W 

                          (Rfo) = 0.000352 m2.K/W 

-Inner tube diameters : (ID) = 0.0525 m, (OD) = 0.0603 m 

-Annulus diameters: (ID) = 0.0779 m, (OD) = 0.0889 m 



 

 

FIND: 

a. Overall heat transfer coefficient (Uo)  

b. Surface area (A). 

 

SOLUTION: 

a.  
The total thermal resistance Rt

R 1
UA

1
U A

1
U A

    = 1
h A

ln r
r

2 kL
R
A

R
A

1
A h

t
i i o o

i i

o
i fi

i

fo

o o o

= = =

+






+ + +

π

 can be expressed as: [eq. (2.11)] 

 

1
U

=
A
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r
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A R

A
R 1

h

     =
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h d

d ln r
r

2k
d R

d
R 1

h

     = 0.0603
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0.0603 ln
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1

1600
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o
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⋅ 




+ + +

+
⋅ 
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
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×
+

× 



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×
+

×
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0 0603
0 0525 0 000352

.

. .

 

( )Q m c T T = 17.222 4.179 (50 20) 2159.12   kWc p,c c2 c1= − × × − =  

Uo

T T
m c
m c

(T T )

     = 100 - 62000 4.179
80000 4.22

30 76.98  C

h2 h1
c p,c

h p,h
c2 c1

o

= − −

×
×

× =





 is the overall heat transfer coefficient based on outer surface area, i.e. 

 
 

b. 
Heat balance equation:  

( )Q m c T Tc p,c c2 c1= −  

cp,c

∴ 
 = 4.179 kJ/kg.K (from table B.2 in appendix B) 

Q 1.3889 4179 (35- 20) = 87063.2  W= × ×  
for parallel flow: 

∆T 120 90

ln 120
90

104.28  Cm
o=

−
=  



 

 

for counter flow: 
∆ ∆ ∆T T T 105  Cm 1 2

o= = =  
So,  

A Q
U T

87063.2
661.7 104.28

1.262  mo
o m

2= =
×

=
∆

                  for parallel flow. 

A Q
U T

87063.2
661.7

  mo
o m

2= =
×

=
∆ 105

1253.                        for counter flow. 

 
 

 



 

 

Problem 2.11 

Water at a rate of 45,500 kg/hr is heated from 80oC to 150oC in a shell-and-tube heat-exchanger 
having two shell passes and eight tube passes with a total surface area of 925m2. Hot exhaust gases 
having approximately the same thermal physical properties as air enter at  350oC and exit at 175oC. 
Determine the overall heat transfer coefficient based on the outside surface area. 

 

GIVEN: 

-A shell-and-tube heat exchanger having two shell passes and eight tube passes. 

-Cold water inlet temperature (Tc1) = 80oC 

-Cold water outlet temperature (Tc2) = 150oC 

-Cold water mass flow rate ( m h ) = 45,500 kg/hr = 12.6389 kg/s 

-Hot gas inlet temperature (Th1) = 350oC 

-Hot gas outlet temperature (Th2) = 175oC 

-Total surface area (A) = 925 m2 

 

FIND: 

Overall heat transfer coefficient (U)  

 

SOLUTION: 

The heat balance equation: 
( ) ( )Q m c T T m c T Tc p,c c2 c1 h p,h h2 h1= − = −   

cp,c
80 150

2
115+

= o C = 4.227 kJ/(kg.K) (at average temperature of )  

( )Q m c T T = 17.222 4.179 (50 20) 2159.12   kWc p,c c2 c1= − × × − =  
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          From   Figure 2.8, F=0.96 
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Problem 2.12 

A shell-and-tube heat exchanger given in Problem 2.11 is used to heat 62,000 kg / hr of water from 
20°C to about 50°C. Hot water at 100°C is available. Determine how the heat transfer rate and the 
water outlet temperature vary with the hot water mass flow rate. Calculate the heat transfer rates 
and the outlet temperatures for hot water flow rates: 

a. 80,000 kg / hr  

b.  40,000 kg / hr  

 

GIVEN: 

-A shell-and-tube heat exchanger having two shell passes and eight tube passes. 

-Cold water inlet temperature (Tc1) = 20oC 

-Cold water outlet temperature (Tc2) = 50oC 

-Cold water mass flow rate ( m h ) = 62,000 kg/hr = 17.222 kg/s 

-Hot Water inlet temperature (Th1) = 100oC 

-Total surface area (A) = 925 m2 

 

FIND: 

Heat transfer rates (Q) and outlet temperature of hot water (Th2) for mass flow rate of 

a. 80,000 kg/hr 

b. 40,000 kg/hr 

 

SOLUTION: 

The heat balance equation: 
( ) ( )Q m c T T m c T Tc p,c c2 c1 h p,h h2 h1= − = −   

 
cp,c = 4.179 kJ/(kg.K)  (T = 35o

c
C) 

p,h = 4.22  kJ/(kg.K)  (T = 100o

a. 
C) 

m 80,000   kg / hrh =  



 

 

( )Q m c T T = 17.222 4.179 (50 20) 2159.12   kWc p,c c2 c1= − × × − =  
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m c
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h2 h1
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b. m 40,000   kg / hrh =  
( ) kW   2159.1220)(504.17917.222=TTcmQ c1c2cp,c =−××−=   
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Problem 2.13 

Water at a flow rate of 5,000 kg/hr (cp=4182 J/kg.K) is heated from 10oC to 35oC in an oil cooler  by 
engine oil having an inlet temperature of 65oC (cp= 2072 J/kg.K) with a flow rate of 6,000 kg/hr. Take 
the overall heat transfer coefficient to be 3,500 W/m2.K. What are the areas required for: 

a. Parallel flow 

b. Counterflow 

 

GIVEN: 

-Cold water inlet temperature (Tc1) = 10oC 

-Cold water outlet temperature (Tc2) = 35oC 

-Cold water mass flow rate ( m h ) = 5,000 kg/hr = 1.389 kg/s 

-Hot Water inlet temperature (Th1) = 65oC 

-Hot water mass flow rate ( mh ) = 6,000 kg/hr = 1.667 kg/s 

-Overall heat coefficient (U) = 3,500 W/m2.K 

-Specific heat of cold water (cp,c) = 4182 J/kg.K 

-Specific heat of hot water (cp,h) = 2072 J/kg.K 

 

FIND: 

Heat transfer area (A) required for: 

a. parallel flow; 

b. counter flow. 

 

SOLUTION: 

The heat balance equation: 
( ) ( )Q m c T T m c T Tc p,c c2 c1 h p,h h2 h1= − = −   

( )Q m c T T    Wh p,h h2 h1= − = × × − =
. ( )9 4
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999 4180

67  

 a. Parallel flow:  
The parallel flow is not an acceptable solution, because of the temperatures cross. 

 
 
 
 
 
 
 
 
 
 
 

b. counter flow: 
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Impossible case  

65oC 

10oC 

35oC 

22.9oC 



 

 

Problem 2.14 

In order to cool a mass flow rate of 9.4 kg / h of air from 616°C to 232°C, it is passed through the 
inner tube of double-pipe heat exchanger with counterflow, which is 1.5 m long with an outer 
diameter of the inner tube of 2 cm. 

a. Calculate the heat transfer rate. For air, cp,h = 1060 J/kg.K 

b. The cooling water enters the annular side at 16oC with a mass flow rate of 0.3 L/min.  

Calculate the exit temperature of the water. For water, cp,c = 4180 J/kg.K 

c. Determine the effectiveness of this heat exchanger, NTU. The overall heat transfer 

coefficient based on the outside heat transfer surface area is 38.5 W/m2.K. Calculate 

the surface area of the heat exchanger and number of double-pipe heat exchangers. 

 

GIVEN: 

-Hot air inlet temperature (Th1) = 616oC 

-Hot air outlet temperature (Th2) = 232oC 

-Hot air mass flow rate ( m h ) = 9.4 kg/hr = 0.002611 kg/s 

-Specific heat of hot air (cp,h) = 1060 J/kg.K 

-Cooling water inlet temperature (Tc1) = 16oC 

-Specific heat of cooling water (cp,c) = 4180 J/kg.K 

-Hot water mass flow rate ( mh ) = 0.3 l/min 

-The overall heat transfer coefficient of the hot fluid is (U) = 38.5 W/m2.K 

 

FIND: 

a. Heat transfer rate Q 

b. Exit temperature of the water T 

c. Effectiveness of the heat exchanger ε, NTU, and heat transfer surface area A 
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