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Preface

This instructor’s guide contains complete solutions to all the exercises in “Fundamentals
of Engineering Numerical Analysis” by P. Moin. Virtually all exercises involve computa-
tions using a personal computer and the results are presented graphically. It is essential
for students to have access to a plotting package (such as that available in MATLAB)
to readily display and digest the numerical output. Most exercises are intended to rein-
force the concepts introduced in the text, others involve numerical solution of non-trivial
physical problems which are intended to remind the students of the usefulness and power
of numerical methods in solving interesting problems. These latter problems are solved
rather easily using the numerical packages recommended, and are great motivators for
engineering and science students for studying the subject. The computer programs used
to solve the computational problems are provided on an accompanying disk for the in-
structor’s convenience.

The computer programs are written in MATLAB and Fortran. The specific files
for each problem can be found in the directory ‘exercises’ while the common files in
‘library’. Problems with more than one file have these in a directory named with the
letter ‘e’ followed by the chapter number, underscore, and then the problem number.
The names of the files to be executed (MATLAB) or compiled (Fortran) begin with the
label described above. Executable files containing the word ‘plot’ should be ran at last.
Sometimes files are generated during the execution procedure. Their names begin with
the word ‘data’.

Before executing any MATLAB program, the files in the directory ‘library’ must be
added to the MATLAB’s path. The files needed for each Fortran program are listed
inside of it.

The MATLAB version used was 5.3.1.29215a, October 1999, and the Fortran compiler
was MIPSpro 7 Fortran 90, on an IRIX 6.5 Silicon Graphics machine. The Numerical
Recipes routines are from Press et al, Numerical Recipes in Fortran 77, Second Edition,
Cambridge University Press, software version 2.04.
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Chapter 1

INTERPOLATION

1. (a) Using polint, the interpolated value is 1.577.

(b) See Fig. 1.1. Comparing to Example 1.1, the current interpolation is better
around the center but much worse near the end points.
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Figure 1.1: Exercise 1.

k(3 n
2. Differentiating P(z) = Zyja‘j H(:E — ;) gives
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P(x)= Zyja”?i:; H(:z: —zi) = Zyjaj [Z H (z — :1:,)]
= =g

3. When ¢”(z:) = g”(zi+1), the z® terms in (1.6) cancel out and gi(z) becomes a

parabola:
f .
gi(z) = 2_.%‘”12 [3z2 = 3z(zs + Tig1) + 333i33i+1] +
ZTiy1 — T T —Z;
;) e+ f(Zpp1)
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Chapter 1. Interpolation

Continuity of the first derivative.
Forz; <z <z

T — Tip1 T~

+ ¢ (zi41)

! ’
() = o (g ITE
5i(=) = 9 ’)xi = Tit1 Tit1— Ti

Integrating and substituting g;(z;) = f(z:) and gi(z;41) = f(xis1), we obtain

)= 2f($i+1) - f(fbi)’

=0,...,N~1
Tiy1 — Ty

(i) + g (i
These are N equations for the N + 1 unknowns ¢ {(zo)y.-.,¢'(zn). One addi-
tional equation is required and it can be g'(zo) = ¢/(z1), which means that the
interpolant in the first interval is a straight line.

For non-periodic equally-spaced data, the solution of (1.7) requires O(2N) di-
visions and O(3N) of each additions and multiplications, ignoring the effort in
computing the right-hand side. Solving the system in (b) is only O(N) addi-
tions.

5. Solve first for g”(wo), ..., g"(zn) as explained in the text and then differentiate (1.6)

6.

(b)

to get the first derivative at the data points.
For zg < z; < ITN-1:

ZTj - &T; h h
99 = gim) = LV ZIED _ gy h iy 31
h 3 6
For zn:
- - h h
o (on) = o afow) = TESLE) | gy )24 e,
(a) For o =0, (1.3) is recovered. For o — 0o we obtain

I —Ti41 T — I

gi(x) = f(z:) + f(%i41)

¥
Ly — i Tit1 — 5
which is a straight line.

The given differential equation for g; is second order, linear, and non-homogeneous.
Its solution is:

9l x) = o2 f(x;) &= Ti4q

Y 4 g ¥ o0 WO o o
{3e ﬁﬁ' oA

. epoarraligfed.

_9"(@mi) ~*f(zin) z-m
o? Tip1 — T

Differentiating:

g{(x) = C10e°® — Caoge™% + f($i+1) - f(m‘i) _ ig”(l“i-\‘-l) — g”((Ei) .
t Tip1 — T 0?2 oz

C1, Cz, and the second derivatives at the data points are determined as in
Section 1.2 with (1.4) and (1.5) replaced by the two equations above.



7.(b,c) polint, spline, and splint are used to obtain the interpolations in Fig. 1.2.
The predicted tuition in 2001 is $10, 836 using Lagrange polynomial and $34, 447
using cubic spline. The Lagrange polynomial does a pretty good job interpolat-
ing the data but behaves very poorly away from it; the predicted tuition is way .
too low. The cubic spline behaves well for both interpolation and extrapolation.
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Figure 1.2: Exercise 7.

8. (a) Using polint, the interpolation is shown in Fig 1.3. The prediction in 2009 is
—38.40 which is unrealistic.
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Figure 1.3: Exercise 8.

(b,c) Results are shown in Fig. 1.3. The predicted values are
Lagrange Spline
1997 16.23 14.44
1999 17.88 16.52

The predictions using the cubic spline are better.




4 Chapter 1. Interpolation

9. The second order Lagrange polynomial passing through =;_1, z;, and ;4 is

_ E-zi)(z—ziy1) (2 = zi)(z — Tig1)
Pla) = (Ti-1 — z)(Tier — $i+1)yz"1 + (i — zic1) (s — Tip1)
(@ - zi1)(z ~ )

(®ip1 — i) (Tig1 — 2

yi +

)'yi+1~
Differentiating and evaluating at = = z;, we obtain:

P'(:Z:) — (IE,; - xi+1)yi—1 ‘ (fBi — :1:1-‘1) + (93,; - :I)i+1) :
: (o1 — zi)(Tic1 ~ Tig1) (zi = i1 )(Ts — Tig1)
(z; — $i—1)yi+1
(Tir1 — o1} (Tig1 — z:)
Vi 2y;i1 2y;
Pla) (Ti-1 — 2:)(Tiz1 — Tig1) * (zi — zie1) (%5 ~ Tig1)
2yi41
(it1 — Ti-1) (@it — @)

For uniformly spaced data, these reduce to:

Pl(mi) o Yl T Yid

i1~ 2Yi + Vi
X P(z;) = YL YT Yo

and Az

10. Let v be the vector whose points are the values of the polynomial Lg(z) at the
grid points zo,...,zN, i.e. v; = Li(z;) = 8. The derivative of Li(z) at z; is

d
EELk (z)} = L;(z;) which is also given by

T=T 5

N N
(Dv); =) djv = > djbu = dj.
=0 =0

N

Thus dji, = Li(z;). Now, taking the logarithm of Ly(z) = ay H(x — z;) and differ-
ik

entiatinggives

N N

Li(z) 1
log L (z) =1 log(x —z;) and === .
g k(w) Ogak'*‘; g( 1) Lk(.’ll) ;z—zi

itk ik

Evaluating the last expression at z = z; gives (3):
Mo
4 = =
Lk,(-'ﬂk) = dkk ; T — 2 .

itk



The same expression cannot be evaluated at = # zj since the denominator will be
zero. We proceed further as follows:

Ny N Ny N N
L;c(-”?):Lk(x)Z = Qg H(!B—wz)z ———akz H(m-—ml).
=0 T 1=0 =0 T T T i=0 1=0
itk 17k itk itk Ui,k
This gives
Li(zy) =ax Y, [] (5 — )
Zh ek
The product is non zero only when i = j. Thus:
N - N o
7
(z) = dji = ag (z;—m) = (zj — z1) = ———=-
T g ! Tj — Tk E ? aj(z; — k)
14,k 1£5

11. (a) Looking at the contour plot (figure 1.4) we can estimate the value of f(1.5,1.5)
to be 2.7.
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Figure 1.4: Contour plot on course data; from dark to
light: f =24, 2.6, 2.8, 3.0.

(b) Using equation (1.7) in the text, the following linear system should be solved
for the second derivative.

For example, for i = 0 the solution to this system is

22(0,0) = 0.8466, go0(1,0) = —0.0233, g44(2,0) = —0.8460, gz2(3,0) = 0.0226,

and from equation (1.6) in the text, g(z,0) for 1 <z < 2 will be:

g(:z:,O)thg:gE%l—’i){(2—m)3—(2—$)] + 2—"5%-0—) [@-1°- @-1)]+

g(1,0)(2—2z) + g(2,0)(z—-1).
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Figure 1.5: g(z,7) fori=1, 2, 3, 4.
The same procedure can be repeated for other intervals.
(¢) From solution of part (b) we obtain:

9(1.5,0) = 0.4819, g(1.5,1) =2.6082, ¢(1.5,2) = 3.5588, g(1.5,3) = 1.4326.

The following system has to be solved for gyy values.

2/3 1/6 0 1/6\ [g,,(15,0) 9(1.5,3) — 2g(1.5,0) + g(1.5, 1)
1/6 2/3 1/6 0 | |gy(1.5,1) ] _ | g(1.5,0) — 29(1.5,1) + g(1.5,2)
0 1/6 2/3 1/6] | g,,(1.5,2) | = | g(1.5,1) — 29(1.5,2) + g(1.5,3)
1/6 0 1/6 2/3) \g,,(1.5,3) 9(1.5,2) — 2g(1.5,3) + g(1.5,0)
1.1)

After solving this system we obtain

gyy(1.5,1) = —1.7637, g,y(1.5,2) = —4.6150.
Therefore, g(1.5,y) for 1 <y < 2 will be:

915, Yy gyea = 4';637 [(2 -y’ - (2~ y)] + _4'2150 [(y —1)° - (y - 1)} +

2.6082(2-y) + 3.5588(y—1).

Substituting y = 1.5 results in g(1.5,1.5) = 3.4821.
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Figure 1.6: ¢g(1.5,y) for 1 <y <2



(d) After solving corresponding systems which are similar to (1.1) we obtain
gy (L1) = —1.2279, g,,(1,2) = —3.2994, g,y(2,1) = —1.8428, g,(2,2) = —4.9700.

Therefore, the polynomial expressions for 1 <y < 2 will be

LD = 2 (2= - 2-0)] + T (W=D - D]+
92y = B[y )] + g (-1 -]+

2.8357(2~y) + 3.8781(y—1). (1.3)

(e) In part (b) the gz values at the grid points are computed. We can use spline to
interpolate these values in the y direction. We first solve the following system.

2/3 1/6 0 1/6 gzmyy(l’o) gmz(la 3) - 29.'1::1:(1) 0) + gmz(la 1)
1/6 2/3 1/6 0 gzmyy(]-, 1) _ gmrz(lyz) - 29:1:::(1; 1) 'l‘gmm(l;o)

0 1/6 2/3 1/6 ga:ﬂ:yy(l»Q) - g:m:(ly 3) - 29:3:1:(1, 2) +gmx(1; 1)
1/6 0 1/6 2/3 ga::cyy(L 3) ga:a:(la 0) - 29129:(1: 3) + gz2(1, 2)

A similar system should be solved for gzz(2,%). The resulting numerical values
are

Googy(1,1) = 0.9025, Gryy(1,2) = 1.3381, Guryy(2,1) = 2.7470, ganyy(2,2) = 6.3511.

The polynomial expressions for 1 <y < 2 will be

el My = 22 [z~ 2= 9)] + = (-1 - -]+
—0.7701(2—y) + —09153(y—1), (1.4)
9a2(% Wihgyes = 2'—76439 [@-9°-(- v + 6'3§ = (-1 - - 1] +
~38787(2~y) + ~—50800(y—1). (1.5)

(f) We can now use the information of (d) and (e) to do a cubic spline in the z
direction. For 1 <z <2 and 1 < yp < 2 we have

§E 9 eres = ZE 2t 2 )+ LB 1p @)+

9(Lyo)(2-2) + g(2v0)(z-1), (1.6)

where g(1,%0), 9(2,70), 9zz(1,%0), and gzz(2,%0) should be substituted from
equations (1.2), (1.3), (1.4), and (1.5) respectively. The resulting polynomial
will be of the form

P(z,y) = ago + a107 + ao1y + ag0e? + a11zy + aoy® + azoz® + amzly +
a12zy® + agsy® + anz®y + aznz?y? + ayaxy® + azz®y? + a232%y® + azs 2’y
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Let’s look at the terms in (1.6) that contribute to as; (the terms that contain
z%43). Both

6

will contribute. Substituting for gz5(1,yo) and gz (2,70) from equations (1.4)
and (1.5) and keeping only the terms with z3y3 results in

gmm(:l’ yo) (2 . Z)s and 911(27 yO) (m _ 1)3

1
asz = 3 (0.9025 — 1.3381 — 2.7470 + 6.3511) = 0.0880.

(g) From Equation (1.6) in part (f) we have

9(1.5,1.5) = g’””—(z-’1'—5){(0.5)3 —05] + 9’”“—””(—‘2&9{(0.5)3 ~(0.5)] +

+9(1,1.5)(0.5) + g¢(2,1.5)(0.5). (1.7)
From equations (1.2), (1.3), (1.4), and (1.5) we obtain
9o2(1,1.5) = —0.9827, g24(2,1.5) = ~5.048, g¢(1,1.5) = 2.4277, ¢(2,1.5) = 3.7827

Substituting these values into (1.7) results in g(1.5, 1.5) = 3.4821 which is the
same as the result of part (c).

By interpolating the data to a fine mesh using splines, one can obtain a much
smoother contour plot compared to the one shown in part (a).
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Figure 1.7: Contour plot after spline interpolation; from
dark to light f = 2.4,2.6,2.8,3.0.




