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Notice

This collection contains solutions to most of the problems in our book Funda-
mentals of Nuclear Science and Engineering, 3/e (Taylor & Francis, Boca Raton,
Florida, 2007. We do not warrant that all the solutions are correct or that other
approaches could give equally valid results. This collection is provided to you solely
as an aid in your teaching, and we ask that you do not copy this set for others
without our permission. If, in your teaching, you develop better solutions than are
presented here or find corrections are needed, we would appreciate receiving copies
so that, over time, this collection will be improved.

A sporadically updated errata for the book can be found on the world wide web
at http://www.mne.ksu.edu/~jks/books.htm



Chapter 1

Fundamental Concepts

PROBLEMS

1. Both the hertz and the curie have dimensions of s−1. Explain the difference
between these two units.

Solution:

The hertz is used for periodic phenomena and equals the number of “cycles
per second.” The curie is used for the random or stochastic rate at which a
radioactive source decays, specifically, 1 Ci = 3.7× 1010 decays/second.

2. Advantages of SI units are apparent when one is presented with units of barrels,
ounces, tons, and many others.

(a) Compare the British and U.S. units for the gallon and barrel (liquid and
dry measure) in SI units of liters (L).

(b) Compare the long ton, short ton, and metric ton in SI units of kg.

Solution:

Unit conversions are taken from the handbook Conversion Factors and Tables,
3d ed., by O.T. Zimmerman and I. Lavine, published by Industrial Research
Service, Inc., 1961.

(a) In both British and U.S. units, the gallon is equivalent to 4 quarts, eight
pints, etc. However, the quart and pint units differ in the two systems. The
U.S. gallon measures 3.7853 L, while the British measures 4.546 L. Note
that the gallon is sometimes used for dry measure, 4.405 L U.S. measure.

The barrel in British units is the same for liquid and dry measure, namely,
163.65 L. The U.S. barrel (dry) is exactly 7056 in3, 115.62 L. The U.S.
barrel (liq) is 42 gallons (158.98 L) for petroleum measure, but otherwise
(usually) is 31.5 gallons (119.24 L).

(b) The common U.S. unit is the short ton of 2000 lb, 907.185 kg, 20 short
hundredweight (cwt). The metric ton is exactly 1000 kg, and the long ton
is 20 long cwt, 22.4 short cwt, 2240 lb, or 1016 kg.
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3. Compare the U.S. and British units of ounce (fluid), (apoth), (troy), and
(avdp).

Solution:

The U.S. and British fluid ounces are, respectively, 1/32 U.S. quarts (0.02957
L) and 1/40 British quarts (0.02841 L). The oz (avdp.) is exactly 1/16 lb
(avdp), i.e., 0.02834 kg. Avdp., abbreviation for avoirdupois refers to a system
of weights with 16 oz to the pound. The apoth. apothecary or troy ounce is
exactly 480 grains, 0.03110 kg.

4. Explain the SI errors (if any) in and give the correct equivalent units for the
following units: (a) mgrams/kiloL, (b) megaohms/nm, (c) N·m/s/s, (d) gram
cm/(s−1/mL), and (e) Bq/milli-Curie.

Solution:

(a) Don’t mix unit abbreviations and names; SI prefixes only in numerator:
correct form is µg/L.

(b) Don’t mix names and abbreviations and don’t use SI prefixes in denomi-
nator: correct form nohm/m.

(c) Don’t use hyphen and don’t use multiple solidi: correct form Nm s−2.

(d) Don’t mix names and abbreviations, don’t use multiple solidi, and don’t
use parentheses: correct form gcm s mL or better 10 µg m s L.

(e) Don’t mix names with abbreviations, and SI prefix should be in numerator:
correct form kBq/Ci.

5. Consider H2, D2, and H2O, treated as ideal gases at pressures of 1 atm and
temperatures of 293.2◦K . What are the molecular and mass densities of each.

Solution:

According to the ideal gas law, molar densities are identical for ideal gases
under the same conditions, i.e., ρm = p/RT . From Table 1.5, R = 8.314472
Pa m3/K. For p = 0.101325 MPa= 1 atm., and T = 293.2◦K , ρm = 41.56
mol/m3. Multiplication by molecular weights yield, respectively, 83.78 , 167.4,
and 749.0 g/m3 for the three gases.

6. In vacuum, how far does light move in 1 ns?

Solution:

∆x = c∆t = (3 × 108 m/s) × (10−9 s) = 3 × 10−4 m = 30 cm.
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7. In a medical test for a certain molecule, the concentration in the blood is
reported as 57 mcg/dL. What is the concentration in proper SI notation?

Solution:

123 mcg/dL = 10−310−2 g/10−1 L = 1.23× 10−4 g/L = 57 µg/L.

8. How many neutrons and protons are there in each of the following nuclides:
(a) 11B, (b) 24Na, (c) 60Co, (d) 207Pb, and (e) 238U?

Solution:

Nuclide neutrons protons

11B 6 5
24Na 13 11
60Co 33 27
207Pb 125 82
238U 146 92

9. Consider the nuclide 71Ge. Use the Chart of the Nuclides to find a nuclide (a)
that is in the same isobar, (b) that is in the same isotone, and (c) that is an
isomer.

Solution: (a) 71As, (b) 59Ga, and (c) 71mGe

10. Examine the Chart of the Nuclides to find any elements, with Z less that that
of lead (Z = 82), that have no stable nuclides. Such an element can have no
standard relative atomic mass.

Solution: Promethium (Z = 61) and Technetium (Z = 43)

11. What are the molecular weights of (a) H2 gas, (b) H2O, and (c) HDO?

Solution:

From Table A.3, A(O) = 15.9994 g/mol; from Table B.1 A(H) = 1.007825
g/mol and A(D) = 2.014102 g/mol.

(a) A(H2) = 2 A(H) = 2 × 1.007825 = 2.01565 g/mol

(b) A(H2O) = 2 A(H) + A(O) = 2 × 1.007825 + 15.9994 = 18.0151 g/mol

(c) A(HDO) = A(H) + A(D) + A(O) = 1.007825 + 2.014102 + 15.9994
= 19.0213 g/mol
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12. What is the mass in kg of a molecule of uranyl sulfate UO2SO4?

Solution:

From Table A.3, A(U) = 238.0289 g/mol, A(O) = 15.9994 g/mol, and A(S) =
32.066 g/mol.

The molecular weight of UO2SO4 is thus A(UO2SO4) = A(U) + 6A(O) +
A(S) = 238.0289 + 6(15.994)+ 32.066 = 366.091 g/mol = 0.336091 kg/mol.

Since one mol contains Na = 6.022× 1023 molecules, the mass of one molecule
of UO2SO4 = A(UO2SO4)/Na = 0.366091/6.002 × 1023 = 6.079 × 10−25

kg/molecule.

13. Show by argument that the reciprocal of Avogadro’s constant is the gram
equivalent of 1 atomic mass unit.

Solution:

By definition one gram atomic weight of 12C is 12 g/mol. Thus the mass of
one atom of 12C is

M (12
6C) =

12 g/mol

Na atoms/mol
=

12

Na
g/atom.

But by definition, one atom of 12C has a mass of 12 u. Therefore,

1 u =
1 u

12 u/(12C atom)

(
12

Na
g/(12C atom)

)
=

1

Na
g.

14. Prior to 1961 the physical standard for atomic masses was 1/16 the mass of the
16
8O atom. The new standard is 1/12 the mass of the 12

6C atom. The change led
to advantages in mass spectrometry. Determine the conversion factor needed
to convert from old to new atomic mass units. How did this change affect the
value of the Avogadro constant?

Solution

From Table B.1, the 16
8O atom has a mass of 15.9949146 amu. Thus, the pre-

1961 atomic mass unit was 15.9949146/16 post-1961 units, and the conversion
factor is thus 1 amu (16O) = 0.99968216 amu (12C).

The Avogadro constant is defined as the number of atoms in 12 g of unbound
carbon-12 in its rest-energy electronic state, i.e., the number of atomic mass
units per gram. Using data from Table 1.5, one finds that Na is given by the
reciprocal of the atomic mass unit, namely, [1.6605387×10−24]−1 = 6.0221420×
1023 mol−1. Pre-1961, the Avogadro constant was more loosely defined as the
number of atoms per mol of any element, and had the best value 6.02486×1023.
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15. How many atoms of 234U are there in 1 kg of natural uranium?

Solution:

From Table A.3, the natural abundance of 234U in uranium is found to be
f(234U) = 0.0055 atom-%. A mass m of uranium contains [m/A(U)]Na ura-
nium atoms. Thus, the number of 234U atoms in the mass m = 1000 g are

N(234U) = f(234U)
mNa

A(U)

= 0.000055
1000× (6.022× 1023)

238.0289
= 1.392 × 1020 atoms.

16. A bucket contains 1 L of water at 4 ◦C where water has a denisty of 1 g cm3.
(a) How many moles of H2O are there in the bucket? (b) How many atoms of
1
1H and 2

1D are there in the bucket?

Solution:

(a) The relative atomic weight of water A(H2O) = 2A(H)+A(O) = 2(1.00794)+
(15.9994) = 18.01528. Then the number of water molecules

mols of H2O =
mass(H2O)

A(H2O)
=

1000 g

18.01258 g/mol
= 55.5 mol.

(b) Number of molecules of H2O = 55.5 mol ×Na mol−1 = 55.5 × 6.60221×
1023 = 3.343 × 1025 molecules. Then the number of atoms of both 1

1H
and 2

1D atoms = 2 × no. of H2O molecules = 6.6856× 1025 atoms. From
Table A.4, the isoptopic abundances are found to be γ(11H) = 0.999885
and γ(21D) = 0.000115. Then

N(11H) = (0.999885)(6.6856× 1025) = 6.69× 1025 atoms

and

N(21D) = (0.000115)(6.6856× 1025) = 7.69× 1021 atoms.

17. How many atoms of deuterium are there in 2 kg of water?

Solution:

Water is mostly H2O, and so we first calculate the number of atoms of hydrogen
N(H) in a mass m = 2000 g of H2O is

N(H) = 2N(H2O) = 2
mNa

A(H2O)
' 2

mNa

A(H2O)

= 2
2000× (6.022× 1023)

18
= 1.34× 1026 atoms of H.
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From Table A.4, the natural isotopic abundance of deuterium (D) is 0.015
atom-% in elemental hydrogen. Thus, the number of deuterium atoms in 2 kg
of water is

N(D) = 0.00015×N(H) = 2.01 × 1022 atoms.

18. Estimate the number of atoms in a 3000 pound automobile. State any assump-
tions you make.

Solution:

The car mass m = 3000/2.2 = 1365 kg. Assume most the this mass is iron.
If the atoms in non-iron materials (e.g., glass, plastic, rubber, etc.) were con-
verted to iron, the car mass would increase to about mequiv = 1500 kg. Thus
the number of atoms in the car is

N =
mequivNa

A(Fe)
=

(1.5× 106)(6.022× 1023)

56
= 1.6 × 1028 atoms.

19. Calculate the relative atomic weight of oxygen.

Solution

From Table A.4, oxygen has three stable isotopes: 16O, 17O, and 18O with
percent abundances of 99.757, 0.038, and 0.205, respectively. Their atomic
masses, in u, are found from Table B.1 and equal their relative atomic weights.
Then from Eq. (1.2)

A(O) =
γ(16O)

100
A(16O) +

γ(17O)

100
A(17O) +

γ(18O)

100
A(18O)

=
99.757

100
15.994915 +

0.038

100
16.999132 +

0.205

100
17.999160 = 15.999405.

20. Natural uranium contains the isotopes 234U, 235U and 238U. Calculate the
relative atomic weight of natural uranium.

Solution

From Table A.4, the three isotopes 234U, 235U, and 238U have isotopic abun-
dances of 0.0055%, 0.720%, and 99.2745%, respectively. Their atomic masses,
in u, are found from Table B.1 and equal their relative atomic weights. Then
from Eq. (1.2)

A(O) =
γ(234U)

100
A(234U) +

γ(235U)

100
A(235U) +

γ(238U)

100
A(238U)

=
0.0055

100
234.040945 +

0.720

100
235.043923+

99.2745

100
238.050783

= 238.02891.
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21. Does a sample of carbon extracted from coal have the same relative atomic
weight as a sample of carbon extracted from a plant? Explain.

Solution

The carbon extracted from coal has only two isotopes, namely 12C and 13C
with with abundances of 98.93% and 1.07%, respectively. The relative atomic
weight is thus is slightly larger than 12 that would result if there were no 13C,
namely 12.0107. Carbon extracted from plant material, however, also contains
the radioactive isotope 14C produced in the atmosphere by cosmic rays. Thus,
the relative atomic weight is conceptually greater than that of carbon from coal
in which all the 14C has radioactively decayed away.

However, as discussed in Section 5.8.1, the amount of 14C in plant material is
extremely small (1.23 × 10−12 atoms per atom of stable carbon). Thus, 14C
would increase the atomic weight only in the 12th significant figure!

22. Dry air at normal temperature and pressure has a mass density of 0.0012 g/cm3

with a mass fraction of oxygen of 0.23. What is the atom density (atom/cm3)
of 18O?

Solution:

From Eq. (1.5), the atom density of oxygen is

N(O) =
woρNa

A(O)
=

0.23× 0.0012× (6.022× 1023)

15.9994
= 1.04× 1019 atoms/cm3.

From Table A.4 isotopic abundance of 18O in elemental oxygen is f18 = 0.2
atom-% of all oxygen atoms. Thus, the atom density of 18O is

N(18O) = f18N(O) = 0.002× 1.04× 1019 = 2.08 × 1016 atoms/cm3.

23. A reactor is fueled with 4 kg uranium enriched to 20 atom-percent in 235U.
The remainder of the fuel is 238U. The fuel has a mass density of 19.2 g/cm3.
(a) What is the mass of 235U in the reactor? (b) What are the atom densities
of 235U and 238U in the fuel?

Solution:

(a) Let m5 and m8 be the mass in kg of an atom of 235U and 238U, and let
n5 and n8 be the total number of atoms of 235U and 238U in the uranium
mass MU = 4 kg. For 20% enrichment, n8 = 4n5, so that

MU = n5m5 + n8m8 = n5m5 + 4n5m8 = n5m5

(
1 + 4

m8

m5

)
.

Here n5m5 = M5 is the mass of 235U in the uranium mass MU . From this
result we obtain using m5/m8 ' 235/238

M5 = MU

[
1 + 4

m8

m5

]−1

= 4 kg

[
1 + 4

(
238

235

)]−1

= 0.7919 kg.
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The mass of 238U M8 = MU −M5 = 3.208 kg.

(b) The volume V of the uranium is V = MU/ρU = (4000 g)/(19.2 g/cm3) =
208.3 cm3. Hence the atom densities are

N5 =
M5Na

A5V
=

(791.9 g)(6.022 × 1023 atoms/mol)

(235 g/mol)(208.3 cm3)
= 9.740×1021 cm−3

N8 =
M8Na

A8V
=

(3208 g)(6.022× 1023 atoms/mol)

(238 g/mol)(208.3 cm3)
= 3.896×1022 cm−3

24. A sample of uranium is enriched to 3.2 atom-percent in 235U with the remainder
being 238U. What is the enrichment of 235U in weight-percent?

Solution:

Let the subscripts 5, 8 and U refer to 235U, 238U, and uranium, respectively.
For the given atom-% enrichment, The number of atoms in a sample of the
uranium are

N5 = 0.0320NU and N8 = 0.9680NU.

The mass M5 and M8 of 235U and 238U in the sample is

M5 = 0.0320NUm5 and M8 = 0.9680NUm8,

where m5 and m8 is the mass of an atom of 235U and 238U, respectively.

The enrichment in weight-% is thus

e(wt-%) = 100× M5

M5 +M8
= 100× 0.0320m5

0.0320m5 + 0.9680m8

=
100 × 0.0320

0.0320 + 0.9680(m8/m5)
' 100 × 0.0320

0.0320 + 0.9680(238/235)

= 3.16 wt-%.

25. A crystal of NaCl has a density of 2.17 g/cm3. What is the atom density of
sodium in the crystal?

Solution:

Atomic weights for Na and Cl are obtained from Table A.3, so that A(NaCl)
= A(Na) + A(Cl) = 22.990 + 35.453 = 58.443 g/mol. Thus the atom density
of Na is

N(Na) = N(NaCl) =
ρNaClNa

A(NaCl)
=

2.17× 6.022× 1023

58.443
= 2.24 × 1022 cm−3.



Fundamental Concepts Chap. 1 1-9

26. A concrete with a density of 2.35 g/cm3 has a hydrogen content of 0.0085
weight fraction. What is the atom density of hydrogen in the concrete?

Solution:

From Eq. (1.5), the atom density of hydrogen is

N(H) =
wHρMa

A(H)
=

(0.0085)(2.35 g/cm3)(6.022× 1023 atoms/mol)

1 g/mol

= 1.20 × 1022 atoms/cm3.

27. How much larger in diameter is a uranium nucleus compared to an iron nucleus?

Solution:

From Eq. (1.7) the nuclear diameter is D = 2RoA
1/3 so that

DU

DFe
=

(
AU

AFe

)1/3

'
(

238

56

)1/3

= 1.62.

Thus, DU ' 1.62DFe.

28. By inspecting the chart of the nuclides, determine which element has the most
stable isotopes?

Solution:

The element tin (Sn) has 10 stable isotopes.

29. Find an internet site where the isotopic abundances of mercury may be found.

Solution: http://www.nndc.bnl.gov

30. The earth has a radius of about 6.35 × 106 m and a mass of 5.98 × 1024 kg.
What would be the radius if the earth had the same mass density as matter in
a nucleus?

Solution:

From the text, the density of matter in a nucleus is ρn ' 2.4×1014 g/cm3. The
mass of the earth M = ρ × V where the volume V = (4/3)πR3. Combining
these results and solving for the radius gives

R =

(
3M

4πρ

)1/3

=

(
3(5.98× 1027 g)

4π(2.4× 1014 g/cm3)

)1/3

= 1.81× 104 cm = 181 m.



Chapter 2

Modern Physics Concepts

PROBLEMS

1. An accelerator increases the kinetic energy of electrons uniformly to 10 GeV
over a 3000 m path. That means that at 30 m, 300 m, and 3000 m, the
kinetic energy is 108, 109, and 1010 eV, respectively. At each of these distances,
compute the velocity, relative to light (v/c), and the mass in atomic mass units.

Solution:

From Eq. (2.10) in the text T = mc2 −moc
2 we obtain

m = T/c2 +mo. (P2.1)

From Eq. (2.5) in the text m = mo/
√

1 − v2/c2, which can be solved for v/c
to give

v

c
=

√
1 − m2

o

m2
' 1 − 1

2

m2
o

m2
, if

mo

m
<< 1. (P2.2)

(a) For an electron (mo = me) with T = 108 eV = 100 MeV, Eq. (P2.1) gives

m =
100 MeV

931.5 MeV/u
+me = 0.1074 u + 0.0005486 u = 0.1079 u.

Thenm2
e/m

2 = (0.0005486/0.1079)2 = 2.59×10−5. Finally, from Eq. (P2.2)
above, we obtain

v

c
' 1 − 1

2

m2
o

m2
= 1 − 1.29× 10−5 = 0.999987.

(b) For an electron with T = 109 eV = 1000 MeV, we similarly obtain m =
1.0741 u and v/c = 0.99999987.

(c) For an electron with T = 1010 eV = 104 MeV, we similarly obtain m =
10.736 u and v/c = 0.9999999987.

Alternative solution: Use Eq. (P2.4) developed in Problem 2-3, namely

v

c
=

{
1 −

[
mec

2

T +mec2

]2}1/2

.

2-1
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2. Consider a fast moving particle whose relativistic massm is 100ε percent greater
than its rest mass mo, i.e., m = mo(1 + ε). (a) Show that the particle’s speed
v, relative to that of light, is

v

c
=

√

1 − 1

(1 + ε)2
.

(b) For v/c << 1, show that this exact result reduces to v/c '
√

2ε.

Solution:

(a) We are given
m−mo

mo
=
mo((1 + ε) − 1)

mo
= ε.

But we also have

m−mo

mo
=

1

mo

[
mo√

1 − v2/c2
−mo

]
.

Equating these two results yields

ε =
1√

1 − v2/c2
− 1.

Solving this result for v/c gives

v

c
=

√

1 − 1

(1 + ε)2
. (P2.3)

(b) For ε << 1 we have (1 + ε)−2 ' 1− 2ε+ · · · . Substitution of the approxi-
mation into Eq. (P2.3) above gives

v

c
'
√

1 − (1 − 2ε) =
√

2ε.

3. In fission reactors one deals with neutrons having kinetic energies as high as
10 MeV. How much error is incurred in computing the speed of 10-MeV neu-
trons by using the classical expression rather than the relativistic expression
for kinetic energy?

Solution:

A neutron with rest mass mn = 1.6749288 × 10−27 kg has a kinetic energy
T = (107 eV)(1.602177× 10−19 J/eV) = 1.602177× 10−12 J. For the neutron
mnc

2 = 939.56536 MeV.

Classically:

vc =
√

2T/mn =

[
2 × 1.602177× 10−12

1.6749288× 10−27

]1/2

= 4.373993× 107 m/s.
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Relativistically: From the text we have

T = mc2 −moc
2 =

moc
2

√
1 − v2/c2

−moc
2.

Solving this equation for v yields the relativistic speed vr

vr = c

{
1 −

[
moc

2

T +moc2

]2}1/2

. (P2.4)

Substitution then gives

vr = c

{
1 −

[
939.56536

10 + 939.56536

]2}1/2

= 0.1447459c= 4.339373× 107 m/s.

Thus the percent error in the classical speed is = 100(vc − vr)/vr = 0.798%.

4. What speed (m s−1) and kinetic energy (MeV) would a neutron have if its
relativistic mass were 10% greater than its rest mass?

Solution:

We are given (m−mo)/mo ≡ ε = 0.1. From Problem 2-2

v

c
=

√

1 − 1

(1 + ε)2
=

√
1 − 1

1.12
= 0.4167.

Thus the neutron’s speed is v = 0.4167c = 1.25 × 108 m/s.

The kinetic energy can be calculated from

T = mc2 −moc
2 = moc

2

[
1√

1 − v2/c2
− 1

]
.

For moc
2 = 939.6 MeV and v/c = 0.4167 we obtain

T = 939.6

[
1√

1 − 0.41672
− 1

]
= 94.0 MeV.

5. Show that for a relativistic particle the kinetic energy is given in terms of the
particl’s momentum by

T =
√
p2c2 +m2

oc
4 −mcc

2.

Solution:

Squaring Eq. (2.17) and rearranging the terms one obtains

T 2 + 2Tmoc
2 − p2c2 = 0
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The solution of this quadratic equation gives

T =
1

2

{
−2moc

2 ±
√

4m2
oc

4 + 4p2c2
}

Only the + sign gives a physically meaningful result. Rearrangement gives the
desired realtion.

6. For a relativistic particle show that Eq. (2.21) is valid.

Solution:

From the definition of η one has

η2+1 =
P 2

(moc)2
+1 =

p2c2

(moc2)2
+1 =

(mc2)2 − (moc
2)2

(moc2)2
+1 = (W 2−1)+1 = W 2.

7. Prove the relationships given in (a) Eq. (2.19), (b) Eq. (2.20), and (c) Eq. (2.21).

Solution:

(a) From the definition of η and W one immediately has

β =
v

c
=

p

mc
=

η

W
.

(b) Because W 2 = 1 + η2, then

β2 =
(v
c

)2

=
η2

W 2
=

η2

1 + η2
.

(c) Because β = η/W and W 2 = 1 + η2, one has

β2

1 − β2
=

η2/W 2

1 − η2/W 2
=

η2/(1 + η2)

1 − η2/(1 + η2)
=

η2

(1 + η2) − η2
= η2.

From this result we see

β2

1 − β2
=

p2

m2
oc

2
=

c2p2

(moc2)2
,

but we know p2c2 = T 2 + 2Tmoc
2, so

β2

1 − β2
=
T 2 + 2Tmoc

2

(moc2)2
=

(
T

moc2

)2

+
2T

moc2
=

(
T

moc2

)2 (
1 +

2moc
2

T

)
.
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8. In the Relativistic Heavy Ion Collider, nuclei of gold are accelerated to speeds
of 99.95% the speed of light. These nuclei are almost spherical when at rest;
however, as they move past the experimenters they appear considerably flat-
tened in the direction of motion because of relativistic effects. Calculate the
apparent diameter of such a gold nucleus in its direction of motion relative to
that perpendicular to the motion.

Solution: The relativistically contracted diameter D to the uncontracted di-
ameter Do when v/c = 0.9995 is

D/Do =
√

1 − v2/c2 =
√

1 − 0.99952 =
√

1 − (1 − 0.0005)2

'
√

1 − (1 − 2 × 0.0005) =
√

0.001 = 0.031.

Hence the gold nucleus appears to flatten to 3.1% of its at-rest width.

9. Muons are subatomic particles that have the negative charge of an electron
but are 206.77 times more massive. They are produced high in the atmosphere
by cosmic rays colliding with nuclei of oxygen or nitrogen, and muons are
the dominant cosmic-ray contribution to background radiation at the earth’s
surface. A muon, however, rapidly decays into an energetic electron, existing,
from its point of view, for only 2.20 µs, on the average. Cosmic-ray generated
muons typically have speeds of about 0.998c and thus should travel only a
few hundred meters in air before decaying. Yet muons travel through several
kilometers of air to reach the earth’s surface. Using the results of special
relativity explain how this is possible. HINT: consider the atmospheric travel
distance as it appears to a muon, and the muon lifetime as it appears to an
observer on the earth’s surface.

Solution:

Muon’s Point of View: A muon, with a lifetime to = 2.20 × 10−6 s and
traveling with a speed v = 0.998c, travels on the average a distance d = vto =
0.998(3.00× 108 m/s)(2.29× 10−6 s) = 660 m.

If the muon is created at an altitude Lo, from the muon’s point of view the
distance to the surface (approaching with speed v = 0.998c) is relativistically
narrowed or contracted to a distance

L = Lo

√
1 − v2/c2 = Lo

√
1 − 0.9982 = 0.063Lo.

For example, if Lo = 10 km, L = 630 m, so that, on the average, almost half
of the muons will reach the surface.

Surface Observer’s Point of View: An observer on the earth’s surface
observes the muon approaching at a speed v = 0.998c and the muon’s lifetime
appears to expand (the muon’s internal clock appears to slow) as

t =
to√

1 − v2/c2
=

to√
1 − 0.9982

= 15.9to = 3.49× 10−5 s.

In such a lifetime, the muon can travel d = 0.998c× t = 10, 500 m so that it
can reach the surface from an altitude of 10 km before decaying.
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10. A 1-MeV gamma ray loses 200 keV in a Compton scatter. Calculate the scat-
tering angle.

Solution:

From Eq. (2.26) in the text we find

1 − cos θs = mec
2

[
1

E′
− 1

E

]

or

cos θs = 1 −mec
2

[
1

E′
− 1

E

]
.

Here mec
2 = 0.511 MeV, E′ = 0.8 MeV, and E = 1 MeV so that

cos θs = 1 − 0.511

[
1

0.8
− 1

1

]
= 0.87225.

Thus the scattering angle θs = cos−1(0.87225) = 29.3o

11. At what energy (in MeV) can a photon lose at most one-half of its energy in
Compton scattering?

Solution:

Eq. (2.26) in the text gives the basic Compton scattering relation:

1

E′
− 1

E
=

1

mec2
(1 − cos θs).

By inspection, the maximum energy loss (the smallest E′) occurs when θs = π.
Here we are told E′ = E/2

2

E
− 1

E
=

1

E
=

2

mec2
=

2

0.511 MeV
.

From this result, we find E = 0.255 MeV. Above this incident photon energy,
the minimum scattered photon energy is less than one-half of the initial energy.

12. Derive for the Compton scattering process the recoil electron energy T as a
function of the incident photon energy E and the electron angle of scattering
φe. Show that φe is never greater than π/2 radians.

Solution:

Application of the law of cosines to the triangle in text Fig. 2.5 leads to

p
λ′

2 = p
λ

2 + pe
2 − 2p

λ
pe cos φe.

Substitute E/c for p
λ
, (E−T )/c for p

λ′
, and (1/c)

√
T 2 + 2Tmec2 for pe . Then

solve for T , with the result

T =
2mec

2E2 cos2 φe

(E +mec2)2 −E2 cos2 φe
.
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Examination of the triangle in Fig. 2.5 reveals that, since p
λ′

≤ p
λ
, 0 ≤ φe ≤

π/2, confirming the commonsense observation that the target electron, initially
at rest, can recoil only in the forward hemisphere.

13. A 1 MeV photon is Compton scattered at an angle of 55 degrees. Calculate
(a) the energy of the scattered photon, (b) the change in wavelength, and (c)
the recoil energy of the electron.

Solution:

(a) From Eq. (2.26)

1

E′
=

1

E
+

1 − cos θs

mec2
=

1

1 MeV
+

1 − cos 55

0.511 MeV
= 1.835 MeV−1.

Thus the scattered photon energy is E′ = 1/1.835 = 0.545 MeV.

(b) From Eq. (2.25) we have

∆λ = λ′ − λ =
h

mec
(1 − cos θs) =

hc

mec2
(1 − cos θs)

=
(4.135× 10−21 MeV s)(3.00× 108 m/s)

0.511 MeV
(1 − cos 55)

= 1.04 × 10−12 m.

(c) The kinetic energy of the recoil electron is Er = E − E′ = 1 − 0.545 =
0.455 MeV.

14. When light with wavelengths> 475 nm = λmax impinges on of a certain metalic
surface photoelectrons are observed to be emitted. What is the work functiion
of this metal in eV?

Solution:

The frequency of light corresponding the the maximum wavelgth is νmin =
c/λmax = (2.998×108m s−1/(475×10−9 m) = 6.31×1014 s−1. From Example
2.3, the work function is A = hνmin = (4.136× 10−15 eV s)(6.31× 1014 s−1) =
2.61 eV.
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15. Consider the experimental arrangement shown in Fig. 2.3. The surface of a
sodium sample was illuminated by monochromatic light of various wavelengths,
and the retarding potentials required to stop the collection of the photoelectrons
were observed. The results are shown below.

wavelemgth (nm) 253.6 283.0 303.9 330.2 366.3 435.8
retarding potential (V) 2.60 2.11 1.81 1.47 1.10 0.57

Present these data graphically to verify the photoelectric equation eVo = hν −
A. From the graph estimate the value of Planck’s constant h and the work
function A for sodium.

Solution:

The frequency of the light is related to the wavelength by

[ν =
c

λ
=

2.997× 1017

λ (nm)
s−1.

Then plot the following data:

eVo (eV) 2.60 2.11 1.81 1.47 1.10 0.57
ν × 10−14 11.82 10.59 9.682 9.076 8.182 6.877

Fit a straight line to the plotted data as shown below.

From the least-squares fit it is found that h = 4.142× 10−15 eV s and that
the work function for sodium is A = 2.271 eV.
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16. Consider the electron scattering experiment of Davisson and Germer described
in Section 2.2.4. For the nickel crystal they used the interatomic spacing was
d = 2.15 Å = 2.15 × 10−10 m. (a) For an incident electrons with an arbitrary
energy of T eV, show that the constructive interference peaks occur at angles

θ = sin−1

(
nλ

d

)
= sin−1

(
5.705n√
T eV

)
, n = 1, 2, 3, . . . .

(b) What are the angles of the peaks when T = 54 eV (as used by Davisson
and Germer) and when T = 300 eV?

Solution:

(a) From Eq. (2.30) for non-relativistic electrons λ = h/
√

2meT . Recall the
rest mass of the electron is me/c

2 = 5.11×106 eV. Substitution of of these
values gives

θ = sin−1

(
nhc

d
√

2meT

)

= sin−1

(
n(4.136× 10−15 eV s)(2.998× 108 m s−1)

(2.15× 10−10 m)
√

(2 × 0.555× 106 eV)(T eV)

)

= sin−1

(
5.705n√
T eV

)
. (P2.5)

(b) For T = 54 eV the only angle is θ = 50.9◦ (n = 1). For T = 300 eV the
angles are θ = 19.2◦ (n = 1), 41.2◦ (n = 2), and81.2◦ (n = 3).

17. Show that the de Broglie wavelength of a particle with kinetic energy T can be
written as

λ =
h√
mo

1√
T

[
1 +

m

mo

]
−1/2

where mo is the particles’s rest mass and m is its relativistic mass.

Solution: From Eq. (2.17)

p =
1

c

√
T 2 + 2Tmoc2 =

√
T

c

√
T + 2moc2.

But T = mc2 −moc
2 so the above result can be written as

p =

√
T

c

√
mc2 +moc2 =

√
T
√
mo

√
1 + (m/mo).

Finally, use of the de Broglie relation λ = h/p in the above result gives

λ =
h√
mo

1√
T

[
1 +

m

mo

]
−1/2

.
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18. Apply the result of the previous problem to an electron. (a) Show that when the
electron’s kinetic energy is expressed in units of eV, its de Broglie wavelength
can be written as

λ =
17.35× 10−8

√
T

[
1 +

m

mo

]
−1/2

cm.

(b) For non-relativistic electrons, i.e., m ' mo, show that this result reduces
to

λ =
12.27× 10−8

√
T

cm.

(c) For very relativistic electrons, i.e., m >> mo, show that the de Broglie
wavelength is given by

λ =
17.35× 10−8

√
T

√
mo

m
cm.

Solution:

(a) Rewrite the result of Problem 2-10 as

λ =
hc√
moc2

1√
T

[
1 +

m

mo

]
−1/2

.

Substitute for the constants and use mo = me = 0.511 MeV/c2 to obtain

λ =
(4.1357× 10−15 eV s)(2.998× 1010 cm/s)√

0.5110× 106 eV

(1 +m/mo)
−1/2

√
T (eV)

=
17.35× 10−8

√
T (eV)

[
1 +

m

mo

]
−1/2

cm. (P2.6)

(b) For non-relativistic electrons m ' mo, so that 1/
√

1 + (m/mo) ' 1/
√

2,
and the above result becomes

λ =
12.27× 10−8

√
T (eV)

cm.

(c) For very relativistic particles, m >> mo so that 1/
√

1 + (m/mo) '
√
mo/m.

Eq. (2.4) above then becomes

λ =
17.35×

√
mo/m√

T (eV)
× 10−8 cm.
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19. What are the wavelengths of electrons with kinetic energies of (a) 10 eV, (b)
1000 eV, and (c) 107 eV?

Solution: From Eq. (2.17) p = (1/c)
√
T 2 + 2Tmoc2 and using the de Broglie

relation λ = h/p we obtain the de Broglie wavelength as

λ =
hc√

T 2 + 2Tmoc2
. (P2.7)

Now apply this equation to the three electron energies.

(a) Substitute moc
2 = mec

2 = 0.5110 MeV and T = 10 eV into Eq. (P2.6) to
obtain

λ =
(4.135× 10−15 eV s)(2.998× 108 m/s)√

102 + 2(10)(0.5110× 106) eV
= 3.88 × 10−10 m.

(b) similarly, for T = 103 eV we find

λ =
(4.135× 10−15 eV s)(2.998× 108 m/s)√

106 + 2(103)(0.5110× 106) eV
= 3.87 × 10−11 m.

(c) similarly, for T = 107 eV we find

λ =
(4.135× 10−15 eV s)(2.998× 108 m/s)√

1014 + 2(107)(0.5110× 106) eV
= 1.18 × 10−13 m.

20. Low energy neutrons are often referred to by their de Broglie wavelength as
measured in angstoms (Å) with 1 Å= 1 × 10−10 m. (a) Derive a formula that
gives the kinetic energy of such a neutron in terms of its de Broglie wavelength.
(b) What is the energy of a neutron (in eV) of a 6-Å neutron.

Solution:

(a) Equation (2.30) for a non-relativistic particle reduces to

λ = h/
√

2moT ,

which, upon solving to T gives

T =
h2

2λ2mo
.

(b) Here λ = 6 × 10−10 m and mo/c
2 = 931.49× 106 eV, so

T =
(4.135× 10−15 eV s)2

(2)(6 × 10−10m
)2(931.49× 106 eV)/(2.998× 108 m s−1)2

= 0.00229 eV.
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21. What is the de Broglie wavelength of a water molecule moving at a speed of
2400 m/s? What is the wavelength of a 3-g bullet moving at 400 m/s?

Solution:

(a) A water molecule (H2O) has a rest mass of about m = (18 u)(1.661 ×
10−27 kg/u) = 2.989× 10−26 kg.

Its momentum when traveling at 2400 m/s is p = mv = (2.989×10−26 kg)×
(2400 m/s) = 7.18× 10−23 kg m s−1 = 7.18× 10−23 J s m−1.

Thus the de Broglie wavelength of the water molecule is

λ =
h

p
=

6.626× 10−34 J s

7.18× 10−23 J s m−1 = 9.23 × 10−12 m.

(b) A 3-g bullet moving at 400 m/s has a momentum p = mv = (0.003 kg) ×
(400 m/s) = 1.2 kg m s−1 = 1.2 J s m−1 . Its de Broglie wavelength is
thus

λ =
h

p
=

6.626× 10−34 J s

1.2 J s m−1 = 5.53 × 10−34 m.

22. If a neutron is confined somewhere inside a nucleus of characteristic dimension
∆x ' 10−14 m, what is the uncertainty in its momentum ∆p? For a neutron
with momentum equal to ∆p, what is its total energy and its kinetic energy in
MeV? Verify that classical expressions for momentum and kinetic energy may
be used.

Solution:

From the uncertainty principle, ∆p∆x >∼ h/(2π) so that for ∆x ' 10−14 m

∆p =
h

2π∆x
=

6.626× 10−34 J s

2π × 10−14 m
= 1.05× 10−20 J s m−1.

A non-relativistic (classical) particle has kinetic energy T = (1/2)mv2 =
p2/(2m). For a neutron with p ' ∆p = 1.05× 10−20 J s m−1

T =
(∆p)2

2mn
=

(1.05× 10−20 J s m−1)2

2(1.6749× 10−27 kg)
= 3.32× 10−14 J

=
3.32× 10−14 J

1.602× 10−13 J/MeV
= 0.208 MeV.

This energy is well below the energy at which a neutron becomes relativistic,
and hence justifies the use of classical mechanics.

The neutron’s total energy is thus E = T +mnc
2 = 0.207 MeV + 939 MeV '

mnc
2.
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23. Repeat the previous problem for an electron trapped in the nucleus. HINT:
relativistic expressions for momentum and kinetic energy must be used.

Solution:

From the uncertainty principle, ∆p∆x >∼ h/(2π) so that for ∆x ' 10−14 m

∆p =
h

2π∆x
=

6.626× 10−34 J s

2π × 10−14 m
= 1.05× 10−20 J s m−1.

For an electron with p ' ∆p = 1.05× 10−20 J s m−1

p2c2 = (1.05× 10−20 J s m−1)2(3.00× 108 m/s)2

= (3.15× 10−12 J)2 = (19.7 MeV)2.

From the equation above Eq. (2.16) in the text, we see that p2c2 = (mc2)2 −
(moc

2)2 = E2−(moc
2)2. We use this relation to find the electron’s total energy

E as
E =

√
p2c2 + (mec2)2 =

√
19.72 + 0.5112 MeV ' 20 MeV.

Since the electron’s total energy E is related to the kinetic energy T by E =
T +mec

2 = T + 0.511 MeV, in this problem the total energy is essentially the
electron’s kinetic energy, i.e., E ' T .

24. The wavefunction for the electron in a hydrogen atom in its ground state (the
1s state for which n = 0, ` = 0, and m = 0 is spherically symmetric as shown
in Fig. 2.14. For this state the wavefuntion is real and is given by

ψ0(r) =
1√
πa3

0

exp[−r/a0],

where ao = h2εo/(4π
2mee

2) ' 5.29 × 10−11 m. This quantity is the radius of
the first Bohr orbit for hydrogen (see next chapter). Because of the spherical
symmetry of ψo, dV in Eq. (2.40) is dV = 4πr2 dr and the integral in Eq. (2.40)
can be written as

∫
∞

0

ψ0(r)ψ
∗

0(r)4πdr =
4

a3
0

∫
∞

0

r2e−αrdr,

where α ≡ 2/a0. (a) Verify that the required normalization required by
Eq. (2.40) is satisfied, i.e., the electron is somewhere in the space around the
proton. (b) What is the probability the electron is found a radial distance
r < a0 from the proton?

Solution:

(a) Integration by parts twice gives

4

a3
0

∫
∞

0

r2e−αrdr =
4

a3
0

2

α3
=

4

a3
0

a3
0

4
= 1.
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(b) Replace upper limit in the above itegral by a0. Then integration by parts
twice gives

Prob{electron is inside r ≤ a0} =
4

a3
0

∫ a0

0

r2e−αrdr

= 1 − 4

a3
0

e−αa0

{
a2
0

α
+

2a0

α2
+

2

α3

}

= 1 − 4

a3
0

e−2

{
a3
0

2
+

2a3
0

4
+

2a3
0

8

}

= 1 − 5e−2 = 0.323.

Thus the electron has a 32.3% of being at a radial distance less that a0.


