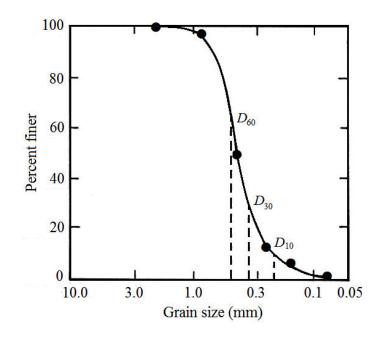

Chapter 2

2.1	a.	Sieve No.	Mass of soil retained on each sieve (g)	Percent retained on each sieve	Percent finer
		4	0.0	0.0	100.0
		10	18.5	4.4	95.6
		20	53.2	12.6	83.0
		40	90.5	21.5	61.5
		60	81.8	19.4	42.1
		100	92.2	21.9	20.2
		200	58.5	13.9	6.3
		Pan	26.5	6.3	0
			Σ421.2 g		

The grain-size distribution is shown.

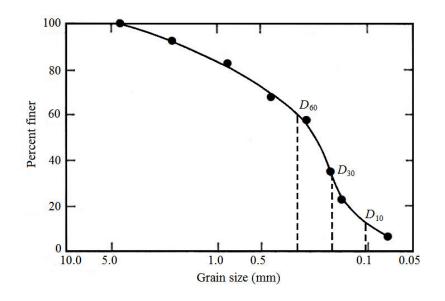

b. From the graph, $D_{60} = 0.4 \text{ mm}$; $D_{30} = 0.22 \text{ mm}$; $D_{10} = 0.12 \text{ mm}$

c.
$$C_u = \frac{D_{60}}{D_{10}} = \frac{0.4}{0.12} = 3.33$$

d.
$$C_c = \frac{(D_{30})^2}{(D_{10})(D_{60})} = \frac{(0.22)^2}{(0.4)(0.12)} = 1.01$$

2.2	a.	Sieve No.	Mass of soil retained on each sieve (g)	Percent retained on each sieve	Percent finer
		4	0	0	100
		6	0	0	100
		10	0	0	100
		20	9.1	1.82	98.18
		40	249.4	49.88	48.3
		60	179.8	35.96	12.34
		100	22.7	4.54	7.8
		200	15.5	3.10	4.7
		Pan	23.5	4.70	0
			Σ500 g		

The grain-size distribution is shown.


b. From the graph, $D_{60} = 0.48 \text{ mm}$, $D_{30} = 0.33 \text{ mm}$, $D_{10} = 0.23 \text{ mm}$

c.
$$C_u = \frac{0.48}{0.23} = 2.09$$

d.
$$C_c = \frac{(0.33)^2}{(0.48)(0.23)} = 0.99$$

2.3	a.	Sieve No.	Mass of soil retained on each sieve (g)	Percent retained on each sieve	Percent finer
		4	0	0	100
		10	44	7.99	92.01
		20	56	10.16	81.85
		40	82	14.88	66.97
		60	51	9.26	57.71
		80	106	19.24	38.47
		100	92	16.70	21.77
		200	85	15.43	6.34
		Pan	35	5.34	0
			Σ 551 g		

The grain-size distribution is shown.

b. From the graph, $D_{60} = 0.3 \text{ mm}$; $D_{30} = 0.17 \text{ mm}$; $D_{10} = 0.11 \text{ mm}$

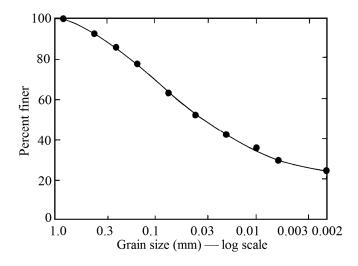
c.
$$C_u = \frac{0.3}{0.11} = 2.73$$

d.
$$C_c = \frac{(0.17)^2}{(0.11)(0.3)} = 0.88$$

2.4
$$C_u = \frac{D_{60}}{D_{10}} = \frac{0.41}{0.08} = 5.13$$

 $C_c = \frac{(D_{30})^2}{(D_{10})(D_{60})} = \frac{(0.22)^2}{(0.08)(0.41)} = 1.48$

2.5
$$C_u = \frac{D_{60}}{D_{10}} = \frac{1.81}{0.24} = 7.54$$


$$C_c = \frac{(D_{30})^2}{(D_{10})(D_{60})} = \frac{(0.82)^2}{(0.24)(1.81)} = 1.55$$

- 2.6 a. **True**
 - b. False
 - c. True
 - d. True
 - e. True

2.7 In Soil A,

Percent passing 75 mm sieve = 100; i.e., percent of gravel + sand + fines = 100 Percent passing 4.75 mm (No. 4) sieve = 67.5; i.e., percent of sand + fines = 67.5 Therefore, percent of gravel = 32.5 Percent passing 0.075 mm (No. 200) sieve = 8.5 Therefore percent of fines = 8.5 and percent of sand = 59.0 **Soil A contains 32.5% gravel, 59.0 % sand and 8.5% fines**.

In Soil B, following the same method, Percent of gravel + sand + fines = 100Percent of sand + fines = 100Percent of fines = 0Soil B consists of 100% sand. 2.8 The grain-size distribution is shown.

From the graph, percent passing 2 mm = 100%; percent passing 0.06 mm = 58%; percent passing 0.002 mm = 23%. See Table 2.3, so

- Gravel: 0% Sand: 100 - 58 = 42% Silt: 58 - 23 = 35% Clay: 23 - 0 = 23%
- 2.9 Refer to the graph for Problem 2.8 and Table 2.3. From the graph, percent passing 2 mm = 100%; percent passing 0.075 mm = 62%; percent passing 0.002 mm = 23%.

Gravel:	0%
Sand:	100 − 62 = 38%
Silt:	62 – 23 = 39%
Clay:	23 − 0 = 23%

2.10 Refer to the graph for Problem 2.8. From the graph, percent passing 2 mm = 100%; percent passing 0.05 mm = 54%; percent passing 0.002 mm = 23%. See Table 2.3, so

Gravel:	0%
Sand:	100 − 54 = 46%
Silt:	54 − 23 = 31%
Clay:	23 − 0 = 23%

2.11 $G_s = 2.60$; temperature = 24°; hydrometer reading = 43; time = 60 min. Referring to Table 2.10, L = 9.2 cm.

Eq. (2.6):
$$D \text{ (mm)} = K \sqrt{\frac{L \text{ (cm)}}{t \text{ (min)}}}$$

From Table 2.9, for $G_s = 2.60$ and temperature = 24° , K = 0.0132.

$$D = 0.0132 \sqrt{\frac{9.2}{60}} = 0.0052 \text{ mm}$$

_

2.12 For $G_s = 2.70$ and temperature = 23°, K = 0.013 (Table 2.9), L = 12.2 (Table 2.10).

$$D (\text{mm}) = K \sqrt{\frac{L (\text{cm})}{t (\text{min})}} = 0.013 \sqrt{\frac{12.2}{120}} = 0.0041 \text{ mm}$$

- 2.13 a. Soil A has the largest (50%) percentage of gravel
 - b. Soil C is entirely sand, with grains in the size range of 0.2-4.75 mm.
 - c. Only Soil D contains clay fraction (less than 0.002 mm) of about 35%.
 - d. In Soil A, there are no grains in the size range of 0.2–5.0 mm. It is known as gap graded soil.
- 2.14 Percent of gravel + sand + fines = 100 Percent of sand + fines = 63 Percent of fines = 16

Percentages of gravel, sand and fines within the soil are 37, 47, and 16, respectively.

CRITICAL THINKING PROBLEM

$$10 = \left(\frac{D_{10}}{D_{\text{max}}}\right)^{0.5} \times 100$$

(a)

$$30 = \left(\frac{D_{30}}{D_{\text{max}}}\right)^{0.5} \times 100$$
 (b)

$$60 = \left(\frac{D_{60}}{D_{\text{max}}}\right)^{0.5} \times 100$$
(c)

$$\frac{\text{Eq. (c)}}{\text{Eq. (a)}} \text{ gives } 6 = \left(\frac{D_{60}}{D_{10}}\right)^{0.5}$$

$$C_u = \frac{D_{60}}{D_{10}} = 36$$

Similarly,
$$\frac{[\text{Eq. (b)}]^2}{[\text{Eq. (a)} \times \text{Eq. (c)}]} \text{ gives } \frac{30 \times 30}{10 \times 60} = \left(\frac{D_{30}^2}{D_{10} \times D_{60}}\right)^{0.5}$$

$$C_c = \frac{D_{30}^2}{D_{10} \times D_{60}} = 2.25$$

The soil is well graded.

b. n = 0.5 and $D_{max} = 19.0$ mm

For percentage of fines, D = 0.075 mm; for sand and fines, D = 4.75 mm (Unified Soil Classification System).

$$p_{0.075} = \left(\frac{0.075}{19.0}\right)^{0.5} \times 100 = 6.3\% \text{ (per cent of fines)}$$
$$p_{4.75} = \left(\frac{4.75}{19.0}\right)^{0.5} \times 100 = 50.0\% \text{ (per cent of sand and fines)}$$

The soil contains 50% gravel, 43.7% sand and 6.3% fines.