
PROBLEM 1.1 
 
KNOWN:   Heat rate, q, through one-dimensional wall of area A, thickness L, thermal 
conductivity k and inner temperature, T1. 
 
FIND:  The outer temperature of the wall, T2. 
 
SCHEMATIC:  

 
 
ASSUMPTIONS:  (1) One-dimensional conduction in the x-direction, (2) Steady-state conditions, 
(3) Constant properties. 
 
ANALYSIS:   The rate equation for conduction through the wall is given by Fourier’s law, 
 

q q q A = -k
dT

dx
A = kA

T T

Lcond x x
1 2= = ′′ ⋅ ⋅

−
. 

 

Solving for T2 gives 
 

 T T
q L

kA2 1
cond= − .  

 
Substituting numerical values, find 
 

 T C -
3000W 0.025m

0.2W / m K 10m2 2= ×
⋅ ×

415$  

 
 T C -37.5 C2 = 415$ $  

 

 T C.2 = 378$           < 

 

COMMENTS:  Note direction of heat flow and fact that T2 must be less than T1. 



PROBLEM 1.2 
 
KNOWN:   Inner surface temperature and thermal conductivity of a concrete wall. 
 
FIND:   Heat loss by conduction through the wall as a function of ambient air temperatures ranging from 
-15 to 38°C. 
 
SCHEMATIC:  

  
ASSUMPTIONS:  (1) One-dimensional conduction in the x-direction, (2) Steady-state conditions, (3) 
Constant properties, (4) Outside wall temperature is that of the ambient air. 
 
ANALYSIS:   From Fourier’s law, it is evident that the gradient, xdT dx q k′′= − , is a constant, and 

hence the temperature distribution is linear, if xq′′  and k are each constant.  The heat flux must be 
constant under one-dimensional, steady-state conditions; and k is approximately constant if it depends 
only weakly on temperature.  The heat flux and heat rate when the outside wall temperature is T2 = -15°C 
are 

 
( ) 21 2

x

25 C 15 CdT T T
q k k 1W m K 133.3W m

dx L 0.30m

− −−′′ = − = = ⋅ =
$ $

. (1) 

 2 2
x xq q A 133.3W m 20m 2667 W′′= × = × = . (2) < 

 
Combining Eqs. (1) and (2), the heat rate qx can be determined for the range of ambient temperature, -15 
≤ T2 ≤ 38°C, with different wall thermal conductivities, k. 
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For the concrete wall, k = 1 W/m⋅K, the heat loss varies linearily from +2667 W to -867 W and is zero 
when the inside and ambient temperatures are the same.  The magnitude of the heat rate increases with 
increasing thermal conductivity. 
 
COMMENTS:   Without steady-state conditions and constant k, the temperature distribution in a plane 
wall would not be linear. 



PROBLEM 1.3 
 
KNOWN:   Dimensions, thermal conductivity and surface temperatures of a concrete slab.  Efficiency 
of gas furnace and cost of natural gas. 
 
FIND:   Daily cost of heat loss. 
 
SCHEMATIC:    
 

 
 
ASSUMPTIONS:  (1) Steady state, (2) One-dimensional conduction, (3) Constant properties. 
 
ANALYSIS:   The rate of heat loss by conduction through the slab is 
 

 ( ) ( )1 2T T 7 C
q k LW 1.4 W / m K 11m 8m 4312 W

t 0.20m

− °= = ⋅ × =    < 

 
The daily cost of natural gas that must be combusted to compensate for the heat loss is 
 

 ( ) ( )g
d 6f

q C 4312 W $0.01/ MJ
C t 24h / d 3600s / h $4.14 / d

0.9 10 J / MJη
×= ∆ = × =

×
  < 

 
COMMENTS:   The loss could be reduced by installing a floor covering with a layer of insulation 
between it and the concrete. 
 



PROBLEM 1.4

KNOWN:  Heat flux and surface temperatures associated with a wood slab of prescribed
thickness.

FIND:  Thermal conductivity, k, of the wood.

SCHEMATIC:

ASSUMPTIONS:  (1) One-dimensional conduction in the x-direction, (2) Steady-state
conditions, (3) Constant properties.

ANALYSIS:  Subject to the foregoing assumptions, the thermal conductivity may be
determined from Fourier’s law, Eq. 1.2.  Rearranging,

( )
L W 0.05m

k=q 40  
T T m 40-20 C

x 21 2
′′ =

− �

k = 0.10 W / m K.⋅ <

COMMENTS:  Note that the °C or K temperature units may be used interchangeably when
evaluating a temperature difference.



PROBLEM 1.5

KNOWN:  Inner and outer surface temperatures of a glass window of prescribed dimensions.

FIND:  Heat loss through window.

SCHEMATIC:

ASSUMPTIONS:  (1) One-dimensional conduction in the x-direction, (2) Steady-state
conditions, (3) Constant properties.

ANALYSIS:  Subject to the foregoing conditions the heat flux may be computed from
Fourier’s law, Eq. 1.2.

( )

T T
q k 

L
15-5 CW

q 1.4  
m K 0.005m

q 2800 W/m .

1 2
x

x
2

x

−′′ =

′′ =
⋅

′′ =

�

Since the heat flux is uniform over the surface, the heat loss (rate) is

q =  qx A

q =  2800 W / m2  3m2

′′ ×

×

q =  8400 W. <

COMMENTS:  A linear temperature distribution exists in the glass for the prescribed
conditions.



PROBLEM 1.6 
 
KNOWN:   Width, height, thickness and thermal conductivity of a single pane window and 
the air space of a double pane window.  Representative winter surface temperatures of single 
pane and air space. 
 
FIND:   Heat loss through single and double pane windows. 
 
SCHEMATIC:    
 

 
 
 
ASSUMPTIONS:  (1) One-dimensional conduction through glass or air, (2) Steady-state 
conditions, (3) Enclosed air of double pane window is stagnant (negligible buoyancy induced 
motion). 
 
ANALYSIS:   From Fourier’s law, the heat losses are 
 

Single Pane: ( )T T 35 C21 2q k A 1.4 W/m K 2m 19,600 Wg g L 0.005m

−= = ⋅ =
$

 

 

Double Pane: ( )T T 25 C21 2q k A 0.024 2m 120 Wa a L 0.010 m

−= = =
$

 

 
COMMENTS:   Losses associated with a single pane are unacceptable and would remain 
excessive, even if the thickness of the glass were doubled to match that of the air space.  The 
principal advantage of the double pane construction resides with the low thermal conductivity 
of air (~ 60 times smaller than that of glass).  For a fixed ambient outside air temperature, use 
of the double pane construction would also increase the surface temperature of the glass 
exposed to the room (inside) air. 
 



PROBLEM 1.7

KNOWN:  Dimensions of freezer compartment.  Inner and outer surface temperatures.

FIND:  Thickness of styrofoam insulation needed to maintain heat load below prescribed
value.

SCHEMATIC:

ASSUMPTIONS:  (1) Perfectly insulated bottom, (2) One-dimensional conduction through 5

walls of area A = 4m
2
, (3) Steady-state conditions, (4) Constant properties.

ANALYSIS:  Using Fourier’s law, Eq. 1.2, the heat rate is

q =  q A =  k 
T

L
 Atotal′′ ⋅ ∆

Solving for L and recognizing that Atotal = 5×W
2
, find

L =  
5 k  T W

q

2∆

( ) ( )5  0.03 W/m K 35 - -10 C 4m
L = 

500 W

2 × ⋅  
�

L =  0.054m =  54mm. <

COMMENTS:  The corners will cause local departures from one-dimensional conduction
and a slightly larger heat loss.



PROBLEM 1.8 
 
KNOWN:   Dimensions and thermal conductivity of food/beverage container.  Inner and outer 
surface temperatures. 
 
FIND:   Heat flux through container wall and total heat load. 
 
SCHEMATIC:    
 

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Negligible heat transfer through bottom 
wall, (3) Uniform surface temperatures and one-dimensional conduction through remaining 
walls. 
 
ANALYSIS:   From Fourier’s law, Eq. 1.2, the heat flux is 
 

 
( )0.023 W/m K 20 2 CT T 22 1q k 16.6 W/m

L 0.025 m

⋅ −−′′ = = =
$

    < 

 
Since the flux is uniform over each of the five walls through which heat is transferred, the 
heat load is 
 
 ( )q q A q H 2W 2W W Wtotal 1 2 1 2′′ ′′  = × = + + ×   
 

 ( ) ( )2q 16.6 W/m 0.6m 1.6m 1.2m 0.8m 0.6m 35.9 W = + + × =     < 
 
COMMENTS:   The corners and edges of the container create local departures from one-

dimensional conduction, which increase the heat load.  However, for H, W1, W2 >> L, the 
effect is negligible. 
 



PROBLEM 1.9 
 
KNOWN:   Masonry wall of known thermal conductivity has a heat rate which is 80% of that 
through a composite wall of prescribed thermal conductivity and thickness. 
 
FIND:  Thickness of masonry wall. 
 
SCHEMATIC:  

 
 
ASSUMPTIONS:  (1) Both walls subjected to same surface temperatures, (2) One-
dimensional conduction, (3) Steady-state conditions, (4) Constant properties. 
 
ANALYSIS:   For steady-state conditions, the conduction heat flux through a one-dimensional 
wall follows from Fourier’s law, Eq. 1.2, 
 

 ′′q  =  k 
T

L

∆
 

 
where ∆T represents the difference in surface temperatures.  Since ∆T is the same for both 
walls, it follows that 
 

 L  =  L  
k

k
  

q

q1 2
1

2

2

1

⋅
′′
′′

.  

 
With the heat fluxes related as 
 
 ′′ = ′′q  0.8 q1 2  

 

 L  =  100mm 
0.75 W / m K

0.25 W / m K
  

1

0.8
 =  375mm.1

⋅
⋅

×      < 

 
COMMENTS:  Not knowing the temperature difference across the walls, we cannot find the 
value of the heat rate. 
 



PROBLEM 1.10 
 
KNOWN:   Thickness, diameter and inner surface temperature of bottom of pan used to boil 
water.  Rate of heat transfer to the pan. 
 
FIND:   Outer surface temperature of pan for an aluminum and a copper bottom. 
 
SCHEMATIC:    
 

 
 
ASSUMPTIONS:  (1) One-dimensional, steady-state conduction through bottom of pan. 
 
ANALYSIS:   From Fourier’s law, the rate of heat transfer by conduction through the bottom 
of the pan is 
 

 
T T1 2q kA

L

−=  

 
Hence, 
 

 
qL

T T1 2 kA
= +  

 

where ( )22 2A D / 4 0.2m / 4 0.0314 m .π π= = =  

 

Aluminum: 
( )

( )
600W 0.005 m

T 110 C 110.40 C1 2240 W/m K 0.0314 m
= + =

⋅
$ $  

 

Copper: 
( )

( )
600W 0.005 m

T 110 C 110.25 C1 2390 W/m K 0.0314 m
= + =

⋅
$ $  

 
COMMENTS:   Although the temperature drop across the bottom is slightly larger for 
aluminum (due to its smaller thermal conductivity), it is sufficiently small to be negligible for 
both materials.  To a good approximation, the bottom may be considered isothermal at T ≈ 
110 °C, which is a desirable feature of pots and pans. 
 



PROBLEM 1.11

KNOWN:  Dimensions and thermal conductivity of a chip.  Power dissipated on one surface.

FIND:  Temperature drop across the chip.

SCHEMATIC:

ASSUMPTIONS:  (1) Steady-state conditions, (2) Constant properties, (3) Uniform heat
dissipation, (4) Negligible heat loss from back and sides, (5) One-dimensional conduction in
chip.

ANALYSIS:  All of the electrical power dissipated at the back surface of the chip is
transferred by conduction through the chip.  Hence, from Fourier’s law,

P =  q =  kA 
T

t

∆

or

( )
t P 0.001 m 4 W

T = 
kW 150 W/m K 0.005 m2 2

⋅ ×∆ =
⋅

∆T =  1.1  C.$ <

COMMENTS:  For fixed P, the temperature drop across the chip decreases with increasing k
and W, as well as with decreasing t.



PROBLEM 1.12 
 
KNOWN:   Heat flux gage with thin-film thermocouples on upper and lower surfaces; output 
voltage, calibration constant, thickness and thermal conductivity of gage. 
 
FIND:   (a) Heat flux, (b) Precaution when sandwiching gage between two materials. 
 
SCHEMATIC:  

 
ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional heat conduction in gage, 
(3) Constant properties. 
 

ANALYSIS:   (a) Fourier’s law applied to the gage can be written as 
 

 ′′q  =  k 
T

x

∆
∆

 

 

and the gradient can be expressed as 
 

 
∆
∆

∆T

x
 =  

E / N

SABt
 

 

where N is the number of differentially connected thermocouple junctions, SAB is the Seebeck 
coefficient for type K thermocouples (A-chromel and B-alumel), and ∆x = t is the gage 
thickness.  Hence, 
 

 ′′q =  
k E

NSABt

∆
 

 

 ′′ ⋅ × ×
× × × ×

q  =  
1.4 W / m K 350 10-6 V

5 40 10-6 V / C 0.25 10-3 m
 =  9800 W / m2

$
.    < 

 

(b)  The major precaution to be taken with this type of gage is to match its thermal 
conductivity with that of the material on which it is installed.  If the gage is bonded 
between laminates (see sketch above) and its thermal conductivity is significantly different 
from that of the laminates, one dimensional heat flow will be disturbed and the gage will 
read incorrectly. 

 

COMMENTS:   If the thermal conductivity of the gage is lower than that of the laminates, 
will it indicate heat fluxes that are systematically high or low? 
 



PROBLEM 1.13 
 
KNOWN:   Hand experiencing convection heat transfer with moving air and water. 
 
FIND:   Determine which condition feels colder.  Contrast these results with a heat loss of 30 W/m2 under 
normal room conditions. 
 
SCHEMATIC:  

 
 
ASSUMPTIONS:  (1) Temperature is uniform over the hand’s surface, (2) Convection coefficient is 
uniform over the hand, and (3) Negligible radiation exchange between hand and surroundings in the case 
of air flow. 
 
ANALYSIS:   The hand will feel colder for the condition which results in the larger heat loss.  The heat 
loss can be determined from Newton’s law of cooling, Eq. 1.3a, written as 
 
 ( )sq h T T∞′′ = −  
 
For the air stream: 
 

 ( )2 2
airq 40 W m K 30 5 K 1,400 W m′′  = ⋅ − − =   < 

 
For the water stream: 
 

 ( )2 2
waterq 900 W m K 30 10 K 18,000 W m′′ = ⋅ − =  < 

 
COMMENTS:   The heat loss for the hand in the water stream is an order of magnitude larger than when 
in the air stream for the given temperature and convection coefficient conditions.  In contrast, the heat 
loss in a normal room environment is only 30 W/m2 which is a factor of 400 times less than the loss in 
the air stream.  In the room environment, the hand would feel comfortable; in the air and water streams, 
as you probably know from experience, the hand would feel uncomfortably cold since the heat loss is 
excessively high. 



PROBLEM 1.14 
 
KNOWN:   Power required to maintain the surface temperature of a long, 25-mm diameter cylinder 
with an imbedded electrical heater for different air velocities. 
 
FIND:   (a) Determine the convection coefficient for each of the air velocity conditions and display 
the results graphically, and (b) Assuming that the convection coefficient depends upon air velocity as 
h = CVn, determine the parameters C and n. 
 
SCHEMATIC:  
 

 

V(m/s) 1 2 4 8 12 
′Pe (W/m) 450 658 983 1507 1963 

h (W/m2⋅K) 22.0 32.2 48.1 73.8 96.1 

 
ASSUMPTIONS:  (1) Temperature is uniform over the cylinder surface, (2) Negligible radiation 
exchange between the cylinder surface and the surroundings, (3) Steady-state conditions. 
 
ANALYSIS:   (a) From an overall energy balance on the cylinder, the power dissipated by the 
electrical heater is transferred by convection to the air stream.  Using Newtons law of cooling on a per 
unit length basis, 
 
 ( )( )e sP h D T Tπ ∞′ = −  
 
where eP′  is the electrical power dissipated per unit length of the cylinder.  For the V = 1 m/s 

condition, using the data from the table above, find 

 ( ) 2h 450 W m 0.025m 300 40 C 22.0 W m Kπ= × − = ⋅$

 < 
 
Repeating the calculations, find the convection coefficients for the remaining conditions which are 
tabulated above and plotted below.  Note that h is not linear with respect to the air velocity. 
 
(b) To determine the (C,n) parameters, we plotted h vs. V on log-log coordinates.  Choosing C = 
22.12 W/m2⋅K(s/m)n, assuring a match at V = 1, we can readily find the exponent n from the slope of 
the h vs. V curve.  From the trials with n = 0.8, 0.6 and 0.5, we recognize that n = 0.6 is a reasonable 

choice.  Hence, C = 22.12 and n = 0.6. < 
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PROBLEM 1.15

KNOWN:  Long, 30mm-diameter cylinder with embedded electrical heater; power required
to maintain a specified surface temperature for water and air flows.

FIND:  Convection coefficients for the water and air flow convection processes, hw and ha,
respectively.

SCHEMATIC:

ASSUMPTIONS:  (1) Flow is cross-wise over cylinder which is very long in the direction
normal to flow.

ANALYSIS:  The convection heat rate from the cylinder per unit length of the cylinder has
the form

( ) ( )q  = h D  T Tsπ′ − ∞

and solving for the heat transfer convection coefficient, find

( )
q

h = .
D T Tsπ

′
− ∞

Substituting numerical values for the water and air situations:

Water
( )

28  10  W/m
h  =  = 4,570 W/m K

  0.030m 90-25  C

3
2

w
π

× ⋅
× �

<

Air
( )

400 W/m
h  = 65 W/m K.

  0.030m 90-25  C

2
a

π
= ⋅

× �

<

COMMENTS:  Note that the air velocity is 10 times that of the water flow, yet

hw ≈ 70 × ha.

These values for the convection coefficient are typical for forced convection heat transfer with
liquids and gases.  See Table 1.1.



PROBLEM 1.16

KNOWN:  Dimensions of a cartridge heater.  Heater power.  Convection coefficients in air
and water at a prescribed temperature.

FIND:  Heater surface temperatures in water and air.

SCHEMATIC:

ASSUMPTIONS:  (1)  Steady-state conditions, (2)  All of the electrical power is transferred
to the fluid by convection, (3)  Negligible heat transfer from ends.

ANALYSIS:  With P = qconv, Newton’s law of cooling yields

( ) ( )P=hA T T h DL T T
P

T T .
h DL

s s

s

π

π

− = −

= +
∞ ∞

∞
In water,

T C +
2000 W

5000 W / m K 0.02 m 0.200 ms 2=
⋅ × × ×

20$

π

T C + 31.8 C = 51.8 C.s = 20$ $ $ <
In air,

T C +
2000 W

50 W / m K 0.02 m 0.200 ms 2=
⋅ × × ×

20$

π

T C + 3183 C = 3203 C.s = 20$ $ $ <

COMMENTS:  (1) Air is much less effective than water as a heat transfer fluid.  Hence, the
cartridge temperature is much higher in air, so high, in fact, that the cartridge would melt.

(2)  In air, the high cartridge temperature would render radiation significant.



PROBLEM 1.17 
 
KNOWN:   Length, diameter and calibration of a hot wire anemometer.  Temperature of air 
stream.  Current, voltage drop and surface temperature of wire for a particular application. 
 
FIND:   Air velocity 
 
SCHEMATIC:    
 

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Negligible heat transfer from the wire by 
natural convection or radiation. 
 
ANALYSIS:   If all of the electric energy is transferred by convection to the air, the following 
equality must be satisfied 
 
 ( )P EI hA T Telec s= = − ∞  

 

where ( ) 5 2A DL 0.0005m 0.02m 3.14 10 m .π π −= = × = ×  

 
Hence, 
 

 
( ) ( )

EI 5V 0.1A 2h 318 W/m K
5 2A T Ts 3.14 10 m 50 C

×= = = ⋅
−− ∞ × $

 

 

 ( )25 2 5 2V 6.25 10 h 6.25 10 318 W/m K 6.3 m/s− −= × = × ⋅ =    < 

 
COMMENTS:   The convection coefficient is sufficiently large to render buoyancy (natural 
convection) and radiation effects negligible. 
 



PROBLEM 1.18 
 
KNOWN:   Chip width and maximum allowable temperature.  Coolant conditions. 
 
FIND:   Maximum allowable chip power for air and liquid coolants. 
 
SCHEMATIC:  

  
ASSUMPTIONS:  (1) Steady-state conditions, (2) Negligible heat transfer from sides and 
bottom, (3) Chip is at a uniform temperature (isothermal), (4) Negligible heat transfer by 
radiation in air. 
 
ANALYSIS:   All of the electrical power dissipated in the chip is transferred by convection to 
the coolant.  Hence, 
 
 P = q 
 
and from Newton’s law of cooling, 
 

 P = hA(T - T∞) = h W
2
(T - T∞). 

 
In air, 
 

 Pmax = 200 W/m
2⋅K(0.005 m)

2
(85 - 15) ° C = 0.35 W.    < 

 
In the dielectric liquid 
 

 Pmax = 3000 W/m
2⋅K(0.005 m)

2
(85-15) ° C = 5.25 W.    < 

 
COMMENTS:   Relative to liquids, air is a poor heat transfer fluid.  Hence, in air the chip can 
dissipate far less energy than in the dielectric liquid. 



PROBLEM 1.19 
 
KNOWN:   Length, diameter and maximum allowable surface temperature of a power 
transistor.  Temperature and convection coefficient for air cooling. 
 
FIND:   Maximum allowable power dissipation. 
 
SCHEMATIC:    
 

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Negligible heat transfer through base of 
transistor, (3) Negligible heat transfer by radiation from surface of transistor. 
 
ANALYSIS:   Subject to the foregoing assumptions, the power dissipated by the transistor is 
equivalent to the rate at which heat is transferred by convection to the air.  Hence, 
 
 ( )P q hA T Telec conv s= = − ∞  

 

where ( ) ( )22 4 2A DL D / 4 0.012m 0.01m 0.012m / 4 4.90 10 m .π π − = + = × + = ×  
 

 
For a maximum allowable surface temperature of 85°C, the power is 
 

 ( ) ( )2 4 2P 100 W/m K 4.90 10 m  85 25 C 2.94 Welec
−= ⋅ × − =$    < 

 
COMMENTS:   (1) For the prescribed surface temperature and convection coefficient, 
radiation will be negligible relative to convection.  However, conduction through the base 
could be significant, thereby permitting operation at a larger power. 
 
(2) The local convection coefficient varies over the surface, and hot spots could exist if there 
are locations at which the local value of h is substantially smaller than the prescribed average 
value. 
 



PROBLEM 1.20 
 
KNOWN:  Air jet impingement is an effective means of cooling logic chips. 
 
FIND:   Procedure for measuring convection coefficients associated with a 10 mm × 10 mm chip. 
 
SCHEMATIC: 
 

 
ASSUMPTIONS:  Steady-state conditions. 
 
ANALYSIS:   One approach would be to use the actual chip-substrate system, Case (a), to perform the 
measurements.  In this case, the electric power dissipated in the chip would be transferred from the chip 
by radiation and conduction (to the substrate), as well as by convection to the jet.  An energy balance for 

the chip yields elec conv cond radq q q q= + + .  Hence, with ( )conv sq hA T T∞= − , where A = 100 

mm2 is the surface area of the chip, 
 

 ( )
elec cond rad

s

q q q
h

A T T∞

− −=
−

 (1) 

 
While the electric power (qelec) and the jet (T∞ ) and surface (Ts) temperatures may be measured, losses 
from the chip by conduction and radiation would have to be estimated.  Unless the losses are negligible 
(an unlikely condition), the accuracy of the procedure could be compromised by uncertainties associated 
with determining the conduction and radiation losses. 
 
 A second approach, Case (b), could involve fabrication of a heater assembly for which the 
conduction and radiation losses are controlled and minimized.  A 10 mm × 10 mm copper block (k ~ 400 
W/m⋅K) could be inserted in a poorly conducting substrate (k < 0.1 W/m⋅K) and a patch heater could be 
applied to the back of the block and insulated from below.  If conduction to both the substrate and 
insulation could thereby be rendered negligible, heat would be transferred almost exclusively through the 
block.  If radiation were rendered negligible by applying a low emissivity coating (ε < 0.1) to the surface 
of the copper block, virtually all of the heat would be transferred by convection to the jet.  Hence, qcond 
and qrad may be neglected in equation (1), and the expression may be used to accurately determine h 
from the known (A) and measured (qelec, Ts, T∞ ) quantities. 
 
COMMENTS:   Since convection coefficients associated with gas flows are generally small, concurrent 
heat transfer by radiation and/or conduction must often be considered.  However, jet impingement is one 
of the more effective means of transferring heat by convection and convection coefficients well in excess 
of 100 W/m2⋅K may be achieved. 



PROBLEM 1.21

KNOWN:  Upper temperature set point, Tset, of a bimetallic switch and convection heat
transfer coefficient between clothes dryer air and exposed surface of switch.

FIND:  Electrical power for heater to maintain Tset when air temperature is T∞ = 50°C.

SCHEMATIC:

ASSUMPTIONS:  (1) Steady-state conditions, (2) Electrical heater is perfectly insulated

from dryer wall, (3) Heater and switch are isothermal at Tset, (4) Negligible heat transfer from

sides of heater or switch, (5) Switch surface, As, loses heat only by convection.

ANALYSIS:  Define a control volume around the bimetallic switch which experiences heat
input from the heater and convection heat transfer to the dryer air.  That is,

( )
E  - E  = 0
q  - hA T T 0.

outin
s setelec − =∞

� �

The electrical power required is,

( )q  = hA T Ts setelec − ∞

( )q  = 25 W/m K 30 10  m 70 50 K=15 mW.2 -6 2
elec ⋅ × × − <

COMMENTS:  (1) This type of controller can achieve variable operating air temperatures
with a single set-point, inexpensive, bimetallic-thermostatic switch by adjusting power levels
to the heater.

(2) Will the heater power requirement increase or decrease if the insulation pad is other than
perfect?



PROBLEM 1.22

KNOWN:  Hot vertical plate suspended in cool, still air.  Change in plate temperature with time at
the instant when the plate temperature is 225°C.

FIND:  Convection heat transfer coefficient for this condition.

SCHEMATIC:

ASSUMPTIONS:  (1) Plate is isothermal and of uniform temperature, (2) Negligible radiation
exchange with surroundings, (3) Negligible heat lost through suspension wires.

ANALYSIS:  As shown in the cooling curve above, the plate temperature decreases with time.  The

condition of interest is for time to.  For a control surface about the plate, the conservation of energy
requirement is

( )
E  - E  = E

dT
2hA T T Mc

dt

out stin

s s p− − =∞

� � �

where As is the surface area of one side of the plate.  Solving for h, find

( )
Mc dT

h=
2A T T dt

p

s s − ∞

( ) ( )
3.75 kg 2770 J/kg K

h= 0.022 K/s=6.4 W/m K
2 0.3 0.3 m 225 25 K

2
2

× ⋅ × ⋅
× × −

<

COMMENTS:  (1) Assuming the plate is very highly polished with emissivity of 0.08, determine
whether radiation exchange with the surroundings at 25°C is negligible compared to convection.

(2) We will later consider the criterion for determining whether the isothermal plate assumption is
reasonable.  If the thermal conductivity of the present plate were high (such as aluminum or copper),
the criterion would be satisfied.



PROBLEM 1.23 
 
KNOWN:   Width, input power and efficiency of a transmission.  Temperature and convection 
coefficient associated with air flow over the casing. 
 
FIND:   Surface temperature of casing. 
 
SCHEMATIC:    
 

 
 
ASSUMPTIONS:  (1) Steady state, (2) Uniform convection coefficient and surface temperature, (3) 
Negligible radiation. 
 
ANALYSIS:   From Newton’s law of cooling, 
 

 ( ) ( )2
s s sq hA T T 6hW T T∞ ∞= − = −  

 

where the output power is η Pi and the heat rate is 
 

 ( )i o iq P P P 1 150hp 746 W / hp 0.07 7833Wη= − = − = × × =  

 
Hence, 
 

 
( )

s 2 22

q 7833 W
T T 30 C 102.5 C

6 hW 6 200 W / m K 0.3m
∞= + = ° + = °

× ⋅ ×
  < 

 
COMMENTS:   There will, in fact, be considerable variability of the local convection coefficient 
over the transmission case and the prescribed value represents an average over the surface. 
 



PROBLEM 1.24 
 
KNOWN:   Air and wall temperatures of a room.  Surface temperature, convection coefficient 
and emissivity of a person in the room. 
 
FIND:   Basis for difference in comfort level between summer and winter. 
 
SCHEMATIC:    
 

 
 
ASSUMPTIONS:  (1) Person may be approximated as a small object in a large enclosure. 
 
ANALYSIS:   Thermal comfort is linked to heat loss from the human body, and a chilled 
feeling is associated with excessive heat loss.  Because the temperature of the room air is 
fixed, the different summer and winter comfort levels can not be attributed to convection heat 
transfer from the body.  In both cases, the heat flux is 
 

Summer and Winter: ( ) 2 2q h T T 2 W/m K 12 C 24 W/mconv s′′ = − = ⋅ × =∞
$  

 
However, the heat flux due to radiation will differ, with values of 
 

Summer: ( ) ( )4 4 8 2 4 4 4 4 2q T T 0.9 5.67 10 W/m K 305 300 K 28.3 W/mrad s surεσ −′′ = − = × × ⋅ − =  

 

Winter: ( ) ( )4 4 8 2 4 4 4 4 2q T T 0.9 5.67 10 W/m K 305 287 K 95.4 W/mrad s surεσ −′′ = − = × × ⋅ − =  

 
There is a significant difference between winter and summer radiation fluxes, and the chilled 
condition is attributable to the effect of the colder walls on radiation. 
 
COMMENTS:   For a representative surface area of A = 1.5 m

2
, the heat losses are qconv = 

36 W, qrad(summer) = 42.5 W and qrad(winter) = 143.1 W.  The winter time radiation loss is 
significant and if maintained over a 24 h period would amount to 2,950 kcal. 
 



PROBLEM 1.25

KNOWN:  Diameter and emissivity of spherical interplanetary probe.  Power dissipation
within probe.

FIND:  Probe surface temperature.

SCHEMATIC:

ASSUMPTIONS:  (1) Steady-state conditions, (2) Negligible radiation incident on the probe.

ANALYSIS:  Conservation of energy dictates a balance between energy generation within the
probe and radiation emission from the probe surface.  Hence, at any instant

-E  +  E  =  0out g
� �

ε σA T Es s
4

g= �

E
T

D

1/ 4
g

s 2επ σ

 
=    

�

( )
150W

T
0.8 0.5 m 5.67 10

1/ 4

s 2 8 2 4 W/m Kπ

 
 =
 × 

− ⋅

T  K.s = 254 7. <

COMMENTS:  Incident radiation, as, for example, from the sun, would increase the surface
temperature.



PROBLEM 1.26 
 
KNOWN:   Spherical shaped instrumentation package with prescribed surface emissivity within a 
large space-simulation chamber having walls at 77 K. 
 
FIND:   Acceptable power dissipation for operating the package surface temperature in the range Ts = 
40 to 85°C.  Show graphically the effect of emissivity variations for 0.2 and 0.3. 
 
SCHEMATIC:  

  
ASSUMPTIONS:  (1) Uniform surface temperature, (2) Chamber walls are large compared to the 
spherical package, and (3) Steady-state conditions. 
 
ANALYSIS:   From an overall energy balance on the package, the internal power dissipation Pe will 
be transferred by radiation exchange between the package and the chamber walls.  From Eq. 1.7, 

 ( )4 4
rad e s s surq P A T Tε σ= = −  

For the condition when Ts = 40°C, with As = πD2 the power dissipation will be 

 ( ) ( )48 2 4 4 4
eP 0.25 0.10m 5.67 10 W m K 40 273 77 K 4.3Wπ −  = × × × ⋅ × + − =  

 < 

Repeating this calculation for the range 40 ≤ Ts ≤ 85°C, we can obtain the power dissipation as a 
function of surface temperature for the ε = 0.25 condition.  Similarly, with 0.2 or 0.3, the family of 
curves shown below has been obtained. 
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COMMENTS:   (1) As expected, the internal power dissipation increases with increasing emissivity 
and surface temperature.  Because the radiation rate equation is non-linear with respect to 
temperature, the power dissipation will likewise not be linear with surface temperature. 
 
(2) What is the maximum power dissipation that is possible if the surface temperature is not to exceed 
85°C?  What kind of a coating should be applied to the instrument package in order to approach this 
limiting condition? 



PROBLEM 1.27

KNOWN:  Area, emissivity and temperature of a surface placed in a large, evacuated
chamber of prescribed temperature.

FIND:  (a) Rate of surface radiation emission, (b) Net rate of radiation exchange between
surface and chamber walls.

SCHEMATIC:

ASSUMPTIONS:  (1) Area of the enclosed surface is much less than that of chamber walls.

ANALYSIS:  (a) From Eq. 1.5, the rate at which radiation is emitted by the surface is

qemit E A =   A  Ts
4= ⋅ ε σ

( ) ( )q  = 0.8 0.5 m  5.67  10  W/m K  150 + 273 K
42 -8 2 4

emit  × ⋅  

q  =  726 W.emit <

(b)  From Eq. 1.7, the net rate at which radiation is transferred from the surface to the chamber
walls is

( )q =  A  T T4 4
s surε σ −

( ) ( ) ( )q = 0.8 0.5 m  5.67  10  W/m K  423K  - 298K4 42 -8 2 4  × ⋅   

q =  547 W. <

COMMENTS:  The foregoing result gives the net heat loss from the surface which occurs at
the instant the surface is placed in the chamber.  The surface would, of course, cool due to this
heat loss and its temperature, as well as the heat loss, would decrease with increasing time.
Steady-state conditions would eventually be achieved when the temperature of the surface
reached that of the surroundings.



PROBLEM 1.28 
 
KNOWN:   Length, diameter, surface temperature and emissivity of steam line.  Temperature 
and convection coefficient associated with ambient air.  Efficiency and fuel cost for gas fired 
furnace. 
 
FIND:   (a) Rate of heat loss, (b) Annual cost of heat loss. 
 
SCHEMATIC:    
 

 
 
 
ASSUMPTIONS:  (1) Steam line operates continuously throughout year, (2) Net radiation 
transfer is between small surface (steam line) and large enclosure (plant walls). 
 
ANALYSIS:   (a) From Eqs. (1.3a) and (1.7), the heat loss is 
 

 ( ) ( )4 4q q q A h T T T Tconv rad s s surεσ = + = − + −∞  
 

 

where ( ) 2A DL 0.1m 25m 7.85m .π π= = × =  
 
Hence, 
 

( ) ( )2 2 8 2 4 4 4 4q 7.85m 10 W/m K 150 25 K 0.8 5.67 10 W/m K 423 298 K− = ⋅ − + × × ⋅ −  
 

 

 ( ) ( )2 2q 7.85m 1,250 1,095 w/m 9813 8592 W 18,405 W= + = + =    < 
 
(b) The annual energy loss is 
 

 11E qt 18,405 W 3600 s/h 24h/d 365 d/y 5.80 10  J= = × × × = ×  
 

With a furnace energy consumption of 11E E/ 6.45 10  J,f fη= = ×  the annual cost of the loss 
is 
 

 5C C E 0.01 $/MJ 6.45 10 MJ $6450g f= = × × =      < 
 
COMMENTS:   The heat loss and related costs are unacceptable and should be reduced by 
insulating the steam line. 
 



PROBLEM 1.29 
 
KNOWN:   Exact and approximate expressions for the linearized radiation coefficient, hr and hra, 
respectively. 
 
FIND:   (a) Comparison of the coefficients with ε = 0.05 and 0.9 and surface temperatures which may 
exceed that of the surroundings (Tsur = 25°C) by 10 to 100°C; also comparison with a free convection 
coefficient correlation, (b) Plot of the relative error (hr - rra)/hr as a function of the furnace temperature 
associated with a workpiece at Ts = 25°C having ε = 0.05, 0.2 or 0.9. 
 
ASSUMPTIONS:  (1) Furnace walls are large compared to the workpiece and (2) Steady-state 
conditions. 
 
ANALYSIS:   (a) The linearized radiation coefficient, Eq. 1.9, follows from the radiation exchange 
rate equation, 

 ( )( )2 2
r s sur s surh T T T Tεσ= + +  

If Ts ≈ Tsur, the coefficient may be approximated by the simpler expression 

 ( )3
r,a s surh 4 T T T T 2εσ= = +  

For the condition of ε = 0.05, Ts = Tsur + 10 = 35°C = 308 K and Tsur = 25°C = 298 K, find that 

 ( )( )8 2 4 2 2 3 2
rh 0.05 5.67 10 W m K 308 298 308 298 K 0.32 W m K−= × × ⋅ + + = ⋅  < 

 ( )( )38 2 4 3 2
r,ah 4 0.05 5.67 10 W m K 308 298 2 K 0.32 W m K−= × × × ⋅ + = ⋅  < 

The free convection coefficient with Ts = 35°C and T∞  = Tsur = 25°C, find that 

 ( ) ( )1/3 1/31/3 2
sh 0.98 T 0.98 T T 0.98 308 298 2.1W m K∞= ∆ = − = − = ⋅  < 

For the range Ts - Tsur = 10 to 100°C with ε = 0.05 and 0.9, the results for the coefficients are 
tabulated below.  For this range of surface and surroundings temperatures, the radiation and free 
convection coefficients are of comparable magnitude for moderate values of the emissivity, say ε > 
0.2.  The approximate expression for the linearized radiation coefficient is valid within 2% for these 
conditions. 
 
(b)  The above expressions for the radiation coefficients, hr and hr,a, are used for the workpiece at Ts = 
25°C placed inside a furnace with walls which may vary from 100 to 1000°C.  The relative error, (hr - 
hra)/hr, will be independent of the surface emissivity and is plotted as a function of Tsur.  For Tsur > 
150°C, the approximate expression provides estimates which are in error more than 5%.  The 
approximate expression should be used with caution, and only for surface and surrounding 
temperature differences of 50 to 100°C. 
   

 
Coefficients (W/m2⋅K) 

Ts (°C) ε hr hr,a h 
35 0.05 0.32 0.32 2.1 
 0.9 5.7 5.7  

135 0.05 0.51 0.50 4.7 
 0.9 9.2 9.0  
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PROBLEM 1.30

KNOWN:  Chip width, temperature, and heat loss by convection in air.  Chip emissivity and
temperature of large surroundings.

FIND:  Increase in chip power due to radiation.

SCHEMATIC:

ASSUMPTIONS:  (1) Steady-state conditions, (2) Radiation exchange between small surface
and large enclosure.

ANALYSIS:  Heat transfer from the chip due to net radiation exchange with the surroundings
is

( )q  = W T  - T2 4 4
surrad ε σ

( ) ( )q  = 0.9 0.005 m 5.67 10  W/m K 358  - 288 K2 8 2 4 4 4 4
rad × ⋅−

qrad =  0.0122 W.

The percent increase in chip power is therefore

∆P

P

qrad
qconv

 W

0.350 W
× = × = × =100 100

0 0122
100 35%.

.
. <

COMMENTS:  For the prescribed conditions, radiation effects are small.  Relative to
convection, the effect of radiation would increase with increasing chip temperature and
decreasing convection coefficient.



PROBLEM 1.31 
 
KNOWN:   Width, surface emissivity and maximum allowable temperature of an electronic chip.  
Temperature of air and surroundings.  Convection coefficient. 
 

FIND:   (a) Maximum power dissipation for free convection with h(W/m
2⋅K) = 4.2(T - T∞)

1/4
, (b) 

Maximum power dissipation for forced convection with h = 250 W/m
2⋅K. 

 
SCHEMATIC:    
 

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Radiation exchange between a small surface and a 
large enclosure, (3) Negligible heat transfer from sides of chip or from back of chip by conduction 
through the substrate. 
 
ANALYSIS:   Subject to the foregoing assumptions, electric power dissipation by the chip must be 
balanced by convection and radiation heat transfer from the chip.  Hence, from Eq. (1.10), 

 ( ) ( )4 4P q q hA T T A T Telec conv rad s s surε σ= + = − + −∞  

where ( )22 4 2A L 0.015m 2.25 10 m .−= = = ×  
 
(a) If heat transfer is by natural convection, 

 ( ) ( )( )5 / 4 5 / 42 5/4 4 2q C A T T 4.2 W/m K 2.25 10 m 60K 0.158 Wconv s
−= − = ⋅ × =∞  

 ( ) ( )4 2 8 2 4 4 4 4q 0.60 2.25 10 m 5.67 10  W/m K 358 298 K 0.065 Wrad
− −= × × ⋅ − =  

 P 0.158 W 0.065 W 0.223 Welec= + =       < 
(b) If heat transfer is by forced convection, 
 

 ( ) ( )( )2 4 2q hA T T 250 W/m K 2.25 10 m 60K 3.375 Wconv s
−= − = ⋅ × =∞  

 
 P 3.375 W 0.065 W 3.44 Welec= + =       < 
 
COMMENTS:   Clearly, radiation and natural convection are inefficient mechanisms for transferring 

heat from the chip.  For Ts = 85°C and T∞ = 25°C, the natural convection coefficient is 11.7 W/m
2⋅K.  

Even for forced convection with h = 250 W/m
2⋅K, the power dissipation is well below that associated 

with many of today’s processors.  To provide acceptable cooling, it is often necessary to attach the 
chip to a highly conducting substrate and to thereby provide an additional heat transfer mechanism 
due to conduction from the back surface. 



PROBLEM 1.32

KNOWN:  Vacuum enclosure maintained at 77 K by liquid nitrogen shroud while baseplate is
maintained at 300 K by an electrical heater.

FIND:  (a) Electrical power required to maintain baseplate, (b) Liquid nitrogen consumption rate, (c)

Effect on consumption rate if aluminum foil (εp = 0.09) is bonded to baseplate surface.

SCHEMATIC:

ASSUMPTIONS:  (1) Steady-state conditions, (2) No heat losses from backside of heater or sides of
plate, (3) Vacuum enclosure large compared to baseplate, (4) Enclosure is evacuated with negligible
convection, (5) Liquid nitrogen (LN2) is heated only by heat transfer to the shroud, and (6) Foil is
intimately bonded to baseplate.

PROPERTIES:  Heat of vaporization of liquid nitrogen (given):  125 kJ/kg.

ANALYSIS:  (a) From an energy balance on the baseplate,
� �E  -  E  =  0               q  -  q  =  0in out elec rad

and using Eq. 1.7 for radiative exchange between the baseplate and shroud,

( )pq  = A T  - T .4 4
p pelec shε σ

Substituting numerical values, with ( )A  = D / 4 ,2
p pπ  find

( ) ( )q  = 0.25 0.3 m / 4 5.67 10  W/m K 300  - 77 K 8.1 W.2 8 2 4 4 4 4
elec π  × ⋅ =  

− <
(b) From an energy balance on the enclosure, radiative transfer heats the liquid nitrogen stream
causing evaporation,

� � �E  -  E  =  0                 q  -  m h  =  0in out rad LN2 fg

where �mLN2  is the liquid nitrogen consumption rate.  Hence,

� /mLN2 =  qrad hfg =  8.1 W / 125 kJ / kg =  6.48 10-5 kg / s = 0.23 kg / h.× <
(c) If aluminum foil (εp = 0.09) were bonded to the upper surface of the baseplate,

( ) ( )q  = q /  = 8.1 W 0.09/0.25  = 2.9 Wprad,foil rad fε ε
and the liquid nitrogen consumption rate would be reduced by

(0.25 - 0.09)/0.25 = 64% to 0.083 kg/h. <



PROBLEM 1.33 
 
KNOWN:   Width, input power and efficiency of a transmission.  Temperature and convection 
coefficient for air flow over the casing.  Emissivity of casing and temperature of surroundings. 
 
FIND:   Surface temperature of casing. 
 
SCHEMATIC:    
 

 
 
ASSUMPTIONS:  (1) Steady state, (2) Uniform convection coefficient and surface temperature, (3) 
Radiation exchange with large surroundings. 
 
ANALYSIS:   Heat transfer from the case must balance heat dissipation in the transmission, which 

may be expressed as q = Pi – Po = Pi (1 - η) = 150 hp × 746 W/hp × 0.07 = 7833 W.  Heat transfer 
from the case is by convection and radiation, in which case 
 

 ( ) ( )4 4
s s s surq A h T T T Tεσ∞

 = − + −  
 

 

where As = 6 W
2
.  Hence, 

 

( ) ( ) ( )2 2 2 4 4 4 4
s s

87833W 6 0.30 m 200 W / m K T 303K 0.8 5.67 10 W / m K T 303 K−= ⋅ − + × × ⋅ − 
  

 

 
A trial-and-error solution yields 
 

 sT 373K 100 C≈ = °          < 
 
COMMENTS:   (1) For Ts ≈ 373 K, qconv ≈ 7,560 W and qrad ≈ 270 W, in which case heat transfer is 

dominated by convection, (2) If radiation is neglected, the corresponding surface temperature is Ts = 
102.5°C. 
 



PROBLEM 1.34 
 
KNOWN:   Resistor connected to a battery operating at a prescribed temperature in air. 
 

FIND:   (a) Considering the resistor as the system, determine corresponding values for ( )inE W� , 

( )gE W� , ( )outE W�  and ( )stE W� .  If a control surface is placed about the entire system, determine 

the values for inE� , gE� , outE� , and stE� .  (b)  Determine the volumetric heat generation rate within 

the resistor, q�  (W/m3),  (c)  Neglecting radiation from the resistor, determine  the convection 
coefficient.  
 
SCHEMATIC:     

 
 
ASSUMPTIONS:  (1) Electrical power is dissipated uniformly within the resistor, (2) Temperature 
of the resistor is uniform, (3) Negligible electrical power dissipated in the lead wires, (4) Negligible 
radiation exchange between the resistor and the surroundings, (5) No heat transfer occurs from the 
battery, (5) Steady-state conditions. 
 
ANALYSIS:     (a)  Referring to Section 1.3.1, the conservation of energy requirement for a control 
volume at an instant of time, Eq 1.11a, is 
 

 in g out stE E E E+ − =� � � �  

 

where in outE , E� �  correspond to surface inflow and outflow processes, respectively.  The energy 

generation term gE�  is associated with conversion of some other energy form (chemical, electrical, 

electromagnetic or nuclear) to thermal energy.  The energy storage term stE�  is associated with 

changes in the internal, kinetic and/or potential energies of the matter in the control volume.  gE� , 

stE�  are volumetric phenomena.  The electrical power delivered by the battery is P = VI = 24V×6A = 

144 W. 
 
Control volume: Resistor.  
 

          in outE 0 E 144 W= =� �     

< 

          g stE 144 W E 0= =� �  

 

           

The gE�  term is due to conversion of electrical energy to thermal energy.  The term outE�  is due to 

convection from the resistor surface to the air. 
Continued... 

 



 
PROBLEM 1.34 (Cont.) 

 
 
 
Control volume: Battery-Resistor System. 
 

       in outE 0 E 144 W= =� �     < 

       g stE 0 E 144 W= = −� �  

 
 

 

             

 

The stE�  term represents the decrease in the chemical energy within the battery.  The conversion of 

chemical energy to electrical energy and its subsequent conversion to thermal energy are processes 

internal to the system which are not associated with stE�  or gE� .  The outE�  term is due to convection 

from the resistor surface to the air. 
 
(b)  From the energy balance on the resistor with volume, ∀ = (πD2/4)L, 
 

 ( )( )2 5 3
gE q 144 W q 0.06m / 4 0.25m q 2.04 10 W mπ= ∀ = × = ×� � � �  < 

 
(c)  From the energy balance on the resistor and Newton's law of cooling with As = πDL + 2(πD2/4), 
 
 ( )out cv s sE q hA T T∞= = −�  
 

 ( ) ( )2 2144 W h 0.06m 0.25m 2 0.06 m 4 95 25 Cπ π = × × + × −  
$

 

 

 [ ] ( )2144 W h 0.0471 0.0057 m 95 25 C= + − $

 

 2h 39.0 W m K= ⋅  < 
 
COMMENTS:   (1) In using the conservation of energy requirement, Eq. 1.11a, it is important to 

recognize that inE�  and outE�  will always represent surface processes and gE�  and stE� , volumetric 

processes.  The generation term gE�  is associated with a conversion process from some form of 

energy to thermal energy.  The storage term stE�  represents the rate of change of internal energy. 

 
(2) From Table 1.1 and the magnitude of the convection coefficient determined from part (c), we 
conclude that the resistor is experiencing forced, rather than free, convection. 
 



PROBLEM 1.35 
 
KNOWN:   Thickness and initial temperature of an aluminum plate whose thermal environment is 
changed. 
 
FIND:   (a) Initial rate of temperature change, (b) Steady-state temperature of plate, (c) Effect of 
emissivity and absorptivity on steady-state temperature. 
 
SCHEMATIC:  

  
ASSUMPTIONS:  (1) Negligible end effects, (2) Uniform plate temperature at any instant, (3) 
Constant properties, (4) Adiabatic bottom surface, (5) Negligible radiation from surroundings, (6) No 
internal heat generation. 
 
ANALYSIS:   (a) Applying an energy balance, Eq. 1.11a, at an instant of time to a control volume 
about the plate, in out stE E E− =� � � , it follows for a unit surface area. 

 ( ) ( ) ( ) ( )( ) ( ) ( )2 2 2 2
S S convG 1m E 1m q 1m d dt McT 1m L c dT dtα ρ′′− − = = × . 

Rearranging and substituting from Eqs. 1.3 and 1.5, we obtain 

 ( ) ( )4
S S i idT dt 1 Lc G T h T Tρ α εσ ∞= − − − 

  . 

 ( ) 13dT dt 2700 kg m 0.004 m 900 J kg K
−

= × × ⋅ ×  

 ( ) ( )42 8 2 4 20.8 900 W m 0.25 5.67 10 W m K 298K 20 W m K 25 20 C−× − × × ⋅ − ⋅ − 
  

$  

 dT dt 0.052 C s= $ . <  

(b) Under steady-state conditions, �Est = 0, and the energy balance reduces to 

 ( )4
S SG T h T Tα εσ ∞= + −  (2) 

 ( )2 8 2 4 4 20.8 900 W m 0.25 5.67 10 W m K T 20 W m K T 293K−× = × × ⋅ × + ⋅ −  

The solution yields T = 321.4 K = 48.4°C. < 
(c) Using the IHT First Law Model for an Isothermal Plane Wall, parametric calculations yield the 
following results. 
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COMMENTS:   The surface radiative properties have a significant effect on the plate temperature, 
which decreases with increasing ε and decreasing αS.  If a low temperature is desired, the plate 
coating should be characterized by a large value of ε/αS.  The temperature also decreases with 
increasing h. 



PROBLEM 1.36

KNOWN:  Surface area of electronic package and power dissipation by the electronics.
Surface emissivity and absorptivity to solar radiation.  Solar flux.

FIND:  Surface temperature without and with incident solar radiation.

SCHEMATIC:

ASSUMPTIONS:  Steady-state conditions.

ANALYSIS:  Applying conservation of energy to a control surface about the compartment, at
any instant

� � �E  -  E  + E  =  0.in out g

It follows that, with the solar input,
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In the sun,

0.25 1 m 750 W/m 1000 W
T 380 K.

1 m 1 5.67 10  W/m K

1/ 42 2
s 2 8 2 4

 × × + = =
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COMMENTS:  In orbit, the space station would be continuously cycling between shade and
sunshine, and a steady-state condition would not exist.



PROBLEM 1.37 
 
KNOWN:   Daily hot water consumption for a family of four and temperatures associated with ground 
water and water storage tank.  Unit cost of electric power.  Heat pump COP. 
 
FIND:   Annual heating requirement and costs associated with using electric resistance heating or a 
heat pump. 
 
SCHEMATIC:  

 
 
ASSUMPTIONS:  (1) Process may be modelled as one involving heat addition in a closed system, 
(2) Properties of water are constant. 
 

PROPERTIES:  Table A-6, Water (aveT  = 308 K):  ρ = 1
fv−  = 993 kg/m3, p,fc  = 4.178 kJ/kg⋅K. 

 
ANALYSIS:   From Eq. 1.11c, the daily heating requirement is daily tQ U Mc T= ∆ = ∆  

( )f iVc T Tρ= − .  With V = 100 gal/264.17 gal/m3 = 0.379 m3, 
 

 ( ) ( )3 3
dailyQ 993kg / m 0.379m 4.178kJ/kg K 40 C 62,900kJ= ⋅ =$  

 

The annual heating requirement is then, ( ) 7
annualQ 365days 62,900kJ/day 2.30 10 kJ= = × , or, 

with 1 kWh = 1 kJ/s (3600 s) = 3600 kJ, 
 

 annualQ 6380kWh=  < 
 
With electric resistance heating, annual elecQ Q=  and the associated cost, C, is 
 

 ( )C 6380kWh $0.08/kWh $510= =  < 
 
If a heat pump is used, ( )annual elecQ COP W .=   Hence, 
 
 ( ) ( )elec annualW Q / COP 6380kWh/ 3 2130kWh= = =  
 
The corresponding cost is 
 

 ( )C 2130kWh $0.08/kWh $170= =  < 
 
COMMENTS:   Although annual operating costs are significantly lower for a heat pump, 
corresponding capital costs are much higher.  The feasibility of this approach depends on other factors 
such as geography and seasonal variations in COP, as well as the time value of money. 



PROBLEM 1.38 
 
KNOWN:   Initial temperature of water and tank volume.  Power dissipation, emissivity, 
length and diameter of submerged heaters.  Expressions for convection coefficient associated 
with natural convection in water and air. 
 
FIND:   (a) Time to raise temperature of water to prescribed value, (b) Heater temperature 
shortly after activation and at conclusion of process, (c) Heater temperature if activated in air. 
 
SCHEMATIC:    
 

 
 
ASSUMPTIONS:  (1) Negligible heat loss from tank to surroundings, (2) Water is well-
mixed (at a uniform, but time varying temperature) during heating, (3) Negligible changes in 
thermal energy storage for heaters, (4) Constant properties, (5) Surroundings afforded by tank 
wall are large relative to heaters. 
 
ANALYSIS:   (a) Application of conservation of energy to a closed system (the water) at an 
instant, Eq. (1.11d), yields 
 

 
dU dT dT

Mc c q 3q1dt dt dt
ρ= = ∀ = =  

 

Hence,  ( )
Tft

dt c/3q  dT10 Ti
ρ= ∀∫ ∫  

 

 
( )

( )
3 3 3990 kg/m 10gal 3.79 10 m / gal 4180J/kg K

t 335 295 K 4180 s
3 500 W

−× × ⋅
= − =

×
 < 

 
(b) From Eq. (1.3a), the heat rate by convection from each heater is 
 

 ( ) ( ) ( )4 / 3q Aq Ah T T DL 370 T T1 1 s sπ′′= = − = −  
 
Hence, 

( )
3/ 43/ 4q 500 W1T T T T 24 Ks 2 4/3370 DL 370 W/m K 0.025 m 0.250 mπ π

  = + = + = +    ⋅ × × × 
 

 
With water temperatures of Ti ≈ 295 K and Tf = 335 K shortly after the start of heating and at 
the end of heating, respectively, 
 

 Ts,i = 319 K  Ts,f = 359 K       < 
 
          Continued ….. 



PROBLEM 1.38 (Continued) 
 
(c) From Eq. (1.10), the heat rate in air is 
 

 ( ) ( )4 / 3 4 4q DL 0.70 T T T T1 s s surπ εσ = − + −∞  
 

 

Substituting the prescribed values of q1, D, L, T∞ = Tsur and ε, an iterative solution yields 
 

 Ts = 830 K          < 
 
COMMENTS:   In part (c) it is presumed that the heater can be operated at Ts = 830 K 

without experiencing burnout.  The much larger value of Ts for air is due to the smaller 

convection coefficient.  However, with qconv and qrad equal to 59 W and 441 W, respectively, 
a significant portion of the heat dissipation is effected by radiation. 
 



PROBLEM 1.39 
 
KNOWN:   Power consumption, diameter, and inlet and discharge temperatures of a hair 
dryer. 
 
FIND:   (a) Volumetric flow rate and discharge velocity of heated air, (b) Heat loss from case. 
 
SCHEMATIC:    
 

 
 
ASSUMPTIONS:  (1) Steady-state, (2) Constant air properties, (3) Negligible potential and 
kinetic energy changes of air flow, (4) Negligible work done by fan, (5) Negligible heat 
transfer from casing of dryer to ambient air (Part (a)), (6) Radiation exchange between a small 
surface and a large enclosure (Part (b)). 
 
ANALYSIS:   (a) For a control surface about the air flow passage through the dryer, 
conservation of energy for an open system reduces to 
 
 ( ) ( )m u pv m u pv q 0i o+ − + + =� �  
 
where u + pv = i and q = Pelec.  Hence, with ( ) ( )m i i mc T T ,i o p i o− = −� �  
 
 ( )mc T T Pp o i elec− =�  
 

 
( ) ( )
P 500 Welecm 0.0199 kg/s

c T Tp o i 1007 J/kg K 25 C
= = =

− ⋅
�

$
 

 

 
m 0.0199 kg/s 30.0181 m / s

31.10 kg/mρ
∀ = = =

�
�       < 

 

 
( )

34 4 0.0181 m / s
V 4.7 m/so 2 2Ac D 0.07 mπ π

∀ ∀ ×= = = =
� �

     < 

 
(b) Heat transfer from the casing is by convection and radiation, and from Eq. (1.10) 
 

 ( ) ( )4 4q hA T T A T Ts s s s surε σ= − + −∞  

          Continued ….. 



PROBLEM 1.39 (Continued) 
 

where ( ) 2A DL 0.07 m 0.15 m 0.033 m .s π π= = × =   Hence, 

 

( )( ) ( )2 2 2 8 2 4 4 4 4q 4W/m K 0.033 m 20 C 0.8 0.033 m 5.67 10  W/m K 313 293 K−= ⋅ + × × × ⋅ −$

 

 q 2.64 W 3.33 W 5.97 W= + =        < 
 
The heat loss is much less than the electrical power, and the assumption of negligible heat loss 
is justified. 
 
COMMENTS:   Although the mass flow rate is invariant, the volumetric flow rate increases 
as the air is heated in its passage through the dryer, causing a reduction in the density.  
However, for the prescribed temperature rise, the change in ρ, and hence the effect on ,∀�  is 
small. 
 



 
PROBLEM 1.40 

 
KNOWN:  Speed, width, thickness and initial and final temperatures of 304 stainless steel in an 
annealing process.  Dimensions of annealing oven and temperature, emissivity and convection 
coefficient of surfaces exposed to ambient air and large surroundings of equivalent temperatures.  
Thickness of pad on which oven rests and pad surface temperatures. 
 
FIND:   Oven operating power. 
 
SCHEMATIC:  

  
ASSUMPTIONS:  (1) steady-state, (2) Constant properties, (3) Negligible changes in kinetic and 
potential energy. 
 
PROPERTIES:  Table A.1, St.St.304 ( )( )i oT T T /2 775K= + = :  ρ = 7900 kg/m3, cp = 578 

J/kg⋅K; Table A.3, Concrete, T = 300 K:  kc  = 1.4 W/m⋅K. 
 
ANALYSIS:   The rate of energy addition to the oven must balance the rate of energy transfer to the 

steel sheet and the rate of heat loss from the oven.  With in outE E−� �  = 0, it follows that 

 
 ( )elec i oP m u u q 0+ − − =�  
 
where heat is transferred from the oven.  With ( )s s sm V W tρ=� , ( ) ( )i o p i ou u c T T− = − , and 

( ) ( ) ( )4 4
o o o o o o s s s surq 2H L 2H W W L h T T T Tε σ∞

 = + + × − + −  
 ( )( )c o o s b ck W L T T /t+ − , 

it follows that 

 ( ) ( ) ( )elec s s s p o i o o o o o oP V W t c T T 2H L 2H W W Lρ= − + + + ×  

           ( ) ( ) ( )( )4 4
s o s s sur c o o s b ch T T T T k W L T T /tε σ − + − + −  

 

 ( ) ( )3
elecP 7900kg/m 0.01m/s 2m 0.008m 578J/kg K 1250 300 K= × × ⋅ −  

  ( ) ( )22 2m 25m 2 2m 2.4m 2.4m 25m [10W/m K 350 300 K+ × × + × × + × ⋅ −  

( ) ( )( )8 2 4 4 4 40.8 5.67 10 W/m K 350 300 K ] 1.4W/m K 2.4m 25m 350 300 K/0.5m−+ × × ⋅ − + ⋅ × −  

 
Continued.…. 



 
PROBLEM 1.40 (Cont.) 

 

 ( )2 2
elecP 694,000W 169.6m 500 313 W/m 8400W= + + +  

 

  ( )694,000 84,800 53,100 8400 W 840kW= + + + =  < 

 
COMMENTS:   Of the total energy input, 83% is transferred to the steel while approximately 10%, 
6% and 1% are lost by convection, radiation and conduction from the oven.  The convection and 
radiation losses can both be reduced by adding insulation to the side and top surfaces, which would 
reduce the corresponding value of Ts. 



PROBLEM 1.1 
 
KNOWN:   Heat rate, q, through one-dimensional wall of area A, thickness L, thermal 
conductivity k and inner temperature, T1. 
 
FIND:  The outer temperature of the wall, T2. 
 
SCHEMATIC:  

 
 
ASSUMPTIONS:  (1) One-dimensional conduction in the x-direction, (2) Steady-state conditions, 
(3) Constant properties. 
 
ANALYSIS:   The rate equation for conduction through the wall is given by Fourier’s law, 
 

q q q A = -k
dT

dx
A = kA

T T

Lcond x x
1 2= = ′′ ⋅ ⋅

−
. 

 

Solving for T2 gives 
 

 T T
q L

kA2 1
cond= − .  

 
Substituting numerical values, find 
 

 T C -
3000W 0.025m

0.2W / m K 10m2 2= ×
⋅ ×

415$  

 
 T C -37.5 C2 = 415$ $  

 

 T C.2 = 378$           < 

 

COMMENTS:  Note direction of heat flow and fact that T2 must be less than T1. 



PROBLEM 1.2 
 
KNOWN:   Inner surface temperature and thermal conductivity of a concrete wall. 
 
FIND:   Heat loss by conduction through the wall as a function of ambient air temperatures ranging from 
-15 to 38°C. 
 
SCHEMATIC:  

  
ASSUMPTIONS:  (1) One-dimensional conduction in the x-direction, (2) Steady-state conditions, (3) 
Constant properties, (4) Outside wall temperature is that of the ambient air. 
 
ANALYSIS:   From Fourier’s law, it is evident that the gradient, xdT dx q k′′= − , is a constant, and 

hence the temperature distribution is linear, if xq′′  and k are each constant.  The heat flux must be 
constant under one-dimensional, steady-state conditions; and k is approximately constant if it depends 
only weakly on temperature.  The heat flux and heat rate when the outside wall temperature is T2 = -15°C 
are 

 
( ) 21 2

x

25 C 15 CdT T T
q k k 1W m K 133.3W m

dx L 0.30m

− −−′′ = − = = ⋅ =
$ $

. (1) 

 2 2
x xq q A 133.3W m 20m 2667 W′′= × = × = . (2) < 

 
Combining Eqs. (1) and (2), the heat rate qx can be determined for the range of ambient temperature, -15 
≤ T2 ≤ 38°C, with different wall thermal conductivities, k. 
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Wall thermal conductivity, k = 1.25 W/m.K
k = 1 W/m.K,  concrete wall
k = 0.75 W/m.K   

For the concrete wall, k = 1 W/m⋅K, the heat loss varies linearily from +2667 W to -867 W and is zero 
when the inside and ambient temperatures are the same.  The magnitude of the heat rate increases with 
increasing thermal conductivity. 
 
COMMENTS:   Without steady-state conditions and constant k, the temperature distribution in a plane 
wall would not be linear. 



PROBLEM 1.3 
 
KNOWN:   Dimensions, thermal conductivity and surface temperatures of a concrete slab.  Efficiency 
of gas furnace and cost of natural gas. 
 
FIND:   Daily cost of heat loss. 
 
SCHEMATIC:    
 

 
 
ASSUMPTIONS:  (1) Steady state, (2) One-dimensional conduction, (3) Constant properties. 
 
ANALYSIS:   The rate of heat loss by conduction through the slab is 
 

 ( ) ( )1 2T T 7 C
q k LW 1.4 W / m K 11m 8m 4312 W

t 0.20m

− °= = ⋅ × =    < 

 
The daily cost of natural gas that must be combusted to compensate for the heat loss is 
 

 ( ) ( )g
d 6f

q C 4312 W $0.01/ MJ
C t 24h / d 3600s / h $4.14 / d

0.9 10 J / MJη
×= ∆ = × =

×
  < 

 
COMMENTS:   The loss could be reduced by installing a floor covering with a layer of insulation 
between it and the concrete. 
 



PROBLEM 1.4

KNOWN:  Heat flux and surface temperatures associated with a wood slab of prescribed
thickness.

FIND:  Thermal conductivity, k, of the wood.

SCHEMATIC:

ASSUMPTIONS:  (1) One-dimensional conduction in the x-direction, (2) Steady-state
conditions, (3) Constant properties.

ANALYSIS:  Subject to the foregoing assumptions, the thermal conductivity may be
determined from Fourier’s law, Eq. 1.2.  Rearranging,

( )
L W 0.05m

k=q 40  
T T m 40-20 C

x 21 2
′′ =

− �

k = 0.10 W / m K.⋅ <

COMMENTS:  Note that the °C or K temperature units may be used interchangeably when
evaluating a temperature difference.



PROBLEM 1.5

KNOWN:  Inner and outer surface temperatures of a glass window of prescribed dimensions.

FIND:  Heat loss through window.

SCHEMATIC:

ASSUMPTIONS:  (1) One-dimensional conduction in the x-direction, (2) Steady-state
conditions, (3) Constant properties.

ANALYSIS:  Subject to the foregoing conditions the heat flux may be computed from
Fourier’s law, Eq. 1.2.

( )

T T
q k 

L
15-5 CW

q 1.4  
m K 0.005m

q 2800 W/m .

1 2
x

x
2

x

−′′ =

′′ =
⋅

′′ =

�

Since the heat flux is uniform over the surface, the heat loss (rate) is

q =  qx A

q =  2800 W / m2  3m2

′′ ×

×

q =  8400 W. <

COMMENTS:  A linear temperature distribution exists in the glass for the prescribed
conditions.



PROBLEM 1.6 
 
KNOWN:   Width, height, thickness and thermal conductivity of a single pane window and 
the air space of a double pane window.  Representative winter surface temperatures of single 
pane and air space. 
 
FIND:   Heat loss through single and double pane windows. 
 
SCHEMATIC:    
 

 
 
 
ASSUMPTIONS:  (1) One-dimensional conduction through glass or air, (2) Steady-state 
conditions, (3) Enclosed air of double pane window is stagnant (negligible buoyancy induced 
motion). 
 
ANALYSIS:   From Fourier’s law, the heat losses are 
 

Single Pane: ( )T T 35 C21 2q k A 1.4 W/m K 2m 19,600 Wg g L 0.005m

−= = ⋅ =
$

 

 

Double Pane: ( )T T 25 C21 2q k A 0.024 2m 120 Wa a L 0.010 m

−= = =
$

 

 
COMMENTS:   Losses associated with a single pane are unacceptable and would remain 
excessive, even if the thickness of the glass were doubled to match that of the air space.  The 
principal advantage of the double pane construction resides with the low thermal conductivity 
of air (~ 60 times smaller than that of glass).  For a fixed ambient outside air temperature, use 
of the double pane construction would also increase the surface temperature of the glass 
exposed to the room (inside) air. 
 



PROBLEM 1.7

KNOWN:  Dimensions of freezer compartment.  Inner and outer surface temperatures.

FIND:  Thickness of styrofoam insulation needed to maintain heat load below prescribed
value.

SCHEMATIC:

ASSUMPTIONS:  (1) Perfectly insulated bottom, (2) One-dimensional conduction through 5

walls of area A = 4m
2
, (3) Steady-state conditions, (4) Constant properties.

ANALYSIS:  Using Fourier’s law, Eq. 1.2, the heat rate is

q =  q A =  k 
T

L
 Atotal′′ ⋅ ∆

Solving for L and recognizing that Atotal = 5×W
2
, find

L =  
5 k  T W

q

2∆

( ) ( )5  0.03 W/m K 35 - -10 C 4m
L = 

500 W

2 × ⋅  
�

L =  0.054m =  54mm. <

COMMENTS:  The corners will cause local departures from one-dimensional conduction
and a slightly larger heat loss.



PROBLEM 1.8 
 
KNOWN:   Dimensions and thermal conductivity of food/beverage container.  Inner and outer 
surface temperatures. 
 
FIND:   Heat flux through container wall and total heat load. 
 
SCHEMATIC:    
 

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Negligible heat transfer through bottom 
wall, (3) Uniform surface temperatures and one-dimensional conduction through remaining 
walls. 
 
ANALYSIS:   From Fourier’s law, Eq. 1.2, the heat flux is 
 

 
( )0.023 W/m K 20 2 CT T 22 1q k 16.6 W/m

L 0.025 m

⋅ −−′′ = = =
$

    < 

 
Since the flux is uniform over each of the five walls through which heat is transferred, the 
heat load is 
 
 ( )q q A q H 2W 2W W Wtotal 1 2 1 2′′ ′′  = × = + + ×   
 

 ( ) ( )2q 16.6 W/m 0.6m 1.6m 1.2m 0.8m 0.6m 35.9 W = + + × =     < 
 
COMMENTS:   The corners and edges of the container create local departures from one-

dimensional conduction, which increase the heat load.  However, for H, W1, W2 >> L, the 
effect is negligible. 
 



PROBLEM 1.9 
 
KNOWN:   Masonry wall of known thermal conductivity has a heat rate which is 80% of that 
through a composite wall of prescribed thermal conductivity and thickness. 
 
FIND:  Thickness of masonry wall. 
 
SCHEMATIC:  

 
 
ASSUMPTIONS:  (1) Both walls subjected to same surface temperatures, (2) One-
dimensional conduction, (3) Steady-state conditions, (4) Constant properties. 
 
ANALYSIS:   For steady-state conditions, the conduction heat flux through a one-dimensional 
wall follows from Fourier’s law, Eq. 1.2, 
 

 ′′q  =  k 
T

L

∆
 

 
where ∆T represents the difference in surface temperatures.  Since ∆T is the same for both 
walls, it follows that 
 

 L  =  L  
k

k
  

q

q1 2
1

2

2

1

⋅
′′
′′

.  

 
With the heat fluxes related as 
 
 ′′ = ′′q  0.8 q1 2  

 

 L  =  100mm 
0.75 W / m K

0.25 W / m K
  

1

0.8
 =  375mm.1

⋅
⋅

×      < 

 
COMMENTS:  Not knowing the temperature difference across the walls, we cannot find the 
value of the heat rate. 
 



PROBLEM 1.10 
 
KNOWN:   Thickness, diameter and inner surface temperature of bottom of pan used to boil 
water.  Rate of heat transfer to the pan. 
 
FIND:   Outer surface temperature of pan for an aluminum and a copper bottom. 
 
SCHEMATIC:    
 

 
 
ASSUMPTIONS:  (1) One-dimensional, steady-state conduction through bottom of pan. 
 
ANALYSIS:   From Fourier’s law, the rate of heat transfer by conduction through the bottom 
of the pan is 
 

 
T T1 2q kA

L

−=  

 
Hence, 
 

 
qL

T T1 2 kA
= +  

 

where ( )22 2A D / 4 0.2m / 4 0.0314 m .π π= = =  

 

Aluminum: 
( )

( )
600W 0.005 m

T 110 C 110.40 C1 2240 W/m K 0.0314 m
= + =

⋅
$ $  

 

Copper: 
( )

( )
600W 0.005 m

T 110 C 110.25 C1 2390 W/m K 0.0314 m
= + =

⋅
$ $  

 
COMMENTS:   Although the temperature drop across the bottom is slightly larger for 
aluminum (due to its smaller thermal conductivity), it is sufficiently small to be negligible for 
both materials.  To a good approximation, the bottom may be considered isothermal at T ≈ 
110 °C, which is a desirable feature of pots and pans. 
 



PROBLEM 1.11

KNOWN:  Dimensions and thermal conductivity of a chip.  Power dissipated on one surface.

FIND:  Temperature drop across the chip.

SCHEMATIC:

ASSUMPTIONS:  (1) Steady-state conditions, (2) Constant properties, (3) Uniform heat
dissipation, (4) Negligible heat loss from back and sides, (5) One-dimensional conduction in
chip.

ANALYSIS:  All of the electrical power dissipated at the back surface of the chip is
transferred by conduction through the chip.  Hence, from Fourier’s law,

P =  q =  kA 
T

t

∆

or

( )
t P 0.001 m 4 W

T = 
kW 150 W/m K 0.005 m2 2

⋅ ×∆ =
⋅

∆T =  1.1  C.$ <

COMMENTS:  For fixed P, the temperature drop across the chip decreases with increasing k
and W, as well as with decreasing t.



PROBLEM 1.12 
 
KNOWN:   Heat flux gage with thin-film thermocouples on upper and lower surfaces; output 
voltage, calibration constant, thickness and thermal conductivity of gage. 
 
FIND:   (a) Heat flux, (b) Precaution when sandwiching gage between two materials. 
 
SCHEMATIC:  

 
ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional heat conduction in gage, 
(3) Constant properties. 
 

ANALYSIS:   (a) Fourier’s law applied to the gage can be written as 
 

 ′′q  =  k 
T

x

∆
∆

 

 

and the gradient can be expressed as 
 

 
∆
∆

∆T

x
 =  

E / N

SABt
 

 

where N is the number of differentially connected thermocouple junctions, SAB is the Seebeck 
coefficient for type K thermocouples (A-chromel and B-alumel), and ∆x = t is the gage 
thickness.  Hence, 
 

 ′′q =  
k E

NSABt

∆
 

 

 ′′ ⋅ × ×
× × × ×

q  =  
1.4 W / m K 350 10-6 V

5 40 10-6 V / C 0.25 10-3 m
 =  9800 W / m2

$
.    < 

 

(b)  The major precaution to be taken with this type of gage is to match its thermal 
conductivity with that of the material on which it is installed.  If the gage is bonded 
between laminates (see sketch above) and its thermal conductivity is significantly different 
from that of the laminates, one dimensional heat flow will be disturbed and the gage will 
read incorrectly. 

 

COMMENTS:   If the thermal conductivity of the gage is lower than that of the laminates, 
will it indicate heat fluxes that are systematically high or low? 
 



PROBLEM 1.13 
 
KNOWN:   Hand experiencing convection heat transfer with moving air and water. 
 
FIND:   Determine which condition feels colder.  Contrast these results with a heat loss of 30 W/m2 under 
normal room conditions. 
 
SCHEMATIC:  

 
 
ASSUMPTIONS:  (1) Temperature is uniform over the hand’s surface, (2) Convection coefficient is 
uniform over the hand, and (3) Negligible radiation exchange between hand and surroundings in the case 
of air flow. 
 
ANALYSIS:   The hand will feel colder for the condition which results in the larger heat loss.  The heat 
loss can be determined from Newton’s law of cooling, Eq. 1.3a, written as 
 
 ( )sq h T T∞′′ = −  
 
For the air stream: 
 

 ( )2 2
airq 40 W m K 30 5 K 1,400 W m′′  = ⋅ − − =   < 

 
For the water stream: 
 

 ( )2 2
waterq 900 W m K 30 10 K 18,000 W m′′ = ⋅ − =  < 

 
COMMENTS:   The heat loss for the hand in the water stream is an order of magnitude larger than when 
in the air stream for the given temperature and convection coefficient conditions.  In contrast, the heat 
loss in a normal room environment is only 30 W/m2 which is a factor of 400 times less than the loss in 
the air stream.  In the room environment, the hand would feel comfortable; in the air and water streams, 
as you probably know from experience, the hand would feel uncomfortably cold since the heat loss is 
excessively high. 



PROBLEM 1.14 
 
KNOWN:   Power required to maintain the surface temperature of a long, 25-mm diameter cylinder 
with an imbedded electrical heater for different air velocities. 
 
FIND:   (a) Determine the convection coefficient for each of the air velocity conditions and display 
the results graphically, and (b) Assuming that the convection coefficient depends upon air velocity as 
h = CVn, determine the parameters C and n. 
 
SCHEMATIC:  
 

 

V(m/s) 1 2 4 8 12 
′Pe (W/m) 450 658 983 1507 1963 

h (W/m2⋅K) 22.0 32.2 48.1 73.8 96.1 

 
ASSUMPTIONS:  (1) Temperature is uniform over the cylinder surface, (2) Negligible radiation 
exchange between the cylinder surface and the surroundings, (3) Steady-state conditions. 
 
ANALYSIS:   (a) From an overall energy balance on the cylinder, the power dissipated by the 
electrical heater is transferred by convection to the air stream.  Using Newtons law of cooling on a per 
unit length basis, 
 
 ( )( )e sP h D T Tπ ∞′ = −  
 
where eP′  is the electrical power dissipated per unit length of the cylinder.  For the V = 1 m/s 

condition, using the data from the table above, find 

 ( ) 2h 450 W m 0.025m 300 40 C 22.0 W m Kπ= × − = ⋅$

 < 
 
Repeating the calculations, find the convection coefficients for the remaining conditions which are 
tabulated above and plotted below.  Note that h is not linear with respect to the air velocity. 
 
(b) To determine the (C,n) parameters, we plotted h vs. V on log-log coordinates.  Choosing C = 
22.12 W/m2⋅K(s/m)n, assuring a match at V = 1, we can readily find the exponent n from the slope of 
the h vs. V curve.  From the trials with n = 0.8, 0.6 and 0.5, we recognize that n = 0.6 is a reasonable 

choice.  Hence, C = 22.12 and n = 0.6. < 
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PROBLEM 1.15

KNOWN:  Long, 30mm-diameter cylinder with embedded electrical heater; power required
to maintain a specified surface temperature for water and air flows.

FIND:  Convection coefficients for the water and air flow convection processes, hw and ha,
respectively.

SCHEMATIC:

ASSUMPTIONS:  (1) Flow is cross-wise over cylinder which is very long in the direction
normal to flow.

ANALYSIS:  The convection heat rate from the cylinder per unit length of the cylinder has
the form

( ) ( )q  = h D  T Tsπ′ − ∞

and solving for the heat transfer convection coefficient, find

( )
q

h = .
D T Tsπ

′
− ∞

Substituting numerical values for the water and air situations:

Water
( )

28  10  W/m
h  =  = 4,570 W/m K

  0.030m 90-25  C

3
2

w
π

× ⋅
× �

<

Air
( )

400 W/m
h  = 65 W/m K.

  0.030m 90-25  C

2
a

π
= ⋅

× �

<

COMMENTS:  Note that the air velocity is 10 times that of the water flow, yet

hw ≈ 70 × ha.

These values for the convection coefficient are typical for forced convection heat transfer with
liquids and gases.  See Table 1.1.



PROBLEM 1.16

KNOWN:  Dimensions of a cartridge heater.  Heater power.  Convection coefficients in air
and water at a prescribed temperature.

FIND:  Heater surface temperatures in water and air.

SCHEMATIC:

ASSUMPTIONS:  (1)  Steady-state conditions, (2)  All of the electrical power is transferred
to the fluid by convection, (3)  Negligible heat transfer from ends.

ANALYSIS:  With P = qconv, Newton’s law of cooling yields

( ) ( )P=hA T T h DL T T
P

T T .
h DL

s s

s

π

π

− = −

= +
∞ ∞

∞
In water,

T C +
2000 W

5000 W / m K 0.02 m 0.200 ms 2=
⋅ × × ×

20$

π

T C + 31.8 C = 51.8 C.s = 20$ $ $ <
In air,

T C +
2000 W

50 W / m K 0.02 m 0.200 ms 2=
⋅ × × ×

20$

π

T C + 3183 C = 3203 C.s = 20$ $ $ <

COMMENTS:  (1) Air is much less effective than water as a heat transfer fluid.  Hence, the
cartridge temperature is much higher in air, so high, in fact, that the cartridge would melt.

(2)  In air, the high cartridge temperature would render radiation significant.



PROBLEM 1.17 
 
KNOWN:   Length, diameter and calibration of a hot wire anemometer.  Temperature of air 
stream.  Current, voltage drop and surface temperature of wire for a particular application. 
 
FIND:   Air velocity 
 
SCHEMATIC:    
 

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Negligible heat transfer from the wire by 
natural convection or radiation. 
 
ANALYSIS:   If all of the electric energy is transferred by convection to the air, the following 
equality must be satisfied 
 
 ( )P EI hA T Telec s= = − ∞  

 

where ( ) 5 2A DL 0.0005m 0.02m 3.14 10 m .π π −= = × = ×  

 
Hence, 
 

 
( ) ( )

EI 5V 0.1A 2h 318 W/m K
5 2A T Ts 3.14 10 m 50 C

×= = = ⋅
−− ∞ × $

 

 

 ( )25 2 5 2V 6.25 10 h 6.25 10 318 W/m K 6.3 m/s− −= × = × ⋅ =    < 

 
COMMENTS:   The convection coefficient is sufficiently large to render buoyancy (natural 
convection) and radiation effects negligible. 
 



PROBLEM 1.18 
 
KNOWN:   Chip width and maximum allowable temperature.  Coolant conditions. 
 
FIND:   Maximum allowable chip power for air and liquid coolants. 
 
SCHEMATIC:  

  
ASSUMPTIONS:  (1) Steady-state conditions, (2) Negligible heat transfer from sides and 
bottom, (3) Chip is at a uniform temperature (isothermal), (4) Negligible heat transfer by 
radiation in air. 
 
ANALYSIS:   All of the electrical power dissipated in the chip is transferred by convection to 
the coolant.  Hence, 
 
 P = q 
 
and from Newton’s law of cooling, 
 

 P = hA(T - T∞) = h W
2
(T - T∞). 

 
In air, 
 

 Pmax = 200 W/m
2⋅K(0.005 m)

2
(85 - 15) ° C = 0.35 W.    < 

 
In the dielectric liquid 
 

 Pmax = 3000 W/m
2⋅K(0.005 m)

2
(85-15) ° C = 5.25 W.    < 

 
COMMENTS:   Relative to liquids, air is a poor heat transfer fluid.  Hence, in air the chip can 
dissipate far less energy than in the dielectric liquid. 



PROBLEM 1.19 
 
KNOWN:   Length, diameter and maximum allowable surface temperature of a power 
transistor.  Temperature and convection coefficient for air cooling. 
 
FIND:   Maximum allowable power dissipation. 
 
SCHEMATIC:    
 

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Negligible heat transfer through base of 
transistor, (3) Negligible heat transfer by radiation from surface of transistor. 
 
ANALYSIS:   Subject to the foregoing assumptions, the power dissipated by the transistor is 
equivalent to the rate at which heat is transferred by convection to the air.  Hence, 
 
 ( )P q hA T Telec conv s= = − ∞  

 

where ( ) ( )22 4 2A DL D / 4 0.012m 0.01m 0.012m / 4 4.90 10 m .π π − = + = × + = ×  
 

 
For a maximum allowable surface temperature of 85°C, the power is 
 

 ( ) ( )2 4 2P 100 W/m K 4.90 10 m  85 25 C 2.94 Welec
−= ⋅ × − =$    < 

 
COMMENTS:   (1) For the prescribed surface temperature and convection coefficient, 
radiation will be negligible relative to convection.  However, conduction through the base 
could be significant, thereby permitting operation at a larger power. 
 
(2) The local convection coefficient varies over the surface, and hot spots could exist if there 
are locations at which the local value of h is substantially smaller than the prescribed average 
value. 
 



PROBLEM 1.20 
 
KNOWN:  Air jet impingement is an effective means of cooling logic chips. 
 
FIND:   Procedure for measuring convection coefficients associated with a 10 mm × 10 mm chip. 
 
SCHEMATIC: 
 

 
ASSUMPTIONS:  Steady-state conditions. 
 
ANALYSIS:   One approach would be to use the actual chip-substrate system, Case (a), to perform the 
measurements.  In this case, the electric power dissipated in the chip would be transferred from the chip 
by radiation and conduction (to the substrate), as well as by convection to the jet.  An energy balance for 

the chip yields elec conv cond radq q q q= + + .  Hence, with ( )conv sq hA T T∞= − , where A = 100 

mm2 is the surface area of the chip, 
 

 ( )
elec cond rad

s

q q q
h

A T T∞

− −=
−

 (1) 

 
While the electric power (qelec) and the jet (T∞ ) and surface (Ts) temperatures may be measured, losses 
from the chip by conduction and radiation would have to be estimated.  Unless the losses are negligible 
(an unlikely condition), the accuracy of the procedure could be compromised by uncertainties associated 
with determining the conduction and radiation losses. 
 
 A second approach, Case (b), could involve fabrication of a heater assembly for which the 
conduction and radiation losses are controlled and minimized.  A 10 mm × 10 mm copper block (k ~ 400 
W/m⋅K) could be inserted in a poorly conducting substrate (k < 0.1 W/m⋅K) and a patch heater could be 
applied to the back of the block and insulated from below.  If conduction to both the substrate and 
insulation could thereby be rendered negligible, heat would be transferred almost exclusively through the 
block.  If radiation were rendered negligible by applying a low emissivity coating (ε < 0.1) to the surface 
of the copper block, virtually all of the heat would be transferred by convection to the jet.  Hence, qcond 
and qrad may be neglected in equation (1), and the expression may be used to accurately determine h 
from the known (A) and measured (qelec, Ts, T∞ ) quantities. 
 
COMMENTS:   Since convection coefficients associated with gas flows are generally small, concurrent 
heat transfer by radiation and/or conduction must often be considered.  However, jet impingement is one 
of the more effective means of transferring heat by convection and convection coefficients well in excess 
of 100 W/m2⋅K may be achieved. 



PROBLEM 1.21

KNOWN:  Upper temperature set point, Tset, of a bimetallic switch and convection heat
transfer coefficient between clothes dryer air and exposed surface of switch.

FIND:  Electrical power for heater to maintain Tset when air temperature is T∞ = 50°C.

SCHEMATIC:

ASSUMPTIONS:  (1) Steady-state conditions, (2) Electrical heater is perfectly insulated

from dryer wall, (3) Heater and switch are isothermal at Tset, (4) Negligible heat transfer from

sides of heater or switch, (5) Switch surface, As, loses heat only by convection.

ANALYSIS:  Define a control volume around the bimetallic switch which experiences heat
input from the heater and convection heat transfer to the dryer air.  That is,

( )
E  - E  = 0
q  - hA T T 0.

outin
s setelec − =∞

� �

The electrical power required is,

( )q  = hA T Ts setelec − ∞

( )q  = 25 W/m K 30 10  m 70 50 K=15 mW.2 -6 2
elec ⋅ × × − <

COMMENTS:  (1) This type of controller can achieve variable operating air temperatures
with a single set-point, inexpensive, bimetallic-thermostatic switch by adjusting power levels
to the heater.

(2) Will the heater power requirement increase or decrease if the insulation pad is other than
perfect?



PROBLEM 1.22

KNOWN:  Hot vertical plate suspended in cool, still air.  Change in plate temperature with time at
the instant when the plate temperature is 225°C.

FIND:  Convection heat transfer coefficient for this condition.

SCHEMATIC:

ASSUMPTIONS:  (1) Plate is isothermal and of uniform temperature, (2) Negligible radiation
exchange with surroundings, (3) Negligible heat lost through suspension wires.

ANALYSIS:  As shown in the cooling curve above, the plate temperature decreases with time.  The

condition of interest is for time to.  For a control surface about the plate, the conservation of energy
requirement is

( )
E  - E  = E

dT
2hA T T Mc

dt

out stin

s s p− − =∞

� � �

where As is the surface area of one side of the plate.  Solving for h, find

( )
Mc dT

h=
2A T T dt

p

s s − ∞

( ) ( )
3.75 kg 2770 J/kg K

h= 0.022 K/s=6.4 W/m K
2 0.3 0.3 m 225 25 K

2
2

× ⋅ × ⋅
× × −

<

COMMENTS:  (1) Assuming the plate is very highly polished with emissivity of 0.08, determine
whether radiation exchange with the surroundings at 25°C is negligible compared to convection.

(2) We will later consider the criterion for determining whether the isothermal plate assumption is
reasonable.  If the thermal conductivity of the present plate were high (such as aluminum or copper),
the criterion would be satisfied.



PROBLEM 1.23 
 
KNOWN:   Width, input power and efficiency of a transmission.  Temperature and convection 
coefficient associated with air flow over the casing. 
 
FIND:   Surface temperature of casing. 
 
SCHEMATIC:    
 

 
 
ASSUMPTIONS:  (1) Steady state, (2) Uniform convection coefficient and surface temperature, (3) 
Negligible radiation. 
 
ANALYSIS:   From Newton’s law of cooling, 
 

 ( ) ( )2
s s sq hA T T 6hW T T∞ ∞= − = −  

 

where the output power is η Pi and the heat rate is 
 

 ( )i o iq P P P 1 150hp 746 W / hp 0.07 7833Wη= − = − = × × =  

 
Hence, 
 

 
( )

s 2 22

q 7833 W
T T 30 C 102.5 C

6 hW 6 200 W / m K 0.3m
∞= + = ° + = °

× ⋅ ×
  < 

 
COMMENTS:   There will, in fact, be considerable variability of the local convection coefficient 
over the transmission case and the prescribed value represents an average over the surface. 
 



PROBLEM 1.24 
 
KNOWN:   Air and wall temperatures of a room.  Surface temperature, convection coefficient 
and emissivity of a person in the room. 
 
FIND:   Basis for difference in comfort level between summer and winter. 
 
SCHEMATIC:    
 

 
 
ASSUMPTIONS:  (1) Person may be approximated as a small object in a large enclosure. 
 
ANALYSIS:   Thermal comfort is linked to heat loss from the human body, and a chilled 
feeling is associated with excessive heat loss.  Because the temperature of the room air is 
fixed, the different summer and winter comfort levels can not be attributed to convection heat 
transfer from the body.  In both cases, the heat flux is 
 

Summer and Winter: ( ) 2 2q h T T 2 W/m K 12 C 24 W/mconv s′′ = − = ⋅ × =∞
$  

 
However, the heat flux due to radiation will differ, with values of 
 

Summer: ( ) ( )4 4 8 2 4 4 4 4 2q T T 0.9 5.67 10 W/m K 305 300 K 28.3 W/mrad s surεσ −′′ = − = × × ⋅ − =  

 

Winter: ( ) ( )4 4 8 2 4 4 4 4 2q T T 0.9 5.67 10 W/m K 305 287 K 95.4 W/mrad s surεσ −′′ = − = × × ⋅ − =  

 
There is a significant difference between winter and summer radiation fluxes, and the chilled 
condition is attributable to the effect of the colder walls on radiation. 
 
COMMENTS:   For a representative surface area of A = 1.5 m

2
, the heat losses are qconv = 

36 W, qrad(summer) = 42.5 W and qrad(winter) = 143.1 W.  The winter time radiation loss is 
significant and if maintained over a 24 h period would amount to 2,950 kcal. 
 



PROBLEM 1.25

KNOWN:  Diameter and emissivity of spherical interplanetary probe.  Power dissipation
within probe.

FIND:  Probe surface temperature.

SCHEMATIC:

ASSUMPTIONS:  (1) Steady-state conditions, (2) Negligible radiation incident on the probe.

ANALYSIS:  Conservation of energy dictates a balance between energy generation within the
probe and radiation emission from the probe surface.  Hence, at any instant

-E  +  E  =  0out g
� �

ε σA T Es s
4

g= �

E
T

D

1/ 4
g

s 2επ σ

 
=    

�

( )
150W

T
0.8 0.5 m 5.67 10

1/ 4

s 2 8 2 4 W/m Kπ

 
 =
 × 

− ⋅

T  K.s = 254 7. <

COMMENTS:  Incident radiation, as, for example, from the sun, would increase the surface
temperature.



PROBLEM 1.26 
 
KNOWN:   Spherical shaped instrumentation package with prescribed surface emissivity within a 
large space-simulation chamber having walls at 77 K. 
 
FIND:   Acceptable power dissipation for operating the package surface temperature in the range Ts = 
40 to 85°C.  Show graphically the effect of emissivity variations for 0.2 and 0.3. 
 
SCHEMATIC:  

  
ASSUMPTIONS:  (1) Uniform surface temperature, (2) Chamber walls are large compared to the 
spherical package, and (3) Steady-state conditions. 
 
ANALYSIS:   From an overall energy balance on the package, the internal power dissipation Pe will 
be transferred by radiation exchange between the package and the chamber walls.  From Eq. 1.7, 

 ( )4 4
rad e s s surq P A T Tε σ= = −  

For the condition when Ts = 40°C, with As = πD2 the power dissipation will be 

 ( ) ( )48 2 4 4 4
eP 0.25 0.10m 5.67 10 W m K 40 273 77 K 4.3Wπ −  = × × × ⋅ × + − =  

 < 

Repeating this calculation for the range 40 ≤ Ts ≤ 85°C, we can obtain the power dissipation as a 
function of surface temperature for the ε = 0.25 condition.  Similarly, with 0.2 or 0.3, the family of 
curves shown below has been obtained. 
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COMMENTS:   (1) As expected, the internal power dissipation increases with increasing emissivity 
and surface temperature.  Because the radiation rate equation is non-linear with respect to 
temperature, the power dissipation will likewise not be linear with surface temperature. 
 
(2) What is the maximum power dissipation that is possible if the surface temperature is not to exceed 
85°C?  What kind of a coating should be applied to the instrument package in order to approach this 
limiting condition? 



PROBLEM 1.27

KNOWN:  Area, emissivity and temperature of a surface placed in a large, evacuated
chamber of prescribed temperature.

FIND:  (a) Rate of surface radiation emission, (b) Net rate of radiation exchange between
surface and chamber walls.

SCHEMATIC:

ASSUMPTIONS:  (1) Area of the enclosed surface is much less than that of chamber walls.

ANALYSIS:  (a) From Eq. 1.5, the rate at which radiation is emitted by the surface is

qemit E A =   A  Ts
4= ⋅ ε σ

( ) ( )q  = 0.8 0.5 m  5.67  10  W/m K  150 + 273 K
42 -8 2 4

emit  × ⋅  

q  =  726 W.emit <

(b)  From Eq. 1.7, the net rate at which radiation is transferred from the surface to the chamber
walls is

( )q =  A  T T4 4
s surε σ −

( ) ( ) ( )q = 0.8 0.5 m  5.67  10  W/m K  423K  - 298K4 42 -8 2 4  × ⋅   

q =  547 W. <

COMMENTS:  The foregoing result gives the net heat loss from the surface which occurs at
the instant the surface is placed in the chamber.  The surface would, of course, cool due to this
heat loss and its temperature, as well as the heat loss, would decrease with increasing time.
Steady-state conditions would eventually be achieved when the temperature of the surface
reached that of the surroundings.



PROBLEM 1.28 
 
KNOWN:   Length, diameter, surface temperature and emissivity of steam line.  Temperature 
and convection coefficient associated with ambient air.  Efficiency and fuel cost for gas fired 
furnace. 
 
FIND:   (a) Rate of heat loss, (b) Annual cost of heat loss. 
 
SCHEMATIC:    
 

 
 
 
ASSUMPTIONS:  (1) Steam line operates continuously throughout year, (2) Net radiation 
transfer is between small surface (steam line) and large enclosure (plant walls). 
 
ANALYSIS:   (a) From Eqs. (1.3a) and (1.7), the heat loss is 
 

 ( ) ( )4 4q q q A h T T T Tconv rad s s surεσ = + = − + −∞  
 

 

where ( ) 2A DL 0.1m 25m 7.85m .π π= = × =  
 
Hence, 
 

( ) ( )2 2 8 2 4 4 4 4q 7.85m 10 W/m K 150 25 K 0.8 5.67 10 W/m K 423 298 K− = ⋅ − + × × ⋅ −  
 

 

 ( ) ( )2 2q 7.85m 1,250 1,095 w/m 9813 8592 W 18,405 W= + = + =    < 
 
(b) The annual energy loss is 
 

 11E qt 18,405 W 3600 s/h 24h/d 365 d/y 5.80 10  J= = × × × = ×  
 

With a furnace energy consumption of 11E E/ 6.45 10  J,f fη= = ×  the annual cost of the loss 
is 
 

 5C C E 0.01 $/MJ 6.45 10 MJ $6450g f= = × × =      < 
 
COMMENTS:   The heat loss and related costs are unacceptable and should be reduced by 
insulating the steam line. 
 



PROBLEM 1.29 
 
KNOWN:   Exact and approximate expressions for the linearized radiation coefficient, hr and hra, 
respectively. 
 
FIND:   (a) Comparison of the coefficients with ε = 0.05 and 0.9 and surface temperatures which may 
exceed that of the surroundings (Tsur = 25°C) by 10 to 100°C; also comparison with a free convection 
coefficient correlation, (b) Plot of the relative error (hr - rra)/hr as a function of the furnace temperature 
associated with a workpiece at Ts = 25°C having ε = 0.05, 0.2 or 0.9. 
 
ASSUMPTIONS:  (1) Furnace walls are large compared to the workpiece and (2) Steady-state 
conditions. 
 
ANALYSIS:   (a) The linearized radiation coefficient, Eq. 1.9, follows from the radiation exchange 
rate equation, 

 ( )( )2 2
r s sur s surh T T T Tεσ= + +  

If Ts ≈ Tsur, the coefficient may be approximated by the simpler expression 

 ( )3
r,a s surh 4 T T T T 2εσ= = +  

For the condition of ε = 0.05, Ts = Tsur + 10 = 35°C = 308 K and Tsur = 25°C = 298 K, find that 

 ( )( )8 2 4 2 2 3 2
rh 0.05 5.67 10 W m K 308 298 308 298 K 0.32 W m K−= × × ⋅ + + = ⋅  < 

 ( )( )38 2 4 3 2
r,ah 4 0.05 5.67 10 W m K 308 298 2 K 0.32 W m K−= × × × ⋅ + = ⋅  < 

The free convection coefficient with Ts = 35°C and T∞  = Tsur = 25°C, find that 

 ( ) ( )1/3 1/31/3 2
sh 0.98 T 0.98 T T 0.98 308 298 2.1W m K∞= ∆ = − = − = ⋅  < 

For the range Ts - Tsur = 10 to 100°C with ε = 0.05 and 0.9, the results for the coefficients are 
tabulated below.  For this range of surface and surroundings temperatures, the radiation and free 
convection coefficients are of comparable magnitude for moderate values of the emissivity, say ε > 
0.2.  The approximate expression for the linearized radiation coefficient is valid within 2% for these 
conditions. 
 
(b)  The above expressions for the radiation coefficients, hr and hr,a, are used for the workpiece at Ts = 
25°C placed inside a furnace with walls which may vary from 100 to 1000°C.  The relative error, (hr - 
hra)/hr, will be independent of the surface emissivity and is plotted as a function of Tsur.  For Tsur > 
150°C, the approximate expression provides estimates which are in error more than 5%.  The 
approximate expression should be used with caution, and only for surface and surrounding 
temperature differences of 50 to 100°C. 
   

 
Coefficients (W/m2⋅K) 

Ts (°C) ε hr hr,a h 
35 0.05 0.32 0.32 2.1 
 0.9 5.7 5.7  

135 0.05 0.51 0.50 4.7 
 0.9 9.2 9.0  
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PROBLEM 1.30

KNOWN:  Chip width, temperature, and heat loss by convection in air.  Chip emissivity and
temperature of large surroundings.

FIND:  Increase in chip power due to radiation.

SCHEMATIC:

ASSUMPTIONS:  (1) Steady-state conditions, (2) Radiation exchange between small surface
and large enclosure.

ANALYSIS:  Heat transfer from the chip due to net radiation exchange with the surroundings
is

( )q  = W T  - T2 4 4
surrad ε σ

( ) ( )q  = 0.9 0.005 m 5.67 10  W/m K 358  - 288 K2 8 2 4 4 4 4
rad × ⋅−

qrad =  0.0122 W.

The percent increase in chip power is therefore

∆P

P

qrad
qconv

 W

0.350 W
× = × = × =100 100

0 0122
100 35%.

.
. <

COMMENTS:  For the prescribed conditions, radiation effects are small.  Relative to
convection, the effect of radiation would increase with increasing chip temperature and
decreasing convection coefficient.



PROBLEM 1.31 
 
KNOWN:   Width, surface emissivity and maximum allowable temperature of an electronic chip.  
Temperature of air and surroundings.  Convection coefficient. 
 

FIND:   (a) Maximum power dissipation for free convection with h(W/m
2⋅K) = 4.2(T - T∞)

1/4
, (b) 

Maximum power dissipation for forced convection with h = 250 W/m
2⋅K. 

 
SCHEMATIC:    
 

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Radiation exchange between a small surface and a 
large enclosure, (3) Negligible heat transfer from sides of chip or from back of chip by conduction 
through the substrate. 
 
ANALYSIS:   Subject to the foregoing assumptions, electric power dissipation by the chip must be 
balanced by convection and radiation heat transfer from the chip.  Hence, from Eq. (1.10), 

 ( ) ( )4 4P q q hA T T A T Telec conv rad s s surε σ= + = − + −∞  

where ( )22 4 2A L 0.015m 2.25 10 m .−= = = ×  
 
(a) If heat transfer is by natural convection, 

 ( ) ( )( )5 / 4 5 / 42 5/4 4 2q C A T T 4.2 W/m K 2.25 10 m 60K 0.158 Wconv s
−= − = ⋅ × =∞  

 ( ) ( )4 2 8 2 4 4 4 4q 0.60 2.25 10 m 5.67 10  W/m K 358 298 K 0.065 Wrad
− −= × × ⋅ − =  

 P 0.158 W 0.065 W 0.223 Welec= + =       < 
(b) If heat transfer is by forced convection, 
 

 ( ) ( )( )2 4 2q hA T T 250 W/m K 2.25 10 m 60K 3.375 Wconv s
−= − = ⋅ × =∞  

 
 P 3.375 W 0.065 W 3.44 Welec= + =       < 
 
COMMENTS:   Clearly, radiation and natural convection are inefficient mechanisms for transferring 

heat from the chip.  For Ts = 85°C and T∞ = 25°C, the natural convection coefficient is 11.7 W/m
2⋅K.  

Even for forced convection with h = 250 W/m
2⋅K, the power dissipation is well below that associated 

with many of today’s processors.  To provide acceptable cooling, it is often necessary to attach the 
chip to a highly conducting substrate and to thereby provide an additional heat transfer mechanism 
due to conduction from the back surface. 



PROBLEM 1.32

KNOWN:  Vacuum enclosure maintained at 77 K by liquid nitrogen shroud while baseplate is
maintained at 300 K by an electrical heater.

FIND:  (a) Electrical power required to maintain baseplate, (b) Liquid nitrogen consumption rate, (c)

Effect on consumption rate if aluminum foil (εp = 0.09) is bonded to baseplate surface.

SCHEMATIC:

ASSUMPTIONS:  (1) Steady-state conditions, (2) No heat losses from backside of heater or sides of
plate, (3) Vacuum enclosure large compared to baseplate, (4) Enclosure is evacuated with negligible
convection, (5) Liquid nitrogen (LN2) is heated only by heat transfer to the shroud, and (6) Foil is
intimately bonded to baseplate.

PROPERTIES:  Heat of vaporization of liquid nitrogen (given):  125 kJ/kg.

ANALYSIS:  (a) From an energy balance on the baseplate,
� �E  -  E  =  0               q  -  q  =  0in out elec rad

and using Eq. 1.7 for radiative exchange between the baseplate and shroud,

( )pq  = A T  - T .4 4
p pelec shε σ

Substituting numerical values, with ( )A  = D / 4 ,2
p pπ  find

( ) ( )q  = 0.25 0.3 m / 4 5.67 10  W/m K 300  - 77 K 8.1 W.2 8 2 4 4 4 4
elec π  × ⋅ =  

− <
(b) From an energy balance on the enclosure, radiative transfer heats the liquid nitrogen stream
causing evaporation,

� � �E  -  E  =  0                 q  -  m h  =  0in out rad LN2 fg

where �mLN2  is the liquid nitrogen consumption rate.  Hence,

� /mLN2 =  qrad hfg =  8.1 W / 125 kJ / kg =  6.48 10-5 kg / s = 0.23 kg / h.× <
(c) If aluminum foil (εp = 0.09) were bonded to the upper surface of the baseplate,

( ) ( )q  = q /  = 8.1 W 0.09/0.25  = 2.9 Wprad,foil rad fε ε
and the liquid nitrogen consumption rate would be reduced by

(0.25 - 0.09)/0.25 = 64% to 0.083 kg/h. <



PROBLEM 1.33 
 
KNOWN:   Width, input power and efficiency of a transmission.  Temperature and convection 
coefficient for air flow over the casing.  Emissivity of casing and temperature of surroundings. 
 
FIND:   Surface temperature of casing. 
 
SCHEMATIC:    
 

 
 
ASSUMPTIONS:  (1) Steady state, (2) Uniform convection coefficient and surface temperature, (3) 
Radiation exchange with large surroundings. 
 
ANALYSIS:   Heat transfer from the case must balance heat dissipation in the transmission, which 

may be expressed as q = Pi – Po = Pi (1 - η) = 150 hp × 746 W/hp × 0.07 = 7833 W.  Heat transfer 
from the case is by convection and radiation, in which case 
 

 ( ) ( )4 4
s s s surq A h T T T Tεσ∞

 = − + −  
 

 

where As = 6 W
2
.  Hence, 

 

( ) ( ) ( )2 2 2 4 4 4 4
s s

87833W 6 0.30 m 200 W / m K T 303K 0.8 5.67 10 W / m K T 303 K−= ⋅ − + × × ⋅ − 
  

 

 
A trial-and-error solution yields 
 

 sT 373K 100 C≈ = °          < 
 
COMMENTS:   (1) For Ts ≈ 373 K, qconv ≈ 7,560 W and qrad ≈ 270 W, in which case heat transfer is 

dominated by convection, (2) If radiation is neglected, the corresponding surface temperature is Ts = 
102.5°C. 
 



PROBLEM 1.34 
 
KNOWN:   Resistor connected to a battery operating at a prescribed temperature in air. 
 

FIND:   (a) Considering the resistor as the system, determine corresponding values for ( )inE W� , 

( )gE W� , ( )outE W�  and ( )stE W� .  If a control surface is placed about the entire system, determine 

the values for inE� , gE� , outE� , and stE� .  (b)  Determine the volumetric heat generation rate within 

the resistor, q�  (W/m3),  (c)  Neglecting radiation from the resistor, determine  the convection 
coefficient.  
 
SCHEMATIC:     

 
 
ASSUMPTIONS:  (1) Electrical power is dissipated uniformly within the resistor, (2) Temperature 
of the resistor is uniform, (3) Negligible electrical power dissipated in the lead wires, (4) Negligible 
radiation exchange between the resistor and the surroundings, (5) No heat transfer occurs from the 
battery, (5) Steady-state conditions. 
 
ANALYSIS:     (a)  Referring to Section 1.3.1, the conservation of energy requirement for a control 
volume at an instant of time, Eq 1.11a, is 
 

 in g out stE E E E+ − =� � � �  

 

where in outE , E� �  correspond to surface inflow and outflow processes, respectively.  The energy 

generation term gE�  is associated with conversion of some other energy form (chemical, electrical, 

electromagnetic or nuclear) to thermal energy.  The energy storage term stE�  is associated with 

changes in the internal, kinetic and/or potential energies of the matter in the control volume.  gE� , 

stE�  are volumetric phenomena.  The electrical power delivered by the battery is P = VI = 24V×6A = 

144 W. 
 
Control volume: Resistor.  
 

          in outE 0 E 144 W= =� �     

< 

          g stE 144 W E 0= =� �  

 

           

The gE�  term is due to conversion of electrical energy to thermal energy.  The term outE�  is due to 

convection from the resistor surface to the air. 
Continued... 

 



 
PROBLEM 1.34 (Cont.) 

 
 
 
Control volume: Battery-Resistor System. 
 

       in outE 0 E 144 W= =� �     < 

       g stE 0 E 144 W= = −� �  

 
 

 

             

 

The stE�  term represents the decrease in the chemical energy within the battery.  The conversion of 

chemical energy to electrical energy and its subsequent conversion to thermal energy are processes 

internal to the system which are not associated with stE�  or gE� .  The outE�  term is due to convection 

from the resistor surface to the air. 
 
(b)  From the energy balance on the resistor with volume, ∀ = (πD2/4)L, 
 

 ( )( )2 5 3
gE q 144 W q 0.06m / 4 0.25m q 2.04 10 W mπ= ∀ = × = ×� � � �  < 

 
(c)  From the energy balance on the resistor and Newton's law of cooling with As = πDL + 2(πD2/4), 
 
 ( )out cv s sE q hA T T∞= = −�  
 

 ( ) ( )2 2144 W h 0.06m 0.25m 2 0.06 m 4 95 25 Cπ π = × × + × −  
$

 

 

 [ ] ( )2144 W h 0.0471 0.0057 m 95 25 C= + − $

 

 2h 39.0 W m K= ⋅  < 
 
COMMENTS:   (1) In using the conservation of energy requirement, Eq. 1.11a, it is important to 

recognize that inE�  and outE�  will always represent surface processes and gE�  and stE� , volumetric 

processes.  The generation term gE�  is associated with a conversion process from some form of 

energy to thermal energy.  The storage term stE�  represents the rate of change of internal energy. 

 
(2) From Table 1.1 and the magnitude of the convection coefficient determined from part (c), we 
conclude that the resistor is experiencing forced, rather than free, convection. 
 



PROBLEM 1.35 
 
KNOWN:   Thickness and initial temperature of an aluminum plate whose thermal environment is 
changed. 
 
FIND:   (a) Initial rate of temperature change, (b) Steady-state temperature of plate, (c) Effect of 
emissivity and absorptivity on steady-state temperature. 
 
SCHEMATIC:  

  
ASSUMPTIONS:  (1) Negligible end effects, (2) Uniform plate temperature at any instant, (3) 
Constant properties, (4) Adiabatic bottom surface, (5) Negligible radiation from surroundings, (6) No 
internal heat generation. 
 
ANALYSIS:   (a) Applying an energy balance, Eq. 1.11a, at an instant of time to a control volume 
about the plate, in out stE E E− =� � � , it follows for a unit surface area. 

 ( ) ( ) ( ) ( )( ) ( ) ( )2 2 2 2
S S convG 1m E 1m q 1m d dt McT 1m L c dT dtα ρ′′− − = = × . 

Rearranging and substituting from Eqs. 1.3 and 1.5, we obtain 

 ( ) ( )4
S S i idT dt 1 Lc G T h T Tρ α εσ ∞= − − − 

  . 

 ( ) 13dT dt 2700 kg m 0.004 m 900 J kg K
−

= × × ⋅ ×  

 ( ) ( )42 8 2 4 20.8 900 W m 0.25 5.67 10 W m K 298K 20 W m K 25 20 C−× − × × ⋅ − ⋅ − 
  

$  

 dT dt 0.052 C s= $ . <  

(b) Under steady-state conditions, �Est = 0, and the energy balance reduces to 

 ( )4
S SG T h T Tα εσ ∞= + −  (2) 

 ( )2 8 2 4 4 20.8 900 W m 0.25 5.67 10 W m K T 20 W m K T 293K−× = × × ⋅ × + ⋅ −  

The solution yields T = 321.4 K = 48.4°C. < 
(c) Using the IHT First Law Model for an Isothermal Plane Wall, parametric calculations yield the 
following results. 
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COMMENTS:   The surface radiative properties have a significant effect on the plate temperature, 
which decreases with increasing ε and decreasing αS.  If a low temperature is desired, the plate 
coating should be characterized by a large value of ε/αS.  The temperature also decreases with 
increasing h. 



PROBLEM 1.36

KNOWN:  Surface area of electronic package and power dissipation by the electronics.
Surface emissivity and absorptivity to solar radiation.  Solar flux.

FIND:  Surface temperature without and with incident solar radiation.

SCHEMATIC:

ASSUMPTIONS:  Steady-state conditions.

ANALYSIS:  Applying conservation of energy to a control surface about the compartment, at
any instant

� � �E  -  E  + E  =  0.in out g

It follows that, with the solar input,

A q A E P=0

A q A T P=0

A q P
T .

A

s sS S
4

s s sS S
1/ 4

sS S
s

s

α
α εσ

α
εσ

′′ − +
′′ − +

′′ +
=  

 

In the shade ( )q 0 ,S′′ =

1000 W
T 364 K.

1 m 1 5.67 10  W/m K

1/ 4

s 2 8 2 4
 

= = 
× × × ⋅ − <

In the sun,

0.25 1 m 750 W/m 1000 W
T 380 K.

1 m 1 5.67 10  W/m K

1/ 42 2
s 2 8 2 4

 × × + = =
 × × × ⋅ 

− <

COMMENTS:  In orbit, the space station would be continuously cycling between shade and
sunshine, and a steady-state condition would not exist.



PROBLEM 1.37 
 
KNOWN:   Daily hot water consumption for a family of four and temperatures associated with ground 
water and water storage tank.  Unit cost of electric power.  Heat pump COP. 
 
FIND:   Annual heating requirement and costs associated with using electric resistance heating or a 
heat pump. 
 
SCHEMATIC:  

 
 
ASSUMPTIONS:  (1) Process may be modelled as one involving heat addition in a closed system, 
(2) Properties of water are constant. 
 

PROPERTIES:  Table A-6, Water (aveT  = 308 K):  ρ = 1
fv−  = 993 kg/m3, p,fc  = 4.178 kJ/kg⋅K. 

 
ANALYSIS:   From Eq. 1.11c, the daily heating requirement is daily tQ U Mc T= ∆ = ∆  

( )f iVc T Tρ= − .  With V = 100 gal/264.17 gal/m3 = 0.379 m3, 
 

 ( ) ( )3 3
dailyQ 993kg / m 0.379m 4.178kJ/kg K 40 C 62,900kJ= ⋅ =$  

 

The annual heating requirement is then, ( ) 7
annualQ 365days 62,900kJ/day 2.30 10 kJ= = × , or, 

with 1 kWh = 1 kJ/s (3600 s) = 3600 kJ, 
 

 annualQ 6380kWh=  < 
 
With electric resistance heating, annual elecQ Q=  and the associated cost, C, is 
 

 ( )C 6380kWh $0.08/kWh $510= =  < 
 
If a heat pump is used, ( )annual elecQ COP W .=   Hence, 
 
 ( ) ( )elec annualW Q / COP 6380kWh/ 3 2130kWh= = =  
 
The corresponding cost is 
 

 ( )C 2130kWh $0.08/kWh $170= =  < 
 
COMMENTS:   Although annual operating costs are significantly lower for a heat pump, 
corresponding capital costs are much higher.  The feasibility of this approach depends on other factors 
such as geography and seasonal variations in COP, as well as the time value of money. 



PROBLEM 1.38 
 
KNOWN:   Initial temperature of water and tank volume.  Power dissipation, emissivity, 
length and diameter of submerged heaters.  Expressions for convection coefficient associated 
with natural convection in water and air. 
 
FIND:   (a) Time to raise temperature of water to prescribed value, (b) Heater temperature 
shortly after activation and at conclusion of process, (c) Heater temperature if activated in air. 
 
SCHEMATIC:    
 

 
 
ASSUMPTIONS:  (1) Negligible heat loss from tank to surroundings, (2) Water is well-
mixed (at a uniform, but time varying temperature) during heating, (3) Negligible changes in 
thermal energy storage for heaters, (4) Constant properties, (5) Surroundings afforded by tank 
wall are large relative to heaters. 
 
ANALYSIS:   (a) Application of conservation of energy to a closed system (the water) at an 
instant, Eq. (1.11d), yields 
 

 
dU dT dT

Mc c q 3q1dt dt dt
ρ= = ∀ = =  

 

Hence,  ( )
Tft

dt c/3q  dT10 Ti
ρ= ∀∫ ∫  

 

 
( )

( )
3 3 3990 kg/m 10gal 3.79 10 m / gal 4180J/kg K

t 335 295 K 4180 s
3 500 W

−× × ⋅
= − =

×
 < 

 
(b) From Eq. (1.3a), the heat rate by convection from each heater is 
 

 ( ) ( ) ( )4 / 3q Aq Ah T T DL 370 T T1 1 s sπ′′= = − = −  
 
Hence, 

( )
3/ 43/ 4q 500 W1T T T T 24 Ks 2 4/3370 DL 370 W/m K 0.025 m 0.250 mπ π

  = + = + = +    ⋅ × × × 
 

 
With water temperatures of Ti ≈ 295 K and Tf = 335 K shortly after the start of heating and at 
the end of heating, respectively, 
 

 Ts,i = 319 K  Ts,f = 359 K       < 
 
          Continued ….. 



PROBLEM 1.38 (Continued) 
 
(c) From Eq. (1.10), the heat rate in air is 
 

 ( ) ( )4 / 3 4 4q DL 0.70 T T T T1 s s surπ εσ = − + −∞  
 

 

Substituting the prescribed values of q1, D, L, T∞ = Tsur and ε, an iterative solution yields 
 

 Ts = 830 K          < 
 
COMMENTS:   In part (c) it is presumed that the heater can be operated at Ts = 830 K 

without experiencing burnout.  The much larger value of Ts for air is due to the smaller 

convection coefficient.  However, with qconv and qrad equal to 59 W and 441 W, respectively, 
a significant portion of the heat dissipation is effected by radiation. 
 



PROBLEM 1.39 
 
KNOWN:   Power consumption, diameter, and inlet and discharge temperatures of a hair 
dryer. 
 
FIND:   (a) Volumetric flow rate and discharge velocity of heated air, (b) Heat loss from case. 
 
SCHEMATIC:    
 

 
 
ASSUMPTIONS:  (1) Steady-state, (2) Constant air properties, (3) Negligible potential and 
kinetic energy changes of air flow, (4) Negligible work done by fan, (5) Negligible heat 
transfer from casing of dryer to ambient air (Part (a)), (6) Radiation exchange between a small 
surface and a large enclosure (Part (b)). 
 
ANALYSIS:   (a) For a control surface about the air flow passage through the dryer, 
conservation of energy for an open system reduces to 
 
 ( ) ( )m u pv m u pv q 0i o+ − + + =� �  
 
where u + pv = i and q = Pelec.  Hence, with ( ) ( )m i i mc T T ,i o p i o− = −� �  
 
 ( )mc T T Pp o i elec− =�  
 

 
( ) ( )
P 500 Welecm 0.0199 kg/s

c T Tp o i 1007 J/kg K 25 C
= = =

− ⋅
�

$
 

 

 
m 0.0199 kg/s 30.0181 m / s

31.10 kg/mρ
∀ = = =

�
�       < 

 

 
( )

34 4 0.0181 m / s
V 4.7 m/so 2 2Ac D 0.07 mπ π

∀ ∀ ×= = = =
� �

     < 

 
(b) Heat transfer from the casing is by convection and radiation, and from Eq. (1.10) 
 

 ( ) ( )4 4q hA T T A T Ts s s s surε σ= − + −∞  

          Continued ….. 



PROBLEM 1.39 (Continued) 
 

where ( ) 2A DL 0.07 m 0.15 m 0.033 m .s π π= = × =   Hence, 

 

( )( ) ( )2 2 2 8 2 4 4 4 4q 4W/m K 0.033 m 20 C 0.8 0.033 m 5.67 10  W/m K 313 293 K−= ⋅ + × × × ⋅ −$

 

 q 2.64 W 3.33 W 5.97 W= + =        < 
 
The heat loss is much less than the electrical power, and the assumption of negligible heat loss 
is justified. 
 
COMMENTS:   Although the mass flow rate is invariant, the volumetric flow rate increases 
as the air is heated in its passage through the dryer, causing a reduction in the density.  
However, for the prescribed temperature rise, the change in ρ, and hence the effect on ,∀�  is 
small. 
 



 
PROBLEM 1.40 

 
KNOWN:  Speed, width, thickness and initial and final temperatures of 304 stainless steel in an 
annealing process.  Dimensions of annealing oven and temperature, emissivity and convection 
coefficient of surfaces exposed to ambient air and large surroundings of equivalent temperatures.  
Thickness of pad on which oven rests and pad surface temperatures. 
 
FIND:   Oven operating power. 
 
SCHEMATIC:  

  
ASSUMPTIONS:  (1) steady-state, (2) Constant properties, (3) Negligible changes in kinetic and 
potential energy. 
 
PROPERTIES:  Table A.1, St.St.304 ( )( )i oT T T /2 775K= + = :  ρ = 7900 kg/m3, cp = 578 

J/kg⋅K; Table A.3, Concrete, T = 300 K:  kc  = 1.4 W/m⋅K. 
 
ANALYSIS:   The rate of energy addition to the oven must balance the rate of energy transfer to the 

steel sheet and the rate of heat loss from the oven.  With in outE E−� �  = 0, it follows that 

 
 ( )elec i oP m u u q 0+ − − =�  
 
where heat is transferred from the oven.  With ( )s s sm V W tρ=� , ( ) ( )i o p i ou u c T T− = − , and 

( ) ( ) ( )4 4
o o o o o o s s s surq 2H L 2H W W L h T T T Tε σ∞

 = + + × − + −  
 ( )( )c o o s b ck W L T T /t+ − , 

it follows that 

 ( ) ( ) ( )elec s s s p o i o o o o o oP V W t c T T 2H L 2H W W Lρ= − + + + ×  

           ( ) ( ) ( )( )4 4
s o s s sur c o o s b ch T T T T k W L T T /tε σ − + − + −  

 

 ( ) ( )3
elecP 7900kg/m 0.01m/s 2m 0.008m 578J/kg K 1250 300 K= × × ⋅ −  

  ( ) ( )22 2m 25m 2 2m 2.4m 2.4m 25m [10W/m K 350 300 K+ × × + × × + × ⋅ −  

( ) ( )( )8 2 4 4 4 40.8 5.67 10 W/m K 350 300 K ] 1.4W/m K 2.4m 25m 350 300 K/0.5m−+ × × ⋅ − + ⋅ × −  

 
Continued.…. 



 
PROBLEM 1.40 (Cont.) 

 

 ( )2 2
elecP 694,000W 169.6m 500 313 W/m 8400W= + + +  

 

  ( )694,000 84,800 53,100 8400 W 840kW= + + + =  < 

 
COMMENTS:   Of the total energy input, 83% is transferred to the steel while approximately 10%, 
6% and 1% are lost by convection, radiation and conduction from the oven.  The convection and 
radiation losses can both be reduced by adding insulation to the side and top surfaces, which would 
reduce the corresponding value of Ts. 



PROBLEM 1.41 
 
KNOWN:  Hot plate-type wafer thermal processing tool based upon heat transfer modes by 
conduction through gas within the gap and by radiation exchange across gap. 
 
FIND:   (a) Radiative and conduction heat fluxes across gap for specified hot plate and wafer 
temperatures and gap separation; initial time rate of change in wafer temperature for each mode, and 
(b) heat fluxes and initial temperature-time change for gap separations of 0.2, 0.5 and 1.0 mm for hot 
plate temperatures 300 < Th < 1300°C.  Comment on the relative importance of the modes and the 
influence of the gap distance.  Under what conditions could a wafer be heated to 900°C in less than 10 
seconds? 
 
SCHEMATIC: 
 

 
 
ASSUMPTIONS:  (1) Steady-state conditions for flux calculations, (2) Diameter of hot plate and 
wafer much larger than gap spacing, approximating plane, infinite planes, (3) One-dimensional 
conduction through gas, (4) Hot plate and wafer are blackbodies, (5) Negligible heat losses from wafer 
backside, and (6)  Wafer temperature is uniform at the onset of heating. 
 
PROPERTIES:  Wafer:  ρ = 2700 kg/m

3
,  c = 875 J/kg⋅K; Gas in gap: k = 0.0436 W/m⋅K. 

 
ANALYSIS:   (a) The radiative heat flux between the hot plate and wafer for Th = 600°C and Tw = 
20° C follows from the rate equation, 
 

( ) ( ) ( )( )4 44 4 8 2 4 4 2
rad h wq T T 5.67 10 W / m K 600 273 20 273 K 32.5kW / mσ −′′ = − × ⋅ + − + ==    < 

 
The conduction heat flux through the gas in the gap with L = 0.2 mm follows from Fourier’s law, 
 

 
( ) 2h w

cond
600 20 KT T

q k 0.0436 W / m K 126 kW / m
L 0.0002 m

−−′′ = = ⋅ =    < 

 
The initial time rate of change of the wafer can be determined from an energy balance on the wafer at 
the instant of time the heating process begins, 
 

 w
in out st st

i

dT
E E E E cd

dt
ρ  ′′ ′′ ′′ ′′− = =   

� � � �  

 
where outE 0′′ =�  and in rad condE q or q .′′ ′′ ′′=�   Substituting numerical values, find 
 

 
3 2

w rad
3

i,rad

dT q 32.5 10 W / m
17.6 K / s

dt cd 2700kg / m 875 J / kg K 0.00078 mρ
′′ × = = = × ⋅ ×

  < 

 

 w cond

i,cond

dT q
68.4 K / s

dt cdρ
′′ = =

       < 

          Continued ….. 



PROBLEM 1.41 (Cont.) 
 
(b) Using the foregoing equations, the heat fluxes and initial rate of temperature change for each mode 

can be calculated for selected gap separations L and range of hot plate temperatures Th with Tw = 
20°C. 
 
 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 

In the left-hand graph, the conduction heat flux increases linearly with Th and inversely with L as 

expected.  The radiative heat flux is independent of L and highly non-linear with Th, but does not 

approach that for the highest conduction heat rate until Th approaches 1200°C. 
 

The general trends for the initial temperature-time change, (dTw/dt)i, follow those for the heat fluxes.  
To reach 900°C in 10 s requires an average temperature-time change rate of 90 K/s.  Recognizing that 
(dTw/dt) will decrease with increasing Tw, this rate could be met only with a very high Th and the 
smallest L.  
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PROBLEM 1.42 
 
KNOWN:  Silicon wafer, radiantly heated by lamps, experiencing an annealing process with known 
backside temperature. 
 
FIND:   Whether temperature difference across the wafer thickness is less than 2°C in order to avoid 
damaging the wafer. 
 
SCHEMATIC: 
 

 
 
ASSUMPTIONS:  (1)  Steady-state conditions, (2) One-dimensional conduction in wafer, (3) 
Radiation exchange between upper surface of wafer and surroundings is between a small object and a 
large enclosure, and (4) Vacuum condition in chamber, no  convection.  
 
PROPERTIES:  Wafer: k = 30 W/m⋅K, 0.65.ε α= ="  
 
ANALYSIS:    Perform a surface energy balance on the upper surface of the wafer to determine 

w,uT .  The processes include the absorbed radiant flux from the lamps, radiation exchange with the 

chamber walls, and conduction through the wafer. 
 
 in outE E 0′′ ′′− =� �  
 
 s rad cdq q q 0α ′′ ′′ ′′− − ="  
 

 ( ) w,u w,4 4
s w,u sur

T T
q T T k 0

L
α εσ

−
′′ − − − ="

"  

 

 ( )( )45 2 8 2 4 4 4
w,u0.65 3.0 10 W / m 0.65 5.67 10 W / m K T 27 273 K−× × − × × ⋅ − +  

 
   ( )w,u30W / m K T 997 273 K / 0.00078 m 0 − ⋅ − + =   
 

 w,uT 1273K 1000 C= = °         < 
 
COMMENTS:   (1)  The temperature difference for this steady-state operating condition, 

w,u w,lT T ,−  is larger than 2°C.  Warping of the wafer and inducing slip planes in the crystal structure 

could occur.    
 
(2)  The radiation exchange rate equation requires that temperature must be expressed in kelvin units.  
Why is it permissible to use kelvin or Celsius temperature units in the conduction rate equation? 
 
(3)  Note how the surface energy balance, Eq. 1.12, is represented schematically.  It is essential to 
show the control surfaces, and then identify the rate processes associated with the surfaces.  Make 
sure the directions (in or out) of the process are consistent with the energy balance equation. 



PROBLEM 1.43 
 
KNOWN:  Silicon wafer positioned in furnace with top and bottom surfaces exposed to hot and cool 
zones, respectively.  
 
FIND:   (a) Initial rate of change of the wafer temperature corresponding to the wafer temperature 

w,iT 300 K,=  and (b)  Steady-state temperature reached if the wafer remains in this position.  How 

significant is convection for this situation?  Sketch how you’d expect the wafer temperature to vary as 
a function of vertical distance. 
 
SCHEMATIC: 
 

 
 
ASSUMPTIONS:  (1) Wafer temperature is uniform, (2) Transient conditions when wafer is initially 
positioned,  (3)  Hot and cool zones have uniform temperatures, (3) Radiation exchange is between 
small surface (wafer) and large enclosure (chamber, hot or cold zone), and (4) Negligible heat losses 
from wafer to mounting pin holder.  
 
ANALYSIS:   The energy balance on the wafer illustrated in the schematic above includes convection 
from the upper (u) and lower (l) surfaces with the ambient gas, radiation exchange with the hot- and 
cool-zone (chamber) surroundings, and the rate of energy storage term for the transient condition. 

 in out stE E E′′ ′′ ′′− =� � �  
 

 w
rad,h rad,c cv,u cv,l

d T
q q q q cd

dt
ρ′′ ′′ ′′ ′′+ − − =  

 

 ( ) ( ) ( ) ( )4 4 4 4 w
w sur,c w u w l wsur,h

d T
T T T T h T T h T T cd

dt
εσ εσ ρ∞ ∞− + − − − − − =  

 
(a) For the initial condition, the time rate of temperature change of the wafer is determined using the 
energy balance above with w w,iT T 300 K,= =  
 

( ) ( )8 2 4 4 4 8 2 4 4 4 440.65 5.67 10 W / m K 1500 300 K 0.65 5.67 10 W / m K 330 300 K− −× × ⋅ − + × × ⋅ −  

 

 ( ) ( )2 28W / m K 300 700 K 4 W / m K 300 700 K− ⋅ − − ⋅ − =  
 

  32700kg / m 875J / kg K× ⋅ ( )w i0.00078 m d T / dt×  
 

 ( )w id T / dt 104 K / s=         < 
 
(b) For the steady-state condition, the energy storage term is zero, and the energy balance can be 
solved for the steady-state wafer temperature, w w,ssT T .=  
 
          Continued ….. 



PROBLEM 1.43 (Cont.) 
 

( ) ( )4 4 4 4 4 4
w,ss w,ss0.65 1500 T K 0.65 330 T Kσ σ− + −  

 

 ( ) ( )2 2
w,ss w,ss8W / m K T 700 K 4 W / m K T 700 K 0− ⋅ − − ⋅ − =  

 w,ssT 1251 K=          < 

 
To determine the relative importance of the convection processes, re-solve the energy balance above 
ignoring those processes to find ( )w w,ssid T / dt 101 K / s and T 1262 K.= =   We conclude that the 

radiation exchange processes control the initial time rate of temperature change and the steady-state 
temperature. 
 
If the wafer were elevated above the present operating position, its temperature would increase, since 
the lower surface would begin to experience radiant exchange with progressively more of the hot zone 
chamber.  Conversely, by lowering the wafer, the upper surface would experience less radiant 
exchange with the hot zone chamber, and its temperature would decrease.  The temperature-distance 
trend might appear as shown in the sketch.    
 
 

 
 
 



PROBLEM 1.44

KNOWN:  Radial distribution of heat dissipation in a cylindrical container of radioactive
wastes.  Surface convection conditions.

FIND:  Total energy generation rate and surface temperature.

SCHEMATIC:

ASSUMPTIONS:  (1) Steady-state conditions, (2) Negligible temperature drop across thin
container wall.

ANALYSIS:  The rate of energy generation is

( )

( )
oE qdV=q 1- r/r 2 rLdr

E 2 Lq r / 2 r / 4

r 2
g o o0

2 2
g o o o

π

π

 =   
= −

∫ ∫� � �

� �

or per unit length,

�
�

.′ =E
q r

2g
o o

2π <

Performing an energy balance for a control surface about the container yields, at an instant,

� �′ − ′ =E Eg out 0

and substituting for the convection heat rate per unit length,

( )( )q r
h 2 r T T

2

2
o o

o s
π π= − ∞
�

T T
q r

4hs
o o= +∞
�

. <

COMMENTS:  The temperature within the radioactive wastes increases with decreasing r

from Ts at ro to a maximum value at the centerline.



PROBLEM 1.45 
 
KNOWN:  Rod of prescribed diameter experiencing electrical dissipation from passage of electrical 
current and convection under different air velocity conditions.  See Example 1.3. 
 
FIND:   Rod temperature as a function of the electrical current for 0 ≤ I ≤ 10 A with convection 

coefficients of 50, 100 and 250 W/m
2⋅K.  Will variations in the surface emissivity have a significant 

effect on the rod temperature? 
 
SCHEMATIC:    
 

  
ASSUMPTIONS:  (1) Steady-state conditions, (2) Uniform rod temperature, (3) Radiation exchange 
between the outer surface of the rod and the surroundings is between a small surface and large 
enclosure. 
 
ANALYSIS:  The energy balance on the rod for steady-state conditions has the form, 
 
 conv rad genq q E′ ′ ′+ = �  
 

 ( ) ( )4 4 2
sur eDh T T D T T I Rπ π εσ∞ ′− + − =  

 
Using this equation in the Workspace of IHT, the rod temperature is calculated and plotted as a 
function of current for selected convection coefficients. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
COMMENTS:   (1) For forced convection over the cylinder, the convection heat transfer coefficient is 
dependent upon air velocity approximately as h ~ V

0.6
.  Hence, to achieve a 5-fold change in the 

convection coefficient (from 50 to 250 W/m
2⋅K), the air velocity must be changed by a factor of 

nearly 15. 
 
          Continued ….. 
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PROBLEM 1.45 (Cont.) 
 
(2) For the condition of I = 4 A with h = 50 W/m

2⋅K with T = 63.5°C, the convection and radiation 
exchange rates per unit length are, respectively, cv radq 5.7 W / m and q 0.67 W / m.′ ′= =   We conclude 

that convection is the dominate heat transfer mode and that changes in surface emissivity could have 

only a minor effect.  Will this also be the case if h = 100 or 250 W/m
2⋅K? 

 
(3) What would happen to the rod temperature if there was a “loss of coolant” condition where the air 
flow would cease? 
 
(4) The Workspace for the IHT program to calculate the heat losses and perform the parametric 
analysis to generate the graph is shown below.  It is good practice to provide commentary with the 
code making your solution logic clear, and to summarize the results.  It is also good practice to show 
plots in customary units, that is, the units used to prescribe the problem.  As such the graph of the rod 
temperature is shown above with Celsius units, even though the calculations require temperatures in 
kelvins. 
 
 
 

// Energy balance; from Ex. 1.3, Comment 1  
-q'cv - q'rad + Edot'g = 0 
q'cv = pi*D*h*(T - Tinf) 
q'rad = pi*D*eps*sigma*(T^4 - Tsur^4) 
sigma = 5.67e-8 
 
// The generation term has the form 
Edot'g = I^2*R'e 
qdot = I^2*R'e / (pi*D^2/4) 
 
// Input parameters  
D = 0.001 
Tsur = 300 
T_C = T – 273  // Representing temperature in Celsius units using _C subscript 
eps = 0.8 
Tinf = 300 
h = 100 
//h = 50  // Values of coefficient for parameter study 
//h = 250 
I = 5.2   // For graph, sweep over range from 0 to 10 A 
//I = 4   // For evaluation of heat rates with h = 50 W/m^2.K 
R'e = 0.4 
 
/*  Base case results:  I = 5.2 A with h = 100 W/m^2.K, find T = 60 C (Comment 2 case). 
Edot'g  T T_C q'cv q'rad qdot  D I R'e 

 Tinf Tsur eps h sigma 
10.82  332.6 59.55 10.23 0.5886 1.377E7  0.001 5.2 0.4 
  300 300 0.8 100 5.67E-8    */ 
 
/* Results:  I = 4 A with h = 50 W/m^2.K, find q'cv =  5.7 W/m and q'rad = 0.67 W/m  
Edot'g  T T_C q'cv q'rad qdot D I R'e
 Tinf Tsur eps h sigma 
6.4  336.5 63.47 5.728 0.6721 8.149E6 0.001 4 0.4 
 300 300 0.8 50 5.67E-8      */ 
 



PROBLEM 1.46 
 
KNOWN:  Long bus bar of prescribed diameter and ambient air and surroundings temperatures.  
Relations for the electrical resistivity and free convection coefficient as a function of temperature.  
 
FIND:   (a) Current carrying capacity of the bus bar if its surface temperature is not to exceed 65°C; 
compare relative importance of convection and radiation exchange heat rates, and (b) Show 
graphically the operating temperature of the bus bar as a function of current for the range 100 ≤ I ≤ 
5000 A for bus-bar diameters of 10, 20 and 40 mm. Plot the ratio of the heat transfer by convection to 
the total heat transfer for these conditions. 
 
SCHEMATIC: 
 

  
ASSUMPTIONS:  (1) Steady-state conditions, (2) Bus bar and conduit are very long in direction 
normal to page, (3) Uniform bus-bar temperature, (4) Radiation exchange between the outer surface of 
the bus bar and the conduit is between a small surface and a large enclosure.  
 
PROPERTIES:  Bus-bar material, ( )[ ]e e,o o1 T T ,ρ ρ α= + −  e,o 0.0171 m,ρ µ= Ω ⋅  oT 25 C,= °  

10.00396 K .α −=  
 
ANALYSIS:  An energy balance on the bus-bar for a unit length as shown in the schematic above has 
the form 
 in out genE E E 0′ ′ ′− + =� � �  

 2
rad conv eq q I R 0′ ′ ′− − + =  

 ( ) ( )4 4 2
sur e cD T T h D T T I / A 0επ σ π ρ∞− − − − + =  

where 2
e e c cR / A and A D / 4.ρ π′ = =   Using the relations for ( )e Tρ  and ( )h T, D ,  and substituting 

numerical values with T = 65°C, find 

( ) [ ] [ ]( )4 48 2 4 4
radq 0.85 0.020m 5.67 10 W / m K 65 273 30 273 K 223W / mπ −′ = × × ⋅ + − + =  < 

 ( )( )2
convq 7.83W / m K 0.020m 65 30 K 17.2 W / mπ′ = ⋅ − =    < 

where ( ) ( )0.25 0.251.75 1.25 2h 1.21W m K 0.020m 65 30 7.83W / m K−− −= ⋅ ⋅ − = ⋅  

 ( ) ( )22 2 6 2 5 2
eI R I 198.2 10 m / 0.020 m / 4 6.31 10 I W / mπ− −′ = × Ω⋅ = ×  

where ( )6 1
e 0.0171 10 m 1 0.00396K 65 25 K 198.2 mρ µ− − = × Ω⋅ + − = Ω⋅  

 

The maximum allowable current capacity and the ratio of the convection to total heat transfer rate are 

 ( )cv cv rad cv totI 1950A q / q q q / q 0.072′ ′ ′ ′ ′= + = =    < 

For this operating condition, convection heat transfer is only 7.2% of the total heat transfer. 
 
(b) Using these equations in the Workspace of IHT, the bus-bar operating temperature is calculated 
and plotted as a function of the current for the range 100 ≤ I ≤ 5000 A for diameters of 10, 20 and 40 
mm.  Also shown below is the corresponding graph of the ratio (expressed in percentage units) of the 
heat transfer by convection to the total heat transfer, cv totq / q .′ ′  

          Continued ….. 



PROBLEM 1.46 (Cont.) 
 
 
 
 
 
 

 
 
 
 
 

 
 
 
 
 
 
 
COMMENTS:   (1) The trade-off between current-carrying capacity, operating temperature and bar 
diameter is shown in the first graph.   If the surface temperature is not to exceed 65°C, the maximum 
current capacities for the 10, 20 and 40-mm diameter bus bars are 960, 1950, and 4000 A, 
respectively. 
 
(2) From the second graph with cv totq / q′ ′  vs. T, note that the convection heat transfer rate is always a 

small fraction of the total heat transfer.  That is, radiation is the dominant mode of heat transfer.  Note 
also that the convection contribution increases with increasing diameter. 
 
(3) The Workspace for the IHT program to perform the parametric analysis and generate the graphs is 
shown below.  It is good practice to provide commentary with the code making your solution logic 
clear, and to summarize the results.  
 

/* Results : base-case conditions, Part (a) 
I  R'e cvovertot hbar q'cv q'rad rhoe D Tinf_C Ts_C 
  Tsur_C eps 
1950 6.309E-5 7.171 7.826 17.21 222.8 1.982E-8 0.02 30 65  
  30 0.85 */ 
 
// Energy balance , on a per unit length basis; steady-state conditions 
// Edot'in - Edot'out + Edot'gen = 0 
-q'cv - q'rad + Edot'gen = 0 
q'cv = hbar * P * (Ts - Tinf) 
P = pi * D 
q'rad = eps * sigma * (Ts^4 - Tsur^4) 
sigma = 5.67e-8 
Edot'gen = I^2 * R'e 
R'e = rhoe / Ac 
rhoe = rhoeo * (1 + alpha * (Ts - To) ) 
To = 25 + 273 
Ac = pi * D^2 / 4 
 
// Convection coefficient  
hbar = 1.21 * (D^-0.25) * (Ts - Tinf)^0.25  // Compact convection coeff. correlation 
// Convection vs. total heat rates 
cvovertot = q'cv / (q'cv + q'rad) * 100 
 
// Input parameters  
D = 0.020 
// D = 0.010  // Values of diameter for parameter study 
// D = 0.040 
// I = 1950  // Base case condition unknown 
rhoeo = 0.01711e-6 
alpha = 0.00396 
Tinf_C  = 30 
Tinf = Tinf_C + 273 
Ts_C = 65  // Base case condition to determine current 
Ts = Ts_C + 273 
Tsur_C = 30 
Tsur = Tsur_C + 273 
eps = 0.85 
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PROBLEM 1.47 
 
KNOWN:  Elapsed times corresponding to a temperature change from 15 to 14°C for a reference 
sphere and test sphere of unknown composition suddenly immersed in a stirred water-ice mixture.  
Mass and specific heat of reference sphere. 
 
FIND:   Specific heat of the test sphere of known mass. 
 
SCHEMATIC: 
 

 
 
ASSUMPTIONS:  (1) Spheres are of equal diameter, (2) Spheres experience temperature change 
from 15 to 14°C, (3) Spheres experience same convection heat transfer rate when the time rates of 
surface temperature are observed, (4) At any time, the temperatures of the spheres are uniform, 
(5) Negligible heat loss through the thermocouple wires.  
 
PROPERTIES:  Reference-grade sphere material: cr = 447 J/kg K. 
 
ANALYSIS:   Apply the conservation of energy requirement at an instant of time, Eq. 1.11a, after 

a sphere has been immersed in the ice-water mixture at T∞. 
 
 in out stE E E− =� � �  
 

 conv
dT

q Mc
dt

− =  

 
where ( )conv sq h A T T .∞= −   Since the temperatures of the spheres are uniform, the change in 

energy storage term can be represented with the time rate of temperature change, dT/dt.  The 
convection heat rates are equal at this instant of time, and hence the change in energy storage 
terms for the reference (r) and test (t) spheres must be equal. 
 

 r r t t
r t

dT dT
M c M c

dt dt
 =  

 

 
Approximating the instantaneous differential change, dT/dt, by the difference change over a short 
period of time, ∆T/∆t, the specific heat of the test sphere can be calculated. 
 

 
( ) ( )

t
15 14 K 15 14 K

0.515 kg 447 J / kg K 1.263kg c
6.35s 4.59s

− −
× ⋅ = × ×  

 

 tc 132 J / kg K= ⋅         < 
 
COMMENTS:   Why was it important to perform the experiments with the reference and test 
spheres over the same temperature range (from 15 to 14°C)?  Why does the analysis require that 
the spheres have uniform temperatures at all times?   
 



 

PROBLEM 1.48 
 
KNOWN:   Inner surface heating and new environmental conditions associated with a spherical shell of 
prescribed dimensions and material. 
 
FIND:   (a) Governing equation for variation of wall temperature with time.  Initial rate of temperature 
change, (b) Steady-state wall temperature, (c) Effect of convection coefficient on canister temperature. 
 
SCHEMATIC:  

  
ASSUMPTIONS:  (1) Negligible temperature gradients in wall, (2) Constant properties, (3) Uniform, 
time-independent heat flux at inner surface. 
 
PROPERTIES:  Table A.1, Stainless Steel, AISI 302:  ρ = 8055 kg/m3, cp = 510 J/kg⋅K. 
 
ANALYSIS:   (a) Performing an energy balance on the shell at an instant of time, in out stE E E− =� � � .  

Identifying relevant processes and solving for dT/dt, 

 ( ) ( )( ) ( )2 2 3 3
i o o pi i

4 dT
q 4 r h 4 r T T r r c

3 dt
π π ρ π∞′′ − − = −  

 ( ) ( )2 2
i oi3 3

p o i

dT 3
q r hr T T

dt c r rρ
∞ ′′= − −  −

. 

Substituting numerical values for the initial condition, find 

 

( ) ( ) ( )

( ) ( )

2 25
2 2

3 3 3i
3

W W
3 10 0.5m 500 0.6m 500 300 K

dT m m K
kg Jdt 8055 510 0.6 0.5 m

kg Km

 
− −  ⋅ =   −  ⋅

 

 
i

dT
0.089K/s

dt
 = −

. < 

(b)  Under steady-state conditions with stE�  = 0, it follows that 

 ( ) ( )( )2 2
i oiq 4 r h 4 r T Tπ π ∞′′ = −  

 
          Continued ….. 
 



 

PROBLEM 1.48 (Cont.) 
 

 

2 25 2
i i

2o

q r 10 W/m 0.5m
T T 300K 439K

h r 0.6m500W/m K
∞

 ′′  = + = + =    ⋅ 
 < 

 
(c)  Parametric calculations were performed using the IHT First Law Model for an Isothermal Hollow 
Sphere.  As shown below, there is a sharp increase in temperature with decreasing values of h < 1000 
W/m2⋅K.  For T > 380 K, boiling will occur at the canister surface, and for T > 410 K a condition known 
as film boiling (Chapter 10) will occur.  The condition corresponds to a precipitous reduction in h and 
increase in T. 
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Although the canister remains well below the melting point of stainless steel for h = 100 W/m2⋅K, boiling 
should be avoided, in which case the convection coefficient should be maintained at h > 1000 W/m2⋅K. 
 
COMMENTS:   The governing equation of part (a) is a first order, nonhomogenous differential equation 

with constant coefficients.  Its solution is ( )( )Rt Rt
iS/R 1 e eθ θ− −= − + , where T Tθ ∞≡ − , 

( )2 3 3
i p oi iS 3q r / c r rρ′′≡ − , ( )2 3 3

o p o iR 3hr / c r rρ= − .  Note results for t → ∞ and for S = 0. 



PROBLEM 1.49 
 
KNOWN:   Boiling point and latent heat of liquid oxygen.  Diameter and emissivity of container.  
Free convection coefficient and temperature of surrounding air and walls. 
 
FIND:   Mass evaporation rate. 
 
SCHEMATIC:  

 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Temperature of container outer surface equals 
boiling point of oxygen. 
 
ANALYSIS:   (a) Applying an energy balance to a control surface about the container, it follows that, 
at any instant, 

 in out conv rad evapE E 0 or q q q 0− = + − =� � . 

The evaporative heat loss is equal to the product of the mass rate of vapor production and the heat of 
vaporization.  Hence, 

 ( ) ( )4 4
s sur s s evap fgh T T T T A m h 0εσ∞

 − + − − =  
�  (1) 

 
( ) ( )4 4 2

s sur s
evap

fg

h T T T T D
m

h

εσ π∞
 − + −  =�  

( ) ( ) ( )22 8 2 4 4 4 4

evap

10 W m K 298 263 K 0.2 5.67 10 W m K 298 263 K 0.5m
m

214 kJ kg

π−⋅ − + × × ⋅ −
=

 
  

�  

 
( ) ( )2 2

3
evap

350 35.2 W / m 0.785 m
m 1.41 10 kg s

214kJ kg
−

+
= = ×� . < 

(b) Using the energy balance, Eq. (1), the mass rate of vapor production can be determined for the 
range of emissivity 0.2 to 0.94.  The effect of increasing emissivity is to increase the heat rate into the 
container and, hence, increase the vapor production rate. 
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COMMENTS:   To reduce the loss of oxygen due to vapor production, insulation should be applied 
to the outer surface of the container, in order to reduce qconv and qrad.  Note from the calculations in 
part (a), that heat transfer by convection is greater than by radiation exchange. 



PROBLEM 1.50 
 
KNOWN:  Frost formation of 2-mm thickness on a freezer compartment.  Surface exposed to 
convection process with ambient air.  
 
FIND:   Time required for the frost to melt, tm. 
 
SCHEMATIC: 
 

 
 

ASSUMPTIONS:  (1) Frost is isothermal at the fusion temperature, Tf, (2) The water melt falls away 
from the exposed surface, (3) Negligible radiation exchange at the exposed surface, and (4) Backside 
surface of frost formation is adiabatic. 
 

PROPERTIES:  Frost, 3
f sf770 kg / m , h 334 kJ / kg.ρ = =  

 
ANALYSIS:   The time tm required to melt a 2-mm thick frost layer may be determined by applying 
an energy balance, Eq 1.11b, over the differential time interval dt and to a differential control volume 
extending inward from the surface of the layer dx.  From the schematic above, the energy in is the 
convection heat flux over the time period dt and the change in energy storage is the latent energy 
change within the control volume, As⋅dx. 
 in out stE E E− =  

 conv s atq A dt dU′′ = "  

 ( )s f f s sfh A T T dt A h dxρ∞ − = −  

Integrating both sides of the equation and defining appropriate limits, find 

 ( ) m

o

t 0
f f sf0 x

h T T dt h dxρ∞ − = −∫ ∫  

 ( )
f sf o

m
f

h x
t

h T T

ρ

∞
=

−
 

 
( )

3 3

m 2
700kg / m 334 10 J / kg 0.002m

t 11,690 s 3.2 hour
2 W / m K 20 0 K

× × ×= = =
⋅ −

   < 

 
COMMENTS:   (1) The energy balance could be formulated intuitively by recognizing that the total 
heat in by convection during the time interval ( )m cv mt q t′′ ⋅  must be equal to the total latent energy for 

melting the frost layer ( )o sfx h .ρ   This equality is directly comparable to the derived expression 

above for tm. 
 
(2) Explain why the energy storage term in the analysis has a negative sign, and the limits of 
integration are as shown.  Hint:  Recall from the formulation of Eq. 1.11b, that the storage term 
represents the change between the final and initial states. 



PROBLEM 1.51 
 
KNOWN:  Vertical slab of Woods metal initially at its fusion temperature, Tf, joined to a substrate.  

Exposed surface is irradiated with laser source, ( )2G W / m ."  
 
FIND:   Instantaneous rate of melting per unit area, mm′′

�  (kg/s⋅m2
), and the material removed in a 

period of 2 s, (a) Neglecting heat transfer from the irradiated surface by convection and radiation 
exchange, and (b) Allowing for convection and radiation  exchange. 
 
SCHEMATIC: 
 

 
 
ASSUMPTIONS:  (1) Woods metal slab is isothermal at the fusion temperature, Tf, and (2) The melt 
runs off  the irradiated surface. 
 
ANALYSIS:  (a) The instantaneous rate of melting per unit area may be determined by applying an 
energy balance, Eq 1.11a, on the metal slab at an instant of time neglecting convection and radiation 
exchange from the irradiated surface. 

 in out stE E E′′ ′′ ′′− =� � �   ( )sf sf
d dM

G M h h
dt dt

α
′′′′= − = −" "  

where mdM / dt m′′ ′′= �  is the time rate of change of mass in the control volume.  Substituting values, 

 2 3 2
m m0.4 5000 W / m 33,000J / kg m m 60.6 10 kg / s m−′′ ′′× = − × = − × ⋅� �   < 

The material removed in a 2s period per unit area is 

 2
2s mM m t 121 g / m′′ ′′= ⋅ ∆ =�         < 

(b) The energy balance considering convection and radiation exchange with the surroundings yields 
 cv rad sf mG q q h mα ′′ ′′ ′′− − = −" " �  

 ( ) ( )2 2
cv fq h T T 15W / m K 72 20 K 780 W / m∞′′ = − = ⋅ − =  

( ) [ ] [ ]( )4 44 4 8 2 4 2
rad fq T T 0.4 5.67 10 W / m K 72 273 20 273 K 154 W / mεσ −

∞′′ = − = × × ⋅ + − + =  

 3 2 2
m 2sm 32.3 10 kg / s m M 64g / m−′′ = − × ⋅ =�     < 

 
COMMENTS:   (1)  The effects of heat transfer by convection and radiation reduce the estimate for 
the material removal rate by a factor of two.  The heat transfer by convection is nearly 5 times larger 
than by radiation exchange. 
 
(2) Suppose the work piece were horizontal, rather than vertical, and the melt puddled on the surface 
rather than ran off.  How would this affect the analysis? 
 
(3) Lasers are common heating sources for metals processing, including the present application of 
melting (heat transfer with phase change),  as well as for heating work pieces during milling and 
turning (laser-assisted machining). 



PROBLEM 1.52
KNOWN:  Hot formed paper egg carton of prescribed mass, surface area and water content
exposed to infrared heater providing known radiant flux.
FIND:  Whether water content can be reduced from 75% to 65% by weight during the 18s
period carton is on conveyor.

SCHEMATIC:

ASSUMPTIONS:  (1) All the radiant flux from the heater bank is absorbed by the carton, (2)
Negligible heat loss from carton by convection and radiation, (3) Negligible mass loss occurs
from bottom side.

PROPERTIES:  Water (given):  hfg = 2400 kJ/kg.

ANALYSIS:  Define a control surface about the carton, and write the conservation of energy
requirement for an interval of time, ∆t,

E E Ein out st− = =∆ 0

where Ein is due to the absorbed radiant flux, ′′qh , from the

heater and Eout is the energy leaving due to evaporation of
water from the carton.  Hence.

′′ ⋅ ⋅ ⋅q A t = M hh s fg∆ ∆ .

For the prescribed radiant flux ′′qh ,

∆
∆

M =
q A t

h

 W / m  m s

2400 kJ / kg
 kg.h s

fg

2 2′′
= × × =5000 0 0625 18

0 00234
.

.

The chief engineer’s requirement was to remove 10% of the water content, or

∆M M 0.10 = 0.220 kg 0.10 = 0.022 kgreq = × ×

which is nearly an order of magnitude larger than the evaporative loss.  Considering heat
losses by convection and radiation, the actual water removal from the carton will be less than
∆M.  Hence, the purchase should not be recommended, since the desired water removal

cannot be achieved. <



PROBLEM 1.53

KNOWN:  Average heat sink temperature when total dissipation is 20 W with prescribed air and
surroundings temperature, sink surface area and emissivity.

FIND:  Sink temperature when dissipation is 30 W.

SCHEMATIC:

ASSUMPTIONS:  (1) Steady-state conditions, (2) All dissipated power in devices is transferred
to the sink, (3) Sink is isothermal, (4) Surroundings and air temperature remain the same for both
power levels, (5) Convection coefficient is the same for both power levels, (6) Heat sink is a small
surface within a large enclosure, the surroundings.

ANALYSIS:  Define a control volume around the heat sink.  Power dissipated within the devices
is transferred into the sink, while the sink loses heat to the ambient air and surroundings by
convection and radiation exchange, respectively.

( ) ( )
E E 0

P hA T T A T T 0.
outin

4 4
e s s s s surεσ

− =
− − − − =∞

� �

(1)

Consider the situation when Pe = 20 W for which Ts = 42°C; find the value of h.

( ) ( )h= P / A T T / T T4 4
e s s sur sεσ − − −   ∞

( ) ( )2h= 20 W/0.045 m 0.8 5.67 10  W/m K 315 300 K / 315 300 K8 2 4 4 4 4 − × × ⋅ − −  
−

h = 24.4 W / m K.2 ⋅

For the situation when Pe = 30 W, using this value for h with Eq. (1), obtain

( )30 W - 24.4 W/m K 0.045 m T 300 K2 2
s⋅ × −

( )0.045 m 0.8 5.67 10  W/m K T 300 K 02 8 2 4 4 4 4
s− × × × ⋅ − =−

( ) ( )30 1.098 T 300 2.041 10 T 300 .9 4 4
s s= − + × −−

By trial-and-error, find

T  K = 49 C.s ≈ 322 $ <
COMMENTS:  (1) It is good practice to express all temperatures in kelvin units when using energy
balances involving radiation exchange.

(2) Note that we have assumed As is the same for the convection and radiation processes.  Since not all

portions of the fins are completely exposed to the surroundings, As,rad is less than As,conv = As.

(3) Is the assumption that the heat sink is isothermal reasonable?



PROBLEM 1.54 
 
KNOWN:   Number and power dissipation of PCBs in a computer console.  Convection coefficient 
associated with heat transfer from individual components in a board.  Inlet temperature of cooling air 
and fan power requirement.  Maximum allowable temperature rise of air.  Heat flux from component 
most susceptible to thermal failure. 
 
FIND:   (a) Minimum allowable volumetric flow rate of air, (b) Preferred location and corresponding 
surface temperature of most thermally sensitive component. 
 
SCHEMATIC:    

  
ASSUMPTIONS:  (1) Steady-state, (2) Constant air properties, (3) Negligible potential and kinetic 
energy changes of air flow, (4) Negligible heat transfer from console to ambient air, (5) Uniform 
convection coefficient for all components. 
 
ANALYSIS:   (a) For a control surface about the air space in the console, conservation of energy for 
an open system, Eq. (1.11e), reduces to 

 ( ) ( )m u pv m u pv q W 0i o+ − + + − =�� �  

where u pv i, q 5P ,  and W P .b f+ = = = −�   Hence, with ( ) ( )m i i mc T T ,i o p i o− = −� �  
 
 ( )mc T T 5 P Pp o i b f− = +�  
 
For a maximum allowable temperature rise of 15°C, the required mass flow rate is 

 
( ) ( )

5 P P 5 20 W 25 W 3b fm 8.28 10 kg/s
c T Tp o i 1007 J/kg K 15 C

+ × + −= = = ×
− ⋅

�
$

 

The corresponding volumetric flow rate is 

 
3m 8.28 10 kg/s 3 37.13 10 m / s

31.161 kg/mρ

−× −∀ = = = ×
�

    < 

(b) The component which is most susceptible to thermal failure should be mounted at the bottom of 
one of the PCBs, where the air is coolest.  From the corresponding form of Newton’s law of cooling, 

( )q h T T ,s i′′ = −  the surface temperature is 

 
4 2q 1 10  W/m

T T 20 C 70 Cs i 2h 200 W/m K

′′ ×= + = + =
⋅

$ $     < 

COMMENTS:   (1) Although the mass flow rate is invariant, the volumetric flow rate increases as the 
air is heated in its passage through the console, causing a reduction in the density.  However, for the 

prescribed temperature rise, the change in ρ, and hence the effect on ,∀�  is small.  (2) If the thermally 

sensitive component were located at the top of a PCB, it would be exposed to warmer air (To = 35°C) 

and the surface temperature would be Ts = 85°C. 



PROBLEM 1.55 
 
KNOWN:   Top surface of car roof absorbs solar flux, S,absq′′ , and experiences for case (a):  convection 

with air at T∞  and for case (b):  the same convection process and radiation emission from the roof. 
 
FIND:   Temperature of the plate, Ts, for the two cases.  Effect of airflow on roof temperature. 
 
SCHEMATIC:  

  
ASSUMPTIONS:  (1) Steady-state conditions, (2) Negligible heat transfer to auto interior, (3) 
Negligible radiation from atmosphere. 
 
ANALYSIS:  (a) Apply an energy balance to the control surfaces shown on the schematic.  For an 

instant of time, in outE E−� �  = 0.  Neglecting radiation emission, the relevant processes are convection 

between the plate and the air, convq′′ , and the absorbed solar flux, S,absq′′ .  Considering the roof to have 

an area sA , 
 
 ( )S,abs s s sq A hA T T 0∞′′ ⋅ − − =  
 
 s S,absT T q /h∞ ′′= +  
 

 
2

s 2
800W/m

T 20 C 20 C 66.7 C 86.7 C
12W/m K

= + = + =
⋅

$ $ $ $  < 

 
(b)  With radiation emission from the surface, the energy balance has the form 
 
 S,abs s conv sq A q E A 0′′ ⋅ − − ⋅ =  
 

 ( ) 4
S,abs s s s s sq A hA T T A T 0ε σ∞′′ − − − = . 

 
Substituting numerical values, with temperature in absolute units (K), 
 

 ( ) 8 4
s s2 2 2 4

W W W
800 12 T 293K 0.8 5.67 10 T 0

m m K m K

−− − − × × =
⋅ ⋅

 

 

 8 4
s s12T 4.536 10 T 4316−+ × =  

 

It follows that Ts = 320 K = 47°C. < 
 
  Continued.…. 
 



 

PROBLEM 1.55 (Cont.) 
 
(c) Parametric calculations were performed using the IHT First Law Model for an Isothermal Plane Wall.   
As shown below, the roof temperature depends strongly on the velocity of the auto relative to the ambient 
air.  For a convection coefficient of h = 40 W/m2⋅K, which would be typical for a velocity of 55 mph, the 
roof temperature would exceed the ambient temperature by less than 10°C. 
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COMMENTS:   By considering radiation emission, Ts decreases, as expected.  Note the manner in which 

′′qconv is formulated using Newton’s law of cooling; since ′′qconv is shown leaving the control surface, the 

rate equation must be ( )sh T T∞−  and not ( )sh T T∞ − . 



PROBLEM 1.56 
 
KNOWN:   Detector and heater attached to cold finger immersed in liquid nitrogen.  Detector surface of 
ε = 0.9 is exposed to large vacuum enclosure maintained at 300 K. 
 
FIND:   (a) Temperature of detector when no power is supplied to heater, (b) Heater power (W) required 
to maintain detector at 195 K, (c) Effect of finger thermal conductivity on heater power. 
 
SCHEMATIC:  

  
ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional conduction through cold finger, (3) 
Detector and heater are very thin and isothermal at Ts, (4) Detector surface is small compared to 
enclosure surface. 
 
PROPERTIES:  Cold finger (given):  k = 10 W/m⋅K. 
 
ANALYSIS:  Define a control volume about detector and heater and apply conservation of energy 
requirement on a rate basis, Eq. 1.11a, 
 
 in outE E 0− =� �  (1) 

where 

 in rad elec out condE q q ; E q= + =� �  (2,3) 
 
Combining Eqs. (2,3) with (1), and using the appropriate rate equations, 
 

 ( ) ( )4 4
s sur s elec s s LA T T q kA T T /Lε σ − + = − . (4) 

 
(a) Where elecq  = 0, substituting numerical values 
 

 ( ) ( )8 2 4 4 4 4
s s0.9 5.67 10 W/m K 300 T K 10W/m K T 77 K/0.050m−× × ⋅ − = ⋅ −  

 

 ( ) ( )8 4 4
s s5.103 10 300 T 200 T 77−× − = −  

 

 sT 79.1K=  < 
 

Continued.…. 
 



 

PROBLEM 1.56 (Cont.) 
 
(b) When sT  = 195 K, Eq. (4) yields 
 

 ( ) ( )2 8 2 4 4 4 4
elec0.9 [ 0.005m / 4] 5.67 10 W/m K 300 195 K qπ −× × × ⋅ − +  

 

  ( ) ( )210W/m K [ 0.005m /4] 195 77 K / 0.050mπ= ⋅ × × −  
 

 elecq 0.457 W 457 mW= =  < 

 
(c) Calculations were performed using the First Law Model for a Nonisothermal Plane Wall.  With net 
radiative transfer to the detector fixed by the prescribed values of sT  and surT , Eq. (4) indicates that 

qelec increases linearly with increasing k. 
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Heat transfer by conduction through the finger material increases with its thermal conductivity.  Note 
that, for k = 0.1 W/m⋅K, elecq  = -2 mW, where the minus sign implies the need for a heat sink, rather 

than a heat source, to maintain the detector at 195 K.  In this case radq  exceeds condq , and a heat sink 

would be needed to dispose of the difference.  A conductivity of k = 0.114 W/m⋅K yields a precise 
balance between radq  and condq .  Hence to circumvent heaving to use a heat sink, while minimizing 

the heater power requirement, k should exceed, but remain as close as possible to the value of 0.114 
W/m⋅K.  Using a graphite fiber composite, with the fibers oriented normal to the direction of conduction, 

Table A.2 indicates a value of k ≈ 0.54 W/m⋅K at an average finger temperature of T  = 136 K.  For this 
value, elecq  = 18 mW 
 
COMMENTS:   The heater power requirement could be further reduced by decreasing ε. 



 
PROBLEM 1.57 

 
KNOWN:   Conditions at opposite sides of a furnace wall of prescribed thickness, thermal 
conductivity and surface emissivity. 
 
FIND:   Effect of wall thickness and outer convection coefficient on surface temperatures.  
Recommended values of L and 2h . 
 
SCHEMATIC:  

  
ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional conduction, (3) Negligible 
radiation exchange at surface 1, (4) Surface 2 is exposed to large surroundings. 
 
ANALYSIS:   The unknown temperatures may be obtained by simultaneously solving energy balance 
equations for the two surface.  At surface 1, 
 conv,1 condq q′′ ′′=  

 ( ) ( )1 ,1 1 1 2h T T k T T /L∞ − = −  (1) 

At surface 2, 
 cond conv radq q q′′ ′′ ′′= +  

 ( ) ( ) ( )4 4
1 2 2 2 ,2 sur2k T T /L h T T T Tεσ∞− = − + −  (2) 

Using the IHT First Law Model for a Nonisothermal Plane Wall, we obtain 
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Continued ….. 



 
PROBLEM 1.57 (Cont.) 

 
Both condq′′  and 2T  decrease with increasing wall thickness, and for the prescribed value of 2h  = 10 

W/m2⋅K, a value of L ≥ 0.275 m is needed to maintain 2T  ≤ 373 K = 100 °C.  Note that inner surface 

temperature 1T , and hence the temperature difference, 1 2T T− , increases with increasing L. 
 
Performing the calculations for the prescribed range of 2h , we obtain 
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For the prescribed value of L = 0.15 m, a value of 2h  ≥ 24 W/m2⋅K is needed to maintain 2T  ≤ 373 

K.  The variation has a negligible effect on 1T , causing it to decrease slightly with increasing 2h , but 

does have a strong influence on 2T . 
 
COMMENTS:   If one wishes to avoid use of active (forced convection) cooling on side 2, reliance 
will have to be placed on free convection, for which 2h  ≈ 5 W/m2⋅K.  The minimum wall thickness 
would then be L = 0.40 m. 



PROBLEM 1.58 
 
KNOWN:  Furnace wall with inner surface temperature T1 = 352°C and prescribed thermal 
conductivity experiencing convection and radiation exchange on outer surface.  See Example 1.5. 
 

FIND:   (a) Outer surface temperature T2 resulting from decreasing the wall thermal conductivity k or 
increasing the convection coefficient h by a factor of two;  benefit of applying a low emissivity 
coating (ε < 0.8); comment on the effectiveness of these strategies to reduce risk of burn injury when 
T2 ≤ 65°C; and (b) Calculate and plot T2 as a function of h for the range 20 ≤ h ≤ 100 W/m

2⋅K for 
three materials with k = 0.3, 0.6, and 1.2 W/m⋅K; what conditions will provide for safe outer surface 
temperatures. 
 
SCHEMATIC: 
 

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional conduction in wall, (3) Radiation 
exchange is between small surface and large enclosure, (4) Inner surface temperature remains constant 
for all conditions. 
 
ANALYSIS:   (a) The surface (x = L) energy balance is 
 

 ( ) ( )4 41 2
2 sur2

T T
k h T T T T

L
εσ∞

− = − + −  

 

With T1 = 352°C,  the effects of parameters h, k and ε on the outer surface temperature are calculated 
and tabulated below. 
 

Conditions  ( )k W / m K⋅   ( )2h W / m K⋅   ε  ( )2T C°  

 
 Example 1.5      1.2    20  0.8 100 
 Decrease k by ½     0.6    20  0.8   69 
 Increase h by 2      1.2    40  0.8   73 
 Change k and h      0.6    40  0.8   51 
 Decrease ε      1.2    20  0.1 115 
 
(b) Using the energy balance relation in the Workspace of IHT, the outer surface temperature can be 
calculated and plotted as a function of the convection coefficient for selected values of the wall 
thermal conductivity. 
 
          Continued ….. 



PROBLEM 1.58 (Cont.) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
COMMENTS:   (1) From the parameter study of part (a), note that decreasing the thermal 

conductivity is more effective in reducing T2 than is increasing the convection coefficient.  Only if 

both changes are made will T2 be in the safe range. 
 
(2) From part (a), note that applying a low emissivity coating is not beneficial.  Did you suspect that 
before you did the analysis?  Give a physical explanation for this result. 
 
(3) From the parameter study graph we conclude that safe wall conditions (T2 ≤ 65°C) can be 

maintained for these conditions:  with k = 1.2 W/m⋅K when h > 55 W/m
2⋅K; with k = 0.6 W/m⋅K 

when h > 25 W/m
2⋅K; and with k = 0.3 W/m⋅K when h > 20 W/m⋅K. 
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PROBLEM 1.59

KNOWN:  Inner surface temperature, thickness and thermal conductivity of insulation
exposed at its outer surface to air of prescribed temperature and convection coefficient.

FIND:  Outer surface temperature.

SCHEMATIC:

ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional conduction in the
insulation, (3) Negligible radiation exchange between outer surface and surroundings.

ANALYSIS:  From an energy balance at the outer surface at an instant of time,

′′ = ′′q qcond conv.

Using the appropriate rate equations,

( ) ( )1 2
2

T T
k h T T .

L ∞
−

= −

Solving for T2, find

( ) ( )1 2
2

2

0.1 W/m K Wk 400 C 500 35 CT h T 0.025mL m KT
k W 0.1 W/m K

h+ 500
L 0.025mm K

∞
⋅ ++

⋅= = ⋅+
⋅

$ $

T C.2 = 37 9. $ <

COMMENTS:  If the temperature of the surroundings is approximately that of the air,

radiation exchange between the outer surface and the surroundings will be negligible, since T2
is small.  In this case convection makes the dominant contribution to heat transfer from the
outer surface, and assumption (3) is excellent.



PROBLEM 1.60 
 
KNOWN:   Thickness and thermal conductivity, k, of an oven wall.  Temperature and emissivity, ε, of 
front surface.  Temperature and convection coefficient, h, of air.  Temperature of large surroundings. 
 
FIND:   (a) Temperature of back surface, (b) Effect of variations in k, h and ε. 
 
SCHEMATIC:  

  
ASSUMPTIONS:  (1) Steady-state, (2) One-dimensional conduction, (3) Radiation exchange with large 
surroundings. 
 
ANALYSIS:  (a) Applying an energy balance, Eq. 1.13, at an instant of time to the front surface and 
substituting the appropriate rate equations, Eqs. 1.2, 1.3a and 1.7, find 
 

 ( ) ( )4 41 2
2 sur2

T T
k h T T T T

L
εσ∞

− = − + − . 

 
Substituting numerical values, find 
 

( ) ( )1 2 2

0.05 m W 4 48T T 20 100 K
2 40.7 W/m K m K

W
0.8 5.67 10 400 K 300 K 200 K

m K

−− =
⋅ ⋅

+ × × − =
⋅

      
. 

 

Since 2T  = 400 K, it follows that 1T  = 600 K. < 
 
(b) Parametric effects may be evaluated by using the IHT First Law Model for a Nonisothermal Plane 
Wall.  Changes in k strongly influence conditions for k < 20 W/m⋅K, but have a negligible effect for 
larger values, as 2T  approaches 1T  and the heat fluxes approach the corresponding limiting values 
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PROBLEM 1.60 (Cont.) 
 
The implication is that, for k > 20 W/m⋅K, heat transfer by conduction in the wall is extremely efficient 
relative to heat transfer by convection and radiation, which become the limiting heat transfer processes.  
Larger fluxes could be obtained by increasing ε and h and/or by decreasing T∞  and surT . 
 
With increasing h, the front surface is cooled more effectively (2T  decreases), and although radq′′  

decreases, the reduction is exceeded by the increase in convq′′ .  With a reduction in 2T  and fixed values 

of k and L, condq′′  must also increase. 
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The surface temperature also decreases with increasing ε, and the increase in radq′′  exceeds the reduction 

in convq′′ , allowing condq′′  to increase with ε. 
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COMMENTS:   Conservation of energy, of course, dictates that, irrespective of the prescribed 
conditions, cond conv radq q q′′ ′′ ′′= + . 



PROBLEM 1.61

KNOWN:  Temperatures at 10 mm and 20 mm from the surface and in the adjoining airflow for a
thick steel casting.

FIND:  Surface convection coefficient, h.

SCHEMATIC:

ASSUMPTIONS:  (1) Steady-state, (2) One-dimensional conduction in the x-direction, (3) Constant
properties, (4) Negligible generation.

ANALYSIS:  From a surface energy balance, it follows that

′′ = ′′q qcond conv

where the convection rate equation has the form

( )conv 0q h T T ,∞′′ = −

and ′′qcond  can be evaluated from the temperatures prescribed at surfaces 1 and 2.  That is, from
Fourier’s law,

( )
( )

1 2
cond

2 1

2
cond 3

T T
q k

x x

50 40 CW
q 15 15,000 W/m .

m K 20-10 10 m−

−′′ =
−

−
′′ = =

⋅ ×

$

Since the temperature gradient in the solid must be linear for the prescribed conditions, it follows that

T0 = 60°C.

Hence, the convection coefficient is

h =
q

T T
cond

0

′′
−∞

h =
15,000 W / m

40 C
 W / m K.

2
2

$

= ⋅375 <
COMMENTS:  The accuracy of this procedure for measuring h depends strongly on the validity of
the assumed conditions.



PROBLEM 1.62 
 
KNOWN:   Duct wall of prescribed thickness and thermal conductivity experiences prescribed heat flux 

oq′′  at outer surface and convection at inner surface with known heat transfer coefficient. 
 
FIND:   (a) Heat flux at outer surface required to maintain inner surface of duct at iT  = 85°C, (b) 

Temperature of outer surface, oT , (c) Effect of h on oT  and oq′′ . 
 
SCHEMATIC:  

  
ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional conduction in wall, (3) Constant 
properties, (4) Backside of heater perfectly insulated, (5) Negligible radiation. 
 
ANALYSIS:   (a) By performing an energy balance on the wall, recognize that o condq q′′ ′′= .  From an energy 

balance on the top surface, it follows that cond conv oq q q′′ ′′ ′′= = .  Hence, using the convection rate equation, 

 ( ) ( )2 2
o conv iq q h T T 100 W / m K 85 30 C 5500W /m∞′′ ′′= = − = ⋅ − =$ . < 

(b) Considering the duct wall and applying Fourier’s Law, 

 o i
o

T TT
q k k

X L

−∆′′ = =
∆

 

 
2

o
o i

q L 5500 W/m 0.010 m
T T 85 C

k 20 W/m K

′′ ×
= + = +

⋅
$  ( )85 2.8 C 87.8 C= + =$ $ . < 

(c) For iT  = 85°C, the desired results may be obtained by simultaneously solving the energy balance equations 

 o i
o

T T
q k

L

−′′ =  and ( )o i
i

T T
k h T T

L
∞

−
= −  

Using the IHT First Law Model for a Nonisothermal Plane Wall, the following results are obtained. 
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Since convq′′  increases linearly with increasing h, the applied heat flux oq′′  must be balanced by an 

increase in condq′′ , which, with fixed k, iT  and L, necessitates an increase in oT . 
 
COMMENTS:   The temperature difference across the wall is small, amounting to a maximum value of 

( )o iT T−  = 5.5°C for h = 200 W/m2⋅K.  If the wall were thinner (L < 10 mm) or made from a material 

with higher conductivity (k > 20 W/m⋅K), this difference would be reduced. 



PROBLEM 1.63 
 
KNOWN:   Dimensions, average surface temperature and emissivity of heating duct.  Duct air 
inlet temperature and velocity.  Temperature of ambient air and surroundings.  Convection 
coefficient. 
 
FIND:   (a) Heat loss from duct, (b) Air outlet temperature. 
 
SCHEMATIC:    
 

 
 
ASSUMPTIONS:  (1) Steady-state, (2) Constant air properties, (3) Negligible potential and 
kinetic energy changes of air flow, (4) Radiation exchange between a small surface and a large 
enclosure. 
 
ANALYSIS:   (a) Heat transfer from the surface of the duct to the ambient air and the 
surroundings is given by Eq. (1.10) 
 

 ( ) ( )4 4q hA T T A T Ts s s s surε σ= − + −∞  

 
where As = L (2W + 2H) = 15 m (0.7 m + 0.5 m) = 16.5 m

2
.  Hence, 

 

( ) ( )2 2 2 8 2 4 4 4 4q 4 W/m K 16.5 m 45 C 0.5 16.5 m 5.67 10  W/m K 323 278 K−= ⋅ × + × × × ⋅ −$  

 

 q q q 2970 W 2298 W 5268 Wconv rad= + = + =      < 
 
(b) With i = u + pv, W�  = 0 and the third assumption, Eq. (1.11e) yields, 
 
 ( ) ( )m i i mc T T qi o p i o− = − =� �  
 
where the sign on q has been reversed to reflect the fact that heat transfer is from the system.  

With ( )3m VA 1.10 kg/m 4 m/s 0.35m 0.20m 0.308 kg/s,cρ= = × × =�  the outlet temperature is 
 

 
q 5268 W

T T 58 C 41 Co i mc 0.308 kg/s 1008 J/kg Kp
= − = − =

× ⋅
$ $

�
    < 

 
COMMENTS:   The temperature drop of the air is large and unacceptable, unless the intent is 
to use the duct to heat the basement.  If not, the duct should be insulated to insure maximum 
delivery of thermal energy to the intended space(s). 
 



PROBLEM 1.64 
 
KNOWN:  Uninsulated pipe of prescribed diameter, emissivity, and surface temperature in a room 
with fixed wall and air temperatures.  See Example 1.2. 
 
FIND:   (a) Which option to reduce heat loss to the room is more effective: reduce by a factor of two 
the convection coefficient (from 15 to 7.5 W/m

2⋅K) or the emissivity (from 0.8 to 0.4) and (b) Show 

graphically the heat loss as a function of the convection coefficient for the range 5 ≤ h ≤ 20  W/m
2⋅K 

for emissivities of 0.2, 0.4 and 0.8.  Comment on the relative efficacy of reducing heat losses 
associated with the convection and radiation processes. 
 
SCHEMATIC:  
 

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Radiation exchange between pipe and the room is 
between a small surface in a much larger enclosure, (3) The surface emissivity and absorptivity are 
equal, and (4) Restriction of the air flow does not alter the radiation exchange process between the 
pipe and the room. 
 
ANALYSIS:   (a) The heat rate from the pipe to the room per unit length is 
 

 ( )( ) ( ) ( )4 4
conv rad s s surq q / L q q h D T T D T Tπ ε π σ∞′ ′ ′ ′= = + = − + −  

 
Substituting numerical values for the two options, the resulting heat rates are calculated and compared 
with those for the conditions of Example 1.2. We conclude that both options are comparably effective. 
 

Conditions      ( )2h W / m K⋅   ε   ( )q W / m′  

 
 Base case, Example 1.2    15  0.8      998 
 Reducing h by factor of 2  7.5  0.8      788 
 Reducing ε by factor of 2   15  0.4      709 
 
(b) Using IHT, the heat loss can be calculated as a function of the convection coefficient for selected  
values of the surface emissivity. 
 
 
 
 
 
 
 
 
 
 
 
 
          Continued ….. 

5 10 15 20

Convection coefficient, h (W/m^2.K)

0

400

800

1200

H
e

a
t l

o
ss

, q
' (

/m
)

eps = 0.8, bare pipe
eps = 0.4, coated pipe
eps = 0.2, coated pipe



PROBLEM 1.64 (Cont.) 
 
COMMENTS:   (1) In Example 1.2, Comment 3, we read that the heat rates by convection and 
radiation exchange were comparable for the base case conditions (577 vs. 421 W/m).  It follows that 
reducing the key transport parameter (h or ε) by a factor of two yields comparable reductions in the 
heat loss.  Coating the pipe to reduce the emissivity might to be the more practical option as it may be 
difficult to control air movement. 
 

(2) For this pipe size and thermal conditions (Ts and T∞), the minimum possible convection coefficient 

is approximately 7.5 W/m
2⋅K, corresponding to free convection heat transfer to quiescent ambient air.  

Larger values of h are a consequence of forced air flow conditions. 
 
(3) The Workspace for the IHT program to calculate the heat loss and generate the graph for the heat 
loss as a function of the convection coefficient for selected emissivities is shown below. It is good 
practice to provide commentary with the code making your solution logic clear, and to summarize the 
results. 
 

// Heat loss per unit pipe length; rate equation from Ex. 1.2  
q' = q'cv + q'rad 
q'cv = pi*D*h*(Ts - Tinf) 
q'rad = pi*D*eps*sigma*(Ts^4 - Tsur^4) 
sigma = 5.67e-8 
 
// Input parameters  
D = 0.07 
Ts_C = 200          // Representing temperatures in Celsius units using _C subscripting 
Ts = Ts_C +273 
Tinf_C = 25 
Tinf = Tinf_C + 273 
h = 15                   // For graph, sweep over range from 5 to 20 
Tsur_C = 25 
Tsur = Tsur_C + 273 
eps = 0.8 
//eps = 0.4            // Values of emissivity for parameter study        
//eps = 0.2 
 
/* Base case results  
Tinf Ts Tsur q' q'cv q'rad D Tinf_C Ts_C Tsur_C
 eps h sigma 
298 473 298 997.9 577.3 420.6 0.07 25 200 25 
 0.8 15 5.67E-8        */ 
 



PROBLEM 1.65

KNOWN:  Conditions associated with surface cooling of plate glass which is initially at 600°C.
Maximum allowable temperature gradient in the glass.

FIND:  Lowest allowable air temperature, T∞

SCHEMATIC:

ASSUMPTIONS:  (1) Surface of glass exchanges radiation with large surroundings at Tsur = T∞, (2)
One-dimensional conduction in the x-direction.

ANALYSIS:  The maximum temperature gradient will exist at the surface of the glass and at the
instant that cooling is initiated.  From the surface energy balance, Eq. 1.12, and the rate equations,
Eqs. 1.1, 1.3a and 1.7, it follows that

( ) ( )4 4
s s sur

dT
-k h T T T T 0

dx
εσ∞− − − − =

or, with (dT/dx)max = -15°C/mm = -15,000°C/m and Tsur = T∞,

( )
C

2
W W

1.4 15,000 5 873 T K
m K m m K

∞
 

− − = − 
⋅   ⋅ 

$

8 4 4 4
2 4
W

0.8 5.67 10 873 T K .
m K

−
∞ + × × −  ⋅

T∞ may be obtained from a trial-and-error solution, from which it follows that, for T∞ = 618K,

21 000 1275 19 730, , .
W

m

W

m

W

m2 2 2
≈ +

Hence the lowest allowable air temperature is

T K = 345 C.∞ ≈ 618 $ <
COMMENTS:  (1) Initially, cooling is determined primarily by radiation effects.

(2) For fixed T∞, the surface temperature gradient would decrease with increasing time into the

cooling process.  Accordingly, T∞ could be decreasing with increasing time and still keep within the
maximum allowable temperature gradient.



PROBLEM 1.66 
 
KNOWN:  Hot-wall oven, in lieu of infrared lamps, with temperature Tsur =  200°C for heating a 
coated plate to the cure temperature.  See Example 1.6. 
 
FIND:   (a) The plate temperature Ts for prescribed convection conditions and coating emissivity, and 

(b) Calculate and plot Ts as a function of Tsur for the range 150 ≤ Tsur ≤ 250°C for ambient air 
temperatures of 20, 40 and 60°C; identify conditions for which acceptable curing temperatures 
between 100 and 110°C may be maintained.  
 
SCHEMATIC: 
 

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Negligible heat loss from back surface of plate, (3) 
Plate is small object in large isothermal surroundings (hot oven walls). 
 
ANALYSIS:   (a) The temperature of the plate can be determined from an energy balance on the plate, 
considering radiation exchange with the hot oven walls and convection with the ambient air. 

 in out rad convE E 0 or q q 0′′ ′′ ′′ ′′− = − =� �  

 ( ) ( )4 4
sur s sT T h T T 0εσ ∞− − − =  

 [ ]( ) [ ]( )48 2 4 4 4 2
s s0.5 5.67 10 W / m K 200 273 T K 15 W / m K T 20 273 K 0−× × ⋅ + − − ⋅ − + =  

 sT 357 K 84 C= = °          < 
 
(b) Using the energy balance relation in the Workspace of IHT, the plate temperature can be calculated 
and plotted as a function of oven wall temperature for selected ambient air temperatures. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
COMMENTS:   From the graph, acceptable cure temperatures between 100 and 110°C can be  

maintained for these conditions: with T∞ = 20°C when 225 ≤ Tsur ≤ 240°C; with T∞ = 40°C when 205 

≤ Tsur ≤ 220°C; and with T∞ = 60°C when 175 ≤ Tsur ≤ 195°C. 
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PROBLEM 1.67 
 
KNOWN:  Operating conditions for an electrical-substitution radiometer having the same receiver 
temperature, Ts, in electrical and optical modes. 
 
FIND:   Optical power of a laser beam and corresponding receiver temperature when the indicated 
electrical power is 20.64 mW. 
 
SCHEMATIC: 
 

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Conduction losses from backside of receiver 
negligible in optical mode, (3) Chamber walls form large isothermal surroundings; negligible effects 
due to aperture, (4) Radiation exchange between the receiver surface and the chamber walls is between 
small surface and large enclosure, (5) Negligible convection effects. 
 
PROPERTIES:  Receiver surface: ε = 0.95, αopt = 0.98. 
 
ANALYSIS:   The schematic represents the operating conditions for the electrical mode with the 
optical beam blocked.  The temperature of the receiver surface can be found from an energy balance 
on the receiver, considering the electrical power input, conduction loss from the backside of the 
receiver, and the radiation exchange between the receiver and the chamber. 

 in outE E 0− =� �  

 elec loss radP q q 0− − =  

( )4 4
elec elec s s surP 0.05P A T T 0ε σ− − − =  

 ( ) ( ) ( )3 2 8 2 4 4 4 4
s

220.64 10 W 1 0.05 0.95 0.015 / 4 5.67 10 W / m K T 77 Km 0π− −× − − × × ⋅ − =  

 sT 213.9 K=           < 
 
For the optical mode of operation, the optical beam is incident on the receiver surface, there is no 
electrical power input, and the receiver temperature is the same as for the electrical mode.  The optical 
power of the beam can be found from an energy balance on the receiver considering the absorbed 
beam power and radiation exchange between the receiver and the chamber. 

 in outE E 0− =� �  
 
 opt opt rad optP q 0.98P 19.60mW 0α − = − =  
 

 optP 19.99mW=          < 

where qrad follows from the previous energy balance using Ts = 213.9K. 
 
COMMENTS:   Recognizing that the receiver temperature, and hence the radiation exchange, is the 
same for both modes, an energy balance could be directly written in terms of the absorbed optical 
power and equivalent electrical power, αopt Popt = Pelec - qloss. 



PROBLEM 1.68
KNOWN:  Surface temperature, diameter and emissivity of a hot plate.  Temperature of surroundings
and ambient air.  Expression for convection coefficient.

FIND:  (a) Operating power for prescribed surface temperature, (b) Effect of surface temperature on
power requirement and on the relative contributions of radiation and convection to heat transfer from
the surface.

SCHEMATIC:

ASSUMPTIONS:  (1) Plate is of uniform surface temperature, (2) Walls of room are large relative to
plate, (3) Negligible heat loss from bottom or sides of plate.

ANALYSIS:  (a) From an energy balance on the hot plate, Pelec = qconv + qrad = Ap ( )conv radq q .′′ ′′+

Substituting for the area of the plate and from Eqs. (1.3a) and (1.7), with h = 0.70 (Ts - T∞)
1/3

, it
follows that

( ) ( ) ( )2 4 44 / 3P D / 4  0.70 T T T Telec s s surπ εσ= − + −∞ 
  

( ) ( ) ( )8 4 4 22 4 / 3P 0.3m / 4 0.70 175 0.8 5.67 10 473 298  W/melec π −= + × × − 
  

2 2 2P 0.0707 m 685 W/m 1913 W/m 48.4 W 135.2 W 190.6 Welec = + = + = 
   <

(b) As shown graphically, both the radiation and convection heat rates, and hence the requisite electric
power, increase with increasing surface temperature.

However, because of its dependence on the fourth power of the surface temperature, the increase in
radiation is more pronounced.  The significant relative effect of radiation is due to the small

convection coefficients characteristic of natural convection, with 3.37 ≤ h ≤ 5.2 W/m
2⋅K for 100 ≤ Ts

< 300°C.

COMMENTS:  Radiation losses could be reduced by applying a low emissivity coating to the
surface, which would have to maintain its integrity over the range of operating temperatures.

Effe ct o f s u rfa ce  te m p era tu re  o n  e lectric p ow e r a n d  he a t ra te s

1 00 1 50 2 00 2 50 3 00

Surfa ce  tem p era tu re  (C )

0

1 00

2 00

3 00

4 00

5 00

H
e

a
t 

ra
te

 (
W

)

P e lec
q rad
q co nv



PROBLEM 1.69 
 
KNOWN:  Long bus bar of rectangular cross-section and ambient air and surroundings temperatures.  
Relation for the electrical resistivity as a function of temperature.  
 
FIND:   (a) Temperature of the bar with a current of 60,000 A, and (b) Compute and plot the operating 
temperature of the bus bar as a function of the convection coefficient for the range 10 ≤ h ≤ 100 

W/m
2⋅K.  Minimum convection coefficient required to maintain a safe-operating temperature below 

120°C.  Will increasing the emissivity significantly affect this result? 
 
SCHEMATIC: 
 

 
 
ASSUMPTIONS:  (1)  Steady-state conditions,  (2) Bus bar is long, (3) Uniform bus-bar temperature, 
(3) Radiation exchange between the outer surface of the bus bar and its surroundings is between a 
small surface and a large enclosure.  
 
PROPERTIES:  Bus-bar material, ( )[ ]e e,o o1 T T ,ρ ρ α= + −  e,o 0.0828 m,ρ µ= Ω ⋅  oT 25 C,= °  

10.0040 K .α −=  
 
ANALYSIS:  (a) An energy balance on the bus-bar for a unit length as shown in the schematic above 
has the form 
 

 in out genE E E 0′ ′ ′− + =� � �    2
rad conv eq q I R 0′ ′ ′− − + =  

 ( ) ( )4 4 2
sur e cP T T h P T T I / A 0ε σ ρ∞− − − − + =  

 
where ( ) e e c cP 2 H W , R / A and A H W.ρ′= + = = ×   Substituting numerical values, 

 ( ) [ ]( )48 2 4 4 40.8 2 0.600 0.200 m 5.67 10 W / m K T 30 273 K−− × + × × ⋅ − +  

 ( ) [ ]( )210 W / m K 2 0.600 0.200 m T 30 273 K− ⋅ × + − +  

( ) [ ]( ){ } ( )2 6 1 260,000 A 0.0828 10 m 1 0.0040 K T 25 273 K / 0.600 0.200 m 0− −+ × Ω ⋅ + − + × = 
   

 

Solving for the bus-bar temperature, find  T 426 K 153 C.= = °     < 
 
(b) Using the energy balance relation in the Workspace of IHT, the bus-bar operating temperature is 
calculated as a function of the convection coefficient for the range 10 ≤ h ≤ 100 W/m

2⋅K.  From this 
graph we can determine that to maintain a safe operating temperature below 120°C, the minimum 
convection coefficient required is 
 

 2
minh 16 W / m K.= ⋅         < 

 
          Continued ….. 



PROBLEM 1.69 (Cont.) 
 
Using the same equations, we can calculate and plot the heat transfer rates by convection and radiation 
as a function of the bus-bar temperature. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Note that convection is the dominant mode for low bus-bar temperatures; that is, for low current flow.  
As the bus-bar temperature increases toward the safe-operating limit (120°C), convection and 
radiation exchange heat transfer rates become comparable.  Notice that the relative importance of the 
radiation exchange rate increases with increasing bus-bar temperature.  
 
COMMENTS:   (1) It follows from the second graph that increasing the surface emissivity will be 
only significant at higher temperatures, especially beyond the safe-operating limit. 
 
(2) The Workspace for the IHT program to perform the parametric analysis and generate the graphs is 
shown below.  It is good practice to provide commentary with the code making your solution logic 
clear, and to summarize the results. 
 

/* Results for base case conditions:  
Ts_C q'cv q'rad rhoe H I Tinf_C Tsur_C W alpha
 eps h 
153.3 1973 1786 1.253E-7 0.6 6E4 30 30 0.2 0.004 
 0.8 10    */ 
 
// Surface energy balance on a per unit length basis  
-q'cv - q'rad + Edot'gen = 0 
q'cv = h * P * (Ts - Tinf) 
P = 2 * (W + H)  // perimeter of the bar experiencing surface heat transfer 
q'rad = eps * sigma * (Ts^4 - Tsur^4) * P 
sigma = 5.67e-8 
Edot'gen = I^2 * Re' 
Re' = rhoe / Ac 
rhoe = rhoeo * ( 1 + alpha * (Ts - Teo)) 
Ac = W * H 
 
// Input parameters 
I = 60000 
alpha = 0.0040  // temperature coefficient, K^-1; typical value for cast aluminum 
rhoeo = 0.0828e-6  // electrical resistivity at the reference temperature, Teo; microohm-m 
Teo = 25 + 273  // reference temperature, K 
W = 0.200 
H = 0.600 
Tinf_C = 30 
Tinf = Tinf_C + 273 
h = 10 
eps = 0.8 
Tsur_C = 30 
Tsur = Tsur_C + 273 
Ts_C = Ts - 273 
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PROBLEM 1.70

KNOWN:  Solar collector designed to heat water operating under prescribed solar irradiation and
loss conditions.

FIND:  (a) Useful heat collected per unit area of the collector, ′′qu ,  (b) Temperature rise of the water

flow, T To i− ,  and (c) Collector efficiency.

SCHEMATIC:

ASSUMPTIONS:  (1) Steady-state conditions, (2) No heat losses out sides or back of collector, (3)
Collector area is small compared to sky surroundings.

PROPERTIES:  Table A.6, Water (300K): cp = 4179 J/kg⋅K.

ANALYSIS:  (a) Defining the collector as the control volume and writing the conservation of energy
requirement on a per unit area basis, find that

� � � � .E E E Ein out gen st− + =
Identifying processes as per above right sketch,

′′ − ′′ − ′′ − ′′ =q q q qsolar rad conv u 0

where ′′ = ′′q  qsolar s0 9. ;  that is, 90% of the solar flux is absorbed in the collector (Eq. 1.6).  Using the
appropriate rate equations, the useful heat rate per unit area is

( ) ( )

( ) ( )

4 4
u s cp ssky

8 4 4 4
u 2 2 4 2

q 0.9 q T T h T T

W W W
q 0.9 700 0.94 5.67 10 303 263 K 10 30 25 C

m m K m K

εσ ∞
−

′′ ′′= − − − −

′′ = × − × × − − −
⋅ ⋅

$

′′ = − − =q  W / m  W / m  W / m  W / mu
2 2 2 2630 194 50 386 . <

(b) The total useful heat collected is ′′ ⋅q A.u   Defining a control volume about the water tubing, the
useful heat causes an enthalpy change of the flowing water.  That is,

( )u p i oq A=mc T T         or′′ ⋅ −�

( ) 2 2
i oT T 386 W/m 3m / 0.01kg/s 4179J/kg K=27.7 C.− = × × ⋅ $ <

(c) The efficiency is ( ) ( )2 2
u Sq / q 386 W/m / 700 W/m 0.55 or 55%.η ′′ ′′= = = <

COMMENTS:  Note how the sky has been treated as large surroundings at a uniform temperature

Tsky.



PROBLEM 1.71 
 
KNOWN:   Surface-mount transistor with prescribed dissipation and convection cooling conditions. 
 
FIND:   (a) Case temperature for mounting arrangement with air-gap and conductive paste between case 

and circuit board, (b) Consider options for increasing gE� , subject to the constraint that cT  = 40°C. 
 
SCHEMATIC:  

  
ASSUMPTIONS:  (1) Steady-state conditions, (2) Transistor case is isothermal, (3) Upper surface 
experiences convection; negligible losses from edges, (4) Leads provide conduction path between case 
and board, (5) Negligible radiation, (6) Negligible energy generation in leads due to current flow, (7) 
Negligible convection from surface of leads. 
 
PROPERTIES:  (Given):  Air, g,ak  = 0.0263 W/m⋅K; Paste, g,pk  = 0.12 W/m⋅K; Metal leads, k"  = 

25 W/m⋅K. 
 
ANALYSIS:   (a) Define the transistor as the system and identify modes of heat transfer. 

 in out g stE E E E 0− + = ∆ =� � � �  

 conv cond,gap lead gq q 3q E 0− − − + =�  

 ( ) c b c b
s c g s c g

T T T T
hA T T k A 3k A E 0

t L∞
− −− − − − + ="

�  

where s 1 2A L L= ×  = 4 × 8 mm2 = 32 × 10-6 m2 and cA  = t × w = 0.25 × 1 mm2 = 25 × 10-8 m2.  

Rearranging and solving for cT , 

 ( ){ } ( )c s g s c b g s g s cT hA T k A /t 3 k A /L T E / hA k A /t 3 k A /L∞    = + + + + +   " "
�  

Substituting numerical values, with the air-gap condition ( g,ak  = 0.0263 W/m⋅K) 

 { ( )2 6 2 6 2 3
cT 50W/m K 32 10 m 20 C 0.0263W/m K 32 10 m /0.2 10 m− − −= ⋅ × × × + ⋅ × × ×

$  

 ( ) }8 2 3 3 3 33 25 W/m K 25 10 m /4 10 m 35 C / 1.600 10 4.208 10 4.688 10 W/K− − − − −+ ⋅ × × × × + × + ×  
 

$  
 

 cT 47.0 C= $ . < 

Continued.…. 
 

 



 

PROBLEM 1.71 (Cont.) 
 
With the paste condition ( g,pk  = 0.12 W/m⋅K), cT  = 39.9°C.  As expected, the effect of the conductive 

paste is to improve the coupling between the circuit board and the case.  Hence, cT  decreases. 

 
(b) Using the keyboard to enter model equations into the workspace, IHT has been used to perform the 
desired calculations.  For values of k"  = 200 and 400 W/m⋅K and convection coefficients in the range 

from 50 to 250 W/m2⋅K, the energy balance equation may be used to compute the power dissipation for a 
maximum allowable case temperature of 40°C. 
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As indicated by the energy balance, the power dissipation increases linearly with increasing h, as well as 
with increasing k" .  For h = 250 W/m2⋅K (enhanced air cooling) and k"  = 400 W/m⋅K (copper leads), 
the transistor may dissipate up to 0.63 W. 
 
COMMENTS:   Additional benefits may be derived by increasing heat transfer across the gap separating 
the case from the board, perhaps by inserting a highly conductive material in the gap. 



PROBLEM 1.72(a)

KNOWN:  Solar radiation is incident on an asphalt paving.

FIND:  Relevant heat transfer processes.

SCHEMATIC:

The relevant processes shown on the schematic include:

′′qS Incident solar radiation, a large portion of which ′′qS,abs,  is absorbed by the asphalt

surface,

′′qrad Radiation emitted by the surface to the air,

′′qconv Convection heat transfer from the surface to the air, and

′′qcond Conduction heat transfer from the surface into the asphalt.

Applying the surface energy balance, Eq. 1.12,

′′ − ′′ − ′′ = ′′q q q qS,abs rad conv cond .

COMMENTS:  (1) ′′qcond  and ′′qconv  could be evaluated from Eqs. 1.1 and 1.3, respectively.

(2)  It has been assumed that the pavement surface temperature is higher than that of the
underlying pavement and the air, in which case heat transfer by conduction and convection
are from the surface.

(3)  For simplicity, radiation incident on the pavement due to atmospheric emission has been
ignored (see Section 12.8 for a discussion).  Eq. 1.6 may then be used for the absorbed
solar irradiation and Eq. 1.5 may be used to obtain the emitted radiation ′′qrad .

(4)  With the rate equations, the energy balance becomes

( )4
S,abs s s

s

dT
q   T h T T k .

dx
ε σ ∞

′′ − − − = − 



PROBLEM 1.72(b) 
 
KNOWN:   Physical mechanism for microwave heating. 
 
FIND:   Comparison of (a) cooking in a microwave oven with a conventional radiant or 
convection oven and (b) a microwave clothes dryer with a conventional dryer. 
 
(a) Microwave cooking occurs as a result of volumetric thermal energy generation throughout 
the food, without heating of the food container or the oven wall.  Conventional cooking relies 
on radiant heat transfer from the oven walls and/or convection heat transfer from the air space 
to the surface of the food and subsequent heat transfer by conduction to the core of the food.  
Microwave cooking is more efficient and is achieved in less time. 
 
(b) In a microwave dryer, the microwave radiation would heat the water, but not the fabric, 
directly (the fabric would be heated indirectly by energy transfer from the water).  By heating 
the water, energy would go directly into evaporation, unlike a conventional dryer where the 
walls and air are first heated electrically or by a gas heater, and thermal energy is subsequently 
transferred to the wet clothes.  The microwave dryer would still require a rotating drum and 
air flow to remove the water vapor, but is able to operate more efficiently and at lower 
temperatures.  For a more detailed description of microwave drying, see Mechanical 
Engineering, March 1993, page 120. 
 
 
 
 



PROBLEM 1.72(c) 
 
KNOWN:   Surface temperature of exposed arm exceeds that of the room air and walls. 
 
FIND:   Relevant heat transfer processes. 
 
SCHEMATIC:    

 
 
Neglecting evaporation from the surface of the skin, the only relevant heat transfer processes 
are: 
 
qconv  Convection heat transfer from the skin to the room air, and 
 
qrad Net radiation exchange between the surface of the skin and the surroundings 

(walls of the room). 
 
You are not imagining things.  Even though the room air is maintained at a fixed temperature 

(T∞ = 15°C), the inner surface temperature of the outside walls, Tsur, will decrease with 
decreasing outside air temperature.  Upon exposure to these walls, body heat loss will be 

larger due to increased qrad.   
COMMENTS:   The foregoing reasoning assumes that the thermostat measures the true room 
air temperature and is shielded from radiation exchange with the outside walls. 
 



PROBLEM 1.72(d)

KNOWN:  Tungsten filament is heated to 2900 K in an air-filled glass bulb.

FIND:  Relevant heat transfer processes.

SCHEMATIC:

The relevant processes associated with the filament and bulb include:

qrad,f Radiation emitted by the tungsten filament, a portion of which is transmitted

through the glass,

qconv,f Free convection from filament to air of temperature T Ta,i f< ,

qrad,g,i Radiation emitted by inner surface of glass, a small portion of which is

intercepted by the filament,

qconv,g,i Free convection from air to inner glass surface of temperature T Tg,i a,i< ,

qcond,g Conduction through glass wall,

qconv,g,o Free convection from outer glass surface to room air of temperature

T Ta,o g,o< ,  and

qrad,g-sur Net radiation heat transfer between outer glass surface and surroundings, such

as the walls of a room, of temperature T Tsur g,o< .

COMMENTS:  If the glass bulb is evacuated, no convection is present within the bulb; that
is, q qconv,f conv,g,i= = 0.



PROBLEM 1.72(e)

KNOWN:  Geometry of a composite insulation consisting of a honeycomb core.

FIND:  Relevant heat transfer processes.

SCHEMATIC:

The above schematic represents the cross section of a single honeycomb cell and surface
slabs.  Assumed direction of gravity field is downward.  Assuming that the bottom (inner)

surface temperature exceeds the top (outer) surface temperature ( )s,i s,oT T ,>  heat transfer is

in the direction shown.

Heat may be transferred to the inner surface by convection and radiation, whereupon it is
transferred through the composite by

qcond,i Conduction through the inner solid slab,

qconv,hc Free convection through the cellular airspace,

qcond,hc Conduction through the honeycomb wall,

qrad,hc Radiation between the honeycomb surfaces, and

qcond,o Conduction through the outer solid slab.

Heat may then be transferred from the outer surface by convection and radiation.  Note that
for a single cell under steady state conditions,

q q q q qrad,i conv,i cond,i conv,hc cond,hc+ = = +

+q q q qrad,hc cond,o rad,o conv,o= = + .

COMMENTS:  Performance would be enhanced by using materials of low thermal
conductivity, k, and emissivity, ε.  Evacuating the airspace would enhance performance by
eliminating heat transfer due to free convection.



PROBLEM 1.72(f)

KNOWN:  A thermocouple junction is used, with or without a radiation shield, to measure
the temperature of a gas flowing through a channel.  The wall of the channel is at a
temperature much less than that of the gas.

FIND:  (a) Relevant heat transfer processes, (b) Temperature of junction relative to that of
gas, (c) Effect of radiation shield.

SCHEMATIC:

ASSUMPTIONS:  (1) Junction is small relative to channel walls, (2) Steady-state conditions,
(3) Negligible heat transfer by conduction through the thermocouple leads.

ANALYSIS:  (a) The relevant heat transfer processes are:

qrad Net radiation transfer from the junction to the walls, and

qconv Convection transfer from the gas to the junction.

(b)  From a surface energy balance on the junction,

q qconv rad=

or from Eqs. 1.3a and 1.7,

( ) ( )4 4
j g sjh A T T  A T T .ε σ− = −

To satisfy this equality, it follows that

T T Ts j g< < .

That is, the junction assumes a temperature between that of the channel wall and the gas,
thereby sensing a temperature which is less than that of the gas.

(c) The measurement error ( )g jT T−  is reduced by using a radiation shield as shown in the

schematic.  The junction now exchanges radiation with the shield, whose temperature must
exceed that of the channel wall.  The radiation loss from the junction is therefore reduced, and
its temperature more closely approaches that of the gas.



PROBLEM 1.72(g) 
 
KNOWN:   Fireplace cavity is separated from room air by two glass plates, open at both ends. 
 
FIND:   Relevant heat transfer processes. 
 
SCHEMATIC:    

 
 
The relevant heat transfer processes associated with the double-glazed, glass fire screen are: 
 
qrad,1 Radiation from flames and cavity wall, portions of which are absorbed and 

transmitted by the two panes, 
 
qrad,2 Emission from inner surface of inner pane to cavity, 

 
qrad,3 Net radiation exchange between outer surface of inner pane and inner surface 

of outer pane, 
 
qrad,4 Net radiation exchange between outer surface of outer pane and walls of room, 

 
qconv,1 Convection between cavity gases and inner pane, 

 
qconv2 Convection across air space between panes, 
 
qconv,3 Convection from outer surface to room air, 

 
qcond,1 Conduction across inner pane, and 

 
qcond,2 Conduction across outer pane. 

 
 
COMMENTS:   (1) Much of the luminous portion of the flame radiation is transmitted to the 
room interior. 
 
(2) All convection processes are buoyancy driven (free convection). 
 



PROBLEM 1.73(a) 
 
KNOWN:   Room air is separated from ambient air by one or two glass panes. 
 
FIND:   Relevant heat transfer processes. 
 
SCHEMATIC:    

 
 
The relevant processes associated with single (above left schematic) and double (above right 
schematic) glass panes include. 
 
qconv,1 Convection from room air to inner surface of first pane, 

 
qrad,1  Net radiation exchange between room walls and inner surface of first pane, 

 
qcond,1 Conduction through first pane, 

 
qconv,s Convection across airspace between panes, 

 
qrad,s Net radiation exchange between outer surface of first pane and inner surface of 

second pane (across airspace), 
 
qcond,2 Conduction through a second pane, 

 
qconv,2 Convection from outer surface of single (or second) pane to ambient air, 

 
qrad,2 Net radiation exchange between outer surface of single (or second) pane and 

surroundings such as the ground, and 
 
qS Incident solar radiation during day; fraction transmitted to room is smaller for 

double pane. 
 
COMMENTS:   Heat loss from the room is significantly reduced by the double pane 
construction. 
 



PROBLEM 1.73(b) 
 
KNOWN:   Configuration of a flat plate solar collector. 
 
FIND:   Relevant heat transfer processes with and without a cover plate. 
 
SCHEMATIC:    

 
 
The relevant processes without (above left schematic) and with (above right schematic) 
include: 
 
qS Incident solar radiation, a large portion of which is absorbed by the absorber 

plate.  Reduced with use of cover plate (primarily due to reflection off cover 
plate). 

 
qrad,∞  Net radiation exchange between absorber plate or cover plate and 

surroundings, 
 
qconv,∞  Convection from absorber plate or cover plate to ambient air, 

 
qrad,a-c Net radiation exchange between absorber and cover plates, 

 
qconv,a-c Convection heat transfer across airspace between absorber and cover plates, 

 
qcond Conduction through insulation, and 
 
qconv Convection to working fluid. 
 
COMMENTS:   The cover plate acts to significantly reduce heat losses by convection and 
radiation from the absorber plate to the surroundings. 
 



PROBLEM 1.73(c) 
 
KNOWN:   Configuration of a solar collector used to heat air for agricultural applications. 
 
FIND:   Relevant heat transfer processes. 
 
SCHEMATIC:    

 
 
Assume the temperature of the absorber plates exceeds the ambient air temperature.  At the 
cover plates, the relevant processes are: 
 
qconv,a-i Convection from inside air to inner surface, 

 
qrad,p-i Net radiation transfer from absorber plates to inner surface, 

 
qconv,i-o Convection across airspace between covers, 

 
qrad,i-o Net radiation transfer from inner to outer cover, 

 
qconv,o-∞  Convection from outer cover to ambient air, 

 
qrad,o  Net radiation transfer from outer cover to surroundings, and 

 
qS  Incident solar radiation. 
 
Additional processes relevant to the absorber plates and airspace are: 
 
qS,t   Solar radiation transmitted by cover plates, 

 
qconv,p-a Convection from absorber plates to inside air, and 

 
qcond  Conduction through insulation. 
 



PROBLEM 1.73(d) 
 
KNOWN:   Features of an evacuated tube solar collector. 
 
FIND:   Relevant heat transfer processes for one of the tubes. 
 
SCHEMATIC:    

 
 
The relevant heat transfer processes for one of the evacuated tube solar collectors includes: 
 
qS Incident solar radiation including contribution due to reflection off panel (most 

is transmitted), 
 
qconv,o Convection heat transfer from outer surface to ambient air, 

 
qrad,o-sur Net rate of radiation heat exchange between outer surface of outer tube and the 

surroundings, including the panel, 
 
qS,t  Solar radiation transmitted through outer tube and incident on inner tube (most 

is absorbed), 
 
qrad,i-o Net rate of radiation heat exchange between outer surface of inner tube and 

inner surface of outer tube, and 
 
qconv,i Convection heat transfer to working fluid. 

 
There is also conduction heat transfer through the inner and outer tube walls.  If the walls are 
thin, the temperature drop across the walls will be small. 
 



PROBLEM 2.1

KNOWN:  Steady-state, one-dimensional heat conduction through an axisymmetric shape.

FIND:  Sketch temperature distribution and explain shape of curve.

SCHEMATIC:

ASSUMPTIONS:  (1) Steady-state, one-dimensional conduction, (2) Constant properties, (3) No
internal heat generation.

ANALYSIS:  Performing an energy balance on the object according to Eq. 1.11a, � � ,E Ein out− = 0  it
follows that

� �E E qin out x− =

and that q q xx x≠ � �.   That is, the heat rate within the object is everywhere constant.  From Fourier’s

law,

q kA
dT

dxx x= − ,

and since qx and k are both constants, it follows that

A
dT

dx
Constant.x =

That is, the product of the cross-sectional area normal to the heat rate and temperature gradient

remains a constant and independent of distance x.  It follows that since Ax increases with x, then
dT/dx must decrease with increasing x.  Hence, the temperature distribution appears as shown above.

COMMENTS:  (1) Be sure to recognize that dT/dx is the slope of the temperature distribution.  (2)

What would the distribution be when T2 > T1?  (3) How does the heat flux, ′′qx ,  vary with distance?



PROBLEM 2.2

KNOWN:  Hot water pipe covered with thick layer of insulation.

FIND:  Sketch temperature distribution and give brief explanation to justify shape.

SCHEMATIC:

ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional (radial) conduction, (3) No
internal heat generation, (4) Insulation has uniform properties independent of temperature and
position.

ANALYSIS:  Fourier’s law, Eq. 2.1, for this one-dimensional (cylindrical) radial system has the form

q kA
dT

dr
k 2 r

dT

drr r= − = − π �� �

where A r  and r = 2π � �  is the axial length of the pipe-insulation system.  Recognize that for steady-
state conditions with no internal heat generation, an energy balance on the system requires
� � � � .E E  since E Ein out g st= = =0   Hence

qr = Constant.

That is, qr is independent of radius (r).  Since the thermal conductivity is also constant, it follows that

r
dT

dr
Constant.�

��
�
��

=

This relation requires that the product of the radial temperature gradient, dT/dr, and the radius, r,
remains constant throughout the insulation.  For our situation, the temperature distribution must
appear as shown in the sketch.

COMMENTS:  (1) Note that, while qr is a constant and independent of r, ′′qr  is not a constant.  How

does ′′q rr � �  vary with r?  (2) Recognize that the radial temperature gradient, dT/dr, decreases with

increasing radius.



PROBLEM 2.3

KNOWN:  A spherical shell with prescribed geometry and surface temperatures.

FIND:  Sketch temperature distribution and explain shape of the curve.

SCHEMATIC:

ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional conduction in radial (spherical
coordinates) direction, (3) No internal generation, (4) Constant properties.

ANALYSIS:  Fourier’s law, Eq. 2.1, for this one-dimensional, radial (spherical coordinate) system
has the form

( )2
r r

dT dT
q k A k 4 r

dr dr
π= − = −

where Ar is the surface area of a sphere.  For steady-state conditions, an energy balance on the system

yields � � ,E Ein out=  since � � .E Eg st= = 0   Hence,

( )in out r rq q q q r .= = ≠

That is, qr is a constant, independent of the radial coordinate.  Since the thermal conductivity is
constant, it follows that

2 dT
r Constant.

dr
  =  

This relation requires that the product of the radial temperature gradient, dT/dr, and the radius

squared, r
2
, remains constant throughout the shell.  Hence, the temperature distribution appears as

shown in the sketch.

COMMENTS:  Note that, for the above conditions, ( )r rq q r ;≠  that is, qr is everywhere constant.

How does ′′qr  vary as a function of radius?



PROBLEM 2.4

KNOWN:  Symmetric shape with prescribed variation in cross-sectional area, temperature
distribution and heat rate.

FIND:  Expression for the thermal conductivity, k.

SCHEMATIC:

ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional conduction in x-direction, (3)
No internal heat generation.

ANALYSIS:  Applying the energy balance, Eq. 1.11a, to the system, it follows that, since
� � ,E Ein out=

( )xq Constant  f x .= ≠

Using Fourier’s law, Eq. 2.1, with appropriate expressions for Ax and T, yields

( ) ( )
x x

2 3

dT
q k A

dx
d K

6000W=-k 1-x m 300 1 2x-x .
dx m

= −

 ⋅ ⋅ −  

Solving for k and recognizing its units are W/m⋅K,

( ) ( ) ( )( )22

-6000 20
k= .

1 x 2 3x1-x 300 2 3x
=

  − +− −  

<

COMMENTS:  (1) At x = 0, k = 10W/m⋅K and k → ∞ as x → 1.  (2) Recognize that the 1-D
assumption is an approximation which becomes more inappropriate as the area change with x, and
hence two-dimensional effects, become more pronounced.



PROBLEM 2.5

KNOWN:  End-face temperatures and temperature dependence of k for a truncated cone.

FIND:  Variation with axial distance along the cone of q  q  k,  and dT / dx.x x, ,′′

SCHEMATIC:

ASSUMPTIONS:  (1) One-dimensional conduction in x (negligible temperature gradients along y),
(2) Steady-state conditions, (3) Adiabatic sides, (4) No internal heat generation.

ANALYSIS:  For the prescribed conditions, it follows from conservation of energy, Eq. 1.11a, that

for a differential control volume, � � .E E  or q qin out x x+dx= =   Hence

qx is independent of x.

Since A(x) increases with increasing x, it follows that ′′ =q q A xx x / � �  decreases with increasing x.

Since T decreases with increasing x, k increases with increasing x.  Hence, from Fourier’s law, Eq.
2.2,

′′ = −q k 
dT

dxx ,

it follows that | dT/dx | decreases with increasing x.



PROBLEM 2.6

KNOWN:  Temperature dependence of the thermal conductivity, k(T), for heat transfer through a
plane wall.

FIND:  Effect of k(T) on temperature distribution, T(x).

ASSUMPTIONS:  (1) One-dimensional conduction, (2) Steady-state conditions, (3) No internal heat
generation.

ANALYSIS:  From Fourier’s law and the form of k(T),

′′ = − = − +q k 
dT

dx
k aT

dT

dxx o� � . (1)

The shape of the temperature distribution may be inferred from knowledge of d
2
T/dx

2
 = d(dT/dx)/dx.

Since ′′qx  is independent of x for the prescribed conditions,

dq

dx
-

d

dx
k aT

dT

dx

k aT
d T

dx
a

dT

dx

x
o

o

2

2

′′ = +�
��

�
��

=

− + − �
��

�
��

=

� �

� �

0

0
2

.

Hence,

d T

dx

-a

k aT

dT

dx
       where 

k aT = k > 0

dT

dx
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2
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o
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�

�
�

2
2

0

from which it follows that for

a >  0:   d T / dx  <  02 2

a =  0:   d T / dx  02 2 =

a <  0:   d T / dx  >  0.2 2

COMMENTS:  The shape of the distribution could also be inferred from Eq. (1).  Since T decreases
with increasing x,

a > 0: k decreases with increasing x = > | dT/dx | increases with increasing x

a = 0: k = ko = > dT/dx is constant

a < 0: k increases with increasing x = > | dT/dx | decreases with increasing x.



PROBLEM 2.7
KNOWN:  Thermal conductivity and thickness of a one-dimensional system with no internal heat
generation and steady-state conditions.

FIND:  Unknown surface temperatures, temperature gradient or heat flux.

SCHEMATIC:

ASSUMPTIONS:  (1) One-dimensional heat flow, (2) No internal heat generation, (3) Steady-state
conditions, (4) Constant properties.

ANALYSIS:  The rate equation and temperature gradient for this system are

1 2
x

dT dT T T
q k           and          .

dx dx L

−′′ = − = (1,2)

Using Eqs. (1) and (2), the unknown quantities can be determined.

(a)
( )400 300 KdT

200 K/m
dx 0.5m

−
= =

2
x

W K
q 25 200 5000 W/m .

m K m
′′ = − × = −

⋅
<

(b) 2
x

W K
q 25 250 6250 W/m

m K m
′′ = − × − =

⋅
 
  

2 1
dT K

T T L 1000 C-0.5m -250
dx m

= − =   
      

$

2T 225 C.= $ <

(c) 2
x

W K
q 25 200 5000 W/m

m K m
′′ = − × = −

⋅

2
K

T 80 C-0.5m 200 20 C.
m

= = − 
  

$ $ <

(d)
2

xdT q 4000 W/m K
160

dx k 25 W/m K m

′′
= − = − = −

⋅

( ) 2 2
1 2

dT K
T L T 0.5m -160 5 C a b

dx m
= + = + − +   

      
$

1T 85 C.= − $ <

(e)
( )2

x
3000 W/mdT q K

120
dx k 25 W/m K m

−′′
= − = − =

⋅

2
K

T 30 C-0.5m 120 30 C.
m

= = − 
  

$ $



PROBLEM 2.8

KNOWN:  One-dimensional system with prescribed thermal conductivity and thickness.

FIND:  Unknowns for various temperature conditions and sketch distribution.

SCHEMATIC:

ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional conduction, (3) No internal heat
generation, (4) Constant properties.

ANALYSIS:  The rate equation and temperature gradient for this system are

2 1
x

dT dT T T
q k           and          .

dx dx L

−′′ = − = (1,2)

Using Eqs. (1) and (2), the unknown quantities for each case can be determined.

(a)
( )20 50 KdT

280 K/m
dx 0.25m

− −
= = −

2
x

W K
q 50 280 14.0 kW/m .

m K m
′′ = − × − =

⋅
 
  

(b)
( )( )10 30 KdT

80 K/m
dx 0.25m

− − −
= =

2
x

W K
q 50 80 4.0 kW/m .

m K m
′′ = − × = −

⋅
 
  

(c) 2
x

W K
q 50 160 8.0 kW/m

m K m
′′ = − × = −

⋅
 
  

2 1
dT K

T L T 0.25m 160 70 C.
dx m

= ⋅ + = × + 
  

$

2T 110 C.= $

(d) 2
x

W K
q 50 80 4.0 kW/m

m K m
′′ = − × − =

⋅
 
  

1 2
dT K

T T L 40 C 0.25m 80 .
dx m

= − ⋅ = − − ∈ 
  

$

1T 60 C.= $

(e) 2
x

W K
q 50 200 10.0 kW/m

m K m
′′ = − × = −

⋅
 
  

1 2
dT K

T T L 30 C 0.25m 200 20 C.
dx m

= − ⋅ = − = − 
  

$ $

<

<

<

<

<



PROBLEM 2.9

KNOWN:  Plane wall with prescribed thermal conductivity, thickness, and surface temperatures.

FIND:  Heat flux, ′′qx , and temperature gradient, dT/dx, for the three different coordinate systems
shown.

SCHEMATIC:

ASSUMPTIONS:  (1) One-dimensional heat flow, (2) Steady-state conditions, (3) No internal
generation, (4) Constant properties.

ANALYSIS:  The rate equation for conduction heat transfer is

′′ = −q k
dT

dxx , (1)

where the temperature gradient is constant throughout the wall and of the form

dT

dx

T L T 0

L
=

−� � � �
. (2)

Substituting numerical values, find the temperature gradients,

(a)
dT

dx

T T

L

K

0.100m
 K / m2 1= − =

−
=

600 400
2000

� � <

(b)
dT

dx

T T

L

K

0.100m
 K / m1 2= − =

−
= −

400 600
2000

� � <

(c)
dT

dx

T T

L

K

0.100m
 K / m.2 1= − =

−
=

600 400
2000

� � <

The heat rates, using Eq. (1) with k = 100 W/m⋅K, are

(a) ′′ = −
⋅

×q
W

m K
 K / m = -200 kW / mx

2100 2000 <

(b) ′′ = −
⋅

−q
W

m K
 K / m) = +200 kW / mx

2100 2000( <

(c) ′′ = −
⋅

×q
W

m K
 K / m = -200 kW / mx

2100 2000 <



PROBLEM 2.10

KNOWN:  Temperature distribution in solid cylinder and convection coefficient at cylinder surface.

FIND:  Expressions for heat rate at cylinder surface and fluid temperature.

SCHEMATIC:

ASSUMPTIONS:  (1) One-dimensional, radial conduction, (2) Steady-state conditions, (3) Constant
properties.

ANALYSIS:  The heat rate from Fourier’s law for the radial (cylindrical) system has the form

q kA  
dT

drr r= − .

Substituting for the temperature distribution, T(r) = a + br
2
,

q k 2 rL  2br =  - 4 kbLrr
2= − π π� � .

At the outer surface ( r = ro), the conduction heat rate is

q kbLrr=r o
2

o
= −4π . <

From a surface energy balance at r = ro,

q q h 2 r L  T r Tr=r conv o oo
= = − ∞π� � � � ,

Substituting for qr=ro
 and solving for T∞,

T  =  T r
kbr

ho
o

∞ +� �
2

T  =  a + br
kbr

ho
2 o

∞ + 2

T  =  a + br r
k

ho o∞ +�
��

�
��

2
. <



PROBLEM 2.11

KNOWN:  Two-dimensional body with specified thermal conductivity and two isothermal surfaces
of prescribed temperatures; one surface, A, has a prescribed temperature gradient.

FIND:  Temperature gradients, ∂T/∂x and ∂T/∂y, at the surface B.

SCHEMATIC:

ASSUMPTIONS:  (1) Two-dimensional conduction, (2) Steady-state conditions, (3) No heat
generation, (4) Constant properties.

ANALYSIS:  At the surface A, the temperature gradient in the x-direction must be zero.  That is,

(∂T/∂x)A = 0.  This follows from the requirement that the heat flux vector must be normal to an
isothermal surface.  The heat rate at the surface A is given by Fourier’s law written as

′ = − ⋅
�

�
� = −

⋅
× × = −q k w

T

y

W

m K
m 30

K

m
W / m.y,A A

∂
∂ A

10 2 600

On the surface B, it follows that

∂ ∂T / y B� � = 0 <
in order to satisfy the requirement that the heat flux vector be normal to the isothermal surface B.
Using the conservation of energy requirement, Eq. 1.11a, on the body, find

′ − ′ = ′ = ′q q           or          q qy,A x,B x,B y,A0 .

Note that,

′ = − ⋅ �
��

q k w
T

xx,B B
B

∂
∂

and hence

∂ ∂T / x
q

k w

 W / m

10 W / m K 1m
 K / m.B

y,A

B
� �

� �=
− ′

⋅
=

− −
⋅ ×

=
600

60 <

COMMENTS:  Note that, in using the conservation requirement, ′ = + ′q qin y,A  and ′ = + ′q qout x,B.



PROBLEM 2.12

KNOWN:  Length and thermal conductivity of a shaft.  Temperature distribution along shaft.

FIND:  Temperature and heat rates at ends of shaft.

SCHEMATIC:

ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional conduction in x, (3) Constant
properties.

ANALYSIS:  Temperatures at the top and bottom of the shaft are, respectively,

T(0) = 100°C T(L) = -40°C. <

Applying Fourier’s law, Eq. 2.1,

q kA
dT

dx
 W / m K 0.005 m x C / m

q  -  20x W.

x
2

x

= − = − ⋅ − +

=

25 150 20

0125 150

� �� �

� �

$

.

Hence,

qx(0) = 18.75 W qx(L) = 16.25 W. <

The difference in heat rates, qx(0) > qx(L), is due to heat losses q"  from the side of the shaft.

COMMENTS:  Heat loss from the side requires the existence of temperature gradients over the shaft
cross-section.  Hence, specification of T as a function of only x is an approximation.



PROBLEM 2.13

KNOWN:  A rod of constant thermal conductivity k and variable cross-sectional area Ax(x) = Aoe
ax

where Ao and a are constants.

FIND:  (a) Expression for the conduction heat rate, qx(x); use this expression to determine the
temperature distribution, T(x); and sketch of the temperature distribution, (b) Considering the

presence of volumetric heat generation rate, ( )oq q exp ax= −� � , obtain an expression for qx(x) when

the left face, x = 0, is well insulated.

SCHEMATIC:

ASSUMPTIONS:  (1) One-dimensional conduction in the rod, (2)  Constant properties, (3) Steady-
state conditions.

ANALYSIS:   Perform an energy balance on the control volume, A(x)⋅dx,

in out gE E E 0− + =� � �

( )x x dxq q q A x dx 0+− + ⋅ ⋅ =�

The conduction heat rate terms can be expressed as a Taylor series and substituting expressions for q�
and A(x),

( ) ( ) ( )x o o
d

q q exp ax A exp ax 0
dx

− + − ⋅ =� (1)

( )x
dT

q k A x
dx

= − ⋅ (2)

(a) With no internal generation, �qo  = 0, and from Eq. (1) find

( )x
d

q 0
dx

− = <
indicating that the heat rate is constant with x.  By combining Eqs. (1) and (2)

( ) ( ) 1
d dT dT

k A x 0 or A x C
dx dx dx

 − − ⋅ = ⋅ =  
(3) <

Continued...



PROBLEM 2.13 (Cont.)

That is, the product of the cross-sectional area and the temperature gradient is a constant, independent
of x.  Hence, with T(0) > T(L), the temperature distribution is exponential, and as shown in the sketch
above.  Separating variables and integrating Eq. (3), the general form for the temperature distribution
can be determined,

( )o 1
dT

A exp ax C
dx

⋅ =

( )1
1 odT C A exp ax dx−= −

( ) ( )1 o 2T x C A a exp ax C= − − + <
We could use the two temperature boundary conditions, To = T(0) and TL = T(L), to evaluate C1 and
C2 and, hence, obtain the temperature distribution in terms of To and TL.

(b) With the internal generation, from Eq. (1),

( )x o o x o o
d

q q A 0 or q q A x
dx

− + = =� � <
That is, the heat rate increases linearly with x.

COMMENTS:  In part (b), you could determine the temperature distribution using Fourier’s law and
knowledge of the heat rate dependence upon the x-coordinate.  Give it a try!



PROBLEM 2.14

KNOWN:  Dimensions and end temperatures of a cylindrical rod which is insulated on its side.

FIND:  Rate of heat transfer associated with different rod materials.

SCHEMATIC:

ASSUMPTIONS:  (1) One-dimensional conduction along cylinder axis, (2) Steady-state conditions,
(3) Constant properties.

PROPERTIES:  The properties may be evaluated from Tables A-1 to A-3 at a mean temperature of
50°C = 323K and are summarized below.

ANALYSIS:  The heat transfer rate may be obtained from Fourier’s law.  Since the axial temperature
gradient is linear, this expression reduces to

q = kA
T T

L
k

0.025m C

0.1m
m C k1 2− =

− °
= ⋅° ⋅

π� � � �
� �

2

4

100 0
0 491.

  Cu        Al St.St.       SiN Oak Magnesia Pyrex
(pure)     (2024) (302)    (85%)
_______________________________________________________________

k(W/m⋅K) 401      177 16.3      14.9 0.19    0.052   1.4

q(W) 197       87   8.0        7.3 0.093    0.026  0.69 <

COMMENTS:  The k values of Cu and Al were obtained by linear interpolation; the k value of St.St.
was obtained by linear extrapolation, as was the value for SiN; the value for magnesia was obtained
by linear interpolation; and the values for oak and pyrex are for 300 K.



PROBLEM 2.15

KNOWN:  One-dimensional system with prescribed surface temperatures and thickness.

FIND:  Heat flux through system constructed of these materials:  (a) pure aluminum, (b) plain carbon
steel, (c) AISI 316, stainless steel, (d) pyroceram, (e) teflon and (f) concrete.

SCHEMATIC:

ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional conduction, (3) No heat
generation, (4) Constant thermal properties.

PROPERTIES:  The thermal conductivity is evaluated at the average temperature of the system, T =

(T1+T2)/2 = (325+275)K/2 = 300K.  Property values and table identification are shown below.

ANALYSIS:  For this system, Fourier’s law can be written as

′′ = − = − −
q k

dT

dx
k

T T

Lx
2 1 .

Substituting numerical values, the heat flux is

′′ = −
×

= + ⋅q k
275- 325 K

20 10 m

K

m
kx -3

� �
2500

where ′′qx  will have units W/m
2
 if k has units W/m⋅K.  The heat fluxes for each system follow.

Thermal conductivity    Heat flux

Material Table      k(W/m⋅K) ′′q  kW / mx
2� �

(a)  Pure Aluminum A-1 237 593 <
(b)  Plain carbon steel A-1 60.5 151
(c)  AISI 316, S.S. A-1 13.4 33.5
(d)  Pyroceram A-2 3.98 9.95
(e)  Teflon A-3 0.35 0.88
(f)  Concrete A-3 1.4 3.5

COMMENTS:  Recognize that the thermal conductivity of these solid materials varies by more than
two orders of magnitude.



PROBLEM 2.16

KNOWN:  Different thicknesses of three materials:  rock, 18 ft; wood, 15 in; and fiberglass
insulation, 6 in.

FIND:  The insulating quality of the materials as measured by the R-value.

PROPERTIES:  Table A-3 (300K):

Material Thermal
conductivity, W/m⋅K

Limestone 2.15
Softwood 0.12
Blanket (glass, fiber 10 kg/m3) 0.048

ANALYSIS:  The R-value, a quantity commonly used in the construction industry and building
technology, is defined as

R
L in

k Btu in / h ft F2
≡

⋅ ⋅ ⋅

� �
� �$

.

The R-value can be interpreted as the thermal resistance of a 1 ft
2
 cross section of the material.  Using

the conversion factor for thermal conductivity between the SI and English systems, the R-values are:

Rock, Limestone, 18 ft:

( ) 12

in
18 ft 12

ftR= 14.5 Btu/h ft F
W Btu/h ft F in

2.15 0.5778 12
m K W/m K ft

−×
= ⋅ ⋅

⋅ ⋅× ×
⋅ ⋅

$

$

Wood, Softwood, 15 in:

R =
15 in

0.12
W

m K
Btu / h ft F

W / m K
in
ft

 Btu / h ft F2

⋅
× ⋅ ⋅

⋅
×

= ⋅ ⋅
−

0 5778 12

18
1

.
$

$� �

Insulation, Blanket, 6 in:

R =
6 in

0.048
W

m K
Btu / h ft F

W / m K
in
ft

 Btu / h ft F2

⋅
× ⋅ ⋅

⋅
×

= ⋅ ⋅
−

0 5778 12

18
1

.
$

$� �

COMMENTS:  The R-value of 19 given in the advertisement is reasonable.



PROBLEM 2.17

KNOWN:  Electrical heater sandwiched between two identical cylindrical (30 mm dia. × 60 mm

length) samples whose opposite ends contact plates maintained at To.

FIND:  (a) Thermal conductivity of SS316 samples for the prescribed conditions (A) and their
average temperature, (b) Thermal conductivity of Armco iron sample for the prescribed conditions
(B), (c) Comment on advantages of experimental arrangement, lateral heat losses, and conditions for

which  ∆T1 ≠ ∆T2.

SCHEMATIC:

ASSUMPTIONS:  (1) One-dimensional heat transfer in samples, (2) Steady-state conditions, (3)
Negligible contact resistance between materials.

PROPERTIES:  Table A.2, Stainless steel 316 T = 400 K  k  W / m K;ss� �: .= ⋅152  Armco iron

T = 380 K  k  W / m K.iron� �: .= ⋅716

ANALYSIS:  (a) For Case A recognize that half the heater power will pass through each of the
samples which are presumed identical.  Apply Fourier’s law to a sample

q = kA
T

xc
∆
∆

k =
q x

A T

V 0.353A  m

0.030 m C
 W / m K.

c

∆
∆

=
× ×

×
= ⋅

05 100 0 015

4 250
150

2

. .

/ .
.

� �

� �π $

<

The total temperature drop across the length of the sample is ∆T1(L/∆x) = 25°C (60 mm/15 mm) =

100°C.  Hence, the heater temperature is Th = 177°C.  Thus the average temperature of the sample is

T = T T C = 400 K

.
o h+ = °� � / 2 127 <

We compare the calculated value of k with the tabulated value (see above) at 400 K and note the good
agreement.

(b) For Case B,  we assume that the thermal conductivity of the SS316 sample is the same as that
found in Part (a).  The heat rate through the Armco iron sample is

Continued …..



PROBLEM 2.17 (CONT.)

q q q V 0.601A 15.0 W / m K
0.030 m C

0.015 m
q W = 49.5 W

iron heater ss

iron

= − = × − ⋅ × × °

= −

100
4

15 0

601 10 6

2π� �

� �

.

. .

where

q k A T xss ss c 2 2= ∆ ∆/ .

Applying Fourier’s law to the iron sample,

k
q x

A T

 W 0.015 m

0.030 m C
 W / m K.iron

iron 2

c 2

= = ×
× °

= ⋅∆
∆

49 5

4 15 0
70 02

.

/ .
.

π� �
<

The total drop across the iron sample is 15°C(60/15) = 60°C; the heater temperature is (77 + 60)°C =
137°C.  Hence the average temperature of the iron sample is

T = 137 +  77 C / 2 = 107 C = 380 K.� �° ° <

We compare the computed value of k with the tabulated value (see above) at 380 K and note the good
agreement.

(c) The principal advantage of having two identical samples is the assurance that all the electrical
power dissipated in the heater will appear as equivalent heat flows through the samples.  With only
one sample, heat can flow from the backside of the heater even though insulated.

Heat leakage out the lateral surfaces of the cylindrically shaped samples will become significant when
the sample thermal conductivity is comparable to that of the insulating material.  Hence, the method is
suitable for metallics, but must be used with caution on nonmetallic materials.

For any combination of materials in the upper and lower position, we expect ∆T1 = ∆T2.  However, if
the insulation were improperly applied along the lateral surfaces, it is possible that heat leakage will

occur, causing ∆T1 ≠ ∆T2.



PROBLEM 2.18

KNOWN:  Comparative method for measuring thermal conductivity involving two identical samples
stacked with a reference material.

FIND:  (a) Thermal conductivity of test material and associated temperature, (b) Conditions for
which ∆ ∆T Tt,1 t,2≠

SCHEMATIC:

ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional heat transfer through samples
and reference material, (3) Negligible thermal contact resistance between materials.

PROPERTIES:  Table A.2, Armco iron T = 350 K   k  W / m K.r� �: .= ⋅69 2

ANALYSIS:  (a) Recognizing that the heat rate through the samples and reference material, all of the
same diameter, is the same, it follows from Fourier’s law that

k
T

x
k

T

x
k

T

xt
t,1

r
r

t
t,2∆

∆
∆
∆

∆
∆

= =

k k
T

T
 W / m K

2.49 C

3.32 C
 W / m K.t r

r

t

= = ⋅ °
°

= ⋅∆
∆

69 2 519. . <

We should assign this value a temperature of 350 K. <

(b) If the test samples are identical in every respect, ∆Tt,1 ≠ ∆Tt,2 if the thermal conductivity is highly
dependent upon temperature.  Also, if there is heat leakage out the lateral surface, we can expect

∆Tt,2 < ∆Tt,1.  Leakage could be influential, if the thermal conductivity of the test material were less
than an order of magnitude larger than that of the insulating material.



PROBLEM 2.19

KNOWN:  Identical samples of prescribed diameter, length and density initially at a uniform

temperature Ti, sandwich an electric heater which provides a uniform heat flux ′′qo  for a period of

time ∆to.  Conditions shortly after energizing and a long time after de-energizing heater are
prescribed.

FIND:  Specific heat and thermal conductivity of the test sample material.  From these properties,
identify type of material using Table A.1 or A.2.

SCHEMATIC:

ASSUMPTIONS:  (1) One dimensional heat transfer in samples, (2) Constant properties, (3)
Negligible heat loss through insulation, (4) Negligible heater mass.

ANALYSIS:  Consider a control volume about the samples
and heater, and apply conservation of energy over the time
interval from t = 0 to ∞

E E E = E Ein out f i− = −∆

P t Mc T To p i∆ − = ∞ −0 � �

where energy inflow is prescribed by the Case A power condition and the final temperature Tf  by

Case B. Solving for cp,

c
P t

M T T

 W 120 s

2 3965 kg / m m  m 33.50 - 23.00 C
p

o

i
3 2

=
∞ −

= ×
× × × °

∆
� � � �

15

0 060 4 0 0102π . / .

c  J / kg Kp = ⋅765 <

where M = ρV = 2ρ(πD
2
/4)L is the mass of both samples.  For Case A, the transient thermal response

of the heater is given by

Continued …..



PROBLEM 2.19 (Cont.)

T t T q
t

c k

k =
t

c

q

T t T

o i o
p

p

o

o i

� �

� �

− = ′′
�

�
�
�

�

	





′′
−

�
�
�

�
	



2

2

1 2

2

πρ

πρ

/

k =
30 s

3965 kg / m  J / kg K
 W / m

24.57 -  23.00 C
 W / m K3

2

π× × ⋅
×

°
�
�
�

�
	

 = ⋅

765
2 2653

36 0

2

� �
. <

where

′′ = = =
×

=q
P

2A

P

2 D

 W

2 0.060 m
 W / mo

s 2 2 2
2

π π/ /
.

4

15

4
2653

� � � �

With the following properties now known,

ρ = 3965 kg/m
3

cp = 765 J/kg⋅K k = 36 W/m⋅K

entries in Table A.1 are scanned to determine whether these values are typical of a metallic material.
Consider the following,

•  metallics with low ρ generally have higher thermal conductivities,
 
•  specific heats of both types of materials are of similar magnitude,
 
•  the low k value of the sample is typical of poor metallic conductors which generally have

much higher specific heats,
 
•  more than likely, the material is nonmetallic.

From Table A.2, the second entry, polycrystalline aluminum oxide, has properties at 300 K

corresponding to those found for the samples. <



PROBLEM 2.20

KNOWN:  Temperature distribution, T(x,y,z), within an infinite, homogeneous body at a given
instant of time.

FIND:  Regions where the temperature changes with time.

SCHEMATIC:

ASSUMPTIONS:  (1) Constant properties of infinite medium and (2) No internal heat generation.

ANALYSIS:  The temperature distribution throughout the medium, at any instant of time, must
satisfy the heat equation.  For the three-dimensional cartesian coordinate system, with constant
properties and no internal heat generation, the heat equation, Eq. 2.15, has the form

∂
∂

∂
∂

∂
∂ α

∂
∂

2 2 2 1T

 x

T

 y

T

 z

 T

 t2 2 2
+ + = . (1)

If T(x,y,z) satisfies this relation, conservation of energy is satisfied at every point in the medium.
Substituting T(x,y,z) into the Eq. (1), first find the gradients, ∂T/∂x, ∂T/∂y, and ∂T/∂z.

∂
∂

∂
∂

∂
∂ α

∂
∂ x

x - y
 y

y - x + 2z
 z

z + 2y
 T

 t
2 4 2

1
� � � � � �+ − + = .

Performing the differentiations,

2 4 2
1− + =
α

∂
∂
 T

 t
.

Hence,

∂
∂
 T

 t
= 0

which implies that, at the prescribed instant, the temperature is everywhere independent of time.

COMMENTS:  Since we do not know the initial and boundary conditions, we cannot determine the
temperature distribution, T(x,y,z), at any future time.  We can only determine that, for this special
instant of time, the temperature will not change.



PROBLEM 2.21

KNOWN:  Diameter D, thickness L and initial temperature Ti of pan.  Heat rate from stove to bottom

of pan.  Convection coefficient h and variation of water temperature T∞(t) during Stage 1.

Temperature TL of pan surface in contact with water during Stage 2.

FIND:  Form of heat equation and boundary conditions associated with the two stages.

SCHEMATIC:

ASSUMPTIONS:  (1) One-dimensional conduction in pan bottom, (2) Heat transfer from stove is
uniformly distributed over surface of pan in contact with the stove, (3) Constant properties.

ANALYSIS:

Stage 1

Heat Equation:
2

2
T 1 T

tx α
∂ ∂=

∂∂

Boundary Conditions: ( )
o

o 2x 0

qT
k q

x D / 4π=

∂ ′′− = =
∂

( ) ( )
x L

T
k h T L, t T t

x ∞
=

∂  − = − ∂

Initial Condition: ( ) iT x,0 T=

Stage 2

Heat Equation:
2

2
d T

0
dx

=

Boundary Conditions: o
x 0

dT
k q

dx =
′′− =

( ) LT L T=

COMMENTS:  Stage 1 is a transient process for which T∞(t) must be determined separately.  As a
first approximation, it could be estimated by neglecting changes in thermal energy storage by the pan
bottom and assuming that all of the heat transferred from the stove acted to increase thermal energy

storage within the water.  Hence, with q ≈ Mcp d T∞/dt, where M and cp are the mass and specific

heat of the water in the pan, T∞(t) ≈ (q/Mcp) t.



PROBLEM 2.22

KNOWN:  Steady-state temperature distribution in a cylindrical rod having uniform heat generation

of � .q  W / m1
3= ×5 107

FIND:  (a) Steady-state centerline and surface heat transfer rates per unit length, ′qr .   (b) Initial time
rate of change of the centerline and surface temperatures in response to a change in the generation rate

from � � .q  to q  =  10  W / m1 2
8 3

SCHEMATIC:

ASSUMPTIONS:  (1) One-dimensional conduction in the r direction, (2) Uniform generation, and

(3) Steady-state for � .q  =  5 10  W / m1
7 3×

ANALYSIS:  (a) From the rate equations for cylindrical coordinates,

′′ = −q k
 T

 r
          q = -kA

  T

 rr r
∂
∂

∂
∂

.

Hence,

q k 2 rL
 T

 rr = − π ∂
∂

� �

or

′ = −q kr
 T

 rr 2π ∂
∂

where ∂T/∂r may be evaluated from the prescribed temperature distribution, T(r).

At r = 0, the gradient is (∂T/∂r) = 0.  Hence, from Eq. (1) the heat rate is

′ =qr 0 0� � . <

At r = ro, the temperature gradient is

∂
∂

∂
∂

 T

 r

K

m
r m

 T

 r
 K / m.

r=r
2 o

r=r

o

o

�
��

= − ×�
��

�
��

= − ×

�
��

= − ×

2 4 167 10 2 4167 10 0 025

0 208 10

5 5

5

. . .

.

� � 	 
� �

Continued …..



PROBLEM 2.22(Cont.)

Hence, the heat rate at the outer surface (r = ro) per unit length is

′ = − ⋅ − ×q r  W / m K m  K / mr o� � � �2 30 0 025 0 208 105π . .

′ = ×q r  W / m.r o� � 0 980 105. <
(b) Transient (time-dependent) conditions will exist when the generation is changed, and for the
prescribed assumptions, the temperature is determined by the following form of the heat equation, Eq.
2.20

1

r
 

 r
kr

 T

 r
q c

 T

 t2 p
∂
∂

∂
∂

ρ ∂
∂

�
��

�
��

+ =�

Hence

∂
∂ ρ

∂
∂

∂
∂

 T

 t c r
 

 r
kr

 T

 r
q

p
2= �

��
�
��

+�
��

�
��

1 1
� .

However, initially (at t = 0), the temperature distribution is given by the prescribed form, T(r) = 800 -

4.167×10
5
r
2
, and

1

r
 

 r
kr

 T

 r

k

r  r
r -8.334 10 r5∂

∂
∂
∂

∂
∂

�
��

�
��

= × ⋅	 


= − × ⋅k

r
r16 668 105.	 


= ⋅ ×30 W / m K -16.668 10  K / m5 2

= − ×5 107  W / m  the original q = q3
1� � .� �

Hence, everywhere in the wall,

∂
∂
 T

 t  kg / m  J / kg K
 W / m

3
3=

× ⋅
− × +1

1100 800
5 10 107 8

or

∂
∂
 T

 t
 K / s.= 56 82. <

COMMENTS:  (1) The value of (∂T/∂t) will decrease with increasing time, until a new steady-state
condition is reached and once again (∂T/∂t) = 0.

(2) By applying the energy conservation requirement, Eq. 1.11a, to a unit length of the rod for the

steady-state condition, � � .′ − ′ + ′ =E E Ein out gen 0   Hence ′ − ′ = −q q r q rr r o 1 o
20� � � � 	 
� .π



PROBLEM 2.23

KNOWN:  Temperature distribution in a one-dimensional wall with prescribed thickness and thermal
conductivity.

FIND:  (a) The heat generation rate, �q,  in the wall,  (b) Heat fluxes at the wall faces and relation to
�q.

SCHEMATIC:

ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional heat flow, (3) Constant
properties.

ANALYSIS:  (a) The appropriate form of the heat equation for steady-state, one-dimensional
conditions with constant properties is Eq. 2.15 re-written as

�q = -k
d

dx

dT

dx
�
��

�
��

Substituting the prescribed temperature distribution,

�q = -k
d

dx

d

dx
a + bx k

d

dx
bx bk2

� �
�
��

�
��

= − = −2 2

� .q = -2 -2000 C / m  W / m K = 2.0 10  W / m2 5 3$

� �× ⋅ ×50 <
(b) The heat fluxes at the wall faces can be evaluated from Fourier’s law,

′′ = − �
��

q x k 
dT

dxx
x

	 
 .

Using the temperature distribution T(x) to evaluate the gradient, find

′′ = − = −q x k 
d

dx
a + bx kbx.x

2	 
 2

The fluxes at x = 0 and x = L are then

′′ =qx 0 0	 
 <

′′ = − × ⋅ ×q L kbL = -2 50W / m K -2000 C / m mx
2	 
 � �2 0 050$ .

′′ =q L  W / mx
2	 
 10 000, . <

COMMENTS:  From an overall energy balance on the wall, it follows that, for a unit area,
� � � �

�
,

.
. .

E E E           q q L qL = 0

q =
q L q

L

 W / m

m
W / m

in out g x x

x x
2

3

− + = ′′ − ′′ +

′′ − ′′
= − = ×

0 0

0 10 000 0

0 050
2 0 105

	 
 	 


	 
 	 




PROBLEM 2.24

KNOWN:  Wall thickness, thermal conductivity, temperature distribution, and fluid temperature.

FIND:  (a) Surface heat rates and rate of change of wall energy storage per unit area, and (b)
Convection coefficient.

SCHEMATIC:

ASSUMPTIONS:  (1) One-dimensional conduction in x, (2) Constant k.

ANALYSIS:  (a) From Fourier’s law,

′′ = − = − ⋅q k
 T

 x
x kx

∂
∂

200 60� �

′′ = ′′ = ° ×
⋅

=q q
C

m

W

m K
 W / min x=0

2200 1 200 <

′′ = ′′ = − × ° × ⋅q q C / m  1 W / m K = 182 W / mout x=L
2200 60 0 3. .� � <

Applying an energy balance to a control volume about the wall, Eq. 1.11a,

� � �′′ − ′′ = ′′E E Ein out st

� .′′ = ′′ − ′′ =E q q  W / mst in out
218 <

(b)  Applying a surface energy balance at x = L,

′′ = − ∞q h T L Tout � �

h =
q

T L T
 W / m

142.7 -100 C
out

2′′
−

=
°∞� � � �

182

h = 4.3 W / m K.2 ⋅ <
COMMENTS:  (1) From the heat equation,

(∂T/∂t) = (k/ρcp) ∂2
T/∂x

2
 = 60(k/ρcp),

it follows that the temperature is increasing with time at every point in the wall.

(2) The value of h is small and is typical of free convection in a gas.



PROBLEM 2.25

KNOWN:  Analytical expression for the steady-state temperature distribution of a plane wall
experiencing uniform volumetric heat generation q�  while convection occurs at both of its surfaces.

FIND:  (a) Sketch the temperature distribution, T(x), and identify significant physical features, (b)
Determine q� , (c) Determine the surface heat fluxes, ( )xq L′′ −  and ( )xq L ;′′ +  how are these fluxes

related to the generation rate; (d) Calculate the convection coefficients at the surfaces x = L and x =
+L, (e) Obtain an expression for the heat flux distribution, ( )xq x ;′′  explain significant features of the

distribution; (f) If the source of heat generation is suddenly deactivated ( q�  = 0), what is the rate of
change of energy stored at this instant; (g) Determine the temperature that the wall will reach
eventually with q 0;=�  determine the energy that must be removed by the fluid per unit area of the wall
to reach this state.

SCHEMATIC:

ASSUMPTIONS:  (1) Steady-state conditions, (2) Uniform volumetric heat generation, (3) Constant
properties.

ANALYSIS:  (a) Using the analytical expression in the Workspace of IHT, the temperature
distribution appears as shown below.  The significant features include (1) parabolic shape, (2)
maximum does not occur at the mid-plane, T(-5.25 mm) = 83.3°C, (3) the gradient at the x = +L
surface is greater than at x = -L.  Find also that T(-L) = 78.2°C and T(+L) = 69.8°C for use in part (d).

(b) Substituting the temperature distribution expression into the appropriate form of the heat diffusion
equation, Eq. 2.15, the rate of volumetric heat generation can be determined.

( ) 2d dT q
0 where T x a bx cx

dx dx k
  + = = + +  

�

( ) ( )d q q
0 b 2cx 0 2c 0

dx k k
+ + + = + + =

� �

Continued …..
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PROBLEM 2.25 (Cont.)

( )4 2 5 3q 2ck 2 2 10 C / m 5 W / m K 2 10 W / m= − = − − × ° ⋅ = ×� <

(c) The heat fluxes at the two boundaries can be determined using Fourier’s law and the temperature
distribution expression.

( ) ( ) 2
x

dT
q x k where T x a bx cx

dx
′′ = − = + +

( ) [ ] [ ]x x Lq L k 0 b 2cx b 2cL k=−′′ − = − + + = − −

( ) ( )4 2 2
xq L 210 C / m 2 2 10 C / m 0.020m 5 W / m K 2950 W / m′′ − = − − ° − − × ° × ⋅ = − 

  
<

( ) ( ) 2
xq L b 2cL k 5050 W / m′′ + = − + = + <

From an overall energy balance on the wall as shown in the sketch below, in out genE E E 0,− + =� � �

( ) ( )
?

2 2 2
x xq L q L 2qL 0 or 2950 W / m 5050 W / m 8000 W / m 0′′ ′′+ − − + + = − − + =�

where 5 3 22qL 2 2 10 W / m 0.020 m 8000 W / m ,= × × × =�  so the equality is satisfied

(d) The convection coefficients, hl and hr, for the left- and right-hand boundaries (x = -L and x= +L,
respectively), can be determined from the convection heat fluxes that are equal to the conduction
fluxes at the boundaries.  See the surface energy balances in the sketch above.  See also part (a) result
for T(-L) and T(+L).

( )cv, xq q L′′ ′′= −"

( ) [ ] 2 2
l l lh T T L h 20 78.2 K 2950 W / m h 51W / m K∞ − − = − = − = ⋅  <

( )cv,r xq q L′′ ′′= +

( ) [ ] 2 2
r r rh T L T h 69.8 20 K 5050 W / m h 101W / m K∞ + − = − = + = ⋅  <

(e) The expression for the heat flux distribution can be obtained from Fourier’s law with the
temperature distribution

( ) [ ]x
dT

q x k k 0 b 2cx
dx

′′ = − = − + +

( ) ( )4 2 5
xq x 5W / m K 210 C / m 2 2 10 C / m x 1050 2 10 x ′′ = − ⋅ − ° + − × ° = + ×  

<

Continued …..



PROBLEM 2.25 (Cont.)

The distribution is linear with the x-coordinate.  The maximum temperature will occur at the location

where ( )x maxq x 0,′′ =

2
3

max 5 3
1050 W / m

x 5.25 10 m 5.25mm
2 10 W / m

−= − = − × = −
×

<

(f) If the source of the heat generation is suddenly deactivated so that q�  = 0, the appropriate form of
the heat diffusion equation for the ensuing transient conduction is

p
T T

k c
x x t

ρ∂ ∂ ∂  = ∂ ∂ ∂ 
At the instant this occurs, the temperature distribution is still T(x) = a + bx + cx

2
.  The right-hand term

represents the rate of energy storage per unit volume,

[ ] [ ] ( )4 2 5 3
stE k 0 b 2cx k 0 2c 5 W / m K 2 2 10 C / m 2 10 W / m

x

∂′′ = + + = + = ⋅ × − × ° = − ×
∂

�   <

(g) With no heat generation, the wall will eventually (t → ∞) come to equilibrium with the fluid,

T(x,∞) = T∞ = 20°C.  To determine the energy that must be removed from the wall to reach this state,
apply the conservation of energy requirement over an interval basis, Eq.  1.11b.  The “initial” state is
that corresponding to the steady-state temperature distribution, Ti, and the “final” state has Tf = 20°C.

We’ve used T∞ as the reference condition for the energy terms.

in out st f i inE E E E E with E 0.′′ ′′ ′′ ′′ ′′ ′′− = ∆ = − =

( ) ( )L
out p f p iL

E c 2L T T c T T dxρ ρ +
∞ ∞−

′′− = − − −∫
LL 2 2 3

out p pL L
E c a bx cx T dx c ax bx / 2 cx / 3 T xρ ρ

++
∞ ∞− −

   ′′ = + + − = + + −      ∫
3

out pE c 2aL 0 2cx / 3 2T Lρ ∞ ′′ = + + −  

( )3 4 2CoutE 2600kg / m 800J / kg K 2 82 C 0.020m 2 2 10 / m °
′′ = × ⋅ × ° × + − ×

( ) ( )30.020m / 3 2 20 C 0.020m


− °

6 2
outE 4.94 10 J / m′′ = × <

COMMENTS:  (1) In part (a), note that the temperature gradient is larger at x = + L than at x
= - L.  This is consistent with the results of part (c) in which the conduction heat fluxes are
evaluated.

Continued …..



PROBLEM 2.25 (Cont.)

(2) In evaluating the conduction heat fluxes, ( )xq x ,′′  it is important to recognize that this flux

is in the positive x-direction.  See how this convention is used in formulating the energy
balance in part (c).

(3) It is good practice to represent energy balances with a schematic, clearly defining the
system or surface, showing the CV or CS with dashed lines, and labeling the processes.
Review again the features in the schematics for the energy balances of parts (c & d).

(4) Re-writing the heat diffusion equation introduced in part (b) as

d dT
k q 0

dx dx
 − − + =  

�

recognize that the term in parenthesis is the heat flux.  From the differential equation, note
that if the differential of this term is a constant ( )q / k ,�  then the term must be a linear function

of the x-coordinate.  This agrees with the analysis of part (e).

(5) In part (f), we evaluated stE ,�  the rate of energy change stored in the wall at the instant the

volumetric heat generation was deactivated.  Did you notice that 5 3
stE 2 10 W / m= − ×�  is the

same value of the deactivated q?�   How do you explain this?



PROBLEM 2.26

KNOWN:  Steady-state conduction with uniform internal energy generation in a plane wall;
temperature distribution has quadratic form.  Surface at x=0 is prescribed and boundary at x = L is
insulated.

FIND:  (a) Calculate the internal energy generation rate, q� , by applying an overall energy balance to
the wall, (b) Determine the coefficients a, b, and c, by applying the boundary conditions to the
prescribed form of the temperature distribution; plot the temperature distribution and label as Case 1,
(c) Determine new values for a, b, and c for conditions when the convection coefficient is halved, and
the generation rate remains unchanged;  plot the temperature distribution and label as Case 2; (d)
Determine new values for a, b, and c for conditions when the generation rate is doubled, and the

convection coefficient remains unchanged (h = 500 W/m
2⋅K); plot the temperature distribution and

label as Case 3.

SCHEMATIC:

ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional conduction with constant
properties and uniform internal generation, and (3) Boundary at x = L is adiabatic.

ANALYSIS:  (a) The internal energy generation rate can be calculated from an overall energy balance
on the wall as shown in the schematic below.

in out gen in convE E E 0 where E q′′ ′′ ′′ ′′ ′′− + = =� � � �

( )oh T T q L 0∞ − + =� (1)

( ) ( )2 6 3
oq h T T / L 500 W / m K 20 120 C / 0.050 m 1.0 10 W / m∞= − − = − ⋅ − ° = ×� <

(b) The coefficients of the temperature distribution, T(x) = a + bx + cx
2
, can be evaluated by applying

the boundary conditions at x = 0 and x = L.  See Table 2.1 for representation of the boundary
conditions, and the schematic above for the relevant surface energy balances.

Boundary condition at x = 0, convection surface condition

( ) ( )in out conv x x
x 0

dT
E E q q 0 0 where q 0 k

dx =

′′ ′′ ′′ ′′ ′′− = − = = − 
� �

( ) ( )o x 0h T T k 0 b 2cx 0∞ =
 − − − + + = 

Continued …..



PROBLEM 2.26 (Cont.)

( ) ( )2 4
ob h T T / k 500 W / m K 20 120 C / 5 W / m K 1.0 10 K / m∞= − − = − ⋅ − ° ⋅ = × <

Boundary condition at x = L, adiabatic or insulated surface

( ) ( )in out x x
x L

dT
E E q L 0 where q L k

dx =

′′ ′′− = − = = − 
� �

[ ]x Lk 0 b 2cx 0=+ + = (3)

( )4 5 2c b / 2L 1.0 10 K / m / 2 0.050m 1.0 10 K / m= − = − × × = − × <
Since the surface temperature at x = 0 is known, T(0) = To = 120°C, find

( )T 0 120 C a b 0 c 0 or a 120 C= ° = + ⋅ + ⋅ = °      (4) <
Using the foregoing coefficients with the expression for T(x) in the Workspace of IHT, the
temperature distribution can be determined and is plotted as Case 1 in the graph below.

(c) Consider Case 2  when the convection coefficient is halved, h2 = h/2 = 250 W/m
2⋅K, 6q 1 10= ×�

W/m
3
 and other parameters remain unchanged except that oT 120 C.≠ °   We can determine a, b, and c

for the temperature distribution expression by repeating the analyses of parts (a) and (b).

Overall energy balance on the wall, see Eqs. (1,4)

6 3 2
oa T q L / h T 1 10 W / m 0.050m / 250 W / m K 20 C 220 C∞= = + = × × ⋅ + ° = °� <

Surface energy balance at x = 0, see Eq. (2)

( ) ( )2 4
ob h T T / k 250 W / m K 20 220 C / 5 W / m K 1.0 10 K / m∞= − − = − ⋅ − ° ⋅ = × <

Surface energy balance at x = L, see Eq. (3)

( )4 5 2c b / 2L 1.0 10 K / m / 2 0.050m 1.0 10 K / m= − = − × × = − × <
The new temperature distribution, T2 (x), is plotted as Case 2 below.

(d) Consider Case 3 when the internal energy volumetric generation rate is doubled,
6 3

3q 2q 2 10 W / m ,= = ×� �  h = 500 W/m
2⋅K, and other parameters remain unchanged except that

oT 120 C.≠ °   Following the same analysis as part (c), the coefficients for the new temperature

distribution, T (x), are

4 5 2a 220 C b 2 10 K / m c 2 10 K / m= ° = × = − × <
and the distribution is plotted as Case 3 below.

Continued …..



PROBLEM 2.26 (Cont.)

COMMENTS:  Note the following features in the family of temperature distributions plotted above.
The temperature gradients at x = L are zero since the boundary is insulated (adiabatic) for all cases.
The shapes of the distributions are all quadratic, with the maximum temperatures at the insulated
boundary.

By halving the convection coefficient for Case 2, we expect the surface temperature To to increase
relative to the Case 1 value, since the same heat flux is removed from the wall ( )qL�  but the

convection resistance has increased.

By doubling the generation rate for Case 3, we expect the surface temperature To to increase relative
to the Case 1 value, since double the amount of heat flux is removed from the wall ( )2qL .�

Can you explain why To is the same for Cases 2 and 3, yet the insulated boundary temperatures are
quite different?  Can you explain the relative magnitudes of T(L) for the three cases?

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 0

W a ll  p o s i tio n , x (m m )

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

6 0 0

7 0 0

8 0 0

Te
m

p
er

a
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C
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1 .  h  =  5 0 0  W /m ^2 .K ,   q d o t =  1 e 6  W /m ^3
2 .  h  =  2 5 0  W /m ^2 .K ,   q d o t =  1 e 6  W /m ^3
3 .  h  =  5 0 0  W /m ^2 .K ,   q d o t =  2 e 6  W /m ^3



PROBLEM 2.27

KNOWN:  Temperature distribution and distribution of heat generation in central layer of a solar
pond.

FIND:  (a) Heat fluxes at lower and upper surfaces of the central layer, (b) Whether conditions are
steady or transient, (c) Rate of thermal energy generation for the entire central layer.

SCHEMATIC:

ASSUMPTIONS:  (1) Central layer is stagnant, (2) One-dimensional conduction, (3) Constant
properties

ANALYSIS:  (a) The desired fluxes correspond to conduction fluxes in the central layer at the lower
and upper surfaces.  A general form for the conduction flux is

′′ = − = − +�
��

�
��

q k
 T

 x
k

A

ka
e Bcond

-ax∂
∂

.

Hence,

′′ = ′′ = − +�
��

�
��

′′ = ′′ = − +�
��

�
��

q q k
A

ka
e B    q q k

A

ka
Bl cond x=L

-aL
u cond x=0� � � � . <

(b) Conditions are steady if ∂T/∂t = 0.  Applying the heat equation,

∂
∂ α

∂
∂ α

∂
∂

2 1 1T

 x

q

k

 T

 t
          -

A

k
e

A

k
e

 T

 t2
-ax -ax+ = + =

�

Hence conditions are steady since

∂T/∂t = 0 (for all 0 ≤ × ≤ L). <
(c) For the central layer, the energy generation is

� �′′ = 		E q dx = A e  dxg
-ax

0

L

0

L

� .E
A

a
e  

A

a
e

A

a
eg

-ax -aL -aL

0

L

= − = − − = −1 1
 � 
 � <

Alternatively, from an overall energy balance,

′′ − ′′ + ′′ = ′′ = ′′ − ′′ = − ′′ − − ′′q q E           E q q q q2 1 g g 1 2 cond x=0 cond x=L
� �0 � � � �
 � 
 �

� .E k
A

ka
B k

A

ka
e B

A

a
eg

-aL -aL= +�
��

�
��

− +�
��

�
��

= −1
 �

COMMENTS:  Conduction is in the negative x-direction, necessitating use of minus signs in the
above energy balance.



PROBLEM 2.28

KNOWN:  Temperature distribution in a semi-transparent medium subjected to radiative flux.

FIND:  (a) Expressions for the heat flux at the front and rear surfaces, (b) Heat generation rate � ,q x� �
(c) Expression for absorbed radiation per unit surface area in terms of A, a, B, C, L, and k.

SCHEMATIC:

ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional conduction in medium, (3)
Constant properties, (4) All laser irradiation is absorbed and can be characterized by an internal
volumetric heat generation term � .q x� �
ANALYSIS:  (a) Knowing the temperature distribution, the surface heat fluxes are found using
Fourier’s law,

′′ = − �
��

�
��

= − − +�
��

�
��

q k
dT

dx
k -

A

ka
a e Bx 2

-ax� �

Front Surface, x=0: ′′ = − ⋅ +�
��

�
��

= − +�
��

�
��

q k +
A

ka
B

A

a
kBx 0 1� � <

Rear Surface, x=L: ′′ = − +�
��

�
��

= − +�
��

�
��

q L k +
A

ka
e B

A

a
e kBx

-aL -aL� � . <

(b)  The heat diffusion equation for the medium is

d

dx

dT

dx

q

k
     or     q = -k

d

dx

dT

dx
	

�

�

� + = 	


�
�

�

�
�0

� .q x k
d

dx

A

ka
e B Ae-ax -ax� � = − + +�

��
�
��

= <

(c)  Performing an energy balance on the medium,

� � �E E Ein out g− + = 0

recognize that �Eg  represents the absorbed irradiation.  On a unit area basis

� � � .′′ = − ′′ + ′′ = − ′′ + ′′ = + −E E E q q L
A

a
eg in out x x

-aL0 1� � � � � � <

Alternatively, evaluate � ′′Eg  by integration over the volume of the medium,

� � .′′ = = −� �E q x dx = Ae dx = -
A

a
e

A

a
eg 0

L -ax
0

L -ax L -aL� � � �
0

1



PROBLEM 2.29

KNOWN:  Steady-state temperature distribution in a one-dimensional wall of thermal

conductivity, T(x) = Ax
3
 + Bx

2
 + Cx + D.

FIND:  Expressions for the heat generation rate in the wall and the heat fluxes at the two wall
faces (x = 0,L).

ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional heat flow, (3)
Homogeneous medium.

ANALYSIS:  The appropriate form of the heat diffusion equation for these conditions is

d T

dx

q

k
     or     q = -k

d T

dx

2

2

2

2
+ =
�

� .0

Hence, the generation rate is

�q = -k
d

dx

dT

dx
k

d

dx
Ax Bx +  C +  02�

��
�
��

= − +3 2

�q = -k 6Ax +  2B <
which is linear with the coordinate x.  The heat fluxes at the wall faces can be evaluated from
Fourier’s law,

′′ = − = −q k
dT

dx
k 3Ax  +  2Bx +  Cx

2

using the expression for the temperature gradient derived above.  Hence, the heat fluxes are:

Surface x=0:

′′ = −q kCx 0� � <
Surface x=L:

′′ = −q L k 3AL  + 2BL + Cx
2� � . <

COMMENTS:  (1) From an overall energy balance on the wall, find

� � �

� �

�

′′ − ′′ + ′′ =

′′ − ′′ + ′′ = − − − + + ′′ =

′′ = − −

E E  E

q q L E kC k AL BL + C E

E AkL BkL.

in out g

x x g
2

g

g
2

0

0 3 2 0

3 2

� � � � � � � �

From integration of the volumetric heat rate, we can also find � ′′Eg  as

� �

�

′′ = +

′′ = − −

	 	E q x dx = -k 6Ax + 2B dx = -k 3Ax Bx

E AkL BkL.

g 0

L

0

L 2

0

L

g
2

� � 2

3 2



PROBLEM 2.30

KNOWN:   Plane wall with no internal energy generation.

FIND:   Determine whether the prescribed temperature distribution is possible; explain your
reasoning. With the temperatures T(0) = 0°C and T∞  = 20°C  fixed, compute and plot the

temperature T(L) as a function of the convection coefficient for the range 10 ≤ h ≤ 100 W/m2⋅K.

SCHEMATIC:

ASSUMPTIONS:  (1) One-dimensional conduction, (2) No internal energy generation, (3) Constant
properties,  (4) No radiation exchange at the surface x = L, and (5) Steady-state conditions.

ANALYSIS:  (a) Is the prescribed temperature distribution possible?  If so, the energy balance at the
surface x = L as shown above in the Schematic, must be satisfied.

( )in out x cvE E ? ?0 q L q ? ?0′′ ′′− = − =� � (1,2)

where the conduction and convection heat fluxes are, respectively,

( ) ( ) ( ) ( ) 2
x

x L

T L T 0dT
q L k k 4.5 W m K 120 0 C 0.18m 3000 W m

dx L=

−′′ = − = − = − ⋅ × − = −


$

( )[ ] ( )2 2
cvq h T L T 30 W m K 120 20 C 3000 W m∞′′ = − = ⋅ × − =$

Substituting the heat flux values into Eq. (2), find (-3000) - (3000) ≠ 0 and therefore, the temperature
distribution is not possible.

(b) With T(0) = 0°C and T∞  = 20°C, the temperature at the surface x = L, T(L), can be determined
from an overall energy balance on the wall as shown above in the Schematic,

( ) ( ) ( )[ ]in out x cv
T L T 0

E E 0 q (0) q 0 k h T L T 0
L

∞
−′′ ′′− = − = − − − =� �

( ) ( )24.5 W m K T L 0 C 0.18 m 30 W m K T L 20 C 0− ⋅ − − ⋅ − =   
   

$ $

T(L) = 10.9°C <
Using this same analysis, T(L) as a function of
the convection coefficient can be determined
and plotted.  We don’t expect T(L) to be
linearly dependent upon h.  Note that as h
increases to larger values, T(L) approaches
T∞ .  To what value will T(L) approach as h
decreases?
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PROBLEM 2.31

KNOWN:   Coal pile of prescribed depth experiencing uniform volumetric generation with
convection, absorbed irradiation and emission on its upper surface.

FIND:  (a) The appropriate form of the heat diffusion equation (HDE) and whether the prescribed
temperature distribution satisfies this HDE; conditions at the bottom of the pile, x = 0; sketch of the
temperature distribution with labeling of key features; (b) Expression for the conduction heat rate at
the location x = L; expression for the surface temperature Ts based upon a surface energy balance at x
= L; evaluate sT  and T(0) for the prescribed conditions; (c) Based upon typical daily averages for GS

and h, compute and plot sT  and T(0) for (1) h = 5 W/m2⋅K with 50 ≤ GS ≤ 500 W/m2,  (2) GS = 400

W/m2 with 5  ≤ h ≤ 50 W/m2⋅K.

SCHEMATIC:

ASSUMPTIONS:   (1)  One-dimensional conduction, (2) Uniform volumetric heat generation, (3)
Constant properties, (4) Negligible irradiation from the surroundings, and (5) Steady-state conditions.

PROPERTIES:  Table A.3, Coal (300K): k = 0.26 W/m.K

ANALYSIS:   (a) For one-dimensional, steady-state conduction with uniform volumetric heat
generation and constant properties the heat diffusion equation (HDE) follows from Eq. 2.16,

d dT q
0

dx dx k
  + =  

�
(1) <

Substituting the temperature distribution into the HDE, Eq. (1),

( )
2 2

s 2
qL x

T x T 1
2k L

 
 = + −
  

�
                             

2

2
d qL 2x q

0 0 ? ?0
dx 2k kL

  
+ − + =  

   

� �
(2,3)

we find that it does indeed satisfy the HDE for all values of x. <
From Eq. (2), note that the temperature distribution must be quadratic, with maximum value at x = 0.
At x = 0, the heat flux is

( )
2

x 2
x 0 x 0

dT qL 2x
q 0 k k 0 0 0

dx 2k L= =

  ′′ = − = − + − =      

�

so that the gradient at x = 0 is zero.  Hence, the
bottom is insulated.

(b) From an overall energy balance on the pile, the conduction heat flux at the surface must be

( )x gq L E qL′′ ′′= =� � <
Continued...



PROBLEM 2.31 (Cont.)

From a surface energy balance per unit area shown in the Schematic above,

in out gE E E 0− + =� � �                                 ( )x cv S,absq L q G E 0′′ ′′− + − =

( ) 4
s S sqL h T T 0.95G T 0εσ∞− − + − =� (4)

( )3 2 2 8 2 4 4
s s20 W m 1m 5 W m K T 298 K 0.95 400 W m 0.95 5.67 10 W m K T 0−× − ⋅ − + × − × × ⋅ =

sT  = 295.7 K =22.7°C <
From Eq. (2) with x = 0, find

( ) ( )222

s
30 W m 1mqL

T 0 T 22.7 C 61.1 C
2k 2 0.26 W m K

×
= + = + =

× ⋅
$ $

�
(5) <

where the thermal conductivity for coal was obtained from Table A.3.

(c) Two plots are generated using Eq. (4) and (5) for Ts and T(0), respectively; (1) with h = 5 W/m2⋅K
for 50 ≤ GS ≤ 500 W/m2 and (2) with GS = 400 W/m2 for 5 ≤ h ≤ 50 W/m2⋅K.
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From the T vs. h plot with GS = 400 W/m2, note that the convection coefficient does not have a major
influence on the surface or bottom coal pile temperatures.  From the T vs. GS plot with h = 5 W/m2⋅K,
note that the solar irradiation has a very significant effect on the temperatures.  The fact that Ts is less

than the ambient air temperature, T∞ , and, in the case of very low values of GS, below freezing, is a
consequence of the large magnitude of the emissive power E.

COMMENTS:  In our analysis we ignored irradiation from the sky, an environmental radiation effect

you’ll consider in Chapter 12.  Treated as large isothermal surroundings, Gsky = 4
skyTσ  where Tsky = -

30°C for very clear conditions and nearly air temperature for cloudy conditions.  For low GS

conditions we should consider Gsky, the effect of which will be to predict higher values for sT  and

T(0).



PROBLEM 2.32

KNOWN:  Cylindrical system with negligible temperature variation in the r,z directions.

FIND:  (a) Heat equation beginning with a properly defined control volume, (b) Temperature
distribution T(φ) for steady-state conditions with no internal heat generation and constant properties,
(c) Heat rate for Part (b) conditions.

SCHEMATIC:

ASSUMPTIONS:  (1) T is independent of r,z, (2) ∆r = (ro - ri) << ri.

ANALYSIS:  (a) Define the control volume as V = ridφ⋅∆r⋅L where L is length normal to page.
Apply the conservation of energy requirement, Eq. 1.11a,

� � � � �E E E E           q q qV = Vc
 T

 tin out g st +d− + = − +φ φ φ ρ ∂
∂

(1,2)

where q k r L
 T

r  
          q q

 
q d .

i
+dφ φ φ φ φ

∂
∂ φ

∂
∂ φ

φ= − ⋅ = +∆� � � � (3,4)

Eqs. (3) and (4) follow from Fourier’s law, Eq. 2.1, and from Eq. 2.7, respectively.  Combining Eqs.
(3) and (4) with Eq. (2) and canceling like terms, find

1

r  
k

 T

 
q = c

 T

 ti
2

∂
∂ φ

∂
∂ φ

ρ ∂
∂

�
��

�
	


+ � . (5) <

Since temperature is independent of r and z, this form agrees with Eq. 2.20.

(b)  For steady-state conditions with �q = 0,  the heat equation, (5), becomes

d

d
k

dT

dφ φ
�
�


�
��

= 0. (6)

With constant properties, it follows that dT/dφ is constant which implies T(φ) is linear in φ.  That is,

dT

d

T T
T T      or     T T T T2 1

2
2 1 1 2 1φ φ φ π

φ
π

φ= −
−

= + − = + −
1

1 1� � � � � � . (7,8) <

(c)  The heat rate for the conditions of Part (b) follows from Fourier’s law, Eq. (3), using the
temperature gradient of Eq. (7).  That is,

q k r L
r

T T k
r r

r
L T T

i
2 1

o i

i
2 1φ π π

= − ⋅ + −�
�


�
��

= − −�
�



�
�
� −∆� � � � � �1 1

. (9) <

COMMENTS:  Note the expression for the temperature gradient in Fourier’s law, Eq. (3), is

∂T/ri∂φ not ∂T/∂φ.  For the conditions of Parts (b) and (c), note that qφ is independent of φ;
this is first indicated by Eq. (6) and confirmed by Eq. (9).



PROBLEM 2.33

KNOWN:  Heat diffusion with internal heat generation for one-dimensional cylindrical,
radial coordinate system.

FIND:  Heat diffusion equation.

SCHEMATIC:

ASSUMPTIONS:  (1) Homogeneous medium.

ANALYSIS:  Control volume has volume, V = A dr = 2 r dr 1,r ⋅ ⋅ ⋅π  with unit thickness
normal to page.  Using the conservation of energy requirement, Eq. 1.11a,

� � � �

� .

E E E E

q q qV = Vc
 T

 t

in out gen st

r r+dr p

− + =

− + ρ ∂
∂

Fourier’s law, Eq. 2.1, for this one-dimensional coordinate system is

q kA
 T

 r
k 2 r 1

 T

 rr r= − = − × ⋅ ×∂
∂

π ∂
∂

.

At the outer surface, r+dr, the conduction rate is

( )r+dr r r r
 T

q q q dr=q k 2 r dr.
 r  r  r

∂ ∂ ∂π
∂ ∂ ∂

 = + + − ⋅ ⋅  

Hence, the energy balance becomes

r r p
 T  T

q q k2 r dr q 2 rdr= 2 rdr c
 r  r  t

∂ ∂ ∂π π ρ π
∂ ∂ ∂

  − + − + ⋅ ⋅ ⋅    
�

Dividing by the factor 2πr dr, we obtain

p
1  T  T

kr q= c .
r  r  r  t

∂ ∂ ∂ρ
∂ ∂ ∂

  +  
� <

COMMENTS:  (1) Note how the result compares with Eq. 2.20 when the terms for the φ,z
coordinates are eliminated.  (2) Recognize that we did not require �q  and k to be independent
of r.



PROBLEM 2.34

KNOWN:  Heat diffusion with internal heat generation for one-dimensional spherical, radial
coordinate system.

FIND:  Heat diffusion equation.

SCHEMATIC:

ASSUMPTIONS:  (1) Homogeneous medium.

ANALYSIS:  Control volume has the volume, V = Ar ⋅ dr = 4πr
2
dr.  Using the conservation

of energy requirement, Eq. 1.11a,

� � � �

� .

E E E E

q q qV = Vc
 T

 t

in out gen st

r r+dr p

− + =

− + ρ ∂
∂

Fourier’s law, Eq. 2.1, for this coordinate system has the form

q kA
 T

 r
k 4 r

 T

 rr r
2= − = − ⋅ ⋅∂

∂
π ∂

∂
.

At the outer surface, r+dr, the conduction rate is

( ) 2
r+dr r r r

 T
q q q dr q k 4 r dr.

 r  r  r

∂ ∂ ∂π
∂ ∂ ∂

 = + = + − ⋅ ⋅  

Hence, the energy balance becomes

2 2 2
r r p

 T  T
q q k 4 r dr q 4 r dr= 4 r dr c .

 r  r  t

∂ ∂ ∂π π ρ π
∂ ∂ ∂

  − + − ⋅ ⋅ + ⋅ ⋅ ⋅    
�

Dividing by the factor 4 2πr dr,  we obtain

2
p2

1  T  T
kr q= c .

 r  r  tr

∂ ∂ ∂ρ
∂ ∂ ∂

  +  
� <

COMMENTS:  (1) Note how the result compares with Eq. 2.23 when the terms for the θ,φ
directions are eliminated.

(2) Recognize that we did not require �q  and k to be independent of the coordinate r.



PROBLEM 2.35
KNOWN:  Three-dimensional system – described by cylindrical coordinates (r,φ,z) –
experiences transient conduction and internal heat generation.

FIND:  Heat diffusion equation.

SCHEMATIC:  See also Fig. 2.9.

ASSUMPTIONS:  (1) Homogeneous medium.
ANALYSIS:  Consider the differential control volume identified above having a volume
given as V = dr⋅rdφ⋅dz.  From the conservation of energy requirement,

q q q q q q E Er r+dr +d z z+dz g st− + − + − + =φ φ φ � � . (1)

The generation and storage terms, both representing volumetric phenomena, are
�

� �

�E qV q dr rd dz      E Vc  T /  t dr rd dz c  T /  t.g g= = ⋅ ⋅ = = ⋅ ⋅φ ρ ∂ ∂ ρ φ ∂ ∂� � � �          (2,3)

Using a Taylor series expansion, we can write

q q
 r

q dr,     q q
 

q d ,      q q
 z

q dz.r+dr r r +d z+dz z z= + = + = +∂
∂

∂
∂ φ

φ ∂
∂φ φ φ φ� � � � � �      (4,5,6)

Using Fourier’s law, the expressions for the conduction heat rates are

q kA  T /  r k rd dz  T /  rr r= − = − ⋅∂ ∂ φ ∂ ∂� � (7)

q kA  T / r k dr dz  T / rφ φ∂ ∂φ ∂ ∂φ= − = − ⋅� � (8)

q kA  T /  z k dr rd  T /  z.z z= − = − ⋅∂ ∂ φ ∂ ∂� � (9)

Note from the above, right schematic that the gradient in the φ-direction is ∂T/r∂φ and not
∂T/∂φ.  Substituting Eqs. (2), (3) and (4), (5), (6) into Eq. (1),

− − − + ⋅ ⋅ = ⋅ ⋅∂
∂

∂
∂φ

φ ∂
∂

φ ρ φ ∂
∂φ r

q dr q d
 z

q dz q dr rd dz dr rd dz c
 T

 tr z� � � � � � � �� . (10)

Substituting Eqs. (7), (8) and (9) for the conduction rates, find

− − ⋅�
��

�
	


− −
�
��

�
	


− − ⋅�
��

�
	


∂
∂

φ ∂
∂

∂
∂ φ

∂
∂φ

φ ∂
∂

φ ∂
∂ r

k rd dz
 T

 r
dr

 
k drdz

 T

r
d

 z
k dr rd

 T

 z
dz� � � � � �

+ ⋅ ⋅ = ⋅ ⋅� .q dr rd dz dr rd dz c
 T

 t
φ ρ φ ∂

∂
� � (11)

Dividing Eq. (11) by the volume of the CV, Eq. 2.20 is obtained.

1 1

r  r
kr

 T

 r r
k

 T

 z
k

 T

 z
q c

 T

 t2
∂
∂

∂
∂

∂
∂φ

∂
∂φ

∂
∂

∂
∂

ρ ∂
∂

�
��

�
	


+
�
��

�
	


+ �
��

�
	


+ =� <



PROBLEM 2.36

KNOWN:  Three-dimensional system – described by cylindrical coordinates (r,φ,θ) – experiences
transient conduction and internal heat generation.

FIND:  Heat diffusion equation.

SCHEMATIC:  See Figure 2.10.

ASSUMPTIONS:  (1) Homogeneous medium.

ANALYSIS:  The differential control volume is V = dr⋅rsinθdφ⋅rdθ, and the conduction terms are
identified in Figure 2.10.  Conservation of energy requires

q q q q q q E Er r+dr +d +d g st− + − + − + =φ φ φ θ θ θ � � . (1)

The generation and storage terms, both representing volumetric phenomena, are

� � � � .E qV q dr r sin d rd         E Vc
 T

 t
dr r sin d rd c

 T

 tg st= = ⋅ ⋅ = = ⋅ ⋅θ φ θ ρ ∂
∂

ρ θ φ θ ∂
∂

        (2,3)

Using a Taylor series expansion, we can write

q q
 r

q dr,      q q q d ,      q q q d .r+dr r r +d +d= + = + = +∂
∂

∂
∂φ

φ ∂
∂θ

θφ φ φ φ θ θ θ θ� � � � � �       (4,5,6)

From Fourier’s law, the conduction heat rates have the following forms.

q kA  T /  r k r sin d rd  T /  rr r= − = − ⋅∂ ∂ θ φ θ ∂ ∂ (7)

q kA  T / r sin k dr rd  T / r sinφ φ∂ θ∂φ θ ∂ θ∂φ= − = − ⋅ (8)

q kA  T / r k dr r sin d  T / r .θ θ∂ ∂θ θ φ ∂ ∂θ= − = − ⋅ (9)

Substituting Eqs. (2), (3) and (4), (5), (6) into Eq. (1), the energy balance becomes

− − − ⋅ ⋅ = ⋅ ⋅∂
∂

∂
∂

φ ∂
∂θ

θ θ φ θ ρ θ φ θ ∂
∂φ

φ θ r
q dr q d q d + q dr r sin d rd dr r sin d rd c

 T

 tr� � � � � � �  (10)

Substituting Eqs. (7), (8) and (9) for the conduction rates, find

− − ⋅�
��

�
	


− − ⋅
�
�
�

�
	



∂
∂θ

θ φ θ ∂
∂

∂
∂φ

θ ∂
θ∂φ

φk r sin d rd
 T

 r
dr k dr rd

 T

r sin
d

− − ⋅�
��

�
	


+ ⋅ ⋅ = ⋅ ⋅∂
∂θ

θ φ ∂
∂θ

θ θ φ θ ρ θ φ θ ∂
∂

k dr r sin d
 T

r
d q dr r sin d rd dr r sin d rd c

 T

 t
� (11)

Dividing Eq. (11) by the volume of the control volume, V, Eq. 2.23 is obtained.

1 1 1

r  r
kr

 T

 r r sin
k

 T

 r  sin
k sin

 T

 
q c

 T

 t2
2

2 2 2
∂
∂

∂
∂ θ

∂
∂φ

∂
∂ φ θ

∂
∂θ

θ ∂
∂ θ

ρ ∂
∂

�
��

�
	


+
�
��

�
	


+ �
��

�
	


+ =� . <

COMMENTS:  Note how the temperature gradients in Eqs. (7) - (9) are formulated.  The numerator
is always ∂T while the denominator is the dimension of the control volume in the specified coordinate
direction.



PROBLEM 2.37

KNOWN:  Temperature distribution in steam pipe insulation.

FIND:  Whether conditions are steady-state or transient.  Manner in which heat flux and heat rate
vary with radius.

SCHEMATIC:

ASSUMPTIONS:  (1) One-dimensional conduction in r, (2) Constant properties.

ANALYSIS:  From Equation 2.20, the heat equation reduces to

1 1

r  r
r

 T

 r

 T

 t

∂
∂

∂
∂ α

∂
∂

�
��

�
��

= .

Substituting for T(r),

1 1
0

α
∂
∂

∂
∂

 T

 t r  r
r

C

r
1= �

��
�
��

= .

Hence, steady-state conditions exist. <
From Equation 2.19, the radial component of the heat flux is

′′ = − = −q k
 T

 r
k

C

rr
1∂

∂
.

Hence, ′′qr  decreases with increasing r q rr′′α1/ .� � <
At any radial location, the heat rate is

q rLq kC Lr r 1= ′′ = −2 2π π

Hence, qr is independent of r. <
COMMENTS:  The requirement that qr is invariant with r is consistent with the energy conservation

requirement.  If qr is constant, the flux must vary inversely with the area perpendicular to the direction
of heat flow.  Hence, ′′qr  varies inversely with r.



PROBLEM 2.38

KNOWN:  Inner and outer radii and surface temperatures of a long circular tube with internal energy
generation.

FIND:  Conditions for which a linear radial temperature distribution may be maintained.

SCHEMATIC:

ASSUMPTIONS:  (1) One-dimensional, steady-state conduction, (2) Constant properties.

ANALYSIS:  For the assumed conditions, Eq. 2.20 reduces to

k d dT
r q 0

r dr dr
  + =  

�

If q�  = 0 or q�  = constant, it is clearly impossible to have a linear radial temperature distribution.

However, we may use the heat equation to infer a special form of q� (r) for which dT/dr is a constant (call
it C1).  It follows that

( )1
k d

r C q 0
r dr

+ =�

1C k
q

r
= −� <

where C1 = (T2 - T1)/(r2 - r1).  Hence, if the generation rate varies inversely with radial location, the radial
temperature distribution is linear.

COMMENTS:  Conditions for which q� ∝  (1/r) would be unusual.



PROBLEM 2.39

KNOWN:  Radii and thermal conductivity of conducting rod and cladding material.  Volumetric rate
of thermal energy generation in the rod.  Convection conditions at outer surface.

FIND: Heat equations and boundary conditions for rod and cladding.

SCHEMATIC:

ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional conduction in r, (3) Constant
properties.

ANALYSIS:  From Equation 2.20, the appropriate forms of the heat equation are

Conducting Rod:

k

r

d

dr
r

dT

dt
qr r�

��
�
��

+ =� 0 <

Cladding:

d

dr
r

dT

dr
c�

��
�
��

= 0. <

Appropriate boundary conditions are:

(a) dT dr|r r=0/ = 0 <

(b) T r T rr i c i� � � �= <

(c) k
dT

dr
| = k

dT

drr
r

r c
c

ri i
| <

(d) k
dT

dr
h T r Tc

c
r c oo
| = − ∞� � <

COMMENTS:  Condition (a) corresponds to symmetry at the centerline, while the interface

conditions at r = ri (b,c) correspond to requirements of thermal equilibrium and conservation of
energy.  Condition (d) results from conservation of energy at the outer surface.



PROBLEM 2.40

KNOWN:  Steady-state temperature distribution for hollow cylindrical solid with volumetric heat
generation.

FIND:  (a) Determine the inner radius of the cylinder, ri, (b)  Obtain an expression for the volumetric
rate of heat generation, q,�  (c) Determine the axial distribution of the heat flux at the outer surface,

( )r oq r ,, z′′  and the heat rate at this outer surface; is the heat rate in or out of the cylinder; (d)

Determine the radial distribution of the heat flux at the end faces of the cylinder, ( )z oq r, z′′ +  and

( )z oq r, z′′ − , and the corresponding heat rates; are the heat rates in or out of the cylinder; (e)

Determine the relationship of  the surface heat rates to the heat generation rate; is an overall energy
balance satisfied?

SCHEMATIC:

ASSUMPTIONS:  (1) Steady-state conditions, (2) Two-dimensional conduction with constant
properties and volumetric heat generation.

ANALYSIS:  (a) Since the inner boundary, r = ri, is adiabatic, then ( )r iq r z 0.,′′ =   Hence the

temperature gradient in the r-direction must be zero.

i
i i

r

T
0 2br c / r 0 0

r

∂  = + + + =∂ 
1/ 21/ 2

i 2
c 12 C

r 0.2 m
2b 2 150 C / m

 − ° = + − = − =    × ° 
<

(b) To determine q,�  substitute the temperature distribution into the heat diffusion equation, Eq. 2.20,
for two-dimensional (r,z), steady-state conduction

1 T T q
r 0

r r r z z k

∂ ∂ ∂ ∂   + + =   ∂ ∂ ∂ ∂   
�

[ ]( ) ( )1 q
r 0 2br c / r 0 0 0 0 2dz 0

r r z k

∂ ∂+ + + + + + + + =
∂ ∂

�

[ ]1 q
4br 0 2d 0

r k
+ + + =

�

[ ] ( )2 2q k 4b 2d 16 W / m K 4 150 C / m 2 300 C / m = − − = − ⋅ × ° − − °  
�

3q 0 W / m=� <
(c) The heat flux and the heat rate at the outer surface, r = ro, may be calculated using Fourier’s law.
Note that the sign of the heat flux in the positive r-direction is negative, and hence the heat flow is into
the cylinder.

( ) [ ]
o

r o, o o
r

T
q r z k k 0 2br c / r 0

r

∂′′ = − = − + + +
∂




Continued …..



PROBLEM 2.40 (Cont.)

( ) 2 2
r o,q r z 16 W / m K 2 150 C / m 1 m 12 C /1 m 4608 W / m′′ = − ⋅ × ° × − ° = − 

  <
( ) ( ) ( )r o r r o, r o oq r A q r z where A 2 r 2zπ′′= =

( ) 2
r oq r 4 1 m 2.5 m 4608 W / m 144, 765 Wπ= − × × × = − <

(d) The heat fluxes and the heat rates at end faces, z = + zo and – zo, may be calculated using Fourier’s
law.  The direction of the heat rate in or out of the end face is determined by the sign of the heat flux in
the positive z-direction.

At the upper end face, z = + zo: heat rate is out of the cylinder <
( ) [ ]

o

z o o
z

T
q r, z k k 0 0 0 2dz

z

∂′′ + = − = − + + +
∂




( ) ( )2 2
z oq r, z 16 W / m K 2 300 C / m 2.5 m 24, 000 W / m′′ + = − ⋅ × − ° = + <

( ) ( ) ( )2 2
z o z z o z o iq z A q r, z where A r rπ′′+ = + = −

( ) ( )2 2 2 2
z oq z 1 0.2 m 24, 000 W / m 72, 382 Wπ+ = − × = + <

At the lower end face, z = - zo:  heat rate is out of the cylinder <
( ) [ ]

o

z o o
z

T
q r, z k k 0 0 0 2dz

z −

∂′′ − = − = − + + +
∂




( ) ( )( )2 2
z oq r, z 16 W / m K 2 300 C / m 2.5 m 24, 000 W / m′′ − = − ⋅ × − ° − = − <
( )z oq z 72, 382 W− = − <

(e) The heat rates from the surfaces and the volumetric heat generation can be related through an
overall energy balance on the cylinder as shown in the sketch.

in out gen genE E E 0 where E q 0− + = = ∀ =� � � �

�

( ) ( )in r oE q r 144, 765 W 144, 765 W= − = − − = +� <
( ) ( ) ( )[ ]out z o z oE q z q z 72, 382 72, 382 W 144, 764 W= + − − = − − = +� <

The overall energy balance is satisfied.

COMMENTS:  When using Fourier’s law, the heat flux zq′′  denotes the heat flux in the positive z-
direction.  At a boundary, the sign of the numerical value will determine whether heat is flowing into
or out of the boundary.



PROBLEM 2.41

KNOWN:   An electric cable with an insulating sleeve experiences convection with adjoining air and
radiation exchange with large surroundings.

FIND: (a) Verify that prescribed temperature distributions for the cable and insulating sleeve satisfy
their appropriate heat diffusion equations; sketch temperature distributions labeling key features; (b)
Applying Fourier's law, verify the conduction heat rate expression for the sleeve, rq′ , in terms of Ts,1

and Ts,2; apply a surface energy balance to the cable to obtain an alternative expression for rq′  in

terms of q� and r1; (c) Apply surface energy balance around the outer surface of the sleeve to obtain an
expression for which Ts,2 can be evaluated;  (d) Determine Ts,1, Ts,2, and To for the specified geometry
and operating conditions; and (e) Plot Ts,1, Ts,2, and To as a function of the outer radius for the range
15.5 ≤ r2 ≤ 20 mm.

SCHEMATIC:

ASSUMPTIONS:  (1)  One-dimensional, radial conduction, (2) Uniform volumetric heat generation
in cable, (3) Negligible thermal contact resistance between the cable and sleeve,  (4) Constant
properties in cable and sleeve, (5) Surroundings large compared to the sleeve, and (6) Steady-state
conditions.

ANALYSIS:   (a) The appropriate forms of the heat diffusion equation (HDE) for the insulation and
cable are identified.  The temperature distributions are valid if they satisfy the relevant HDE.

Insulation:  The temperature distribution is given as

( ) ( ) ( )
( )

2
s,2 s,1 s,2

1 2

ln r r
T r T T T

ln r r
= + − (1)

and the appropriate HDE (radial coordinates, SS, �q  = 0), Eq. 2.20,

d dT
r 0

dr dr
  =  

( ) ( ) ( )
s,1 s,2

s,1 s,2
1 2 1 2

T Td 1 r d
r 0 T T ? ?0

dr ln r r dr ln r r

    −
+ − = =            

Hence, the temperature distribution satisfies the HDE. <
Cable:  The temperature distribution is given as

( )
2 2
1

s,1 2c 1

qr r
T r T 1

4k r

 
 = + −
 
 

�

(2)

and the appropriate HDE (radial coordinates, SS, �q  uniform), Eq. 2.20,

Continued...
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c

1 d dT q
r 0

r dr dr k
+ = 

  
�

2
1

2c c1

1 d qr 2r q
r 0 0 ? ?0

r dr 4k kr
+ − + =

   
         

� �

2 2
1

2c c1

1 d qr 2r q
? ?0

r dr 4k kr
− + =

 
   

� �

2
1

2c c1

1 qr 4r q
? ?0

r 4k kr
− + =

 
   

� �

Hence the temperature distribution satisfies the HDE. <
The temperature distributions in the cable, 0 ≤ r ≤ r1, and sleeve, r1 ≤ r ≤ r2, and their key features are
as follows:

(1) Zero gradient, symmetry condition,

(2) Increasing gradient with increasing radius,
r, because of q� ,

(3) Discontinuous T(r) across cable-sleeve
interface because of different thermal
conductivities,

(4) Decreasing gradient with increasing radius,
r, since heat rate is constant.

(b) Using Fourier’s law for the radial-cylindrical coordinate, the heat rate through the insulation
(sleeve) per unit length is

r r
dT dT

q kA k2 r
dr dr

π′ ′= − = − <
and substituting for the temperature distribution, Eq. (1),

( ) ( )
( )

( )
s,1 s,2

r s s,1 s,2 s
1 2 2 1

T T1 r
q k 2 r 0 T T 2 k

ln r r ln r r
π π

−
′ = − + − =

 
 
 

(3) <

Applying an energy balance to a control surface placed around the cable,

in outE E 0− =� �

c rq q 0′ ′∀ − =�

where cq∀�  represents the dissipated electrical power in the cable

Continued...
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( )2 2
1 r r 1q r q 0 or q qrπ π′ ′− = =� � (4) <

(c) Applying an energy balance to a control surface placed around the outer surface of the sleeve,

in outE E 0− =� �

r cv radq q q 0′ ′ ′− − =

( )( ) ( ) ( )2 4 4
1 2 s,2 2 s,2 surqr h 2 r T T 2 r T T 0π π ε π σ∞− − − − =� (5) <

This relation can be used to determine Ts,2 in terms of the variables q� , r1, r2, h, T∞, ε and Tsur.

(d) Consider a cable-sleeve system with the following prescribed conditions:

r1 = 15 mm kc = 200 W/m⋅K h = 25 W/m2⋅K ε = 0.9
r2 = 15.5 mm ks = 0.15 W/m⋅K T∞  = 25°C Tsur = 35°C

For 250 A with eR′  = 0.005 Ω/m, the volumetric heat generation rate is

( )2 2 2
e c e 1q I R I R rπ′ ′ ′= ∀ =�

( ) ( )2 2 2 5 3q 250 A 0.005 / m 0.015 m 4.42 10 W mπ= × Ω × = ×�

Substituting numerical values in appropriate equations, we can evaluate Ts,1, Ts,2 and To.

Sleeve outer surface temperature, Ts,2:  Using Eq. (5),

( ) ( )( )25 3 2
s,24.42 10 W m 0.015m 25 W m K 2 0.0155m T 298Kπ π× × × − ⋅ × × −

           ( ) ( )8 2 4 4 4 4
s,20.9 2 0.0155m 5.67 10 W m K T 308 K 0π −− × × × × ⋅ − =

s,2T 395 K 122 C= = $ <
Sleeve-cable interface temperature, Ts,1:  Using Eqs. (3) and (4), with Ts,2 = 395 K,

( )
( )

s,1 s,22
1 s

2 1

T T
qr 2 k

ln r r
π π

−
=�

( ) ( )
( )
s,125 3 T 395 K

4.42 10 W m 0.015 m 2 0.15 W m K
ln 15.5 15.0

π π
−

× × × = × ⋅

s,1T 406 K 133 C= = $ <
Continued...
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Cable centerline temperature, To:  Using Eq. (2) with Ts,1 = 133°C,

2
1

o s,1
c

qr
T T(0) T

4k
= = +

�

( ) ( )25 3
oT 133 C 4.42 10 W m 0.015 m 4 200 W m K 133.1 C= + × × × ⋅ =$ $ <

(e) With all other conditions remaining the same, the relations of part (d) can be used to calculate To,
Ts,1 and Ts,2 as a function of the sleeve outer radius r2 for the range 15.5 ≤ r2 ≤ 20 mm.
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On the plot above To would show the same behavior as Ts,1 since the temperature rise between cable
center and its surface is 0.12°C.  With increasing r2, we expect Ts,2 to decrease since the heat flux
decreases with increasing r2.  We expect Ts,1 to increase with increasing r2 since the thermal resistance
of the sleeve increases.



PROBLEM 2.42

KNOWN:  Temperature distribution in a spherical shell.

FIND:  Whether conditions are steady-state or transient.  Manner in which heat flux and heat rate
vary with radius.

SCHEMATIC:

ASSUMPTIONS:  (1) One-dimensional conduction in r, (2) Constant properties.

ANALYSIS:  From Equation 2.23, the heat equation reduces to

1 1

r  r
r

 T

 r

 T

 t2
2∂

∂
∂
∂ α

∂
∂

�
��

�
�� = .

Substituting for T(r),

1 1
0

α
∂
∂

∂
∂

 T

 t r  r
r

C

r2
2 1

2
= − �

��
�
�� = .

Hence, steady-state conditions exist. <
From Equation 2.22, the radial component of the heat flux is

′′ = − = −q k
 T

 r
k

C

r
r

1
2

∂
∂

.

Hence, ′′qr  decreases with increasing r q r2
r

2′′α1/ .� � <

At any radial location, the heat rate is

q r q kCr
2

r 1= ′′ =4 4π π .

Hence, qr is independent of r. <
COMMENTS:  The fact that qr is independent of r is consistent with the energy conservation

requirement.  If qr is constant, the flux must vary inversely with the area perpendicular to the direction

of heat flow.  Hence, ′′qr  varies inversely with r
2
.



PROBLEM 2.43

KNOWN:  Spherical container with an exothermic reaction enclosed by an insulating material whose
outer surface experiences convection with adjoining air and radiation exchange with large
surroundings.

FIND:  (a)  Verify that the prescribed temperature distribution for the insulation satisfies the
appropriate form of the heat diffusion equation; sketch the temperature distribution and label key
features; (b) Applying Fourier's law, verify the conduction heat rate expression for the insulation
layer, qr, in terms of Ts,1 and Ts,2; apply a surface energy balance to the container and obtain an
alternative expression for qr in terms of q�  and r1;  (c) Apply a surface energy balance around the outer
surface of the insulation to obtain an expression to evaluate Ts,2; (d) Determine Ts,2 for the specified
geometry and operating conditions;  (e) Compute and plot the variation of Ts,2 as a function of the
outer radius for the range 201 ≤ r2 ≤ 210 mm; explore approaches for reducing Ts,2 ≤  45°C to
eliminate potential risk for burn injuries to personnel.

SCHEMATIC:

ASSUMPTIONS:  (1) One-dimensional, radial spherical conduction, (2)  Isothermal reaction in
container so that To = Ts,1, (2) Negligible thermal contact resistance between the container and
insulation, (3) Constant properties in the insulation, (4) Surroundings large compared to the insulated
vessel, and (5) Steady-state conditions.

ANALYSIS:    The appropriate form of the heat diffusion equation (HDE) for the insulation follows
from Eq. 2.23,

2
2

1 d dT
r 0

dr drr
= 

  
(1) <

The temperature distribution is given as

( ) ( ) ( )
( )

1
s,1 s,1 s,2

1 2

1 r r
T r T T T

1 r r

−
= − −

−
 
 
 

(2)

Substitute T(r) into the HDE to see if it is satisfied:

( ) ( )
( )

2
12

s,1 s,22 1 2

0 r r1 d
r 0 T T ? ?0

dr 1 r rr

+
− − =

−

  
  
      

( ) ( )
1

s,1 s,22 1 2

1 d r
T T ? ?0

dr 1 r rr
+ − =

−
 
 
 

<

and since the expression in parenthesis is independent of r, T(r) does indeed satisfy the HDE.  The
temperature distribution in the insulation and its key features are as follows:

Continued...
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