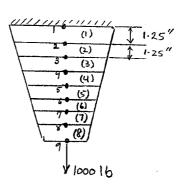
$$A(y) = 0.25 - 0.0125y$$

$$A_1 = 0.25 \text{ in}^2$$

$$K_{eg} = \frac{(A_{i+1} + A_i)E}{2l}$$

$$K_1 = \frac{(0.25 + 0.1875)(10.4 \times 10^6)}{2(5)} = 455,000 \frac{16}{in}$$

$$K_2 = \frac{(0.1875 + 0.125)(10.4 \times 10^6)}{2(5)} = 325,000 \frac{16}{in}$$


$$u_1 = 0$$
, $u_2 = 0.002197$ in $u_3 = 0.005274$ in

(2)

$$A_i = 0.171875 \text{ in}^2$$

 $A_7 = 0.15625 \text{ in}^2$

$$A_{g} = 0.140625 \text{ in}^{2}$$

$$K_{1} = 2015000 \frac{1b}{in} \qquad K_{2} = 1885000 \frac{1b}{in} \qquad K_{3} = 1755000 \frac{1b}{in}$$

$$K_{4} = 1625000 \frac{1b}{in} \qquad K_{5} = 1495000 \frac{1b}{in} \qquad K_{6} = 1365000 \frac{1b}{in}$$

$$K_{7} = 1235000 \frac{1b}{in} \qquad K_{8} = 1105000 \frac{1b}{in}$$

$$\frac{1}{2015000} \frac{1}{1285000} \frac{1}{1285000} \frac{1}{1235000} \frac{1}{105000} \frac{1}{1$$

$$u_1 = 0$$
, $u_2 = 0.00049628$, $u_3 = 0.0010268$, $u_4 = 0.0015965$
 $u_5 = 0.0022119$, $u_6 = 0.0028808$, $u_7 = 0.0036134$, $u_8 = 0.0044232$
 $u_9 = 0.0053281$ in

	-		
4 (in)	exact defl.	Two-element	eight element
	٥	٥	0
1.25	0.000 49645		0.00049628
2.5	0.0010272		0.0010268
3.75	0.0015972		0.0015965
5.0	0.0022129	0.002197	0.0022119
6-25	0.0028822		0.0028808
7.5	0.0036154		0.0036134
8.75	0-0044259		0.0044232
10.0	0.0053319	0.005274	0.0053281

© 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc.,

Upper Saddle River, NJ 07458

$$K = \frac{A_{avg.} E}{L}$$

$$K_1 = K_5 = \frac{\binom{10.5 + 12}{2}(3)(3.27 \times 10)}{6}$$

$$K_1 = K_5 = 18,393,750$$
 $\frac{1b}{in}$

$$K_2 = K_4 = \frac{(10.5 + 9)(3)(3.27 \times 10^6)}{6} = 15,941,250 \frac{1b}{in}$$

$$K_3 = \frac{(9)(3)(3.27 \times 10^6)}{4} = 22,072,500 \frac{16}{in}$$

	1	4			in					
	18393750	-18392150		**************************************			IIu,		0	
	-18398750	18393750	-15941250				U ₂		0	
	- Control of the Cont	- 15941250	15941250 + 22072500	- 22072500			u_3		0	
			- 22 072500	22072500 + 15941250			$\begin{cases} u_4 \end{cases}$) = {	0	1
				-1594/250	15941250 + 18393750	-18393750	u_{5}		0	
					-18393750	18393750	u		-500	
ı	· · ·	1		**		J				

$$\left\{u\right\} = \begin{pmatrix} 0 \\ -2.71831 \times 10^{5} \\ -5.85483 \times 10^{5} \\ -8.12001 \times 10^{5} \\ -1.12522 \times 10^{4} \\ -1.39749 \times 10^{4} \end{pmatrix}$$
 in

$$\sigma^{(3)} = \frac{(-8.12009 \times 10^{-5} + 5.85483) \times 10 \times (3.27 \times 10)}{4}$$

$$\sigma^{(3)} = \frac{18.5 \text{ Psi C}}{4}$$
as a check:
$$\sigma^{(3)} = \frac{F}{A} = \frac{500}{(9)(3)} = 18.5 \text{ Psi}$$

$$\sigma = (\frac{u_{i+1} - u_i}{L}) E$$

$$\sigma^{(i)} = \frac{(-2.71831 \times 10^{-0})(3.27 \times 10^{0})}{(-1.39749 + 1.12566) \times 10 \times (3.27 \times 10^{0})} = 14.8 \text{ PSi C}$$

$$as a Check:$$

$$\sigma^{(i)} = \sigma^{(5)} = \frac{F}{A} = \frac{500}{(\frac{10.5 + 12}{2})(3)} = 14.8 \text{ Psi C}$$

$$\sigma^{(2)} = \frac{(-5.85483 + 2.7183i) \times 10^{5} \times (3.27 \times 10^{0})}{6} = 17.1 \text{ Psi C}$$

$$\sigma^{(4)} = \frac{(-1.12566 \times 10^{4} + 8.12009 \times 10^{5})(3.27 \times 10^{0})}{6} = 17.1 \text{ Psi C}$$

$$\sigma^{(2)} = \sigma^{(4)} = \frac{(-1.12566 \times 10^{4} + 8.12009 \times 10^{5})(3.27 \times 10^{0})}{6} = 17.1 \text{ Psi C}$$

$$\sigma^{(2)} = \sigma^{(4)} = \frac{F}{A} = \frac{500}{(\frac{10.5 + 1}{2})(3)} = 17.1 \text{ Psi}$$

© 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc.,

Upper Saddle River, NJ 07458

$$K_{1} = K_{2} = \frac{(4)(anz)(28x10^{2})}{2}$$

$$K_{1} = K_{2} = 7 \times 10^{10} \frac{b}{in}$$

$$K_{2} = K_{3} = K_{4} = K_{5} = \frac{(0.625)(6N5)(18x10^{2})}{8}$$

$$K_{2} = 27 \cdot 3438 \frac{1b}{in}$$

$$(K_{2})_{new} = (4)(273438) = 1093750 \frac{1b}{in}$$

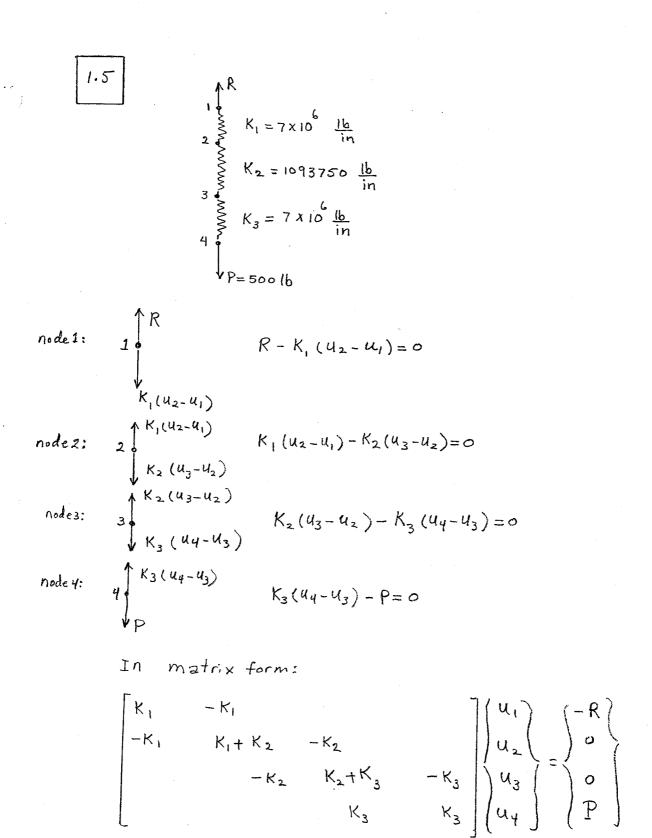
$$(K_{3})_{new} = (4)(273438) = 1093750 \frac{1b}{in}$$

$$(K_{2})_{new} = (4)(273438) = 1093750 \frac{1b}{in}$$

$$(K_{3})_{new} = (4)(273438) = 1093750 \frac{1b}{in}$$

$$(K_{2})_{new} = (4)(273438) = 1093750 \frac{1b}{in}$$

$$(K_{3})_{new} = (4)(273438) = 1093750 \frac{1b}{in}$$


$$(K_{2})_{new} = (4)(273438) = 1093750 \frac{1b}{in}$$

$$(K_{3})_{new} = (4)(273438) = 1093750 \frac{1b}{in}$$

$$(K_{2})_{new} = (4)(273438) = 1093750 \frac{1b}{in}$$

$$(K_{3})_{new} = (4)(273438) = 1093750 \frac{1b}{in}$$

$$(K_{2})_{new} = ($$

1.6

(1)
$$K_2 = 8 \frac{1b}{in}$$
 $K_3 = 51b/in$
 $K_3 = 51b/in$
 $K_3 = 51b/in$
 $K_4 = 20 \frac{1b}{in}$

(2)

 $K_4 = 20 \frac{1b}{in}$

(3)

 $K_4 = 20 \frac{1b}{in}$

(4)

Size of the global matrix: 5x5

$$\begin{bmatrix} K \end{bmatrix} = \begin{bmatrix} 5 & -5 \\ -5 & 5 \end{bmatrix} \textcircled{2} \qquad \begin{bmatrix} K \end{bmatrix}^{(2)} = \begin{bmatrix} 8 & -8 \\ -8 & 8 \end{bmatrix} \textcircled{3}$$

$$\begin{bmatrix} K \end{bmatrix}_{(5)} = \begin{bmatrix} -8 & 8 \\ 8 & -8 \end{bmatrix} \boxed{3}$$

$$\begin{bmatrix} K \end{bmatrix} = \begin{bmatrix} 20 & -20 \\ -20 & 20 \end{bmatrix} \textcircled{9}$$

$$\begin{bmatrix} K \end{bmatrix} = \begin{bmatrix} 3 & 0 \\ 10 & -10 \\ -10 & 10 \end{bmatrix}$$

$$[K] = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & -10 & 0 \end{bmatrix}$$

$$[K] = \begin{bmatrix} 0 & 0 & 0 & 0 \\ -10 & 10 & 0 \end{bmatrix}$$

$$[K] = \begin{bmatrix} 0 & 0 & 0 & 0 \\ -20 & -20 & 0 & 0 \end{bmatrix}$$

applying B.Cs and loads; $u_1 = u_5 = 0$ $F_2 = 101$, $F_4 = 101$ b

$$\begin{bmatrix} 38 & -13 & -20 \\ -13 & 23 & -10 \\ -20 & -10 & 50 \end{bmatrix} \begin{pmatrix} u_2 \\ u_3 \\ u_4 \end{pmatrix} = \begin{pmatrix} 10 \\ 0 \\ 10 \end{pmatrix}$$

$$u_2 = 0.962$$
 in $u_3 = 0.874$ in $u_4 = 0.760$ in

node 1:

$$\stackrel{R_1}{\longleftrightarrow} K_1(u_2-u_1)$$

$$R_1 = 5 (0.962 - 0) = 4.816$$

node 5 Rs

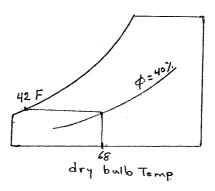
150 5.88	5.88		*****				-	71	T,		110
-5.88	5.88+ 2.27	-2.27							T ₂		
	-2.27	2.27+	-10						Т3		0
		-10	10 +0.581	-0.581	and the same of th				Tų		٥
			-0.581	0.581+	-0.781	and the state of t		K	T ₅	= '	
	and death and de			-0.781	0.781+	-2.22			Te		0
			The state of the s		-2.22	2.22+ 1.47	-1.47		T7		0
	1	·				-1:41	اکلونا		Tg		68

$$\left\{ T \right\} =
 \begin{cases}
 10 \\
 12.04 \\
 17.31 \\
 18.51 \\
 39.12 \\
 54.46 \\
 59.85 \\
 68
 \end{cases}$$

$$g = UA \Delta T$$
 $g = (1.47)(150)(68-59.85) = 1800 \frac{B+u}{hr}$

or as another example:

 $g = (0.781)(150)(54.46-39.12) = 1800 \frac{B+u}{hr}$


$$g = \frac{1}{\sum R_{es}; stance} A \left(T_{in} - T_{out}\right) = \frac{(150)(68-10)}{0.17 + 0.44 + 0.1 + 1.72 + 1.28 + 0.45 + 0.68} = 1800 \frac{Btu}{hr}$$

1.9

With the help of a

Psychometric chart, using
a dry bulb Temp of 68°F
and \$\phi=40\text{2}, we identify

Condensation temperature to
be \$42°F. Thus condensation

will occur between surfaces 4 and 5.

1.	10									
	1000	0		ſ	1	1.0	, ,	-	r	
	1.47	-147				$ \tau_i $		15		
	-1.47	1.47+	-0.053		The control of the co	Ī ₂		0		
1000		-0.053	0.053+ 2.22	-2.22	an fan di sila sila sila sila sila sila sila sil	$\left \left\langle \right \right $ T_3	\	0	}	
			-2.22	2.22+ 1.47	-1.47	Ty		0		
				-147	1.47	$\int \int T_5$		70		
{τ}	= \begin{cases} 15 \\ 16.8 \\ 68. \\ 70 \end{cases}	?1 99 19		\	1000					
	g = L	ΤΔ Α				# · · ·			;* *	
	as a	n ex	ample:							
	8 = (00)(70	- 68.	19)=	2660	Btu hr	2 .	<	
	g =(1	.47)(10	00)(16.	81-15) = 2	.660	8tu hr			

1.11

22.5

$$\begin{bmatrix}
\frac{1}{22.5} & 0 \\
5.88 & -5.88 \\
-5.88 & 5.88 + 2.56
\end{bmatrix}$$

$$-2.56$$

$$-2.56$$

$$-2.56$$

$$-2.56$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-1.47$$

$$-$$

$$(A_1)_c = (A_5)_c = (12+10.5)(3) - (3) \frac{\pi}{4} (0.5)^2 = 33.161 \text{ in}^2$$

$$(A_2)_c = (A_4)_c = \frac{(10.5+9)}{2} (3) - 3 \frac{\pi}{4} (0.5)^2 = 28.661 \text{ in}^2$$

$$(A_3)_c = (9)(3) - 3 \frac{\pi}{4} (0.5)^2 = 26.411 \text{ in}^2$$

$$(K_1)_c = (K_5)_c = \frac{(33.161)(3.27\times10^6)}{6} = 18,072,745 \frac{16}{10}$$

$$(K_2)_c = (K_4)_c = \frac{(28.661)(3.27\times10^6)}{6} = 15,620,245 \frac{16}{10}$$

$$(K_3)_c = \frac{(26.411)(3.27\times10^6)}{4} = 21,590,992 \frac{16}{10}$$

$$(K_1)_5 = (K_2)_5 = (K_4)_5 = (K_5)_5 = \frac{(3)(\frac{\pi}{4})(0.5)^2(29\times10^6)}{6} = 2,847,068 \frac{16}{10}$$

$$(K_3)_5 = \frac{(3)(\frac{\pi}{4})(0.5)^2(29\times10^6)}{4} = 4,270,602 \frac{16}{10}$$

The Combined stiffnesses:

$$K_1 = K_5 = 18,072,745 + 2,847,068 = 20,919,813$$

$$K_2 = K_4 = 15,620,245 + 2,847,068 = 18,467,313$$

r^{1}	<i>/</i> ,						
20, 919, 813 -20, 919,	813] [u,	1	6
-20, 919,813 + 18, 467,31	3 - 18,467,313				luz		0
-18,467,3	18,467,313	- 25,861,594			1 43		0
	-25,861,594	25, 861,594 + 18, 467,313	-18, 467,313	and the second s	14		0
The second section of the second section is a second section of the second section of the second section is a second section of the section of		-18,467,313	18,467,313+ 20,919,813	- 20919,88	llus		0
		To control of the con	-20,919,813	20,919,813	46		-1000

$$u_1 = 0$$
 $u_2 = -4.78016 \times 10^5$ in $u_3 = -1.01951 \times 10^4$ in $u_4 = -1.40618 \times 10^4$ $u_5 = -1.94768 \times 10^4$ in $u_6 = -2.42570 \times 10^4$ in

$$\frac{\sigma_{\text{concrete}}^{(1)}}{c_{\text{concrete}}} = \frac{E_{\text{c}} \left(u_{2} - u_{1} \right)}{L} = \frac{(3.27 \times 10)(-4.78016 \times 10)}{6} = \frac{26 \frac{15}{10^{2}}}{c_{\text{in}^{2}}} = \frac{2$$

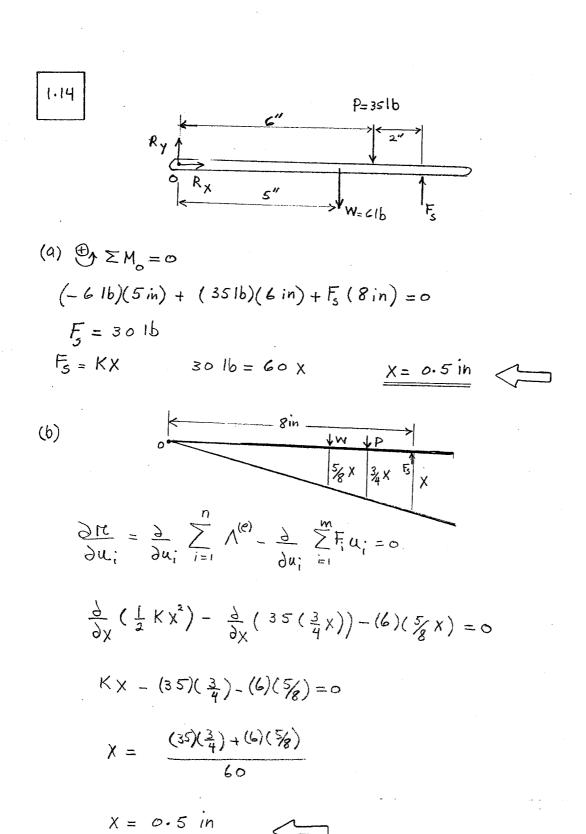
$$\mathcal{T}_{concute}^{(1)}(A_1)_c + \mathcal{T}_{s}^{(1)}(A_1)_s = (26)(33.161) + (231)(3)(\frac{11}{4})(0.5)^2 = 1000 \text{ lb}$$

$$\mathcal{T}_{c}^{(2)} = E_c \left(\frac{U_3 - U_2}{2} \right) = \frac{(3.27 \times 10^6)(-1.01951 \times 10 + 4.78016 \times 10^6)}{6} = \frac{30 \text{ lb}}{\text{in}^2} C$$

$$\mathcal{T}_{s}^{(2)} = 231 \text{ lb} C$$

Check:
$$\sigma_c^{(2)}(A_2) + \sigma_s^{(2)}(A_2)_s = (30)(28.661) + (231)(3)(\frac{11}{4})(0.5)^2 = 100016$$

Check:
$$\Gamma_c^{(3)}(A_3)_c + \Gamma_s^{(3)}(A_3)_s = (32)(26.411) + (280)(3)(\frac{11}{4})(0.5) = 1000 \text{ lb}$$


$$\mathcal{O}_{c}^{(4)} = E_{c} \left(\frac{u_{5} - u_{4}}{\ell} \right) = \left(\frac{3 \cdot 27 \times 10^{6}}{(-1.94768 \times 10^{4} + 1.40618 \times 10^{4})} \right) = \frac{30 \frac{1b}{in^{2}}}{6}$$

$$\mathcal{O}_{s} = 231 \frac{1b}{in^{2}} C$$

$$\sigma_{c}^{(5)} = E_{c}(\frac{u_{c} - u_{5}}{l}) = \frac{(3.27 \times 10)(-2.42570 + 1.94768) \times 10^{4}}{6} = 26 \frac{1b}{in^{2}} C$$

$$\sigma_{s}^{(5)} = 231 \frac{1b}{in^{2}} C$$

note
$$C_c = C_c$$
 and $C_c = C_c$ as expected.

$$I_{1} = I_{2}$$

$$V_{2}$$

$$V_{2}$$

$$V_{3}$$

$$V_{4}$$

$$V_{5}$$

$$V_{7}$$

$$V_{1}$$

$$V_{1}$$

$$V_{2}$$

$$V_{3}$$

$$V_{4}$$

$$V_{5}$$

$$V_{7}$$

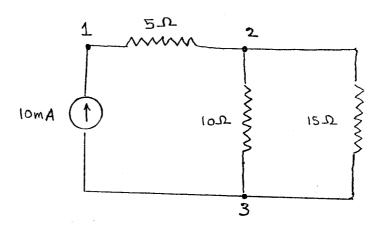
$$V_{7$$

$$\begin{array}{c}
I_{2} \\
\downarrow \\
I_{2} = \frac{1}{R} (V_{2} - V_{1})
\end{array}$$

$$\begin{array}{c}
V_{1} & I_{1} \\
\downarrow \\
I_{1} = \frac{1}{R} (V_{1} - V_{2})
\end{array}$$

Because of the fact that charge is conserved in a Circuit (Kirchhoff's current law), at any time, the algebraic Sum of the currents entering any node must be Zero. Thus we can write

$$I_1 = \frac{1}{R} \left(V_1 - V_2 \right)$$


$$I_2 = \frac{1}{R} \left(V_2 - V_1 \right)$$

Note
$$I_1 + I_2 = 0$$

In matrix form:

$$\frac{1}{R}\begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} = \begin{bmatrix} I_1 \\ I_2 \end{bmatrix}$$

$$[K] = \frac{1}{5} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} \mathbb{K} \end{bmatrix} = \frac{1}{10} \begin{bmatrix} -1 \\ -1 \end{bmatrix}$$

$$[K] = \frac{1}{15} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$

 $[K] = \frac{1}{15}\begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$; Apply $V_3 = 0$ as a boundary Condition

$$\begin{bmatrix} \frac{1}{5} & -\frac{1}{5} & 0 \\ -\frac{1}{5} & \frac{1}{5} + \frac{1}{10} + \frac{1}{15} & -\frac{1}{10} - \frac{1}{15} \\ 0 & -\frac{1}{10} + \frac{1}{15} & \frac{1}{10} + \frac{1}{15} \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \\ V_3 \end{bmatrix} = \begin{bmatrix} 0 \cdot 01 \\ 0 \\ 0 \end{bmatrix}$$

$$\frac{V_1 - V_2 = 0.05 \text{ Volts}}{V_2 - V_3 = 0.06 \text{ Volts}}$$

$$\omega$$
 $\rightarrow \times$

$$\frac{d^2Y}{dx^2} = \frac{M(x)}{EI} = \frac{\omega \times (L-x)}{2EI}$$

$$\frac{dY}{dx} = \frac{1}{2EI} \left(\frac{\omega x^2}{2} - \frac{\omega x^3}{3} \right) + c_1$$

$$Y = \frac{1}{2EI} \left(\frac{\omega x^3 L}{6} - \frac{\omega x^4}{12} \right) + C_1 X + C_2$$

Applying Boundary Conditions:

$$y = x$$

$$Y=0$$
 \widehat{A} $X=0$
 $Y=0$ \widehat{A} $X=L$

$$C_1 = -\frac{\omega L^3}{24EI}$$

$$Y_{\text{exact}} = -\frac{\omega x}{24EI} \left(x^{3} - 2 L x^{2} + L^{3} \right)$$

Note that the assumed Solution satisfies the boundary (a) $Y = C_1 \left[(x)^2 - (x) \right]$ Conditions.

$$\frac{dY}{dx} = C_1 \left[\frac{2X}{L^2} - \frac{1}{L} \right]$$

$$\frac{d^2Y}{dX^2} = C_1\left(\frac{2}{L^2}\right)$$

$$\frac{2C_1}{l^2} - \frac{\omega \times (L - X)}{2EI} = \mathcal{R}$$

We may force the error function to equal zero at x = 1/2

$$\frac{2C_1}{L^2} - \frac{\omega \frac{1}{2}(L - \frac{1}{2})}{2ET} = 0 \rightarrow C_1 = \frac{\omega L^4}{16EI}$$

$$Y = \frac{\omega L^4}{16EI} \left[\left(\frac{x}{L} \right)^2 - \left(\frac{x}{L} \right) \right]$$

(b)
$$\int_{0}^{L} R dx = 0$$

$$\int_{0}^{L} \left[\frac{2C_{1}}{L^{2}} - \frac{\omega \times (L-x)}{2EI} \right] dx = 0$$

$$\frac{2C_{1}L}{L^{2}} - \frac{\omega}{2EI} \left(\frac{L^{3}}{2} - \frac{L^{3}}{3} \right) = 0 \quad \Rightarrow \quad C_{1} = \frac{\omega L^{4}}{24EI}$$

$$Y = \frac{\omega L^{4}}{24EI} \left(\left(\frac{X}{L} \right)^{2} - \left(\frac{X}{L} \right) \right)$$

$$\frac{\text{Exact}}{\text{Ymax}} = \frac{-5 \, \text{WL}^4}{384 \, \text{EI}} = \frac{-5 \, (\text{Sooo} \, \frac{1b}{ft} \, \text{x} \, \frac{1 \, \text{ft}}{12 \, \text{in}}) (20 \, \text{ft} \, \text{x} \, \frac{12 \, \text{in}}{ft})}{(384) (29 \, \text{x} \, 10 \, \frac{1b}{in^2}) (3100 \, \text{in}^4)} = \frac{-0.20 \, \text{in}}{(5000 \, \frac{1b}{ft} \, \text{x} \, \frac{1 \, \text{ft}}{12 \, \text{in}}) (20 \, \text{ft} \, \text{x} \, \frac{12 \, \text{in}}{ft})}{(20 \, \text{ft} \, \text{x} \, \frac{12 \, \text{in}}{ft})}$$

$$Y_{\text{max}} = -\frac{\omega L^4}{64 \text{ EI}} = \frac{-(5000 \frac{\text{lb}}{\text{ft}} \times \frac{\text{lff}}{\text{12 in}})(20 \text{ ft} \times \frac{12 \text{ in}}{\text{ft}})^4}{(64)(29 \times 10^6 \frac{\text{lb}}{\text{in}^2})(3100 \text{ in}^4)} = -0.24 \text{ in}$$

$$\frac{\text{Subdomain}}{\text{Ym}_{ax} = \frac{-\omega L^4}{96EI}} = \frac{-(5000 \frac{\text{lb}}{\text{ft}} \times \frac{\text{lft}}{12 \text{in}})(20 \text{ ft} \times \frac{12 \text{in}}{\text{ft}})^4}{(96)(29 \times 10^6 \frac{\text{lb}}{\text{in}^2})(3100 \text{ in}^4)} = \frac{-0.16 \text{ in}}{-0.16 \text{ in}}$$

See Section 1.7

$$\mathcal{M} \frac{d^2u}{dy^2} = \frac{dP}{dx}$$

$$\frac{du}{dy} = \frac{1}{\mu} \frac{dP}{dx} \frac{y+c_1}{dx}$$

$$u(y) = \frac{1}{\mu} \frac{dP}{dx} \frac{y^2}{2} + c_1 y + c_2$$

$$\frac{dP}{dy} = \frac{1}{\mu} \frac{dP}{dx} \frac{y^2}{2} + c_1 y + c_2$$

$$\frac{dP}{dy} = \frac{1}{\mu} \frac{dP}{dx} \frac{y^2}{2} + c_1 y + c_2$$

$$\frac{dP}{dy} = \frac{1}{\mu} \frac{dP}{dx} \frac{y^2}{2} + c_1 y + c_2$$

$$\frac{dP}{dy} = \frac{1}{\mu} \frac{dP}{dx} \frac{y^2}{2} + c_1 y + c_2$$

$$\frac{dP}{dy} = \frac{1}{\mu} \frac{dP}{dx} \frac{y^2}{2} + c_1 y + c_2$$

$$\frac{dP}{dy} = \frac{1}{\mu} \frac{dP}{dx} \frac{y^2}{2} + c_1 y + c_2$$

$$\frac{dP}{dy} = \frac{1}{\mu} \frac{dP}{dx} \frac{y^2}{2} + c_1 y + c_2$$

$$\frac{dP}{dy} = \frac{1}{\mu} \frac{dP}{dx} \frac{y^2}{2} + c_1 y + c_2$$

$$\frac{dP}{dx} = \frac{1}{\mu} \frac{dP}{dx} \frac{y^2}{2} + c_1 y + c_2$$

$$\frac{dP}{dx} = \frac{1}{\mu} \frac{dP}{dx} \frac{y^2}{2} + c_1 y + c_2$$

$$\frac{dP}{dx} = \frac{1}{\mu} \frac{dP}{dx} \frac{y^2}{2} + c_1 y + c_2$$

$$\frac{dP}{dx} = \frac{1}{\mu} \frac{dP}{dx} \frac{y^2}{2} + c_1 y + c_2$$

$$\frac{dP}{dx} = \frac{1}{\mu} \frac{dP}{dx} \frac{y^2}{2} + c_1 y + c_2$$

$$\frac{dP}{dx} = \frac{1}{\mu} \frac{dP}{dx} \frac{y^2}{2} + c_1 y + c_2$$

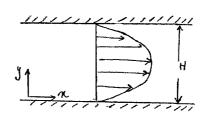
$$\frac{dP}{dx} = \frac{1}{\mu} \frac{dP}{dx} \frac{y^2}{2} + c_1 y + c_2$$

$$\frac{dP}{dx} = \frac{1}{\mu} \frac{dP}{dx} \frac{y^2}{2} + c_1 y + c_2$$

$$\frac{dP}{dx} = \frac{1}{\mu} \frac{dP}{dx} \frac{y^2}{2} + c_1 y + c_2$$

$$\frac{dP}{dx} = \frac{1}{\mu} \frac{dP}{dx} \frac{y^2}{2} + c_1 y + c_2$$

$$\frac{dP}{dx} = \frac{1}{\mu} \frac{dP}{dx} \frac{y^2}{2} + c_1 y + c_2$$


$$\frac{dP}{dx} = \frac{1}{\mu} \frac{dP}{dx} \frac{y^2}{2} + c_1 y + c_2$$

$$\frac{dP}{dx} = \frac{1}{\mu} \frac{dP}{dx} \frac{y^2}{2} + c_1 y + c_2$$

$$\frac{dP}{dx} = \frac{1}{\mu} \frac{dP}{dx} \frac{y^2}{2} + c_1 y + c_2$$

$$\frac{dP}{dx} = \frac{1}{\mu} \frac{dP}{dx} \frac{y^2}{2} + c_1 y + c_2$$

$$\frac{dP}{dx} = \frac{1}{\mu} \frac{dP}{dx} \frac{y^2}{2} + c_1 y + c_2$$

$$0 = 0 + 0 + C_2$$
 and $0 = \frac{1}{\mu} \frac{df}{dx} \frac{H^2}{2} + C_1 H$

$$C_2 = 0$$

and
$$C_1 = -\frac{H}{2} \frac{dP}{dx}$$

$$u(y) = -\frac{1}{2\mu} \frac{dP}{dx} (Hy - y^2)$$

 $u(y) = -\frac{1}{2\mu} \frac{dP}{dx} (Hy - y^2)$ note Pressure drops in the direction of flow, dx < 0 in velocity equation.

(a)
$$u \frac{d^2u}{dy^2} = \frac{df}{dx}$$

$$U_{assumed} = C_1 \sin(\frac{\pi y}{H})$$

note the assumed solution Satisfies the boundary Conditions.

$$\frac{du}{dy} = \frac{d}{dy} \left(C_1 \sin\left(\frac{t \cdot y}{H}\right) \right) = C_1 \frac{t \cdot T}{H} \cos\left(\frac{t \cdot y}{H}\right)$$

$$\frac{d^2u}{dy^2} = \frac{d}{dy} \left(C_1 \frac{\pi}{H} Cos(\frac{\pi y}{H}) \right) = -C_1 \left(\frac{\pi}{H} \right)^2 sin(\frac{\pi y}{H})$$

$$\mathcal{H}\left[-C_{1}\left(\frac{H}{H}\right)^{2}\sin\left(\frac{H^{2}}{H}\right)\right]-\frac{dP}{dx}=\mathcal{R}$$

We may force the error function to equal zero

$$\mathcal{L}\left[-c_{1}\left(\frac{\pi}{H}\right)^{2}\sin\left(\frac{\pi}{H}\frac{H}{2}\right)\right]-\frac{dP}{dx}=0$$

$$C_1 = -\frac{H^2}{\mu \pi^2} \frac{d\rho}{dx}$$

$$C_1 = -\frac{H^2}{\mu \pi^2} \frac{d\rho}{dx} \quad \text{then,} \quad u(y) = -\frac{H^2}{\mu \pi^2} \frac{d\rho}{dx} \left(\sin\left(\frac{\pi y}{H}\right) \right)$$

(b)
$$\int_{0}^{H} R dy = 0$$

$$\int_{0}^{H} \left[\mathcal{L} \left[-C_{1} \left(\frac{\Pi}{H} \right)^{2} \sin \frac{\pi y}{H} \right] - dP \right] dy = 0$$

$$\mathcal{L}C_{1}\left(\frac{\pi}{H}\right)^{2}\left[\frac{1}{\frac{\pi}{H}}\cos\frac{\pi y}{H}\right]^{H} - \frac{dP}{dx}H = 0$$

$$\mathcal{M}C_{1} \frac{\pi}{H} (-2) = H \frac{dP}{dx}$$

$$C_{1} = -\frac{H^{2}}{2\pi\pi} \frac{dP}{dx} \quad \text{then,} \quad u(y) = -\frac{H^{2}}{2\pi\pi} \frac{dP}{dx} \left[\sin\left(\frac{\pi y}{H}\right) \right]$$

$$M = 0.02 \frac{N.5}{m^2}$$
; $H = 0.01 \text{ mm} = 1 \times 10^5 \text{ m}$; $\frac{dP}{dx} = -1 \times 10^8 \frac{Pa}{m}$
evaluating $max \ vel. \ \mathcal{D} \ y = \frac{H}{2}$

Exact

$$u_{max} = -\frac{1}{2\pi} \frac{dP}{dx} \left(\frac{H}{2} - \left(\frac{H}{2} \right)^2 = -\frac{1}{2\pi} \frac{dP}{dx} \frac{H^2}{4} = -\frac{\left(-|x|^8 \right) \left(|x|^{-5} \right)^2}{(8)(0.02)} = 0.06 \, \text{m/s}$$

collocation method

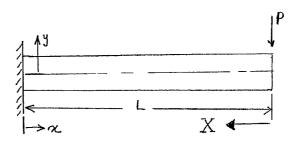
$$u_{max} = -\frac{H^2}{2\pi R} \frac{dP}{dx} \left(\sin \left(\frac{\pi / 2}{H} \right) \right) = -\frac{H^2}{2\pi R} \frac{dP}{dx} = -\frac{\left(1 \times 10^5 \right)^2 \left(-1 \times 10^8 \right)}{(2)(0.02) R} = \frac{0.08 \text{ m/s}}{s}$$

$$\int_{0}^{H} \sin\left(\frac{\pi y}{H}\right) \left[\mathcal{M}\left(-C_{1}\left(\frac{\pi}{H}\right)^{2} \sin\frac{\pi y}{H}\right) - \frac{dP}{dx}\right] dy = 0$$

$$-\mathcal{M}C_{1}\left(\frac{\pi}{H}\right)^{2} \int_{0}^{H} \sin^{2}\left(\frac{\pi y}{H}\right) dy = \frac{dP}{dx} \int_{0}^{H} \sin\left(\frac{\pi y}{H}\right) dy$$

$$-\mathcal{M}C_{1}\left(\frac{\pi}{H}\right)^{2} \left[\frac{1}{2}y - \frac{1}{4\left(\frac{\pi}{H}\right)} \sin\left(\frac{2\pi y}{H}\right)\right]_{0}^{H} = \frac{dP}{dx} \left[-\frac{1}{\frac{\pi}{H}} \cos\left(\frac{\pi y}{H}\right)\right]_{0}^{H}$$

$$-\mathcal{M}C_{1}\left(\frac{\pi}{H}\right)^{2} \left(\frac{1}{2}H\right) = -\frac{H}{\pi} \frac{dP}{dx}\left(-2\right)$$


$$C_{1} = -\frac{4H^{2}}{\mathcal{M}\pi^{3}} \frac{dP}{dx} \qquad \text{then,} \quad u(y) = -\frac{4H^{2}}{\mathcal{M}\pi^{3}} \frac{dP}{dx} \sin\left(\frac{\pi y}{H}\right)$$

$$\int_{0}^{H} R \frac{\partial R}{\partial c_{i}} dy = \int_{0}^{H} \frac{\sin(\frac{\pi y}{H}) \left[M(-c_{i}(\frac{\pi}{H})^{2} \sin \frac{\pi y}{H} - \frac{\partial P}{\partial x}) \left[-M(\frac{\pi}{H})^{2} \sin \frac{\pi y}{H} \right] dy = 0}{\sin(\frac{\pi y}{H}) \left[-M(\frac{\pi}{H})^{2} \sin \frac{\pi y}{H} \right] dy = 0}$$

results in:

$$C_1 = -\frac{4H^2}{\mu \pi^3} \frac{dP}{dx} \qquad \text{and} \qquad u(y) = -\frac{4H^2}{\mu \pi^3} \frac{dP}{dx} \sin(\frac{\pi y}{H})$$

$$u_{\text{max}} = -\frac{4H^2}{\mu \pi^3} \frac{dP}{dx} = -\frac{4(1\times10^5)^2(-1\times10^8)}{(0.02)\pi^3} = 0.06 \,\text{m/s}$$

$$\frac{d^2y}{dx^2} = -\frac{PX}{EI}$$

$$\frac{dy}{dx} = -\frac{\rho}{EI} \frac{x^2}{2} + C_1$$

$$y = -\frac{\rho}{EI} \frac{x^3}{6} + c_1 x + c_2$$

8.c. ①
$$y(L) = 0$$
, ② $\frac{dy}{dx}\Big|_{x=L} = 0$

(2)
$$O = -\frac{\rho}{ET} \frac{L^2}{2} + C_1$$
 $C_1 = \frac{\rho}{ET} \frac{L^2}{2}$

$$C_1 = \frac{\rho}{EI} \frac{L^2}{2}$$

$$0 = -P \frac{L^{3}}{6} + \frac{P}{EI} \frac{L^{2}}{2} L + C_{2} \qquad C_{2} = \frac{P}{EI} \left(-\frac{1}{3} L^{3} \right)$$

$$C_z = \frac{P}{E_1} \left(-\frac{1}{3} L^3 \right)$$

$$y = \frac{p}{6EI} \left(-X^3 + 3L^2X - 2L^3 \right)$$

In terms of α : Substitute for $X = L - \alpha$ and

$$y_{\text{exact}} = \frac{P}{6EI} \left(-(L-x)^3 + 3L^2(L-x) - 2L^3 \right)$$

$$\frac{\text{Jexact}}{\text{GEI}} = \frac{P}{6EI} \left(\pi - 3 L^2 \pi \right)$$

$$EI \frac{d^2y}{dx^2} + P(L-x) = 0$$

B.cs
$$y(0)=0$$
 and $\frac{dy}{dx}\Big|_{x=0}$

Let us assume:
$$y = c_1 x^2 + c_2 x^3$$

note, the assumed solution satisfies the boundary conditions

$$\frac{dy}{dx} = 2C_1x + 3C_2x^2$$

$$\frac{d^2y}{dx^2} = 2C_1 + 6C_2 x$$

then Residual R becomes:

$$R = EI(2C_1+6C_2x)+P(L-x)$$

Subdomain method:

$$\int_{0}^{\frac{1}{2}} R \, dx = 0 \qquad \int_{0}^{\frac{1}{2}} \left[EI(2C_{1} + CC_{2}n) + P(L-n) \right] dn = 0 \qquad (1)$$

$$\int_{\frac{L}{2}}^{L} R \, dx = 0 \qquad \int_{\frac{L}{2}}^{L} \left[EI \left(2C_1 + 6C_2 z \right) + P(L-n) \right] dx = 0 \qquad (2)$$

Integrating (1):

EI
$$(2C_1(\frac{1}{2})+6C_2\frac{(\frac{1}{2})^2}{2})+P(L(\frac{1}{2})-\frac{(\frac{1}{2})^2}{2})=0$$

Simplifying:

$$2C_1 + \frac{3}{2}C_2L = -\frac{3PL}{4EI}$$
 (3)

Integrating (2) and Simplifying:

$$C_1 + \frac{9}{4}C_2L = -\frac{PL}{8EI}$$
 (4)

Solving (3) and (4) Simultaneously:

$$C_1 = -\frac{PL}{2EI}$$
 and $C_2 = \frac{P}{6EI}$

$$y = \frac{P}{6EI} (x^3 3 L x^2)$$

note, because the assumed solution has the Same functional form as the exact solution, the Coefficients are exact.

© 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc.,

Upper Saddle River, NJ 07458

Galerkin method:

$$\int_{0}^{L} x^{2} R dx = 0 \qquad \int_{0}^{L} x^{2} \left[EI(2c_{1} + 6c_{2}) + P(L-n) \right] dn = 0 \quad (1)$$

$$\int_{0}^{L} x^{3} R dx = 0 \qquad \int_{0}^{L} n^{3} \left[EI(2c_{1} + 6c_{2}) + P(L-n) \right] dn = 0 \quad (2)$$

Integrating and Simplifying (1) and (2), We get:

$$\begin{cases} \frac{2}{3} C_1 + \frac{3}{2} C_2 L = -\frac{PL}{12EI} \\ \frac{1}{2} C_1 + \frac{6}{5} C_2 L = -\frac{PL}{20EI} \end{cases}$$
(3)

Solving (3) and (4) simultaneously

$$C_1 = -\frac{PL}{2EI} \quad \text{and} \quad C_2 = \frac{P}{6EI}$$

$$y = \frac{P}{6EI} \left(\chi^3 - 3L\chi^2 \right)$$

$$J_{1} = J_{3} = \frac{1}{2} \pi r^{4}$$

$$J_{1} = J_{3} = \frac{1}{2} \pi \left(\frac{1.5}{2} \right) = 0.497 \text{ in}^{4}$$

$$J_{2} = \frac{1}{2} \pi \left(\frac{1}{2} \right) = 0.0982 \text{ in}^{4}$$

$$\begin{bmatrix} K \end{bmatrix} = \begin{bmatrix} K \end{bmatrix} = \frac{3G}{1} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} = \frac{(0.497)(4.8 \times 10^6)}{(2)(12)} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 202942 & -202942 \\ -202942 & 202942 \end{bmatrix}$$

$$\begin{bmatrix} (a) \\ (a) \\$$

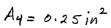
$$\begin{bmatrix} 1.23 \\ -61102 \\ -61102 \end{bmatrix} = \begin{bmatrix} 264044 \\ -61102 \\ 264044 \end{bmatrix} = \begin{bmatrix} 1200 \\ 1200 \end{bmatrix}$$

$$\frac{\theta_2 = \theta_3 = 0.005913 \text{ rad}}{1200}$$

$$R_1 = R_4 = K_1 (\theta_2 - 0) = K_3 (\theta_3 - 0) = 202942 \times 0.005913 = 12001b.in$$

$$A_1 = 0.5 \text{ in}^2$$

$$A_2 = 0.4375 \text{ in}^2$$

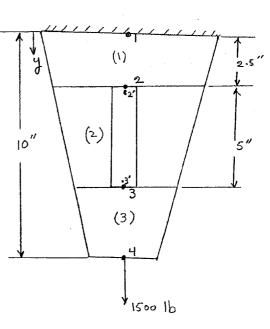

$$A_2' = 0.4375 \cdot (0.5)(0.125)$$

$$= 0.375 \text{ in}^2$$

$$A_3' = 0.3125 \text{ in}^2$$

$$A_3' = 0.3125 - (0.5)(0.125)$$

$$= 0.25 \text{ in}^2$$



$$K = \frac{\text{Aavg E}}{2}$$

$$K_{1} = \frac{(0.5 + 0.4375)(10.6 \times 10^{6})}{2.5} = 1,987,500 \frac{16}{\text{in}}$$

$$K_{2} = \frac{(0.375 + 0.25)(10.6 \times 10^{6})}{2} = 162,500 \frac{16}{\text{in}}$$

$$K_{3} = \frac{(0.3125 + 0.25)(10.6 \times 10^{6})}{2.5} = 1,192,500 \frac{16}{\text{in}}$$

$$u_1 = 0$$
 $u_2 = 7.5472 \times 10^4 in$

$$\int_{0}^{(1)} = (10.6 \times 10^{6})(\frac{7.5472 \times 10^{4}}{2.5}) = 3200 \frac{16}{in^{2}}$$
as a check:
$$\int_{0}^{(1)} = \frac{1500}{0.5 + 0.4375} = 3200 \frac{16}{in^{2}}$$

$$\int_{0}^{(2)} = (10.6 \times 10^{6})(\frac{0.00302 - 7.5472 \times 10^{4}}{5}) = 4800 \frac{16}{in^{2}}$$

$$\int_{0}^{(2)} = (10.6 \times 10^{6})(\frac{0.00302 - 7.5472 \times 10^{4}}{5}) = 4800 \frac{16}{in^{2}}$$

$$\int_{0}^{(3)} = (10.6 \times 10^{6})(\frac{0.004277 - 0.00302}{2.5}) = 5300 \frac{16}{in^{2}}$$

$$\int_{0}^{(3)} = (10.6 \times 10^{6})(\frac{0.004277 - 0.00302}{2.5}) = 5300 \frac{16}{in^{2}}$$

$$\int_{0}^{(3)} = (10.6 \times 10^{6})(\frac{0.004277 - 0.00302}{2.5}) = 5300 \frac{16}{in^{2}}$$

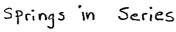
$$\int_{0}^{(3)} = (10.6 \times 10^{6})(\frac{0.004277 - 0.00302}{2.5}) = 5300 \frac{16}{in^{2}}$$

$$\int_{0}^{(3)} = (10.6 \times 10^{6})(\frac{0.004277 - 0.00302}{2.5}) = 5300 \frac{16}{in^{2}}$$

$$\int_{0}^{(3)} = (10.6 \times 10^{6})(\frac{0.004277 - 0.00302}{2.5}) = 5300 \frac{16}{in^{2}}$$

$$\int_{0}^{(3)} = (10.6 \times 10^{6})(\frac{0.004277 - 0.00302}{2.5}) = 5300 \frac{16}{in^{2}}$$

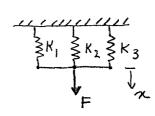
$$\int_{0}^{(3)} = (10.6 \times 10^{6})(\frac{0.004277 - 0.00302}{2.5}) = 5300 \frac{16}{in^{2}}$$

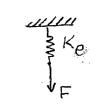

$$\int_{0}^{(3)} = (10.6 \times 10^{6})(\frac{0.004277 - 0.00302}{2.5}) = 5300 \frac{16}{in^{2}}$$

Springs in Parallel
$$F = F_1 + F_2 + F_3$$

$$K_{e}x = K_{1}x + K_{2}x + K_{3}x$$

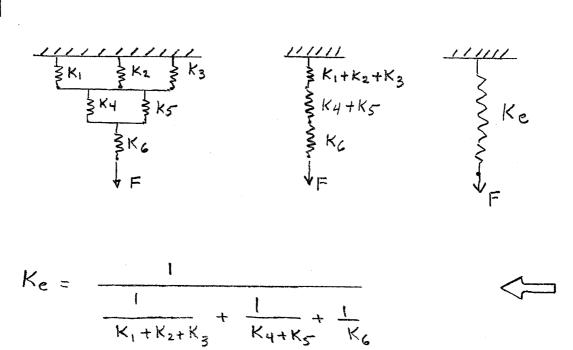
$$K_e = K_1 + K_2 + K_3$$

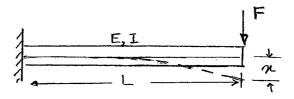



$$\chi = \chi_1 + \chi_2 + \chi_3$$

$$\frac{F}{K_e} = \frac{F}{K_1} + \frac{F}{K_2} + \frac{F}{K_3}$$

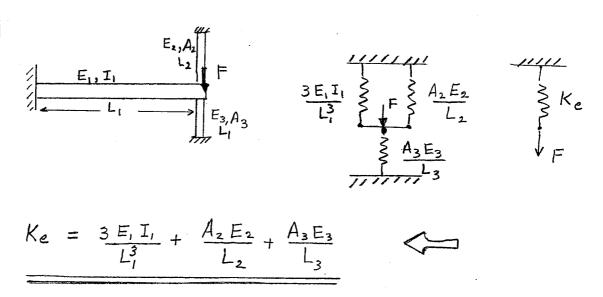
$$\frac{1}{K_e} = \frac{1}{K_1} + \frac{1}{K_2} + \frac{1}{K_3}$$


$$K_e = \frac{1}{\frac{1}{K_1} + \frac{1}{K_2} + \frac{1}{K_3}}$$



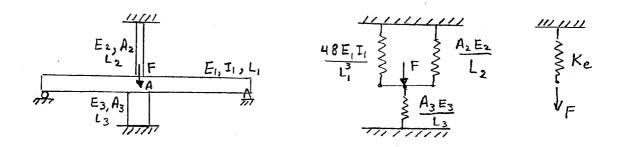
WIII Ke

1-27


$$X = \frac{FL^3}{3EI}$$

$$F = \frac{3EI}{L^3} \propto$$

$$K_e = \frac{3EI}{L^3}$$



Note, deflection of each spring is the Same, therefore, springs are in Parallel.

1.29

From Table 4.1, the Ke for the beam is:

$$\left(K_{e}\right)_{b_{eam}} = \frac{48E_{i}I_{i}}{L_{i}^{3}}$$

$$K_e = \frac{48E_1I_1}{L_1^3} + \frac{A_2E_2}{L_2} + \frac{A_3E_3}{L_3}$$

Note, deflection of each spring is the same, therefore, springs are in Parallel.

$$(+, \sum M_0 = 0) - FL + (K_2 \pi_2)(2L) + (K_1 \pi_1)(L) = 0$$

$$Note \quad X_2 = 2 \times_1 \quad \text{and} \quad Simplify}$$

$$(2 K_2 X_1)(2L) + K_1 \pi_1 L = FL$$

$$\pi_1 = \frac{F}{4 K_2 + K_1}$$

$$\Pi = \sum_{c=1}^{n} \bigwedge^{(c)} - \sum_{c=1}^{n} F_1 U_1$$

$$\Pi = \frac{1}{2} K_2 \chi_2^2 + \frac{1}{2} K_1 \chi_1^2 - F \chi_1 = \frac{1}{2} K_2 (2 \pi_1)^2 + \frac{1}{2} K_1 \chi_1^2 - F \chi_1$$

$$\Pi = 2 K_2 \chi_1^2 + \frac{1}{2} K_1 \chi_1^2 - F \chi_1$$

$$\frac{\partial \Pi}{\partial x_1} = \frac{4 K_2 \pi_1 + K_1 \pi_1 - F}{4 K_2 + K_1}$$

$$\pi_1 = \frac{F}{4 K_2 + K_1}$$

K2 12