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Chapter 2 Solutions

® Problem 2.1 ¢

If Uy, is the average velocity of a point P over a given time interval, is [Uaye|, the magnitude of the average
velocity, equal to the average speed of P over the time interval in question?

Solution

In general, |,y is not equal to vaye. To see this, consider a car that drives along a loop of length AL over a
time interval Az such that the departure and arrival points coincide. Since the departure and arrival positions
coincide, Vay is equal to zero. This, implies that |U,y| is also equal to zero. By contrast, the average speed
will be different from zero because it is equal to the ratio AL/ At.
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® Problem 2.2 ¢

A car is seen parked in a given parking space at 8:00 A.M. on a Monday morning and is then seen parked
in the same spot the next morning at the same time. What is the displacement of the car between the two
observations? What is the distance traveled by the car during the two observations?

Solution

The displacement is equal to zero because the difference in position over the time interval considered is equal
to zero. As far as the distance traveled is concerned, we cannot determine it from the information given. To
determine the distance traveled we would need to know the position of the car at every time instant during the
time interval considered instead of just at the beginning and end of the time interval in question.
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® Problem 2.3¢

Is it possible for the vector v shown to represent the velocity of the point P?

Q

/\/path of P

Solution

No, because the vector ¥ shown is not tangent to the path at point P, which it must.
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® Problem 2.4 ¢

Is it possible for the vector a shown to be the acceleration of the point P?

Q

path of P

Solution

No, because a does not point toward the concave side of the trajectory of P, which it must.
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® Problem 2.5¢

Two points P and Q happen to go by the same location in space (though at different times).

(a) What must the paths of P and Q have in common if, at the location in question, P and Q have
identical speeds?

(b) What must the paths of P and Q have in common if, at the location in question, P and Q have
identical velocities?

Solution

Part (a) In the first case, what we can expect the paths to share is that point in space which, at different
instants, is occupied by P and Q.

Part (b) In the second case, the paths in question will not only share a point, like in the previous case, but
will also have the same tangent line at that point, since the velocity vector is always tangent to the path.
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Problem 2.6 |

The position of a car traveling between two stop signs along a straight city block is given by r =
[9t — (45/2) sin(2¢/5)] m, where ¢ denotes time (in seconds), and where the argument of the sine function
is measured in radians. Compute the displacement of the car between 2.1 and 3.7 s, as well as between
11.1 and 12.7 s. For each of these time intervals compute the average velocity.

rT # < T 0=
u. 0

Solution

We denote the quantities computed between 2.1 and 3.7 s by subscript 1, and between 11.1 and 12.7 s by
subscript 2.
Using the definition of displacement, we have

AFy =[r(3.7s) —r(2.1s)]4i, and Ar, = [r(12.7s) —r(11.15s)]#,. (1)
Applying the definition of average velocity we have

r(3.7s) —r(2.1s) ,

- r(12.7s) —r(11.1s) ,
37s—21s  r ad Oy =

ur.
12.7s—11.1s

2

(1_5avg)1 =

Using the expression for r(¢) in the problem statement, the expressions in Eqs. (1) and (2) can be evaluated
to obtain

Arp =8.74710, m and Ar, = 13.731, m,

and

(Vavg); = 5.4671, m/s and (Vave), = 8.5791, m/s.
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Problem 2.7 |

A city bus covers a 15 km route in 45 min. If the initial departure and final arrival points coincide, determine
the average velocity and the average speed of the bus over the entire duration of the ride. Express the
answers in m/s.

Solution

Since the departure and arrival points coincide, the displacement vector over the duration of the ride is equal
to zero. This implies that the average velocity of the bus over the duration of the ride is equal to zero:

Vavg = 0.

Letting d denote the total distance traveled by the bus and letting A¢ denote the time to travel the distance d,
the average speed over the duration of the ride is

d

A ey

Vavg =

Since d = 15km = 15x 103 m and At = 45 min = 27005, we can evaluate the above expression to obtain

Vavg = 5.556m/s.
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Problem 2.8 |

An airplane A is performing a loop with constant radius p. When 6 = 120°, the speed of the airplane is
vo = 210 mph. Modeling the airplane as a point, find the velocity of the airplane at this instant using the
component system shown. Express your answer in ft/s.
y
0
C v
0
A
J
7
0° *

Solution

The velocity of the airplane is tangent to the path. In this case the path is
a circle centered at C. Referring to the figure at the right, we see that the
tangent to the path at A is perpendicular to the radial line connecting C
to A. In turn, this means that, for a generic value of 6, the velocity vector
forms an angle 6 with the horizontal direction and can be represented as

U =wv(cosO17 +sinb J), (1)

where v = || is the speed. For # = 120° we have v = vg = 210 mph =

210 % ft/s. Therefore, for 8 = 120° we can evaluate Eq. (1) to obtain

= (=154.07 + 266.7 }) ft/s.

X
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Problem 2.9

An airplane A is performing a loop with constant radius p = 300 m. From elementary physics, we know
that the acceleration of a point in uniform circular motion (i.e., circular motion at constant speed) is
directed toward the center of the circle and has magnitude equal to v2/p, where v is the speed. Assuming
that A can maintain its speed constant and using the component system shown, provide the expressions of
the velocity and acceleration of A when 6 = 40° and |a| = 3g, where a is the acceleration of A and g is
the acceleration due to gravity.

y
0
Y C g
\ ;
A
J
00 ! X
Solution
From the problem statement, the relation between the speed and the Y
magnitude of the acceleration in this problem is
2
- v
la] = —. ) P
P
Setting the left-hand side of Eq. (1) equal to 3g and solving for v, we have
v = /38p. (2)

The velocity of the airplane is tangent to the path. In this case the path
is a circle centered at C. Referring to the figure at the right, we see that
the tangent to the path at A is perpendicular to the radial line connecting
C to A. This means that, for a generic value of 0, the velocity vector forms an angle 6 with the horizontal
direction and can be represented as

U=uv(cosfl+sinfj) = v=,/3gp(cosb+sinb J), 3)

where we have used the result in Eq. (2).
Letting ¢ denote the angle formed by the acceleration and the horizontal direction, since the acceleration
is directed toward the center of the loop, we have that

¢ =6 +90°. “)

Hence, recalling that the magnitude of the acceleration is 3g, the acceleration can be written as follows:
a=3g(cospi+singj) = a=23g(—sinbi+cosbh ), 5)
where we have used Eq. (4) and the trigonometric identities cos(6 +90°) = —sin 8 and sin(6 + 90°) = cos 6.

Since 6 = 40°, p = 300m, and g = 9.81 m/s?, we can evaluate the second of Egs. (3) and the second
of Egs. (5) to obtain

U= (71.987 +60.40 /)m/s and d = (—18.927 + 22.54 j)m/s%.
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Problem 2.10 !

An airplane takes off as shown following a trajectory described by equation y = kx2, where
Kk = 2x1074ft™'.  When x = 1200ft, the speed of the plane is vo = 110mph.
Using the component system shown, provide the expression for the velocity of the airplane when
x = 1200 ft. Express your answer in ft/s.

y

path of A
j \ A Vg

—0—3 x

Solution

Referring to the figure at the right, we denote by 6 the angle formed Y
by the velocity with the horizontal direction. We write the velocity

as follows: path of A .
U = vg(cos @17 +sinb J). 1 >
j A 0
Since the velocity is tangent to the path and since the trajectory of the | c
airplane is known as a function of x, namely y = kx?2, the tangent of ot
0 coincides with the derivative of the trajectory with respect to x:
d 1 ) 2kx
tan@z—y:2kx = cos=——— and sinf = —— 2)

dx V1 4+ 4k2x2 V1 F 4,22’

where we have used the trigonometric identities cosf = 1/4/1 + tan2 6 (for 0 < 6 < 90°) and sinf =
tan 6 cos 6. Substituting the last two of Egs. (2) into Eq. (1), we then have

s Vo N 2K XV
v = 1+ J- 3)
V1 + 4k2x2 V1 + 4x2x2
For vo = 110mph = 110 328 ft/s, k = 2x107*ft™!, and x = 1200 ft, we evaluate Eq. (3) to obtain
U = (145.47 + 69.81 J) ft/s.
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Problem 2.11{

The position of a car as a function of time 7, with # > 0 and expressed in seconds, is
F(t) = [(5.98t2 4+ 0.13913 — 0.0149:%) 7 4 (0.523¢% + 0.0122¢3 — 0.00131¢%) j] ft.

Determine the velocity, speed, and acceleration of the car fort = 15s5.

Solution

The velocity is obtained by taking the derivative of the position with respect to time. This gives
U = [(11.96¢ + 0.4170¢% — 0.05960¢°) 7 + (1.046¢ + 0.03660¢% — 0.005240¢%) 7] ft/s. (1)

The speed is the magnitude of the velocity. Using Eq. (1), we have

y = \/ (11.967 + 0.4170¢2 — 0.0596073)% + (1.0461 + 0.03660:2 — 0.005240¢3)* ft/s, )

which can be simplified to

v =1y/144.1 + 10.05¢ — 1.26172 — 0.05009¢3 + 0.0035801* ft/s. 3)

The acceleration is computed by taking the derivative of the velocity with respect to time. Using Eq. (1), we

have
d = [(11.96 + 0.8340¢ — 0.1788¢2) 7 + (1.046 + 0.07320¢ — 0.01572¢2) j] ft/s>. 4)

Evaluating Egs. (1), (3), and (4) for t = 15, we have

5(15s) = (72.087 + 6.240 ) ft/s, v(15s) = 72.34ft/s, a(15s) = —(15.767 + 1.393 ) ft/s>.
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Problem 2.12 |

The position of a car as a function of time 7, with # > 0 and expressed in seconds, is
F(t) = [12.3(t 4+ 1.54e7%") 7 +2.17( + 1.54¢7%%%") Jm.

Find the difference between the average velocity over the time interval 0 < ¢ < 25 and the true velocity
computed at the midpoint of the interval, i.e., at ¢ = 1s. Repeat the calculation for the time interval
8s <t < 10s. Explain why the difference between the average velocity and the true velocity over the
time interval 0 < ¢t < 2sis not equal to that over 8s <t < 10s.

Solution
The velocity is obtained by taking the derivative of the position with respect to time. This gives
¥ = [12.30(1 — 1.001e79-6°90%) 7 4 2.170(1 — 1.001e7-6590%) 71 m/s. (1)
Using Eq. (1), for t = 1s we have
v(1s) = (5.8727 + 1.036 j) m/s. 2)
The average velocity over the time interval 0 < ¢t < 2's, which we will denote by (5avg)1, is

F(2s) —F(0)

5 = (5.4107 + 0.9545 J) m/s. 3)
S

(6avg)1 =

Letting AUy = (Vayg)1 — U(1 s), using the results in Egs. (2) and (3), we have

Ay = —(0.46237 + 0.08155 /) m/s.

Using Eq. (1), for t = 9s we have
U(9s) = (12.267 + 2.164 j)m/s. 4
The average velocity over the time interval 8 s < ¢ < 10s, which we will denote by (17avg)2, 18

7(10s) — 7(8s)

5 = (12.267 4 2.163 j) m/s. (5)
S

(Bavg)z =

Letting AU, = (Vayg)2 — U(95s), using the results in Egs. (4) and (5), we have

ATy = —(0.0025507 4 0.0004499 /) m/s.

We observe that Av; # Av,. This is due to the fact that, in general, the approximation of the true velocity by
the average velocity over a given time interval is a function of the time interval in question, i.e., AV changes
depending on the interval on which it is computed.
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Problem 2.131{

The position of a car as a function of time 7, with # > 0 and expressed in seconds, is
F(t) = [(66¢ —120)7 + (1.2 + 31.7¢t — 8.71¢2) j] ft.
If the speed limit is 55 mph, determine the time at which the car will exceed this limit.

y

B
J
0‘—_>
o’ 7 *

I

Solution

In order to solve the problem we need to determine the speed of the car. So, we first determine the velocity of

the car and then we compute its magnitude.
The velocity is found by taking the time derivative of the position. This yields,

3 =[667+ (31.7 — 17.42¢) 7] ft/s.

The speed is the magnitude of the velocity. Using Eq. (1), we have

v = \/662 + (31.7 — 17.420)2 ft/s,

which can be simplified to

v = /5361 — 1104¢ + 303.5¢2 fi/s.
Setting the speed in Eq. (3) equal to the speed limit 55 mph = 80.67 ft/s, and solving for ¢ we have

V5361 — 11041 + 303.5:2 ft/s = 80.67ft/s = 5361 — 1104t + 303.5:% = (80.67 ft/s)>.

The second of Egs. (4) is a second order algebraic equation in ¢ with the following two roots:

t = —0.8427s and ¢ = 4.482s.

ey

2

3)

)

&)

Since ¢ > 0 we can only accept the second of the two roots in Eq. (5). Therefore, we conclude that the car

will exceed the given speed limit at

1 =4.482s.
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Problem 2.14 i

The position of a car as a function of time 7, with # > 0 and expressed in seconds, is
F(t) = [(66¢ —120)7 + (1.2 + 31.7¢t — 8.71¢2) j] ft.

Determine the slope 6 of the trajectory of the car for #; = 1s and t, = 3 s. In addition, find the angle ¢
between velocity and acceleration for #; = 1s and #, = 3s. Based on the values of ¢ at ¢; and #;, argue
whether the speed of the car is increasing or decreasing at 1 and 5.

y

B

J
9 l
OQ; *

Iy

Solution

Since the velocity is always tangent to the path, the angle 6 can be computed by finding the velocity and
then determining the orientation of the velocity relative to the horizontal direction. The velocity is the time
derivative of the position. Differentiating the given expression for the position with respect to time, we have

v =1[6674 (31.7—17.42¢) j]ft/s. €))
The orientation 6 of the velocity vector can be computed as:
6 = tan™! (“_y) @
Ux
where, referring to Eq. (1),
vx = 66ft/s and v, = (31.7—17.42¢) ft/s. 3)

Substituting Egs. (3) into Eq. (2) and evaluating the corresponding expression for t = ¢f; = 1s and
t =t = 3s, we have

61 =12.21° and 6, = —17.30°, “)

where 61 and 6, are the values of 6 at #1 and 15, respectively.
To determine the angle ¢, we first determine the acceleration as the time derivative of the velocity.
Differentiating Eq. (1) with respect to time gives

a=—17.427ft/s>. (5)

The angle ¢ is obtained as

(6)

¢=COS—1(%) _ _1[ 17.42(17.421 — 31.7) }
v||a

17.42,/662 4 (31.7 — 17.421)2

where we have used Eqs. (1) and (5). Denoting by ¢; and ¢, the values of ¢ at times #; and f,, respectively,
Eq. (6) gives

$1 =102.2° and ¢ = 72.70°. 7

Since ¢1 > 90°, at ¢ the acceleration has a component opposite to the velocity. This indicates that the speed
of the car is decreasing at ¢1. Since ¢ < 90°, at ¢, the acceleration has a component pointing in the same
direction as the velocity. This indicates that the speed of the car is increasing at #5.
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Problem 2.15{

Let7 = [ti + (2 + 3t + 2¢2) j]m describe the motion of the point P relative to the Cartesian frame
of reference shown. Determine an analytic expression of the type y = y(x) for the trajectory of P for
0<t<5s.
y
J
I X
1
Solution
The position of P is given as
F()=x@) i+ y@) ], (1
where
x(t)=tm and y() = (2 + 3t + 2t2) m. 2)
Solving the first of Egs. (2) with respect to time, we have
t=x. 3)
Substituting Eq. (3) into the second of Egs. (2), we obtain:
y(x) = (2+3x +2x%)m. 4)

Now we observe that the coordinate x is an increasing function of time. Therefore, the range of x covered for
0 <t < 5sis determined by computing the value of x corresponding to # = 0 and # = 5s. Using the first of
Egs. (2), we have

x(0)=0 and x(5s) =5m. (5)

So, the trajectory of P for 0 <t < 5sis given by

y(x) = (2+3x+2x2)m for 0<x<5m.
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Problem 2.16 i

Let7 = [t1 4+ (2 + 3¢ + 2t2) j]ft describe the motion of a point P relative to the Cartesian frame of
reference shown. Recalling that for any two vectors p and § we have that p - § = |p| |¢]| cos 8, where S
is the angle formed by p and ¢, and recalling that the velocity vector is always tangent to the trajectory,
determine the function ¢ (x) describing the angle between the acceleration vector and the tangent to the
path of P.

y
J
I X
l
Solution
The velocity vector is the time derivative of the position vector:
v =[17+ 3+ 41) j]ft/s. (1)

The acceleration vector is the time derivative of the velocity vector. Therefore, differentiating both sides of
Eq. (1) with respect to time, we have
a=47jft/s% )

As stated in the problem, ¢ is the angle between the acceleration vector and the tangent to the path of P.
Since v is always tangent to the path, ¢ can be computed as the angle formed by the vectors a and v, which is

¢=cos—1(i'i’). 3)
EilEd

From Egs. (1) and (2) we have that

9] = (,/12 + (3 + 4r)2) ft/s = (\/10 + 241 + 16t2) ft/s and |d| = 4ft/s>. 4)

Substituting the expressions for U, d, |v

, and }Zi| into Eq. (3), we have

3+ 4t
¢ = cos_l( + ) (%)
V10 + 241 + 1612

Since we have that ry = x = ¢ ft, we can replace ¢ with x in the last of Egs. (5) to obtain:

P(x) = cos_l( SHurh s )

V10 + 24x + 16x2
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Problem 2.17 {

The motion of a point P with respect to a Cartesian coordinate system is described by 7 = [2ﬁ I+
(4 In(t + 1) + 2t2) j] ft, where ¢ denotes time, ¢ > 0, and is expressed in seconds.
Determine the angle 6 formed by the tangent to the path and the horizontal direction at t = 3's.

Solution

Since the velocity is always tangent to the path, we can find the angle 6 by determining the angle formed by
the velocity vector and the horizontal direction. The velocity is the time derivative of the position. Hence,
differentiating the position with respect to time, we have

o 4—1 t) 7t 1
v—|:$1+ (t+1+)ji| /s. (D

Evaluating Eq. (1) att = 3 s, we have
v(3s) = (0.57747 + 13.00 J) ft/s. 2)

Since both components of the velocity are positive, at ¢ = 3 s, the angle 6 can be computed as follows

3
6 = tan~t| 20V | 3)
Ux(39)
where, referring to Eq. (2),
vx(3s) = 0.5774ft/s and v,(3s) = 13.00ft/s. 4)

Substituting Egs. (4) into Eq. (3), we have

0 = 87.46°.
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Problem 2.18 i

The motion of a point P with respect to a Cartesian coordinate system is described by 7 = [2ﬁ I+
(4 In(t + 1) + 2t2) j] ft, where ¢ denotes time, ¢ > 0, and is expressed in seconds.

Determine the average acceleration of P between times t; = 4s and #, = 6s and find the difference
between it and the true acceleration of P at¢t = 5s.

Solution

By definition, the average acceleration over a time interval 11 <t < 5 is

- 1 .
Gavg = / ad. )
Ih—1n 151
Recalling that @ = dv/dt, we can write a dt = dv. Substituting this expression into Eq. (1), gives
- Uy — U1
dpyg = ——, 2
avg h—1 (2

where v and ¥, are the values of ¥ at times 71 and 7,, respectively.
We now proceed to determine the velocity as the time derivative of the position. This gives

1 1
V= |—F7i4+4(——+1]]|ft/s. 3
[ﬁ (t +1 ) ! } / ¥
Evaluating the expression in Eq. (3) at# = 71 = 4sand ¢ = #, = 65, and using the results to evaluate
Eq. (2), we have

davg = (—0.045887 + 3.886 /) ft/s>. 4)

We now determine the (true) acceleration as the time derivative of the velocity. Using Eq. (3), this gives

. 1. 1 ~ 2
i= s 4 g 7 )

Att = 5s, Eq. (5) gives
a(5s) = (—0.044727 + 3.889 J) ft/s%. (6)

Subtracting Eq. (6) from Eq. (4) side by side, we have

Gavg — A(55) = (—0.0011547 — 0.003175 J) ft/s>.

The above results allows one to measure the error made in approximating the true acceleration at t = s s with

Aayg-
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Problem 2.191i

The motion of a stone thrown into a pond is described by
F(t) = [(1.5—0.3¢713%) 7 4 (0.094¢~"3%" —0.094 — 0.72¢) j]m,

where ¢ is time expressed in seconds, and ¢ = O's is the time when the stone first hits the water. Determine
the stone’s velocity and acceleration. In addition, find the initial angle of impact 8 of the stone with the
water, i.e., the angle formed by the stone’s trajectory and the horizontal direction at ¢ = 0.

y

Solution

The velocity of the stone is found by differentiating the position vector with respect to time. This gives

() = [(4.080e—13-6°’) ; (1.278e—13-6°’ + 0.7200) j] m/s. 1)

The acceleration vector is found by differentiating the velocity vector in Eq. (1) with respect to time:

i) = [(—55.49e—13-6°’) P (17.39e—13-6°‘) j] m/s2. )

The impact angle 6 is the slope of the stone’s trajectory at the time that the stone enters the water. Then,
recalling that the velocity is always tangent to the trajectory, we can compute 6 using the components of v at
time t = 0. Using Eq. (1) to evaluate the velocity components, and observing that at time t = 0 we have

vy(0) <0, 6 is given by
_1{ —vy(0)
6 = tan 1( oy ) = | 6=26.10°
vx(0)
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Problem 2.201

As part of a mechanism, a peg P is made to slide within a rectilinear guide with the following prescribed
motion:
F(1) = xo[sin(rwt) — 3sin(rwt)]1,

where ¢ denotes time in seconds, x9 = 1.2in., and @ = 0.5rad/s. Determine the displacement and the
distance traveled over the time interval 0 < ¢ < 4s. In addition, determine the corresponding average
velocity and average speed. Express displacement and distance traveled in ft, and express velocity and
speed in ft/s. You may find useful the following trigonometric identity: cos(28) = 2cos? 8 — 1.

y

J P

Solution

The function that describes 7(¢) is the sum of two periodic functions. The period of the function sin(2rwt)
is half the period of the function sin(rwt). Hence, the overall period p of 7(¢) coincides with the period of
sin(rwt). We determine p as follows:

Twp =21 = p=2/w=4s, (1)

where we have used the fact that @ = 0.5rad/s. Therefore, letting z; = 0 and 7y = 4s = p, we see that t;
and 75 are exactly one period apart. This implies that the position of the peg at times #; and 7y is identical.
These considerations tell us that the displacement over the given time interval is equal to zero:

A7 =0,

where A7 = 7(ty) — 7(t;). This implies that the corresponding average velocity is also equal to zero:

Uavg = 0.

To determine the distance traveled, we begin by observing that the peg starts its motion at the origin, i.e.,
7(0) = 0. Next we determine the velocity of the peg as the time derivative of the position:

U = mwxg[2cos2rwr) — 3cos(rwr)] 1. )

Using the expression in Eq. (2), at time 7 = 0, we have v(0) = —mwxg i. This result implies that, at ¢ = 0,
the peg is moving to the left. In order to come back to its initial position, the peg must reverse the direction of
motion. This observation is important in that it leads us to a strategy to determine the distance traveled. Let
the total time interval starting at 7; and ending at 77 be subdivided as follows:

O0=ti<ti<tr <<ty <ty =4s, 3)

where t1, t2, ..., and t,, are the times at which the peg changes direction of motion. If we can determine the
n times t1, ta, .. .1, then the total distance traveled is the sum of the length of each segment traveled between
the time instants in Eq. (3), that is,

d = [x(t;) = x(@)| + |x(@1) — x(@2)] + -+ + |x(tn) — x(15)], 4)
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where, referring to the problem statement,
x(t) = xo[sin(2na)t) -3 sin(na)t)]. 5)

To determine the times at which the peg changes the direction of motion, we need to determine the times at
which the x component of velocity changes sign, which corresponds to the times at which the velocity equals
zero. Referring to Eq. (2), this requires that we solve the equation

2cos(2rwt) — 3cos(mwt) = 0. (6)
Using the trigonometric identity provided in the problem statement, Eq. (6) can be rewritten as
4cos?(nwt) — 3cos(nwt) —2 = 0, @)
which is a quadratic equation in cos(wt) whose solution is

3+ V41
8

cos(mwt) = = cos(rwt) =1.176 and cos(rwt) = —0.4254. ®)

The first root is not acceptable because the cosine function cannot take on values larger than one. Hence, the
times at which the x component of the velocity is equal to zero are given by the following sequence of time

values:
1 (3 — V4
t = — Ccos T

):i:Znn, n=012,... 9)
Tw

Since the time values we are interested in must be between t; = 0 and ¢y = 4, then the only acceptable
solutions are
t1 =1.280s and #, = 2.720s. (10)

Now that the times at which the peg changes direction of motion are known, referring to Eq. (4), we can then
apply the formula giving the distance traveled:

d = |x(0) = x(t)| + [x(t1) — x(22)| + |x(t2) — x(45)]. an
Using Egs.(5) and (10), we have
x(0) =0, x(11) = —0.34851ft, x(tp) = 0.3485ft, x(4s) =0. (12)

Using the (full precision values of the) results in Eq. (12), we can evaluate Eq. (11) to obtain

d = 1.394ft. (13)

Now that the distance traveled is known, the corresponding average speed is obtained by dividing the distance
traveled by the length of the time interval considered:

d
Vavg = 4_S (14)

Using the (full precision value of the) result for d in Eq. (13) we have

Vavg = 0.3485 ft/s.
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Problem 2.21 i

The position of point P as a function of time 7, # > 0 and expressed Yy
in seconds, is

F(t) = 2.0[0.5 + sin(w?)] 14[9.5 + 10.5sin(wt) + 4.0sin*(w?)] 7,

where w = 1.3rad/s and the position is measured in meters.

Find the trajectory of P in Cartesian components and then, using
the x component of 7(¢), find the maximum and minimum values of x
reached by P. The equation for the trajectory is valid for all values

of x, yet the maximum and minimum values of x as given by the x — *
component of 7(¢) are finite. What is the origin of this discrepancy?
Solution
We begin by writing the position of P as
F=x(0T+y() ], (1
where
x(t) = [2.0(0.5+ sinwt)m and y(r) = (9.5 + 10.5sinwt + 4.0sin® wr) m. 2)
Next, we solve the first of Egs. (2) for sin wt as a function of x:
nwr = X1 3)
sinwt =
2
Substituting Eq. (3) into the second of Egs. (2) we have
—1 —1\?
y(x) = [9.5 n 10.5(%) + 4.000()C . ) } m
= | »(x) = (5.250 + 3.250x + 1.000x*) m. | (4)

We now need to determine the range of x covered by the motion of P. To do so, referring to the first of
Egs. (2), we observe that the minimum and maximum values of x are achieved when the function sin wt
achieves its minimum and maximum values, respectively, which are the values —1 and +1, respectively.

Substituting the values —1 and +1 for sin wt in the first of Eqgs. (2), we have, respectively,

Xmin = —1m and Xxpax = 3m.

The maximum and minimum values of the x coordinate occur due to the presence of a periodic function in
the equation for this component. Therefore, the trajectory, which is valid for all times ¢, is constrained to

oscillate between —1 m and 3 m on the x axis.
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ZER Problem 2.22 i2.

The position of point P as a function of time 7, ¢ > 0 and expressed y
in seconds, is

F(t) = 2.0[0.5 + sin(w?)] 14[9.5 + 10.5sin(wt) + 4.0sin*(w?)] 7,
where @ = 1.3rad/s and the position is measured in meters.

(a) Plot the trajectory of P for0 <t <0.6s5,0 <7t <14s5,0<t <
2.3s,and 0 <t < 5s.

(b) Plot the y(x) trajectory for —10m < x < 10m.

(c) You will notice that the trajectory found in (b) does not agree with
any of those found in (a). Explain this discrepancy by analytically
determining the minimum and maximum values of x reached by
P. As you look at this sequence of plots, why does the trajectory
change between some times and not others?

Solution

Part (a). Since w = 1.3rad/s, we write the x and y coordinates of point P as
x(t) = {2.0[0.5 +sin(1.37)]}m and y(¢r) = [9.5 + 10.5sin(1.3¢) + 4.0sin?(1.3¢)] m. €))

One strategy to plot the trajectory of point P is to plot the line that connects the points of coordinates
[x(2), y(2)] as time ¢ varies within a given time interval. This way of plotting the trajectory does not involve
finding y as a function of x. Rather, it consists of generating a list of (x, y) values, each of which is computed
by first assigning a specific value of time. This procedure is called a parametric plot, where the parameter
used to generate the plotted points is time and does not appear directly on the plot (i.e., the plot uses x and y
axes, but it does not show the time values corresponding to the points on the plot). Parametric plots can be
generated using any appropriate numerical software such as MATLAB or Mathematica.

The parametric plots of the trajectory of P shown below were generated in Mathematica with the
following code:

x= 2.0 (0.5+Sin[1.3t]);

y=9.5+10.5Sin[1.3t] +4 (Sin[1.3t]) ~2;

tf = {0.6, 1.4, 2.3, 5.0};

Table[ParametricPlot[{x, v}, {t, 0, t£[[i]]}, PlotRange -» {{-1, 3}, {0, 25}}, Frame -» True,
FrameTicks -» { {Automatic, None}, {{-1, O, 1, 2, 3}, None}}, AspectRatio-» 1,
GridLines -» Automatic, FrameLabel - {"x (m)", "y (m) "},

PlotLabel - StringJoin[" (0 < t < ", ToString[tf[[i]]], " s)"]], {i, 1, Length[tf]}]
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Part (b). In this part of the problem we first need to write the trajectory in the form y = y(x). To do so,
we start with solving the first of Eq. (1) for sin(1.37) as a function of x. This gives

. x —1.000m
SIH(1.3I) = W, (2)

which can then be substituted into the second of Egs. (1) to obtain

() = | 9.500 + 10.50( 22999 | 4 ggo X =100 ’
X) = . . _— . _— m
Y 2.000 2.000

= y(x) = (5.250 + 3.250x + 1.000x*) m. (3)

Now that we have the trajectory in the form y(x), we can plot it over the Trajectory y (x)

given interval —10m < x < 10m as shown on the right. This plot was generated 10l
using Mathematica with the following code: 100 ¢
Plot[5.250+3.250x+1.00x"2, {x, -10.0, 10.0}, Frame - True, g 80%
FrameTicks -» {{Automatic, None}, {Automatic, None}}, AspectRatio-» 1, : 60
GridLines -» Automatic, ImageSize -» 170, FrameLabel - {“x (m) ", "y (m) “}, 40
PlotLabel -» "Trajectory y(x) “] 28 i

-10 =5 0 5 10

x (m)
Part (¢c). Referring to Eq. (1), for xpax, sinl1.3t = +1 =1 = ﬁ s and for x i, sin 1.3t = —1 = ¢ =
% s. Thus, the minimum and maximum values are, respectively,
Xmin = —1.000m and xpax = 3.000 m. 4

The minimum and maximum values of the x coordinate occur due to the presence of a periodic function in the
equation for this component. Therefore, the trajectory, which is valid for all times ¢, is constrained to oscillate
between —1.000 m and 3.000 m on the x axis. This fact explains why in the plot sequence in Part (a) the
trajectory seems not to change after a while: point P keeps tracing the same curve segment again and again.
The periodicity of the motion of P also explains the discrepancy between the trajectory obtained in Part (a)
and that obtained in Part (b). In fact, since the plot generated in Part (a) was based on a direct application of
Egs. (1), we see that the plot in question correctly reflects the periodic time dependence the coordinates of
point P. By contrast, the trajectory computed in Part (b) no longer carries any direct relationship with time.
The trajectory plotted in Part (b) does contain the trajectory plotted in Part (a) as a sub-curve. The problem
with the trajectory in Part (b) is that we have no direct way of knowing what part of the entire curve actually
pertains to the motion of point P.
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Problem 2.23 |

A bicycle is moving to the right at a speed v9 = 20mph on a VY
horizontal and straight road. The radius of the bicycle’s wheels is
R = 1.15ft. Let P be a point on the periphery of the front wheel.
One can show that the x and y coordinates of P are described by
the following functions of time:

x(t) = vot + Rsin(vpt/R) and y(¢) = R[l + cos(vot/R)]. x
Determine the expressions for the velocity, speed, and accelera-
tion of P as functions of time.
Solution
The velocity of P is the time derivative of P’s position, which, in the coordinate system shown, is
7 = [vot + Rsin(vot/R)]7 + R[1 + cos(vot/R)] . (1)

Differentiating the above expression with respect to time, we have

- ry\|. . L\ .
v = Uo[l + cos(%)] 1— v sm(%) J- )

Since vg = 20mph = ZO% ft/s and R = 1.15ft, we have

v = (29.33ft/s)[1 + cos[(25.51 rad/s)t] 7 — (29.33 ft/s) sin[(25.51 rad/s)¢] J.

The speed is the magnitude of the velocity vector:

v =,/v(t) + vjz,(t) = Vg \/2 + 2 cos (v_l(;t) = v = (29.33ft/s)y/2 + 2 cos[(25.51 rad/s)¢].

3
The acceleration of P is the time derivative of P’s velocity. From Eq. (2), we have ©
a= —ﬁ sin(v—ot) I — ﬁcos(v—ot) Jj. 4)
R R R R
Since vg = 20 mph = 20 % ft/s and R = 1.15 ft, we have
a = —(748.2t/s%) sin[(25.51 rad/s)] i — (748.2 ft/s?) cos[(25.51 rad/s)t] ;.
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Problem 2.24 |

A bicycle is moving to the right at a speed v9 = 20mph on a VY
horizontal and straight road. The radius of the bicycle’s wheels is
R = 1.15ft. Let P be a point on the periphery of the front wheel.
One can show that the x and y coordinates of P are described by
the following functions of time:

x(t) = vot + Rsin(vpt/R) and y(¢) = R[l + cos(vot/R)].

Determine the maximum and minimum speed achieved by P,
as well as the y coordinate of P when the maximum and minimum
speeds are achieved. Finally, compute the acceleration of P when
P achieves its maximum and minimum speeds.

Solution

The speed of P is the magnitude of the velocity of P. Hence, we first compute the velocity of P, which is
the time derivative of P’s position. In the coordinate system shown, the position of P is

7 = [vot + Rsin(vot/R)]7 + R[1 + cos(vot/R)] . (1)

Differentiating the above expression with respect to time, we have

- | vol \ | . . [ Vol\ . 2
v = vo[ —i—cos(?)]z — Vg sm(T) ]- 2)
v = ,/vi(t) + v3(t) =v0\/2—|—2cos (%I) 3)

which implies that v is maximum when cos(voz/R) = 1 and minimum when cos(vot/R) = —1, i.e.,

Hence, the speed is

Umax = 2v0 = 58.67ft/s and vy, = 0ft/s, ()

where we have used the fact that vg = 20 mph = 20 %gg ft/s.
Since v = Vmin When cos(vot/R) = —1 and v = vpax When cos(vo?/R) = 1, using the expression for
the y component of the position of P in Eq. (1), we have

Yo = 0ft and  y,  =2R = 2.300ft,

where we have used the fact that R = 1.15 ft.
To determine the acceleration corresponding to Vi, and vy, We first determine the acceleration of P by
differentiating with respect to time the expression in Eq. (2). This gives

2 2
- vg . [vof\. VU vol \ .
G=—"sin[ 2 )i — 22 cos > j. (®)]
R R R R
Now, recall that for v = v, we have cos(vot/R) = —1 and for v = vpnax we have cos(vot/R) = 1. In

both cases, we have sin(vgz/R) = 0. Using these considerations along with Eq. (5), we have

2 2
N Vg A n = Vg o
dy,. = —Ig J = (74821t/s*)j and a,, = ——Ig 7 = (—748.21t/s?) J,

where we have used the following numerical data: v9 = 20 mph = 20(5280/3600) ft/s and R = 1.15 ft.
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8 Problem 2.25 i2

A bicycle is moving to the right at a speed v9 = 20mph on a
horizontal and straight road. The radius of the bicycle’s wheels is
R = 1.151t. Let P be a point on the periphery of the front wheel.
One can show that the x and y coordinates of P are described by
the following functions of time:

x(t) = vot + Rsin(vot/R) and y(r) = R[1 + cos(vot/R)].

Plot the trajectory of P for 0 < ¢ < 1s. For the same time inter-
val, plot the speed as a function of time, as well as the components
of the velocity and acceleration of P.

Solution
The velocity of P is the time derivative of P’s position, which, in the coordinate system shown, is
7 = [vot + Rsin(vot/R)]7 + R[1 + cos(vot/R)] J. (1)

Differentiating Eq. (1) with respect to time, we have

- vof \ | . . [Vol\ .
v =vg| 1+ cos = 1 — v sin 53 ]- )

The speed is now found by taking the magnitude of the velocity vector. Hence, we have

v=,/vi(®) +v3(t) = vo\/z + 2cos (v_l(;t) 3)

The acceleration of P is the time derivative of P’s velocity. Hence, from Eq. (2), we have

2 2

- . I\ . Iy .

a=—v—Osm Yol z—v—ocos Yol J- @
R R R R

Trajectory of P. We can plot the trajectory of P for 0 < ¢t < 1s by plotting the line connecting the x
and y coordinates of P computed as functions of the parameter 7. The x and y coordinates of P are the
component of 7 (in Eq. (1)) in the x and y direction, respectively. This can be done with a variety of pieces
of numerical software. Since v9 = 20 mph = 29.33ft/s and R = 1.15ft, the plot presented below has been
obtained using Mathematica with the following code

Parameters = {v0 - 29.33, R »1.15};

x=v0t+RSin[vOt/R];y =R (1+Cos[vOt/R]);

ParametricPlot [{x, y} /. Parameters, {t, 0, 1}, Frame » True, GridLines - Automatic,
FrameLabel -» {"x (ft)", "y (ft)"}, PlotLabel -» "Trajectory of P", AspectRatio - 1]
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Speed of P. The speed of P can be plotted for 0 < ¢ < 1s using Eq. (3), with vog = 20 mph = 29.33ft/s
and R = 1.15ft. The plot shown below was generated using Mathematica with the following code:

Parameters = {v0 - 29.33, R »1.15};
v=v0V2+2Cos[v0t/R] ;

Plot[v /. Parameters, {t, 0, 1}, Frame » True, GridLines - Automatic,
FrameLabel -» {"t (s)", "v (ft/s)"}, AspectRatio > 1, PlotLabel -» "Speed of Point P"]
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Velocity Components The components of the velocity of P can be plotted for 0 < ¢ < 1s using the
expressions in Eq. (2) with vg = 20 mph = 29.33ft/s and R = 1.15 ft. The plot shown below was generated
using Mathematica with the following code:

Parameters = {v0 »29.33, R »1.15};
vx =v0 (L+Cos[vOt/R]); vy = -v0 Sin[v0 t/R];
Plot[vx /. Parameters, {t, 0, 1}, Frame » True, GridLines - Automatic,
FrameLabel -» {"t (s)", "vx (ft/s)"}, PlotLabel - "x Velocity Component", AspectRatio - 1]
Plot[vy /. Parameters, {t, 0, 1}, Frame » True, GridLines -» Automatic,
FrameLabel -» {"t (s)", "vy (ft/s)"}, PlotLabel - "y Velocity Component™",
AspectRatio -» 1]
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Acceleration Components The components of the acceleration of P can be plotted for 0 < ¢ < I s using

the expressions in Eq. (4) with v9 = 20mph = 29.33ft/s and R = 1.15ft. The plot shown below was
generated using Mathematica with the following code:

Parameters = {v0 »29.33, R »>1.15};
ax = - (v0? /R) 8in[v0 t /R]; ay = - (v0? /R) Cos[v0 t /R];
Plot[ax /. Parameters, {t, 0, 1}, Frame -» True, GridLines - Automatic,

FrameLabel - {"t (s)", "ax (ft/sz)"}, PlotLabel - "x Acceleration Component",

AspectRatio —» 1]
Plot [ay /. Parameters, {t, 0, 1}, Frame -» True, GridLines -» Automatic,

FrameLabel - {“t (s)", "ay (ft/sz)"}, PlotLabel - "y Acceleration Component",
AspectRatio - 1]
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Problem 2.26 i

Find the x and y components of the acceleration in Example 2.3 (except for the plots) by simply differenti-
ating Eqgs. (4) and (5) with respect to time. Verify that you get the results given in Example 2.3.

Solution

Referring to Eqgs. (4) and (5) of Example 2.3 on p. 38 of the textbook, we recall that the x and y components
of the velocity are, respectively,

2
i=—0Y and oy = 2202 (1

Vy?+4a? VY2 +4a?
To determine X, we differentiate X with respect to time with the help of the chain rule:

dx dxdy .dx @)
¥X=—=——" =y—.
it dydi Yy
Differentiating the first of Eqgs. (1) with respect to y and substituting the result along with the second of
Egs. (1) into Eq. (2) we then have

2. ’ 81)2613
fe-—— X 07 o e 3)

(v +4a2)*? V)2 +4a? (y2 + 4a2)°

To determine y we differentiate y with respect to time with the help of the chain rule. This gives

. dy _dydy . dy

=S =S =y @)
Y5 u T aya T Yy
Substituting the second of Egs. (1) into Eq. (4) and simplifying, we have
—4v (z)a 2y
(v2 + 4a?)
Our results match those in Example 2.3.
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Problem 2.27 i

Find the x and y components of the acceleration in Example 2.3 (except for the plots) by differentiating
the first of Egs. (3) and the last of Eqs. (1) with respect to time and then solving the resulting two equations
for X and j. Verify that you get the results given in Example 2.3.

Solution

We recall that the first of Egs. (3) and the last of Egs. (1) in Example 2.3 on p. 38 are, respectively,
3 =x%24+y% and 2yy = 4ax. (1)
Recalling that vg and a are constants, differentiating Eqgs. (1) with respect to time gives
0=2x%+2y7 and 2ai = y%+ yj. )

We now view Egs. (1) as a system of two equations in the two unknowns x and y. Solving the system in

question gives

2
= 2% g oy= 4% 3)

y ,
Vy? +4a? Vy? +4a?
where, similarly to what was done in Example 2.3 on p. 38 of the textbook, we have enforced the condition
that y > 0. Next, we view Egs. (2) as a system of two equations in the two unknowns X and j whose solution
is

.3 )
. L XY
¥X=—/"—— and y = —F—-——. @
yx + 2ay yxX + 2ay
Substituting Egs. (3) into Egs. (4) and simplifying, we have
2,8 2 22
. Bvga d = —4dvga“y
X=—— and j=——.
(4a2 + y?) (4a2 + y?)
Our results match those in Example 2.3.
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Problem 2.28 |

Airplane A is performing a loop with constant radius p = 1000 ft. The equation describing the loop is as
follows:

(x—xc)? + (v —ye)* = p?,
where xc = 0 and y¢c = 1500 ft are the coordinates of the center of the loop. If the plane were capable of

maintaining its speed constant and equal to vg = 160 mph, determine the velocity and acceleration of the
plane for 6 = 30°.

¢ v
0
A

J

Oo ! X
Solution
We begin by expressing the position as follows:

F=xi+y]. (1

For 6 = 30°, the plane is in the lower right quadrant of the loop and the expression for the path of the airplane
can be written as

y =yc —/p*—x2, (2)

where we have accounted for the fact that xc = 0. We observe that
x = psin6. (3)

Equations (1) and (2) combined indicate that we can regard position as being a known function of x. With
this in mind, we can write an expression for the velocity of the airplane by differentiating Eq. (1) with respect
to time with the help of the chain rule. This gives

L. dy A xx o

V=x14+—"x] = U=x04+——]. “4)

dx 02 — x2

The quantity X in the last of Egs. (4) is unknown, but it can be found by enforcing the condition that the
magnitude of the velocity is equal to vg. Doing so gives

2:2
. XX . Vo
V=324 = =0 = X = —4/p?—x2, 5)

p* —x? P

where we have accounted for the fact that, at & = 30°, x > 0. Substituting the last of Egs. (5) into the last of
Egs. (4), we have

Vo VoX

- 2 2 A ~

V= —4/p*—x°1+ —]. (6)
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Since vg = 160 mph = 160% ft/s, p = 1000 ft, and using Eq.(3), we can evaluate Eq. (6) to obtain

U = (203.27 + 117.3 J) ft/s.

To determine the acceleration we differentiate the expression for the velocity in Eq. (6) with respect to time,
which gives

VoXX . Vo. .
0 —OXJ. @)

—i+
PN/

Substituting the last of Egs. (5) into Eq. (7) and simplifying, we have

a=—

2 2

. vV3x . v .

a:——°2 z+—g p% —x2]. (8)
p P

Recalling that vg = 160 mph = 160% ft/s, and using Eq.(3), we can evaluate Eq. (8) to obtain

a = (=27.537 + 47.69 ) ft/s%.
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Problem 2.29 i

An airplane A takes off as shown with a constant speed equal to y
vg = 160km/h. The path of the airplane is described by the equa-
tion y = «kx2, where k = 6x10~*m™!. Using the component

; ] . path of A
system shown, provide the expression for the velocity and accelera-
tion of the airplane when x = 400 m. Express the velocity inm/s  / 4 Vo
and the acceleration in m/s. s x

o7

Solution
The position of the airplane can be described as
F=xi+y]. (D
Since y = «xx2, Eq. (1) becomes
F=xi+Kkx?]. 2)
Using the chain rule to differentiate Eq. (2) with respect to time, the velocity of the airplane is
U=x1I+42kxx]. 3)

The term x in Eq. (3) can be determined by enforcing the condition that the magnitude of the velocity is equal

to vg. This gives
Vo

—_— 4
V1 + 4k2x2

where we have chosen X > 0 because the airplane is moving in the positive x direction. Substituting the last
of Egs. (4) into Eq. (3) gives

W44 =0 = x=

Vo P 4 2KV X
1 .
V1 + 4x2x2 V14 4k2x2
1000

For vo = 160km/h = 160355 m/s, k = 6x 10~*m™!, and x = 400 m, we can evaluate Eq. (5) to obtain

&)

V=

¥ = (40.077 + 19.23 ) m/s.

The acceleration is the time derivative of the velocity. Using Eq. (3) and the chain rule, we have

L dx .. . dx |\ .
a=—xI+ (2Kx2 + 2Kx—x) j. (6)
dx dx
Differentiating the last of Eqs. (4) with respect to x, we have
dx 4k2vox
= (7
dx (1 + 4x2 x2) /
Substituting the last of Egs. (4) and Eq. (7) into Eq. (6), after simplification, gives
- 4/c2v(2)x R 2K vg R
a=-— 51+ 5J- (8)
(l + 4K2x2) (1 + 4/c2x2)
For vg = 160km/h = 16032 m/s, k = 6x10™*m™!, and x = 400 m, Eq. (8) gives
a = (=0.751617 + 1.566 j) m/s>.
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Problem 2.30 i

A test track for automobiles has a portion with a specific profile described by:

y = h[l — sin(x/w)],

where i = 0.5 ft and w = 8 ft, and where the argument of the sine function is understood to be in radians.
A car travels in the positive x direction such that the horizontal component of velocity remains constant
and equal to 55 mph. Modeling the car as a point moving along the given profile, determine the maximum
speed of the car. Express your answer in ft/s.

Solution

Letting x and y represent the coordinates of the car, the position of the car is
F=xi+h[l-sin(x/w)]]. (1)

The velocity is the time derivative of the position. Using Eq. (1) and the chain rule, we have

.. h x\. .
=X1— —COS(—)X]. 2)

<

w w

To determine the maximum speed, we first determine the speed, which is the magnitude of the velocity. From

Eq. (2), we have
h2
v:‘fc‘\/l—i——zcosz(i). 3)
w w

From Eq. (3) we see that the speed varies because of the presence of the cosine function, whose maximum
possible value is equal to one. We conclude that the maximum value of the speed is

h2
Vmax = X[/ 1+ —. 4)
w

For X = 55mph = 55% ft/s, h = 0.5ft, and w = 8 ft, Eq. (4) gives

Umax = 80.82ft/s.
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Problem 2.31 i

A test track for automobiles has a portion with a specific profile described by:

y = h[l — cos(x/w)],

where # = 0.20m and w = 2m, and where the argument of the cosine function is understood to be
in radians. A car travels in the positive x direction with a constant x component of velocity equal
to 100 km/h. Modeling the car as a point moving along the given profile, determine the velocity and
acceleration (expressed in m/s and m/s?, respectively) of the car for x = 24 m.

Solution

Letting x and y represent the coordinates of the car, the position of the caris 7 = x7 + y J, i.e.,
F=xi+h[1-cos(x/w)];/. (1)

The velocity is the time derivative of the position. Using Eq. (1) and the chain rule, we have

Y - 2 YA
V=X1-+ —sin[ — |xJ. 2)
w w

The acceleration is the time derivative of the velocity. Recalling that X is constant, differentiating Eq. (2)
with respect to time and using the chain rule, we have

N h X \.o 4

d = —cos| — )&% ] (3)
w w

1000

For x = 100km/h = 1003¢50 m/s, h = 0.20m, w = 2m, and x = 24 m, we can evaluate the expressions
in Egs. (2) and (3) to obtain

U = (27781 — 1.490 /)m/s and & = 32.56 jm/s>.

This solutions manual, in any print or electronic form, remains the property of McGraw-Hill, Inc. It may be used and/or possessed only by permission June 25, 2012
of McGraw-Hill, and must be surrendered upon request of McGraw-Hill. Any duplication or distribution, either in print or electronic form, without the
permission of McGraw-Hill, is prohibited.



66 Solutions Manual

Problem 2.321

A test track for automobiles has a portion with a specific profile described by:

y = h[l — cos(x/w)],

where i = 0.75 ft and w = 10 ft, and where the argument of the cosine function is understood to be in
radians. A car drives at a constant speed vg = 35 mph. Modeling the car as a point moving along the given
profile, find the velocity and acceleration of the car for x = 97 ft. Express velocity in ft/s and acceleration
in ft/s%.

Solution
Letting x and y represent the coordinates of the car, the position of the car is bvr = x7 + y J, i.e.,
F=x1+h[l—cos(x/w)]J. (1)
The velocity is the time derivative of the position. Using Eq. (1) and the chain rule, we have
N Y & 2 W
v=x1+ —sin[ — |x . 2)
w w

The quantity X is currently unknown but it can be determined by enforcing the condition that the speed is
equal to vg. Recalling that v = /X2 + y2, from Eq. (2), setting the speed equal to vg gives

h2
P4 sinz(f)fc2 =} = i= 20 , 3)
w w \/w2 + h2sin?(x/w)

where we have taken x > 0 because the car moves in the positive x direction. Substituting the last of Egs. (3)
into Eq. (2), we have

- WU . hvg sin(x/w) R
V= 1+ J

\/w2 + h2sin?(x/w) \/w2 + h2sin?(x/w)

“)

For v = 35mph = 353233 ft/s, h = 0.75ft, w = 10ft, and x = 97 ft, Eq. (4) gives

= (51.327 — 1.046 J) ft/s.

The acceleration is the time derivative of the velocity. Differentiating Eq. (2) with respect to time and using
the chain rule, we have
. dx .. h[x? X . (x\dx . ].
a=—x1+—|—cos| — ) +sin[ — |—x] . )
dx wlw w w ) dx
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Differentiating the last of Egs. (3) with respect to x we have

dx B h?vg sin(2x/w)
dx 2[w? + h? sinz(x/w)]yz’

(6)

where we have used the trigonometric identity 2 sin o cos o = sin(2«). Substituting the last of Egs. (3) and
Eq. (6) into Eq. (5) and simplifying, we have

. h2wv? sin(2x /w . hw?v2 cos(x/w )
G 0'(2/)2l+ 0.2(/)2]’ o
2[w? + h?sin*(x/w)] [w? + A2 sin*(x/w)]

where, again, we have used the trigonometric identity 2sina@ cose = sin(2a). For v = 35mph =
353280 fi/5, h = 0.75ft, w = 10ft, and x = 97 ft, Eq. (7) gives

a = —(0.38737 + 19.00 J) ft/s>.
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Problem 2.33 i

The orbit of a satellite A around planet B is the ellipse shown and is described by the equation (x/a)? +
(y/b)? = 1, where a and b are the semimajor and semiminor axes of the ellipse, respectively. When
x =a/2and y > 0, the satellite is moving with a speed vo as shown. Determine the expression for the
satellite’s velocity v in terms of vg, a, and b for x = a/2 and y > 0.

y
Vo
b j 4
O X
b
a a

Solution

We begin by identifying the value of the y coordinate of the satellite corresponding to x = a/2 and the
condition y > 0. Setting x = a/2 in the equation describing the path of the satellite, we have

1 y? V3

where we have selected the positive root to satisfy the requirement that y > 0. Next, differentiating the
relation describing the path of the satellite with respect to time, we have

XX yy

Substituting x = a/2 and the last of Egs. (1) in Eq. (2), after simplifying, we have

X+

a~/3y
=0. 3
5 3
We also know that
X% 4 32 =g, )

where we treat the speed vg as a known quantity. Equations (3) and (4) form a system of two second order
algebraic equations in the two unknowns x and y. This system has two solutions. However, as shown in the
figure, at the instant considered A is moving upward and to the left. Hence, we have that X < 0, which is
sufficient to allow us to determine the following unique solution:

. —+/3avy . vob
f=—r 2 and y=-——o——. (5)
V3a? + b? V3a? + b2
Recalling that the velocity is given by ¥ = X7 + y J, using Eq. (5), we can express the velocity as
- UO ~ ~
V= —(—«/gaz + b]).
3a? + b2
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Problem 2.34 i

In the mechanism shown, block B is fixed and has a profile described by the following relation:

_nl14 1/x\%> 1/x\*
r= o\d) “4\d) |
The follower moves with the shuttle 4, and the tip C of the follower remains in contact with B.
Assume that &~ = 0.25in., d = 1in., and the horizontal position of C is x = d sin(wt), where
o = 2mrad/s, and ¢ is time in seconds. Determine an analytical expression for the speed of C as a

function of x and the parameters d, &, and w. Then, evaluate the speed of C for x = 0, x = 0.51n., and
x = lin. Express your answers in ft/s.

follower
[ —

V2272

Al

Solution

The position of C is
F=xi+y]. (1)

Since C remains in contact with B, then the vertical position of C, namely y, is given as a function of x in
the problem statement. Hence, we can rewrite Eq. (1) as follows:

S PR EA R TEAN P @)
el

The velocity of C is obtained by differentiating Eq. (2) with respect to time. Using the chain rule, this gives

L. x o x\. .
v=xI1+4+h 72 g8 XJ. 3)

Recalling that the speed is the magnitude of the velocity, using Eq. (3) we have

3\ 2
v=\x\\/1+h2(%—%) . @)

Since x = d sin(wt), differentiating this expression with respect to time, we have

X = dw cos(wt). (5)

Equation (5) implies that

|X| = do|cos(wt)] = |i| =dwy/1—sin*(wr) = |X]|=do/1-(x/d)>, 6)
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where, in obtaining the last of Egs. (6), we have used the fact that x = d sin(wt). Substituting the last of
Egs. (6) into Eq. (4), we have the expression for the speed requested by the problem statement:

3\ 2
v=w«/d2—x2\/1+h2(i—x—) . 7

Recalling that 7 = 0.25in. = % ft,d = lin. = % ft, and @ = 2m rad/s, we can evaluate Eq. (7) for
x=0,x=0.5in. = %5 ft,and x = lin. = % ft to obtain, respectively,

v =0.5236ft/s, v=0.4554ft/s, and v =0.

This solutions manual, in any print or electronic form, remains the property of McGraw-Hill, Inc. It may be used and/or possessed only by permission June 25, 2012
of McGraw-Hill, and must be surrendered upon request of McGraw-Hill. Any duplication or distribution, either in print or electronic form, without the
permission of McGraw-Hill, is prohibited.



Dynamics 2e 71
Problem 2.35 i

In the mechanism shown, block B is fixed and has a profile described by the following relation:

_nl14 1/x\2 1/x\*
r= 2\a) 4\d) |
The follower moves with the shuttle 4, and the tip C of the follower remains in contact with B.

Assume that 4 = 2mm, d = 20 mm, and A4 is made to move from x = —d to x = d with a constant
speed vo = 0.1 m/s. Determine the acceleration of C for x = 15 mm. Express your answer in m/s>.

y follower

[ —

V22472

B 2
hi \L .

Solution

The position of C is
F=xi+y]. (1)

Since C remains in contact with B, then the vertical position of C, namely y, is given as a function of x in
the problem statement. Hence, we can rewrite Eq. (1) as follows:

s il 1/x\2 1/x\* R )
r=x1+ +§(E) _Z(E) J- 2)

The velocity of C is obtained by differentiating Eq. (2) with respect to time. Using the chain rule, this gives

L. x o x\. .
v=xI1+4+h 2 g XJ. 3)

Since the follower moves with A4, and since A moves to the right with the constant speed vg, we then have
X = Vo. (4)

Substituting Eq. (4) into Eq. (3) we then have that the velocity of C is

. . x X\,
vV =uvgl + voh 2T j. %)

The acceleration of C is obtained by differentiating the expression of the velocity in Eq. (5) with respect to
time. Using the chain rule, this gives

L hv? x2\ .
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72
= 2 m d = 20mm =
1000 ™
= 12 to obtain

where we have accounted for the fact that vg is constant. Recalling that # = 2 mm
m, vop = 0.1 m/s, we can evaluate the expression in Eq. (6) for x = 15mm = 1535

20

1000

d = —0.03438 j m/s>.

June 25, 2012
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Problem 2.36 |

The Center for Gravitational Biology Research at NASA’s Ames Research Center runs a large centrifuge
capable of 20g of acceleration, where g is the acceleration due to gravity (12.5g is the maximum for
human subjects). The distance from the axis of rotation to the cab at either A or B is R = 25ft. The
trajectory of A is described by y4 = /R% — xfl for y4 > 0andby yy = —/R? — xfl foryq <0.1f A

moves at the constant speed v4 = 120 ft/s, determine the velocity and acceleration of A when x4 = —20ft
and y4 > 0.

~ . Vg, - N
O
s, N \
NS %» . / ~ \
| SIS i o 1 \
B T1 B
w B \

Photo credit: NASA

Solution
Starting with the equation of the trajectory for y4 > 0, and differentiating it with respect to time, we have
—XAX4

)}A:ﬁ- (1
R — Xy

We now recall that the speed of A can be computed as vq4 = 4/ )'Ci + j/i, which implies

X4 X
GAyi=v; = i+ A =0 )

where the last of Egs. (2) was obtained by using Eq. (1). The last of Egs. (2) can be solved for x4 to obtain

. VA
X4 = ——/ R — x2, 3
A R A 3)
where, referring to the figure in the problem statement, we have chosen the root with x4 < 0 since, for

x4 = —20ft, A is moving down and to the left. Substituting Eq. (3) into Eq. (1), we have

. VAXA
4= : “)
YAT TR
Since U4 = X4 1 + y4 J, using Egs. (3) and (4), we can now express the velocity of A as
_ VA 2. VAXA L
vA:—f R2 —x31+ ) 5)
For vg = 120ft/s, R = 25ft, and x4 = —20 ft, we can evaluate Eq. (5) to obtain
U4 = —(72.007 + 96.00 J) ft/s.
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Since the acceleration is the time derivative of the velocity, we can determine the acceleration of A by

differentiating Eq. (5) with respect to time. Using the chain rule, this gives

_ VA XAXA . VA, .
aA=?—l+?XAj. 6)
2 _ 42
R X3
Substituting Eq. (3) into Eq. (6) and simplifying, we have
2 2
VYXA4 v
> A ~ A 2 2 4
aqg = — R2 z—ﬁ,/R — X5 (7
For vq = 120ft/s, R = 25ft, and x4 = —20 ft, we can evaluate Eq. (7) to obtain
a4 = (460.87 — 345.6 7) ft/s>.
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Problem 2.37 i

Point C is a point on the connecting rod of a mechanism called a slider-
crank. The x and y coordinates of C can be expressed as follows:
x¢ =Rcosf+1+v L2~ R2sin?0 and yc = (R/2)sin6, where 0 describes
the position of the crank. The crank rotates at a constant rate such that § = wt,
where ¢ is time.

Find expressions for the velocity, speed, and acceleration of C as functions
of the angle 6 and the parameters, R, L, and w.

Solution

Using the coordinate system and expressions given in the problem statement, the position of point C can be
expressed as as a function of 6 as follows:

-

rc =xcl+ycj= (Rcost9+% L2—R2sin29)i+(%Rsin9)j. (D

The velocity is the time derivative of the position. Hence, differentiating Eq. (1) with respect to time and
using the chain rule, we have

- R .
Ve = T(Zsm@ +

Rsin 6 cos 0 . OR .
I+ —cosbj. 2)
L2 — R2sin% 6 2

Since 6 = w and that therefore § = w, we can rewrite Eq. (2) as

Rsin 0 cos 6
L2 — R2sin% 6

. —wR
Ve = %(ZSinQ +

R
)i—i—%cos@j. 3)

The speed is now found by taking the magnitude of the velocity vector. Using Eq. (3), this gives

+ cos2 6. 4

wR w 4R sin* 0 cos 0 R2sin? 6 cos? 6
ve = —,[4sin” 0 + AL —
2 VL2 — R2sin20 L?>—R?sin” 0

The acceleration is found by taking the derivative of the velocity. Hence, differentiating Eq. (3) with respect
to time, using the chain rule and recalling that § = w, we have

S —w?*R
dc = 5 2cos 6 +

R(cos? 6 — sin? ) R3cos? 0sin’ 0 :| . ’R

I — sinf J. 5
L2 _R%sin29 (L% — R2sin® 6)3/2 2 ’ ©
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8 Problem 2.38 iz,

Point C is a point on the connecting rod of a mechanism called a slider-
crank. The x and y coordinates of C can be expressed as follows:
xc = R cos 9+% L2 — R2sin?0 and yc = (R/2)sin A, where 0 describes
the position of the crank. The crank rotates at a constant rate such that § = wt,
where ¢ is time.

Let # be expressed in seconds, R = 0.1m, L = 0.25m, and w = 250rad/s.
Plot the trajectory of point C for 0 < ¢ < 0.025s. For the same interval of time,
plot the speed as a function of time, as well as the components of the velocity
and acceleration of C.

Solution

The velocity of point C is the time derivative of the position of C. Using the coordinate system shown and
since 0 = wt, can be written as

Fc =xcli+yc]= (Rcosa)t + %\/Lz—stinza)t)lA—F (%Rsinwt)f. (1)

Hence, differentiating the above expression with respect to time and simplifying, we have

. wR . R sin wt cos wt
Ve = — 2sinwt +

\/L2 — R2sin? wt

., R .
)z—i-Tcosa)ZJ. 2)

The speed is now found by taking the magnitude of the velocity vector:

wR 4sin? o 4Rsin’> ot coswt  R2sin® ot cos? wt 21 3
ve = -y [4sin’ @ +\/2 — + 7 R ur + cosZ wt. 3)
L% — R?*sin” wt

The acceleration is found by taking the derivative of the velocity. Hence, differentiating Eq. (2) with respect
to time, we have

—w?R

sinwt j.  (4)

dc =

R(cos? wt — sin® wt) R3 cos? 6 sin® wt ] . ®?R

2coswt +
|: VL2 — R2sin? ot (L2 — R?sin” w1)3/2 2

Plot of the trajectory and speed of C. Plots of the trajectory and speed of C for 0 < ¢ < 0.025s can be
generated with appropriate numerical software. The plots presented below were generated using Mathematica
with the following code:
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Parameters = {w » 250., L->0.25, R »0.1};

1 R
xC = RCos[wt] +—'\/L2 -R%Zsin[wt]? ; yC = — Sin[wt];
2 2
wR , 4R sin[wt]?Cos[wt] R?sSin[wt]?Cos[wt]? )
vC = — 4Sin[wt]” + + +Cos[wt]” ;
2 2 _p2gs 2
\/LZ—RZ Sin[wt]2 L R Sin[wt]

ParametricPlot [{xC, yC} /. Parameters, {t, 0, 0.025}, Frame -» True,

FrameTicks » {{Automatic, None}, {{0, 0.1, 0.2}, None}}, GridLines - Automatic,
AspectRatio -» 1, FrameLabel - {"x (m)", "y (m) "}, PlotLabel - "Trajectory of C "]

Plot [vC /. Parameters, {t, 0, 0.025}, Frame - True,

FrameTicks » {{Automatic, None}, {{0O, 0.01, 0.02, 0.04}, None}}, GridLines - Automatic,
AspectRatio -» 1, FrameLabel » {"t (s)", "v (m/s)"}, PlotLabel - "Speed v "|

Trajectory of C

004 ¢ Speed v¢
26 3
_ 0.02 - 24 / \ / \
g — 22

£ 000 2 Sob A
ool ERHIARIIan
R N / \
0045 16 / \
ol ‘ 14] VY \

0 0.1 02 0 0.01 0.02

x(m) 1 (s)

Plots of the components of v¢c and d¢c. The components of point C’s velocity and acceleration are shown
below in the plots to the left and right, respectively. These plots were obtained using the following code:

Parameters = {w » 250., L -> 0.25, R > 0.1};

-wR R Sin[wt] Cos[w t] wR
vCx = —— [28in[wt] + ;i vCy = — Cos[wt];
2 2 2 . 2 2
L“ -R“ Sinfw t]
_o®R R (Cos[wt]? - 8in[wt]?) R3 Cos[wt]? Sin[wt]?
aCx = 2Cos[wt] + +
. 3/2
2 \/LZ—RZ Sin[wt]2 (LZ—R2 Sln[wt]z)
w? R
aCy = - —— Sin[wt];
2

Plot[{vi, vCy} /. Parameters, {t, 0, 0.025}, Frame -» True,

FrameTicks -» {{Automatic, None}, {{0, 0.01, 0.02, 0.04}, None}}, GridLines - Automatic,
AspectRatio -» 1, FrameLabel -» {"x (m)", "v (m/s) “}, PlotLabel - "v. “]

Plot[{aCx, aCy} /. Parameters, {t, 0, 0.025}, Frame -» True,

FrameTicks » {{Automatic, None}, {{0, 0.01, 0.02, 0.04}, None}}, GridLines -» Automatic,
AspectRatio » 1, FrameLabel -» {"t (s)", "a (m/s2 ) “}, PlotLabel - "a. "]
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vVc ac
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Problem 2.39

The following four problems refer to a car traveling between two
stop signs, in which the car’s velocity is assumed to be given by its | i
O o=
v(t) =[9—9cos(2t/5)]m/s for0 <t < 57 s. $ # 0o
Determine vp,x, the maximum velocity reached by the car. 5
Furthermore, determine the position sy, and the time f, _ at .
which vax Occurs. . 15
Z
£10
=
5
0
0 b4 2r 3w 4 S
t(s)

Solution

The expression for v(¢) consists of the difference between the constant 9 m/s and a cosine function multiplied
by the value 9m/s. The cosine function can only range between —1 and 1. The corresponding range of v is
therefore v = 18 m/s, when cos(2¢/5) = —1, and v = 0, when cos(2¢/5) = 1. Hence, the maximum value
of v(t) is

Umax = 18.00m/s. (D

Since v = vpax When the cosine function is equal to —1, we have
cos(2ty,, /5 =—-1 = 2t , /5=1ns = t, = E7/2)s, ()

where the last of Egs. (2) is the only admissible solution with 0 < ¢ < 57 s. Evaluating the last of Egs. (2) to
four significant figures, we have

f,. = 7.854s.

To find the position sy, at which vy is achieved, we first determine s(¢). Recalling that v = ds/dt, we
can write

s t
ds=v(t)dt = / ds = / v(t) dt, 3)
0 0

where the limits of integration reflect the fact that s = O for = 0. Integrating v(#), we have

[ 45 | (2t)i|
s=|9 — —sin{ — | |m. @
2 5

Given that we have already determined #,__ , we can find s, , by letting = 1, in Eq. (4). This gives
Svma. = (457/2) m, which, to four significant figures, gives

S0, = 70.69m. 5)
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Problem 2.40 !

The following four problems refer to a car traveling between two
stop signs, in which the car’s velocity is assumed to be given by i P
s - =
v(t) =[9—9cos(2t/5)]m/s for0 <t < 57 s. $ # 0o
Determine the time at which the brakes are applied and the car 5
starts to slow down. v
15 max
Q
£10
=
5
0 %77
0 b4 2r 37w 4 5w
t(s)

Solution

Applying the brakes causes the acceleration a = dv/dt to go from a positive value to a negative value.
The instant f = fprking at which the brakes are applied corresponds to the time instant at which a = 0.
Differentiating the given expression for v(¢) with respect to time and setting the result equal to zero, we have

18 . 2 toraki 5w
[? Sln(%)] =0 = tbraking = 7 S, (1)

where we have selected the only solution in the range 0 < t < 57 s. Expressing the above result to four
siginificant figures, we have

Toraking = 7.854s. ()
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Problem 2.41 i

The following four problems refer to a car traveling between two
stop signs, in which the car’s velocity is assumed to be given by its | i
v(t) = [9—9cos(2t/5)]m/s for0 <t < 57s. s s S:' >
Determine the average velocity of the car between the two stop 20
signs. s Vo
Q
£10
=
5
0
0 b4 2r 37w 4 5w
t(s)
Solution

By definition, the average velocity is the change in position divided by the time it takes for the change in
position to occur. We denote by #; and 75 the times at which the car starts moving and comes to a stop,
respectively (the subscripts i and f stand for initial and final, respectively). The car starts moving at time
ti = 0. Fort =1y, v = 0, so that we can find 7 by solving the equation v(zr) = 0, i.e.,

[9—9cos(2tr/5)]m/s =0 = cos(2tr/5) =1 = 1ty =>5ms. (1)

To compute the change in position, we first determine s(¢). Recalling that v = ds/dt, we can write

s t
ds=v(t)dt = / ds =/ v(t) dt, 2)
0 0

where the limits of integration reflect the fact that s = 0 for ¢ = 0. Integrating v(¢), we have

45 | (2t
s = [9t miry sm(?)} m. 3)

Evaluating Eq. (3) with the value of the last of Egs. (1), we have
s(ty) = 457 m. 4)
As stated earlier,

s(ty) — (&)
van = th

)

Recalling that #; = 0, s(#;) = 0, and using the results in Egs. (1) and (4), we can evaluate v,y to obtain

Vavg = 9.000m/s.
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Problem 2.421

The following four problems refer to a car traveling between two
stop signs, in which the car’s velocity is assumed to be given by its | i
O o=
v(t) =[9—9cos(2t/5)]m/s for0 <t < 57 s. $ # 0o
Determine |a|max, the maximum of the magnitude of the accel- 5
eration reached by the car, and determine the position(s) at which RN
|&t|max Occurs. B
Z
£10
=
5
-~ Sx
0
0 b4 2r 3w 4 S
t(s)
Solution

The acceleration is the time derivative of the velocity:

dv 18 . (2t

18
a=— = 2sin ?)m/s2 = |a|=?

sin(z—;)‘m/sz. 1

The maximum value of |@| corresponds to the maximum value of | sin(2¢/5)|, which is equal to one. Therefore
|a|max = (18/5) m/s?, which, expressed to four significant figures, is

|| max = 3.600m/s>.

Letting 74, denote the time at which |a|max is achieved, we have that sin(27),|,. /5) = %1, i.e.,

(flapel); = 57/4)s and  (11q,..1), = (157/4)s, ()

where we have considered the only solutions in the time interval 0 < ¢ < 57 s. Expressed to four significant
figures, times (t|amax|)1 and (t|amax|)2 are

(flape]); =3-927s and  (f4,,), = 11.78s.

To find the positions at which |a|max 1s achieved, we first determine s(#). Recalling that v = ds/dt, we can

write i ,
ds=v(t)dt = / ds = / v(t) dt,
0 0

where the limits of integration reflect the fact that s = 0 for + = 0. Integrating v(¢), we have

s = [9t — E sin(g)} m. 4)
2 5

Evaluating s in Eq. (4) at the times in Eqs. (2), we have

3)

(Sjame); = 12.84m and  (s4,,.[), = 128.5m.
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Problem 2.43 |

The acceleration of a sled is prescribed to have the following form: a = B+/t, where ¢ is time expressed
in seconds, and f is a constant. The sled starts from rest at # = 0. Determine 8 in such a way that the

distance traveled after 1 s is 25 ft.
a
B N—
.

Solution

The acceleration is ¢ = dv/dt. Since a is given as a function of time, we can separate the velocity and time
variable as follows:
dv
dt
Recalling that a(¢) = B4/t and that the velocity is equal to zero for = 0, we integrate the last of Egs. (1) as
follows:

at) = dv=a()dt. (D

v t
/ dv =/ BJrdt = () =232 2)
0 0
We recall that the velocity is ds/dt, so that we can write
d
d_“; =v(1) = ds=v()dr 3)

Letting so denote the value of s for # = 0 and using the expression for v(¢) in the last of Egs. (2), we can
integrate the last of Egs. (3):

N t
/ds:/ 28132dt = s—s9 = 1£pt2 @)
S0 0

Letting d denote the distance traveled during At = 1, we can rewrite the last of Egs. (4) as follows:

d = {5pAr*’?, (5)

which can be solved for § to obtain
_ 15d 6
P = Garr ©

Recalling that d = 25 ft and that Atz = 1 s, we can evaluate Eq. (6) to obtain

B = 93.751t/s/>.
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Problem 2.44 |

The acceleration of a sled can be prescribed to have one of the following forms: a = B1+/1, a = Bat,
and a = B312, where 7 is time expressed in seconds, 81 = 1 m/s%/2, B, = 1m/s?, and B3 = 1 m/s*.
The sled starts from rest at # = 0. Determine which of the three cases allows the sled to cover the largest
distance in 1 s. In addition, determine the distance covered for the case in question.

a
b’
S

Solution

We will determine how position depends on time for each of the three cases. We observe that the acceleration
is given as a function of time in each of three cases. Recalling that dv/dt = a, we can separate velocity and
time by writing

dv
d_t:a(t) = dv=ua(t)dt. (1

Recalling that the velocity is equal to zero for t = 0, we can integrate the last of Egs. (1) as follows:

v t
‘/dv:/aQML @)
0 0

Using the expression for a(z) for the three given cases, we have, respectively,
2p ,3/2 lg .2 1p .3
v =3Pt 2. py= 5B2t%, and v = 3f31°. 3)

We recall that the velocity is ds/dt. Since the velocity is now known as a function of time, we can separate
the position and time by writing

ds
o =v(t) = ds=v(t)dt. 4)

Letting so denote the value of s for 1 = 0 and using the expression for v(¢), we can integrate the last of

Egs. (4) as follows:
s t t
/ ds = / v(t)ydt = s—s9= / v(t)dt. 5)
S0 0 0

Substituting into the last of Egs. (5) the expressions for v(¢) given in Egs. (3), we have
d=2p1t”? d=1pr3 and d = Lpsr, 6)

where we have denoted by d the distance s — s¢ traveled by the sled as a function of time. Recalling that
B1=1m/s2, By = 1m/s?, B3 = 1 m/s*, we can evaluate Eqgs. (6) for ¢ = 1 s to obtain, respectively,

d =0.2667Tm, d =0.1667m, and d = 0.08333m. @)

Comparing the three values of d we conclude that

Largest distance traveled in 1sis d = 0.2667 m, corresponding to a = B1 /7.
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Problem 2.45 |

A peg is constrained to move in a rectilinear guide and is given the following acceleration: a = ag sin w?,
where ag = 20ft/s?, w = 250rad/s, and ¢ is time expressed in seconds.
If x =0and v = 0 forz = 0, determine the position of the peg atf = 4s.

——]]

Solution

Recall that a = dv/dt. Since a is given as a function of time, we can separate the variables v and ¢ by
writing
dv=a(t)dt = dv=apsinwtdt. (D

Since v = 0 for + = 0, we can integrate the last of Eqs. (1) as follows:
v t a0
/ dv = / apsinwtdt = v =—(1—coswt). 2)
0 0 w

Next recall that dx/dt = v. Since the velocity is now a known function of time, applying separation of
variables for this case, we have

dx =v(t)dt = dx =221 = coswr)dt, 3)
w

where we have made use of the last of Egs. (2). Recalling that x = 0 for # = 0, we can integrate the last of
Egs. (3) as follows:

x tao ao 1
/ dx=/ —(1 —coswt)dt = x=—(l——sina)t). “4)
0 0o w

w w

Recalling that ag = 20ft/s? and w = 250rad/s, at t = 4s, we have

x(4s) = 0.3197ft.
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Problem 2.46 i

A peg is constrained to move in a rectilinear guide and is given the following acceleration: a = ag sin w?,
where ag = 20ft/s?, w = 250rad/s, and ¢ is time expressed in seconds.
Determine the value of the velocity of the peg at ¢ = 0 so that x(¢) is periodic.

X I'I

Solution

Recall that the acceleration is dv/dt. Hence, applying separation of variables for the case in which
acceleration is given as a function of time, we can write

dv=a(t)dt = dv=apsinwtdt. @)

Letting vg be the value of the velocity for ¢t = 0, we can integrate the last of Egs. (1) as follows:
v t ao
/ dv =/ apgsinwtdt = v =v9g+ — (1 —coswt). )
vo 0 w

Next recall that dx/dt = v. Since the velocity is now a known function of time, applying separation of
variables for this case, we have

dx =v(t)dt = dx= |:v0 + a—O(l —COSCUZ)] dt, 3)
1)

where we have made use of the last of Egs. (2). Letting xo be the value of x for t = 0, we can integrate the
last of Egs. (3) as follows:

x 1
/ dx = |:v0+a—0(1—cosa)t)] dt = «x =x0+v0t—|—a—0(t——sina)t). 4)
0 w w w

To answer the question in the problem statement, we rewrite x as follows:

x=x0+(v0+a—0)t—a—gsina)t. &)
1) )
We now observe that the first term on the right-hand side of Eq. (5) is a constant and therefore is a special
case of a periodic function. The second term on the right-hand side of Eq. (5) is linear in ¢ and therefore is
not periodic. Finally, the third term term on the right-hand side of Eq. (5), is a periodic function of time with
period p = 2 rad/w. We therefore conclude that for the motion to be periodic, we must require that

ag

a
v0—|-—0=() = Vg = ——. (6)
w w

Recalling that vg = v(0), ag = 20ft/s?, and w = 250rad/s, we can evaluate the last of Eqgs. (6) to obtain

v(0) = —0.08000 ft/s.
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Problem 2.47 |

A ring is thrown straight upward from a height 4 = 2.5 m off the ground
and with an initial velocity vo = 3.45m/s. Gravity causes the ring to
have a constant downward acceleration g = 9.81 m/ s2. Determine /gy,
the maximum height reached by the ring.

Solution

We note that the motion of the ring occurs with constant acceleration equal to g and directed downward.
Denoting the release height of the ring by s¢, and using the constant acceleration equation relating position

and velocity, we have
2

v? = v —2g(s — 50), €))
where v is the value of the speed corresponding to the position value sg. The maximum height is the value
of s corresponding to v = 0. Hence, setting s = hpm,x and v = 0 in the above equation, and solving for /1y,
we have

U2
_ _0
hmax = = + So. 2
2g
Recalling that vy = 3.45m/s, so = 2.5m, and g = 9.81 m/s?, we can evaluate Eq. (2) to obtain
hmax = 3.107 m.
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Problem 2.48 |

A ring is thrown straight upward from a height 47 = 2.5 m off the ground.
Gravity causes the ring to have a constant downward acceleration g =
9.81m/s?. Letting d = 5.2m, if the person at the window is to receive
the ring in the gentlest possible manner, determine the initial velocity vg
the ring must be given when first released.

Solution

We note that the motion of the ring occurs with constant acceleration equal to g and directed downward.
Denoting the release height of the ring by s9, and using the constant acceleration equation relating position to
velocity, we have

v? = v —2g(s — 50), €))
where v is the value of the speed corresponding to the position value s¢.

The person receives the ring in the gentlest possible manner when the ring reaches the height 4 + d with
velocity equal zero. Hence, substituting so = &, s = (h + d), and v = 0 into Eq. (1) and setting the outcome
equal to zero, gives

0 =vj —2gd, )

which is an equation that can be solved for vg to obtain
vo = v/2gd, 3)

where we have selected the positive root since the ring is thrown in the positive s direction. Recalling that
g = 9.81m/s? and d = 5.2m, we can evaluate Eq. (3) to obtain

vo = 10.10m/s.
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Problem 2.49 |

A hot air balloon is climbing with a velocity of 7m/s when
a sandbag (used as ballast) is released at an altitude of 305 m.
Assuming that the sandbag is subject only to gravity and that Y

therefore its acceleration is given by yy = —g, g being the accel- I
eration due to gravity, determine how long the sandbag takes to \ U
hit the ground and its impact velocity.

Solution

Since the acceleration of the sandbag is constant and equal to —g, position and time are related by the
following equation

y = yo+ Yot — 2gt?, (1)

where yg and yg are the position and velocity at time ¢ = 0. Letting fjmpact denote the time at which the
sandbag hits the ground, at f = fjypace We must have

0= Yo + j’Otimpact - %gti%npact' (2)

This is a second order algebraic equation for fjmpace Whose only physically admissible solution is

1(. /-
fimpact = g(yo + yg + 2gYO)- 3)

Recalling that g = 9.81 m/s?, Y9 = 7m/s, and yg = 305m, we can evaluate Eq. (3) to obtain

fimpact = 8.631s.

The expression of the velocity can be obtained by differentiating Eq. (1) with respect to time. This gives
y = Yo—gt. “)

The impact velocity can be found by substituting #impact from Eq. (3) into the (constant acceleration) Eq. (4),

which, after simplification, gives
)}impact =7y yg +2¢yo. )

Recalling again that g = 9.81 m/s?, Yo = 7m/s, and yo = 305m, we can evaluate Eq. (5) to obtain

Yimpact = —77.67m/s.
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Problem 2.50 !

Approximately 1 h 15 min into the movie King Kong (the one
directed by Peter Jackson), there is a scene in which Kong is
holding Ann Darrow (played by the actress Naomi Watts) in his
hand while swinging his arm in anger. A quick analysis of the
movie indicates that at a particular moment Kong displaces Ann
from rest by roughly 10 ft in a span of four frames. Knowing that
the DVD plays at 24 frames per second and assuming that Kong
subjects Ann to a constant acceleration, determine the acceleration
Ann experiences in the scene in question. Express your answer . VINC UONC
in terms of the acceleration due to gravity g. Comment on what ‘
would happen to a person really subjected to this acceleration.

Solution
Let At denote the time it takes to play four frames at 24 frames per second. Hence we have

4 frames 1

= —s. (1)

At = ———
24 frames/s 6

At is also the time it takes for King Kong to displace Ann by a distance As = 10ft. Since we are assuming
that the acceleration is constant, the motion is rectilinear and we can apply the constant acceleration equation
relating position to time:

1
s = 50+ vo(l —to) + Sac(t t0)?, 2)

where s is the position at time ¢, and where so and vg are the position and velocity at time ¢ = #¢, respectively.
Letting At =t —tp and As = s — 59, solving Eq. (2) for a. gives

2As — vo At 3)
e =2——F—.
¢ At?
Since At = % s, As = 10ft, and vo = 0, we can evaluate a. /g, with g = 32.2ft/s?, to obtain
ac/g = 22.36. 4)

Finally, in terms of g we can then say that the acceleration to which Ann is subject is

ac =22.36g.

Since the human body cannot withstand much more that 10-15g of acceleration, an acceleration of more
than 22g would likely kill Ann.
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Problem 2.51 |

A car travels on a rectilinear stretch of road at a constant speed vg = 65 mph. Ats = 0 the driver applies
the brakes hard enough to cause the car to skid. Assume that the car keeps sliding until it stops, and assume
that throughout this process the car’s acceleration is given by § = —ui g, where u; = 0.76 is the kinetic
friction coefficient and g is the acceleration of gravity. Compute the car’s stopping distance and time.

ﬁ

Solution
To determine the stopping distance, we recall that

ds . dsds . .ds

S=E = SZ%E s=s%,

(1)
where we have used the chain rule and the definition of velocity to obtain the second and the third of Egs. (1),
respectively. Recalling that § = —u g, using the last of Eqgs. (1), we can write

K K
—urgds =5ds = / —;Lkgds:/ sds, 2
0 S0

where s = 0 is the position at which the brakes are applied, and where $g is the velocity of the car for s = 0.
Carrying out the integration in the last of Egs. (2), we obtain

—pkgs = 567 = 59). 3)

Letting s0p denote the stopping distance, we have that § = 0 for s = s5p. Enforcing this condition in
Eq. (3) and solving for s, we have
Sstop = 5 “)
" g
Recalling that §g = vg = 65 mph = 65% ft/s, g = 0.76, and g = 32.2ft/s?, we can evaluate Eq. (4) to
obtain

Ssiop = 185.7ft.

To determine the stopping time, we recall that § = d§/dt. Also, recalling that § = —u g, we can then write
—urg dt = ds and integrate as follows:

tswp 0
/ —ugdt :[ ds = —r&lsop =50 = tsop = S0/ (1K &), ®)
0 50

where 1 = 0 is the time at which the brakes are applied and 7y, denotes the stopping time. Recalling that

§o = vo = 65mph = 653280 ft/s 1 = 0.76, and g = 32.2ft/s?, we can evaluate the last of Egs. (5) to

. 3600
obtain

lsiop = 3.896s.
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Problem 2.52

If the truck brakes and the crate slides to the right relative to the truck, the horizontal acceleration of the
crate is given by § = —guy, where g is the acceleration of gravity, uy = 0.87 is the kinetic friction
coefficient, and s is the position of the crate relative to a coordinate system attached to the ground (rather
than the truck).

Assuming that the crate slides without hitting the right end of the truck bed, determine the time it takes
to stop if its velocity at the start of the sliding motion is v9 = 55 mph.

Solution

To determine the stopping time, we recall that § = d§/dt. Since § = —u g, we can then write —ug g dt =
d s and integrate as follows:
far ° . o
/ —prgdt = / ds = —MHk8lstop = —S0 = Istop = ——, (D
0 S0 12974

where ¢ = 0 is the time at which the crate starts sliding and 7y, denotes the stopping time. Recalling that
S0 = vg9 = 55mph = 55% ft/s, ux = 0.87, and g = 32.2ft/s?, we can evaluate the last of Egs. (1) to
obtain

tstop = 2.880s.
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Problem 2.53 |

If the truck brakes and the crate slides to the right relative to the truck, the horizontal acceleration of the
crate is given by § = —guy, where g is the acceleration of gravity, uy = 0.87 is the kinetic friction
coefficient, and s is the position of the crate relative to a coordinate system attached to the ground (rather
than the truck).

Assuming that the crate slides without hitting the right end of the truck bed, determine the distance it
takes to stop if its velocity at the start of the sliding motion is vg = 75 km/h.

Solution
To determine the stopping distance, we recall that

ds . dsds . .ds
— §=5— (1)

= T T ona T s’

where we have used the chain rule and the definition of velocity to obtain the second and the third of Egs. (1),
respectively. Recalling that § = —u g, using the last of Egs. (1), we can write
s K
—urgds =5ds = / —ngds=/ sds, 2)
0 S0

where s = 0 is the position at which the brakes are applied and $g is the velocity of the crate at s = 0.
Carrying out the integration in the last of Egs. (2), we obtain

—1kgs = 2(5% = 53). 3)

Letting sqop denote the stopping distance, we have that § = 0 for s = s40p. Enforcing this condition in
Eq. (3) and solving for sy, we have

a0
Sstop = 2ng- “4)

Recalling that §g = vo = 75km/h = 75% m/s, i = 0.87, and g = 9.81 m/s?, we can evaluate Eq. (4)
to obtain

Ssiop = 25.43m.
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Problem 2.54 |

A sphere is dropped from rest at the free surface of a thick polymer fluid. The 7
acceleration of the sphere has the form a = g — nv, where g is the acceleration due
to gravity, 7 is a constant, and v is the sphere’s velocity.

The sphere is observed to reach a constant sinking velocity equal to 0.1 m/s. u
Determine 7.

Solution

If the sphere achieves what appears to be a constant velocity, then the corresponding acceleration is equal to
Zero, 1.e.,

g—nm=0 = ,7:%, (D

Recalling that g = 9.81 m/s? and v = 0.1 m/s, we can evaluate the second of Egs. (1) to obtain

n=98.10s"".
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Problem 2.55 |

A sphere is dropped from rest at the free surface of a thick polymer fluid. The 7
acceleration of the sphere has the form a = g — nv, where g is the acceleration due
to gravity, 7 is a constant, and v is the sphere’s velocity.

If n = 50s~! determine the velocity of the sphere after 0.02s. Express the
result in feet per second.

Solution

We recall that a = dv/dt. Here the acceleration is given as a function of velocity, i.e., a = a(v). Therefore
we have a(v) = dv/dt so that we can separate the v and ¢ variables by writing
dv dv

dt = — = dt= ) (D
a(v) g—nv

Let ty = 0.02s and vy = v(fy). Since the sphere is released from rest at time 7 = 0, we can integrate the
last of Egs. (1) as follows:

tr vy dt 1 vr 1 —nv
/ dt = / = = |:——1n(g — nv)i| = = ——ln(w), )
0 o &—MNv n 0 n g

where we have used the logarithm property according to which Ina — Inb = In(a/b). The last of Egs. (2)
can be solved for vs. To do so, we first isolate the logarithmic term and then take the exponential of both
sides of the resulting equation:

—nv —nv
—ntp = ln(%) = M = % = v = %(1 _e—ntf). 3)

Recalling that vy = v(0.025s), g = 32.2 ft/s2, n = 50s~!, and tr = 0.02s, we can evaluate the last of
Egs. (3) to obtain

v(0.025) = 0.4071 ft/s.
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Problem 2.56 {

The motion of a peg sliding within a rectilinear guide is controlled by an actuator in such a way that
the peg’s acceleration takes on the form ¥ = ag(2cos 2wt — B sinwt), where ¢ is time, ag = 3.5m/s?,
w = 0.5rad/s, and 8 = 1.5.

Determine the expressions for the velocity and the position of the peg as functions of time if x(0) =
Om/s and x(0) = Om.

— |

Solution

Since X = dx/dt = ag(2cos2wt — B sinwt), we can write

t x
ap(2cos2wt — Bsinwt)dt =dx = [ ap(2cos2wt — Bsinwt) dt = / dx, (D)
0 0

where, in choosing the limits of integration, we accounted for the fact that x = 0 for t = 0. Carrying out the
integration in the second of Egs. (1) and solving for x, we have

X = C;—O(sin2a)t + Bcoswt — B). 2)

Recalling that ag = 3.5m/s?, @ = 0.5rad/s, and 8 = 1.5, we can express Eq. (2) as

%= {7.000 sin[(1.000rad/s)¢] + 10.50 cos[(0.5000 rad/s)t] — 10.50} m/s,

where ¢ is in seconds.
Recalling that X = dx/dt so that we have dx = x dt and using the expression of X in Eq. (2), we can
write

t x
a—o(sinZ(ut—i-ﬁcosa)t—ﬁ)dl =dx = / a—o(sin2a)t+ﬂcosa)t—ﬁ)dt =/ dx, (3)
w 0 w 0

where, in choosing the limits of integration, we accounted for the fact that x = 0 for # = 0. Carrying out the
integration in the second of Egs. (3) and solving for x, we have

ao

X =—
2w?

(1 —cos2wt + 2B sinwt — 2Bwt). 4

Recalling that ag = 3.5m/s?, @ = 0.5rad/s, and 8 = 1.5, we can express Eq. (4) as

x = {7.000 — 7.000 cos[(1.000 rad/s)¢] + 21.00 sin[(0.5000 rad/s)¢] — (10.50 s~ ")z} m sz,
{ [( /s)t] [( /9] = (

where, again, t is in seconds.
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Problem 2.57 i

The motion of a peg sliding within a rectilinear guide is controlled by an actuator in such a way that
the peg’s acceleration takes on the form ¥ = ag(2cos 2wt — B sinwt), where ¢ is time, ag = 3.5m/s?,
w = 0.5rad/s, and 8 = 1.5.

Determine the total distance traveled by the peg during the time interval 0s < ¢ < 5sif X(0) = aof/w.

— |

Solution

Since X = dx/dt = ag(2cos2wt — B sinwt), we can write
t x
ap(2cos2wt — Bsinwt)dt =dx = / aop(2cos2wt — Bsinwt) dt = / 5 dx, (1)
0 s

where, in choosing the limits of integration, we accounted for the fact that X = a¢ff/w at¢t = 0. Carrying
out the integration in the second of Egs. (1) and solving for x, we have

X = a—o(sin 2wt + B coswt). 2)
1)

To find the total distance traveled we must first determine when X (¢) changes sign during the specified time
interval. To do so, we first rewrite Eq. (2) as follows:

x(t) = 6;—0 cos a)t(2 sinwt + /3) 3)

where we have used the trigonometric identity sin 2wt = 2 sin wt cos wt and then factored the cos wt term.
Then, referring to Eq. (3), and keeping in mind that we are only interested in the peg’s motion for 0 < ¢ < 55,

we see that
T 7 rad
coswt >0 for 0<a)t<5rad = O<t<2—=7rs<5s, 4
w

where we have used the fact that @ = 0.5rad/s. In addition, we have that
2sinwt + B >0 forall 0<r?<35s. (®))

Since, for 0 < ¢ < 55, X changes sign when ¢t = 7 s, the distance traveled must be computed by integrating
the velocity as follows:

nsao SSaO
d =/ —[coswt(2sinwt + )] dt —/ —[coswt(2sinwt + )] dt
0s @ w

S s

= %[ — cos 2wt + 2f sina)t]Z: — %[ — cos 2wt + 2 sina)t]SS
= %{4 cos[2w(r s)] + 4B sin[w(rr s)] + 1 + cos[2w(5s)] — 2 sin[w(5 s)]}, 6)

s

Recalling ag = 3.5m/s?, @ = 0.5rad/s, and B = 1.5, we can evaluate the result in Eq. (6) to obtain

d =52.42m.
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Problem 2.58 |

A package is pushed up an incline at x = 0 with an initial speed vg. The incline is coated with a thin
viscous layer so that the acceleration of the package is given by a = —(gsin6 + nv), where g is the
acceleration due to gravity, 7 is a constant, and v is the velocity of the package.

If 6 = 30°, vg = 10ft/s, and n = 85!, determine the time it takes for the package to come to a stop.

Solution

We recall that @ = dv/dt and since the acceleration is given as a function of velocity, we can separate the
variables v and ¢ by writing

dv dv
dt = — dt = ————.
a(v) = gsinf + nu

ey

Letting #op be the time at which v = 0 and given that v = vg at 1 = 0, we can integrate the second of
Egs. (1) as follows:

tstop 0 d
/ dt = / __—v
0 v &gsinf +nv

1 . 0
= lsop = —Eln(g sin 6 + nv)!vo

1 in 6
N ,Smpz_m(w), @
n g sin

where we have used the logarithm property Ina — Inb = In(a/b). Given that n = 857!, g = 32.2ft/s?,
6 = 30°, and vo = 10ft/s, we can evaluate #y,, to obtain

fyop = 0.2233s.
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Problem 2.59 i

A package is pushed up an incline at x = 0 with an initial speed vg. The incline is coated with a thin
viscous layer so that the acceleration of the package is given by a = —(gsin6 + nv), where g is the
acceleration due to gravity, 7 is a constant, and v is the velocity of the package.

If = 25°, v9 = 7m/s, and n = 85!, determine the distance d traveled by the package before it
comes to a stop.

Solution

We recall that a = dv/dt and that, since we need to relate a change in position to a corresponding change in
velocity, the chain rule allows us to write @ = vdv/dx. Then, since the acceleration is given as a function of
velocity, we can separate the x and v variables as follows:

d
dx = vay = dx= —,; dv. (D)
a(v) gsinf + nu
Since v = vg for x = 0 and v = 0, for x = d, we can integrate the second of Egs. (1) as follows:
d 0 v 0 v
/ dx = / ——dv = d= / - dv. 2
0 vo &sind +nu vo &sinf +nu

To facilitate the integration of the right-hand side of the last of Egs. (2), we observe that the integrand can be

rewritten as follows: .
v 1 gsinf
N R - Rk A 3)
gsinf + nu n  n(gsinf + nv)

Substituting Eq. (3) into the last of Egs. (2) and carrying out the integration, we have

vg gsinf gsinf
- + ln . ’
n n? gsin 6 + nug

v sin 6
d=70+g712 1n(gsin9+nv)}20 = d=

“)

where we have used the logarithm property Ina — Inb = In(a/b). Given that v = 7m/s, n = 8s7!,
g = 9.81 m/s?, § = 25°, we can evaluate the last of Egs. (4) to obtain

d =0.7017 m.
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Problem 2.60 !

Referring to Example 2.8 on p. 56, and defining terminal velocity as the velocity at which a falling object
stops accelerating, determine the skydiver’s terminal velocity without performing any integrations.

Solution

From Example 2.8 on p. 56, we have that the acceleration of the skydiver is

a=g—;v. ey

Denoting the terminal velocity by vierm, we have that a = 0 for v = vierm. Enforcing this condition in Eq. (1)

and solving for v, we have
jmg
v = |—=. 2
term Cd ( )

From Example 2.8, we have that C; = 43.2kg/m, m = 110kg, and g = 9.81 m/s?, so that we can evaluate
Eq. (2) to obtain

Vierm = 4.998 m/s.
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Problem 2.61 i

Referring to Example 2.8 on p. 56, determine the distance d traveled by the skydiver from the instant the
parachute is deployed until the difference between the velocity and the terminal velocity is 10% of the
terminal velocity.

Solution

The acceleration can be related to the velocity and position as follows:

_dv _dvds dv

= D

“Tar T dsar ~ Vds

From Example 2.8 on p. 56 we have that a = g — C4v?/m. Hence, substituting this expression into Eq. (1),
we can separate the variables s and v as follows:

ds = v

= dv. 2
g—Cqv2/m " @

From Example 2.8, we know that when the parachute is deployed, the velocity of the skydiver is vg =
44.5m/s. In addition, we know that the terminal velocity is vim = +/mg/Cq, where m = 110kg,
g = 9.81m/s?, and C; = 43.2kg/m. Letting Vgt = 1.1V denote the value of the velocity that is 10%
away from that of the terminal velocity (where the subscript ‘qt’ stands for quasi-terminal), and letting d be
the distance traveled to achieve v starting from vg, we can integrate Eq. (2) as follows:

d Vgt v
ds = [ — T 3
/0 $ f ¢~ (Cajmyo2 *" ©

Carrying out the above integrations, we have
J__m ln[g—(cd/m)vgt} _ . m 1n|: g(1—-1.1%) ]
2Cq g —(Cq/m)vg 2Cq Lg—(Cq/m)vg [

where we have used the expression of vy to obtain this last expression. So, recalling that m = 110kg,
vo = 44.5m/s, C4 = 43.2kg/m, and g = 9.81 m/s?, we can evaluate the above expression to obtain

“

d = 7.538m.
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Problem 2.62{

In a physics experiment, a sphere with a given electric charge is constrained to move along a rectilinear
guide with the following acceleration: @ = aq sin(27s/A), where ag = 8 m/s?,  is measured in radians,
s is the position of the sphere measured in meters, —A < s < A, and A = 0.25m.

If the sphere is placed at rest at s = 0 and then gently nudged away from this position, what is the
maximum speed that the sphere could achieve, and where would this maximum occur?

©)

Solution

Recall that @ = dv/dt. In this problem, the acceleration is given as a function of position. Hence, to relate a
change in velocity to a correspondent change in position, we start by rewriting the acceleration via the chain
rule: a = vdv/ds. This allows us to write

vdv=a(s)ds = vdv=apsinQnrs/A)ds, €))

where we have separated the variables v and s and used the given expression for the acceleration. Recalling
that v = 0 for s = 0, we can now integrate the last of Eqs. (1) as follows:

/ vdv = / agsinus/A)ds = v? = %[1 —cos2ms/A)]. 2
0 0

The speed is the magnitude of the velocity, namely, |v|. Since |[v| = ~/v2, we can solve the second of Egs. (2)
for |v| to obtain

lv| = \/%[1 —cos(2ms/A)]. 3)

To determine the maximum possible value of the speed, we observe that the cosine function under the square
root in Eq. (3) can vary only between the values —1 and 1. Hence, the maximum possible value of the speed
is achieved where the cosine function takes on the value —1, which gives

2aok
P

“

h”mu =

Recalling that ag = 8 m/s? and A = 0.25 m, we can evaluate Eq. (4) to obtain

|V|max = 1.128 m/s.

We have already argued that |v|max 0ccurs where the cosine function under the square root in Eq. (3) achieves
the value —1. In turn, this implies that

270810 o
A

where sy, denotes the value of s for which [v| = [v]max. Recalling that A = 0.15m and that —A < s < A,
we can evaluate the second of Egs. (5) to obtain following two values for 5|y, that are within the admissible
range for s:

=n+4+2rn, n=0,£1,£2,... = s =3r¢1+2n), n=0=x1£2,.... (5

S|vlme = 0-1250m  and s} = —0.1250 m,

which correspond to n = 0 and n = —1, respectively.
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Problem 2.63 i

In a physics experiment, a sphere with a given electric charge is constrained to move along a rectilinear
guide with the following acceleration: @ = aq sin(27s/A), where ag = 8 m/s?,  is measured in radians,
s is the position of the sphere measured in meters, —A < s < A, and A = 0.25m.

Suppose that the velocity of the sphere is equal to zero for s = A /4. Determine the range of motion of
the sphere, that is, the interval along the s axis within which the sphere moves. Hint: Determine the speed
of the sphere and the interval along the s axis within which the speed has admissible values.

N

-Q

)

Solution

Recall that a = dv/dt. Since the acceleration is given as a function of position, to relate a change in velocity
to a correspondent change in position, we start by rewriting a = dv/dt via the chain rule: a = vdv/ds.

This allows us to write
vdv=a(s)ds = vdv=apsinQus/A)ds, (1)

where we have separated the variables v and s and used the given expression for the acceleration. Recalling
that v = 0 for s = A /4, we can now integrate the last of Egs. (1) as follows:

v N A‘
/ vdv = [\ agsinQus/A)ds = v? = _doA cos(2ms/A). 2)
0 A T

4

The speed is the magnitude of the velocity, namely, |v|. Since |v| = +/v2, the second of Egs. (2) implies

v| = \/—¥ cos(27s /1), 3)

The result in Eq. (3) is acceptable if cos(27s/A) < 0. From a mathematical viewpoint, this implies that

%n+2nn§—§%n+2nn, n=0,=%x1,+£2,...

= A1 +4n)<s<22(1+4n) n=0%1,4£2,... 4

However, from a physical viewpoint, we do not expect the sphere to “jump” from an admissible range of
motion to another. Observing that a = ag > 0 for s = A/4, the sphere will move to the right when it is
released from rest at A /4. Therefore, referring to the last of Egs. (4), the only acceptable range of motion is
%)& <s < %)&, corresponding to n = 0. Since A = 0.25m, we have that the range of motion is

0.06250m < s < 0.1875m.
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Problem 2.64 §

The acceleration of an object in rectilinear free fall while immersed in a linear viscous
fluidis a = g — C4v/m, where g is the acceleration of gravity, Cy; is a constant
drag coefficient, v is the object’s velocity, and m is the object’s mass.

Letting t9 = 0 and vg = 0, find the velocity as a function of time and find the

terminal velocity. I | |

Solution

Acceleration is given as a function of velocity, so we first find time as a function of velocity and invert that
result to determine the velocity as a function of time. Recalling that « = dv/dt, we can write

dv t v dv
a=2 5 di= [ — 40
a 0 0o &—(Cq/m)v

v

= t= _Cﬂd ln[g — (Cd/m)v]

= _Cﬂd {In[g — (Cq/m)v] —Ing}
_ _ﬂm[w] _ ﬂm(l—ﬂv)
= c, g - Cy mg '

where we have used 79 = 0 and vg = 0 to obtain the lower limits on the two definite integrals. Solving this
result for ¢ as a function of v to find v(¢), we obtain

v(t) = rg—j (1 —e_c‘”/m) .

To find the terminal velocity, we can either take the limit as t — oo of v(¢) or we can determine the velocity
at which @ = 0 in the given expression for the acceleration. Doing the latter, we obtain

0= CdVierm _ mg
=8 = Uterm = .
m Cy
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Problem 2.65 i

The acceleration of an object in rectilinear free fall while immersed in a linear viscous A
e . . . . e
fluidis a = g — C4v/m, where g is the acceleration of gravity, Cy; is a constant
drag coefficient, v is the object’s velocity, and m is the object’s mass.
Letting so = 0 and vg = 0, find the position as a function of velocity.
Il
\
S
Solution
Recall that acceleration, velocity, and position can be related as follows:
dv vdv
a=v— = ds=—. ey
ds a

Since the acceleration is given as a function of the velocity, we can determine the position as a function of the
velocity as follows:

vy v (Cafmv+g—g [ mg/Cy m}
— — = dv= [ |D8Cd Mg
s) /og—(cd/mw Y /o(cd/mng—(cd/m)v] v /0 g (Camp Cq | @

which can be evaluated to obtain

s(v) = %’?%m(@) — Cﬂdv = s(v) = —Cﬂd[v + @ln(l - @)] 3)
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Problem 2.66 i

A 1.5kg rock is released from rest at the surface of a calm lake. If the resistance
offered by the water as the rock falls is directly proportional to the rock’s velocity,
the rock’s acceleration is a = g — Cyv/m, where g is the acceleration of gravity,
C, is a constant drag coefficient, v is the rock’s velocity, and m is the rock’s mass.
Letting C; = 4.1kg/s, determine the rock’s velocity after 1.8 s. W

Solution
We recall that a = dv/dt. Using the given expression for @ we can write

C, dv dv
- %y = = dt=———,
g —(Cq/m)v

m dr
where, in writing the second of Egs. (1), we have separated the variables v and ¢. Observing that v = 0 at
t = 0, and letting vy (f stands for final) denote the value of v at# = 7y = 1.8's, we can integrate the last of
Egs. (1) as follows:

ty vy —(C
[am 'l Gy
0 o g&—(Cq/m) Ca g

)]

Solving the last of Egs. (2) for vy, we have

vy = 'Z—j(l —e—Cdff/m). 3)

Given that m = 1.5kg, g = 9.81m/s?, C; = 4.1kg/s, and ty = 1.8s, we can evaluate vy to obtain

vy = 3.563m/s.
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Problem 2.67 i

A 3.11b rock is released from rest at the surface of a calm lake, and its acceleration
isa = g — Cyv/m, where g is the acceleration of gravity, C; = 0.271b-s/ft is a
constant drag coefficient, v is the rock’s velocity, and m is the rock’s mass.
Determine the depth to which the rock will have sunk when the rock achieves
99% of its terminal velocity. \m\

Solution

We begin by determining the expression of the terminal velocity, which we denote by vm. This is the
velocity at which the acceleration is equal to zero. Using the given expression for the acceleration, we have

Ca mg
0=g——Vem = Verm= 5. (D
m Cy
We denote by vy (qt stads for quasi-terminal) the value of v corresponding to 99% of vierm, i.€.,
99 mg
= _° 2
Y= 700 ¢y @

Next, we recall that a = dv/dt. To relate the acceleration to position, we can use the chain rule and write
a = (dv/ds)(ds/dt) = vdv/ds. Using this expression and the given expression for a, we can then write
Cy dv v
——v=v— = ds=———4dv, 3
& m ds g—(Cg/m)v )
where, in writing the second of Eqgs. (3) we have separated the variables v and s. We now observe that v = 0
for s = 0 and letting d be the value of s corresponding to v = v, we can integrate the second of Egs. (3) as
follows:

Voo (Cq/mv+g—g
ds = —d d = d
/ S / (cd/m)v vz /o (Ca/m)lg — (Cajmy] *"

mg/Cy m
= 4= / [ —(Ca/myv C_d]d”’ @

which can be evaluated to obtain

m2g Cy m m2g 99
d=—+7FIn|1-— - — d = —|In(100) — — 5
n( vqt) C, Vgt = Cd [H( ) 100] )

where, in writing the last of Eqs. (5), we have used Eq. (2). Recalling that m = 3.11b/g, g = 32.2ft/s?, and
C,s = 0.271b-s/ft, we can evaluate the last of Egs. (5) to obtain

d = 14.80ft.
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8 Problem 2.68 iz,

A 3.11b rock is released from rest at the surface of a calm lake, and its acceleration @

isa = g — Czv/m, where g is the acceleration of gravity, C; = 0.271b-s/ftis a

constant drag coefficient, v is the rock’s velocity, and m is the rock’s mass.
Determine the rock’s velocity after it drops 5 ft.

Solution

We recall that a = dv/dt. To relate the acceleration to position, we can use the chain rule and write
a = (dv/ds)(ds/dt) = vdv/ds. Using this expression and the given expression for @, we can then write

Cy dv v

as = g—Camp " M

where, in writing the second of Eqs. (1) we have separated the variables v and s. We now observe that v = 0
for s = 0 so that we can integrate the second of Eqs. (1) as follows:

N v v
ds=/ —dv =
/0 o &§—(Cq/mv

=/” (Ca/mv +g—¢g
o (Ca/m)[g —(Cq/m)v]

= /o[g—wd/m)v cq | @

which can be evaluated to obtain

2 C
s=— 8 (1= =4y) = 2y, 3)
Cc? mg Cy

We now need to solve the above equation for v after setting s = 5 ft. Since this cannot be done analytically,
we will need to do it numerically. Given that m = 3.11b/g, g = 32.2ft/s?, and C; = 0.271b-s/ft, the
solution presented below was obtained using Mathematica via the following code:

3.1
Parameters = {m—> —,C3»>0.27, g-»32.2, s—>5.};
32.2
ng Ca m
FindRoot[ S = -—— Log[l—— v] -— v /. Parameters|, {v, 1.}]
cZ mg Ca

where we note that, as required by most root finding algorithms, one needs to specify an initial guess for the
solution (we have used v = 1 ft/s). The execution of the above code, gives the following result (expressed to
4 significant figures)

v(5ft) = 10.07 ft/s.
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® Problem 2.69 @

Suppose that the acceleration of an object of mass m along a straight line is a = g — Czv/m, where the
constants g and C,; are given and v is the object’s velocity. If v(¢) is unknown and v(0) is given, can you
determine the object’s velocity with the following integral?

t
v(t) = v(0) +/0 (g — %v) dt.

Solution

No, because the integrand is not an explicit function of the variable of integration, which is ¢. Clearly, if v(¢)
is provided as an explicit function of time then one could integrate. However, if v(¢) were given it would
seem superfluous to perform the integration to obtain it a second time.

June 25, 2012
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Problem 2.70 i

Heavy rains cause a particular stretch of road to have a coefficient
of friction that changes as a function of location. Specifically, mea-
surements indicate that the friction coefficient has a 3% decrease
per meter. Under these conditions the acceleration of a car skidding
while trying to stop can be approximated by § = —(ux — cs)g (the
3% decrease in friction was used in deriving this equation for accel-
eration), where y is the friction coefficient under dry conditions,
g is the acceleration of gravity, and ¢, with units of m~1L, describes
the rate of friction decrement. Let iz = 0.5, ¢ = 0.015m™!, and
vog = 45km/h, where vy is the initial velocity of the car. Deter-
mine the distance it will take the car to stop and the percentage of
increase in stopping distance with respect to dry conditions, i.e.,
when ¢ = 0.

Solution

We recall that the acceleration is a = dv/dt. The acceleration can be related to the position and velocity
using the chain rule: @ = (dv/ds)(ds/dt) = vdv/ds, where we have also used the fact that ds/dt = v.

Hence, observing that a = § = —(u — c¢s)g, we can write
dv
(e —es)g =vo = (g —cs)gds =vdv, (D

where we have separated the variables s and v. We now observe that v = vg for s = 0. In addition, letting
Swet denote the stopping distance over wet ground, we have that v = 0 for s = sye. Therefore, the last of
Egs. (1) can be integrated as follows:

Swet 0
/ —(ug —cs)gds = / vdv = (— Wi Swet + %csfvet)g = —%v%. )
0

vo

Dividing the last of Egs. (2) by g, multiplying by 2, and rearranging terms, we have

1
CS\%et — 2k Swer + Ug/g =0 = Swa= E|:,U«k + V'ulzc - (CU%)/g]. 3)

Given that ¢ = 0.015m™", g = 0.5, vo = 45km/h = 45(1000/3600) m/s, and g = 9.81 m/s?, we can
evaluate the last of Egs. (3) to obtain the following two values of Syet:

1 1
(Swed)1 = ;[uk—\/ui—(cvﬁ)/g] =2631m and (Swe)2 = ;[ukﬂ/ui—(cvé)/g} = 40.35m.

4)
Only the solution Syet = (Swet)1 1S meaningful because for the is not assumed to keep moving after it comes
to a stop at Syet = (Swet)1. Hence, we have

Swet = 26.31 m.

For dry conditions, ¢ = 0 so that § = —u; g, which implies that the acceleration is constant and we can use
the equation v? = v(z) + 2ac(s — so) to determine the stopping distance. Denoting by sqry the position s at
which v = 0 under dry conditions, we have

2
v
.2 _ 0 —
0=vg —2ur&(Sary — S0) =  Say = 7 . = Say = 15.93m, (®))
Hi&
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where we have set s9 = 0, and where we have used the following numerical values: u; = 0.5, v =
12.50m/s, and g = 9.81m/s.

Using the values of sy and sqry in the first of Egs. (4) and the last of Egs. (5), respectively, the percentage
increase in stopping distance is calculated as follows:

(Swet — Sdry) _2lukg 1 _ 2 2 :|_ v(% }
e ooy = 2AEN e~ g = ol ) 100%). ©®

2urg

Recalling that ¢ = 0.015m™!, ux = 0.5, v = 45km/h = 45(1000/3600) m/s, and g = 9.81 m/s?, we
can evaluate the above expression to obtain

(Swet = Sary)

Sdry

(100%) = 65.21%.

This solutions manual, in any print or electronic form, remains the property of McGraw-Hill, Inc. It may be used and/or possessed only by permission June 25, 2012
of McGraw-Hill, and must be surrendered upon request of McGraw-Hill. Any duplication or distribution, either in print or electronic form, without the
permission of McGraw-Hill, is prohibited.



112

Problem 2.71i

Solutions Manual

Solution

s

A car stops 4 s after the application of the brakes while covering a rectilinear stretch 337 ft long. If

the motion occurred with a constant acceleration a., determine the initial speed vg of the car and the
acceleration a.. Express vo in mph and a. in terms of g, the acceleration of gravity.

integrate the expression dv = a. dt as follows

Recall that ¢ = dv/dt. Since a = a. is constant, we can separate the v and ¢ variables by writing
dv = acdt. Letting t = 0 be the time at which the brakes are applied and for which v = vy, we can

v t
/dv:/acdz = v =1y +act.
v 0

Recalling that v = ds/dt, we can write ds = v dt and use the expression in the last of Egs. (1) to write
N t
[ ds = / (vo +act)dt = s=vot+ %actz,
0 0

ey

(@)
0=vg+acts and dg = vots + %act
This is a system of two equations in the two unknowns vg and @, whose solution is

2
PR

where we have chosen s = 0 to be the value of s when the brakes are applied. Letting #; and d; be stopping
time and distance, respectively, and using the last of Egs. (1) and of Egs. (2), we must have

(3)
vo = 2ds/ty and a. = —ZdS/tsz.

Recalling that t; = 4 s and dg = 337 ft we can evaluate the above results to obtain

“)
vo = 114.9mph and a, = —1.308g,

where we have expressed the acceleration in term of g = 32.2ft/s?, the acceleration of gravity.
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Problem 2.72 |

As you will learn in Chapter 3, the angular acceleration of a simple pendulum is given
by 6 = —(g/L)sin @, where g is the acceleration of gravity and L is the length of |
the pendulum cord. ' :
Derive the expression of the angular velocity 6 as a function of the angular |
coordinate 6. The initial conditions are 6(0) = 6y and 9(0) = 6. |
|

e \*
Solution
Recall that 6 = d 6 /dt. Applying the chain rule, we write
. d6  dOde  .df Co
b= =aoa ~%ag = 09=040 )
Substituting the given expression for 6 into the last of Egs. (1), we can then write
0db =—(g/L)sin6 db, ()

where we have separated the variables 6 and 0. Since § = ég for 6 = 6y, we can integrate Eq. (2) as follows:

6 0
6db = / —(g/L)sin0ds = L(62—6o) = Z(cosd — cos bp). 3)
éo 6o L

Solving the last of Egs. (3) for 6 as a function of 6, we have

6(0) = j:\/ég + 2%(0059 — cos ).
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Problem 2.73 i

As you will learn in Chapter 3, the angular acceleration of a simple pendulum is given
by 6 = —(g/L)sin @, where g is the acceleration of gravity and L is the length of |
the pendulum cord. ) :
Let the length of the pendulum cord be L = 1.5m. If § = 3.7rad/s when |
6 = 14°, determine the maximum value of 6 achieved by the pendulum. :
|

Solution

Let Ohax be the maximum value of 6. This Valye is aghieved when & = 0. To find Omax We need to relate
velocity with position. To do so, we recall that 6 = d 6 /dt and, applying the chain rule, we write

. dé dbde .df .
:Z:EEZQE = 6d6=064do. (1)

Substituting the given expression for 6 into the last of Egs. (1), we can then write
6df = —(g/L)sin6 de, )

where we have separated the variables 6 and 6. Letting 6; = 3.7rad/s and 6; = 14° be the initial angular
velocity and the initial angle, respectively, we can then integrate Eq. (2) as follows:

0 Omax .
6dé = / —(g/L)sin0df = —16%= %(cos Bmax — 08 6;). 3)
0; 0;
The last of Egs. (3) can be solved for 6« to obtain
L LE?
Oimax = coOs cos 0; — . 4)
2g

Recalling that L = 1.5m, 6; = 14°, §; = 3.7rad/s, and g = 9.81 m/s2

Omax = 94.38°.
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Problem 2.74 i

As you will learn in Chapter 3, the angular acceleration of a simple pendulum is given

by 6 = —(g/L)sin @, where g is the acceleration of gravity and L is the length of |

the pendulum cord. :
The given angular acceleration remains valid even if the pendulum cord is re- |

placed by a massless rigid bar. For this case, let L = 5.3 ft and assume that the :

pendulum is placed in motion at 6 = 0°. What is the minimum angular velocity at !

this position for the pendulum to swing through a full circle? 0

Solution

The minimum value of 6 at & = 0 for which the pendulum swings through a full circle is the value that
allows the pendulum to reach the angle 6 = 7 rad with 6 = 0. This means that we need to relate velocity
with position. To do so, we recall that 6=db /dt and, applying the chain rule, we write

dd dodo .df .
== = 9% = 0d6=0de. (1)

Substituting the given expression for 6 into the last of Egs. (1), we can then write
6db =—(g/L)sin0 db, 2)

where we have separated the variables 6 and 6. Then, using the above observation concerning the value of 0
for & = & rad, we can integrate Eq. (2) as follows:

0 . 7 rad g
f 6do = / —(g/L)sinfdd = 162 = -2 3)
min 0

The last of Eqgs. (3) can be solved for émin to obtain

; g
Omin = £2,/ —. 4
VI “)

Recalling that g = 32.2ft/s”> and L = 5.3 ft, the result in Eq. (4) can be evaluated to obtain

Omin = 4.9301ad/s,

where we have considered only the positive value of Oimin because in going from O to & rad the pendulum bob
moves counterclockwise.
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R Problem 2.75 i2,

As you will learn in Chapter 3, the angular acceleration of a simple pendulum is given

by 6 = —(g/L)sin @, where g is the acceleration of gravity and L is the length of |

the pendulum cord. |
Let L. = 3.5 ft and suppose that at # = 0's the pendulum’s position is 6(0) = 32° [

with 6(0) = Orad /s. Determine the pendulum’s period of oscillation, i.e., from its |

initial position back to this position. !

Solution

To determine the period of the pendulum using the given initial conditions, we need to establish a relationship
between the angle 6 and time. To do so, we begin by establishing a relation between the angular velocity
6 and and swing angle 6, and then we integrate that result to determine 6(¢). To find 6(6), we begin by
applying the chain rule as follows

do dodo  .db

= =g =0 = 0d9=0d0 = 0d6=0d0. 0

Substituting the given expression for 6 into the last of Egs. (1), we can then write
0db =—(g/L)sin0 db. )

Since § = 0 when 6 = Ao = 32°, we can integrate Eq. (2) as follows:

0 0
6d = / —(g/L)sin0dd = 162 = Z(cosf — cosfy). 3)
0 6o L
Solving for 6, we have
. 2
0 = :I:\/fg(COSQ — cos Hp). ()

Once the pendulum is released from 8y = 32°, the angle 6 will decrease until it becomes —32°. Then the
pendulum will then swing back to the original angle. The time taken to go from 32° to —32° is equal to the
time taken to swing back from —32° to 32°. Hence, the period of oscillation, which we will denote by p, is
twice the time that the pendulum takes to go from 32° to —32°. With this in mind, referring to Eq. (4), and
because 6 will initially decrease after release, the expression for 6 to use when 6 goes from 32° to —32° is

2
— \/_g (cos 8 — cos bp), 5
L
Now, recalling that 0 =do /dt, we can write dt = d6/ é, which, because of Eq. (5), we can write

L do
dt = — [ — . (6)
2g \/cos 6 — cos By
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We now integrate over one half of a complete swing to obtain

/P/ 2 /—32" L de [—32" 2L de
dt = - = = p= — | — .
0 320 2g V/cos — cos 32° 320 g ~/cos B — cos 32°

The above integral can be evaluated numerically. Recalling that L = 3.5ft and g = 32.2ft/s?, we have used
Mathematica with the following code:

- 3.5 1

NIntegrate[— , {6, 32. Degree, -32. Degree}]

32.2 \/Cos[e] - Cos[32. Degree]

which yields

p =2.113s.
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Problem 2.76 {

As we will see in Chapter 3, the acceleration of a particle of mass m suspended by

a linear spring with spring constant k& and unstretched length Lo (when the spring

length is equal to Lo, the spring exerts no force on the particle) is given by X =

g — (k/m)(x — Lo). X k, Lo
Derive the expression for the particle’s velocity x as a function of position x.

Assume that at ¢ = 0, the particle’s velocity is vg and its position is xg.

Solution

The acceleration can be related to the position and the velocity as follows: ¥ = Xd x/dx, which can then be
rewritten as Xd X = Xdx. This latter expression can be integrated as follows:

[U:)'cdfc:/x:[g—(%)(x—Lo)]dx, (1)

where, as indicated in the problem statement, vg is the value of X for x = x¢. Evaluating the integral gives
us the velocity as a function of x.

k kL
1.2 1,2 2 2 0
sx“—sv5 =g(x —x9) — —(x* —x5) + —(x — x9). 2)
2 2°0 2m ( 0) m
Solving for x, we have
kLo k
S — 2 2 2
x_j:\/vo—i-Z(g—i-— (x —x0) — —(x2 —x3). 3)
m m
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Problem 2.77 i

As we will see in Chapter 3, the acceleration of a particle of mass m suspended by

a linear spring with spring constant k& and unstretched length Lo (when the spring

length is equal to Lo, the spring exerts no force on the particle) is given by X =

g — (k/m)(x — Lo). x k. Lo
Let k = 100N/m, m = 0.7kg, and Lo = 0.75 m. If the particle is released from

rest at x = 0 m, determine the maximum length achieved by the spring.

m

Solution

The acceleration can be related to the position and the velocity as follows: ¥ = Xd x/dx, which can then be
rewritten as Xd X = Xdx. This latter expression can be integrated as follows:

[):de=L:[g—(%)(x—Lo)]dx, (1)

where as indicated in the problem statement, v is the value of X for x = x¢. Now, in this particular problem,
since the particle starts from rest at x = 0, we set vg = 0 and x¢9 = 0. We now observe that the coordinate x
(when positive) measures the length of the spring. In addition, denoting the maximum length by xp,x, we
observe that xp,x is achieved when x = 0, i.e., when the spring has stretched to the point that its velocity is
equal to zero (before recoiling back). Using these considerations, we can rewrite Eq. (1) as

0 xmax k k kL
/ xdx = [ |:g — (—) (x — Lo)] dx = 0= gxmx— —xiax + —Oxmax. 2)
0 0 m 2m m

Solving the last of the above equations for xpax, we obtain

2(mg + kL
Xomax = %i (3)

Recalling that m = 0.7kg, g = 9.81m/s?, k = 100N/m, and Lo = 0.75m, we can evaluate Eq. (3) to
obtain

Xmax = 1.637m.
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Problem 2.78 1

As we will see in Chapter 3, the acceleration of a particle of mass m suspended by

a linear spring with spring constant k& and unstretched length Lo (when the spring

length is equal to Lo, the spring exerts no force on the particle) is given by X =

g — (k/m)(x — Lo). x k. Lo
Let k = 81b/ft, m = 0.048 slug, and Lo = 2.5 ft. If the particle is released from

rest at x = 0ft, determine how long it takes for the spring to achieve its maximum

length. Hint: A good table of integrals will come in handy. m

Solution

The acceleration can be related to the position and the velocity as follows: ¥ = Xd x/dx, which can then be
rewritten as Xd X = Xdx. This latter expression can be integrated as follows:

/U:J'cd)'c=/);:|:g—(%)(x—Lo):|dx, (1)

where as indicated in the problem statement, vg is the value of X for x = x¢. Evaluating the integral gives us
the velocity as a function of x.

' k kLo
XZ_%U(Z) :g(x—xo)—%(xz—x(z)) + T(X—XO)- @)

(Sl

Then, keeping in mind that we are interested in the motion of the spring for x > 0 (i.e., we are not interested
in the recoiling motion of the spring after it has stretched to its maximum length), and solving for X, we have

X = \/v3+2(g+%)(x—xo)—n%(xz—xg). 3)

Since the particle is released from rest at x = 0, we have vg = 0. Consequently, the above equation can be
simplified to obtain

2 L
L \/—(mg+k 0, K 4
m m

Next, we determine the maximum length of the spring, which is achieved when x = 0. Hence, setting x = 0
and X = xmax in Eq. (4) and solving for xp.x, we have

2 + kL k 2 + kL
meax - %xr%lax =0 =  Xmx= M =  2(mg +kLo) = Xmaxk. (5)

Substituting the last of Egs. (5) into Eq. (4), we have

. k k . k
X = \/axxmax — Exz = X= \/;\/x(xmax —x). (©6)

Now we recall that x = dx/dt. Therefore, we can rearrange the terms in the last of Egs. (4) to integrate as
follows:

. dx ?Xmax Xmax dx m Xmax dx
i=2 o / dt = / oo = —/ R S %)
dt 0 0 X k Jo VX (Xmax — X)
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The integral on the right-hand side of the last of Egs. (7) can be carried out by substitution, or by consulting a
table of integrals, or by using a symbolic mathematical software. Regardless of the method, we have

dx [ x
—— = 25i _1( ) C, 8
/\/x(xmax—x) - Xmax * ()

where C is a constant of integration. Then using the above result we have that the last of Egs. (7) gives

Lt = \/%ﬂsin‘lu) —sin~1(0)] = n\/% = |y, = 0.24335, ©)

where we have used the following numerical data: m = 0.048 slug and k = 81b/ft.
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Problem 2.79 i

A weight A with mass m = 18 kg is attached to the free end of a nonlinear spring such .
that the acceleration of A is a = g — (y/m)(y — Lo)>, where g is the acceleration
due to gravity, y is a constant, and Ly = 0.5 m. Determine y such that A does not fall
below y = 1 m when released from rest at y = L.

Solution

Recall that a = dv/dt. In this problem, the acceleration is given as a function of position. Hence, to relate, a
change in velocity to a correspondent change in position, we start by rewriting the acceleration via the chain
rule: a = vdv/dy. This allows us to write

vdv=a(y)dy = wvdv= [g — %(y — Lo)3i| dy, (1

where we have separated the variables v and s and used the given expression for the acceleration. Recalling
that v = 0 for y = Lg, we can now integrate the last of Eqgs. (1) as follows:

v y
/ vdv =f [g—l(y—Lof] dy = v2=2g(y—Lo)——(y—Lo)*. 2)
0 Lo m 2m

Let y = 1 m. In order for the weight not to fall below y, the speed must become equal to zero at y = j.
Hence, letting v = 0 for y = y, the last of Egs. (2) gives

0 =2g(F — Lo) — ﬁ(f — Lo)*. 3)

which is an equation in y whose solution is

4mg
y=——r—. @)
(y — Lo)
Recalling that m = 18kg, ¢ = 9.81m/s?, Ly = 0.5m, and j = 1 m, we can evaluate Eq. (4) to obtain
— 2.2
y = 5651 kg/(m”-s°).
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Problem 2.80 i

Two masses m4 and m p are placed at a distance ro from one another. Because of their mutual gravitational
attraction, the acceleration of sphere B as seen from sphere A is given by

P=-G (—mA+mB),
72

where G = 6.674x 10711 m?/(kg-s?) = 3.439x 1078 ft*> /(slug-s?) is the universal gravitational constant.
If the spheres are released from rest, determine

(a) The velocity of B (as seen by A) as a function of the distance r.

(b) The velocity of B (as seen by A) at impact if ro = 7 ft, the weight of A is 2.1 1b, the weight of B is
0.71b, and
(i) The diameters of A and B are d4 = 1.5ft and dp = 1.2 ft, respectively.
(i) The diameters of A and B are infinitesimally small.
A

B
/Y
@ o

Solution

Part (a). Recalling that we can relate the acceleration to the velocity and position as ¥ = 7d 7 /dt, we can

then write
dr

F r

1

P=r— = /fdr=—G(mA+mB)/ —dr,
dr 0 ro T

which can be evaluated to obtain

1 1 -
72 = G(mA —i—mg) (; — —) = F=—2G (myg +mp) rorr r7 (D

N[

ro 0

where we have chosen the negative root because the masses are moving toward each other.

Part (b). Now that we have the velocity as a function of position, we can proceed to answer the questions
posed in Part (b) of the problem. For question (i), when the masses touch r = rq 4+ rp = (d4 + dp)/2, so

that
b= /26 (gt mp) | @)
F=— mq +m _—
4 B dqa+dp 1o

Recalling that G = 3.439 x 1078 ft3/slug-s?, my = 2.11b/g, mp = 0.71b/g, g = 32.2ft/s?, dy = 1.5ft,
dp = 1.21t, and ro = 7 ft, we can evaluate the above expression to obtain

F = —5.980 x 107> ft/s. 3)

For part (ii), we take the limit of Eq. (2) as r — 0 to obtain

F — —00.
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Problem 2.811

Two masses m4 and m p are placed at a distance ro from one another. Because of their mutual gravitational
attraction, the acceleration of sphere B as seen from sphere A is given by

P=-G (—mA+mB),
72

where G = 6.674x 10711 m?/(kg-s?) = 3.439x 1078 ft*> /(slug-s?) is the universal gravitational constant.
Assume that the particles are released from rest at r = ry.

(a) Determine the expression relating their relative position r and time. Hint:
/ Vx/(1=x) dx =sin” ' (Vx) — v/x(1 —x).

(b) Determine the time it takes for the objects to come into contact if 1 = 3m, A and B have masses of
1.1 and 2.3 kg, respectively, and
(i) The diameters of A and B are d4 = 22cm and dp = 15 cm, respectively.
(ii) The diameters of A and B are infinitesimally small.

A

B
(D
@ 9

Part (a). To find the relation between position and velocity, we observe that we can relate the acceleration
to the velocity and position as # = Fd 7 /dt. Hence, we can then write

dr F ]
=l o /r'drz—G(mA—I-mB)/ —dr,
0 ro !’

Solution

dr

where we have used the fact that the spheres are released from rest so 7 = 0 and have let their initial
separation distance be ro. These integrals can be evaluated to obtain

1 1 —
152 = Gmg + mp) (; - —) = b= V3G ma tmg) [ M)
0

ro

where we have chosen the negative root because the masses are moving toward each other and so r is
decreasing.

Next, we observe that 7 = dr/dt and we write dt = dr/7. Using this expression and the expression for
7 in the last of Eqgs. (1), we can then write

t 1 Y
/ dt = — / dr,
0 V2G (mgq + mp) Jro 1—r/ro

where we have divided both the numerator and the denominator of the fraction under the square root by rq
and we have used the fact that 5 = 0. Making the substitution x = r/rg so that dr = ro dx, and evaluating
the integral on the left-hand side, we obtain

3/2 r/ro
(=10 / 2 dx.
V2G (myg +mp) J1 l—x
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Using the hint given in the problem statement, this becomes becomes

3/2 r/ro

_ 0 1 _ —
t = m[sm Vx—+/x( )c)]1

3/2 .
= |t= —1‘/—— 1—— =1l @
2G(mA+mB r() 2

Part (b). We are given that ro = 3m, my = 1.1kg, and mp = 2.3kg, and we know that G = 6.674 x
10~ m3 /kg-s2.

(1) Using dq = 22cm = 0.2200m, dp = 15cm = 0.1500m, and r = (d4g + dp)/2 = 0.1850m in
Eq. (2), we obtain

t = 380,600s.

(i1) If the diameters are infinitesimally small, r — 0. Hence, from Eq. (2) we obtain

3/2
(/2)rg!
= t = 383,100s.
V2G(myg + mp)
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® Problem 2.82 @

Suppose that the acceleration #* of an object moving along a straight line takes on the form

m m
F:_G(#)’
r

where the constants G, my4, and mp are known. If 7/(0) is given, under what conditions can you determine
7(t) via the following integral?

t myq +mp

Solution

F(¢) can be determined if the position r of the object is known as a function of time ¢ and if r(¢) # 0 during
the time interval of interest.
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Problem 2.83 i

If the truck brakes hard enough that the crate slides to the right Vo
relative to the truck, the distance d between the crate and the front }—d»
of the trailer changes according to the relation =

J— Mrg +ar fort <iy,

15 4 fort > g,

where ; is the time it takes the truck to stop, ar is the acceleration
of the truck, g is the acceleration of gravity, and uj is the kinetic
friction coefficient between the truck and the crate. Suppose that
the truck and the crate are initially traveling to the right at vog =
60 mph and the brakes are applied so that ar = —10.0ft/s?.
Determine the minimum value of u; so that the crate does not hit
the right end of the truck bed if the initial distance d is 12 ft. Hint:
The truck stops before the crate stops.

Solution

Referring to figure on the right, the acceleration of the truck relative
to the crate is given by

J

" X1 = +a fort < tq,
J= "1 12934 T s (1)
Xo = Urg fort > tq,

where ; is the time at which the truck comes to a stop, and where the
subscripts 1 and 2 are used to distinguish expressions corresponding
tot < tg from those for ¢ > ¢, respectively. Using the constant acceleration equation of the type v =
vo + ac(t — to), the time #¢ at which the truck stops is

Vo

O0=vo+arty = Itg=——, (2)

ar
where vg is common the initial speed of the truck and crate. Letting x; be the position of the truck relative
to the crate at the time the truck comes to a stop, using the constant acceleration equation of the type
s = 8¢ + vot + %actz, we have

. . 2
X1 = X0 + Xols + %Xlts

=d + L (kg +ar)t?, 3)

where xo = d is the initial position of the truck relative to the crate and X¢ = 0 is the initial velocity of the
truck relative to the crate.
After the truck comes to a stop, the truck continues to slide relative to the crate with the acceleration X,
in Eq. (1). Using this acceleration, the distance the truck moves relative to the crate after the truck comes to a
stop can be found using
X7 =%+ 2% (xp —x1), 4

where xy = 0 is the final velocity of the truck relative to the crate, X1 is the velocity of the truck relative to
the crate at time #5, x¢ = 0 is final position of the truck relative to the crate, and x1 is the position of the
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truck relative to the crate at time #; and is given by Eq. (3). We now need to find x;, which can be

X1 =Xo+ X1ty = X1 = (urg+ar)ts,

done using:

&)

where we have again used the fact that xo = 0. Substituting Egs. (1), (3) and (5) into Eq. (4), we obtain

0 = [(urg +ar) ts1* + 2(uig) [-d — L (urg +ar) 12].

Finally, substituting in 75 from Eq. (2), we get the final equation for pg:

2 2
0= [(ng +ar) (—:—;)} +2(ukg) [—d — L (urg +ar) (—;—;) } ,

which, after simplification, becomes

2
U
0=-2(ukg +ar) —2duxg.
ar

Solving for u; we get
v%aT
g [ZdaT — v%]

where we have used vg = 60 mph = 60(%) ft/s, ar = —10ft/s>, g = 32.2ft/s?, and d
obtain the numerical result.

Uk = = M = 0.3012,

(6)

(N

®)

©)

= 12ft to
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Problem 2.84 i

Cars A and B are traveling at v4 = 72mph and vp = 67 mph,
respectively, when the driver of car B applies the brakes abruptly,
causing the car to slide to a stop. The driver of car A takes 1.5s to
react to the situation and applies the brakes in turn, causing car A4 to
slide as well. If A and B slide with equal accelerations, i.e., §4 =
§p = —urg, where up = 0.83 is the kinetic friction coefficient
and g is the acceleration of gravity, compute the minimum distance
d between A and B at the time B starts sliding to avoid a collision.

Solution

We will denote by d4 and dp the stopping distances of cars A and B, respectively. The stopping distance of
car B is completely determined by the application of the brakes. The stopping distance of car A is determined
by both the reaction time and the subsequent application of the brakes, that is,

dg = da, +da,, (D

where d4, is the distance traveled by A during the reaction time and dy, is the distance traveled by A during
the application of the brakes. During the reaction time, the speed of A remains constant. Therefore,

da, = valr, (2)

where ¢, = 1.5 is the reaction time of the driver of car A. After both cars apply the brakes, for both cars we
can use the constant acceleration equation v? = v% + 2a.(s — s9) to relate the speeds of the cars to their
acceleration and stopping distances. Setting to zero the final velocities of both cars, we have

2
0=} —2ugds, = da, =2, 3
2urg
l)2
.2 _ B
0=vp —2urgdp = dg = . 4)
2urg
From Egs. (1)-(4), we have
2 2
v v
dy=vaty + —A and dg=—B_. (5)
2urg 2urg

We observe that, in order to avoid a collision, the separation d between A and B at the moment that B applies
the brakes must be such that d4 = dp + d. Then, using Egs. (5), we have
1 2

d=d4—dg = V2 —v3) + vaty. (6)
zﬂkg(A B) r

Recalling that j; = 0.83, g = 32.2ft/s?, vy = 72mph = 72% ft/s, vp = 67 mph = 67%38 ft/s, and
t, = 1.5, we can evaluate d to obtain

d = 186.4ft.
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Problem 2.851i

The spool of paper used in a printing process is unrolled with velocity v, and acceleration a,. The
thickness of the paper is £, and the outer radius of the spool at any instant is r.

If the velocity at which the paper is unrolled is constant, determine the angular acceleration o5 of the
spool as a function of r, &, and v,,. Evaluate your answer for 7 = 0.0048 in., for v, = 1000 ft/min, and
two values of r, thatis, r1 = 25in. and r, = 101in.

Photo credit: © David Lees/CORBIS

Solution

The radius decreases by the paper thickness 4 for every one revolution. Hence, letting 6 be the angle
measuring the angular position of a fixed radial line on the spool (6 increases when the spool turns clockwise),

then we have
Ar —h

= —_= 1
A6 2w M
Assuming that the decrease in radius can be viewed as occurring continuously, we can change the above
relation into a relation in terms of differentials. That is we can write
dr  —h
de  2rn’
Next, observing that the angular velocity of the spool is ws = d8/dt, we can then use the above equation to
relate the time rate of change of r to wg by applying the chain rule as follows:

iﬂ_dr_drd@ N i"—_ha) N w_—Zn}; 3)
T dt  do dr DY SToop

Recalling that the linear velocity of the paper is related to the angular velocity of the spool as v, = rawy, we
can use Eq. (3) to relate v, to 7 as follows:

2

27 . o —hvp
rr 7= .
h 2y

Taking the time derivative of v, in the second of Eqs. (4), accounting for the fact that v, is constant (i.e.,
ap = 0), and using the last of Eqgs. (4), we have

“)

Vp =Trwy = Vp =

0 _2”('2+ ) = 0 2 (v + )
a, =0= r rrv = rr .
g h ho\ 4r2r2

Taking the time derivative of the last of Egs. (3) and solving the last of Egs. (5) to find expressions for ¢ty and
¥, respectively, we have

2,2
—2m ., . —h=v D
oy = F oand ¥ =-——, (6)
h 472r3
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which, when combined, imply that

2
_ hvp
2mr3

(o2

Evaluating the expression above for 7 = 0.0048 in. = (0.0048/12) ft, v, = 1000 ft/min = (1000/60) ft/s,
rp = 25in. = (25/12) ft, and r, = 10in. = (10/12) ft, we have

ds,_, =0.001956rad/s> and as|,_, = 0.03056rad/s’.
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Problem 2.86 1

The spool of paper used in a printing process is unrolled with velocity v, and acceleration a,. The
thickness of the paper is £, and the outer radius of the spool at any instant is r.

If the velocity at which the paper is unrolled is not constant, determine the angular acceleration oy of
the spool as a function of r, h, vp, and a,. Evaluate your answer for 7 = 0.0048 in., v, = 1000 ft/min,
ap =3 ft/sz, and two values of r, that is, r1 = 25in. and r» = 101n.

Photo credit: © David Lees/CORBIS

Solution

The radius decreases by the paper thickness % for every one revolution. Hence, letting 6 be the angle (in
radians) measuring the angular position of a fixed radial line on the spool (6 increases when the spool turns
clockwise), then we have
Ar_—h |
YT M
Assuming that the decrease in radius can be viewed as occurring continuously, we can change the above
relation into a relation in terms of differentials. That is we can write

dr  —h @)
de  2rn’
Next, observing that the angular velocity of the spool is ws = d8/dt, we can then use the above equation to
relate the time rate of change of r to wg by applying the chain rule as follows:

dr _drdf . —h =27,

== = F= oo = wy = s 3)

Recalling that the linear velocity of the paper is related to the angular velocity of the spool as v, = rwg, we
can use Eq. (3) to relate v, to i* as follows:
_27T . . _h vp

Vp =Trws = Up = A rr = r:2”r. “)

Taking the time derivative of the second of Eqgs. (4) and then using the last of Egs. (4) to substitute for the
term 7, we have
: —2m ( WPy

To find an expression for the term #, we take the time derivative of 7 in Eq. (3) and obtain

F=—uos. (6)
21
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Substituting the result from Eq. (6) into Eq. (5), we have

27 hzvg hr 7
ap = — | —= — —a, |.
» h 42r2 27 "

Then, solving for oy and simplifying, we obtain

2

__ap hvp
as—_+ 3.

r 2mr

Evaluating the expression above for 4 = 0.0048 in. = (0.0048/12) ft, v, = 1000 ft/min = (1000/60) ft/s,
ap = 3ft/s%, r; = 25in. = (25/12) ft, and r» = 10in. = (10/12) ft, we have

o| 1=1.442rad/s2 and o] 2=3.6311rad/sz.

r=r r=r
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8 Problem 2.87 iz

The spool of paper used in a printing process is unrolled with velocity v, and acceleration a,. The
thickness of the paper is /, and the outer radius of the spool at any instant is r.

If the velocity at which the paper is unrolled is constant, determine the angular acceleration o of
the spool as a function of r, &, and v,. Plot your answer for 4 = 0.0048 in. and v, = 1000 ft/min as a
function of r for 1in. < r < 25in. Over what range does «; vary?

Photo credit: © David Lees/CORBIS

Solution

The radius decreases by the paper thickness 4 for every one revolution. Hence, letting 6 be the angle
measuring the angular position of a fixed radial line on the spool (6 increases when the spool turns clockwise),

then we have
Ar —h

= —__ 1
A6 2w M
Assuming that the decrease in radius can be viewed as occurring continuously, we can change the above
relation into a relation in terms of differentials. That is we can write
dr  —h
do 27’
Next, observing that the angular velocity of the spool is wg = df/dt, we can then use the above equation to
relate the time rate of change of r to wg by applying the chain rule as follows:

r,_dr_a’rd@ N r'—_h N _—2nr, 3)
T4 dodr T @s =

Recalling that the linear velocity of the paper is related to the angular velocity of the spool as v, = rwg, we
can use Eq. (3) to relate v, to i* as follows:

2

: _27[ . :> . _h vp
Vy, = rw v, = rr 7= .
P s r h 2nr

Taking the time derivative of v, in the second of Eqs. (4), accounting for the fact that v, is constant (i.e.,

ap = 0), and using the last of Egs. (4), we have

“

2 . . 27  h*v3 .
ap =0= ; (r2+rr) = Oz—h (—4n2f2+rr . (&)

Taking the time derivative of the last of Egs. (3) and the last of Egs. (4) to find expressions for g and #, we
can write

2,2
—2m ., . —h=v D
oy = F oand ¥ =-——, (6)
h 472r3
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from which we have

as = .
23

2
hvp

To plot the above function, we first substitute the values of the known coefficients, i.e., we recall that
h = 0.0048 in., and v, = 1000 ft/min = 200.0in./s and rewrite s as

73

_30.56in.%/s?

(N

The above function can now be plotted. The plot below was generated usingMathematica with the following

code:
30.56

Plot[

3

AspectRatio -» 1, FrameLabel » {"r (in.)", "a, (rad/s’) "}]

g (rad/s2 )

10+

The quantity cs appears to vary from 30.5rad/s? to close to zero as r varies from 1 in. to 4 in.

301
25+
20

15}

, {r, 1, 25}, PlotRange -» All, Frame - True, GridLines - Automatic,

10

15

r (in.)

20

25
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Problem 2.88 |

Derive the constant acceleration relation in Eq. (2.32), starting from Eq. (2.24). State what assumption you
need to make about the acceleration a to complete the derivation. Finally, use Eq. (2.27), along with the
result of your derivation, to derive Eq. (2.33). Be careful to do the integral in Eq. (2.27) before substituting
your result for v(¢) (try it without doing so, to see what happens). After completing this problem, notice
that Egs. (2.32) and (2.33) are not subject to the same assumption you needed to make to solve both parts
of this problem.

Solution

Assuming that the acceleration is not equal to 0 and integrating Eq. (2.24), we have

1 [v 1
t(v) :to+a—/ dv = t() :zo—i-a—(v—vo) = v =g+ act—ty). (D)
c Jvo

c

Integrating Eq. (2.27) we have

1 [? 1
s =80+ — vdv = s=so+—(v2—v%). 2)
ac Juo 2a.

Substituting for v from Eq. (1), we obtain

1
s =s0+— [a?(t — 10)® + 2voac (t — to)] , 3)
2a,

which can be simplified to obtain

s =80 + vo(t —to) + %ac(t = l‘o)z. (@)
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Problem 2.89 |

The discussion in Example 2.12 revealed that the angle 6 had to be greater than ,,;, = 0.716°. Find an
analytical expression for O, in terms of 4, w, and d.

Solution

The smallest possible angle (with respect to the horizontal) corresponds to the straight-line trajectory that
going from the point at which the ball is hit to the top of the center field wall.

Vo
A /ﬁ straight-line trajectory wl

/ :
Tﬁ]

\ d \

Using elementary trigonometry, we have that the analytical expression of the slope of the straight-line

trajectory is
w—h
6 =tan ' —— ).
an ( - )

To achieve this trajectory the ball would need to be imparted an infinite speed. That is, the straight-line
trajectory cannot be achieved in practice.
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Problem 2.90 !

A stomp rocket is a toy consisting of a hose connected to a “blast pad” (i.e., an air bladder)

at one end and to a short pipe mounted on a tripod at the other end. A rocket with a /
hollow body is mounted onto the pipe and is propelled into the air by “stomping” on
the blast pad. Some manufacturers claim that one can shoot a rocket over 200 ft in the
air. Neglecting air resistance, determine the rocket’s minimum initial speed such that it
reaches a maximum flight height of 200 ft.

A
>

Solution

The maximum height depends on the vertical component of the launch velocity. The higher
this component the higher the height. Therefore, the minimum value of the speed needed
to reach the desired height is found by launching the rocket purely in the vertical direction.
Referring to the figure at the right, we consider the case in which the motion is completely
in the y direction. Since the positive y direction is opposite to gravity, we have that the acceleration of the
rocket is y = —g = constant. We can relate velocity to position using the following constant acceleration
equation:

2 =36 —28(y — o). (1
where Yo is the velocity of the rocket for y = yo, and where we choose yg to denote the launch position of

the rocket. Setting yo = 0 and recalling that the maximum height is achieved when y = 0, for y = Amax
Eq. (1) becomes

0= y(% - Zghmax = )}0 =V 2ghmax, 2)

where we have chosen the positive root since the rocket is initially launched upward. Recalling that
hmax = 200ft and g = 32.2ft/s?, and observing that the initial speed coincides with yo, we can evaluate the
last of Egs. (2) to obtain

Vmin = 113.5t/s.
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Problem 2.91{

An airplane flying horizontally at elevation # = 150ft and at a constant speed v9g = 80 mph drops a
package P when passing over point O. Determine the horizontal distance d between the drop point and
point B at which the package hits the ground.
y
- —_—
~ Yo
PQ\
d \‘\\*> h
j
—0 l Y X
(o) B

Solution

We model the motion of the package as projectile motion. Observing that the positive direction of the y axis
shown is opposite to that of gravity, we have that the components of the constant acceleration of the package
P are

X=0 and J = —g. Q8
Letting ¢ denote time and ¢ = 0 denote the instant at which the package is released, Egs. (1), along with
Eq. (2.33) on p. 49, tell us that the x and y coordinates of the package as functions of time are

x(1) = x(0) + x(0) and y(t) = y(0) + y(0)r — Sgt>, 2)

where x(¢) and y(¢) are the x and y components of the package’s velocity. The package is released at a
height & over point O. Also, the velocity of the package at the instant of release is equal to the velocity of the
plane. Hence, at the instant of release, we have

x(0)=0, y@©0)=h, x0)=v9, and y(0)=0. 3)
Substituting Egs. (3) into Egs. (2), x(¢) and y () become:
x(t) =vot and y(1)=h—1gt* 4)

Let ¢; denote the time at which the package impacts the ground. Since y(#;) = 0, referring to the second of

Egs. (4), we have
2h

We now observe that d = x(¢;). Substituting the second of Egs. (5) into the first of Egs. (4), we have

2h
d = Vo4 —. (6)

g
Recalling that vg = 80 mph = 80(5280/3600) ft/s, h = 150 ft, and g = 32.2ft/s?, we can evaluate Eq. (6)
to obtain

d = 358.1ft.
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Problem 2.92 |

An airplane flying horizontally at elevation # = 60m and at a constant speed vg = 120km/h drops a
package P when passing over point O. Determine the time it takes for the package to hit the ground at
point B. In addition, determine the velocity of the package at B.

~>

Solution

We model the motion of the package as projectile motion. Observing that the positive direction of the y axis
shown is opposite to that of gravity, the components of the constant acceleration of the package P are

X=0 and j = —g. €))

Letting ¢ denote time and ¢ = 0 denote the instant of release, Egs. (1), along with Eq. (2.32) on p. 49 and
Eq. (2.33) on p. 49, tell us that the x and y components of the velocity of the package, along with the x and
y coordinates of the package as functions of time are

(1) =%0), y(0)=y©)—gt, x(1)=x(0)+x0), and y(@)=y0)+y0)y—3g% (2

where X (¢) and y(¢) are the x and y components of the package’s velocity. Since the package is released at a
height /1 over point O while traveling with the airplane, at the instant of release we have

x(0)=0, yO)=h, x(0)=v9, and y(0)=0. 3)

Substituting Egs. (3) into Egs. (2), we have
X(1) =vo, Y(t)=—gt, x(t)=vot, and y(t)=h—3gt> 4)
Let ¢; be the time at which P impacts the ground. Since y(¢;) = 0, referring to the last of Egs. (4), we have
h—Leg? =0 = 4=12h/g. (5)

Recalling that 7 = 60m and g = 9.81 m/s?, we can evaluate the last of Egs. (5) to obtain

t; = 3.497s.

Denoting the velocity of P at B by v, we now observe that the velocity at B is vg = x(t;)1 + y(;) J.
Hence, substituting the second of Egs. (5) into the first two of Egs. (4), we have

U =vol —gv2h/g]. (6)
Recalling that vg = 120km/h = 120(1000/3600) m/s, h = 60m, and g = 9.81 m/s?, Eq. (6) gives

g = (33.337 — 34.31 /) m/s.
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Problem 2.93 |

Stuntmen A and B are shooting a movie scene in which A needs to pass
a gun to B. Stuntman B is supposed to start falling vertically precisely
when A throws the gun to B. Treating the gun and the stuntman B as
particles, find the velocity of the gun as it leaves A’s hand so that B
will catch it after falling 30 ft.

Solution

The gun and B drop at the same time from the same height, and are Y
assumed to be both subject to the same acceleration, i.e., gravity. In Aoy
order for the gun and B to the same vertical position at the time that l

B grasps the gun, it is necessary for the gun and B to fall with equal %() ft
vertical velocities. This can only be achieved if the initial vertical "
velocity of the gun is equal to that of B, namely, zero. Hence, the rest x
of the problem is devoted to finding the horizontal component of the -
velocity of the gun at the time the gun is thrown. To do so, we start by 5
finding the time that B takes to fall the distance 2 = 30 ft. Using the
coordinate system shown at the right, and using constant acceleration
equations, we have

YB = YBo + VB, (t —10) — 38 (t — t0)?, )
where yp, and yp, are the position and the vertical velocity of B at time 79, respectively. Setting 79 = 0 and
recalling that B drops from rest a distance /& above the origin of the y axis, we can rewrite the above equation
in the following form:

yg =h— g% ©)
Due to our choice of origin, B will grasp the gun at yp = 0. Letting ¢ (the subscript f stands for final)
denote the time at which B grasps the gun, from Eq. (2) we then have

Iy = V2h/g. (3)

We now observe that the motion of the gun in the horizontal direction is also a constant acceleration motion
with acceleration equal to zero. Hence, using the subscript A to refer to the gun (as opposed to the stuntman
who initially threw it) we have

XA = Xqq + X4, (t — o), 4
where x4, and X4, are the gun’s position and velocity in the x direction at time #9. Having already set 7o = 0
and observing that x4, = 0, and that for 7 = ¢y we must have x4 = d, from the above equation we have

[2h g
d =X — Y40 = d | = = 14.651t/s,
XAo 2 = X4 2 /s ©)

where we have used the following numerical data: d = 20ft, 7 = 30ft, and g = 32.2ft/s%. In summary,
expressing our answer in vector form, we have

Dgun = (14.65ft/s)7 ;.
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Problem 2.94 |

The jaguar A leaps from O at speed v9 = 6 m/s and angle Vo
B = 35° relative to the incline to try to intercept the panther
B at C. Determine the distance R that the jaguar jumps from
O to C (i.e., R is the distance between the two points of the
trajectory that intersect the incline), given that the angle of the
incline is 8 = 25°.

parabolic
trajectory of A

Solution

The acceleration of A is completely in the vertical direction. Hence, Y
referring to the figure at the right, the components of the acceleration /
of A in the x and y directions are X = gsinf and j = —g cos 6. i

The components of the initial velocity of A are vyo = vg cos 8 and
Vyo = Vg sin B. Observing that the x and y components of accel- O
eration of A are both constants, we can use constant acceleration
equations to write

x = vo(cos B)r + %g(sin 0)t? = t[vo cos B + %g(sin G)I], €))
y = vo(sin B)t — %g(cos 0)t? = t[vo sin 8 — %g(cos Q)Z], 2

where we have accounted for the fact that, at time t = 0, A4 is at the origin of the chosen coordinate system.
Denoting by ¢¢ the time at which A reaches C, we observe that for ¢t = t¢c, y = 0. Therefore, from Eq. (2),

Yonsi
0=vwvosinf — %g(cos Ot = tc= M. 3)
gcos6
Observing that, for t = tc, x(tc) = R, substituting the last of Egs. (3) into Eq. (1), we have
20 si 20 si
_ 200SIB L o B+ Lg(sing) 220S0P ] @
gcosf gcosf
which can be simplified to
203 si
R = M(cosﬂ +tan951n,3). (5)
gcos6

Recalling that vg = 6m/s, B = 35°, g = 9.81m/s?, and § = 25°, we can evaluate the above result to
obtain

R =5.047m.
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Problem 2.95

If the projectile is released at A with initial speed v and angle 8, derive the
projectile’s trajectory, using the coordinate system shown. Neglect air resistance.

y Vo

Solution

Using the coordinate system indicated in the problem statement, we set up the following constant acceleration
equations for both the x and y coordinates of the projectile:

X = x4 + (vo cos B)t, (D
y = ya + (vosinB)r — S g%, )

where x4 and y,4 are the coordinates of the fixed point A at which the projectile is released. From Eq. (1) we
have that t = (x — x4)/(vo cos ). Substituting this result into Eq. (2), we obtain

g 2
y—ya =tanf(x —xq) — ————(x —x4)". 3)
2vg cos? B
Observing that x4 = w and y4 = h, the above equation becomes
g 2
y=h+tan,3(x—w)—2—2(x—w) .
2vg cos B
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Problem 2.96 {

A trebuchet releases a rock with mass m = 50kg at point O. The
initial velocity of the projectile is U9 = (457 + 30 j) m/s. Neglecting
aerodynamic effects, determine where the rock will land and its time of
flight.

Solution

Referring to the coordinate system defined in the problem statement, we see that y,ng, the y coordinate of the
rock when it lands on the ground, is —A. With this in mind, we can write the following constant acceleration
equation for the y coordinate of the rock:

1, .2
y :v0yt_§gt )

where it is understood that 7 = 0 is the time of release and y = 0 and vg, are the vertical position and the
vertical component of velocity of the rock at time ¢ = 0, respectively. Denoting by #gjgn; the time at which

the rock impacts the ground, we have
L 5 voy:t,/vgy+2gh
—h = Voy Hlight — Egtﬂight = gtﬂight — 2v0ytﬂight —2h=0 = Ilight = . (D

8
The only physically meaningful solution for Zgjgp, is that corresponding to the + sign in front of the square

root, that is,
1 )
Hiight = g Uyo + 4/ V350 + 2gh ). (2)

Recalling that g = 9.81 m/s?, vgy = 30m/s, and & = 4.5m, we can evaluate the expression above to obtain

Iflight = 6.263s.

Next observing that the motion is in the x direction is a constant acceleration motion with acceleration equal
to zero, the x coordinate of the rock is described by the following (constant acceleration) equation:

X = Voxl, 3)

where we have accounted for the fact that x = 0 for # = 0, and where vgy is the x component of the velocity
of the rock for r = 0. Substituting Eq. (2) into Eq. (3), for = f;gnc we have

Vo
Xland = ?x(vyo + ,/vJZ,O + 2gh). 4)

The position of the rock when the rock hits the ground is Fiung = XjanaZ — h J. Therefore, recalling that
g =9.81 m/sz, vox = 45m/s, voy = 30m/s, and & = 4.5m, and using Eq. (4) to evaluate xj,,¢ We have

Fland = (281.87 — 4.500 /) m.
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Problem 2.97 |

A golfer chips the ball into the hole on the fly from the rough at the
edge of the green. Letting @ = 4° and d = 2.4 m, verify that the
golfer will place the ball within 10 mm of the center of the hole if
the ball leaves the rough with a speed v9 = 5.03 m/s and an angle
B =41°.

Solution

Referring to the figure at the right, we will use the coordinate system |1
with axes x1 and yj, which are horizontal and vertical, respectively. The
acceleration of the ball in this coordinate system has components

X1 =0 and y; =-—g. (D g
Letting # = 0 be the initial time, and using constant acceleration equations, M x
we have \(/}xl‘\
X1 =vgcos(e + B) and y; = vgsin(x + B) — gt, 2) d

where the have used the fact that the initial velocity of the ball is ¥(0) = vg(cos(a + B) 7 + sin(a + B) J).
Integrating Eqgs. (2) with respect to time, and enforcing the fact that x; = 0 and y; = 0 for # = 0, we have

x1 =vocos(x + B)t and y; = vgsin(a + Bt — %gzz. 3)
From the first of Egs. (3) we have ¢t = x1/[vg cos(a + B)]. Substituting this result into the second of Egs. (3),

we have )
gsec”(a + B)
" |x7. )
2vy

Recalling that @ = 4° and 8 = 41°, so that & + B = 45°, tan(a + B) = 1 and sec?(a + B) = 2, so that
Eq. (4) simplifies to:

y1 = tan(a + B)x1 — [

g
Y1 = X1 — 5xi. )
Yo
The x; and y; coordinates of the point at which the ball lands must satisfy the condition x; tana = yg.

Combining this requirement with Eq. (5) we have

2
v
Xjtang = xq — %x% = X1 = —0(1 —tana) = 2.399m, (6)
v g

where we have used the following numerical values: vg = 5.03m, g = 9.81 m/s?, and o« = 4°. The value
of x; in Eq. (6) is the x; coordinate of the ball’s landing spot. With this information, letting d;, denote
the distance between the ball’s landing spot and the the golfer, we can determine d7, using trigonometry as
follows: X

dy, = Cosla =2405m = d—dz =0005m < 10mm, (7

where we have used the fact that « = 4° and d = 2.4 m. We can then conclude that

The golfer’s chip shot is successful.
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Problem 2.98 |

In a movie scene involving a car chase, a car goes over the top of a ramp A o
at A and lands at B below. = e B
If = 20° and B = 23°, determine the distance d covered by the d

car if the car’s speed at A is 45 km/h. Neglect aerodynamic effects.

Solution
The acceleration of the car in the xy coordinate system shown is
a=gsinfi—gcospj] = X=gsinf and y=—gcosB. (1)

We set ¢t = 0 to be the time at which the car jumps off at the origin A. Hence,
y =0atz = 0. Also, at# = 0, the velocity components of the cars are

vx(0) = vgcos(x + B) and v,(0) = vgsin(a + B). 2

Hence, using the above considerations along with constant acceleration equations, the y coordinate of the car
as a function of time is given by

y = vo sin(o + B)t — %g(cos Bt 3)
Letting 7p denote the time at which the car lands at B, since ygp = 0, from Eq. (3) we have

_ 2vg sin(a + B)

gcospf @

vo sin(a + B)ip — %(g cos ,B)té =0 = 1

Next observing that the x component of the acceleration in the second of Eqs. (1) is also constant, using
constant acceleration equations, the x coordinate of the car as a function of time is given by

x = vgcos(x + B)t + %(g sin )12, (5)
Substituting the last of Egs. (4) into Eq. (5) and simplifying, we have

21)3 sin(a + B)

[cos(a 4+ B) + tan B sin(a + B)]. (6)
gcosp

Recalling that vy = 45km/h = 45(1000/3600) m/s, & = 20°, B = 23°, and g = 9.81 m/s?, we can
evaluate the above result to obtain

d = 24.09m. @)
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Problem 2.99 i

In a movie scene involving a car chase, a car goes over the top of a ramp A o
at A and lands at B below. = e B
Determine the speed of the car at 4 if the car is to cover distance d

d = 150ft for o = 20° and B = 27°. Neglect aecrodynamic effects.

Solution
The acceleration vector of the car in the xy coordinate system shown is
a=gsinfi—gcospj] = X=gsinf and y=—gcosB. (1)

We set ¢t = 0 to be the time at which the car jumps off at the origin A. Hence,
y =0atz = 0. Also, at# = 0, the velocity components of the cars are

vx(0) = vgcos(x + B) and v,(0) = vgsin(a + B). 2

Hence, using the above considerations along with constant acceleration equations, the y coordinate of the car
as a function of time is given by

y = vo sin(o + B)t — %g(cos Bt 3)
Letting 7p denote the time at which the car lands at B, since ygp = 0, from Eq. (3) we have

_ 2vg sin(a + B)

gcospf @

vo sin(a + B)ip — %(g cos ,B)té =0 = 1

Next observing that the x component of the acceleration in the second of Eqs. (1) is also constant, using
constant acceleration equations, the x coordinate of the car as a function of time is given by

x = vgcos(x + B)t + %(g sin )12, (5)
Substituting the last of Egs. (4) into Eq. (5) and simplifying, we have

B 2v(2) sin(a + B)

=d
B gcosp

[cos(a + B) + tan B sin(a + B)], (6)

which can be solved for vy to obtain

d
vo = \/ gcosf 7

2sin(a + B)[cos(a + B) + tan B sin(a + B)]

Recalling that d = 150 ft, @ = 20°, B = 27°, and g = 32.2ft/s?, Eq. (7) can be evaluated to obtain

vo = 52.82 ft/s.
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Problem 2.100 i

The M777 lightweight 155 mm howitzer is a piece of artillery whose
rounds are ejected from the gun with a speed of 829 m/s. Assuming that
the gun is fired over a flat battlefield and ignoring aerodynamic effects,
determine (a) the elevation angle needed to achieve the maximum range,
(b) the maximum possible range of the gun, and (c¢) the time it would
take a projectile to cover the maximum range. Express the result for
the range as a percentage of the actual maximum range of this weapon,
which is 30 km for unassisted ammunition.

Photo credit: U.S. Army Photo

Solution

We will solve the problem using the xy coordinate system shown in the figure at the right. -

The x axis is assumed to lie on the ground. We assume that the projectile is launched at
t = 0 from the origin. The acceleration of the projectile is constant and has horizontal and
vertical components ¥ = 0 and j = —g, respectively. Then, letting 6 be the elevation angle 0
and vy the intial speed of the projectile, and using constant acceleration equations, the x and

y coordinates of the projectile are given by

o,

x = (vgcosf)t and y = (vosinf)r — %gtz. (1)
Denoting the time of flight by ¢, then y = 0 for # = 7. Hence, from the second of Egs. (1), we have
tr =2vpsinb/g. 2)
The range R is given by the value of x for ¢ = ¢¢. Substituting Eq. (2) into the first of Egs. (1), and using the
trigonometric identity 2 sin 6 cos 6 = sin 26, we have
R = (v3/g)sin26. 3)

Part (a). From Eq. (3), Rmax occurs when sin 260 = 1. This equation has infinitely many solutions for 6,
but the only meaningful solution is

20R,. = %rad = | Or, = %rad = 45°. 4)

Part (b). Substituting the last of Egs. (4) into Eq. (3), we have that Ry, is
Rmax = Ug/g- )

Recalling that vg = 829m/s and g = 9.81 m/s?, and expressing Ry« as a percentage of the actual range of
30 km, we can evaluate the above expression to obtain

Rax = 233.5% of the actual maximum range.

Part (¢). Denoting the time the projectile takes to cover Rp.x by £
0 = 0Og

we have that7g . is equal to ¢ for

max ’

Hence, substituting the last of Eqgs. (4) into Eq. (2), we have
IRys = V2vo/g. (6)

Recalling that vg = 829m/s and g = 9.81 m/s?, we can evaluate the above result to obtain

max *

tR,, = 119.5s.

This solutions manual, in any print or electronic form, remains the property of McGraw-Hill, Inc. It may be used and/or possessed only by permission June 25, 2012
of McGraw-Hill, and must be surrendered upon request of McGraw-Hill. Any duplication or distribution, either in print or electronic form, without the
permission of McGraw-Hill, is prohibited.



Dynamics 2e 149

Problem 2.101 i

You want to throw a rock from point O to hit the vertical advertising sl
sign AB, which is R = 30 ft away. You can throw a rock at the speed I

vo = 45 ft/s. The bottom of the sign is 8 ft off the ground and the sign - 141t
is 14 ft tall. Determine the range of angles at which the projectile can |

be thrown in order to hit the target, and compare this with the angle ro 4]

subtended by the target as seen from an observer at point O. Compare 0/"\0 Bt

your results with those found in Example 2.11.

X 30 ft 1

Solution

This problem can be solved as illustrated in Example 2.11 on p. 70 of the textbook. We recall Eq. (7) in
Example 2.11 on p. 70 of the textbook:

vg + \/vg' — g(gR? + 2yv?)
gR '

tan 0 =

ey

Observe that we are given all of the data needed to use the above equation. Namely, we have vy = 45ft/s,
g = 32.21t/s?, R = 30ft, so that substituting in the above equation y4 = 8ft and yp = 22 ft we have

6, = 30.43°,
=y =8t = 2
y=a {92 — 74.50°, @
6, = 56.84°,
=y =220t = 3
y=B {92 — 69.41°. ©)

Following the same logic as in Example 2.11, we obtain the two ranges of firing angles as

30.43° <0 <56.84° and 69.41° <6 < 74.50°.

The sizes of these intervals are, respectively,

A@l =26.41° and A@z = 5.087°.

The angle subtended by the target as seen from an observer at point O is Bl

22 8 - 141t
B =tan"! (%) —tan™! (%) = | p=2132°. “4) : Al

Unlike Example 2.11, the difference between the angle subtended by the target
and A6 or A6, is significant. In addition, we see that the value of Af; is much
closer to 8 than A6.

S

30 ft ‘
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Problem 2.102 i

Suppose that you can throw a projectile at a large enough vg so ¥
that it can hit a target a distance R downrange. Given that you
know vg and R, determine the general expressions for the two

distinct launch angles 6; and 6, that will allow the projectile to Vo
hit D. For v9 = 30m/s and R = 70 m, determine numerical /
values for 61 and 6,.
(> 16 ¥
of R D
Solution
Using the axes in the figure, the components of the acceleration of the projectile are X = 0 and y = —g,

where g is the acceleration due to gravity. Therefore, the acceleration of the projectile is constant and applying
the constant acceleration relation in Eq. (2.33) on p. 49 of the textbook, we have

x =x0+ (vocosB)t, and y = yo+ (vosinb)t — %gtz, (1)

where we have accounted for the fact that the projectile is at O for ¢ = 0, and where we have denoted by
0 the orientation of the initial velocity of the projectile. For x = R we have that y = 0. Enforcing this
condition, Egs. (1) give

R = x9+ (vocosb)tp, and 0= yo+ (vosinb)ip — %gtlz), 2)

where ?p is the time the projectile takes to go from O to D. Eliminating ¢p from Egs. (2), with xo = 0 and

yo = 0, we have
gR —2v3sinfcosf =0 = sin(20) = gR/v3, (3)

where, in writing the second of Egs. (3), we have used the trigonometric identity sin(26) = 2sin 6 cos . As
long as the values of R and vg are such that gR/ v(z) < 1, and observing that the physically acceptable values
of 0 lie in the range 0 < 6 < 90°, we have that the last of Egs. (3) admits the following two solutions:

01 = sin (gR/v]) and 6 = 90° — L sin~!(gR/v}).

For the given values of R = 70 m and vg = 30m/s, and recalling that g = 9.81 m/s?, we can evaluate 6,
and 6, to obtain

01 =24.86° and 6, = 65.14°.
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Problem 2.103 i

An alpine ski jumper can fly distances in excess of 100 m by using
his or her body and skis as a “wing” and therefore, taking advantage
of aerodynamic effects. With this in mind and assuming that a
ski jumper could survive the jump, determine the distance the
jumper could “fly” without aerodynamic effects, i.e., if the jumper
were in free fall after clearing the ramp. For the purpose of your
calculation, use the following typical data: @ = 11° (slope of
ramp at takeoff point A), § = 36° (average slope of the hill),
vog = 86km/h (speed at A), 1 = 3 m (height of takeoff point with
respect to the hill). Finally, for simplicity, let the jump distance be
the distance between the takeoff point A and the landing point B.

Solution

We will solve the problem using a Cartesian coordinate system with origin at A and
axes x and y oriented such that the x axis is parallel to the hill (see figure at the right).
In the chosen coordinate system, the velocity of the jumper at A4 is

U4 = vgcos(f —a)i + vosin(f — ) J. (1)

Once airborne, the acceleration of the jumper is
a=gsinfi—gcosp]. )

Using constant acceleration equations, we then have that
x =vgcos(f —a)t + %(g sinB)t? and y = vgsin(f — &)t — %(g cos B)12, 3)

where we have set # = 0 to be the time at which the jumper takes off at A, and where we have accounted
for the fact that, at t = 0, the velocity of the jumper is that in Eq. (1). Letting 3 denote the time at which
the jumper lands at B, we can replace ¢ with 7p in the second of Egs. (3) and enforce the condition that
yp = —hcos . This gives

—hcosfB = vgsin(f —a)tg — %(g cos ,3)t123

vosin(B —a) £ \/v(z) sin?(B — a) + 2hg cos? B
gcospf '

The solution for tp corresponding to the minus sign in front of the square root is negative. Hence, the
only acceptable value for 7p is that with the + sign. Recalling that v9 = 86 km/h = 86(1000/3600) m/s,
B =36°,a=11°,h =3m,and g = 9.81 m/s?, we then have

= tp= “4)

tg = 2.765s. ©)

Using the data listed right above Eq. (5) and substituting ¢p into the first of Egs. (3), we have xp = 81.92m.
Then, recalling that yp = —h cos f = —2.427 m, we have that the distance between points A and B can be

calculated using the Pythagorean theorem, i.e., d4p = ,/x%; + ylzg which gives

dqap = 81.96m. (6)
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Problem 2.104 i

A soccer player practices kicking a ball from A directly into the goal (i.e., the ball does not bounce first)
while clearing a 6 ft tall fixed barrier.

Determine the minimum speed that the player needs to give the ball to accomplish the task. Hint:
Consider the equation for the projectile’s trajectory of the form y = Co + C1x + Cox2, with the y axis
parallel to the direction of gravity, for the case in which the ball reaches the goal at its base. Solve this
equation for the initial speed vg as a function of the initial angle 6, and finally find (vg)min as you learned
in calculus. Don’t forget to check whether or not the ball clears the barrier.

80 ft

58 ft
4?\;14 6t Sft

Solution

The coordinate system shown at the right has origin at A4, the position of the ball
att = 0. The trajectory of the ball has the form y = Co 4+ C1x + Cpx?2. To find
Co, C1 and C, we proceed as follows. First, we observe that y = 0 for x = 0,
which implies that Cy = 0. Second, recall that the velocity is always tangent to the
trajectory. Therefore, given that 8 is the orientation of the velocity at ¢ = 0, the
slope of the trajectory at x = 0 must be equal to tan 3, i.e., C1 = (dy/dx)x=¢ = tan . We know that the
trajectory has the form y = (tan 8)x + C»x2. To find Cy, we now recall that j = —g. Using the chain rule
to differentiate the trajectory with respect to time, we have

y = (tan f)x +2Coxx = § = (tan B)X + 2Crx% + 2CHx¥. (1)

Since ¥ = 0, x is constant and therefore equal to its initial value, i.e., X = vgcos . Substituting this
condition into the last of Egs. (1) along with j = —g, we have

—g =2C(vocos B)> = Cp = —gsec® B/(2v). )
In summary, the trajectory of the ball is given by

y = (tan f)x — [g sec® B/ (2v5)]x>. 3)

Let xg = 80ft and yg = 0 be the coordinates of the base of the goal. For the ball to land at the base of the
goal, we have

0 = (tan B)xg — [g sec? ﬂ/(2v3)]xé = Vo = v/ gxg/sin2p. )
Minimizing vo with respect to 8 requires making the denominator of the fraction under the square root of the

last of Eqgs. (4) as large as possible. The maximum value of the sine function is 1, which is achieved when
28 = (7 /2) rad. Hence, we have

ﬂ = (7[/4) rad = (UO)min = V8XG = (UO)min = 50.75 ft/S, ©)

where we have used the fact that g = 32.2ft/s? and xg = 80ft. Substituting 8 = (7/4)rad and vy =
(v0)min into Eq. (3), and computing the value of y corresponding to x = 58 ft (which is the x coordinate of

the barrier), we have
y(58ft) = 15.94ft > 6ft,

that is, the ball clears the obstacle in front of the goal.

This solutions manual, in any print or electronic form, remains the property of McGraw-Hill, Inc. It may be used and/or possessed only by permission June 25, 2012
of McGraw-Hill, and must be surrendered upon request of McGraw-Hill. Any duplication or distribution, either in print or electronic form, without the
permission of McGraw-Hill, is prohibited.



Dynamics 2e 153
Problem 2.105 i

A soccer player practices kicking a ball from A directly into the goal (i.e., the ball does not bounce first)
while clearing a 6 ft tall fixed barrier.

Find the initial speed and angle that allow the ball to barely clear the barrier while barely reaching
the goal at its base. Hint: A projectile’s trajectory can be given the form y = Cjx — Cox?2, where the
coefficients C; and C; can be found by forcing the parabola to go through two given points.

80 ft

58 ft
K u N lefc  8ft

Solution
As explained in the hint, the trajectory can be given the form

y = Cix — Cox?, (1)

where, referring to the figure at the right, it is understood that the origin of the :
coordinate system used is at point A. Let xp = 58ft and yp = 6ft be the coordlnates of the top of the
barrier. Also, let xg = 80ft and yg = 0 be the coordinates of the base of the goal. The ball must barely
clear the barrier and then it must barely reach the goal. Hence, we have

yp = Ci1xp — szlzg and 0= Cixg — szé. )
The above equations form a system of two equations in the two unknowns C; and C, whose solution is

XG)YB and C, = VB

=GB B
' Xp(xg — xB) xp(xG — xB)

3)
We now need to relate the coefficients C; and C; to the initial speed and angle of the ball. To do so, we begin
with noticing that since the velocity is tangent to the trajectory, and since the initial orientation of the velocity
is the angle S, the slope of the trajectory at x = 0 must be equal to tan 8. That is

(dy/dx)x—o = Ci =tanf = f= tan_l[&] = | p=2062 @)
xg(xG — xB)

where we have used the fact that xg = 80ft, yp = 6ft, and xp = 58 ft. Next we recall that j = —g. Using
the chain rule to differentiate Eq. (1) with respect to time, we have

y =C1x —2Cxx = § = C1¥ —2C%% — 2Cox¥. (5)

We now observe that we have X = 0. This also implies that x is constant and therefore equal to its initial
value, i.e., X = vg cos B. Enforcing these conditions, along with j = —g, in the last of Egs. (5), we have

—g = —2Cy(vocos B)> = vo = /g/(2C2) sec B. (6)

Now that 8 is known, recalling again that xg = 80ft, yp = 6ft, and xp = 58 ft and using the second of
Eqgs. (3) to evaluate C,, we can evaluate vg to obtain

vo = 62.52ft/s,

where we have also used the fact that g = 32.2 ft/s?.
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Problem 2.106 i

In a circus act a tiger is required to jump from point A to point C so that it goes through the ring of fire at
B. Hint: A projectile’s trajectory can be given the form y = Cyx — Cpx2, where the coefficients C; and
C5 can be found by forcing the parabola to go through two given points.

Determine the tiger’s initial velocity if the ring of fire is placed at a distance d = 5.5m from A.
Furthermore, determine the slope of the tiger’s trajectory as the tiger goes through the ring of fire.

By
(WL g
\§}®§ 3m
i C
A 0.5 mi»
o d ]
9m
Solution
Referring to the figure at the right, we adopt a Cartesian coordi- ¥ B2
nate system with origin at A. The trajectory of the tiger is of the \ ,»{ T
form: v J% .
m
y = Clx — C2)C2. (1) /<3 ! { C
) , A . 0.5 [ ¥
We find C; and C, by observing that the tiger passes through 7 ‘ !
point B of coordinates (xg, yg) = (5.5,3) m, and lands at C 9m
of coordinates (xc, yc) = (9,0.5) m. Using Eq. (1) to enforce
these conditions, we have
yg = Cixg —Coxg and yc = Crxc — C2x¢, 2)
which is a system of two equations in the two unknowns C; and C, whose solution is
XGYB —XpYC XCYB — XBYC
C 1 = and C2 = . (3)
xcxg(xc — XxB) xcXxp(xc — xB)

We now need to relate the C; and C; to the initial speed and angle of the tiger. To do so, we notice that since
the velocity is tangent to the trajectory, and since the initial orientation of the velocity is the angle 8, the
slope of the trajectory at x = 0 must be equal to tan 8. That is

2 2
XcYB —XgYC
xcxp(xc — xB)

(dy/dx)x=0 =C; =tanf = B = tan_1|: ] = 52.75°, 4)

where we have used the fact that (xg, yp) = (5.5,3) m and (xc, yc) = (9,0.5) m. Next we recall that

y = —g. Using the chain rule to differentiate Eq. (1) with respect to time, we have
y=C1x —2Cxx = j = C1i—2C%% —2Cxk. (5)
We now observe that we have X = 0. This also implies that X is constant and therefore equal to its initial
value, i.e., X = vg cos 8. Enforcing these conditions, along with j = —g, the last of Egs. (5) gives
—g = —-2C3(vgcos B)> = o= \/MSCC,B = vo=9.781m/s, (6)
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where, again recalling that (xg, yp) = (5.5,3) m and (xc, y¢) = (9, 0.5) m, we have evaluated v by first
evaluating C, in the last of Egs. (3) and then the angle § in the last of Egs. (4). Now that vy and § are known,
observing that Uiyia = vo cos 81 + vg sin B ], we can evaluate Ujyja to obtain

6initial = (5.920f + 7.786 j) m/s, T

1

The slope of the trajectory is obtained by differentiating Eq. (1) with respect to x:
dy/dx = C; —2Cax. @)

Recalling that (xg, yg) = (5.5,3)m and (xc, yc) = (9,0.5) m, and evaluating C; and C, in Egs. (3), we
can evaluate to slope at x = xp to obtain

d'x X=XB
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8 Problem 2.107 &2

In a circus act a tiger is required to jump from point A to point C so that it goes through the ring of fire at
B. Hint: A projectile’s trajectory can be given the form y = Cyx — Cpx2, where the coefficients C; and
C, can be found by forcing the parabola to go through two given points.

Determine the tiger’s initial velocity, as well as the distance d so that the slope of the tiger’s trajectory
as the tiger goes through the ring of fire is completely horizontal.

Bg
0T
Eﬂ”&@& | 3m
i C
A 0.5 mf [
.4
. 9m
Solution
Referring to the figure at the right, we will be using a Cartesian y B
coordinate system with origin at A. The trajectory of the tiger is \ ?{ 3
S [¥]
v £
y=Cix— Crx2, (D) /O< ' 3m c
A P . 0.5 mTL X
where C and C; are constants to be determined by making sure d ‘ !
that the tiger passes through point B of coordinates (xg, yg) = 9m
(d, 3 m) with zero slope, and then lands on point C of coordi-
nates (xc, yc) = (9m,0.5m). Using Eq. (1) to enforce these
conditions, we have
yB = C1xp — Cax% = 3m = C1d — C2d?, 2)
d
Rl I = 0=Cy—2dC, 3)
dx x=d
yc = Cixc — Cax} = 0.5m = (9m)C; — (81.00m?)C». 4)

The last of Egs. (2)—(4) form a system of three equations in the three unknowns d, C1, and C,, which can be
solved numerically. For example we have used Mathematica with the following code

NSolve[{3. =cCld-c2d?, 0. =Cl1-2C2d, 0.5=C19.-C281.}, {C1, C2, d}]
which yields the following two solutions:

C1 = 0.05809 C, = 0.0002812m™" d =103.3m, (5)
C, =1275 C> =0.1355m™! d = 4.705m. (6)

Because the first solution implies that d > x¢, the solution in question is not acceptable and therefore we
have that the only acceptable solution is

C1 =1275, C, =0.1355m™ !, d =4.705m. )
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Now we turn to the determination of the initial velocity of the tiger. To do so, we notice that since the velocity
is tangent to the trajectory, and since the initial orientation of the velocity is the angle §, the slope of the
trajectory at x = 0 must be equal to tan 8. That is

(dy/dx)x=o =C; =tanf = B =tan 1 (C;) = 51.89°, (8)

where we have used the numerical solution for C;. Next we recall that j = —g. Differentiating Eq. (1) with
respect to time, we have

y = C1x —2Cxx = j = C1i—2C2%% —2Cxk. 9)

We now observe that we have X = 0. This also implies that x is constant and therefore equal to its initial
value, i.e., X = vg cos 8. Enforcing these conditions, along with j = —g, the last of Egs. (9) gives

—g = —2Cy(vgcos B)> = wo=+g/(2Ca)secf = vo=9.749m/s, (10)

where we have used the fact that g = 9.81 m/ s2, and, again, we have used the numerical solution for C, and
B. Now that vg and 8 are known, observing that Ujyia = Vo cos 1 + vg sin B ], we can evaluate Upiga to
obtain

17initial = (6.0172\ + 7.671 f) l’l’l/S. 5
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Problem 2.108 i

A jaguar A leaps from O at speed vo and angle 8 relative to the incline to attack a panther B at C.
Determine an expression for the maximum perpendicular height hy,x above the incline achieved by the
leaping jaguar, given that the angle of the incline is 6.

Vo

parabolic
trajectory of A

Solution

We will use a Cartesian coordinate system aligned with the incline
as shown at the right. The acceleration vector is then given by

a=gsinfi—gcosfj = a,=—gcosb.

Applying the constant acceleration equation in the y direction, we
have

2 2
vy = vOy +2ay(y_y0) (1)
At the hn,x position the y component of velocity must be equal to
zero. Enforcing this condition, we have

0 = (vg sin B)? — 2g cos O (hmax — 0). 2)

Solving Eq. (2) for hyax, we obtain

2 S
I vy sin”
max — S~ _
2g cos
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Problem 2.109 |

parabolic

The jaguar A leaps from O at speed vy and angle B relative to Vo
) 2 trajectory of A

the incline to intercept the panther B at C. The distance along
the incline from O to C is R, and the angle of the incline with %
respect to the horizontal is 6.
Determine an expression for vg as a function of 8 for A to
be able to get from O to C.

Solution

Using the xy coordinate system shown at the right, we write the
following two constant acceleration equations describing the x and
y coordinates of jaguar A as a function of time:

X = Xo + VoxI, (1)

Y = Yo + voyt — 2gt?, )

where it is understood that the jaguar leaps at time ¢ = 0, and
where (xg, yo) are the coordinates of the point from which the
jaguar leaps. Since the jaguar leaps from the origin of the chosen
coordinate system, letting ¢ denote the time at which jaguar A arrives at C, we have

Rcos 6 = [vgcos(B — 0)]tc, 3)
—Rsind = [vgsin(B — 0)]tc — 2gt. 4)
where R is distance from O to C. Eliminating ¢ from Egs. (3) and (4) gives

o gR  cos?6
sin @ = cos @ tan(B — 9) 2v(2) o2 —0) 5)

Multiplying all terms in the above equation by cos(8 — 6), we have

R 20
— sin 6 cos(B — ) = cos 0 sin(B — ) — 575%
gR  cos?0 gR  cos? 0

= sinfcos(B —60) + cosOsin(f —0) = = sinf = (6)

mcos(ﬂ —0) Ecos(ﬁ —6)’

where we have used the identity sin(A + B) = sin A cos B + cos A sin B. Solving the last of Egs. (6) for vy,

we have
gR cos 6
Vg = —_— .
2 \/sinBcos(B —0)
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E8 Problem 2.110 =2

The jaguar A leaps from O at speed vy and angle § relative to Vo
the incline to intercept the panther B at C. The distance along
the incline from O to C is R, and the angle of the incline with
respect to the horizontal is 6.

Derive vg as a function of § to leap a given distance R
along with the optimal value of launch angle 8, i.e., the value
of B necessary to leap a given distance R with the minimum
vo. Then plot vg as a function of B for g = 9.81m/s>, .
R = 7m, and 0 = 25°, and find a numerical value of the C
optimal 8 and the corresponding value of vg for the given set
of parameters.

parabolic
trajectory of A

Solution

Using the xy coordinate system shown at the right, we write the
following two constant acceleration equations describing the x and
y coordinates of jaguar A as a function of time:

X = X0 + Voxl, (D
Y = yo + voyt — 3817, 2)
where it is understood that the jaguar leaps at time t = 0, and
where (xg, yo) are the coordinates of the point from which of the
jaguar leaps. Since the jaguar leaps from the origin of the chosen
coordinate system, letting #¢c denote the time at which jaguar A arrives at C, we have

Rcos @ = [vg cos(B — 0)]tc, (3)
—Rsinf = [vgsin(B — 0)]tc — %gté, 4
where R is distance from O to C. Eliminating ¢ from Egs. (3) and (4) gives
) gR cosZ @
—sinf = 0t —-)—=—. 5
sin cos 6 tan(B ) 20(2) co2(F—0) 5)
Multiplying all terms in the above equation by cos(f8 — 6), we have
. . gR cos?0
—sind —0) = ) —0)— ———
sinf cos(B — 0) = cos O sin(B — 0) 2v§ cos(B—0)
R 20 R 20
= sinfcos(f —0) + cosBOsin(f —0) = & cos = sinf = & cos (6)

mcos(ﬂ —0) %cos(ﬂ —0)’

where we have used the identity sin(4 4+ B) = sin A cos B + cos A sin B. Solving the last of Egs. (6) for vy,

we have
[gR cos 6
= ,/2= . 7
v 2 /sinBcos(B — 0) @

Recalling that g = 9.81 m/s?, R = 7m, and 6 = 25°, we can plot the above function with any appropriate
mathematical software. The plot shown below was obtained using Mathematica with the following code:
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Parameters = {g-> 9.81, 6 » 25. Degree, R>7.};

gR Cos|[6]
Plot[ —_ /. Parameters, {3, 0, 2}, Frame - True,

2 '\/Sin[B] Cos [ -06]

GridLines - Automatic, AspectRatio -» 1, FrameLabel » {"8 (rad)", "v, (m/s) "}]

20
=15
S
10
‘ \/ )
00 05 10 15 20
B (rad)

We can find the optimal value of § to reach a distance of R = 7 m by differentiating vy with respect to
and setting it equal to zero. Recalling that 6 = 25°, this gives

dvo _ 1 /gR ecosﬁcos(ﬂ—9)—sinﬁsin(ﬂ—9) .
dg 2V 2 o8 [sin B cos(B — 6)]3/2 N
= cosfBcos(B —25°) —sinBsin(f —25°) = 0. (8)

The above equation is a transcendental equation that we will solve numerically. Again, this can be done with
any appropriate mathematical software. We have used Mathematica with the following code

FindRoot[Cos[] Cos[f3 - 25. Degree] - Sin[f3] Sin[3 - 25. Degree] == 0, {3, 25. Degree}]

Note that the use of root finding algorithms generally requires the user to provide a guess of the value of the
solution. As can be seen in the above code (see information provided at the end of the code line), we have
provided a guess of 25°. The outcome of this calculation gives

:Boptimal = 57.52°.

Then, using the above value of B along with g = 9.81m/s?, R = 7m, and # = 25°, from Eq. (7) we have
that the corresponding value of vy is

(v0)optimal = 6.297m/s.
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Problem 2.111 |

A stomp rocket is a toy consisting of a hose connected to a blast pad (i.e., an air bladder) at one end and to
a short pipe mounted on a tripod at the other end. A rocket with a hollow body is mounted onto the pipe
and is propelled into the air by stomping on the blast pad.

If the rocket can be imparted an initial speed vg = 120ft/s, and if the rocket’s landing spot at B is
at the same elevation as the launch point, i.e., # = 0 ft, neglect air resistance and determine the rocket’s
launch angle 6 such that the rocket achieves the maximum possible range. In addition, compute R, the
rocket’s maximum range, and ¢y, the corresponding flight time.

Solution

Referring to the figure at the right, we will use an xy coordinate system
with origin at the launch point of the rocket. Let 6 be the elevation
angle and vy = 120 ft/s be the intial speed. The acceleration of the
rocket is equal to —g in the y direction and zero in the x direction.
Hence, we can use the constant acceleration equation s = vof 4+ %actz, — X
to express the x and y coordinates of the rocket as a function of time. J R .

This gives

N
N
S
S

x = (vgcos H)t, €))
y = (vosin )t — %gtz. 2)
Since in this problem point B lies on the line y = 0, the time taken by the rocket to arrive at B can be
obtained by equating Eq. (2) to zero. This gives
2vg sin 6
Ip=——". 3)
4
Substituting Eq. (3) in place of ¢ into Eq. (1), using the trigonometric identity 2 sin 6 cos § = sin 26, and
observing that xpg = R, we get

vg sin 26
R=-0"2 @)
g
where R is the range of the rocket. The maximum value of R occurs when sin26 = 1, i.e.,
20 = %rad = |6g. = %rad = 45.00°. )

Substituting O, = 45.00° into Eq. (4) with g = 32.2ft/s? gives

Rmax = 447.21t.

Observing that the time of flight is the same as 7 given in Eq. (3), for 6 = 0g ., we have 1y =
2vg sin Og, . /g, which can be evaluated to obtain

tr =5.270s.
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Problem 2.1121

A stomp rocket is a toy consisting of a hose connected to a blast pad (i.e., an air bladder) at one end and to
a short pipe mounted on a tripod at the other end. A rocket with a hollow body is mounted onto the pipe
and is propelled into the air by stomping on the blast pad.

Assuming the rocket can be given an initial speed vg = 120 ft/s, the rocket’s landing spot at B is 10 ft
higher than the launch point, i.e., # = 10 ft, and neglecting air resistance, find the rocket’s launch angle 8
such that the rocket achieves the maximum possible range. In addition, as part of the solution, compute the
corresponding maximum range and flight time. To do this:

(a) Determine the range R as a function of time.

(b) Take the expression for R found in (a), square it, and then differentiate it with respect to time to find
the flight time that corresponds to the maximum range, and then find that maximum range.

(c) Use the time found in (b) to then find the angle required to achieve the maximum range.

B

Solution

Referring to the figure on the right, we will use an xy coordinate B
system with origin at the launch point of the rocket. Let 6 be the
elevation angle and vo = 120 ft/s be the intial speed. The acceleration / h
of the rocket is equal to —g in the y direction and zero in the x U

direction. Hence, we can use the constant acceleration equation s = —=
vot + %actz, to express the x and y coordinates of the rocket as a R
function of time. This gives

x = (vgcos O)t, (1)
y = (vosin0)r — %gtz. 2)

Letting 77 denote the time of flight, for # = 75 the rocket is at B, so that we must have

R
R = vg(cos 0)tr = cosf = @. 3

2
2h+gtf

h = vo(sin0)ty — %gt} = sinf = 4)

2votf

Next, recalling that sin? @ 4 cos2 6 = 1, using the last of Eqgs. (3) and (4), we have

2h+gtj% 2 ( R )2
——L) + (=) =1 5)
2v0tf Voly

which, for convenience, we view as an equation for R? whose solution is

R? = v3i? — (h + 1g13)”. ()
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Now we maximize R with respect to ¢7. Since the value of # for which R is maximum coincides with the
value of 77 for which R? is maximum, we can find the value of ¢ ¢ in question by differentiating Eq. (6) with
respect to 77 and then setting the results to 0. This gives

dR2 1 .2 2 2
@i =0=2votfy, —2(h+ 3817, V(8lrr,) = Il = ?(v0 —hg). (7

Recalling that g = 32.2ft/s?, vg = 120ft/s, and & = 10 ft, we can evaluate lfg,. toobtain

tfe. =5211s.

To find Ryax, we substitute the expression of R from the last of Egs. (7) into Eq. (6) and then we take a
square root. To find the corresponding value of 6 we substitute the value of 77,  from the last of Egs. (7)
into the last of Eqs. (4) and solve for #. Recalling that we have g = 32.2ft/s?, vo = 120ft/s, h = 10ft,
these operations yield the following results:

Rmax = 437.1ft and 6O = 45.66°.

max
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Problem 2.113 |

A trebuchet releases a rock with mass m = 50 kg at the point O. The -
initial velocity of the projectile is ¥9 = (457 + 30 J) m/s. If one
were to model the effects of air resistance via a drag force directly
proportional to the projectile’s velocity, the resulting accelerations
in the x and y directions would be ¥ = —(n/m)x and j = —g —
(n/m)y, respectively, where g is the acceleration of gravity and
n = 0.64kg/s is a viscous drag coefficient. Find an expression for
the trajectory of the projectile.

h=4.5m

Solution

We can integrate the x and the y components of acceleration to obtain the x and y displacement as a function

of time. The problem states that ¥ = —(n/m)x. Then, recalling that X = ‘Zi;‘ , We can write

dx dx *oodx d
R TN ar _ —/ Dar = k= (o)xem, (1)
m dt m X (wo)x X o m
where (vg)x is the x component of the velocity of the projectile at 1 = 0. Next, we recall that X = dx/dt.
So, using the last of Egs. (1) we have

dx
T (vo)xe_%t = dx = (vo)xe_%t dt
X t m(v
= / dxz(vo)x/ eTmldt = xzﬁ(l—e_%t). 2)
0 0 n
We can now repeat these steps starting with the acceleration in the y direction. Doing so, we have

/y /dt - y= g(—it—1)+(v0)e—%f 3)
(wo)y & T (n/ m) y n Y

where (vo)y is the y component of the velocity of the projectile at # = 0. Integrating Eq. (3) again with
respect to time, we obtain

2
_ (m_f _mgt | ﬂ(vo)y) _ (M n _(vo)y) B, @
n n n 77 n
From Eq. (2) we find
—%t _ _ nx _ _ﬂ _ nx
°n (1 m(vo>x) = =y (1 m(vo)x)' ®

Substituting the last of Egs. (5) into Eq. (4) and recalling that m = 50kg, (vo)x = 45m/s, (vo)y = 30m/s
and n = 0.64kg/s, we obtain

y = [59.88x10% In (1 —2.844x 10 *x) + 17.70x | m. (6)
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Problem 2.114 |

Continue Prob. 2.113 and, for the case where n = 0.64kg/s, deter- -

mine the maximum height from the ground reached by the projectile ~ ok
and the time it takes to achieve it. Compare the result with what you - e ouke
would obtain in the absence of air resistance.
X
h=45m

Solution

When the projectile is at its maximum height, the y component of its velocity must be zero. Therefore, we
first need to find y as a function of time. Using = dy/dt and j = —g — (n/m)y, we obtain

dy . y m ANk
— =—[g+ (n/m)y] = —[ / dt = ——In(g+—y =t
dt voy g+(n/m)y n ( m )v0y
_ n _ Stmd Y _
= In (g+ y) 1n(g+ voy) nt/m = In <g+n%voy) =—nt/m

= Ly= (g + iUOy) eMm_g = j= (@ + vOy) et/m I8
m m n n
where we have used 79 = 0 and have let the y component of the initial velocity be vg,.
Now that we have an expression for y (), we again observe that the maximum height is reached when
y = 0. Letting Hp,.x denote the maximum height achieved by the projectile and #,,x the time at which this
height is achieved, setting the last of Egs. (1) to zero, we obtain

n n mg + Nvoy

= Imax = m In (w) = tmax = 3.000s, 2)
n mg

where we have used m = 50kg, g = 9.81m/s?, vg, = 30m/s, and n = 0.64kg/s to obtain the numerical
result.

The maximum height in the presence of air resistance can be calculated as Hiyax = Ymax + /1, Where £ is
given as 4.5m and ymax is the value of y when ¢ = fi,x. Therefore, we now need to find y(¢) by integrating
Eq. (1) one more time using

d y t
y:_y:(@_,_vo) —ne/m _ T8, / dyZ/ [(%+v0y)e_”t/m—%} dt
dt n n 0 n

= y=-= (% + vOy) (emmm—1) - %r, 3)
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where we have used yo = 0 and tg = 0. Substituting ¢t = nx = 3.000s from Eq. (2), m = 50kg,
g =9.81m/s?, voy = 30m/s, and n = 0.64kg/s into Eq. (3), we obtain yy.x = 44.71 m. Therefore, Hax
is

Hmax = Ymax + h=4921m = Hpax = 49.21 m,

where & = 4.5m. In the absence of air resistance, the maximum height is given by (Hmax)noair =
(¥max)no air + /1, where (¥max)no air €an be calculated by letting y = 0 in the projectile motion equations with
constant gravity. Therefore,

<2
. . Yy
y2 = y(% - 2g(ymax)no air =0 = (Ymax)no air — i = 45.87m, “)

where we have used the fact that yo = 0, yo = 30m/s, and g = 9.81 m/s2. Hence, the maximum height in
the absence of air resistance (Hmax )no air 1S given by

(Hmax)no air = ())max)no air +h =5037m, ©)

where i = 4.5 m. Therefore, the percent increase in height with no air resistance is

) L i ) , 50.37 —49.21
percent increase in height with no air resistance = 1931 x 100%

= percent increase in height with no air resistance = 2.363%.
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E8 Problem 2.115 2

Continue Prob. 2.113 and, for the case where n = 0.64 kg/s, deter- -

mine #;7 and xj, the value of ¢, and the x position corresponding to ~ ok
the projectile’s impact with the ground. - meouke
X
h=45m

Solution

We begin by working part of the solution to Prob. 2.113. Specifically, we can integrate the x and the y
components of acceleration to get the x and y displacement as a function of time. The problem states that

X = —(n/m)x. Then, recalling that X = ‘2’; , We can write
d d *di g
U L T N lz—/ Dar = i=@o)e m (1)
m dt m X (wo)x X o m

where (vg)x is the velocity component of the projectile. Integrating Eq. (1) again with respect to time, we

obtain . ,

/ dx = (vo)x/ eTmldt = x= ox0 (1 —e_%t). 2

0 0 n
Proceeding similarly to obtain the expression of y as a function of time, we have

/y / dt = y=— ( “ml 1) + (vo)ye_%’. 3)
(vo)y & T (77/ m) y
Integrating Eq. (3) again with respect to time, we obtain
m?g  mgt m m?g m —1Iy
y= (B8 gy, ) = (B + 2oy ) em. )
n n n n n
Next, from Eq. (2) we find
e‘git:(l— nx ) = z=—ﬂln(1— nr ) )
m(vo)x U m(vo)x

Substituting the last of Egs. (5) into Eq. (4), we have

_|mg _g _ m Y - nx
y_[n e 1(1 m(vo)x)Jrn(vO)y} (772 (UO)y)( m(vo)x)'

To find the time of impact #; and the location x; of the impact we observe that the impact is characterized
by the condition y = —h = —4.5m. Hence we can use a numerical root finding method to find the value
of ¢ in Eq. (4) for which the condition y = —# is satisfied. Similarly, we can use a numerical root finding

~

6)
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method to find the the value of x in Eq. (6) for which the condition y = —# is satisfied. Because the
majority of root finding methods require us to provide a guess of the solution, before using any such methods,
we proceed to plot y(¢) as given in Eq. (4) and y(x) as given in Eq. (6). Recalling that we are given
m = 50kg, (vo)x = 45m/s, (vo)y = 30m/s and n = 0.64kg/s, the plots shown below were obtained
using Mathematica with the following code:

Parameters = {m - 50., g—-»9.81, h»4.5, vOx > 45., v0y»>30., n->0.64};

m? g mgt m m? g m _En
yt = - + — vOoy| - + —vly|e m ;
n? n n n? n
m?g m?g nx m m?g m nx
YX = + Log[l— ]+—v0y - + —vO0y (1— ];
n? n? mvO0x n n? n mvO0x

Plot [yt /. Parameters, {t, 0, 7}, Frame -» True, GridLines -» Automatic,
FrameLabel -» {"t (s)", "y (m)"}, AspectRatio - 1]
Plot[yx /. Parameters, {x, 0, 300}, Frame -» True, GridLines - Automatic,

FrameLabel -» {"x (m)", "y (m)"}, AspectRatio -» 1]

which gives

40 40

" /o
-10 \\
N \

01 2 3 4 5 6 17 0 50 100 150 200 250 300
t(s) X (m)

y (m)
y (m)

From the above two plots, we see that f; is close to 6 s and xy is close to 250 m. Hence, we will use the
values just listed as guesses in an appropriate root finding numerical method to find more accurate values to
the quantities #;7 and x;. For example, this can be done using Mathematica with the following code:

Parameters = {m - 50., g-»9.81, h»4.5, vOx-»>45., v0y-»>30., n->0.64};

m’g mgt m m’g m _xn
yt= | — - + — vOoy| - + —vly|le m ;
n? n n n? n
m?g m?g nx m m?g m nx
YX = + Log[l— ]+—v0y - + —vO0y (1— );
n? n? m vO0x n n? n m v0x

FindRoot[yt == -h /. Parameters, {t, 6}]
FindRoot[yx == -h /. Parameters, {x, 250}]

Evaluating the outcome of the above code, we have

ty =6.189s and x5 = 267.7m.
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E8 Problem 2.116 I

With reference to Probs. 2.113 and 2.115, assume that an experiment -
is conducted so that the measured value of x; is 10% smaller than
what is predicted in the absence of viscous drag. Find the value of
n that would be required for the theory in Prob. 2.113 to match the
experiment.

h=45m

Solution

For the case of no air drag, the time of impact can be calculated by equating the constant acceleration equation
for the y coordinate of the projectile to —h. Letting #; denote the time of impact, we would have

y = (oyt —2gt*> = (vo)yti —3gtf =—h = gif —2(vo)yti —2h =0

= t=(~1/g |:(U0)y £ Vg, + 2gh:| = 17 =6.263s, (1)

where we have discarded the solution with the negative square root because it yields a negative time value,
and where we have used the following numerical data: (vo)y = 30m/s, g = 9.81m/s?, and h = 4.5m.
The impact distance x; for the case of no air drag can be calculated again by using constant acceleration
equations (with a, = 0). This gives

x = (vo)xt = x7 = (vo)xtr =281.8m, 2)

where (vo)x = 45m/s and we used the expression for #; in Eq. (1). The problem statement indicates that the
x position of the rock in the presence of air drag is: (x7)a.r = 0.9x7, i.e.,

(X7)air = 253.6m. 3)

To be able to use these results, we first determine the trajectory of the projectile in the presence of air
resistance. We begin by working part of the solution to Prob. 2.113. Specifically, we can integrate the x
and the y components of acceleration to get the x and y displacements as a function of time. Starting with
the given acceleration components, using X = ‘fi—’t‘, we can integrate the expression for the x component of
acceleration to get X.

*odx ! g
| G L = e )
(vo)x X o m
where (vg)x is the velocity component of the projectile. Integrating Eq. (4) with respect to time, we obtain
x t
_n muv _n
/ dx=(vo)x[e mtdt = x= xo(l—e mt). 5
0 0 n
Using y = ‘2—3;, we can integrate the expression for the y component of acceleration to get y.
y

8 ( _ny —_ny

/ /dt = y——( m—l)—l—(vo)yem. (6)
(vo)y & + (n/ m) y n
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Integrating Eq. (6) with respect to time, we obtain
m?g  mgt m m’g m — Iy
y=\—7m "+ -Woy)—|—= + —o)y)e m. @)
n n n n n
Next, from Eq. (5) we find

e (1 (o
¢ ‘(1 m(vo)x) = ! nln(l m(vo)x)‘ ®

Substituting the last of Egs. (8) into Eq. (7), we have
m?g  m?g nx m m?g m nx
y = ——i——ln(l——)—l——(vo)i|—(—+—(vo))(1——). C))
[ 2P mwo) )~ m U R m(vo)x

We now observe that at impact the x and y coordinates of the rock are (xj).ir and —h. By enforcing
this condition in Eq. (9) we obtain an equation in 7 that can be solved numerically. Because most root
finding algorithms require the user to supply a guess of the solution, we begin by plotting the value of y
for x = (x7)ar = 253.6m (see Eq. (3)) as a function of 1. The plot presented below was obtained in
Mathematica using the following code:

Parameters = {m - 50., g-»9.81, h» 4.5, vOx » 45., vO0y » 30., xAir » 253.6};

nx
- )
n mvO0x

Plot[yx /. x» xAir /. Parameters, {n, 0.1, 2}, Frame -» True, GridLines -» Automatic,

m? g m
+ —vO0y
n? n

yx =

+ Log[l— ] + — vO0y

2 mvO0ox n

m?g m?g nx m
- -

FrameLabel -» {"n (kg/s)", "y (m)"}, AspectRatio -» 1]

10

y (m)
o

-10 \

-15t ]

05 10 15 20
n (kg/s)

From the plot above, we see that y = 0 for x = (x7),ir When 7 is a bit greater than 1kg/s. Hence, we will
use the value n = 1kg/s as the guess for a root finding algorithm in order to find a more accurate value of
the value of . When using Mathematica, this can be done with the following code

Parameters = {m - 50., g—-»9.81, h» 4.5, vOx -» 45., vOy » 30., xAir -» 253.6};

m? g m nx
+ —vO0y (1 - ] ;
n? n mvO0x

FindRoot[yx == -h /. x » xAir /. Parameters, {n, 1}]

+ Log[l - ] + — v0y
n? n? mvO0x n

yx =

m?g m?g nx m ]

which yields the following solution

n = 1.345kg/s.
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Problem 2.117 |

Consider the vectors @ = 27 + 1 ] + 7k and b=1i+2 7 + 3k. Compute the following quantities.

(@) @ xb
(b) bxa
) dxb+bxa
d) dxa

(e) (5x&)x5
(f) @ x (@ x b)

Parts (a)—(d) of this problem are meant to be a reminder that the cross product is an anticommutative
operation, while Parts (e) and (f) are meant to be a reminder that the cross product is an operation that is
not associative.

Solution

Using the vectors given in the problem statement, various properties of the cross-product are illustrated
through a few simple exercises.

Part (a) The commutative relationship for the cross-product is demonstrated by first evaluating

)

G x b = det 5x5=(—11i+1j+31€). 1)

—_ N
NN =
[SSTEEN I

Part (b) The cross-product is again evaluated, but this time in the opposite order such that

2

b x d = det

N WS
Sy
X
Ql
Il

N
—
—
~>

|
—_
~>
|
W
b
~

—_ N ~»

N =~

Thus the cross-product is anti-commutative because the results are equal in magnitude, but opposite in
direction (sign).

Part (¢) The fact that the cross-product relation between two vectors is anti-commutative is also demon-
strated through the equation below, where

.. i ]k I ] k A A
Gxb+bxd=det]2 1 7|+det|l 2 3|= (—11i+1j+3k)+(11i—1j—3k), 3)
1 2 3 2 1 7
= |axb+bxa=0. “)
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Part (d) The cross-product of a vector with itself, such as

A
axa=det2 1 7/=0, 5)
2 1 7

will always yield the zero vector.

Part (¢) Demonstrating the non-associative nature of the cross-product, the example shows one possible
way to calculate the product of three vectors, where

(5x5)xl§=6xl§=6. (6)

Part (f) The associative property does not hold for cross-products since the result of part (e) is not equal to
the result of

) P7 ok Poj ok
5x(5xb):5xdet2 1 7| =det| 2 1 7|,
1 2 3 1113
= ax(axé)z(—4i—83j+13l€). 7

June 25, 2012
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Problem 2.118 |

Consider two vectors @ = 17 +2 ] + 3k andb = —67 + 3 J.

(a) Verify that a and b are perpendicular to one another.

(b) Compute the vector triple product a x (a x 5)

(c) Compare the result from calculating @ x (a x 5) with the vector —|a|? b.

The purpose of this exercise is to show that as long as @ and b are perpendicular to one another, you can
always write @ x (@ x b) = —|a|? b. This identity turns out to be very useful in the study of the planar
motion of rigid bodies.

Solution

Part (a) Two vectors are perpendicular if their dot product is zero. Thus,

Gb=1-—6+2-3+3-0=0. (1)

Part (b) The triple product is evaluated by first calculating the cross-product of @ and b and then taking the
cross-product of a with the cross-product of @ and b. The calculation proceeds by

3 PoJ ok ) Poj Kk
5x(axb)=axdet 1 2 3 =ax(—9i—18j+15k):det 12 3, ©
6 3 0 —9 —18 15
= ax(ax5)=(84i—42j+01€). 3)

Part (c) The vector expression is evaluated as

_|&|25=—(\/12+22+32)2 (67 +37+0k). )

= (347 - 42/ +0k). ©)

which is the same as a x (5 X b).
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Problem 2.119{

Let 7 be the position vector of a point P with respect to a Cartesian coordinate system with axes x, y,
and z. Let the motion of P be confined to the xy plane, so that 7 = ry [ + ry J (.e., 7k = 0). Also,

let & = a)rlg be the angular velocity vector of the vector 7. Compute the outcome of the products
wr x (& X F) and &y X (F X @y ).

Solution

Use the property verified in part (c) of the solution to Problem 2.118 :

& % (Br X F) = =&, |*F = =} (rxi + 1y J). (1)

The cross-product is anti-commutative, as verified in part (b) of the solution to Problem 2.117. Therefore the
triple cross-product &, x (¥ x @) is Eq. (1) multiplied by —1.

cT),x(?X(Z)r):(Z)rx[—(cBrx?)]zwrz(rxi+ryj). )

This solutions manual, in any print or electronic form, remains the property of McGraw-Hill, Inc. It may be used and/or possessed only by permission June 25, 2012
of McGraw-Hill, and must be surrendered upon request of McGraw-Hill. Any duplication or distribution, either in print or electronic form, without the
permission of McGraw-Hill, is prohibited.



176 Solutions Manual

Problem 2.120{

The three propellers shown are all rotating with the same angular

~

have coordinates such that xp = yp = zp. Find the vector

speed of 1000 rpm about different coordinate axes. < @ E
(a) Provide the proper vector expressions for the angular velocity le QA J // \
of each of the three propellers. P ; / w2
\ [
(b) Suppose that an identical propeller rotates at 1000 rpm about
the axis £ oriented by the unit vector 1¢. Let any point P on £ /< \ /
;‘ @3

/

representation of the angular velocity of this fourth propeller. / /
. . . kA /‘ k Uy
Express the answers using units of radians per second. /
\ \

Solution

Part (a) 1000rpm = (1007r/3)rad/s = 104.7 rad/s. The angular velocity vectors can be written as

1 = (104.7k)rad/s, @ = (104.77)rad/s and @3 = (—104.7 })rad/s. (1)

Part (b) The unit vector in the £ direction is

ﬁe:%(i F7+k). @)

Therefore, the angular velocity is expressed as

100 (. & N,
Wy = (z +J +k) rad/s = 60.46 (l +J +k) rad/s. 3)
33
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Problem 2.121 |

Point P is constrained to move along a straight line £ whose positive orientation is described by the unit
vector tiy. Point A is a fixed reference point on £. Let the vector 7p /4 denote the position of P relative to
A and let i p, 4 be a unit vector pointing from A to P. Use the concept of time derivative of a vector to
describe the velocity and acceleration of P. In addition, comment on what happens to the description of
the velocity and acceleration when P happens to coincide with the fixed point A.

Solution
The motion of P is rectilinear. Using the unit vector 1i p, 4, we write the position vector of P as

FP/A=TpP/AlP/A, (1)

where rp/ 4 is the distance between P and A. We can calculate the velocity of P using Eq. (2.48) on p. 81 of
the textbook:

Up =Tpjatipja + &r X Tp)4, 2
where @, is the angular velocity vector of 7p /4»> Which is the same as that of the unit vector Up /4> and by
Eq. (2.46) on p. 81 of the textbook, we can write

lipja =@y Xipa. 3)

Since the motion of P is rectilinear, 7i p, 4 is essentially a constant (see discussion at the end of the solution).
Referring to Eq. (3) (and since u p /4 can never be zero), this means that, for rectilinear motions,

&y = 0. 4

Hence the expression for the velocity of P is

Up =Fp/atip)a- &)

To derive the acceleration vector of P, we can proceed in the same manner as for the velocity to obtain
dp = Up = ipjatipjq + @y X Vp, (6)

where @, is the angular velocity of the vector Up. As with 7p 4, the angular velocity of Up is the same as
that of 71 p /4, which, by Eq. (4), is zero. Therefore, the acceleration of P is

ap =ipjatlp/a. (7

We stated that i p/ 4 is essentially a constant. Referring to the problem’s figure, we have

ip)4(0) iy when P follows A, ®
Ups/a = ~
/ —uy when P precedes A.
When P coincides with A, then ii p, 4 is undefined. Hence we can say that i p, 4 is constant except when P
coincides with A, at which case i p, 4 is undefined and therefore cannot be used to describe the position, and
consequently velocity and acceleration, of P relative to A4.
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Problem 2.122 |

Starting with Eq. (2.48), show that the second derivative with respect to time of an arbitrary vector Ais
given by )
/T:A.ﬁA-i-Zc?)AXAﬁA-i-a;)AXfT-i-d')AX(d')AXA').

Keep the answer in pure vector form, and do not resort to using components in any component system.

Solution
Beginning with Eq. (2.48),
A= Allg+ by x A. (1)
and taking the derivative with respect to time, gives
g=AﬁA+AﬁA+5AXE+6AXJ.
But, ﬁA = wy X tig and Alis given by Eq. (1), so this expression becomes
z‘IIz‘.l'LAtA—I-A(J)AXﬁA)+63AXg+@AX(AﬁA+@AXg),

Noting that A is a scalar and so it can be moved inside the cross product @4 x i4 and distributing the cross
product in the last term yields

/T:f.l.ﬁA —|-CT)AXA'12A +J)Axg+65A XALAtA—i-&jA X (a_jxff)
Combining the two terms @4 X Al 4, we obtain the desired result, that is,

A= A'ﬁA+2(7)AxAﬁA—i—a;)AxfT—l—c?)Ax(c?)Ax/T).
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Problem 2.123 |

The propeller shown has a diameter of 38 ft and is rotating with  radial direction ~ 2
a constant angular speed of 400 rpm. At a given instant, a point
P on the propeller is at 7/p = (12.57 + 14.3 J) ft. Use Eq. (2.48)
and the equation derived in Prob. 2.122 to compute the velocity
and acceleration of P, respectively.

propeller disk

Solution

The position of point P is
Fp=rpxi+rpyJ, (1)

where rpy = 12.5ftand rp, = 14.3ft. Applying Eqs. (2.48) on p. 81 of the textbook, we have

- - d|rp| .
Up =7p == i

+CBFPX7P’ (2)

where 1i,, = Fp/|Fp| and where @y, is the angular velocity of Fp and coincides with the angular velocity of
the propeller so that
C;))rp = Wprop kv (3)

where wprop = 400 rpm and k is a unit vector pointing in the positive z direction. We observe thatd |Fp|/dt =
0 because P does not change its distance from the axis of rotation. Hence, substituting Eqs. (1) and (3) into
Eq. (2), and carrying out the cross product, we have

Up = Wprop(—rPyl +1pxJ) = Up = (—599.07 + 523.6 )) ft/s, “)

where we have used the fact that rp, = 12.51t, rpy, = 14.3 ft, and wprop = 400 rpm = 400%—’5 rad/s. Next,
applying the equation derived in Problem 2.122, we have that

- d?|rp| - d|rp| . 5 . - -
ap = 072 + 20, p % 7 Uz, + Orp XIp + Orp X (wrp X TP). 5
Because |Fp| and @, are constant, Eq. (5) reduces to
Gp = @rp % (Brp X Tp). ©6)

Substituting Egs. (1) and (3) into Eq. (6), and carrying out the cross products, we have

ap = —whoprpxi+rpy ) = | dp =—(21,9307 + 25,090 j) ft/s, (7

where, again, we have used the fact that rp, = 12.51t, rpy, = 14.3ft, and wpop = 400 rpm = 400%—’5 rad/s.
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Problem 2.124 |

Consider the four points whose positions are given by the vectors ?4 = Z
(2?—|—0k) m,7g = (2i+1k) m, 7c = (2i+2k) m, and 7p = (2?—|—3k) m.
Knowing that the magnitude of these vectors is constant and that the angular
velocity of these vectors at a given instant is @ = 5 k rad/s, apply Eq. (2.48)
to find the velocities U4, Up, Uc, and Up. Explain why all the velocity vectors
are the same even though the position vectors are not.

Solution

Using Eq. (2.48), the velocities of points 4, B, C, and D are

. d|ral . - - - d|rg| .. - -

Vg = —— Up, + Wry X T4, VB = Urg + Wrp XTB, (D
dt dt

- dlrc| . - . d|rp| .. - -

Uc = =~ lre + e XTe. Up = = =iy + Orp XTD. (2)

where i, = F4/|F4l, iry = FB/|7B|, ir. = Fc/IFc|, iy, = Fp/|FD|, and where, following the problem
statement .
Ory = Qrg = Opp. = Wpp, = @& = Skrad/s. 3)

Since the magnitudes of 74, g, Fc, and Fp are constant, and in view of Eq. (3), Egs. (1) and (2) reduce to
Ug=®XTrFq, UB = XTrIpg, 4)

Uc =0 XTFc, Up =o®XFp. (5)

Recalling that 74 = (2? + Olg)m, g = (2? + 1]2) m, fc = (2? + 2k) m, ’'p = (2? + 3]2) m, and
& =5k rad/s, we can evaluate Egs. (4) and (5) to obtain

U4 = 10.00 jm/s, v = 10.00 /m/s, V¢ =10.00m/s, and vp = 10.00 jm/s.

The velocities are the same because the given position vectors all have the same i component and because the
points in question have the same distance from the axis of rotation.
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Problem 2.125 |

A child on a merry-go-round is moving radially outward at a C
constant rate of 4 ft/s. If the merry-go-round is spinning at 30 rpm, \_‘jw
determine the velocity and acceleration of point P on the child A
when the child is 0.5 and 2.3 ft from the spin axis. Express the
answers using the component system shown.

Solution

Let 7p denote the position of P relative to the origin of the rgz coordinate system shown in the problem’s
figure. The origin in question is on the z axis, which is fixed. Therefore the velocity and acceleration of P
are the first and second time derivatives of 7p, respectively. Using the component system shown, we have

rp =ril, ey

where r is the distance of P from the z axis. The unit vector %, rotates with the merry-go-round. Applying
Eq. (2.48) on p. 81 of the textbook, we have

Up = F iy + roy X iy, ()
where @, is the angular velocity of i, and coincides with the angular velocity of the merry-go-round, i.e.,
& = ok, 3)
with @ = 30rpm = 7 rad/s. Substituting Eq. (3) into Eq. (2) and observing thatk x fi, = g, we have
Up = F i, + oriy. 4

Recalling that 7 = 4ft/s and w = 7 rad/s, we can evaluate Eq. (4) for r = 0.5 ft and r = 2.3 ft to obtain

. (4.000u, + 1.57114) ft/s forr = 0.5ft,
vp =
P 4.0000, +7.2260,) ft/s forr = 2.3t

Differentiating Eq. (2) with respect to time we have ap = 71, + F iy + i@y X Gy + 1y X iy + 1y X iy
Using Eq. (2.46) on p. 81, we have that i, = @, X i, so that dp can be written as

Gp = iy + 2@y X P iy + &p X T iy + @y X (@ X 7 1iy). (5)
Recalling that 7 and w are constant, and using Eq. (3), Eq. (5) gives
Eip=2a)lgxi'12,—|—wl€><(wl€><rﬁr) = 5p=—rw2ﬁr+2wiﬁq. 6)

Finally, recalling that / = 4 ft/s and w = 7 rad/s, we can evaluate the last of Egs. (6) for r = 0.5 ft and
r = 2.3 ft to obtain

- (—4.9351, + 25.134i4) ft/s*> forr = 0.5ft,
ap =
PN (=22.700, +25.1310,) ft/s> forr = 2.3 ft.
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Problem 2.126 |

When a wheel rolls without slipping on a stationary surface, the point O on the wheel that is in contact
with the rolling surface has zero velocity. With this in mind, consider a nondeformable wheel rolling
without slip on a flat stationary surface. The center of the wheel P is traveling to the right with a constant
speed vg = 23 m/s. Letting R = 0.35 m, determine the angular velocity of the wheel, using the stationary
component system shown.

Solution
Since P moves parallel to the ground, we have that the velocity of P can be expressed as follows:
Up = vol. (1)

Letting 7p denote the position of P relative to O, since the velocity of O is equal to zero at the instant
considered, we also know that vp = Fp. Hence, applying Eq. (2.48) on p. 81 of the textbook, we can write

. dlfpl . R -
v :%urp'i‘(l)rper, (2)

where @y, is the angular velocity of the vector 7p. As both points O and P are on the wheel, we have that
|Fp| = R = constant and @y, = Owheel = Owheel K- 3)
In addition, at the instant shown, we also have
rp=R]. 4)
Substituting Egs. (3) and (4) into Eq. (2), carrying out the cross product and simplifying, we have
Up = —Wyheel R 1. &)

Comparing Egs. (1) and (5), we then conclude that

Vo N Vg ~
Wwheel = _E = Wwheel = _E k. (6)

Recalling that v = 23 m/s and R = 0.35 m, we can evaluate the last of Egs. (6) to obtain

Bwheel = —65.71k rad/s.
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Problem 2.127 |

vector at this instant.

The radar station at O is tracking the meteor P as it moves through the
atmosphere. At the instant shown, the station measures the following data
for the motion of the meteor: r = 21,000ft, 8 = 40°, 7 = —22,4401t/s,
and § = —2.935 rad/s. Use Eq. (2.48) to determine the magnitude and
direction (relative to the xy coordinate system shown) of the velocity

Solution

Referring to the figure at the right, the unit vector 1, always points toward
P. The unit vector iy is perpendicular to i, and points in the direction of

increasing 6. Then, letting r denote the distance between P and the fixed
point O, we have that the position of P is described by Fp = r 1i,. Applying

Eq. (2.48) on p. 81 of the textbook, we have

ljp :i’ﬁ,+rc?),xﬁ,,

where @, is the angular velocity of the unit vector #,. Since the angle 0

describes the orientation of 7p, we have that

(1)

C_ljr :ékA,

where k = 1, x fig. Substituting Eq. (2) into Eq. (1) gives

1_5p Zfﬁr+r9ﬁ9.

Finding the magnitude of the vector, we then have that

[ip| = \i2+r202 =

where we recalled that » = 21,000 ft, 7 = —22,440ft/s, and 6 = —2.935 rad/s. We now observe that

U =cosfi+sinfj and

so that Eq. (3) can be rewritten as

|ip| = 65,590 ft/s,

g = —sin61 + cosb j,

ip = (FcosO —rOsinf) i + (Fsin@ + rfcosf) j = (22,4307 — 61,640 ) ft/s.

Ux Vpy

Since vp is directed downward and to the right, the orientation of ¥p is —tan~!(Jvpy /vp, |):

Orientation of vp from x axis = — tan~ ! (

sin 6 + r6 cos 0
7 sin6 + ro cos '):_70.010

7cos® —rfsinf

=

Orientation of v from x axis = 70.01° (cw),

where, again, r = 21,000 ft, 7 = —22,440ft/s, and § = —2.935rad/s.

3

“)

)

(6)

(N
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Problem 2.128 |

The radar station at O is tracking the meteor P as it moves through the
atmosphere. At the instant shown, the station measures the following data
for the motion of the meteor: r = 21,000ft, 8 = 40°, 7 = —22,4401t/s,
6 = —2.935rad/s, ¥ = 187,500 ft/s%, and 6 = —5.409rad/s. Use the
equation derived in Prob. 2.122 to determine the magnitude and direction
(relative to the xy coordinate system shown) of the acceleration vector at
this instant.

Solution

Referring to the figure at the right, the unit vector i, always points toward
P. The unit vector iig is perpendicular to i, and points in the direction of
increasing 6. The distance between P and O is r so the position of P is
Fp = rii,. Applying the equation derived in Problem 2.122, we can write

5pI?p=f72,-+267)rXfﬁr+5)rX7p+a3rX(5)rX7p), (D) IS

where @, is the angular velocity of 7p. Since the angle 6 describes the

o - =
orientation of 7p, we have that o N

oy =0k, (2)
where k = i » X Uig. Because the direction of kis fixed, a;)r —0k. Hence, substituting 7/p = r #i, and Eq. (2)
into Eq. (1) and simplifying, we have

ap = (F —r0®) i, + (rf + 2i0) ilg. 3)

Finding the magnitude of the vector, we then have that

ldp| = \/(i" —r62) + (r6 +270)> = | lap| = 19,300ft/s%, (4)

where r = 21,000ft, 7 = —22,4401t/s, O = —2.935rad/s, ¥ = 187,5()0ft/sz, and 6 = —5.409rad/sz.
Noting that 2, = cos017 + sin6 j and 1ig = —sin 617 4 cos @ j, Eq. (3) becomes

ap = [(r — réz) cos b — (r9 + 2#9) sin 0] I+ [(r — réZ) sinf + (r@ + 21"9) cos 9] J

apx apy

= dp = (—65997 + 18,130 ) ft/s*, (5)

Since dp is directed upward and to the left, the orientation of d@p is given by 180° —tan~!(lapy /apx|), ie.,

|

= Orientation of dp from x axis = 110.0° (ccw).

(F — réz) sin 6 + (ré + 2i9) cos 6
(i" — réz) cos @ — (r9 + 2}"9) sin

Orientation of @p from x axis = 180° — tan™! |:

where 0 = 40°, r = 21,000ft, 7 = —22,440ft/s, § = —2.935rad/s, # = 187,500ft/s2, and 6 =
—5.409rad/s>.
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Problem 2.129 |

A plane B is approaching a runway along the trajectory shown while the il a,
radar antenna A is monitoring the distance r between A and B, as well iV B
as the angle 6. If the plane has a constant approach speed vg as shown, Y ‘\
use Eq. (2.48) to determine the expressions for 7 and 6 in terms of r, 6, . Yo
Vg, and ¢.

j 0

Solution

The position of the airplane B can be written as ¥ = r 1i,. Differentiating 7 with respect to time according to
Eq. (2.48) on p. 81 of the textbook, we obtain the velocity of the airplane as

V=71, + o X1y, ()

where @, is the angular velocity of the vector 7. Letting k= Uy X Ug, since O describes the orientation of
the vector 7, we have o
&r = 0k. 2
Substituting Eq. (2) into Eq. (1) and carrying out the cross-product, we have
V=7, +0riyg. (3)

Referring to the figure on the right, we observe that the velocity of ug
the airplane can also be expressed as U = vg i, Where 1, is the AN
unit vector describing the orientation of the airplane’s landing path. ‘
Observing that the angle between 1, and 7, is equal to ¢ + 6, we can r
express i, as follows:

Up = cos(¢p + 0) i, —sin(¢p + 0) ilg. (€)) 4 i ¥ .
Therefore, vp can be expressed as follows: ’_k\ :
U = vg cos(¢p + 6) 1, — vgsin(¢p + 0) 1ig. (3)
Equating Eqgs. (3) and (5) component by component, we obtain
F = vgcos(¢p +0) and Or = —vy sin(¢p + 0), (6)

which we can rewrite as

F =vocos(¢p +60) and 6 = _bo sin(¢ + 0).
r
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Problem 2.130 i

A plane B is approaching a runway along the trajectory shown with il a,
¢ = 15°, while the radar antenna A is monitoring the distance r between RSN B
A and B, as well as the angle 6. The plane has a constant approach Y ‘\
speed vo. In addition, when 6 = 20°, it is known that 7 = 216 ft/s and . Vo
0 = —0.022rad/s. Use Eq. (2.48) to determine the corresponding values
of vg and of the distance between the plane and the radar antenna. J 0

2y i

l

Solution

The position of the airplane B can be written as 7 = r 1i,. Differentiating 7 with respect to time according to
Eq. (2.48) on p. 81 of the textbook, we obtain the velocity of the airplane as

V=7l + o Xriy, (1

where @, is the angular velocity of the vector 7. Letting k= iy X Uig, since O describes the orientation of
the vector 7, we have
wr = 0k. 2)

Substituting Eq. (2) into Eq. (1) and carrying out the cross-product, we have

V=7, +0rig. (3)
Referring to the figure on the right, we observe that the velocity of g
the airplane can also be expressed as U = vg i, where 1, is the ‘f’f#
unit vector describing the orientation of the airplane’s landing path. Y
Observing that the angle between 1, and 7, is equal to ¢ + 6, we can ’

express i, as follows:

up = cos(¢p + 0) 6, —sin(¢p + 0)1g. 4) P : Y .
Therefore, Up can be expressed as follows: ’_k\ :
U = vgcos(¢p + 0) i, — vgsin(¢p + 0) 1ig. (35)
Equating Egs. (3) and (5) component by component, we obtain
F=vgcos(p +60) and Or = —vgsin(p + 0). (6)

Equations (6) form a system of two equations in the two unknowns vg and r whose solution is

I F
= 6T r= —5tan(¢ + 6). (7

Recalling that 7 = 216ft/s, ¢ = 15°, 8 = 20°, and 6 = —0.022 rad/s, we can evaluate Egs. (7) to obtain

vo = 263.7ft/s and r = 6875ft.
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Problem 2.131 1

The end B of a robot arm is being extended with the constant rate 7 = 4 ft/s.
Knowing that 6 = 0.4 rad/s and is constant, use Eq. (2.48) and the equation
derived in Prob. 2.122 to determine the velocity and acceleration of B when
r = 2 ft. Express your answer using the component system shown.

Solution

The position of point B relative to the fixed point O, can be expressed as ¥ = r il,. Differentiating 7 with
respect to time according to Eq. (2.48) on p. 81 of the textbook, gives the velocity of B as follows:

U =i, + Op X1y, (D

where @, is the angular velocity of the vector 7. Letting k denote the unit vector perpendicular to the plane
of motion such that k = #i, x tig, and observing that the angle 6 describes the orientation of the vector 7, we
have

& =0k, @)
Substituting Eq. (2) into Eq. (1) and carrying out the cross-product, we have
Up =ity +0kxrit, = Ug=7ii,+0rip. 3)

Given that r = 2ft, 7 = 4ft/s, and 6 =0.4 rad/s, we can evaluate the last of Egs. (3) to obtain

g = (4.0007, + 0.800014) ft/s.

To obtain the acceleration of B, we compute the second time derivative of the position vector ¥ = r i, using
the equation derived in Problem 2.122. This gives

53='r'ftr—|-2¢7)rxiﬁr—l-cf)rxrﬁr—{—c_érx(@rxrﬁr). ()
Using Eq. (2), we have
r=0k+0k =0k, 5)
where lg = 0 because the motion is planar. Since 7* and 6 are constant,
=0, and 6 =0, (6)
Using Egs. (2), (5), and (6) we can simplify Eq. (4) to read
5322912xfﬁr+91€x(912xrﬁr) = dr =102, + 207 . 7

Again, since r = 2ft, 7 = 4ft/s, and 0 =0.4 rad/s, we can evaluate the last of Egs. (7) for to obtain

dp = (—0.3200 11, + 3.200114) ft/s%.
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Problem 2.132 i

The end B of a robot arm is moving vertically down with a constant speed
vo = 2m/s. Letting d = 1.5m, apply Eq. (2.48) to determine the rate at which
r and 6 are changing when 6 = 37°.

Solution

Referring to the figure on the right, we begin by describing the position of point
B relative to O using the (i, tig) component system:

g =il (1)

The velocity of B is ug = rg. Then, using Eq. (2.48) on p. 81 of the textbook,
we have

Up = Fily + Op X Filly, 2)
where @, is the angular velocity of the vector 7g. Since the vector rp rotates
with the robotic arm, we have

&y = 0 k. 3)
Substituting Eq. (3) into Eq. (2) we have
Vg =ity +0kxrit, = Tg=7ii,+0rip. )
Since point B is moving downward along a vertical line with speed vg, using the (7, /) component system,
the velocity of B can also be described as follows:

Up = —Vo J. 5)
We now observe that
J =sinf i, + cosfig. (6)
Therefore, Eq. (5) can be rewritten as
v = —vo(sin O 1i, + cos B 1ig). @)

Equating the second of Egs. (4) and Eq. (5) component by component, we have
i = —vpsin® and Or = —vgcos . ()

Recognizing that r cos 8 = d, i.e.,r = d/ cos 6, we can solve Egs. (8) for 7/ and 6 to obtain

2
. . . vo cos” 6
F=—vgsinf and 0 =-———. )
d
Finally, recalling that vg = 2m/s, 8 = 37°, and d = 1.5m, Egs. (9) can be evaluated to obtain
F=-—1204m/s and 6 = —0.8504rad/s.
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Problem 2.133 |

The end B of a robot arm is moving vertically down with a constant speed
vo = 6ft/s. Letting d = 4ft, use Eq. (2.48) and the equation derived in
Prob. 2.122 to determine 7, 0, ¥, and 8 when 6 = 0°.

Solution

Referring to the figure on the right, the velocity is expressed both in terms of the
(7, j) component system and using the component system (¥, tig) along with
Eq. (2.48) on p. 81 of the textbook. This gives

U =-v9/ and 5=fﬁr+9l€xrﬁr=fﬁr+9rﬁ9. (1)
Expressing (i, ilg) in terms of (7, J), we have

r=cosfi+sinf ] and g =—sin67 + cosh J. ()

<>

Substituting Egs. (2) into the last of Egs. (1) and collecting the 7 and j terms, we
have ) )
17=(fcos@—r@sin@)i—i—(i’sinﬁ—i—r@cos@)i. 3)

Equating the 7 and J components of velocity given by the first of Egs. (1) and Eq. (3), and keeping in mind
that r = d/ cos 6, we have

Fcosf —rfsinf =0 = jcosf —Odtanf = 0 4)
Fsinf +rfcosf = —vg = Fsinf + 60d = —vy. 5)

Substituting 8 = 0 into Egs. (4) and (5), we have

F=0 and 0= _TUO = —1.500rad/s, (6)

where we have used the following numerical data: vg = 6ft/s and d = 4 ft. Using the equation derived in
Problem 2.122, the acceleration expressed in the (i1, 1) component system is:

G=Fi, +20kxid, +0kxri, +0kx@kxri,)
=  d=7il,+20Fiig + Oriig — 6%r i,

Alternatively, differentiating Eq. (3) with respect to time and rearranging terms, the acceleration expressed in
the (7, J) component system is:

d = F(cos 07 +sinf j) + 207 (—sin 6 i + cos § )
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+ Gr(—sinf7 + cos @ J) — 62r(cos 07 + sinb J). (7)

Collecting 7 and j terms, then substituting » = d, 8 = 0, and the expressions in Egs. (6), we have

Since v is constant, @ = 0, so that

2 ..
ily_go = ('r'- ‘;—O)H (6d) ;.

2
5 ‘:i_o = 9.000ft/s> and 6 =0,

where, again we have used the fact that v = 6ft/sand d = 4ft.
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Problem 2.134 |

A micro spiral pump consists of a spiral channel attached to a stationary plate. This plate has two ports,
one for fluid inlet and the other for outlet, the outlet being farther from the center of the plate than the
inlet. The system is capped by a rotating disk. The fluid trapped between the rotating disk and stationary
plate is put in motion by the rotation of the top disk, which pulls the fluid through the spiral channel. With
this in mind, consider a channel with geometry given by the equation r = n6 + ro, where n = 12 um is
called the polar slope, ro = 146 um is the radius at the inlet, r is the distance from the spin axis, and 6,
measured in radians, is the angular position of a point in the spiral channel. If the top disk rotates with a
constant angular speed @ = 30,000 rpm, and assuming that the fluid particles in contact with the rotating
disk are essentially stuck to it, determine the velocity and acceleration of one such fluid particle when it is
at r = 170 um. Express the answer using the component system shown (which rotates with the top disk).

spin axis

rotating disk
\ inlet

1)
. r
k

0

~

u
A

<>

\ outlet

spiral groove

pin joint

stationary plate

Photo credit: “Design and Analysis of a Surface Micromachined Spiral-Channel Viscous Pump,” by M. I. Kilani, P. C. Galambos, Y. S. Haik,
C. H. Chen, Journal of Fluids Engineering, Vol. 125, pp. 339-344, 2003.

Solution

Referring to the problem’s figure, we focus our attention on a single fluid particle moving along the channel.
The unit vector 1, always points from the origin of the coordinate system to the particle so that the position
of the particle is 7 = r 1, where r is the distance of the particle from the spin axis. Using Eq. (2.48) on
p- 81 of the textbook, we can express the velocity of a particle as

b=y +8xF, 1)
where & = —6 k, with § = 30,000%—’5 rad/s, is the angular velocity of 7. Recalling that r = n6 + rg, Eq. (1)
can be rewritten as

G=n0d, — 0k x (0 +ro)ity = T =n0i,~+ 606+ ro) g, )

where we have used the fact that k x i, = —tig. Solving r = 16 + ro for 6 we find that 6 = (r —ro)/7.
Recalling that ro = 146 um and n = 12 um, for r = 170 um, 6 = 2.000rad. Hence, given that § =
1000 rad/s, we can evaluate v in the last of Egs. (2) to obtain

¥ = (0.03770 4, + 0.5341 iig) m/s.

Differentiating the last of Egs. (2) with respect to time, we have

a=n0i, +n0i, + 000 + ro)ilg + nb?ig + 6(n0 + ro) it 3)
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Observing that both i, and 1y rotate with angular velocity @ = 6k, applying Eq. (2.46) on p. 81 of the
textbook, we have

Uy =—0k xii, =60ty and 1ig =—0k x11g = —0 1. (4)
Substituting Egs. (4) into Eq. (3), with 6 = 0 because 0 is constant, we have

N

—62(n0 + ro) Gy + 2062 1. (5)

Recalling that, for r = 170 um, 6 = 2.000rad, and recalling that ro = 146 um, n = 12 um, and
0= 30,00026—’5 rad/s, we can evaluate d to obtain

a = (—16781i, + 236.919) m/s>.

This solutions manual, in any print or electronic form, remains the property of McGraw-Hill, Inc. It may be used and/or possessed only by permission June 25, 2012
of McGraw-Hill, and must be surrendered upon request of McGraw-Hill. Any duplication or distribution, either in print or electronic form, without the
permission of McGraw-Hill, is prohibited.



Dynamics 2e 193
Problem 2.1351

A disk rotates about its center, which is the fixed point O. The disk has w
a straight channel whose centerline passes by O and within which a collar
A is allowed to slide. If, when A passes by O, the speed of A relative to
the channel is v = 14m/s and is increasing in the direction shown with a
rate of 5m/s?, determine the acceleration of A given that @ = 4rad/s and
is constant. Express the answer using the component system shown, which
rotates with the disk. Hint: Apply the equation derived in Prob. 2.122 to the
vector describing the position of A relative to O and then let r = 0.

Solution

Let 74 be the position of A relative to the fixed point O. Using the (7, j) component system, 7 can be written
as

Fg=-—r]. ey

Applying the equation derived in Problem 2.122, the acceleration of A is
lg = —F ] =28y X F ] + & X Fa + & x (& X Ta), )
where @, is the angular velocity of the vector 7. When A is at O, 7 = 0 so that Eq. (2) can be simplified to
n reo = —F ] =20y XF]. 3)

Now, we observe that A
J)r = w k. (4)

Substituting Eq. (4) in Eq. (3), we have

dgl,_g=—F]—2wkxF] = ad|,_,=20r0—7F]. 5)
Recalling that 7 = —v = —14m/s, # = —5m/s?, and w = 4rad/s, we can evaluate the last of Egs. (5) to
obtain
dul,_, = (=112.07 + 5.000 ;) m/s>.
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® Problem 2.136 ¢

o

At the instant shown, the angular velocity and acceleration of the
merry-go-round are as indicated in the figure. The distance of @
the child from thf? spin axis is rp, so his acceleration is dp = ®
Fpliy +ipily +@&Xrp iy +@®XFp iy +@ X rp iiy. Assuming
that the child is walking along a radial line, should the child walk
outward or inward to make sure that he does not experience any
sideways acceleration (i.e., in the direction of i)?

Solution

Using the component system shown, the position of the child is 7p = r 1i,, where r is the distance from
the spin axis and #, is the unit vector always pointing from the origin of the system toward P. Applying
Eq. (2.48) on p. (2.48) of the textbook, we know that

Up =7y +&p X1 Uy, €))

where @, is the angular velocity of the vector 7p, and where this angular velocity coincides with the angular
velocity of the merry-go-round. Differentiating the above expression with respect to time, and replacing @,
with @, we have _

dp = ifly + 7, +@Xrily +&XFlly +&%riy. )
Using Eq. (2.46) on p. 81 of the textbook, we have that iy = & x1y. This allows us to rewrite the acceleration
of the child as )

dp =P,y +20 X7, +®XT + @ X (& XTF). 3)

From the expression above, we see that the terms that contribute to the acceleration in the direction of i, are
2@ x i i, and & x 7. Since @ and @ are in the same direction then we must have 7 < 0 if we hope that the
terms will cancel. Hence, the child should move inward.
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Problem 2.137 |

Assuming that the child shown is moving on the merry-go-round ke
along a radial line, use the equation derived in Prob. 2.122 to w
determine the relation that w, o, r, and 7 must satisfy so that the @

child will not experience any sideways acceleration.

Solution

Using the component system shown, the position of the child is 7 = r i, where r is the distance from the
spin axis and #, is the unit vector always pointing from the origin of the system toward the child. Using the
equation derived in Problem 2.122, we can express the acceleration of the child takes in the following form:

a=Fi, +20 XFiy +OXF —w x (0 XF), (1)

where we have recognized that the angular velocity of the vector 7 is @, which is the angular velocity of the
merry-go-round. Using the component system shown in the figure, we have that

A

®=wk and cT.)zd)lg, ()

since the direction of the unit vector k remains fixed. Recalling that 7 = r 1i,, and substituting Egs. (2) into
Eq. (1), we have
i=(F—o’r)i, + Qui +ro)ily. (3)

Equation (3) shows that the component of the acceleration in the direction of i, is
ag = Qi + or). 4

Hence, in order for the child not to experience sideways acceleration, we must have

2wF + or = 0.
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Problem 2.138 |

The mechanism shown is called a swinging block slider crank. First used in various steam locomotive
engines in the 1800s, this mechanism is often found in door-closing systems. If the disk is rotating with
a constant angular velocity 6 = 60 rpm, H = 4ft, R = 1.5ft, and r is the distance between B and O,
compute 7 and ¢ when 6 = 90°. Hint: Apply Eq. (2.48) to the vector describing the position of B relative
to O.

swinging X

~>

B

Solution

We can express the velocity of B in two ways. First, as the time derivative of the position vector 7g/4 and
second as the time derivative of the position vector 75/¢. Referring to the figure in the problem statement,
we can express these two position vectors as follows:

?B/A:RﬁB/A and 73/0=rﬁ5, (1)

where, as given the problem statement, r is the distance between B and O, and where we observe that the
angular velocities of the unit vector in the above equations are

Bpp, =0k and @y, = —gk. 2)
Hence, observing that R = 0 since R is a constant, using Eq. (2.48) on p. 81 of the textbook, we have
17B=?B/A=ékAXRﬁB/A and 17B=r;B/0=r'125—<jSI€xrﬁS. (3)

Next, we observe that, for 0 = 90°, we have

ug/a=1, r=+vH?+R? and ig=

1

Substituting Egs. (4) into Egs. (3), for 8 = 90°, we have

F . .
———(RI+H))+H¢pi—R¢]. %)
VR 2 NHHPI= RS

Equating the two above expressions for v component by component, we have

UBg_goo = RO and  ¥p[y_gg0 =

R .
7 ————+ H¢ =0, 6
verm Y ©
) FH o
_ Ré = RO, )

VR? + H?
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Equations (6) and (7) form a system of two equations in the two unknowns 7 and ¢ (at & = 90°) whose
solution is

: _ RHY : R
r|0=90° - JRZ+ HZ and ¢‘9=90° T R24 H? ®)

Recalling that we have 6 =60 rpm = 60(27/60) rad/s, H = 4ft, R = 1.5 ft, we can evaluate the quantities
in Egs. (8) to obtain

Ploeoge = 8:825ft/s and  ¢|y_ggo = —0.7746rad/s.
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Problem 2.139 i

A sprinkler essentially consists of a pipe AB mounted on a hollow shaft. The water comes in the pipe
at O and goes out the nozzles at A and B, causing the pipe to rotate. Assume that the particles of water
move through the pipe at a constant rate relative to the pipe of 5ft/s and that the pipe AB is rotating
at a constant angular velocity of 250 rpm. In all cases, express the answers using the right-handed and
orthogonal component system shown.

Determine the acceleration of the water particles when they are at d/2 from O (still within the
horizontal portion of the pipe). Let d = 7in.

Solution

Referring to the figure at the right, we consider a water particle P Z|
that is in the horizontal part of the tube. Using the component system 5

d \
R . B
shown, the position of P is k - |
R R X _lp p
Fp =rip. M o 2 e \ /

Up =7ilig+ & xrig, 2)

Then, applying Eq. (2.48) on p. 81 of the textbook, the velocity of
Pis

where the angular velocity of the arm is also the angular velocity of the vector 7p as well as that of the unit
vector u p. Differentiating Eq. (2) with respect to time, we have

dp =illp+rliUp+dXriipg+oxrip+oxrig. 3)

In Egs. (2) and (3), 7 denotes the rate at which the water particles move relative to the arm. Therefore
F = 5ft/sand ¥ = 0. Also, cT).z wk, where w = 250 rpm is constant. In addition, using Eq. (2.46) on p. 81
of the textbook, we have that ig = w k X tig. Therefore, Eq. (3) can be simplified to

N

ap = —2fwiic —rw’ip. 4)

Recalling that 7 = 5ft/s and w = 250 rpm = 250(27/60) rad/s, forr = d /2, where d = 7in. = (7/12) ft,
we can evaluate the above expression to obtain

dp = (—261.87ic —199.91ip) ft/s>.
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Problem 2.140 1

A sprinkler essentially consists of a pipe AB mounted on a hollow shaft. The water comes in the pipe
at O and goes out the nozzles at A and B, causing the pipe to rotate. Assume that the particles of water
move through the pipe at a constant rate relative to the pipe of 5ft/s and that the pipe AB is rotating
at a constant angular velocity of 250 rpm. In all cases, express the answers using the right-handed and
orthogonal component system shown.

Determine the acceleration of the water particles right before they are expelled at B. Let d = 7in.,
B = 15°, and L = 2in. Hint: In this case, the vector describing the position of a water particle at B goes
from O to B and is best written as ¥ = rg lig + 1, k.

Solution

Referring to the figure at the right, we consider a water particle P
that is in the slanted part of the tube. Using the component system

|
.. ) " ) . B
shown, the position of P is k - /\
"p —>7" B

Fp =[d — (L —€)cosBliig + £sin B k. M o - A
ug
Differentiating Eq. (1) with respect to time, we have \/
Up =LlcosBiip + [d — (L — ) cos Bliig + £sin Bk, )

where we have used the fact that d, L, and 8 are constant as well as the fact that k does not change direction.
We observe that £ is the rate at which the water particles move through the pipe, so that (=5 ft/s and (=0
because { is constant. Using Eq. (2.46) on p. 81 of the textbook, we have that tig = w kxi B, Where we
have recognized that the angular velocity of the arm, i.e., ® = @ k, is also the angular velocity of the unit
vector #ig. Hence, dp can be rewritten as

ip = {cosBiig —w[d — (L —£)cos Bliic + €sin k. 3)
Differentiating Eq. (3) with respect to time, we have
dp =l cosBiip —wlcosBliic —wld — (L — £) cos Bliic, 4)
where we have _used theAfact that é, w,d, L, ,B,'and k are constant. Using Eq. (2.46) on p. 81 of the textbook
againto write ip = wk x ip = —wtic andic = wk X lc = w g, wWe can rewrite dp as
p = —2wlcosBiic —w*[d — (L —£)cos Bl iip. (5)

Recalling that £ = 5ft/s, w = 250rpm = 25027 /60)rad/s, B = 15°, and d = 7in. = (7/12) ft, for
£ =L =2in. = (2/12) ft, we can evaluate the above expression to obtain

dp = (—252.91ic —399.81p) ft/s>.
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® Problem 2.141 ¢

A particle P is moving along the curve C, whose equation is given
by 1.0 v
2
(»* = x?)(x = D(2x —3) = 4(x* + y* —2x)", P ¢ 3
at a constant speed v.. For any position on the curve C for _
which the radius of curvature is defined (i.e., not equal to infinity), £ 0.0
what must be the angle ¢ between the velocity vector v and the ™
acceleration vector a?
C
—1.0
0.0 1.0 2.0
x (in.)

Solution

The speed is constant. This tells us that there is no component of acceleration in the direction of velocity.
Therefore, the angle ¢ between v and a must be 90°.
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® Problem 2.142 ¢

A particle P is moving along a path with the velocity shown. Is the sketch of the normal-tangential
component system at P correct?

Solution

No, the unit vector %, must point in the direction of v.
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® Problem 2.143 ¢

A particle P is moving along a path with the velocity shown. Is the sketch of the normal-tangential
component system at P correct?

path of P

Solution

No, the unit vector i, must point toward the concave side of the curve.
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® Problem 2.144 ¢

A particle P is moving along a straight line with the velocity and acceleration shown. What is wrong with
the unit vectors shown in the figure?

A

v Uy

P a
path of P

Solution

The unit vector 1, is not defined for a straight line.
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® Problem 2.145 ¢

A particle P is moving along some path with the velocity and acceleration shown. Can the path of P be
the straight line shown?

<l
<

-~
Ql

A

Solution

No, because the path is straight. It would need to be curved with a tangent at P coincident with #%; and
concavity on the side of ,,.
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Problem 2.146 |

The water jet of a fountain is let out at a speed vg = 80 ft/s and at an angle 8 = 60°. Determine the radius
of curvature of the jet at its highest point.

Vo
Y

fQ

Solution

The tangent to the trajectory of the water jet at the highest point is horizontal. Therefore, the velocity at
the highest point is completely horizontal and the normal direction coincides with the direction of gravity.
We model the motion of the jet as projectile motion. This implies that the water particles have constant
acceleration equal to the acceleration of gravity. In addition, the horizontal component of the velocity of the
water particles is constant and therefore equal to the value it has when the jet is first emitted by the nozzle,
namely, vg cos B. Since at the highest point the acceleration, which is due to gravity, is along the normal

direction, we have

U2

ap=—=g and a; =0, (D)
0

where v is the speed of the water particles at the highest point on the trajectory. We have already argued that
at the point in question the velocity vector is parallel to the horizontal direction. Therefore we must have

v = vg cos f. 2)

Substituting Eq. (2) into the first of Egs. (1) and solving for p, we have

2 2
vg cos” B
-0 7 3)
g
Recalling that vg = 80ft/s, B8 = 60° and g = 32.2ft/s?, we can evaluate Eq. (3) to obtain
p = 49.69 ft.
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Problem 2.147 |

A telecommunications satellite is made to orbit the Earth in such a way as to appear to
hover in the same point in the sky as seen by a person standing on the surface of the
Earth.  Assuming that the satellite’s orbit is circular with radius rg = 1.385 x 108 ft and
knowing that the speed of the satellite is constant and equal to vy = 1.008 x 10* ft/s, determine the
magnitude of the acceleration of the satellite.

Solution

Using normal-tangential components, the acceleration of the satellite is

1)2

t+?ﬁn» (D

<>

a=7v
where v is the speed, p is the radius of curvature of the path, and where #i; and 1, are the unit vectors tangent
and normal to the trajectory, respectively. We have
v =vg =constant, v =0, and p=rg. (2)
Substituting Egs. (2) into Eq. (1), we have

2 2
Ve Vg

ﬁn = |a| = . (3)
Tg Tg

a=

Recalling that vy = 1.008 x 10* ft/s and r; = 1.385x 108 ft, we can evaluate the last of Egs. (3) to obtain

|d| = 0.7336 ft/s.
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Problem 2.148 |

A car travels along a city roundabout with radius p = 30 m. At the instant shown, the speed of the car
is v = 35km/h and the magnitude of the acceleration of the car is 4.5 m/s?. If the car is increasing its
speed, determine the time rate of change of the speed of the car at the instant shown.

Solution

Using normal-tangential components, the acceleration of the car can be expressed as
a =Vl + —n, 6]

where the unit vectors #; and #, are tangent and perpendicular to the path, respectively. Therefore, the
magnitude of the acceleration is

2

2\ 2
b= |a|2—(”—). 3)
0

Recalling that |a| = 4.5m/s?, v = 35km/h = 35(1000/3600) m/s, and p = 30 m, we can evaluate Eq. (3)
to obtain

b =3.213m/s’.
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Problem 2.149 |

A car travels along a city roundabout with radius p = 100 ft. At the instant shown, the speed of the car is
v = 25 mph and the speed is decreasing at the rate 8 ft/s>. Determine the magnitude of the acceleration of
the car at the instant shown.

Solution

Using normal-tangential components, the acceleration of the car can be expressed as

a =701+ —in, ey

where the unit vectors #; and #, are tangent and perpendicular to the path, respectively. Therefore, the
magnitude of the acceleration is

(@)

Recalling that v = —8ft/s?, v = 25 mph = 25(5280/3600) ft/s, and p = 100 ft, we can evaluate Eq. (2) to
obtain

|d| = 15.64ft/s>.
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Problem 2.150{

Making the same assumptions stated in Example 2.15, consider the map of the Formula 1 circuit at
Hockenheim in Germany and estimate the radius of curvature of the curves Siidkurve and Nordkurve (at
the locations indicated in gold).
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Photo credit: Courtesy of FIA

Solution

As was done in Example 2.15 on p. 95 of the textbook, we assume that by lateral G-force the Federation
Internationale de I’ Automobile (FiA) that compiled the map in the problem statement really meant to provide
a measurement of the acceleration normal to the path of the racing cars expressed in “units of g,” where g is
the acceleration due to gravity. With this in mind, at the Siidkurve the car is traveling at a speed of 150km/h
with an acceleration of 3.5g. Therefore, denoting by psiidkurve the radius of curvature of the Stidkurve, we
must have

2 1000 2
USiidk (1503550 m/s) —
(an)Sudkurve = ﬁ = Psidkurve = W Psiidkurve = 50.56 m.

Similarly, at the Nordkurve the car is traveling at a speed of 200 km/h with an acceleration of 3.4g. Therefore,
denoting by pnordkurve the radius of curvature of the Nordkurve, we have

2 1000 2
_ UNordkurve _ (2003655 m/s) — 9054
(a”)Nordkurve - = PNordkurve = ) PNordkurve = 7£.54 1.
PNordkurve 34(981 IIl/S )
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® Problem 2.151 ¢

The position of the piston C, as a function of the crank angle ¢ and the
lengths of the crank AB and connecting rod BC, is given by yc = Rcos¢ +
L/1—(Rsin$/L)? and xc = 0. Using the component system shown, express
u;, the unit vector tangent to the trajectory of C, as a function of the crank angle
¢ for 0 < ¢ < 2mrad.

Solution

Uy = —jfor0 < ¢ < mrad. iy = j form < ¢ < 2mrad. 1, is undefined at ¢ = 0 and ¢ = 27 rad
because the path of C folds back on itself at these two positions.
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Problem 2.152 |

radius of the loop.

An aerobatics plane initiates the basic loop maneuver such that, at the bottom of the loop, the plane is going
140 mph, while subjecting the plane to approximately 4g of acceleration. Estimate the corresponding

Solution

The acceleration of the airplane, expressed in normal tangential components, is

v2

a="70u;+ —p,

ey

where v is the speed of the airplane, 1, is the unit vector tangent to the path, i, is the unit vector normal to
the path, and p is the radius of curvature of the path. The change in speed as the airplane initiates the loop
maneuver is negligible, so that, right at the beginning of the maneuver, we can simplify Eq. (1) to

. v,
a = —1Uuy.
o
Since |d@| = 4g, from Eq. (2) we have
v? v?
4g=— = p=—.
P 4g

(@)

3)

Recalling that v = 140 mph = 140(5280/3600) ft/s and g = 32.2ft/s?, we can evaluate p to obtain

p = 327.3ft.
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Problem 2.153 |

The portion of a race track between points A (corresponding to x = 0) and B is part of a parabolic curve
described by the equation y = kx2, where « is a constant. Let g denote the acceleration due to gravity.

Determine « such that a car driving at constant speed vg = 180 mph experiences at A an acceleration
with magnitude equal to 1.5g.

y
B
Yo
A x
| d
Solution
Referring to the figure at the right, at point A the tangent and normal Y
directions to the trajectory coincide with the x and the y axes, respectively.
The expression of the acceleration in normal-tangential components is R
un
- . A v? ~ A s X
a=vu; +—uy, (D) Tﬁt o

where v is the speed and p is the radius of curvature. Since the speed is constant and equal to vy, we have
that v = 0 and Eq. (1) reduces to

2
i= 04, @)
P
We can determine p using Eq. (2.59) on p. 93 of the textbook, namely,
1+ dy/a0?]? L (2cx)?]? .
P T a2y dx?] P w

where, recalling that y = kxZ, we have used the fact that dy/dx = 2«xx and d?y/dx? = 2k. Substituting
the last of Egs. (3) into Eq. (2) gives

R 2/{1}3 .
a= 373 lin- 4)
[1+ (2xx)?]
Recalling that |a| = 1.5g for x = 0, from Eq. (4) we have
3g

2kvy=15g =3¢ = k= ®)

= —.
4vy

Recalling that g = 32.2ft/s? and v9 = 180 mph = 180(5280/3600) ft/s, we can evaluate the last of Egs. (5)
to obtain

K = 0.3465x 1073 ft L,
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Problem 2.154 |

The portion of a race track between points A (corresponding to x = 0) and B is part of a parabolic curve
described by the equation y = kx2, where « is a constant. Let g denote the acceleration due to gravity.

If k = 0.4x1073 ft~!, determine d such that a car driving at constant speed vo = 180 mph experiences
at B an acceleration with magnitude equal to g.

y
B
Yo
A ¥
| d
Solution
The expression of the acceleration in normal-tangential components is v‘}(
y
v2 0 / iy
a=7vi;+—lin, ¢)) " /B
0
where v is the speed and p is the radius of curvature. Since the speed is A
constant and equal to vg, v = 0 and Eq. (1) reduces to d *
2
- Vo A
i= -2, 2)
P
We can determine p using Eq. (2.59) on p. 93 of the textbook, namely,
1+ dy/do?? L 2cx)2]*? 5
P T a2y dx?] P w

where, recalling that y = kx2, we have used the fact that dy/dx = 2«xx and d?y/dx? = 2k. Substituting
the last of Egs. (3) into Eq. (2), setting the magnitude of the result equal to the specified value of g, and
letting x = d, we have

23 1 [(2k0\*3
O —p > d=o (K“") — 1. )
[1+ (2«d)?] 2k g

Recalling that k = 0.4x 1073 ft™!, vo = 180mph = 180(5280/3600) ft/s, and g = 32.2ft/s?, we can
evaluate the last of Egs. (4) to obtain

d = 831.0ft.
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Problem 2.155 |

The portion of a race track between points A (corresponding to x = 0) and B is part of a parabolic curve
described by the equation y = kx2, where « is a constant. Let g denote the acceleration due to gravity.

Suppose a car travels from A4 to B with a constant speed vg = 180 mph. Let |a@|min and |d@|max denote
the minimum and maximum values of the magnitude of the acceleration, respectively. Determine |d |y if
d = 1200 ft and |d|max = 1.5g.

Solution

The expression of the acceleration in normal-tangential components is

- .« A v2 A ﬁn d‘/ ﬁt
a=vu; +—up, (D) B
0 .
uﬂ
where v is the speed and p is the radius of curvature. Since the speed is Al by —
constant and equal to vg, v = 0 and Eq. (1) reduces to T vo d *
2
i=04,. @)
Jo
We can determine p using Eq. (2.59) on p. 93 of the textbook, namely,
3/2 213/2
1 + (dy/dx)? 1 + (2«x)
p= [ | = p= [ ] ; 3

|d2y/dx?| 2K

where, recalling that y = «xx2, we have used the fact that dy/dx = 2kx and d?y/dx? = 2k. Substituting
Eq. (3) into Eq. (2), we have

2/<v§ . =l 2KU(2) @
Un a| = .
[1+ (2/cx)2]3/2 [1+ (2/()6)2]3/2

a=

From the last of Egs. (4) we see that the magnitude of the acceleration is maximum at for x = 0, i.e., at 4
and becomes smaller as x increases. This implies that, for 0 < x < d,

- 2kv?2 .
|| min = . and  |@|max = 2KV 5)

[1+ (2cd)?]”?

Setting |d|max from the last of Egs. (5) equal to the specified maximum value of 1.5g, we have

2 _ _3 _ 3g
2kvg =1.5g =358 = =12 (6)
Yo
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Substituting the last of Egs. (6) into the first of Eqgs. (5), we then have that

N
|a|min =

3g
5 )
2|1+ (%)

Recalling that g = 32.2ft/s?, d = 1200ft, and vo = 180 mph = 180(5280/3600) ft/s, we can evaluate
Eq. (7) to obtain

|d | min = 21.95 ft/s>.
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Problem 2.156 |

An airplane is flying straight and level at a constant speed vg when it starts climbing along a path described
by the equation y = & + Bx3, where h and B are constants. Let g denote the acceleration due to gravity.
Determine the acceleration of the airplane at x = 0.

Solution
Referring to the figure on the right, at x = 0 the tangent and normal di- )|’
rections to the trajectory are parallel to the x and the y axes, respectively. Ungo
The expression of the acceleration in normal-tangential components is ‘ Ut
_"_’r vO
v2 h 7
- « A A 1
a=vut+;un, (1) s X

where v is the speed and p is the radius of curvature. Since the speed is constant and equal to vg, v = 0 and
Eq. (1) reduces to

2
a=204, ?)
P
We can determine p using Eq. (2.59) on p. 93 of the textbook, namely,
»73/2
[1+ (dy/dx)?]" [1+ (3827 X
P a2y ax?] - P= 6|Bx| ’ ®

where, recalling that y = 7 + Bx3, we have used the fact that dy/dx = 3x? and d?y/dx?> = 6Bx.
Substituting the last of Egs. (3) into Eq. (2), gives

6lBxlvg .

n- 4)
[1+ (38x2)2]*? !

a=

From Eq. (4), we see that for x — 0 the acceleration vanishes. In addition, we observe that, before beginning
to climb, the airplane is flying straight and level at constant speed so that its acceleration (right before
beginning the climb) is equal to zero. Hence, the answer to this problem is

a=0.
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Problem 2.157 |

An airplane is flying straight and level at a constant speed vg when it starts climbing along a path described
by the equation y = & + Bx3, where h and B are constants. Let g denote the acceleration due to gravity.

If B = 0.05x1073 m™2 and v remains constant, find vg such that the magnitude of the acceleration
of the airplane is equal to 3g for x = 300 m.

y
= %-ﬁ%vo
J
7
o}

h
X
Solution
The expression of the acceleration in normal-tangential components is Y iy,
. o v2 A _ﬁl_/ "ﬁt Vo
a="vUr + — Un, (1) \ 7
7
> X
where v is the speed and p is the radius of curvature. Since the speed is
constant and equal to vg, ¥ = 0 and Eq. (1) reduces to
2
i="24,. )
P
We can determine p using Eq. (2.59) on p. 93 of the textbook, namely,
3/2
3/2 2)2
o L1+ @yyax?] / Lo, [1+ (38277 )
a2y /dx?] 6Bxl

where, recalling that y = & + Bx3, we have used the fact that dy/dx = 3Bx? and d?y/dx?* = 6Bx.
Substituting the last of Egs. (3) into Eq. (2), gives

a=

6 2
|Bxlvg 373 Up. 4
[1+ (38x2)?]

Setting the magnitude of the vector @ in Eq. (4) equal to the specified value of 3g, we have

e[l + 3x2)2]?
s s Apxl ®

6|,3x|vg
[1 + (3/3x2)2]

Recalling that g = 9.81 m/s?, B = 0.05x1073m™2, and x = 300 m, we can evaluate the last of Egs. (5) to
obtain

vo = 900.7m/s.
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Problem 2.158 i

An airplane is flying straight and level at a constant speed vg when it starts climbing along a path described
by the equation y = & + Bx3, where h and B are constants. Let g denote the acceleration due to gravity.

If vg = 600km/h and B = 0.025x10~* m~2, determine the acceleration of the airplane for x = 350 m
and express it in the Cartesian component system shown.

y
= %-ﬁ%vo
J
7
o}

h
X
Solution
The expression of the acceleration in normal-tangential components is Y k. /v
Uy 0
a =i+ */p)iin, o _J_/ =
where v is the speed and p is the radius of curvature. Since the speed is h J .
constant and equal to vg, ¥ = 0 and Eq. (1) reduces to X
2
- Vo A
a=-"2 Up. )
p
We can determine p using Eq. (2.59) on p. 93 of the textbook, namely,
3/2 2 3/2
[1+ (dy/dx)?] [1+ (38x%)°]

o= p= 3)

[d2y/dx?] 6pxl
where, since y = h + Bx3, dy/dx = 3Bx? and d?y/dx? = 6Bx. Substituting the last of Egs. (3) into
Eq. (2) gives
6|Bx|v2

Pxvg 375 lin- “)
[1 + (3,3x2)2]
To express d via I and J, we need to write 11, in terms of 7 and j. Referring to the figure at the right of
Eq. (1), letting 6 be the angle orienting the tangent to the trajectory relative to the x axis, we have

a=

Uy, = —sinf1 4+ cosb J, %)
where, recalling that 8 = 0.025x10™#m~2 and x = 350 m,
d
0 = tan_l(d—y) —tan!(38x2) = 0 =42.58°, ©6)
X

Substituting Eq. (5) into Eq. (4) we have
6|/3x|v(2)
[1+ (38x2)2

Using the expression of @ in the first of Egs. (6), and recalling that 8 = 0.025x 1073 m~2, x = 350 m, and

vo = 600km/h = 600% m/s, we can evaluate Eq. (7) to obtain

a=

]3/2(—sin9f+cos9j). 7

a = (—39.407 + 42.88 /) m/s>.

This solutions manual, in any print or electronic form, remains the property of McGraw-Hill, Inc. It may be used and/or possessed only by permission June 25, 2012
of McGraw-Hill, and must be surrendered upon request of McGraw-Hill. Any duplication or distribution, either in print or electronic form, without the
permission of McGraw-Hill, is prohibited.



Dynamics 2e 219
Problem 2.159 |

A jet is flying at a constant speed vp = 750 mph while performing a constant 7
speed circular turn. If the magnitude of the acceleration needs to remain constant
and equal to 9g, where g is the acceleration due to gravity, determine the radius
of curvature of the turn. P
o
O
C
Solution
Expressed in normal tangential components, the acceleration of the airplane is
L. v
a=v1l; +— 1y, (1)
o

where v is the speed of the airplane, #; is the unit vector tangent to the path in the direction of motion, #,, is
the unit vector normal to the path and pointing toward the concave side of the path, and p is the radius of
curvature of the path. Since the speed is constant, v = 0 and Eq. (1) simplifies to

U2

a = —1in, 2
Recalling that |a| = 9g, from the above equation we have that
¥=— = p=_ 3)

Recalling that v = vg = 750 mph = 750(5280/3600) ft/s and g = 32.2ft/s?, we have

p = 4175 ft.
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® Problem 2.160 ¢

Particles A and B are moving in the plane with the same constant speed v, and their B
paths are tangent at P. Do these particles have zero acceleration at P? If not, do
A

these particles have the same acceleration at P? \
path of B

P
path of A

Solution

Without knowledge of the curvature for the two curves it is not possible to answer the question. If each
curve had zero curvature at P, then the acceleration of the particles at P would be equal to zero because the
particles are moving with constant speed. If the two curves at P had the same nonzero curvature, then the
acceleration of the two particles at P would be the same. If the curves had different nonzero curvature at P,
then the accelerations of the two particles would be different.
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Problem 2.161 |

Uranium is used in light water reactors to produce a controlled nuclear reaction for the generation of power.
When first mined, uranium comes out as the oxide U3QOg, 0.7% of which is the isotope U-235 and 99.3%
the isotope U-238. For it to be used in a nuclear reactor, the concentration of U-235 must be in the 3-5%
range. The process of increasing the percentage of U-235 is called enrichment, and it is done in a number
of ways. One method uses centrifuges, which spin at very high rates to create artificial gravity. In these
centrifuges, the heavy U-238 atoms concentrate on the outside of the cylinder (where the acceleration is
largest), and the lighter U-235 atoms concentrate near the spin axis. Before centrifuging, the uranium is
processed into gaseous uranium hexafluoride or UF¢, which is then injected into the centrifuge. Assuming
that the radius of the centrifuge is 20 cm and that it spins at 70,000 rpm, determine

(a) The velocity of the outer surface of the centrifuge.

(b) The acceleration in g experienced by an atom of uranium that is on the inside of the outer wall of the

centrifuge.
rotation axis
array of enrichment centrifuges centrifuge cross section
Photo credit: Courtesy of the Department of Energy
Solution

Part (a). Since the speed v and the angular speed w are related as v = wp, we have that the speed of points
on the outer surface of the centrifuge is

vV=po = v = 1466 m/s, €))

where we have used the fact that @ = 70,000 rpm = 70,000(27/60) rad/s and p = 20 cm = 0.2000 m.

Part (b). Under the assumption that the centrifuge is spinning with a constant angular speed, the only
component of acceleration of a point on the wall of the centrifuge will be the normal component. Hence, the
acceleration experienced by an atom at the inside outer wall of the centrifuge is

2 2 2
P CT) :%g = | a=1.09x10%g i,

P gp

where the unit vector #, always points from a point on the periphery of the centrifuge toward the center of the
centrifuge, and where we have used the expression of v in Eq. (1) along with the fact that @ = 70,000 rpm =
70,000(27/60) rad/s, p = 20cm = 0.2000m, and g = 9.81 m/s.
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Problem 2.162 |

Treating the center of the Earth as a fixed point, determine the magnitude of the
acceleration of points on the surface of the earth as a function of the angle ¢
shown. Use R = 6371 km as the radius of the Earth.

r
¢

Solution

Let w denote the angular speed of the Earth. Since the Earth undergoes one full revolution per day, the
angular speed w is given by
I rev 2 rad b4

= = = d . 1
© = Tday = 24h)(3600s/h)  43.200 29/8 1

Let p denote the distance between the point indicated on the figure and the axis of rotation of the Earth, i.e., a
point on the surface of the Earth characterized by the angle ¢ between the equator and the axis of rotation of
the Earth. Then, we have we

o = Rcos¢. 2)

Next we observe that under the assumption that the angular speed of the Earth is constant, the only component
of the acceleration of the point in question is the normal component. Hence, we must have

ld| = an = — = pw? = Rw?cos . ?3)

Recalling that R = 6371 km = 6,371,000 m, using the value of w in Eq. (1), Eq. (3) can be evaluated to
obtain

|a| = (33.69x107> cos ¢p) m/s”.
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Problem 2.163 |

An airplane is flying straight and level at a speed v9 = 150 mph and with a constant time rate of increase
of speed v = 20ft/s, when it starts to climb along a circular path with a radius of curvature p = 2000 ft.
The airplane maintains ¥ constant for about 30 s.

Determine the acceleration of the airplane right at the start of the climb and express the result in the
Cartesian component system shown.

Solution
Using normal-tangential components, the acceleration can be expressed as
02

a =701+ — i, ey

where the unit vectors #; and i, are parallel and normal to the path, respectively. At the bottom of the loop,
we have
;=1 and #, =]. 2)

Substituting Egs. (2) into Eq. (1), and recalling that at the start of the loop v = vg, we have

j 3)

Recalling that v = 20ft/s?, vg = 150mph = 150(5280/3600) ft/s, and p = 2000 ft, we can evaluate
Eq. (3) to obtain

a = (20.007 + 24.20 j) ft/s>.
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Problem 2.164 i

An airplane is flying straight and level at a speed vg = 150 mph and with a constant time rate of increase
of speed ¥ = 20 ft/s?, when it starts to climb along a circular path with a radius of curvature p = 2000 ft.
The airplane maintains v constant for about 30s.

Determine the acceleration of the airplane 25 s after the start of the climb and express the result in the
Cartesian component system shown.

Solution

Using normal-tangential components, the acceleration can be expressed as

v2

Jo
where the unit vectors 11, and #, are parallel and normal to the path, respectively.

Letting t = 0 be the time at which v = vg and recalling that v is constant, we can
write

a ="Vl + —n, €]

dv v t
V=— = dv=vdt = /dv:/i)dt = v =19+ VL. )
dt Vo 0
Substituting the last of Egs. (2) into Eq. (1), we have

vo + 01)%
+(0 )

a =iy Uy 3)
0

The problem can be solved by evaluating Eq. (3) for z = 25s as long as we are able to express #; and 1, at
t = 25sin terms of 7 and j. To do so, referring to the figure at the right of Eq. (1), we have that

U; =cosfi+sinfj and 1, =—sinf1 + cosh J. (D)
Substituting Egs. (4) into Eq. (3) we have:

(vo + 11)? (vo + 11)?
P P

Equation (5) implies that we will be able to provide the answer to the problem once we express 6 as a function
of time. To this end, again referring to the figure at the right of Eq. (1), we observe that

Ei=|:1')c059— sin@]i—i—[i}sin@—l— C089:|f. 5)

. 1 do 1
s=0p = s§=0p = —(vo+7t)= 7 = df = —(vo + vt)dt, (6)
P P

where we have used the fact that § = v and we have used the expression for v in the last of Egs. (2). Now,
observing that & = 0 for ¢ = 0, we can integrate the last of Egs. (6) as follows:

0 t l 1
/ do = / —(vo +01)dt = 6= —(vot + 30?). (7)
0 0P p
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Substituting the last of Egs. (7) into Eq. (5) we have

- 1 )t)? 1 .
a= {i} cos[—(vot + %mz)] — M sin|:—(v0t + %0[2)}} I
Y P p

-2
+ {i) sin[%(vot + %1’)12)} + w cos[%(vot + %1’)12)}} J. (8)

Recalling that v = 20ft/s?, vg = 150mph = 150(5280/3600) ft/s, and p = 2000 ft, we can evaluate
Eq. (8) for r = 25 s to obtain

a = (121.27 +230.0 J) ft/s*.
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Problem 2.165 i

An airplane is flying straight and level at a speed v9 = 150 mph and with a constant time rate of increase
of speed v = 20ft/s, when it starts to climb along a circular path with a radius of curvature p = 2000 ft.
The airplane maintains ¥ constant for about 30 s.

Determine the acceleration of the airplane after it has traveled 150 ft along the path and express the
result in the Cartesian component system shown.

Solution

Using normal-tangential components, the acceleration can be expressed as

v2

P
where the unit vectors 1, and 1, are parallel and normal to the path, respectively.

Letting s = 0 correspond to v = vy, recalling that ¥ is constant, and using the
chain rule, we can write

a=71v1;+ —in, ey

d v N
l}=v—v = vdv=vds = / vdv=/ vds = v2=v%—|—21}s. 2)
dS V0 0
Substituting the last of Egs. (2) into Eq. (1), we have
2 .
- . 2vs
azbu,+uun, 3)
0

Referring to the figure at the right of Eq. (1), we now observe that we can provide the solution to the problem
by evaluating Eq. (3) for s = 150 ft as long as we are able to express i, and i, for s = 150 ft in terms of 7
and j. To do so, we observe that

Uy =cosfi+sinf ] and 1, =—sinfi + cosb . 4
Substituting Egs. (4) into Eq. (3) we can then express the acceleration of the airplane as follows:

v% + 2vs v% + 208

a= |:1'} cos 6 — sin 9:| I+ |:1'J sin 6 + cos 6:| Jj. 5)

Equation (5) implies that we will be able to provide the answer to the problem once we express 6 as a function
of the path coordinate s. To this end, we observe that

s=60p = 0=", 6)
0
Substituting the last of Egs. (6) into Eq. (5) we have

- ) s v +20s . (s\]. .. (s vg + 20s s\ -
a=|vcos| —|————sin|— )|t +|vsin| - )+ ———cos|—]]|J. @)
o o o P P P
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Recalling that v = 20ft/s?, vg = 150mph = 150(5280/3600) ft/s, and p = 2000 ft, we can evaluate

Eq. (7) for s = 150 ft to obtain

d = (17.917 4 28.62 j) ft/s>.
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Problem 2.166 i

Suppose that a highway exit ramp is designed to be a circular _.——°B
segment of radius p = 130 ft. A car begins to exit the highway at -
A while traveling at a speed of 65 mph and goes by point B with a | /g .
speed of 25 mph. Compute the acceleration vector of the car as a
function of the arc length s, assuming that the tangential component

of the acceleration is constant between points A and B. o0
A
Solution
Using normal tangential components, we have that the acceleration is given by

where 11, and 1, are the unit vectors tangent and normal to the path, respectively, and where, letting v denote

the speed of the car,

v2

ar=0v and a, = —, 2)

P
where p is the radius of curvature of the path. The first of Eqgs. (2) implies that the change in speed is
completely due to the tangential acceleration. Since this component of acceleration is assumed to be constant,

the speeds at A and B are related via the following constant acceleration equation:

2 2 vp — Vi
Vg — Vg = 2a:(sp—s4) = ar= m- 3)

The expression for the speed in terms of arc length s can be found again using constant acceleration equations,
1.e.,

2 2
Vg — U
v2(s) = vi +2a;(s —s4) = v3(s) = vfl + SB—A(S —54). 4)
— 54
Combining Egs. (1)—(4), we can then write
R vZ — 2 1 vZ — v2
a=uﬁt+—|:vi+u(s—s,4):| Up. 5)
2(sp — 54) o SB — 54

Recalling that s4 = 0, v4 = 65mph = 65(5280/3600) ft/s, vp = 25mph = 25(5280/3600) ft/s, p =
130ft, and sp = p5 = (657) ft, we can express Eq. (5) as follows:

a = —(18.96t/s%) fi; + [(69.91 ft/s*)—(0.2917 s~%)s] il
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Problem 2.167 i

Suppose that a highway exit ramp is designed to be a circular _.——°B
segment of radius p = 130 ft. A car begins to exit the highway at -
A while traveling at a speed of 65 mph and goes by point B with |[g .
a speed of 25 mph. Compute the acceleration vector of the car as
a function of the arc length s, assuming that between A and B the
speed was controlled so as to maintain constant the rate dv/ds.

Solution

Using normal-tangential components, the acceleration has the form

1)2

t+?ﬁn’ (D

<>

a=7v

where v is the speed of the car and p is the radius of curvature of the path. To solve the problem, we need
to express both v and v as a function of s. We are told that the quantity dv/ds is constant. We begin by
determining this constant, which we denote by K. Since K = dv/ds we can separate the variables s and v
as follows:

UB — U4
SB =S4

vB SB
dv=Kds = / dv=/ Kds = vpg—v4=K@Gp—54) = K= 2)
v4 SA

Now that K is known, we repeat the integration process using generic upper limits of integration, that is,

v N
dv=Kds = / dv=/de = v—uvyg = K(s —s4). 3)
vy sS4
Using the expression for K in the last of Eqgs. (2), we have
v — v
v=vg+ BTG, )
SB — SA

To determine v as a function of s, we use the chain rule to write

dv . dv ds . dv
=77 = UZ%E = v=vE. &)
We know observe that v is given in Eq. (4) and dv/ds = K is given in the last of Egs. (2). Using these
consideration, we can go back to Eq. (1) and rewrite it as follows:

v

- VB —V VB — U4 . 1 VB — U 2
a= |:vA+u(s—sA)}uu,+—|:vA+u(s—sA)i| Up. (6)

SB — S4 SB — 5S4 Y SB — 54
Recalling that vy = 65mph = 65(5280/3600) ft/s, vy = 25mph = 25(5280/3600) ft/s, p = 130ft,

s4 =0, sp = pr/2 = 657 ft, we can write Eq. (6) as follows:

a = [(—27.391t/s%) + (0.08254s~2)s] 4,
+ [(69.91 ft/s*) — (0.4214572)s + (0.0006349 ft~"-s7%) %] 11,
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Problem 2.168 |

A water jet is ejected from the nozzle of a fountain with a speed vg = 12m/s.
Letting B = 33°, determine the rate of change of the speed of the water
particles as soon as these are ejected as well as the corresponding radius of B

curvature of the water path. ’_Q

Solution

L)

Using the normal-tangential component system shown in the figure at the right,

Yo
we can express the acceleration of a water particle as it is emitted from the o [P {
nozzle as follows: i, p

ﬁi’l

N A vZA V4
a=vu; +—1p, (D
P

where v = vy is the speed of the particle as it leaves the nozzle, i, is the unit vector tangent to the path, i,
is the unit vector normal to the path, and p is the radius of curvature of the path. We assume that, as soon as a
water particle leaves the nozzle, its motion is that of a projectile subjected only to the acceleration due to
gravity. Therefore, the acceleration in question must be equal to

a = g(—sinBu; + cos B iiy). ()
Comparing Egs. (1) and (2) we conclude that

2
Yo
gcos B’

v=—gsinf and p= (3)

where we have used the fact that v = vg. Recalling that vg = 12m/s, g = 9.81 m/s? and B = 33°, we can
evaluate the results in Egs. (3) to obtain

b =—5.343m/s> and p=17.50m.
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Problem 2.169 |

A water jet is ejected from the nozzle of a fountain with a speed vg. Letting 8 = 21°, determine vg so that
the radius of curvature at the highest point on the water arch is 10 ft.

Vo
Y

fQ

Solution

The water particles are in projectile motion after they are emitted % Uy
from the nozzle. Therefore, their acceleration is vertically downward i,

and equal to the acceleration due to gravity. At the highest point on B *g

the water arch the vertical component of the velocity of the water ’_Q

particles is equal to zero. As is the case in projectile motion, the
horizontal component is constant and therefore equal to the value at

the beginning of the motion, namely, vg cos . Because this component of velocity is positive and it is the

only nonzero component at the instant considered, vg cos f is also the value of the speed:

v = vg cos f.

Recalling that speed and radius of curvature are related through the relation a,, = v?/p and observing that at
the highest point on the water arch the normal direction coincides with the direction of gravity, we have that
a, = g, which implies

2 2
v vg cos” 0g
g=— = g=—0 = Vg = >
P P cos?

= vo = 19.221t/s,

where we have used 8 = 21°, g = 32.2ft/s?, and p = 10ft.
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Problem 2.170 |

A car traveling with a speed v9 = 65 mph almost loses contact with the ground when it reaches the top of
the hill. Determine the radius of curvature of the hill at its top.

Solution

Using normal-tangential components, the acceleration of the car is T

2 Vo
o . v L 3 X
a=0t+ —1y,, (1) /—gﬁﬁt

Y i,

where v is the speed of the car, p is the radius of curvature of the path, and *g
u; and 1, are the unit vectors tangent and normal to the path, respectively.
The speed of the car is constant and equal to vg. Therefore, Eq. (1) simplifies to

a=—1p. 2)

If the car were to lose contact with the ground, the car would be in projectile motion and its acceleration
would be equal to that due to gravity. At the top of the hill the tangent to the path is horizontal and the normal
direction coincides with that of gravity. Therefore, in view of Eq. (2), at the top of the hill we would have

v v

p g

Recalling that vg = 65 mph = 65(5280/3600) ft/s and g = 32.2 ft/s?, we can evaluate p to obtain

p = 282.2ft.
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Problem 2.171 |

A car is traveling at a constant speed over a hill. If, using a Cartesian coordinate system with origin O
at the top of the hill, the hill’s profile is described by the function y = —(0.003 m~")x2, where x and
y are in meters, determine the minimum speed at which the car would lose contact with the ground at
the top of the hill. Express the answer in km/h.

Solution

Using normal-tangential components, the acceleration of the car is T

2 Vo
o . v L 3 X
a=0t+ —1iy,, (1) /—%ﬁt

Y i,

where v is the speed of the car, p is the radius of curvature of the path, and ¢g
u; and 1, are the unit vectors tangent and normal to the path, respectively.
For a car moving at constant speed, Eq. (1) simplifies to

12

a=—1p. 2)
P
We will denote by vpi, the minimum speed at which the car loses contact with the ground. If v were to
exceed vpin, the car would be in projectile motion and its acceleration would be equal to that due to gravity.
At the top of the hill the tangent to the path is horizontal and the normal direction coincides with that of
gravity. Therefore, in view of Eq. (2), for v = vpyy, at the top of the hill, i.e., for x = 0, we would have

2

i A (Ve

a=gi, = g= —p|“‘“‘0 = Umin = vV &P|x=0. 3)
xX=

Recalling that the profile of the hill is y = —(0.003 m~!)x2, and recalling that

[1 + (dy/dx)?]*?

= , 4
we have 5 3/2
[1+ (0.006000m™")"x?] 1
= = (0)=— 5
p) 0.006000 m—" PO) = 5506000 m—1 ©)

Substituting the last of Eqs. (5) into the last of Eqgs. (3) and recalling that g = 9.81 m/s, we have

Umin = 145.6km/h,

where, as requested in the problem statement we have expressed the final answer in km/h.

This solutions manual, in any print or electronic form, remains the property of McGraw-Hill, Inc. It may be used and/or possessed only by permission June 25, 2012
of McGraw-Hill, and must be surrendered upon request of McGraw-Hill. Any duplication or distribution, either in print or electronic form, without the
permission of McGraw-Hill, is prohibited.



234 Solutions Manual

Problem 2.172 i

A race boat is traveling at a constant speed vop = 130 mph when it performs a turn
with constant radius p to change its course by 90° as shown. The turn is performed
while losing speed uniformly in time so that the boat’s speed at the end of the turn is
vy = 125 mph. If the maximum allowed normal acceleration is equal to 2g, where g
is the acceleration due to gravity, determine the tightest radius of curvature possible
and the time needed to complete the turn.

Solution

Let pmin denote the tightest radius of curvature. The normal acceleration is a, = v2/p. If the boat turns with
a constant radius of curvature p = ppin, then the maximum normal acceleration occurs where the speed is
maximum. Since v,y = Vo (the boat’s maximum speed is at the start of the turn), allowing a;, to take on its
maximum allowed value of 2g, we have

2¢ = V3/Pmin =  Pmin = v3/(28). 1)
Recalling that vy = 130 mph = 130(5280/3600) ft/s and g = 32.2ft/s?, from the last of Eqgs. (1) we have

Pmin = 564.5 ft.

To determine the time needed to complete the turn, we begin by recalling that
the speed decreases uniformly in time, i.e., v = a; = constant, where a; is the
tangential component of acceleration. Let s be the path coordinate, and let sg
and s7 be the values of s at the beginning and the end of the turn, respectively.
Since the boat travels over a quarter of a circle with radius ppi, we have

Pmin

s =8¢
Sf—S0 = %ermin = Sy —s80 = Jrv%/(4g), 2) Y Prmin C
where we have used the last of Egs. (1). Next, we can write
dv sy vy
a;=v— = ai;ds=vdv = / a,ds:/ vdv. 3)
ds S0 Vo

Recalling that a; is constant and carrying out the integration in the last of Egs. (3), we have

2g(v2 — vg)
ar(sy —s0) = 307 —v)) = ar=—t5—,
0

“)

where we have used the expression for sy — s¢ in the last of Egs. (2). Now we denote by 7o and 77 the time
instants corresponding to s = so and s = sy, respectively. Then, recalling again that a; is constant and using
constant acceleration equations, we have

2 2

vf — Vg mvg(vy — vo) Vg
= tr—t = lr—to=—" = Ilr—ly= = -
vy = vo +az(ty —to) f—lo a £ zg(vj%_vg 2g(vfr + vo) ©)

Observing that 77 — 19 is the time needed to perform the turn, recalling that g = 32.2 ft/ s2, v9 = 130mph =
130(5280/3600) ft/s, and vy = 125mph = 125(5280/3600) ft/s, we can evaluate the last of Egs. (5) to
obtain

tr —tg = 4.742s.
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Problem 2.173 |

A race boat is traveling at a constant speed vg = 130 mph when it performs a turn
with constant radius p to change its course by 90° as shown. The turn is performed
while losing speed uniformly in time so that the boat’s speed at the end of the turn is
vy = 116 mph. If the magnitude of the acceleration is not allowed to exceed 2g, where
g is the acceleration due to gravity, determine the tightest radius of curvature possible
and the time needed to complete the turn.

Solution
Using normal tangential components, the acceleration of the boat is given by
d=a;l; + antn, (D

where 11; and 11, are unit vectors tangent and normal to the path. Denoting by pmin the minimum value of the

radius of curvature, a is given by

1)2

an = ; 2

Pmin

where v is the speed of the boat. The tangential acceleration a; is constant. Therefore, applying constant
acceleration equations, we have

b/
v} — 0§ =2a;(sy —s0) = vjzr — v =24, (Epmin): 3)

where sy — 5o = (7/2)pmin is the distance covered by the boat along its path while performing the turn.
Solving the above equation for a;, we obtain

U2 . '02
o= % @
T Pmin

The magnitude of the acceleration must not exceed the value 2g. Recalling that |d| = {/a? + a2, we can
write a2 + a? = 4g2, which, using Eqgs. (2) and (4), gives

s (-

v 0 1 1 2

20 + f2 5 = 4g2 = Pmin = 2—\/1)3' + = (v} — v(z,) . ®))
Pmin 7T Pmin g T

Recalling that vg = 130 mph = 130(5280/3600) ft/s, vy = 116 mph = 116(5280/3600) ft/s, and g =
32.2ft/s%, we can evaluate the last of Egs. (5) to obtain

Pmin = 565.7 ft.

We denote the time needed to perform the turn by ¢y — 7. Because a; is constant, we must have vy =
vo + a¢(ty — to), which, using Eq. (4) and the last of Egs. (5), after simplification, gives

b4 1 2
tr—tg=———Jvd+ =2 —v3)> = |1 =4.926s,
F =l 2g(vf+vo)\/v0+n2(vf %) s :

where we have used fact that g = 32.2ft/s?, vo = 130 mph = 130(5280/3600) ft/s, and vy = 116 mph =
116(5280/3600) ft/s.
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Problem 2.174 |

A truck enters an exit ramp with an initial speed vg. The ramp is a circular arc g ——-._.
with radius p. Derive an expression for the magnitude of the acceleration of the
truck as a function of the path coordinate s (and the parameters vg and p) if the
truck stops at B and travels from A to B with a constant rate of change of the
speed with respect to s.

d A

Solution
Using normal-tangential components, the acceleration of the truck is

2
d= v+ —ln, 6]
where v is the speed of the truck, p is the radius of curvature of the path, and where 1, and #,, are the unit
vectors tangent and normal to the path, respectively. The problem statement states that the quantity dv/ds is
constant. Letting « denote the constant in question, we can then write

Kk =dv/ds = «kds=dv. 2)

Keeping in mind that the truck moves along a circular arc of radius p, let s4 = 0 and sp = pn/2 be the
values of the path coordinate s at A and B, respectively. Also, let v4 = vg and vp = 0 be the values of
speed for s = s4 and s = sp, respectively. Then, we can integrate the last of Eqgs. (2) as follows:

21)()

om/2 0
/ kds = [ dv = %Kpn =—v9 = Kk=-——". 3)
0 v, p

Now let v be the value of speed corresponding to the generic value s of the path coordinate. Then, substituting
the last of Eqgs. (3) into the last of Egs. (2), we can integrate again as follows:

52 2 2
/ —ﬂds—/ dv = —ﬂs=v—v0 = v=v0—ﬂs. 4)
0 np 7P

Now we recall that, using the chain rule, we can write

d dvd d 2 2
) vds . v . vo( Vo ) 5)

T dr  dsdt = U:Ev = o

where we have used the expression for v in the last of Egs. (4), as well as the expression for k = dv/ds in
the last of Egs. (3). Referring to Eq. (1), we have that |a| = /02 + (v2/p)2. Therefore, using the last of
Egs. (4) and the last of Egs.(5), after simplification, we have
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Problem 2.175 |

A jet is flying straight and level at a speed v9 = 1100km/h when it turns to
change its course by 90° as shown. In an attempt to progressively tighten the
turn, the speed of the plane is uniformly decreased in time while keeping the
normal acceleration constant and equal to 8g, where g is the acceleration due
to gravity. At the end of the turn, the speed of the plane is vy = 800km/h.
Determine the radius of curvature ps at the end of the turn and the time 75 that
the plane takes to complete its change in course.

Solution

Using normal-tangential components, the acceleration of the jet is

_ v2
a=vu;+ —1ip, (1)
o

where v is the speed of the jet, p is the radius of curvature of the path, and where #; and 1,, are the unit
vectors tangent and normal to the path, respectively. The term v2/p in Eq. (1) is the normal component of the
acceleration. Since this component of the acceleration is constant and equal to 8¢, at the end of the turn we
can write

vi/pr =8¢ = pr=v7/(8g) = |pr=6292m, )

where we have used the fact that vy = 800 km/h = 800(1000/3600) m/s and g = 9.81 m/s>.

Now, we need to relate the speed to the fact that the plane undergoes a change
of course of 90°. Referring to figure at the right, let C(¢) denote the center of
the circle tangent to the path at time ¢. Also, let 8(¢) be the orientation of the
line connecting C(¢) to the jet at time ¢. As the jet undergoes a change of course
of 90°, 6 also goes from 0 to 90°. In addition, the angular velocity 6§ describes
the time rate of change of the orientation of the jet, which is the angular velocity
of the unit vectors i, and 7. This implies that, for 0 < ¢ < ¢,

v =0p. 3)
Since a, = v?/p = 8g, we also have p = v?/(8g), which, combined with Eq. (3), gives

_ 8¢
=

b

“

Now, we enforce the condition that the speed is decreased uniformly in time. This implies that v = a; =
constant, so that, using constant acceleration equations, we write

UV = Vg + da¢t. 5

Substituting Eq. (5) into Eq. (4), and recalling that 0=d 0/dt, we have

de 8g 8g r 8g /2
— = = df=—-—dt = ———dt = do. (6)
dt Vo + ast vo + ast 0 Vo -+ast 0
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Carrying out the above integration, we have

8 agt
—gln(l + ’—f) =T 7
a; Vo 2
Because a; is constant, we must have a; = (vy — vg)/y, which, upon substituting into Eq. (7), gives
8gtr Vf — Vo T w(vy — vo)
—n(l+>—)== = tyr=——. 8
Vf — Vo n( + Vo 2 4 16g In(vy /vo) ®)

Recalling that g = 9.81m/s?, ve = 800km/h = 800(1000/3600) m/s, and vo = 1100km/h =
1100(1000/3600) m/s, from the last of Egs. (8) we have

tr = 5.238s.
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Problem 2.176 |

A car is traveling over a hill with a constant speed vg = 70 mph. Using the Cartesian coordinate system
shown, the hill’s profile is given by the function y = —(0.0005 ft~!)x2, where x and y are measured
in feet. At x = —300 ft, the driver applies the brakes, causing a constant time rate of change of speed
0 = —3ft/s? until the car arrives at O. Determine the distance traveled while applying the brakes along
with the time to cover this distance. Hint: To compute the distance traveled by the car along the car’s path,
observe that ds = \/dx2 + dy2 = /1 + (dy/dx)? dx, and that

/\/1 T C2x2dx = 3\/1 T C2x2 4 %ln(Cx +V1 +C2x2).

y
Vg dy‘
—> ds o X
L dx
Solution
Using normal-tangential components, the acceleration of the car is Y
5 Vo dy ‘
> A [N —> ds o ¥
a=vur+ —up, 1) =
P s
L dx |

where v is the speed of the car, p is the radius of curvature of the path, and

where 1, and #, are the unit vectors tangent and normal to the path, respectively. Let tg = 0 the time at
which v = vg and 77 the time at which the car arrives at O. Using the path coordinate s (see figure at the
right), we denote by d = sy — s the distance traveled between 79 and #7. Since a; = v is constant, we can
apply constant acceleration equations to write

1
d = volty + %att} = iy = —a—(vo + ,/v(z) + 2atd). 2)
t

Recalling that a, = —3 ft/s> < 0, we see that v > ,/vg + 2a;d. This implies that there are two positive
real roots for 7. The physically acceptable root is the smaller of the two, which corresponds to when the car
arrives at O for the first time after applying the breaks. To interpret the second root we need to keep in mind
that the car is still traveling to the right when it arrives at O for the first time. Hence, if a; < 0 is maintained
after the car arrives at O, the car would keep slowing down while traveling to the right until stopping and
then to is would travel back and reach O a second time. For the purpose of the present calculation, we are
only interested in the first time that the car arrives at O, which is

t =—ait(vo—\/v§+2a,d>. 3)

All the quantities in Eq. (3) are known except for d, which is one of the unknowns of the problem. Hence,
we now determine ¢ and then we will use Eq. (3) to determine #7. One way to obtain d is to realize that

Sr
d— / ds. @)
S0
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ds = \/dx? + dy?2. ®)

Since the trajectory of the car is given in the form y = y(x), we have dy = (dy/dx) dx, so that Eq. (5)
implies that ds = /1 + (dy/dx)? dx, and Eq. (4) can therefore be rewritten as

d = /Xf V1+ (dy/dx)?dx, (6)

0

From the problem figure, we have that

where xo = —300ft and xy = 0. Now we recall that y = —(0.0005 ft1)x? so that we can write
dy/dx = —Cx, where C = 0.001000 ft—!. Hence, we can write Eq. (6) as follows:

xXf 1 xXr
d = / V1+C2x2dx = d= [%\/1 T C2x2 %ln<Cx +V1+ c%ﬂ)}
X0 X0
1
= d=-2J1+ 03— n(Cxo+\/1+C22). @
2 2C
where we have accounted for the fact that xy = 0. Substituting the last of Egs. (7) into Eq. (3), we have

by 1
vo + \/vg —2a,[?°,/1 +C2a2+ Eln(Cxo + 1+ Cng)]}. ®)

Recalling that xo = —300ft, vg = 70 mph = 70(5280/3600) ft/s, C = 0.001000ft™', and a, = —3 ft/s>,
we can evaluate the last of Egs. (7) and Eq. (8) to obtain

1

tr = ——
S a

d =304.4ft and 1y =3.106s.
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Problem 2.177 |

Recalling that a circle of radius R and center at the origin O of a Cartesian Y x24 2= g2

coordinate system with axes x and y can be expressed by the formula x2 4 y? =

R?, use Eq. (2.59) to verify that the radius of curvature of this circle is equal to R

R. 0 N
Solution

Equation (2.59) on p. 93 of the textbook tells us that, given a curve of the form y = (x), where x and y are
Cartesian coordinates, then the radius of curvature of the curve as a function of x is

(1 + (dy/dx)?]/?
 |d2y/ax?|

ey

To solve the problem we need to determine the quantities dy /dx and d?y /dx? for a circle. To do so, we start
from the given equation for a circle with center at the origin and radius R, i.e., x? + y? = R?. Differentiating
this expression with respect to x, we have

2w+ 2y P @y _ X @)
X — = _— =
Y dx dx y
Taking the derivative of Eq. (2) with respect to x, we have
d? 1 x d d? x2 +y?
So=—mt 5t s S5 =0 3)
dx? y  y2dx dx? y3

where we have used the last of Egs. (2) to obtain the last of Egs. (3). Substituting the last of Egs. (2) and the
last of Egs. (3) into Eq. (1), we have

1 2,,273/2 2 213/2 .3 2 213/2
p:[+;€/y2] [ST o 2+y]2 }y3¢ IR £ 2+y]2 W
%%+ 57| [+ 52| [y [x% + 2|
Recalling that xZ 4+ y? = R?, the last of Eqs. (4) gives
R3
p=ms = |p=R 5)
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® Problem 2.178 ¢

A particle P is moving along a path with the velocity shown. Discuss in detail whether or not there are
incorrect elements in the sketch of the polar component system at P.

Solution

The unit vectors 1, and #ig are both incorrect. The unit vector i, must be oriented along the radial line r
and point away from the origin. The unit vector /g must be oriented perpendicular to #, and pointing in the
direction of increasing 6.

June 25, 2012
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® Problem 2.179 ¢

A particle P is moving along a path with the velocity shown. Discuss in detail whether or not there are
incorrect elements in the sketch of the polar component system at P.

Solution

Since 119 is perpendicular to the radial line connecting P to O and it is directed in the direction of increasing
0, the unit vector i is oriented correctly. The unit vector 7, is parallel to the radial line connecting P to O,

but it is pointing toward O and this is incorrect.

June 25, 2012
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® Problem 2.180 ¢

A particle P is moving along a path with the velocity shown. Discuss in detail whether or not there are
incorrect elements in the sketch of the polar component system at P.

path of p/

Solution

The unit vector #, is oriented correctly, but &1y must be oriented opposite to the direction shown.
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® Problem 2.181 ¢

A particle P is moving along a circle with center C and radius R in the direction shown. Letting O be the
origin of a polar coordinate system with the coordinates r and 8 shown, discuss in detail whether or not
there are incorrect elements in the sketch of the polar component system at P.

Solution

Both 11, and iy are oriented as they should be.
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Problem 2.182 |

A radar station is tracking a plane flying at a constant altitude with )
a constant speed vg = 550 mph. If at a given instant r = 7 mi and ‘
6 = 32°, determine the corresponding values of 7, 8, #, and 6.

Solution

Referring to the figure at the right, the unit vector i described the P 0,
direction of the airplane. Hence, we can give the following form to
the velocity v of the airplane:

U =uvpl. (1)

Using the polar component system with unit vectors 1, and iig, the
velocity of the airplane can also be written as

3 =i, + r6 . ()

In order to compare the expressions for v in Egs. (1) and (2), we
observe that the unit vector 7 can be written in terms of #, and tig as 7 = cos 6 1, — sin 6 tig, so that Eq. (1)
can be rewritten as

U = vgcos B i, —vgsinbiig. 3)

Equating Eq. (2) and Eq. (3) component by component, we have
F =vgcosf and ro = —vosinfiiy = 7 =uwvgcosf and 0 = —(vo/r)siné. 4)

Recalling that vg = 550 mph = 550(5280/3600) ft/s, § = 32°, and r = 7mi = 36,960 ft, we can evaluate
the last two of Eqgs. (4) to obtain

F=684.1ft/s and 6 = —0.01157rad/s.

Denoting the acceleration of the airplane by a, we have a = 0 because the airplane is flying at constant
speed on a straight path. Therefore, recalling the expression of the acceleration in polar coordinates, we have

(F—r6) i, + (0 + 210 ity = F—r62=0 and rf+2i0 =0. (5)

Solving the last two of Eqs. (5) for # and 6 and using the expressions for 7 and 6 in the last two of Egs. (4)
we have )
F= (v(z)/r) sin@ and 6 = (vo/r)?sin(26), (6)

where we have used the following trigonometric identity: 2sinf cosf = sin(260). Recalling again that
v = 550 mph = 550(5280/3600) ft/s, 8 = 32°, and r = 7mi = 36,960 ft, we can evaluate Egs. (6) to
obtain

F = 4.944ft/s> and 6§ = 0.0004281 rad/s>.
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Problem 2.183 |

A basketball moves along the trajectory shown. Modeling the motion of the ball as a projectile motion,
determine the radial and transverse components of the acceleration when 8 = 65°. Express your answer in
SI units.
y path
-
0
0, X
Solution

Modeling the motion of the ball as projectile motion, the acceleration
of the ball is equal to the acceleration due to gravity g directed in the
negative y direction. Referring to the figure at the right, we have

a=-g]. ey

The unit vectors of the polar coordinate system given in the problem
statement are

Ur =cosfi+sinf ] and tig=—sinf7+cosbj. (2)
The radial and transverse components of the acceleration are given by
ar =5-72, and ag =a-ﬁ9.

Substituting Egs. (1) and (2) into Egs. (3), we have

ar = —gsinf and ag = —gcosb.

Recalling that g = 9.81 m/s? and 6 = 65°, we can evaluate Egs. (4) to obtain

ar = —8.891m/s’> and ap = —4.146m/s>.

3)

“)
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Problem 2.184 |

At a given instant, the merry-go-round is rotating with an angular velocity @ = 20 rpm while the child is
moving radially outward at a constant rate of 0.7 m/s. Assuming that the angular velocity of the merry-go-
round remains constant, i.e., « = 0, determine the magnitudes of the speed and of the acceleration of the
child when he is 0.8 m away from the spin axis.

Solution

The child’s velocity is v = 7 i, + ré g, where 7 = 0.7m/s and 6 =w= 20rpm = 20(27/60) rad/s.
Hence, for r = 0.8 m, we have

v=1[3|=i2+r202 = |v=18l6m/s. (1)

The child’s acceleration is a = (¥ — réz) Uy + (ré + 2r'9) tlg. Since we have 6 =a=0andF =0, the
magnitude of the acceleration is

3| = \/(_réZ)Z + i) = | |a| =4.573m/s%. 2)
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Problem 2.185 |

At a given instant, the merry-go-round is rotating with an angular
velocity @ = 18 rpm, and it is slowing down at a rate of 0.4 rad/s.
When the child is 2.5 ft away from the spin axis, determine the
time rate of change of the child’s distance from the spin axis so
that the child experiences no transverse acceleration while moving
along a radial line.

Solution

Using polar coordinates, the transverse component of acceleration is
ag = ré + 270,

Setting agy equal to zero and solving for 7, we have

ré

F=——

20°

ey

2

Recalling that f=w =18 rpm = 18(27/60) rad/s, and 6 =a=-04 rad/s?, we can evaluate i for

r = 2.5 ft to obtain

i = 0.2653 ft/s.
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Problem 2.186 |

At a given instant, the merry-go-round is rotating with an angular ke
velocity @ = 18 rpm. When the child is 0.45 m away from the a
spin axis, determine the second derivative with respect to time of
the child’s distance from the spin axis so that the child experiences
no radial acceleration.

Solution

Using polar coordinates, the transverse component of acceleration is
ag = i —ré2. (1)
Setting a, equal to zero and solving for i, we have
i =rb>. )

Recalling that 6=w=18 rpm = 18(27/60) rad/s, we can evaluate # for » = 0.45 m to obtain

i =1.599m/s’.
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Problem 2.187 |

A ball is dropped from rest from a height 4 = 5 ft. If the distance d = 3 ft, determine y

the radial and transverse components of the acceleration and the velocity of the ball
when the ball has traveled a distance //2 from its release position. , .
0
0, X
d
Solution
The acceleration of the ball is constant and equal to Y
a=-gj. 1
h
Since the acceleration is constant and the motion of the ball is rectilinear, we can apply
constant acceleration equations and obtain the velocity of the ball after the ball has .
dropped a distance /2. This gives
v =—+/ghj. ()

To obtain the radial and transverse components of the velocity and acceleration of the ball we can now
compute the dot-product of the vectors v and @ with the unit vectors i, and 11y of the polar coordinate system
shown. The expressions for 11, and tig in terms of the unit vectors 7 and  are

Ur =cosfi+sinfj and tig=—sin617+ cosb J. 3)
Hence, the radial and transverse components of the velocity are
v, =0V-u, and vy =V -Uy. (D)
Substituting Egs. (2) and (3) into Eqgs. (4) we have
v = —/ghsinf and vy = —+/ghcosb. (5)

In order to evaluate the components we have just determined, we need to compute the angle 6 at the location
of interest, i.e., after the ball has dropped a distance 4/2. Since //2 is also the distance from the ground at
the instant considered, then we have that
h
6 =tan" ! — ). 6
(57) ©

For the acceleration, we can proceed in a similar manner. That is, we first observe that
ar=d-u, and ag=da-1ug. @)
Then, substituting Egs. (1) and (3) into Egs. (7) we have
ar =—gsinf and ag = —gcosh. ()

Recalling that g = 32.2ft/s?, h = 5ft, and d = 3 ft, and recalling that @ is given by Eq. (6), we can evaluate
Egs. (5) and (8) to obtain

v, = —8.123ft/s, vy = —9.748ft/s, a, = —20.61ft/s*>, and ap = —24.74ft/s>.
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Problem 2.188 |

The polar coordinates of a particle are the following functions of time:
r=rosin(t3/t®) and 6 = 6y cos(t/7),

where rg and 0y are constants, T = 1s, and where ¢ is time in seconds.
Determine r¢ and 6y such that the velocity of the particle is completely in
the radial direction for # = 15s and the corresponding speed is equal to
6m/s.

Solution

In polar coordinates, the velocity vector is given by
V=7, +r0ig. 1)

Using the expressions for r and 8 given in the problem statement, we can rewrite Eq. (1) as follows:

. 3rot? BN, robo . (PN . (1) .
V= ——3—cos| 5 |ur — ——sin| — |sin| — ) uy. )
T T T T T

Recalling that t = 1, fort = 155, Eq. (2) reduces to

U = (403.8s ro i, — (0.5211 5 robp tig. (3)

From Eq. (3) we conclude that in order for the velocity to be completely in the radial direction, we must have

6o = 0. “)

Substituting the result in Eq. (4) into Eq. (2) we have

L 3rot? 3\ . N 3rot? 3 N 30 5)
v=——cos| —< |u v = cos| — ro= ——————.
3)°7 73 73 312|cos(t3/73)|

Enforcing the condition that v = 6 m/s for = 15, and recalling that 7 = 1's, we can evaluate the last of
Egs. (5) to obtain

ro = 0.01486 m.
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Problem 2.189 {

A space station is rotating in the direction shown at a constant rate
of 0.22rad/s. A crew member travels from the periphery to the
center of the station through one of the radial shafts at a constant
rate of 1.3 m/s (relative to the shaft) while holding onto a handrail
in the shaft. Taking # = 0 to be the instant at which travel through
the shaft begins and knowing that the radius of the station is 200 m,
determine the velocity and acceleration of the crew member as a
function of time. Express your answer using a polar coordinate
system with origin at the center of the station.

0.22rad/s

Solution

3]

We will use a polar coordinate system with origin at O, the center
of the station. The transverse coordinate 6 is measured from a fixed
direction. The astronaut moves in the 6 plane and r and 6 are his
coordinates. The velocity and acceleration of the astronaut are

0.22rad/s

U =7, +r0ig (1)
and : T
i=F—r0®i, + (6 +2r0) fip. 2) g
Since 7 = —1.3m/s = const. and § = 0.22rad/s = const.,

Eq. (2) simplifies to
a=—r0%0, +2r0 . 3)

To evaluate the expressions for ¥ and a we need r is as a function of time. Since 7 is constant, r as a function
of time is
r=ro+rt, @

where r9 = 200 m is the radial position of the astronaut at 1 = 0. Using Eq. (4), we can rewrite Eqs. (1)
and (3) as follows:

=7, + (ro+7t)0ilg and a = —(ro + r1)0% iy + 270 1. (5)

Recalling that 7 = —1.3m/s, 6 =0.22 rad/s, ro = 200 m, we can express Egs. (5) as

¥ = (=1.3m/s) @i, + [44.00m/s — (0.2860 m/s)¢] g,
i = [9.680m/s* + (0.06292 m/s%)] 1, — (0.5720 m/s?) .
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Problem 2.190 {

Solve Prob. 2.189 and express your answers as a function of posi-
tion along the shaft traveled by the astronaut.

0.22rad/s

Solution

3]

We will use a polar coordinate system with origin at O, the center
of the station. The transverse coordinate 6 is measured from a fixed
direction. The astronaut moves in the 6 plane and r and 6 are his
coordinates. The velocity and acceleration of the astronaut are

0.22rad/s

U =Fi,+rfig (1)
and ‘ ﬁec /
i=F—r0®i, + (6 +2r0) fip. 2) g%
Since 7 = —1.3m/s = const. and § = 0.22rad/s = const.,

Eq. (2) simplifies to
a=—r0%0, +2r0 . 3)

Recalling that ¥ = —1.3 m/s and 6 =0.22 rad/s, we can express Egs. (1) and (3) as

U= (=1.3m/s) @, + (0.2257")r iy,
d = —(0.04840s7)r it, — (0.5720m/s?) dig.
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Problem 2.191 |

During a given time interval, a radar station tracking an airplane records
the readings / ‘
r(t)
. _ . u,(t)
T(z) = [449.8 cos O(¢) + 11.78 sin A(¢)] mph, o\ 4 ©
r(t)6(t) = [11.78 cos O(¢) — 449.8 sin (¢)] mph,  S—

where ¢ denotes time. Determine the speed of the plane. Furthermore,
determine whether the plane being tracked is ascending or descending
and the corresponding climbing rate (i.e., the rate of change of the
plane’s altitude) expressed in ft/s.

Solution

In polar coordinates, the radial and transverse components of the velocity are v, = 7 and vg = ré,
respectively. We observe that the problem statement provides v, and vg as a function of time. With this in

mind, we recall that the speed is given by v = /vZ + vg. Hence, using the information provided, we have

v? = vf + vg
=2 + (rf)?
= [(449.8) cos® 6 + (11.78)* sin> 6 + 2(449.8)(11.78) sin 6 cos § | mph
+ [(11.78)* cos® 6 + (449.8) sin® 6 — 2(449.8)(11.78) sin 6 cos 6] mph. (1)

Using the trigonometric identity sin? 8 + cos? 8 = 1, we can simplify the above expression to

v? = [(449.8)* + (11.78)*]mph = | v = 450.0 mph. )

Letting y denote the elevation of the airplane, we have that y = r sin . Taking the derivative of y with
respect to time we have

y = Fsinf + rfcosb
= [(449.8) sin A cos 6 + (11.78) sin® O + (11.78) cos?  — (449.8) sin # cos ] mph
= 11.78 mph.

Recalling that 1 mph = (5280/3600) ft/s, we have that

The airplane is ascending at a rate of 17.28 ft/s.
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Problem 2.192 |

The polar coordinates of a particle are the following functions of y

o ——

time: P -~
t 12 - AN
r= ro(l + —) and 6 = 6p—, // ug
T T \

where ro = 3ft, g = 1.2rad, T = 20s, and ¢ is time in seconds. /

Determine the velocity and the acceleration of the particle for  / . 9 /
¢t = 355 and express the result using the polar component system | / / N
formed by the unit vectors 11, and tig at t = 35s.

)

Solution

In polar coordinates, the velocity is given by
V=7, +r0ig. (1)
Using the expressions for » and 6 given in the problem statement, we can rewrite Eq. (1) as follows:

N o 21‘0Z90(Z +17) .
§= g, U g @

In polar coordinates, the acceleration is given by
i=(F—r0%) i, + (r0 + 270) d,. 3)
Again using the expressions for  and 6 given in the problem statement, we can rewrite Eq. (1) as follows:

4}’0[292 2robo

5=—T0(t+t)ﬁr+ (3t + 1) i1g. (4)

73
Recalling that ro = 3 ft, 8 = 1.2rad, and T = 20s, for ¢ = 35s we can evaluate the expressions in Egs. (2)
and (4) to obtain

3 = (0.1500%, + 1.732719) ft/s and @ = (—0.36384, + 0.112517p) ft/s>.

June 25, 2012
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Problem 2.193 |

The polar coordinates of a particle are the following functions of y

o
-

time: 5 P -
t t - B /1
r= ro(l + —) and 6 = 60p—, // o :

T T

where ro = 3ft, §p = 1.2rad, t = 20, and ¢ is time in seconds. /
Determine the velocity and the acceleration of the particle for ~ / . 9 /

t = 35s and express the result using the Cartesian component | / / N

system formed by the unit vectors 7 and J.

Solution
In polar coordinates, the velocity is given by
V=7, +r0ig. (1)
Using the expressions for r and 8 given in the problem statement, we can rewrite Eq. (1) as follows:
ro . 2rotbBo(t + ) .

V= —1, + —3  Ug. 2)
T T
In polar coordinates, the acceleration is given by
i=(7—r0®)a, + (rf + 270) 0y. 3)
Again using the expressions for 7 and 6 given in the problem statement, we can rewrite Eq. (1) as follows:
. 4rot262 L 6
a=—%( + 1) °°(3z+ 7). )

We now observe that the unit vectors #, and 1ig can be expressed in terms of the unit vectors 7 and ] as

follows:
Ur =cosfi+sinfj and tig=—sinf7+ cosb J. 5)

Substituting Egs. (5) in Eq. (2), collecting terms, and using the given expression for 8 as a function of time,
the velocity takes on the form

2 2 2 2
v = r_(; |:r2 cos(#) —2t0(t+7) sin(#)} f—i—r—g [2l90(t+f) cos(#) +1? sin(@)] J. (6)
T T T T T T

Substituting Egs. (5) in Eq. (4), collecting terms, and using the given expression for 6 as a function of time,
we that the acceleration takes on the form

21 26y 120
G =_210% |:2[200(t +1) cos( ) + 123t + 1) sm( 20)} )
70 72 T

2 12
+ 2r00 |: 2(3t + 1) COS(t % ) 21200(t + 1) s1n( 90)] J. (D
70 72 72

Recalling that ro = 3ft, 8y = 1.2rad, and T = 20s, for ¢ = 35s we can evaluate the expressions in Egs. (6)
and (7) to obtain

= (0.75187 — 1.568 /) ft/s and a = (0.37057 + 0.08812 J) ft/s>.

<
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Problem 2.194 |

A particle is moving such that the time rate of change of its polar
coordinates are

7 = constant = 3 ft/s and 6 = constant = 0.25 rad/s.

Knowing that at time ¢ = 0, a particle has polar coordinates
ro = 0.2ft and 6y = 15°, determine the position, velocity, and
acceleration of the particle for # = 10s. Express your answers in
the polar component system formed by the unit vectors u, and g
atr = 10s.

Solution

Since 7 and 6 are constant, they can be integrated with respect to time to obtain

r=ro+it and 6 =6+ 01, (1)
where rg and 6 are the values of r and 6, respectively, for ¢ = 0. The position vector is given by

Feri, = T= o+, )

where we have used the expression for r in the first of Egs. (1). Recalling that rg = 0.2 ft and 77 = 3 ft/s, for
t = 10s the position of the particle can be evaluated to obtain

F = 30.201i, ft.

The velocity of the particle is given by )
Recalling that 7 and 6 are given and substituting the first of Egs. (1) into Eq. (3), we have
3 =iy + (ro + )0 fig. 4

Recalling that ro = 0.2ft, 7 = 3ft/s, @ = 0.25rad/s, for r = 10s, Eq. (4) gives

U= 31, + 7.5504ig) ft/s.

The acceleration of the particle is given by
a= (i —rb?) i, + (rf +276) ilg. (5)
Substituting Egs. (1) into Eq. (5) gives
a=—(ro+ )02 1, + 270 1lp. (6)

Recalling that ro = 0.2ft, 7 = 3ft/s, 6 =0.25 rad/s, for t = 10s the acceleration of the particle can be
evaluated to obtain

a = (—1.88817, + 1.5001g) ft/s>.
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Problem 2.195 |

A particle is moving such that the time rate of change of its polar
coordinates are

7 = constant = 3 ft/s and 6 = constant = 0.25 rad/s.

Knowing that at time ¢ = 0, a particle has polar coordinates
ro = 0.2ft and 6y = 15°, determine the position, velocity, and
acceleration of the particle for # = 10s. Express your answers in
the Cartesian component system formed by the unit vectors 7 and

~

J-

Solution
Since 7 and 6 are constant, they can be integrated with respect to time to obtain

r=ro+7t and 0 =0+ 6t, ey
where r¢ and 6y are the values of r and 6, respectively, for ¢ = 0. The position vector is given by

F=riu, = T=I(ro+rt)i,, 2)
where we have the expression for r given in the first of Eqs. (1). The velocity of the particle is given by

U =Fiy +r0ip. 3)

Recalling that 7 and 0 are given and substituting the first of Egs. (1) into Eq. (3), we have that the velocity
becomes

3 =Fiy+ (ro + 1)0 ig. 4)
The acceleration of the particle is given by
= (i —rb?) i, + (rf +270) ilg. (5)
Substituting Egs. (1) into Eq. (5) gives
a=—(ro+ )02, + 270 ilp. (6)
We now observe that we can express the unit vectors #, and iy in terms of the unit vectors 7 and ] as follows:
Ur =cosfi+sinfj and tig =—sinf17+ cosb J. 7
Using Egs. (1), substituting Egs. (7) into the last of Eqgs. (2), Eq. (4), and Eq. (6), we have
F=(ro+ it)[cos(@o + Qt) 7+ sin(90 + Ht) j], (8)
¥ = [ cos(fo + 0t) — (ro + i-1)8 sin(fo + 01)] i
+ [(ro + i1)6 cos(6p + 91) + 7 sin(fo + Qt)] 7, 9)
a = —[(ro + i1)6? cos(@o + 9[) — 210 sin(90 + ét)]i
+ [276 cos(fo + 0t) — (ro + #1)0% sin(6o + 01)] ;. (10)

Recalling that ro = 0.2 ft, 7 = 3 ft/s, 6 =0.25 rad/s, and 0y = 15°, for t = 10s Eqgs. (8)—(10) give

(—28.057 + 11.20 /) ft, ¥ = (—5.5857 —5.900 /) ft/s, and @ = (1.1977 — 2.093 }) ft/s>.

r
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Problem 2.196 |

A micro spiral pump consists of a spiral channel attached to a stationary plate. This plate has two ports,
one for fluid inlet and another for outlet, the outlet being farther from the center of the plate than the inlet.
The system is capped by a rotating disk. The fluid trapped between the rotating disk and the stationary
plate is put in motion by the rotation of the top disk, which pulls the fluid through the spiral channel.

Consider a spiral channel with the geometry given by the equation » = n6 + ro, where ro = 146 um
is the starting radius, r is the distance from the spin axis, and 6, measured in radians, is the angular position
of a point in the spiral channel. Assume that the radius at the outlet is 7oy = 190 um, that the top disk
rotates with a constant angular speed w, and that the fluid particles in contact with the rotating disk are
essentially stuck to it. Determine the constant 7 and the value of @ (in rpm) such that after 1.25 rev of the
top disk, the speed of the particles in contact with this disk is v = 0.5m/s at the outlet.

rotating disk\

spin axis

\ outlet

spiral groove

pin joint

stationary plate

Photo credit: “Design and Analysis of a Surface Micromachined Spiral-Channel Viscous Pump,” by M. I. Kilani, P. C. Galambos,
Y. S. Haik, C. H. Chen, Journal of Fluids Engineering, Vol. 125, pp. 339-344, 2003.

Solution

We denote by 0, the value of the coordinate 6 corresponding to » = rqy, Where 7oy is the radial position of
the outlet. Since r = nf + rp, we have

T, — T
Tou = NOow +10 = 1= %‘) = | n=5.602um, (1)
out

where we have used the fact that roy = 190 um, ro = 146 um, and 6y, = 1.25rev = 1.25(27) rad. Next,
we recall that the velocity in polar coordinates is U = 7 i, + rF ilg, so that the speed is

o= P o
We can obtain 7 by differentiating r with respect to time. This gives

F= né. 3)
Substituting Eq. (3) into Eq. (2) and solving for 6, we have

9’ v N V0out (4)
= — w = ’
Vv ’72 + r2 \/(rout - r0)2 + [(rout - rO)Q + QoutrO]z

where we have used the fact that = 6, r = n6 + ro, and where we have used the expression for 7 in
the second of Egs. (1). Recalling that oy = 190 um, ro = 146 um, and that for § = Gy, = 1.25rev =
1.25(27) rad we must have v = 0.5 m/s, the last of Egs. (4) gives

® = 2630rad/s = 25,120 rpm.
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Problem 2.197 |

A micro spiral pump consists of a spiral channel attached to a stationary plate. This plate has two ports,
one for fluid inlet and another for outlet, the outlet being farther from the center of the plate than the inlet.
The system is capped by a rotating disk. The fluid trapped between the rotating disk and the stationary
plate is put in motion by the rotation of the top disk, which pulls the fluid through the spiral channel.

Consider a spiral channel with the geometry given by the equation r = n6 + ro, where n = 12 um
is called the polar slope, ro = 146 um is the starting radius, r is the distance from the spin axis, and 6,
measured in radians, is the angular position of a point in the spiral channel. If the top disk rotates with a
constant angular speed @ = 30,000 rpm, and assuming that the fluid particles in contact with the rotating
disk are essentially stuck to it, use the polar coordinate system shown and determine the velocity and
acceleration of one fluid particle when it is at r = 170 um.

rotating disk\

spin axis

\ outlet

spiral groove

pin joint

stationary plate

Photo credit: “Design and Analysis of a Surface Micromachined Spiral-Channel Viscous Pump,” by M. I. Kilani, P. C. Galambos,
Y. S. Haik, C. H. Chen, Journal of Fluids Engineering, Vol. 125, pp. 339-344, 2003.

Solution
In polar components, the velocity is given by
3=, +roiyg. (1)
Since r = n6 + rp and 0 = w, Eq. (1) becomes
U=noi, +roig. )

Recalling that n = 12um = 12x107®m and @ = 30,000 rpm = 30000%—’5 rad/s, for r = 170 um =
170x 107 m, Eq. (2) gives

¥ = (0.037701, + 0.534114ig) m/s.

For the acceleration we have

i= (i —rb?) i, + (rf +276) lg. 3)
Recalling that & = w = const., and recalling that r = n6 + rg, we have
F=nw, ¥=0, and 6 =0, ©)
Hence, Eq. (3) can be simplified to
a=—ro’i, + 2nw?iy. (5)
6

Recalling that n = 12 um = 12x107° m and v = 30,000 rpm = 30000%—’5 rad/s, for r = 170 um =
170x 107 m, Eq. (5) gives

a = (—16781, + 236.9119) m/s>.
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Problem 2.198 i

The cutaway of the gun barrel shows a projectile that, upon exit, moves with a speed vy = 5490 ft/s
relative to the gun barrel. The length of the gun barrel is L = 15 ft. Assuming that the angle 6 is increasing
at a constant rate of 0.15rad/s, determine the speed of the projectile right when it leaves the barrel. In
addition, assuming that the projectile acceleration along the barrel is constant and that the projectile starts
from rest, determine the magnitude of the acceleration upon exit.

Solution

of the projectile is

V=i, +r0ig. e 15 /
Upon exit from the barrel, ¥ = L and 7 = vy, so the speed of the | | S

projectile is (0}
v=[3| = v2 + (L)% (1)

Recalling that vy = 5490ft/s, L = 15ft, and § = 0.15rad/s,
Eq. (1) gives

Using the polar coordinate system shown at the right, the velocity
\
Us 7

v = 5490 ft/s,

which shows that the contribution to v due to the angular velocity of the barrel is negligible compared to vy.
The acceleration of the projectile along the gun is constant. So, using constant acceleration equations, we
can compute /' by relating the initial and final speeds of the projectile (relative to the barrel) over the length

of the barrel:

U2

P2 =ig +2F(r—ro) = v;=2fL = = 2)
where we have used ro = 0, 79 = 0, (the projectile start from rest), 7 = v, and r = L. Recalling that the
acceleration of the projectile in polar coordinates is given by

i = (F—r0%) i, + (r +270) d,,

and that § = 0 (since 6 = 0), using the last of Egs. (2), for r = L and 77 = v, the magnitude of the
acceleration becomes

2 . \2 :
la| = \/(;—SL—LQZ) +(2v6)° = | |a| = 1.005x10° ft/s?,

where we have used vy = 5490 ft/s, L = 15 ft, and 6 =0.15 rad/s.
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Problem 2.199 i

A particle moves along a spiral described by the equation r = r¢ + k6,
where rg and « are constants, and where 6 is in radians. Assume that
0 = at, where ¢ = 0.15rad/s? and ¢ is time expressed in seconds.
If r = 025mand 8§ = 0 for t = 0, determine « such that, for

t = 10s, the acceleration is completely in the radial direction. In x
addition, determine the value of the polar coordinates of the point for
t = 10s.
Solution
Since r = 0.25m and 6 = 0 for ¢t = 0, using the equation of the spiral, we must have that
ro = 0.25m. (D)
Next, recalling that the acceleration has the expression
i=(7—r0?)a, + (rf + 2760) g, )

we proceed to determine expressions for the first and second time derivatives of the radial and transverse
coordinates. The first time derivative of the transverse coordinate is given as «f. Hence, for this coordinate
we have

b=at = O=a 3)

In addition, since we will need it to properly compute the radial coordinate, recalling that § = 0 fort = 0,
we can integrate the first of Eqgs. (3) with respect to time to obtain

6 = Lar?. )

To determine the time derivatives of the radial coordinate, we first substitute Eq. (4) into the equation of spiral
and then differentiate with respect to time. This gives

r=ro+%/{at2 = F=kot = i =«ka. ®)
Substituting Egs. (3) and (5) into Eq. (2) gives
a= (Ka — roat? — %KO[3I4) ur + (aro + %Kaztz) Ug. (6)

Fort =ty = 10s (the subscript f stands for “final”) the transverse component of the acceleration vanishes,
i.e.,

2
arg+ 3ka*t; =0 = Kk =-— r02' (7)
Sazf
Using Eq. (1), and recalling that & = 0.15rad/s and tr = 10s, the last of Eqgs. (7) gives
k = —0.006667 m. ®)

Substituting the last of Egs. (7) into the first of Egs. (5), and recalling that 6 is given by Eq. (4), we can
evaluate r and 6 for ¢t = 10s to obtain

r =0.2000m and 6 = 7.500rad.

This solutions manual, in any print or electronic form, remains the property of McGraw-Hill, Inc. It may be used and/or possessed only by permission June 25, 2012
of McGraw-Hill, and must be surrendered upon request of McGraw-Hill. Any duplication or distribution, either in print or electronic form, without the
permission of McGraw-Hill, is prohibited.



264 Solutions Manual

Problem 2.200 i

A point is moving counterclockwise at constant speed vg along a spiral
described by the equation r = rg + k6, where r¢ and k are constants
with dimensions of length. Determine the expressions of the velocity
and the acceleration of the particle as a function of 6 expressed in the

polar component system shown. *
Solution
In polar coordinates, the expressions for the velocity is
V=i, +r0ig. 1)

observing that r is as a function of 8 is given in the problem statement, we need to determine expression for
7 and 6 as functions of 6 and the known quantities vy, ro, and k. To do so, we begin with differentiating the

given expression for r with respect to time: )

P = k6. 2)

Substituting Eq. (2) into Eq. (1) and keeping in mind that r = ro + k6, we enforce the condition that |9 is
equal to vg as follows:

6 = 20 ,

VK2 + (ro + k0)2

K202 + (ro + k6)%6% = vy = (3

where we have chosen the root with 8 > 0 to be consistent with the fact that the point is moving counter-
clockwise. Using the last of Egs. (3) along with Egs. (1) and (2), we can rewrite the velocity as a function of
6 and known constants:

KVo P U()(r() + K@) 4
9 -
V2 + (ro + k02 ViZ + (ro + k)2

U=

To determine the acceleration, we recall that in polar coordinates the acceleration is given by
a= ('r’—réz) iy + (r§+2fé) lg. 4)

We observe that we already have an expression for 6 and, through Eq. (2), a corresponding expression for 7.
We now need to determine expressions for 7 and 6. For 6 we can write

. ) ) . . 2 0
g=d0_d0y L o Kl 5)
dt do [K2 + (”0 + K@)Z]

where we have used the last of Eqgs. (3) to express 0 and to determine an expression for d 6/d6. Next,
differentiating Eq. (2) with respect to time we have 7 = k6 so that, using the last of Eqs. (5) we have

. k2v3(ro + k) ‘ ©
[K2 + (ro + K9)2]2
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Finally, recalling that r = r¢ + k6, using Eq. (2), the last of Egs.(3), the last of Egs. (5), and Eq. (6), after
simplification, we can rewrite Eq. (4) to obtain

. v2(ro + k6)3 . kvd{(ro +k0)? 4+ 2[k% + (ro + k60)?]} .
a=— 0 Ur + 0 u
- B 2
[rd + 2rokf + (1 + 62)k2] [k2 + (ro + k6)?]
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® Problem 2.201 ¢

A person driving along a rectilinear stretch of road is fined for speeding, having been clocked at 75 mph
when the radar gun was pointing as shown. The driver claims that, because the radar gun is off to the side
of the road instead of directly in front of his car, the radar gun overestimates his speed. Is he right or wrong
and why?

emradar gun

Solution

The driver is wrong. The speed recorded by the radar gun is the component (or projection) of the actual speed
along the line connecting the radar gun and the moving car. As such, i.e., being a component, it can only be
smaller than the true speed.
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Problem 2.202 i

A motion tracking camera is placed along a rectilinear stretch of a ‘ d/2 d/2 ‘
racetrack (the figure is not to scale). A car C enters the stretchat A~ ,j, Hb i
with a speed v4 = 110 mph and accelerates uniformly in time so A o1 |L B

that at B it has a speed vg = 175 mph, where d = 1 mi. Letting 0
the distance L = 50 ft, if the camera is to track C, determine the

camera’s angular velocity and the time rate of change of the angular

velocity when the car is at A and at H..

Solution

Referring to figure at the right, the camera points from O to the car | d/2 d/2
along the direction of 1,. Hence, the angular velocity and acceleration ¢ &

of the camera are given by 6 and 6. To determine these quantities at A a, Hd
A and H, we first characterize the velocity and acceleration of the car 0
using the unit vector 7 and then we find corresponding expressions

using the polar component system with the unit vectors #, and . j

We begin by observing that the motion of the car is rectilinear so that we have

~>

t=vi and a4 =a.l, D
where v is the speed of the car and a. is the magnitude of the (constant) acceleration of the car. We can
determine a. using the constant acceleration equation of the type v? = vg + 2a.(s — s0):

v% —p?
v% = vﬁ +2a.d = ac= BT‘,A. )

Using the same constant acceleration equation, we can also determine the speed of the car at H:

[ 2 .2
vp + v
v =vj +2ac(d/2) = vh=vi+i(vE-vi) = = BTA, (3)

where we have used the expression of a. in the last of Egs. (2). To relate vgq, vy and a. to 6 and é, we Now
observe that

i=—sinfi, —coshiig = U =—v(sinfi, + cosBiig). 4)

In polar coordinates we must have v = 7 11, + ré g, which, when compared to the last of Egs. (4), implies
i =—vsinf and rf = —vcosh. &)
Solving the second of Egs. (5) for 0, at A and H, we have
éA = —vqcosby/rqg and éH = —vgcosbOy/ry. (6)
Using trigonometry, we see that

ra =+/(d/2)? + L%, cosOy=L/\/(d/2)?+L? rg=L, and Oy =0. 7
Using Egs. (7), (6), and the last of Egs. (3), we have

2 2
L RN R S L T § ®)
d/2)2+L 2L
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Recalling that vy = 110mph = 110(3233) ft/s, vg = 175mph = 175(323%) fi/s, L = 50ft, and d =
I mi = 5280 ft, Egs. (8) give

04 = —0.001157rad/s and 6O = —4.287rad/s.

We now turn to the determination of  at A and H. The acceleration of the car is
a = —ac(sin0 i, + cos O iig). 9)
In polar coordinates we have a :(i" — réz) ur + (r9 + 2#9) 119, which, when compared to Eq. (9), implies
—acsinf = #—r6? and —daccosb = r0 + 276, (10)

Solving the second of Eqgs. (10) for 6 , we have
" 1 .
6 = ——(ac cos 6 —2v0 sinb), (11)
r

where we have used the expression for 7 in the first of Egs. (5). Hence, observing that sinfy = d/(2r4),
using Eqgs. (7), (8), the last of Egs. (3), and the last of Egs. (2), after simplification, we have

. dL v2 — 2 v2 ) 02 _ 2
G —— B~ A A d fg=-—--L__-4 12
4 (d/2)2+L2( 2d2 (d/2)2+L2) and OH (12)

Recalling that v4 = 110mph = 110(323) ft/s, vg = 175mph = 175(3233) ft/s, L = 50ft, and d =
1 mi = 5280ft, Egs. (12) give

G4 = —1.684x10"*rad/s> and 6y = —0.07547 rad/s>.
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Problem 2.203 i

The radar station at O is tracking a meteor P as it moves through the

atmosphere. At the instant shown, the station measures the following data

fpr the motion of the meteor: r = 21,000 ft_,_ 0 = 40°, 7 = —22,4401t/s, P
0 = —2.935rad/s, i = 187,500 ft/s?, and § = —5.409rad/s>.

(a) Determine the magnitude and direction (relative to the xy coordinate
system shown) of the velocity vector at this instant. .

(b) Determine the magnitude and direction (relative to the xy coordinate
system shown) of the acceleration vector at this instant.

Solution

Part (a). Referring to the figure at the right, the velocity of the meteor is

U =Fi, 4+ riyg. (1)

Then the speed is
Bl = (i) + (r8)> = | [5] = 65,5%ft/s, )
where we have used the following numerical data: 7 = —22,440ft/s, r =

21,000ft, and 6 = —2.935 rad/s. To find the orientation of v relative to the xy axes, we note that
Ur =cos@i+sinfj and tg= —sin67 + cosb J, 3)
so that Eq. (1) can be rewritten

= (7cosf —rfsin6) i + (7 sin® + rh cos0) j = (22,4307 — 61,6407) ft/s. 4)

Ux vy,

Since v points downward and to the right, its orientation from the x axis is

)=

where, again, we have used the fact that 7 = —22,440 ft/s, r = 21,000 ft, and 6 =-2.935 rad/s. Therefore,
we have

Uy

Ux

Fsin @ + rf cos 0 D — _7001°. (5)

Orientation of ¥ from x axis = — tan™ ! ( - —
7cos@ —rfsinf

Orientation of v from x axis = 70.01° (cw).

Part (b). The acceleration of the meteor is

a= (i —rb?) i, + (rf + 276) ilg. (6)

Then the magnitude of d is
|a| = \/('r' —r62)® + (rb+2i6)2 = | |a| = 19.300t/s%, (7)
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where we have used the following numerical data: # = 187,500 ft/s2, i = —22,440 ft/s, 6 =-2.935 rad/s,
r =21,000ft, and 6§ = —5. 409rad/s>.
To determine the orientation of a relative to the xy system, we use Egs. (3) to rewrite Eq. (6) as

a=|[(F- ”éz) cos ) — (1‘9 +2/0) sinf] 7 + [ (¥ —réz) sin + (r@ + 2fé)cos9] j

ax ay

= (=65997 + 18,1307) ft/s. (8)

Since a is directed upward and to the left, its orientation from the x axis is

)

('r' — réZ) sin 0 + (r9 + 21"9) cos 0
(F - réz) cos 6 — (ré + 270)sin 0

ay

ax

Orientation of @ from x axis = 180° — tan™! (

= 180° —tan_1|:

:| = 110.0°, (9)

where, again, we have used the fact that # = 187,500 ft/s2, 7 = —22,440ft/s, § = —2.935rad/s, r =
21,000 ft, and § = —5.409 rad/s. Hence, we have

Orientation of @ from x axis = 110° (ccw).
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Problem 2.204 i

compute the jerk in polar coordinates.

The time derivative of the acceleration, i.e., 3 , is usually referred to as the jerk. Starting from Eq. (2.70),

Solution

Equation (2.70) on p. 105 of the textbook states
a=(F— réz)ﬁr + (ré + 2#9)129 =a, iy +agllg,

where ) } .
ar =F—r0% and ag=rl + 270.

Differentiating with respect to time the second expression for @ in Eq. (1), we have
C_l) za.rﬁr +arﬁr +d0ﬁ9 +a9ﬁ0

Recalling that )

iy =0k xii, = 0ilg and iig = Ok x iig = —61iy,

<>

Eq. (3) can be rewritten as )

Differentiating with respect to time Eqs. (2) gives

ar =7 —r0%—=2r66 and ag = 70 + r + 2¥6 + 2i6.

Substituting Egs. (2) and (6) into Eq. (5) and simplifying, we have

= ('r"— 3r60 — 3r'é2) iy + [r (é’— 9'3) 4376 + 3#@'] fig.

)]

2

3)

“)

(&)

(6)

This solutions manual, in any print or electronic form, remains the property of McGraw-Hill, Inc. It may be used and/or possessed only by permission
of McGraw-Hill, and must be surrendered upon request of McGraw-Hill. Any duplication or distribution, either in print or electronic form, without the

permission of McGraw-Hill, is prohibited.

June 25, 2012



272 Solutions Manual

Problem 2.205 i

The reciprocating rectilinear motion mechanism shown consists of a disk
pinned at its center at A that rotates with a constant angular velocity w4 p,
a slotted arm CD that is pinned at C, and a bar that can oscillate within
the guides at E and F. As the disk rotates, the peg at B moves within the
slotted arm, causing it to rock back and forth. As the arm rocks, it provides
a slow advance and a quick return to the reciprocating bar due to the
change in distance between C and B. Letting 8 = 30°, wqp = 50 rpm,
R = 0.3ft, and & = 0.6ft, determine ¢ and ¢, i.e., the angular velocity
and angular acceleration of the slotted arm C D, respectively.

Solution

Referring to the diagram at the right, we define two component systems: one consisting
of the unit vectors 1, and iig, and the other consisting of the unit vectors 1, and i 4.
Both these component systems are polar, the first with coordinates r and 6, and the
other with coordinates £ and ¢. The coordinate » = R = const., whereas the coordinate
£ varies with time. Because & = 2R, geometry tells us that

when 0 = 30°, g =u,, Ug=—lp, ¢ =06, and £ =hcosh. (1)

The position of B can be described relative to the fixed points A and C: 7p /4 = 11, and B /e = Liy.
Hence, the velocity of B can be given the following two expressions:

=7ty +r0tlig = —Rwspiiyg and ﬁ=éﬁg+€¢5ﬁ¢, 2)

where we accounted for the fact that » = R = const. and § = —w4 . Setting the above two expressions of
velocity equal to each other and using Egs. (1), when 6 = 30°, we have

—Rwyptig = —Zﬁg + (hcosO)piiy, = L =—Rwgp and | ¢ =0. 3)

Similarly to v, the acceleration of B has the following two expressions:
i=(F—r0®)a, + (r6 +270) g = —Rwigil, and a= ([ L) + (Lp + 2(h)hg, (4

where we recalled that - = R = const. and § = —w4p = const. Setting the above two expressions of
acceleration equal to each other, using Egs. (1) and the last of Eqgs. (3), when 6 = 30°, we have

2
Ra)AB

—~Ro3p i, = —lhg+ (hcosO)pii, = £=0 and ¢=— )

Recalling that R = 0.3 ft, wqap = 50rpm = 50(26—’6) rad/s, h = 0.6ft, and 6 = 30°, the last of Egs. (5) can
be evaluated to obtain

¢ = —15.83rad/s%.
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Problem 2.206 i

As a part of an assembly process, the end effector at A on the robotic arm needs
to move the gear at B along the vertical line shown with some known velocity
vg and acceleration ag. Arm OA can vary its length by telescoping via internal
actuators, and a motor at O allows it to pivot in the vertical plane.

When 6 = 50°, it is required that vo = 8 ft/s (down) and that it be slowing
down at ag = 2ft/s?. Using h = 4 ft, determine, at this instant, the values for
' (the extensional acceleration) and 6 (the angular acceleration).

Solution
Referring to the figure at the right, the length of the arm as a function of 6 is
r=h/cosé. )

The velocity of B can be expressed in both the Cartesian and polar compo-
nent systems shown. Since B moves downward, this gives

ip = —vo ] = Fiiy + rfilp. )
We note that
J =sinfu, + cosBiig, 3)
so that Eq. (2) can be written as —v (sin 0 %1, + cos 0 ig) = i il + r g,
which implies 7 = —vg sin 8 and r = —vgcos b, i.e.,
2
. vg cos* 0
F=—vpsinf and 6 = —OT, 4)

where we have used Eq. (1). Since B is slowing down (in its downward motion), the acceleration of B, using
both component systems, is

agp =ag ] = (i"—réz) iy + (r@ —{—Zié) g
= ao(sin@il, + cosOiig) = (i — réz) iy + (r@ + 2r'9) g, (5)

where we have used Eq. (3). Equating components, we obtain

i—rf? = agsinf and 1o +2i0 = agcos 6. (6)
Using the results from Egs. (1) and (4), Egs. (6) give
h 20\’ 3 cos® 6
i =agsinf + _Yocos = i"zaosine—l—w = i"=5.781ft/sz,
cos 6 h h
and
2 2 2 2 30
. agcos- 0 . vo cos~ 6 [ cosf .« agcos” @  2vgcos® 0sinf
0= T—Z(—vosme)(— 7 )( h ) = 0= 7 — 2

= | § =—1.421rad/s’,

where we have used the following numerical data & = 50°, vg = 8ft/s, ag = 2ft/s>, and h = 4ft.
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Problem 2.207 i

As a part of an assembly process, the end effector at A on the robotic arm needs
to move the gear at B along the vertical line shown with some known velocity
vg and acceleration ag. Arm OA can vary its length by telescoping via internal
actuators, and a motor at O allows it to pivot in the vertical plane.

Letting vy and ag be positive if the gear moves and accelerates upward,
determine expressions for r, i, ¥, 0, and 6 that are valid for any value of 6.

Solution

Referring to the figure at the right, the length of the arm as a function of 6 is

r=h/cosf. (D

The velocity of B can be expressed in both the Cartesian and polar compo-
nent systems shown. Since vy > 0 when B moves upward, this gives

vB=v0f=fﬁr+réﬁ9. 2)

We note that

J =sinfu, + cosBiig, (3)

so that Eq. (2) can be written as vq (sin 6 i, + cos @ tig) = 7 i, + g,
which implies 7 = vg sinf and r = vg cos 9, i.e.,

vo cos? @

F =vgsinf and 0 = h ,

4

where we have used Eq. (1). Since ap > 0 when B accelerates upward, the acceleration of B, in both
component systems, is

dp=aopj = (F— réz) Uy + (r@ + 2#9) g
= ao(sin@il, + cosOiig) = (i — réz) iy + (r@ + 2#9) g, (5)
where used Eq. (3). Equating components, we obtain
i—rf? = apsinf and ro +2i0 = agcos 6. (6)
Using the results from Eqgs. (1) and (4), Egs. (6) give

h o cos? 6\ 2 v2 cos3 6
F=agpsinf + (0 ) = F=apsinf + 21—,

cos 6 h h
and
. agcos?f . vo cosZ 0 (cos b . agcos?6 2v(2) cos> 0sin @
= ——— —2vpsinf = |b6= - —
h h h h h
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Problem 2.208 i

In the cutting of sheet metal, the robotic arm OA needs to move
the cutting tool at C counterclockwise at a constant speed vg
along a circular path of radius p. The center of the circle is located
in the position shown relative to the base of the robotic arm at O.

When the cutting tool is at D (¢ = 0), determine r, 7, é, F,
and 6 as functions of the given quantities (i.e., d, h, p, vo).

Solution

Referring to the figure at the right, when C is at D

r=/h2+(d + p)2. (1)

éD
We note that the unit vectors 7 and j can be expressed as follows: //"
I =cosOu, —sinfiig and [ =sinOu, +cosbig. (2) |~ Cutting
path
The velocity of C must be tangent to the cutting path. Since C
moves counterclockwise around the cutting path, and since the i

speed of C is vg, when at D we must have

~>

U =g . 3)
Substituting the second of Egs. (2) into Eq. (3), we have
U = v sin 0 11, + vgcos O tig. 4)
Since in polar coordinates we have v = 7 ii, + ro gy, from Eq. (4) we deduce that, when C is at D,
i =vosind@ and 6 = vgcos o/r. (5)
Now, we observe that when C is at D, we have
sin = h/\/h? + (d + p)> and cos@ = (d + p)/\/h? + (d + p)>. (6)

Substituting Egs. (1) and (6) into Egs. (5), when C is at D, we have

. voh : vo(d + p)
r= and 0= _—>—— . 7
Vh2 +(d + p)? h* +(d + p)
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Since the speed of C is constant, the acceleration of C must always be directed toward the center of the
cutting path. Therefore, when C is at D, we have

2
G=-2; ®)
0
Substituting the first of Egs. (2) into Eq. (8), we have
. v%cos@ . v%sin@ .
a=— iy + ig. 9
o p

Now we recall that, in polar coordinates, we have a = (i" — réz) Uy + (r@ + 2;"9) g, which, by comparison
with Eq. (9), implies that, when C is at D

v(z) cos O . ré v% sin 0

i=ro%— and 6 =-2— + (10)
p r rp

Substituting the expressions for 7 in Eq. (1), sin 8 and cos 6 in Egs. (6), and for 7 and 0 in Egs. (7) into
Egs. (10), after simplification, when C is at D we have

. v3 (p+d)(d?* + h* + dp) n v3  h(d*+h*—p?) an
Fe= an ===
2"
P (d2 + h2 + p? +2dp)*"” P (d2 + h2 + p? + 2dp)
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Problem 2.209 |

In the cutting of sheet metal, the robotic arm OA needs to move
the cutting tool at C counterclockwise at a constant speed vg
along a circular path of radius p. The center of the circle is located
in the position shown relative to the base of the robotic arm at O.

For all positions along the circular cut (i.e., for any value of
@), determine r, 7, 0, #, and 6 as functions of the given quantities
(i.e., d, h, p, vo). These quantities can be found “by hand,” but it
is tedious, so you might consider using symbolic algebra software,
such as Mathematica or Maple.

~~-1.——cutting
path

Solution

Referring to the figure at the right, for a generic value of ¢ we have 7

= \/(h + psing)2 + (d + pcos )2 (1)

We note that the unit vectors 7 and j can be expressed as follows:

1 =cosOu, —sinfuyg and j =sinfu, +cosfug. (2) <
-—1-——"cutting

The velocity of C must be tangent to the cutting path. Since C pass

moves counterclockwise around the cutting path and since the speed
of C is vg, we must have

~>
=~>

U =vo(—sing 7 + cos¢ J). 3)

ml
Substituting Egs. (2) into Eq. (3), we have |
U = vg(cos ¢ sin O — cos O sin ) i, + vo(cos O cos ¢ + sin O sin @) tig. ()]
Since in polar coordinates we have v = 7 ii, + ro g, then from Eq. (4) we deduce that
F = vo(sin O cos ¢ — cos O sin¢gp) and 6 = vr—o(cos 0 cos ¢ + sin 0 sin ¢). 5)

Using geometry, we have sin6 = (h + psin¢)/r and cos 8 = (d + pcos¢)/r, which, in view of Eq. (1),
give

. h + psing d + pcos¢
sinf = - and cosf = - . (6)
Vi + psing)2 + (d + pcos $)? Vi + psing)? + (d + pcos )2
Substituting Egs. (1) and (6) into Egs. (5), and simplifying, we have
. vo(h cos ¢ — d sin¢) d 0 vo(p + d cos ¢ + hsing) o
F= an = - 5
J(d + pcos)? + (h + psing)? d? + h? + p? + 2dpcos¢ + 2hpsing
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Since the speed of C is constant, the acceleration of C must always be directed toward the center of the

cutting path. Therefore, we have
2

a= —v—o(cosq§i+sin¢f), (8)
Jo
which, along with Egs. (2), imply
v2 v2
a = ——2(cos 6 cos ¢ + sin @ sin @) &1, + —%(cos ¢ sin @ — cos 6 sin @) 1ig. ©)]
P P
Substituting Egs. (6) into Eq. (9), we have
ve p+dcosp + hsing R ve hcos¢ —d sing R

(10)

i=—

D St psingP+ @t poongl P it psmd? @+ pcosd?

Now recall that in polar coordinates, we have a = (¥ — réz) Ur+ (ré +276 ) t1g, and therefore, by comparison
with the above expression, we can conclude that

2 .
'r':réz—v—o ,O—i-.dcos¢+hsm¢ (11)
P /(h+ psing)2 + (d + pcos¢)?
and
. 2 .
. F. v hcos¢ —d sin
=-—2-0+-2 ¢ ¢ : (12)
r P \/(h + psing)? + (d + pcos¢)2
Substituting Egs. (1) and (7) into Egs. (11) and (12), after simplification, we have
B v2 (p+dcos¢ + hsing)(d? + h* + dpcosp + hpsing)
P (d2+h2+p2+2dpcos¢+2hpsin¢)3/2 ’
é:ﬁ (hcos¢ —d sing)(d? + h* — p?) '
P (d? + h? + p? + 2dpcos ¢ + 2hpsin¢)2
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Problem 2.210 i

The cam is mounted on a shaft that rotates about O with constant angu- y
lar velocity wc¢am. The profile of the cam is described by the function
£(¢p) = Ro(1 + 0.25cos? ¢), where the angle ¢ is measured relative to
the segment OA, which rotates with the cam. Letting w¢ay, = 3000 rpm
and Rg = 3 cm, determine the velocity and acceleration of the follower
when 6 = 33°. Express the acceleration of the follower in terms of g, ~ cam
the acceleration due to gravity.

follower

Solution

The point on the follower in contact with the cam corresponds to ¢ = 90° — 6. Therefore, letting r
be the distance between the point on the follower in contact with the cam and point O, we had that
r = £(¢p = 90° — ) (0 is measured in degrees), which gives

r = Ro[1 +0.25c0s>(90° — 0)] = Ro(1 + 0.25sin> ), (1

where we have used the fact that cos 90° — 8 = sin 6. Next, we observe that the velocity and acceleration of
the follower are

v=7rj] and a=7F]. ()
From Eq. (1), we have
F= 0.75R09 sin’ 6 cos 6 3)
and
# = 0.75R00 sin® 0 cos O + 0.75R092(2 sin 6 cos? 6 — sin 6). 4)

Recognizing that 0 = Weam = constant, Egs. (3) and (4) simplify to

F = 0.75RoWeam sin> O cos @ and ¥ = 0.75Roa)czam (2 sin 6 cos? 6 — sin® 0). 5
Substituting Egs. (5) into Egs. (2), we have
¥ = 0.75Roweam sin® f cosf j and d = 0.75Rowc2am(2 sin 0 cos? 6 — sin3 0) J. (6)

Recalling that Rg = 3 cm = 0.03000 m, @wcam = 3000 rpm = 300026—75 rad/s, for & = 33°, we have

v=1.7587m/s and a = 136.9g ;.

where we have expressed the acceleration in terms of the acceleration due to gravity g = 9.81 m/s.
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Problem 2.211 |

The collar is mounted on the horizontal arm shown, which is originally ke
rotating with the angular velocity wg. Assume that after the cord is
cut, the collar slides along the arm in such a way that the collar’s total
acceleration is equal to zero. Determine an expression of the radial
component of the collar’s velocity as a function of r, the distance from —
the spin axis. Hint: Using polar coordinates, observe that d (rzé) /dt = r

rag.

ro

S
L

Solution

We are told that the collar’s acceleration is zero, which implies that each component of its acceleration must
be zero. Looking first at the transverse component of acceleration, we must have

a9=ré+2ié=0 = rag =0.
We now use the hint and notice that
d(r26)
dt

where we have used the fact that if the time derivative of a quantity is zero, then that quantity must be constant.
Since initially r = rg and 8 = wy, the constant K can easily be calculated to be

= 2170 + 126 = rag =0 = r20 = constant = K,

2
. . réw
K=r20=rdwy = 6= Orzo. (1)

Now that we know 6 for every value of r, we can use the fact that the radial component of acceleration is
also zero to obtain
2

2 4,2
" ; " F'o@o . To®
ar=0 = F—-rf?>=iF—r 02 ) 2)
r r3

where we have used Eq. (1) for 0. Using the chain rule on i and then rearranging Eq. (2), we obtain

dr dr dr rga)g ré’a)g
dr dt dr r3 r3
Integrating Eq. (3), we obtain

7 r .4, 2 4 2
Lo Fow, . —row,
/rdr:f 00 4r = 1;2=_-070
3 2
0 ro T

Il

dr. 3)

“)

where, in choosing the sign of the square root, we have used the fact that 7 is positive since the collar is
sliding outward and therefore r is increasing. Simplifying the last of Egs. (4), we have

. rowo
F= ,/rz—rg.
r
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Problem 2.2121

Particle A slides over the semicylinder while pushed by the arm
pinned at C. The motion of the arm is controlled such that it starts
from rest at 6 = 0, w increases uniformly as a function of 6, and
@ = 0.5rad/s for & = 45°. Letting R = 4in., determine the
speed and the magnitude of the acceleration of A when ¢ = 32°.

Solution

We observe that A moves along a circle of radius R and center O. Ug

For this reason we describe the motion of A using a polar coordinate UR
system with center at O so that the radial coordinate of A is R = A
constant, and the transverse coordinate of A is ¢. Then, the velocity
of Ais

0
5= Rilg + Rpilyg = R ily. (1) o B/ \¢

and the acceleration of A4 is R 0

a = (R—R$*)iig + (Rp +2Rp) 01y = R(—> i + P ilg). 2)

where, in both Eq. (1) and Eq. (2) we have accounted for the fact that R is constant. Therefore the speed and
the magnitude of the acceleration of A are

v=R|p| and [a| = R\/¢*+ ¢2. 3)

Equations (3) show that the solution of the problem revolves around the determination of the quantities ¢ and
$ in terms of ¢.

To determine the desired expression for b, we begin by observing that the triangle C OA is isosceles, with
base CA and sides CO and OA. This implies that the angles OCA and CAO are both equal to 6. Hence,
denoting by g the angle C 0A, we have

20+ =180° and B+¢ =180° = ¢ =20. 4)
Differentiating the last of Eqs. (4) with respect to time, we have
$ =20 and ¢ =26. (5)
Therefore, we turn to the determination of 6 and 6 and we begin by observing that
= o. (6)

Next, we observe that the problem statement indicates that “w increases uniformly as a function of 8” from
w =0,for =0,tow = wy = 0.5rad/s, for 0 = 45° = (7r/4)rad (where the subscript f stands for final).
This implies that dw/d6 = K, where K is a constant (with dimensions of time to the power negative one).
With this in mind, we have

dw 0 1)
K=— Kdo =do = Kdo = do. @)
do 0 0
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Carrying out the integration, we have
Ko = w. (8)

Recalling that w = wy = 0.5rad/s for 6 = (;r/4) rad, from Eq. (8) we have
K(n/4) =wr = K=4doy/n. ©)]

Substituting the last of Egs. (9) into Eq. (8) and recalling Eq. (6), we have

_ dwr (10)
~ (wrad)
where it is understood that 6 is expressed in radians. Then, differentiating Eq. (10) with respect to time we
have )
. 4a)f . . 4a) f
(7r rad) |: (7r rad) ] (an

where we have used Eq. (10) to express 6, and where we note again that 6 is expressed in radians.
Keeping in mind that the last of Egs. (4) implies 6 = ¢/2, we can now rewrite Egs. (5) using the results
in Egs. (10) and the last of Eqs. (11). This gives

4wy 4 o[ der 2 0
(nrad)¢ an ¢_|:(nrad)] ¢ (12)

¢ =
where it is understood that ¢ must be expressed in radians. Substituting Egs. (12) in Egs. (3), we have

. 4a)fR

o dof 2
v = (mad)|¢| and \a}_R[(mad)] Vot + 2. (13)

Recalling that s = 0.5 rad/s, R = 4in. = 1;42 ft,p = 32° = 321”@ rad, we can evaluate Eqs. (13) to obtain

v=0.1185ft/s and |d| = 0.08642ft/s.
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Problem 2.213 |

The mechanism shown is called a swinging block swinging X
slider crank. First used in various steam locomotive
engines in the 1800s, this mechanism is often found
in door-closing systems. If the disk is rotating with
a constant angular velocity 6 = 60 rpm, H = 4ft,
R = 1.51t, and r denotes the distance between B
and O, compute 7, ¢, 7', and ¢ when 8 = 90°.

Solution

Using the diagram at the right, the velocity of B at § = 90° in the (i1, ti;)
and (%, Uy) component systems is, respectively,

U=ROG, and ¥ =ity +rpiy. (1)

where the first of Egs. (1) is true because B is in circular motion about A.
We note that

U; =cos¢u, —singig and U, = —sin¢gi, —cos¢ily, 2

where, for 8 = 90°,
sing = R/vVR?>+ H? and cos¢p = H/vVR?>+ HZ?. 3)

Substituting the first of Eqgs. (2) into the first of Egs. (1), we have § = R(cos ¢ i, — sin ¢ i), which, when
compared to the second of Eqs. (1) component by component, yields

Rfcos¢p =F = F= __RHO = | 7 = 8.825ft/s 4)
VR?Z + H?
and .
—Rlsing =rd = ¢= __ R = | ¢ =—0.7746rad/s (5)
R? + H? i

where we have used Eqs. (3), the fact that r = +/ R? + H?Z, and the following data: R = 1.5ft, H = 4ft,
and § = 60rpm = 60%—’6 rad/s.
The acceleration of B at § = 90° in the two component systems is

i=R0%0, and d=(F—r?) i, + (ré +2id) iy, (6)
where, in the first of the above equations, we have used the fact that B is in upiform circular motion about A.
Substituting the second of Egs. (2) into the first of Eqgs. (6) gives @ = —R6O?(sin¢ i, + cos ¢ g ), which,
when compared to the second of Eqs. (6) component by component, yields
. R*92VRZ+ H? R262
r =

- = | ¥ = —18.23ft/s?
(R2 + H?)? vR2 + H?

—RO%sing =i —r¢?> =

and

RHG? R3H§2 - 5
—— 5+ 5 ¢ = —9.779rad/s",
R+ H (RZ + Hz)

—RO?cosp =rd +2Fp = =

where we have used Egs. (3)~(5), the fact that r = +/ R? + H?Z, and the following data: R = 1.5ft, H = 4ft,
and § = 60rpm = 60%—’6 rad/s.
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Problem 2.214 |

A satellite is moving along the elliptical orbit shown. Using the polar satellite
coordinate system in the figure, the satellite’s orbit is described by
the equation

. orbit center

a4+ va?—>b2cosf

6) = 2b? ,
r(® a2+ b? — (a2 — b2) cos(20)

which implies the following identity

rr’” —2(r')? —r? _a
r3 - p2

where the prime indicates differentiation with respect to 6. Using
this identity and knowing that the satellite moves so that K = r26
with K constant (i.e., according to Kepler’s laws), show that the
radial component of acceleration is proportional to —1/r2, which is
in agreement with Newton’s universal law of gravitation.

Solution

We need to show that a, = (constant) x (—%2) First we will rewrite Kepler’s law as

K

K=r2% = (== (1)
r

We are given r = r(6) so we use the chain rule to write its derivative with respect to time as

) Kr'
F=rf = =l )

where the prime denotes differentiation with respect to 6, and where we have substituted Eq. (1) for 6. Next
we take the second derivative of r with respect to time to obtain
—2K K _K? [r” 2(r’)2:|

;= 3 (r/é)r/—i—r—z(r”é) = F= P

72 r3

3)

where we h;we factored K6 out of the first of Eq._ (3) and substituted Eq. (1) for 6. Now recall that
ay = i — rf? and we have expressions for r, ¥, and 6 so we can write

)

r— ar — T 5
r2 /3 4 2 3

K2[r"  2(r")? K? K2 rr"—2(r’)2—r2
adr = r_2 —- — — = = .

We see that the expression in brackets is the identity given in the problem statement, so we will replace it
with —a/b?. Recalling that K, a, and b are constants, we prove the radial component of acceleration is

: 2
proportional to —1/r=.
K?a( 1
ar _- — = T A .
b2 72
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Problem 2.215 |

At a given instant, an airplane flying at an altitude h¢ = 10,000 ft
begins its descent in preparation for landing when it is 7(0) = 20 mi
from the radar station at the destination’s airport. At that instant, R r(0) ho
the aiplane’s speed is v9 = 300 mph, the climb rate is constant 15(0) ”’(0%(0)

and equal to —5 ft/s, and the horizontal component of velocity is S !
decreasing steadily at a rate of 15 ft/s>. Determine the 7, 6, 7, and

6 that would be observed by the radar station.

—x

Solution

When expressed in the Cartesian coordinate system shown, the Y
velocity and acceleration of the airplane are

P=xi+yj and a=i1+7/ (1) /

J r(0) ho
where R ur(%
p = —5fi e — _ Jp2 2 ¥ — 2 e g (0) = \0(0)
y==5Mt/s, x=—\Jug—y2 X=15Mt/s%, =0, (2 X x

where it is understood that these values are at # = 0. Using the polar
component system shown, the velocity and acceleration are

=ity +rfiy and &:(F—réz)ﬁr+(ré+2f9)ﬁ9, 3)
where the unit vectors i, and #iy are related to the unit vectors 7 and j as follows:
I =cosBu, —sinfBiilg and [ =sin6u, + cosbiy. 4)
Using Egs. (4), we can rewrite Egs. (1) as follows:
U= (xcosf + ysinf) i, + (—xsinb + ycos ) ig ®)
and
a = (Xcos + ysinf) i, + (—Xsin6 + j cos 0)1ig. (6)
Equating the components of the first of Egs. (3) and (5), we have
F=xcost + ysin@ and 6 =r !(—xsinf + ycos0). @

At the instant considered in the problem, we have that & = sin~'(//r). With this in mind, using the data
in Egs. (2) along with the fact that » = 20 mi = 20(5280) ft, 4~ = 10,000 ft, v = 300 mph = 300% ft/s,
we can evaluate Egs. (7) to obtain:

i = —438.5ft/s and O = 347.4x10 ®rad/s.

Similarly, equating the components of the second of Egs. (3) and (6), we have
F=Xcost + jsinf +r6% and 6 = r~!(—¥%sinf + jcos @ —21"9), (8)

which can be evaluated with the help of Egs. (7) and the data used in the evaluation of Eq. (7) to obtain

¥ =14.95ft/s> and 6 = —10.59x107° rad/s>.
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R Problem 2.216 i1

Considering the system analyzed in Example 2.21, let & = 15ft, v = 55mph, and ¢ = 25°. Plot the
trajectory of the projectile in two different ways: (1) by solving the projectile motion problem using
Cartesian coordinates and plotting y versus x and (2) by using a computer to solve Egs. (3), (4), (9), and
(10) in Example 2.21. You should, of course, get the same trajectory regardless of the coordinate system
used.

Solution

Using the Cartesian coordinate system shown, the acceleration of the parabolic path
projectile is \

X=0 and j = —g. 1
Since the acceleration is constant, we can use constant acceleration
equations to write the position of the projectile as follows:

X =xo+ %ot and y = yo+ yof — 581> ()

where (xg, yo) are coordinates of the projectile at time ¢ = 0, and
(X0, yo) are the components of the velocity of the projectile at ¢ = 0.
Considering the conditions at release, we have

x0=0, yo=h, Xo=vocos¢, and yg=vgsing. (3)

From the first of Egs. (2), we can solve for ¢ to obtain ¢ = (x — x¢)/Xo. Substituting this expression into the
second of Egs. (2), we obtain the expression for the trajectory of the projectile

2

Yo g 2 gx
= yo+ —(x —x0) — == (x — x = =h+ (tangp)x — ———,
Y = Yo+ T (x—xo) 2)33( 0) y (tan ) 202 cos? §

“)

where we have used Egs. (3). Before plotting the trajectory, we determine the time instant, denoted by 77, at
which the projectile hits the ground, i.e, y(¢y) = 0. This condition yields the following result:

1
0=yo+yoly —38f = If= g()'/o + 02+ 2gh) = 1y =2491s, (5)

where we have used the following numerical data: & = 15ft, v9 = 55mph = 55 % ft/s, ¢ = 25°, and

g = 32.2ft/s?. The value of x for t = tr 1s obtained by substituting 75 into the first of Egs. (2). This gives
x(tr) = 182.1ft. ©6)

We can plot the last of Egs. (4) for 0 < x < 182.1 ft. This can be done using any appropriate mathematical
software. The plots shown below were obtained using Mathematica with the following code:

5280.
Parameters = {h—) 15., v0O » 55. - , ¢ » 25. Degree, g 32.2};
3600.
gx?
Plot [h+Tan[¢] X - ———— /. Parameters, {x, 0, 182.1}, Frame -» True,

2v0? Cos[¢]?
GridLines - Automatic, FrameLabel -» {"x (ft)", "y(ft)"},

PlotLabel -» "With Cartesian Coordinates", AspectRatio - 1]
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Executing the above code we obtain the following plot:

With Cartesian Coordinates
300 N

i /N
o/ \
15/
10 \
s \
ol \

0 50 100 150
x (ft)

y(ft)

We now determine the trajectory of the projectile starting from Egs. (3) and (4) derived in Example 2.21 on
p. 110 of the textbook, and subject to the initial conditions in Egs. (9) and (10) of the example in question.
For convenience, we repeat the equations we need here below:

P—r? = —gsinf, @)
r6 + 270 = —g cos 0, (8)
with the initial conditions
r(0) = h, 6(0) = %rad, )
70) = vosing,  6(0) = —”h—" cos . (10)

The above system of differential equations and initial conditions can be integrated with any appropriate
mathematical software. The solution of these equations will be in terms of r and € as a function of time.
To obtain the plot of the trajectory, we must resort to a parametric plot, i.e., a plot of the coordinates of the
projectile for 0 <7 < 7y = 2.4915s. To produce a plot that can be compared to the one shown above, we
must plot values of x and y corresponding to the values of  and 6 given by the numerical solution. We do so
by observing that

x=rcosf and y =rsinb. (11)

With the above in mind, we have used Mathematica with the following code to obtain a solution with time ¢
going from 0 to 2.491 s:

5280.
Parameters = {h-) 15., v0O » 55. - , ¢ » 25. Degree, g - 32.2};
3600.
Equations = {r' 1[t] -z[t] (6'[t])? == -gSin[6[t]],
r[t]©''[t] +2r'[t]©'[t] == ~gCos[6[t]]., r[0] == h, 6[0] == f, r'[0] == vO0 Sin[¢].
2
v0 Cos [¢]
e'[0] = ——};
h

Motion = NDSolve[Equations /. Parameters, {r, 6}, {t, 0, 2.491}]

ParametricPlot [{r[t] Cos[O[t]], r[t] Sin[6[t]]} /. Motion[[1]], {t, O, 2.491},
Frame -» True, GridLines - Automatic, FrameLabel » {"x (ft)", "y (ft)"},
PlotLabel -» "With Polar Coords", AspectRatio - 1]

The code above yields the following trajectory, which can be seen to be identical to the one obtained earlier
(as expected).
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® Problem 2.217 ¢

Reference frame A is translating relative to reference frame B. Both frames track the motion of a particle
C. If at one instant the velocity of particle C is the same in the two frames, what can you infer about the
motion of frames A and B at that instant?

Solution

For two frames to measure the same velocity these frames must be at rest relative to one another at least at
the instant at which the measurement is made. Therefore, we can conclude that frame A has zero velocity
relative to frame B at the instant considered.
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® Problem 2.218 ¢

Reference frame A is translating relative to reference frame B with velocity U4 /B and acceleration ay /B-
A particle C appears to be stationary relative to frame A. What can you say about the velocity and
acceleration of particle C relative to frame B?

Solution

If the particle is stationary relative to frame A, then, relative to B, it moves just like frame A. Therefore, the
velocity and acceleration of particle C relative to frame B are U4 /B and dy /B-
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® Problem 2.219 ¢

Reference frame A is translating relative to reference frame B with constant velocity v4,p. A particle C

appears to be in uniform rectilinear motion relative to frame A. What can you say about the motion of
particle C relative to frame B?

Solution

Because the relative velocity of frame A is constant, then A is in uniform rectilinear motion relative to B.
Since the velocity of particle C is constant relative to A, and since the velocity of C relative to B is the sum
of the velocity of A relative to B and of the velocity of C relative to A, then the velocity of C relative to

be will also be constant. In turn, this implies that particle C will appear to be in uniform rectilinear motion
relative to frame B.
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Problem 2.220 |

A skier is going down a slope with moguls. Let the skis be short enough for » L
us to assume that the skier’s feet are tracking the moguls’ profile. Then, if the )
skier is skilled enough to maintain her hips on a straight-line trajectory and
vertically aligned over her feet, determine the velocity and acceleration of her
hips relative to her feet when her speed is equal to 15 km/h. For the profile
of the moguls, use the formula y(x) = Ay — 0.15x + 0.125sin(;rx/2) m,
where Ay is the elevation at which the skier starts the descent. X

Solution

The expressions of the vertical position of the skier’s hips and feet are denoted by yy and yf, respectively.
yg = (hy — xtan8.53°) m, (1)

yF = [h, —0.15x+0.125sin(%)}m. 2)
Now, calculating the relative position of her hips with respect to her feet,
o NE S
YH/F = YH — YF = [(0.15 —tan8.53%)x — 0.125 s1n(7)] m, 3)
and taking the derivative of Eq. (3) with respect to time yields

. o 0.1257 TX
VH/F =x[0.15—tan8.53 — > cos(T):| m/s. “)

However, X = v cos 8.53° and vg = 15km/h = 15% m/s. With this substitution Eq. (4) becomes

VE/F = [5.630x10—5 — 0.8091 cos (%x)] m/s. (5)

The relative acceleration of the skier’s hips with respect to her feet can now be determined by differentiating
Eq. (4) and substituting X = v cos 8.53°. This yields

.. TX 2 . X 2
ag/r = 1.271x sin (7) m/s = ag/r = 5.237sin > m/s”.
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Problem 2.221 |

Two particles 4 and B are moving in a plane with arbitrary velocity vectors 4 and U, respectively.
Letting the rate of separation (ROS) be defined as the component of the relative velocity vector along the
line connecting particles A and B, determine a general expression for ROS. Express your result in terms
of 7pj4 = I'p — 7’4, where 7’4 and 7' are the position vectors of A and B, respectively, relative to some
chosen fixed point in the plane of motion.

vp P
-~ "UB
A - ﬁB/A
Ua

Solution
We begin by writing iig/ 4 in terms of 7/ 4:

. FB/A

u = — . 1

B/A 72l (1

The velocity of B relative to A is:

Ugja = UB — U4g. (2)

The component of Eq. (2) in the direction of Eq. (1) is the ROS, which is therefore obtained by dotting v, 4
with 7 g/ 4. This gives

-
TB/A
- A - -
ROS = vp/q-up/a = ROS:(UB—UA)- = .
7B/l
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Problem 2.222 |

Airplanes A and B are flying along straight lines at the same altitude and with speeds v4 = 660 km/h and
vp = 550km/h, respectively. Determine the speed of A4 as perceived by B if 6 = 50°.

Solution

Referring to the figure at the right, we use the Cartesian coordinate system
shown to express the velocities of the airplanes A and B:

g =v4q] and Vg = vg(sinf7 + cosb J). ()
Using relative kinematics, the velocity of A as perceived by B is
Ug/p = V4 —Up = —vpsinfi + (vqg —vpcosb) j. )

The speed of A as perceived by B is the magnitude of the vector v4,g. Using
the result in Eq. (2), we have

7

vA/B:|17A/B|=\/vésinzﬂ—i-(vA—vBcosG)z. 3)
Recalling that vy = 660km/h = 6603200 m/s, vg = 550km/h =
550% m/s and 6 = 50°, we can evaluate the expression in Eq. (3) to obtain
V4/B = 144.7 m/s.
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Problem 2.223 |

Three vehicles A, B, and C are in the positions shown and are
moving with the indicated directions. We define the rate of sepa-
ration (ROS) of two particles P; and P, as the component of the
relative velocity of, say, P, with respect to P; in the direction of
the relative position vector of P, with respect to P1, which is along
the line that connects the two particles. At the given instant, de-
termine the rates of separation ROS4p and ROScp, that is, the
rate of separation between A and B and between C and B. Let
v4 = 60mph, vp = 55 mph, and vc = 35 mph. Furthermore, treat
the vehicles as particles and use the dimensions shown in the figure.

Solution

We need to derive a convenient expression for the rate of separation.
We begin by writing tig/ 4 in terms of 7p/4

N B/A
g =24 (1)
7B/l

The velocity of B relative to A is:

U/4 = UB — V4. (2)

The component of Eq. (2) in the direction of Eq. (1) is the ROS, i.e.,

'B/A

ROS=63/A-LAtB/A = ROS=(63—5A)- |7B/A|.

3)

Now that we have a formula for the ROS, consider the (7, j) component
system shown in the figure at the right.

3 237 — 94 J) ft

A _ | it _ (0.23777 — 0.9713 }), 4
IrBral  V(23)2 + (—94)2 ft

7 427 + 65 ) ft

crp _ N _ (0.54277 + 0.8399 7). Q)

Irc/p|  V(42)2 + (65)2 ft

Recalling that vg = 60 mph = 602230 ft/s, vp = 55mph = 553232 ft /s, and vc = 35 mph = 352239 ft /s,

. . 3600 " . 3600 ’ - 3600
and observing that vy = —v4 J, Ug = vg J, and vc = v (cos 54° 7 + sin 54° ), we have
U4 = (—88.00 ]) ft/s, Ug = (80.67 })ft/s, ¥ = (30.177 + 41.53 ) ft/s. (6)
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The rate of separation between vehicles A and B is found as

- - ?
ROS4p = (UB — UA) . |”B—ﬁ
B/A

=

ROS4p = —163.8ft/s.

Similarly, the rate of separation between vehicles C and B is found as

T

Fc/B

=

ROScp = —16.50ft/s.

(7
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Problem 2.224 i

Car A is moving at a constant speed v4 = 75km/h, while car C is
moving at a constant speed vc = 42km/h on a circular exit ramp
with radius p = 80 m. Determine the velocity and acceleration of C
relative to A.

Solution

Referring to the figure at the right, the xy frame of reference with origin
at O and component system with unit vectors 7 and j is stationary
relative to the ground. Expressing the velocities of cars A and C in this
frame, we have

U4 =-vq4j and V¢ = vc(cos54°T + sin54° J). (1)

Recalling that the relative velocity of C with respect to A is v¢c/4 =
Uc — Uy, using Egs. (1), we have

Uc/a = vc cos 54° 1 + (v sin54° 4+ vy) J. 2)
Recalling that vy = 75km/h = 75% m/s and vc = 42km/h =
42% m/s, we can evaluate Eq. (2) to obtain

/4 = (6.8571 +30.27 ) m/s.

To determine the acceleration of C relative to A, we begin by observing that

dq = 0.

~>

~>

vce
v
(&

1

O,
n

3

This is because A travels at a constant speed along a straight line. By contrast, while the speed of C is also
constant, the acceleration of C is not equal to zero because C travels along a curved path. To determine the
acceleration of C, we use the normal-tangential component system shown in the figure, in which we have

dc =Vc iy + (v%/p) Up.
Since v is constant, V¢ = 0 and Eq. (4) simplifies to

dc = (vé/p) Up.

“)

(&)
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Observing that 11, = sin54° 7 — cos 54° J, recalling that d¢, 4 = dc — dy, and using Eqgs. (5) and (3), we
have

dcja = (v&/p)(sin54° 7 — cos 54° 7). (6)
Recalling that ve = 42km/h = 42% m/s and p = 80 m, we can evaluate Eq. (6) to obtain

dcsa = (13767 — 1.000 fym/s>. "

>
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Problem 2.225 |

During practice, a player P punts a ball B with a speed vo = 25 ft/s,
at an angle & = 60°, and at a height /& from the ground. Then the
player sprints along a straight line and catches the ball at the same height
from the ground at which the ball was initially kicked. The length d
denotes the horizontal distance between the player’s position at the start of
the sprint and the ball’s position when the ball leaves the player’s foot.
Also, let At denote the time interval between the instant at which the
ball leaves the player’s foot and the instant at which the player starts
sprinting.

Assume that d = 0 and A7 = 0, and determine the average speed of
the player so that he catches the ball.

Solution

Referring to the figure at the right, we model the motion of the ball as
projectile motion and since we are interested in computing the player’s
average speed, we will model the player’s motion as rectilinear motion
with constant speed. Under the stated modeling assumptions, we have that
the horizontal velocity of the ball is constant and equal to vg cos 6. For the
player to catch the ball when it comes back down under the assumption
of constant velocity motion, along with d = 0 and At = 0, the horizontal
component of the relative velocity of the player with respect to the ball
must be equal to zero. Therefore, the velocity of the player must match
the horizontal component of the velocity of the ball exactly. This implies
that the average speed of the player must be

(UP)avg = v cos 0. (D

Recalling that vg = 25ft/s and 6 = 60°, we can evaluate Eq. (1) to obtain

(VP)avg = 12.50ft/s.
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Problem 2.226 i

During practice, a player P punts a ball B with a speed vog = 25 ft/s,
at an angle & = 60°, and at a height & from the ground. Then the
player sprints along a straight line and catches the ball at the same height
from the ground at which the ball was initially kicked. The length d
denotes the horizontal distance between the player’s position at the start of
the sprint and the ball’s position when the ball leaves the player’s foot.
Also, let At denote the time interval between the instant at which the
ball leaves the player’s foot and the instant at which the player starts
sprinting.

Assume that d = 3ft and Az = 0.2s, and determine the average
speed of the player so that he catches the ball.

Solution

Referring to the figure at the right, we model the motion of the ball as
projectile motion and since we are interested in computing the player’s
average speed, we will model the player’s motion as rectilinear motion
with constant speed. We adopt a Cartesian coordinate system with origin
at point O, which we choose as the point at which the ball leaves the
player’s foot. Let z7 (f stands for final) denote the time the player catches
the ball. Then at time 77, the relative horizontal position of the player with
respect to the ball must be equal zero:

xp/g(tr) =0 = xp(ty)—xp(ty) =0 = xp(ty) =xp(ty). (1)

Let t = 0 be the time at which the ball leaves the player’s foot. Since the horizontal component of the
acceleration of the ball is equal to zero, the ball moves in the x direction with a velocity component that is
constant and equal to vg cos 8. Therefore, we have that

xB(tr) = vots cos 0. 2)

Since the player starts sprinting At after the ball is kicked, the motion of the player occurs during the time
interval that starts at time # = A¢ and ends at# = #y. Therefore, denoting by 7 the time during which the
player sprints, we have that

T=1r — At 3)

We also observe that the total distance traveled by the player, which we will denote by L, is given by
L=xp(ty)+d = L=xplty)+d, ()

where, in writing the last of Egs. (4), we have used the last of Eqgs. (1). By definition, the average speed of the
player is now given by
d + voty cos 6

Zf — At )

L
(UP)avg = ? = (UP)avg =
This result tells us that the value of (vp )ayg can be determined if we determine the value of 7. To this end we
observe that since the player catches the ball at the same height from the ground at which the ball leaves the
player’s foot, and given our choice of coordinate system, we can calculate 75 as the time at which the ball
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comes back down to y = 0. Recalling that the motion of the ball is projectile motion, we have that the y
coordinate of the ball as a function of time is given by

: 1,42
yB = vot sinf — 5 gt°, (6)
where g is the acceleration due to gravity. Setting yp = 0, we obtain

2vq sin 6
tr =0 and tf = ——. (7
g
The first root can be neglected since it coincides with the initial time. Hence, substituting the second of
Egs. (7) into the last of Eq. (5) and simplifying, we have

dg + v(z) sin 26

mv 8
2vp sin 8 — g At ®

(UP)avg =

where we have used the trigonometric identity 2 sin 6 cos @ = sin 26. Recalling that d = 3 ft, g = 32.2ft/s?,
vg = 25ft/s, 8 = 60°, and At = 0.2's, we can evaluate the above expression to obtain

(VP)ave = 17.301t/s.
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Problem 2.227 |

A remote controlled boat, capable of a maximum speed of 10 ft/s in still water, is made to cross a stream
with a width w = 35 ft that is flowing with a speed vy = 7 ft/s. If the boat starts from point O and keeps
its orientation parallel to the cross-stream direction, find the location of point A at which the boat reaches
the other bank while moving at its maximum speed. Furthermore, determine how much time the crossing
requires.

A
\ —> |W
Y ==
43/
o
Solution
Using a Cartesian coordinate system with its origin at O, as the boat is crossing the stream, Uy
its velocity Up can be written as -
Yy vB Y vgyw "
7
vg = Uw + vpyw = (71 + 10 J) ft/s,
X

where Uy = 71 ft/s is the velocity of the water and vg, = 10 J ft/s is the velocity of the boat relative to
the water. Using the the y component of velocity, the time of crossing is

t=— = |t=23500s, (1)

where w = 35 ft. Since the x component of velocity is constant, using the crossing time in Eq. (1), we can
calculate the downstream position of A as

X =vpxt = x = 24.50ft.
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28 Problem 2.228 g2

A remote controlled boat, capable of a maximum speed of 10ft/s in 4
still water, is made to cross a stream of width w = 35 ft that is flowing "
with a speed v = 7ft/s. The boat is placed in the water at O, and itis | x
intended to arrive at A by using a homing device that makes the boat R
always point toward A. Determine the time the boat takes to get to 4 é
and the path it follows. Also, consider a case in which the maximum
speed of the boat is equal to the speed of the current. In such a case,
does the boat ever make it to point A? Hint: To solve the problem, write
Up /w = vp/w U4/, where the unit vector ii4,p always points from
the boat to point A and is therefore, a function of time.

Vpy—

Qé

Solution

Referring to the figure at the right, we will use the Cartesian coordinate A
system shown. We denote the boat by B and the water by W. Since the |- ——————
boat is always heading toward point A, we describe the heading of the W

\
boat via the unit vector ii4,p given by N & - > |
3 Vy—
9 w-

T4/B a 7|

Uq/B = }?A/B| o s — X

Denoting the coordinates of the boat by (x, y), the position of points A and B are 74 = w J and rg =
X1+ y]J,sothat

Fa/p=Ta—Tp=—xI+w—y)]. (2)
Substituting Eq. (2) into Eq. (1), we have

il p = —* Pt P 7 3)
w2 Rt w P

Next, letting vy and v/ be the velocity of water and the velocity of the boat relative to the water,
respectively, we have

l_5W:vwf and 17B/W=UB/WﬁA/Bv (4)
where vy = 7ft/s, vg;w = 10ft/s when the boat is moving at its maximum speed (relative to the water),
and where, in writing Vg, = vg,w 4,5, we have used the hint given in the problem statement.

Using relative kinematics and denoting the velocity of the boat by vz, we have vp = vy + Ug/w.
Hence, using Egs. (3) and (4), Ug takes on the following form:

- UB/WX L~ vgww—y)
vg = (UW — / ) 1 / J- (&)
VX2 4+ (w—y)? VX2 4+ (w—y)?
Now recall that the velocity of the boat can be written as
vp=x1+4+y]. ©6)

Hence, equating Egs. (5) and (6) component by component we find that the motion of the boat is govered by
the following differential equations:

) VB WX ) vp/w(w—y)
X =Vvw — and y = , (7)
Vit w—y)? Vit w—y)?
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which, given that the boat starts at O at time ¢ = 0, are subject to the following initial conditions:
x(0)=0 and y(0)=0. (8)

These equations can be integrated using appropriate mathematical software. We have used Mathematica.
Before presenting the code used to solve the problem, a remark about Egs. (7) is necessary. Let’s suppose that
the boat does make it to point A. In this case, the coordinates of the boat would be (x = 0, y = w). When
this happens, the argument of the square roots in Egs. (7) becomes equal to zero. In turn, because the square
roots appear at the denominator of fractions, when the boat makes it to 4, the equations suffer a division by
zero that will cause the numerical software to fail. Now, when using a numerical method to solve Eqgs. (7) we
must specify the time interval we want the solution to cover. As just discussed, as soon as the boat makes it
to A the numerical integration fails. Therefore, we need to use trial and error to find the maximum amount of
time for which the equations can be integrated before numerical failure. However, this maximum amount
of time will correspond to the time taken by the boat to reach A, which is one of the quantities we need to
determine in this problem. With all the above in mind, we have integrated the equations in question for the
boat traveling at the maximum speed relative to water, i.e., wg,w = 10ft/s, using Mathematica with the
following code:

Parameters = {viW » 7., vBrelW -» 10., w » 35.};

vBrelW x[t] vBrelW (w-y[t])
Equations = {x' [t] == VW - s YU [E] == ,

x[t]? + (w-y[t])? x[t]? + (w-y[t])?

x[0] = 0, y[0] = o};

Motion = NDSolve[Equations /. Parameters, {x, y}, {t, 0, 6.8627}]

Notice that, using trial and error, we were able to integrate our equations only up to ¢ = 6.8627 s. Hence,
expressing this result to three significant figures, we will say that

For vg/w = 10s, the boat reaches A in 6.863 s.

The solution obtained using Mathematica with the above code, can be plotted to depict the path followed by
the boat. This path was plotted with the following code:

ParametricPlot [{x[t], y[t]} /. Motion[[1]], {t, O, 6.8627}, Frame -» True,
GridLines - Automatic, AspectRatio -» 1, FrameLabel » {"x (ft)", "y (ft)"},
PlotLabel - "Path of Boat with wvg,y=10 ft/s"]

Path of Boat with vg/ =10 ft/s

35— ]

30 I —
25 \/
20

=
[ammy
N—
> 15
10
5
O / il
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x (ft)
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Now we consider the case for which the speed of the boat is equal to the speed of the water current. We
repeat the same calculations just described but with vg, i = 7 ft/s. This time we find that the mathematical
software does not fail for any amount of time, indicating that

When vg,w = 7s, the boat does not reach A.

We present our solution for ¢ going from zero to 20 s and we plot both the path of the boat and the distance
dap = v/x2 + (w — )2 of the boat from A as a function of time. As can be seen from the plot of the path
of the boat, the boat does reach the other side of the stream but when it does it points toward A while moving
relative to the water with speed equal to the (absolute) speed of the water. As a result, an observer stationary
with the banks of the stream sees the boat become stationary. The fact that the boat no longer moves relative
to the banks can be seen from the plot of the distance d4 g, which, after about 9s becomes constant (and

remains different from zero).
Parameters = {vIW > 7., vBrelW »> 7., w » 35.};

vBrelW x[t] vBrelW (w-y[t])
Equations = {x' [t] = VW - s Y [E] =

x[t]? + (w-y[t])? x[t]? + (w-y[t])?
x[0] = 0, y[0] = o};
Motion = NDSolve[Equations /. Parameters, {x, y}, {t, 0, 20}];
ParametricPlot [{x[t], y[t]} /. Motion[[1]], {t, O, 20}, PlotRange -» All, Frame - True,

GridLines - Automatic, AspectRatio -» 1, FrameLabel » {"x (ft)", "y (ft)"},
PlotLabel - "Path of Boat with wvg,y= 7 ft/s"]

Plot ['\/x[t]z + (w-y[t])? /. Parameters /. Motion[[1]]., {t. 0, 20},

PlotRange -» {{0, 20}, {0, 35}}, Frame -» True, GridLines - Automatic, AspectRatio-» 1,

FrameLabel -» {"t (s)", "distance (ft)"}, PlotLabel - "Distance from A with vg,u= 7 ft/s"]

Path of Boat with vg/w= 7 ft/s Distance from A with vgy = 7 ft/s
35°F [ 35
30 / 30
25 25
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€ 20 3 20
=]
= 15 g 1s
10 ©
10
5
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O ]
0
0 3 10 15 0 5 10 15 20
x (ft) t(s)
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Problem 2.229 i

An airplane flying horizontally with a speed v, = 110km/h relative to the water drops a crate onto a
carrier when vertically over the back end of the ship, which is traveling at a speed vy = 26 km/h relative
to the water. If the airplane drops the crate from a height 7 = 20 m, at what distance from the back of the
ship will the crate first land on the deck of the ship?

L= S : Us
Solution
Referring to the figure at the right, the crate is denoted by C. The motion of C is 7
analyzed using a fixed Cartesian coordinate system with origin at the point where C Up

is released. After the drop, C is in projectile motion so that the acceleration of C @ J hixi:
is dc = —g J. Using constant acceleration equations and recalling that the crate is
traveling with the airplane before being dropped, the velocity and position of C are

Uc =vpl—gt] and Fc =vpli—%gt2f. (1)
Relative to the same frame of reference used to study the motion of C, the position of the back of the ship is
’_;S == vst i, (2)

where the subscript s stands for “ship.” The vector describing the position of the crate relative to the back of
the ship:

Feis =Tc —Ts = TFeps = (vp—v)ti—581% ] 3)
Let ¢; be the time at which the crate hits the deck. Given the choice of coordinate system, at t = fy4
rcy = —h. Using the second of Eqgs. (1), this gives

2h

The answer to the problem is the value of the horizontal component of 7¢ /s alt =tg:

2h
(rC/s)x{t:td = (vp — vs) \/; )

Recalling that v, = 110km/h = 1101280 m/s, vy = 26km/h = 264200 m/s, h = 20m, and g =
9.81 m/s?, we have

distance = 47.12m.
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Problem 2.230 i

An airplane flying horizontally with a speed v, relative to the water drops a crate onto a carrier when
vertically over the back end of the ship, which is traveling at a speed vy = 32 mph relative to the water.
The length of the carrier’s deck is £ = 1000 ft, and the drop height is 4 = 50 ft. Determine the maximum
value of vj, so that the crate will first impact within the rear half of the deck.

Solution

~>

Referring to the figure at the right, the crate is denoted by C. The motion of C is

analyzed using a fixed Cartesian coordinate system with origin at the point where C Up
is released. After the drop, C is in projectile motion so that the acceleration of C -9 l P
isdc = —g J. Using constant acceleration equations and recalling that the crate is
traveling with the airplane before being dropped, the velocity and position of C are
Uc =vpl—gtj and ?c:vpti—%gtzf. (1)

Relative to the same frame of reference used to study the motion of C, the position of the back of the ship is
Fs = vst 1, ()

where the subscript s stands for “ship.” The vector describing the position of the crate relative to the back of
the ship:
;:C/s=7C_7s = ?C/sz(vp_vs)ti_%gtzj- 3)

Let 7; be the time at which the crate hits the deck. Given the choice of coordinate system, at t = #4
rcy = —h. Using the second of Egs. (1), this gives

2h

Upna 18 the value of v, such that the horizontal component of 7¢c /s at t = t4 is equal to £/2:

2h [ge2
re/xlimy, = 3 = (Upp — vs)‘/g =10 = v =uv+ i—. )

Recalling that vy = 32mph = 323283 fi/s, £ = 1000 ft, h = 50ft, and g = 32.2ft/s?, we have

Vpnae = 330.7 ft/s = 225.4 mph.
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Problem 2.231 |

An airplane is initially flying north with a speed v9 = 430 mph relative to
the ground, while the wind has a constant speed vy = 12 mph, forming
an angle 6 = 23° with the north-south direction. The airplane performs a
course change of B = 75° eastward while maintaining a constant reading
of the airspeed indicator. Letting Up,4 be the velocity of the airplane
relative to the air and assuming that the airspeed indicator measures the
magnitude of the component of Up, 4 in the direction of motion of the
airplane, determine the speed of the airplane relative to the ground after
the course correction.

Solution

We will express the velocity of the airplane using a normal tangential component system.
In this manner, the tangent direction will always be the direction of motion of the airplane. 2 g U,
In addition, we will use subscripts 1 and 2 to denote quantities before and after the change N

in course, respectively. Before turning, the velocity of the airplane and wind relative to T 7 rad = (f +6)
the ground are
Up, = volUly, and Uy, = vw(—cos by + sinbiiy,). (1) U
The airspeed of the plane before the turn is
v = (Up, —Uw,) Uy, = U1 =g+ v cosé. 2)
After turning, the velocity of the wind is
Uw, = vw{cos[m rad — (B + 0)] 4, + sin[x rad — (B + 0)]iin,}
= vy [—cos(B + 0) ti, + sin(B + ) tin,], 3)
where we have used the trigonometric identities cos(sr rad — y) = —cos y and sin(r rad — y) = siny. The
airspeed of the plane after the turn is
v2 = (Up, — Uws) " Uy, = V2 = Vp, + v cos(B + 0). 4)
Enforcing the condition that v, = vy, we have
vo +vwcos =vp, +vwcos(B+6) = vp, =vg+ vw[cost —cos(B + 0)]. 5)

Recalling that vo = 430 mph, vy = 12mph, 8 = 23°, and B = 75°, we can evaluate vp, to obtain

vp, = 442.7 mph.
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Problem 2.232 i

At the instant shown, block B is sliding over the ground with a velocity vp while block 4 is sliding over
block B and has an absolute velocity 14 = —(417 + 4 J) ft/s. Determine vg if 6 = 30°.

Solution

Using the Cartesian component system shown at the right, the veloc-
ities of A and B are

AN

Vg = UAxf+vAyf and Up = vgy1, (D) ipg
where we expressed the fact that B moves only in the x direction. / ?
Since A slides over B, the velocity of A relative to B is directed along *
unit vector 14, g, which, written in terms of 7 and j, is
g/p =—costi—sinf j. 2)

Denoting by v4,p the component of the velocity of A relative to B along ii4,, and using Eq. (2), we have
ﬁA/B=UA/BﬁA/B=—vA/BCOSQi—UA/BSin9f. (3)

Using relative kinematics, we have that

U4/ = U4 — UB. “)
Substituting Egs. (1) and (3) into Eq. (4), and equating component by component, we obtain the following
system of two equations in the two unknowns v4,p and vpx:

—vyq/pcost = vqy —vpx and —vy/psinf = vy, (5)

which can solved to obtain

cos 0 Vdy
VBx = VAx ~ Vdy and vq/p = —

(6)

sinf’
Recalling that vay = —4ft/s, vqy, = —4ft/s, and 6 = 30°, and substituting the first of Egs. (6) into the
second of Egs. (1), we obtain

g = 2.9287 ft/s.
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Problem 2.233 |

At the instant shown, vg = 57 m/s. If 6 = 25°, determine the speed of A relative to B in order for A to
travel only in the vertical direction while sliding over B.

Solution

Using the Cartesian component system shown at the right, the veloc-
ities of A and B are

U4 =v4ay] and Up =By, (1)

where, following the problem statement, we expressed the fact that
A and B move only in the y and x directions, respectively. Since A
slides over B, the velocity of A relative to B must be directed along the unit vector 7i4, g, which, using the
unit vectors 7 and J, is

y/p =—costi—sinf j. 2)
Denoting by v4,p the component of the velocity of A relative to B along ti4,p, we have
UA/B = VA/B Ua/B = —Va/BCcOsSOT —vyg/psinf J, 3)
where we have used the expression for ii4,p in Eq. (2). Using relative kinematics, we have
Ug/B = U4 — UB. “4)

Substituting Eqgs. (1) and (3) into Eq. (4), and equating component by component, we obtain the following
system of two equations in the two unknowns v4,p and v4y:

—vyq/pcost = —vpy and —vy/psind = vgy, 5
which can solved to obtain
UBx
V4y = —vpxtan® and vq/p = . (6)
cos O

Recalling that vgx = 5m/s and 6 = 25° we observe that v4,p in the second of Egs. (6) is a positive quantity
and therefore be taken to represent the speed of A relative to B. Evaluating v4,p we then obtain

v4/B = 5.517m/s.
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Problem 2.234 |

An interesting application of the relative motion equations is the direction of motion
experimental determination of the speed at which rain falls. Say
you perform an experiment in your car in which you park your
car in the rain and measure the angle the falling rain makes on
your side window. Let this angle be 0.x = 20°. Next you drive
forward at 25 mph and measure the new angle Gpoion = 70° that
the rain makes with the vertical. Determine the speed of the falling

rain.

Solution

In the figure shown, 7 and j are horizontal and vertical, respectively. Since
Brest 18 the orientation of the velocity of raindrops relative to the ground,
the velocity in question is

1_5R = —vR(sin Brest I + COS Bresy j)’ (D

where vy is the speed of the falling rain. The angle Oyo0n describes the orientation of v g /c» the velocity of
the raindrops relative to the moving car:

l_jR/C = —UR/C (sin Omotion & + €08 Omotion 1)+ (2)

where v/ is the speed of the raindrops as perceived by an observer moving with the car. Relative kinematics
requires that

UR = Uc + Ug/cC, 3)

where v¢ is the velocity of the car. Substituting Egs. (1) and (2) into Eq. (3),
—UR SiN Orest I — VR COS bhest ] = v T — UR/C $in Omotion I — UR/C COS BOmotion J - 4
Equating components, Eq. (4) yields the following system of two equations in two unknowns vg and vg/c:

—VR SN Oret = Ve — VR/C sin Omotion and  — VR COS Bregy = —UR/C €OS BOmotions )

whose solution is

vcC
sin Qmotion — COS emotion tan erest

vC d
VR = . and vg/c =
Ccos erest tan Gmotion — sin Qrest

(6)

Recalling that we have et = 20°, Omotion = 70°, vc = 25 mph = 25 2280 ft/s, we can evaluate the first of

3600
Egs. (6) to obtain

Urain = 16.37 ft/s.
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Problem 2.235 |

A woman is sliding down an incline with a constant acceleration of A
ap =2.3m/ s2 relative to the incline. At the same time the incline is L
accelerating to the right at 1.2 m/s? relative to the ground. Letting y

f# = 34° and L = 4 m and assuming that both the woman and the
incline start from rest, determine the horizontal distance traveled by
the woman with respect to the ground when she reaches the bottom 7
of the slide. [ \

Solution

The xy and pg frames shown at the right are attached to the ground q
and to the incline, respectively. The origins of these frames are \
chosen so that the x and p coordinates of the woman are both
equal to zero at the initial time. We denote by aw and ay; the
accelerations of the woman relative to the ground and to the incline, g
respectively. Denoting by d; the acceleration of the incline relative

to the ground, from the problem’s statement we have 2 J

dw/r =aoll, and dy =agl. (1) ot
Then, using relative kinematics, we have
aw =dr +awyy. )
Substituting Egs. (1) into Eq. (2) and observing that i1, = —cos 01 — sin 0 j, we obtain
aw = (ag —agcos0)i —agsinb J, 3)

which implies that the x component of @y is constant. Recalling that xyy = 0 for = 0 and that the woman
starts from rest, using constant acceleration equations, we have

Xw = %(as — agcos 0)12. 4)

Denoting by 7 and d the time taken by the woman to slide to the bottom of the incline and the corresponding
horizontal distance traveled (with respect to the ground), respectively, we have

d = %(as —ag cos@)zfz‘. 5

We observe that 75 is also the time needed to travel the distance L in the p direction with the constant
acceleration ag. Hence, recalling that p = 0 and p = 0 for t+ = 0, applying constant acceleration equations
in the p direction we have

p=3a0t> = L=3apt; = ty=+/2L/ao. (6)
Substituting the last of Egs. (6) into Eq. (5) we have
d= ‘(as—a()COSQ)(L/a())|. @)
Recalling that ag = 1.2m/s?, ag = 2.3m/s?, § = 34°, L = 4m, we can evaluate Eq. (7) to obtain
d =1.229m.
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Problem 2.236 |

The pendulum bob A swings about O, which is a fixed point, while bob B swings y
about A. Express the components of the acceleration of B relative to the Cartesian
component system shown with origin at the fixed point O in terms of Ly, L3, 6, ¢,
and the necessary time derivatives of ¢ and 6.

Solution

~>

Referring to the figure at the right, we use two polar component systems, one with unit
vectors 1, and 1y attached to A, the other with unit vectors %, and i attached to B.
When expressed in terms of the unit vectors 7 and j, the unit vectors of the chosen polar
component systems are:

=cosfi+sinf J, D
=cos¢i+sing j. )

U, =sinf7—cosf j, 1ty
Ug =singi —cos¢ j, g
Using the (ii,, 1) component system, and denoting by r and 6 the corresponding polar
coordinates of A4, the acceleration of A is

g = (F —r6?) ity + (rf + 2i6) itg. 3)
Recalling that r = L1 = constant, Eq. (3) can be written
dg=—L10%0, + L1601y = dy= L1(5c059 — 62 sinf) 7 + Ll(é sin @ + échSG) i, @

where we used Egs. (1) to express d4 in terms of 7 and j. Using the (114, 1i4) component system, and denoting
by ¢ and ¢ the polar coordinates of B relative to A, the acceleration of B relative to A is

dgra = (i —q9”) dq + (a9 +240) fig. (5)
Recalling that gg = L, = constant, Eq. (5) can be written
dpja = —L2¢?ilq + Lagily = dp/a= La(pcosg—d?sing)i+ La(Psing + $*cosg) 7. (6)

where we used Eqs. (2) to express dp,4 in terms of 7 and j. Relative kinematics demands that dp =
as +adpg /4. Therefore, using the last of Egs. (4) and (6), we have

ag = (Llécose — L16%sin6 + Ly cos¢ — Log? sing)
+ (Llésiné + L16%cos 0 + Ly sing + L2¢52005¢) J-
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Problem 2.237 |

Revisit Example 2.24 in which the movie’s hero is traveling on train car A
with constant speed v4 = 18 m/s while the target B is moving at a constant
speed vp = 40m/s (so that ap = 0). Recall that 4 s before an otherwise
inevitable collision between A and B, a projectile P traveling at a speed of
300 m/s relative to A is shot toward B. Take advantage of the solution in
Example 2.24 and determine the time it takes the projectile P to reach B
and the projectile’s distance traveled.

Solution

Referring to Example 2.24 on p. 127 of the textbook and to the figure on
the right, (Fig. 3 in Example 2.24), we denote by f the angle AC B, so that h
B = 48.2°. As was done in Example 2.24, we denote by d the distance
between A and C at the time of firing, so that d = (4s)vg = 72.00m. To
find the time taken by the projectile to hit the target, we observe that the
distance traveled by the projectile in the x direction, is given by

dy = d sin . (1)

rp(ty)
© =

In Example 2.24, we had determined that the (absolute) velocity of the Alty) = P(ty) "8ty

projectile was

- . N . N Y
vp = (vgsinB +vpsgcosb)i+ (vacos B —vp gsinf)j. (2) B(ty) o
Since Up is constant, the time taken by the projectile to hit the target, which we denote by Az, is simply equal
to dy in Eq. (1) divided by vpy, i.e.,
d sin B

At = , 3
vgsinf + vp,4cos 0 )

which, recalling that we have d = 72.00m, B = 48.2°, v4 = 18m/s, vp;4 = 300m/s, and 6 = 64.40°
(final result in Example 2.24), can be evaluated to obtain

At = 0.3752s.

To find the distance traveled, we observe again that Up is constant, so that the distance traveled is

\/(vA sinf + vpyqcos )2 + (vgcos B —vp;4sin6)2(d sin )

Up At| = -
lop Al vasinfB + vp,4cost

: “)

where we have used the expressions for vp in Eq. (2) and Az in Eq. (3). Since d = 72.00m, § = 48.2°,
vp/4 = 300m/s, and 6 = 64.40°, we can evaluate the right-hand side of Eq. (4) to obtain

Distance traveled by P = 110.9m.
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Problem 2.238 |

Consider the following variation of the problem in Example 2.24 in which a
movie hero needs to destroy a mobile robot B, except this time they are not
going to collide at C. Assume that the hero is traveling on the train car A with
constant speed v4 = 18 m/s, while the robot B travels at a constant speed
vp = 50m/s. In addition, assume that at time t = Os the train car A and ‘
the robot B are 72 and 160 m away from C, respectively. To prevent B from |
reaching its intended target, at ¢ = Os the hero fires a projectile P at B. If |
P can travel at a constant speed of 300 m/s relative to the gun, determine the !
orientation 6 that must be given to the gun to hit B. Hint: An equation of :
the type sin 8 &= Acos B = C has the solution 8 = Fy + sin"}(C cos y), if 0 T”B

|C cosy| < 1, where y = tan™! A. B
Solution

We base the solution of this problem on the solution of Example 2.24 on p. 127 of the textbook. All the
quantities used in this solution are defined in Example 2.24. We report here Eq. (14) from the Example,
which remains valid under the conditions stated in this problem and which determines the value of the angle
0 that we want to determine:

({—dcosB)cosf —dsinfsinf = sin B (vpd —v4?). (1)
UpP/A
Dividing both sides of this equation by —d sin 8, we have
{—d {—vpd
sin9—ﬂcos€=u. 2)
dsinf vp/ad

The above equation is a transcendental equation in § whose solution can be obtained using the following
technique. We consider the term multiplying the cos 6 on the left-hand side of the equation and we define an
angle ¢ such that

tan¢—£_dcos'3 & p=tan! £ —dcosp -
~ dsinf B dsing )’
Then, recalling that tan ¢ = sin ¢/ cos ¢, we can rewrite Eq. (2) as
sinf — sin ¢ cosf = M = sinfcos¢ —singcosh = (va€ — vpd)cos ¢
COS¢ Up/Ad UP/Ad
= sin(f —¢) = (v4t —vpd) COS¢’ @

UP/Ad

where we have used the trigonometric identity sin 8 cos ¢ — sin ¢ cos 8 = sin(6 — ¢). The last of Eq. (4) can
now be solved for 6 to obtain
(vaf —vpd) cos ¢:|

vp/Ad

0 =¢+ sin_1|: (5)

Recalling that v4 = 18 m/s, vg = 50m/s, vp,4 = 300m/s, and where, using the results in Example 2.24,
£ = 160.0m, d = 72.00m, we can evaluate ¢ in in the last of Egs. (3) and then evaluate 6 in Eq. (5) to
obtain

6 = 63.57°.
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ZER8 Problem 2.239 2

Consider the following variation of the problem in Example 2.24 in which a
movie hero needs to destroy a mobile robot B. As was done in that problem,
assume that the movie hero is traveling on the train car A with constant speed
v4 = 18 m/s and that, 4 s before an otherwise inevitable collision at C, the hero
fires a projectile P traveling at 300 m/s relative to A. Unlike Example 2.24,
assume here that the robot B travels with a constant acceleration ag = 10 m/s>
and that vp(0) = 20m/s, where t = 0 is the time of firing. Determine the
orientation 6 of the gun fired by the hero so that B can be destroyed before the
collision at C.

|
|
|
|
|
|
|
52 T"B

Solution

The general strategy for the solution of moving target problems has been discussed in the Road Map of
Example 2.24 on p. 127. According to this strategy, letting # = 0 be the time at which the projectile is fired,
there is a time #; > O such that .

rp/p(tr) =rp(tr) —re(tr) =0, )

that is, there is a time #; at which the projectile and the target meet. To solve this problem we need to find
the positions of the projectile and of the target as functions of time and then set them equal to each other as
required by the above equation.

Because A is moves at a constant speed along a straight line, then 4 is
constant. Once P is fired, its velocity is also a constant given by

Up = U4q +vp/atip/4(0), (2) T
where vp, 4 in known. Hence,
rp(1) = 7p(0) + [U4(0) + vp atips4(0)]1. 3 < 0 ¢
@ .
. . A(0) = P(0) rp(0)
Because B has a constant acceleration, we can use constant acceleration
equations to write
Y
- - - - ] B
Fg(t) = Fg(0) + Up(0) + Sapt>. 4) B(0)
Substituting Egs. (3) and (4) into Eq. (1), we have
7p(0) + (34(0) + vpyatip 4(0)) tr — 5 (0) — vp(0)tf — Ldgt? =0, (5)

Referring to the figure at the right (similar to Fig. 3 in Example 2.24 and showing the geometry at the time of
firing) we have that 74(0) = rp (0), so that Eq. (5) can be rewritten as

74/8(0) + [04/8(0) + vp atip/a(0)]tr — Yapt? = 0. (6)

The problem is solved when we are able to express all of the terms in Eq. (6) via known quantities and the
only two unknowns of the problem, which are #; and the firing angle 6. We therefore proceed to determine
convenient expressions for each of the vectors in Eq. (6).
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Since the position at ¢ = 0 in this problem is the same as that in the figure shown, we have
74/B(0) = —d sin 1 4 (L —d cos p) j. 7
Again referring to the geometry at ¢t = 0, and recalling that 8 is known (8 = 48.2°), we have

U4(0) = vatic)q = va(sinfi+cosfj) and vp(0) =vp(0) ], ®)
so that
U4/B(0) = vgsinB7 4+ (vgcos B —vp(0)) ]. )

Since ¢t = 0 is the time of firing, we must have
p/4(0) =cos@17 —sinb j. (10)
Finally, the problem statement and the geometry of the problem tell us that
dp =ap j. (11)

Substituting Egs. (7) and Egs. (9)—(11) into Eq. (6) and expressing the result on a component by component
basis, we have

—d sin B + (vqsinB +vp,gcosO)ty =0 (12)
and
£ —dcosf + [vacos B —vp(0) —vp,qsinb]ty — %aBtIz =0, (13)
where v4 = 18 m/s, vg(0) = 20m/s, vp;4 = 300m/s, ap = 10m/s?, B = 48.2°, and where, using the
results in Example 2.24, d = 72.00 m and £ = 160.0 m.

Equations(12) and (13) form a system of two equations in the two unknowns 6 and #7 that can be solved
numerically with appropriate mathematical software. We have used Mathematica with the following code:

Parameters = {vA -» 18., vBO » 20., vPrA -» 300., aB -» 10., 3> 48.2 Degree, d-» 72.00, Y » 160.0};
FindRoot[

{—dsin[B] + (vA Sin[B] + vPrA Cos[6Degree]) tI == 0,
1
{-dCos[B] + (VA Cos[B] -vBO - vPrA Sin[6Degree]) tI -— aB tI? == 0} /. Parameters,
2

{{e, 64.40}, {tI, 2}}]

Notice that we have provided the root finding algorithm an initial guess for the solution consisting of the
values 6 = 64.40° and ¢7 = 2, the first of which is the solution to the case discussed in Example 2.24 and
the second is between the initial time and the time of collision. The above code yields the following solution:

6 = 65.88° and t; = 0.3947s.
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Problem 2.240 |

A park ranger R is aiming a rifle armed with a tranquilizer dart
at a bear (the figure is not to scale). The bear is moving in the
direction shown at a constant speed vp = 25 mph. The ranger fires
the rifle when the bear is at C at a distance of 150 ft. Knowing
that « = 10°, B = 108°, the dart travels with a constant speed of
425 ft/s, and the dart and the bear are moving in a horizontal plane,
determine the orientation 6 of the rifle so that the ranger can hit
the bear. Hint: An equation of the type sin 8 = Acos B = C has
the solution 8 = Fy + sin"}(C cosy), if |C cosy| < 1, where

y =tan"! A.
Solution
We will use the Cartesian component system shown at the right with origin at R. We T
will denote the dart by P. The velocity of the bear and of the dart are 5
- A . A~ - ~ . ~ R
vp = —vp(cosBi+sinfj) and vp = —vp(cosfi +sinb j), (1) Gd/y' IA—X
a A0
where vp = 25mph and vp = 425ft/s. Let ¢ = 0 be the time of firing, and ;7 be A
the time at which P hits B. Then it must be the case that / vp
Pp/p(tr) =0, (2)

where, since both the dart and the bear move at constant velocity (constant speed and fixed direction), we
have 7p = vpt and Fg = rg(0) + vUpgt, which, using Egs. (1), we can write as

Fp = —vpt(cosOi +sinf j) and 7Fp = —(d cosa + vptcosB)i — (dsina +vgtcosB j), (3)

where we have used the fact that 75 (0) = —d(cosa 7 + sin« ). Recalling that 7p,p(t7) = rp(t7) — FB(t1),
and using Eqgs. (3) to enforce Eq. (2) on a component by component basis, we have

—vptrcos +dcosa +vptycosp =0 and —vptrsinf + dsina + vptycosf = 0. 4)

This is a system of two equations in the two unknowns #; and 6. Eliminating ¢; from Egs. (4) and rearranging
terms so as to take advantage of the hint, we have

. . . L% .
tana(vp cos@—vpcosB) = vpsinf—vpsinf = sinf—tanacosfd = —B(sm,B—tana cos f). (5)
vp

Letting A = tano and C = (vp/vp)(sin f — tan« cos B), and taking advantage of the hint, we can solve
for 6 to obtain

0=a+ sin_l[Z—i(sinﬂ — tan & cos B) cosa]. (6)

Recalling that @ = 10°, § = 108°, vg = 25mph = 25% ft/s, and vp = 425ft/s, we can evaluate 6 to
obtain

6 = 14.90°.
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Problem 2.241 |

The object in the figure is called a gun tackle, and it used to be very
common on sailboats to help in the operation of front-loaded guns.
If the end at A is pulled down at a speed of 1.5m/s, determine the
velocity of B. Neglect the fact that some portions of the rope are not
vertically aligned.

[
W

o

Solution

By neglecting vertical misalignments, and using the y axis shown at
the right, we can expresss the length of the cord as follows:

L=ys+2yp. (1
Since L is constant, taking its time derivative, we have

0=y4+2yp. (2)
Solving for yp, and recalling that g = yp j, we have

Up = —3a]. 3)

Recalling that y4 = 1.5m/s, we can evaluate the above expression to
obtain

vg = —0.7500 jm/s. |;

_—T

~>

~>

YB
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Problem 2.242 |

The gun tackle shown is operated with the help of a horse. If the horse moves to the right at a constant
speed of 7 ft/s, determine the velocity and acceleration of B when the horizontal distance from B to 4 is
15 ft. Except for the part of the rope between C and A, neglect the fact that some portions are not vertically
aligned. Also neglect the change in the amount of rope wrapped around pulley C as the horse moves to the
right.

=

Solution

L

Using the coordinate system shown in the figure at the right, and
denoting the length of the rope by L, we have

L =2yp+ +/x]+h2 (1)

Since L is constant, differentiating Eq. (1) with respect to time gives

-

XAX4

,/xi+h2.

0=2yp + 2)

Solving Eq. (2) for yp, we have
XAXA

e )
2,/x5+ h?

Since vg = yp J, recalling that h = 8ft, x4 = 7ft/s, and x4 = 15 ft, we can evaluate Eq. (3) to obtain

3)

g = —3.088 7 ft/s. |; | )

To obtain the acceleration of B we differentiate Eq. (3) with respect to time and, observing that X4 = 0, we
obtain .
yp = _h#m. 5)
2(xj +h?)
Since dp = yp J, again recalling that we have h = 8ft, x4 = 7ft/s, and x4 = 15 ft, we can evaluate Eq. (5)
to obtain

ap = —0.3192 ] ft/s>. |;
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Problem 2.243 |

The figure shows an inverted gun tackle with snatch block, which ‘
used to be common on sailboats. If the end at A is pulled at a speed
of 1.5m/s, determine the velocity of B. Neglect the fact that some
portions of the rope are not vertically aligned.

o

Solution

Neglecting vertical misalignments, and using the Cartesian coordinate h

Ox
O
~>

system shown at the right, we can express the length of the cord as
follows: 7
L =ya+3ys. (1
Since L is constant, taking its derivative with respect to time, we have y
0=ya+3ys. 2)
Recalling that vg = yp ], solving Eq. (2) for yg, we have
- 1. =~
VB = —3)AJ- 3)
Recalling that y4 = 1.5m/s, we can evaluate Ug to obtain
- R P
vp = —0.5000 jm/s. |;
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Problem 2.244 |

In maritime speak, the system in the figure is often called a whip-upon-whip
purchase and is used for controlling certain types of sails on small cutters (by
attaching point B to the sail to be unfurled). If the end of the rope at A is pulled
with a speed of 4m/s, determine the velocity of B. Neglect the fact that the
segment of the rope between C and D is not vertically aligned, and assume that
the slope of segment AC is constant.

Solution

Neglecting the vertical misalignment of the segment C D, assuming that the
slope of the segment AC is constant, and using the coordinate system shown
at the right, we can write the lengths of the two rope in the system as follows:

Ly=2yp—yc and Ly =yc + s4. (1)
Since L; and L, are constant, taking their time derivative we have VB
0=2yp—yc and 0= yc +54. 2
YD
Recalling that §4 = v4 is known and eliminating yc from Egs. (2), we can
solve for yp to obtain
. — 1 = — 1 ~ 3
YB=—3V4 = UB=—3V4]. (3)
Recalling that v4 = 4m/s, we have
- ~ j
vp = —2.000 Jm/s. ,
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Problem 2.245 |

The pulley system shown is used to store a bicycle in a garage.
If the bicycle is hoisted by a winch that winds the rope at a rate
vo = 5in./s, determine the vertical speed of the bicycle.

Solution

Referring to the figure at the right, we have that pulleys B and C are
at the same height. Also, A is a point on the branch of the rope that
is being pulled in by the winch. The length of the rope between the
left end of the system and point A can be written as follows:

L =4yp + s54. (1)

Since L is constant, taking its time derivative with respect to time,
and recalling that §4 — vg, we have

0=4yp+54 = Jp=—1vo. (2)

Recalling that we have vg = 5in. = % ft/s, and observing that the speed of the bicycle is equal to | yg/|, we
have

Ubicycle = 0.1042 ft/s.
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Problem 2.246 |

Letting 6 = 50°, determine the vertical component of the velocity of

A if B is moving downward with a speed vg = 3 ft/s. ﬂ |
/UA'
A ’P

0 d"
vBl

Solution

Referring to the figure at the right, we select a Cartesian coordinate q\

system with axes p and g and origin C such that p and ¢ are AN a0 —X
parallel and perpendicular to the incline, respectively. We will also ;L j

J
use a Cartesian coordinate system with origin at O and axes x and %
. . L . . P
y. Since A slides over the incline, the velocity of A is ,L
y

A = palip. ey

The vertical component of the velocity of A is then given by p B

U4y = U4+ ] = pasinb. 2)
In order to determine p4, letting L denote the length of the cord, we write
L = psa+2yB. (3)
Next, observing that L is constant, we can differentiate the above expression with respect to time to obtain
0=pa+2yp = pa=-2yp = pa=—2vp, 4)

where, in writing the last of Egs. (4), we have taken into account that B moves only in the positive y direction,
so that yp can be taken to represent the speed of B. Substituting the last of Egs. (4) into Eq. (2) we then
obtain

V4y = —2vp sin 6. (5)

Recalling that vg = 3 ft/s and that & = 50°, we can evaluate Eq. (5) to obtain

v4y = —4.596ft/s. |;
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Problem 2.247 |

Determine the speed of block B if block A is sliding down the incline with a
speed v4 = 1.5m/s while the cord is retracted by a winch at a constant rate
vo = 2.5m/s.

Solution
Referring to the figure at the right, we select a Cartesian coordinate N
system with axes p ?nd g and or'igin. C such the'lt p and ¢ are DA N0 —Xx
parallel and perpendicular to the incline, respectively. We will ) %
also use a Cartesian coordinate system with origin at O and axes i,
x and y. The velocity of block B is given by

- o A A

vB = YB - D
In order to determine yp, letting L denote the length of the cord, 4 B M
we write p i

L = psa+2ys, y )

where py4 identifies the position of A along the p direction. Next, observing that L is decreasing at the rate
vg, we can differentiate the above expression with respect to time to obtain

Vo + P4

7 3)

—vo=pa+2yp = JB=
We now observe that p4 > 0 because block A is sliding downward. This implies that p4 = v4, namely, the
speed of A. With this in mind, and recalling that vy > 0, Eq. (3) implies that yp < 0 so that the speed of B
is given by
Vo + Vg

vp = ————. “
2
Therefore, recalling that vg = 2.5m/s and v4 = 1.5m/s, we can evaluate the above expression to obtain
vp = 2.000m/s.
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Problem 2.248 |

Block A is released from rest and starts sliding down the incline with an acceleration a9 = 3.7 m/s.
Determine the acceleration of block B relative to the incline. Also, determine the time needed for B to
move a distance d = 0.2 m relative to A.

Solution

Expressing the length of the rope L in terms of the coordinates of
A and B, we have

L =3x4 + xp. (D)
Since L is constant, differentiating Eq. (1) twice with respect to
time gives

0 =3X4 + Xp. 2)
Solving Eq. (2) with respect to Xp, gives

¥p = —3¥4 = —3ao, 3)

where we have used the fact that X4 = ag. Recalling that ag =
3.7m/s? and that dp = ¥p 7, evaluating Eq. (3), we have

ip = —11.10i m/s2. : . @8

Using the result in Eq. (3), we observe that Xg,4 = Xp — X4 = —4ao = constant. Therefore, xg, 4, namely,
the relative position of B with respect to A, can be expressed as a function of time as follows:
xp/a(1) = xp/4(0) + %/ 4(0) 1 —2a0 1%, 4

where xp/4(0) and xg;4(0) denote the initial values of xp/4 and Xp,4, respectively. Recalling that
xp/4(0) = 0 since the blocks are released from rest, Eq. (4) simplifies to

xp/a(t) = xp4(0) — 2ag 1. )

, and

Denoting by ¢, the time needed to travel the distance d, observing that d = }x B/A(ta) — xB4(0)
letting t = t; in Eq. (5), we have

d=2a0t]; = tg=+/d/(Qao). (6)

Recalling that d = 0.2m and a9 = 3.7 m/s?, the last of Egs. (6) can be evaluated to obtain

tg = 0.1644s.
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Problem 2.249 |

In the pulley system shown, the segment A D and the motion of A are not impeded - i
by the load G. Assume all ropes are vertically aligned. '
Determine the velocity and acceleration of the load G if v = 3ft/s and

ap = 1ft/s%.

Solution

Referring to the figure at the right, and using the y coordinate shown, the length
of the ropes labeled 1, 2, and 3 are

Ly =y +3yp., L2=yc+yp—2yp, Lzi=yg+ya—2yp. (1)
Since L, Ly, and L3 are constant, taking the time derivative of Egs. (1) gives
0=y6+3yg, 0=yg+yp—2y, 0=y6+ya—2yp. (2

Equations (2) forms a system of three equations in the three unknowns yg, yp,
and yg whose solution is

. 1 . 5 . 3
YB = 13Y0, YD = 13V0, YG = —7i3V0, (3)

where we have used the fact that y4 = vg. Differentiating Egs. (3) with respect
to time, we have

. 1 . 5 . 3
VB = 1340, VD = 7340, VG = —7340, 4)

where we have used the fact that 9 = a¢. Recalling that g = yg J and dg = J¢g J, and recalling that
vo = 3ft/sand ag = 11t/ s2, we can evaluate the last of Egs. (3) and (4) to obtain

UG = —0.6923 7 ft/s and dg = —0.2308 jft/s2. |;
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Problem 2.250 i

In the pulley system shown, the segment A D and the motion of A are not impeded
by the load G. Assume all ropes are vertically aligned. '
The load G is initially at rest when the end A of the rope is pulled with the

constant acceleration ag. Determine a¢ so that G is lifted 2 ft in 4.3 s.

Solution

Referring to the figure at the right, and using the y coordinate shown, the lengths
of the ropes labeled 1, 2, and 3 are

Li=yg+3yp. La=yc+yp—2yp. L3=yc+ya—2yp. (1)
Since Lj, Ly, and L3 are constant, taking the time derivative of Egs. (1) gives
0=y6+3yp, 0=yg+yp—2y8, 0=yg+ya—2yp. (2

Equations (2) form a system of three equations in the three unknowns yg, yp,
and yg whose solution is

. 1 . 5 . 3
YB = 13Y0, YD = 13V0, YG = —7j3V0, (3)

where we have used the fact that y4 = vg. Differentiating Egs. (3) with respect
to time, we have

¥B = $3a0. p = a0, Vo = —i3a0.
where we have used the fact that 19 = ag. The last of Egs. (4) implies that the acceleration of G is constant.

Therefore, using constant acceleration equations, we can write the following expression of yg as a function
of time:

y6(t) = y6(0) + yG(0)t — 55aot®. &)
Let ty = 4.3 s (f stands for final). Hence, recalling that G starts from rest and that therefore y (0) = 0,
from Eq. (5) we have

_ 26[yG(0) — yg (t5)]

2
ye(tr) = yg(0) — %aolf = aop 32 : (6)
S
Recalling that yG (0) — yg (ff) = 2ft and that £y = 4.3 s, we can evaluate the last of Egs. (6) to obtain
ap = 0.9374ft/s%.
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Problem 2.251 |

A crate A is being pulled up an inclined ramp by a winch retracting the cord at a constant rate vg = 2 ft/s.
Letting & = 1.5 ft, determine the speed of the crate when d = 4 ft.

Solution

Referring to the problem’s figure, we begin by observing that the motion of the crate is rectilinear and,
denoting the speed of the crate by v4, we have

va = |d|. (1)

To determine d , We can write

where L denotes the length of the cord and w denotes the (constant) horizontal distance between the winch
and the pulley. Recalling that L decreases at the rate vg, we have that

dd 3
Vg = ——.
Vh% +d?
Solving Eq. (3) for d and substituting the result in Eq. (1) gives
v
va = —/h2 +d2. @)
d
Therefore, recalling that 7 = 1.5 ft and vo = 2 ft/s, we can evaluate Eq. (4) for d = 4 ft to obtain
vq = 2.1361t/s.
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Problem 2.252 |

A crate A is being pulled up an inclined ramp by a winch. The rate of winding of the cord is controlled so
as to hoist the crate up the incline with a constant speed vg. Letting £ denote the length of cord retracted
by the winch per unit time, determine an expression for £ in terms of vg, &, and d.

Solution

Letting L denote the length of the cord and w denote the (constant) horizontal distance between the winch

and the pulley, we can write
L=w+ vh?+d>. (1

Recalling that L decreases at the rate lie,L =—1, differentiating Eq. (1) with respect to time, we have

, dd
= . 2
/h2 + d2
where d is the time rate of change of the distance d. When the crate moves up the incline, d < 0andis equal
in magnitude to the speed of the crate, i.e., d = —vg. Substituting this relation into Eq. (2), we obtain the
desired relation:

dv()
NEwch
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Problem 2.253 |

The piston head at C is constrained to move along the y axis. Let the crank 4B be
rotating counterclockwise at a constant angular speed 6 = 2000 rpm, R = 3.51n.,
and L = 5.3 in. Determine the velocity of C when 6 = 35°.

Solution

Using the figure in the problem statement and the law of cosines, we have

L* = R?> +y% —2Ryccosf = yc = Rcosf + VL2 — R? + R2cos? 0

= yc = Rcosf £ VL2 — R2sin? 0

where we have used the identity sin? @ = 1 — cos? #. To determine the appropriate root, observe that for
0 = 0 we expect yc = R + L. Therefore, we have

yc = Rcos + vV L2 — R2sin 4. ?2)
Differentiating Eq. (2) with respect to time and simplifying yields

. R26 sin 0 cos 6
je = —Rsinf — ST 3)
L2 — R2sin% 0

Recalling that ¢ = y¢ J, and recalling that R = 3.5in. = %ft, L = 53in. = %ft, and § =
2000 rpm = 200026—’5 rad/s, we can evaluate Eq. (3) for § = 35° to obtain

Uc = —55.52 ] ft/s.
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Problem 2.254 |

Let @pc denote the angular velocity of the relative position vector 7¢ /. As such, y
wpc is also the angular velocity of the connecting rod BC. Using the concept of [
time derivative of a vector given in Section 2.4 on p. 80, determine the component
of the relative velocity of C with respect to B along the direction of the connecting
rod BC.

Solution

We being by observing that vc/p = Fc/p, where Fc/p = Lilc/p. Since L is
constant, we must have 7c;p = Lic/p. Using the formula for the time derivative

x\ﬁ

of a unit vector, we have tic/p = &pc X lic/p, so that ic/p

~>

1_5(;/3 = Ldgc X LA‘C/B-

B
We now observe that @pc X ti¢p is perpendicular to #i ¢ g. Therefore the component \0<
of ¥, p along the direction ti¢c/ g is A

Component of i¢, g along BC = 0.
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Problem 2.255 |

The piston head at C is constrained to move along the y axis. Let the crank A B be
rotating counterclockwise at a constant angular speed 6 = 2000 rpm, R = 3.51n.,
and L = 5.3 in. Determine expressions for the velocity and acceleration of C as a
function of 6 and the given parameters.

Solution
Using the diagram at the right and the law of cosines, we have h C
L? = R*+y% —2Ryccosf = ye = Rcosf £ VL2 — R2 + R2cos2 0 : ¢
L
= yc = Rcosf £ VL2 — R2sin? 6 ve
where we have used the identity sin? @ = 1 — cos? 6. To determine the appropriate root, | ya——
observe that for § = 0 we expect yc = R + L. Therefore, we have 2 g
yc = Rcosf + VL2 — R2sin? 6. () A
Differentiating Eq. (2) with respect to time and simplifying yields
. . : R26 cos b
yc = —sinf| RO + . 3)
L2 — R2sin* 0
Recalling that ¢ = yc¢ j, and recalling that R = 3.5in. = %ft, L = 53in. = %ft, and 0 =
2000 rpm = 200026—’5 rad/s, we can evaluate Eq. (3) to obtain
- . 17.82cos 8 .
vc = —sinf| 61.09 + jft/s.
v/0.1951 — 0.08507 sin2 §
Recalling that 6 = constant, differentiating Eq. (3), we have
. 5 Rcos@ . R3cos20sinb Rsin6
yc = —RO“ {cosO |1+ + sin 6 372 .
L2 — R?sin? 0 (L% — R2sin>0) L2 — R2sin* 0
“)

Recalling that d¢ = j¢ j, and recalling again that R = 3.5in. = %ft, L = 53in. = %’ft, and
6 = 2000 pm = 2000%—’5 rad/s, we can evaluate Eq. (4) to obtain

5 0.2917 0
dc = —1.279x10* {cos@ (1 + cos )

V0.1951 — 0.08507 sin2 6

, 0.02481 cos? 6 sin 6 0.2917sin 6 .
+sin 32 Jf/s”.
(0.1951 — 0.08507 sin? 6) v/0.1951 — 0.08507 sin” §
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Problem 2.256 i

In the cutting of sheet metal, the robotic arm OA needs to move
the cutting tool at C counterclockwise at a constant speed vg
along a circular path of radius p. The center of the circle is located
in the position shown relative to the base of the robotic arm at O.

For all positions along the circular cut (i.e., for any value of ! oD
¢), determine r, 7, and 6 as functions of the given quantities (i.e., A
d, h, p, vo). Use one or more geometric constraints and their ) 1
derivatives to do this. These quantities can be found “by hand,” |~ Cutting

but it is tedious, so you might consider using symbolic algebra path

software, such as Mathematica or Maple.

Solution

Referring to the figure at the right, we define a Cartesian coordinate
system with origin at O. Then the coordinates of point C are such
that

2 2 2 A
re-=x¢+ ye, (1) \D
crre K
where /
xc =d+pcos¢p =rcosf and yc =h+psing = rsind, (2) m//’c‘ﬁ:ting

path
so that r can be expressed as

= \/(d + pcos¢)? + (h + psing)?. 3)

Differentiating Eqs. (2) with respect to time, we have '

—p¢ sing = i cos 6—rfsinf and o cos ¢ = F sin O+r6 cos .
“)

Equations (4) can be viewed as a system of two equations in the two unknowns 6 and 7 whose solution is
6 = (op/r)(cos @ cosp —sinfsing) and 7 = p¢(sin O cos P — cos O sin ¢). 5)
Next, observe that we have

h i d .
hrpsng — sp= dFTPCSP 4 é = vo/p. (6)
r r

sinf =

Substituting Egs. (3) and (6) into Egs. (5) and simplifying, we have

vo(p + d cos ¢ + hsing) . vo(hcos¢ — d sin¢)
= = r = 9
(d + pcos¢)? + (h + psin¢)? V(d + pcos¢)? + (h + psing)?
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Problem 2.257 |

In the cutting of sheet metal, the robotic arm OA needs to move
the cutting tool at C counterclockwise at a constant speed vg
along a circular path of radius p. The center of the circle is located
in the position shown relative to the base of the robotic arm at O.

For all positions along the circular cut (i.e., for any value of I o’
¢), determine # and 6 as functions of the given quantities (i.e., d, i
h, p, vo). These quantities can be found by hand, but it is very ) 1
tedious, so you might consider using symbolic algebra software, | _~Zutting

such as Mathematica or Maple. path

Solution
Referring to the figure at the right, the coordinates C are
xc =d+pcos¢p =rcosf and yc = h+psing = rsiné. (1) ‘
Observing that r2 = xé + y%, we have \\/\\\D
r= \/(d + pcosp)? + (h + psing)?. ) /\/7/
Differentiating Eqs. (1) with respect to time, we have M//C,at;ng
—ppsing = Fcos@—rfsinf and ppcos¢d = FsinH+rb cosb. path
Equations (3) can be viewed as a system of two equations in the tfj(z x
unknowns 6 and 7* whose solution is
6 = (p.d)/r)(cos 0 cos ¢ — sin 6 sin @), @ | d
7 = p¢(sin O cos ¢ — cos 0 sin ). '
Next, observe that we have
sinf = h—l—;;—smq’y 0sf = w, and ¢ = vo/p. 5)
Hence, substituting Eqgs. (2) and (5) into Egs. (4) and simplifying, we have
vo(p + d cos ¢ + hsing) ; vo(hcos¢ —d sin¢) ©)

- V(d + pcosg)? + (h +psin¢)2'

To find expressions for 7 and 6 we must take the time derivative of Eqgs. (6) and then replace $ with its
expressions in the last of Egs. (5). Doing so, after simplification, yields the following expressions:

" (d + pcos)? + (h + psing)?

_v%(p +dcos¢ + hsing)(d? + h? + pd cos¢p + hpsin @)
p[(d + pcos¢)? + (h + psin (;5)2]3/2 ’

v(%(a’2 + h% — p?)(d sing — h cos ¢)

pl(d + pcos$)? + (h + psing)2]*

6 =—
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Problem 2.258 |

At the instant shown, block A4 is moving at a constant speed vg = 3 m/s to the - w
left and w = 2.3 m. Using 4 = 2.7 m, determine how much time is needed to
lower B 0.75 m from this position.

Solution

Referring to the figure at the right, we will use the Cartesian coordinate system
shown with origin at the fixed pulley O. The length of the rope can be described

as
L =x4+yp+/x3+h2 (D)

We will denote quantities evaluated at the initial and final positions of the
system by the subscripts 1 and 2, respectively. Because the length of the rope is
constant, we set the expressions of the length of the rope corresponding to the
initial and final positions of the system equal to each other. Initially, we have
X41 = w. In addition, we have yp, — yp1 = d = 0.75m. Hence, referring to
Eq. (1), we have

w—i—yBl—i-\/w2+h2=XA2+sz+\/Xﬁ2+h2
= xA2+(d—w—\/w2+h2)=—,/x312+h2
= xiz—l—(d—w—\/w2+h2)2+ZXA2(d—w—Vw2+h2)=x/212+h2- 2

This last equation can be solved for x4, to obtain

N N R
2<d—w—x/m)

3)

XA42 =

The expression above gives the position of A corresponding to the final position achieved by B as given by
the problem statement. Because A and B are connected by an inextensible rope that is assumed not to go
slack, the time taken by B to achieve its final position will be equal to the time taken by A to achieve its final
position. With this in mind, letting ¢ denote the time to be determined, and recalling that the velocity of A is
constant, we then have

2
w B (d—w— VT E?)
X42 = X41 — Vot — = —— = t =0.1556s,

vo 2v0(d —w— m>

where we have used the fact that x4; = w, and where we have used the following numerical data: vg = 3 m/s,
h=27m,d =0.75m,and w = 2.3m.
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Problem 2.259 |

At the instant shown, &2 = 10 ft, w = 8 ft, and block B is moving with a speed . wo
vo = 5ft/s and an acceleration ag = 1 ft/s?, both downward. Determine the
velocity and acceleration of block A.

Solution

We will use the Cartesian coordinate system shown at the right with origin at

the fixed pulley O. The length of the rope can be described as
X
L =x4+yp+/x]+h2 (1)
Since the length of the rope is constant, differentiating the above equation with
respect to time, we have
XAXA VB V xle +h?
O=X4+)Vp+ —— = X4=-— . 2)
Vx5 +h? x4 + /x5 + h?
Since U4 = x41, recalling that yg = vg = 5ft/s and h = 10ft, we can
evaluate the last of Egs. (2) for x = w = 8§ ft to obtain
U4 = —3.0781ft/s. |;
Taking the derivative with respect to time of the last of Egs. (2), after simplification, we have
s 2 2 -2 2o p2
) VBy/X3th Vgl xa Xy +
X4 =— + 3)

x4 + /x5 + h? (xA—I—,/xfl—i-hz)z .

Since a4 = X4 1, recalling that yg = vo = 5ft/s, jp = ag = 1ft/s?, and h = 10ft, we can evaluate the
last of Eq. (3) for x = w = 8§ ft to obtain

dq = —0.89317ft/s>. |;
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Problem 2.260 |

As a part of a robotics competition, a robotic arm with a rigid All dimensions are in meters.
open hand at C is to be designed so that the hand catches an
egg without breaking it. The egg is released from rest at ¢ = 0
from point A. The arm, initially at rest in the position shown,
starts moving when the egg is released. The hand must catch
the egg without any impact with the egg. This can be done by
specifying that the hand and the egg must be at the same position
at the same time with identical velocities. A student proposes
to do this using a constant value of 6 for which (after a fair bit
of work) it is found that the arm catches the egg at t = 0.4391 s <05
for 6 = —13.27 rad/s?. Using these values of ¢ and 6, determine

the acceleration of both the hand and the egg at the time of catch.

Then, explain whether or not using a constant value of g, as has

been proposed, is an acceptable strategy.

Solution

Referring to the diagram at the right, we will use a Cartesian All dimensions are in meters.
coordinate system with its origin at O. As far as the acceleration
of the egg is concerned, up to the time of catch the acceleration of
the egg is

Je = —9.81m/s>, (1)

where the subscript e stands for ‘egg’. As far as the determination
of the acceleration of point C is concerned, we begin by observing
that since éc is constant, and since éc (0) = 0 because the arm
starts from rest, we can use the constant acceleration relations to
provide the expression of the angular coordinate 6¢ as a function
of time:

Oc (1) = 6c (0) + 301>, 2)
Since the trajectory of C is a straight vertical line, 6¢ (¢) is related to yc (¢) as follows:
yc (1) = d tan[fc (1)]. 3)
Differentiating Eq. (3) twice with respect to time, we have

Je(t) = dbc sec® Oc (1) + 2d HZ (1) sec? Oc (t) tan Oc (1)
= Jc(t) = dsec? Oc(t)[0c + 202 () tanOc (1)]. (4
To evaluate the expression above, in addition to éc (which is given), we need the values of O¢ and éc at the
time of catch. To determine these values, we begin by denoting by ¢ the time of catch, where the subscript

stands for ‘final.” Since the egg is falling under the action of gravity, using constant acceleration equations,
88 g gravity g q
for t = 17, the y coordinate of the egg is given by

ye(tf) = Ye(0) — %gl}, (5
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where y.(0) = 0.6 m is the initial vertical position of the egg. At the time of catch we must have y (1) =
yc (t). Therefore, setting t = t7 in Eq. (3), replacing yc (t7) with the right-hand side of Eq. (5), and solving
for Oc (1), we have

(6)

2d

Oc(ty) = tan~! [M} )

Next, we determine an expression for éc (t7). To do so, we differentiate Eq. (2) and evaluate it for t = 7y:
bc(tr) = Octy. (7
Substituting Eq. (7) into the last of Egs. (4), at the time of catch, we have
Fety) = d sec® Oc (t7)[fc + 20217 tan Oc (17)]. (8)

Recalling that t = 0.4391s,d = 0.5m, g = 9.81 m/s?, and y.(0) = 0.6m, we can evaluate ¢ (tf) in
Eq. (6) (this gives 0c (ty) = —34.66°) and then use it, along with 6¢c = —13.27 rad/s?, in Eq. (8) to obtain

= —44.51 m/s>.

yc ‘t=0.439ls

Since, at the time of catch, the acceleration |j¢c| > |J.|, the arm and egg will only be in contact for an instant
and will then separate again. Consequently, the proposed strategy is not acceptable for catching the egg.
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® Problem 2.261 ¢

Referring to the problem of a robot arm catching an egg All dimensions are in meters.
(Prob. 2.260), the strategy is that the arm and the egg must have
the same velocity and the same position at the same time for
the arm to gently catch the egg. In addition, what should be
true about the accelerations of the arm and the egg for the catch
to be successful after they rendezvous with the same velocity
at the same position and time? Describe what happens if the
accelerations of the arm and egg do not match.

Solution

After they rendezvous, the relative acceleration of the arm with respect to the egg must be zero. If j. < j¢
then the arm and egg will separate right after the catch. If j, > jic the egg will experience a jerk.
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® Problem 2.262 ¢

Although point P is moving on a sphere, its motion is being studied
with the cylindrical coordinate system shown. Discuss in detail whether
or not there are incorrect elements in the sketch of the cylindrical com-
ponent system at P.

Solution

The unit vector i g points in the direction of 7. This is incorrect. For a cylindrical coordinate system, the unit
vector 1 g must be parallel to the OR plane and point in the R direction.
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® Problem 2.263 ¢

Although point P is moving on a sphere, its motion is being studied
with the cylindrical coordinate system shown. Discuss in detail whether
or not there are incorrect elements in the sketch of the cylindrical com-
ponent system at P.

Solution

The unit vector iy points in the direction of decreasing 6. This is incorrect, as tiy must point in the direction
of increasing 6.
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@ Problem 2.264 ¢

Discuss in detail whether or not (a) there are incorrect elements in the Z
sketch of the spherical component system at P and (b) the formulas for
the velocity and acceleration components derived in the section can be
used with the coordinate system shown.

Solution

(a) The unit vector 1y is pointing in the direction of decreasing ¢. This is incorrect. It must point in the
direction of increasing ¢.

(b) No, the formulas derived in the section cannot be used since the angle ¢ in this figure is defined from the
xy plane to the line OP. The formulas of this section require that ¢ be defined from the z axis to the
line OP.
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@ Problem 2.265 ¢

Discuss in detail whether or not (a) there are incorrect elements in the Z
sketch of the spherical component system at P and (b) the formulas for
the velocity and acceleration components derived in the section can be
used with the coordinate system shown.

Solution
(a) The orientations of the unit vectors in relation to the positive directions of r, ¢, and 6 are correct.

(b) No, the formulas derived in the section cannot be used since the angle ¢ in this figure is defined from the
xy plane to the line OP. The formulas of this section require that ¢ be defined from the z axis to the
line OP. Also the (i, g, lig), triad is not right-handed.
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Problem 2.266 |

A glider is descending with a constant speed v9 = 30m/s and a z
constant descent rate of 1 m/s along a helical path with a constant % 5
radius R = 400 m. Determine the time the glider takes to complete .0

a full 360° turn about the axis of the helix (the z axis).

Solution

Referring to the figure at the right, we adopt a cylindrical coordinate
system with origin on the ground and the z axis coinciding with the
axis of the helical path. Using the polar component system correspond-
ing to the chosen coordinate system, we can write the velocity of the
airplane as follows:

U= Rilg+ ROy + 21y, (1)

Since the radius of the helix is constant, we have that R = 0 and
Eq. (1) simplifies to )

U= ROug+ Zuy. 2)
Since the speed of the airplane is constant and equal vg, using Eq. (2) we can write

v = R%6% + 22, 3)

which we can solve for 6 since Z is known and equal to —1 m/s:

f=+r——. (4)

Of the two roots in Eq. (4) we will select the positive one to match the direction of motion of the glider
indicated in the problem’s figure. We now observe that since vy, Z, and R are constant, 0 is also a constant.
Therefore, letting At denote the time needed to complete a full 360° arc around the helix, Az can be computed
by simply dividing the measure of the angle 360° in radians, i.e., 27, by the angular velocity 6. This gives

27 R
At = ——— 5)
2 __ 52
vy — 2
Recalling that R = 400 m, v9 = 30m/s, and Z = —1 m/s, we can evaluate Eq. (5) to obtain
At = 83.82s.
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Problem 2.267 |

An airplane is flying horizontally at a constant speed v9 = 320 mph while
its propellers rotate at a constant angular speed @ = 1500 rpm. If the
propellers have a diameter d = 14 ft, determine the magnitude of the
acceleration of a point on the periphery of the propeller blades.

Solution
Referring to the figure at the right, we define a fixed cylindrical coordinate system iR
with the z axis coinciding with the propeller’s shaft, R direction perpendicular to 3 7?
the shaft and going from the z axis to the point whose acceleration we want to == - z
measure, and such that the triad (i, g, 11;) is right-handed. Next, we recall that
in cylindrical coordinates the acceleration is given by the following formula:
- o\ A .. A o
d=(R—RO%)lg+ (RO +2R0) g + Zilz. (1)
Using the problem’s given information, we have
R=1d=7000ft, R=0, R=0, 0=o=1500rpm = 157.1rad/s, % = 0. )
Substituting the above information in the formula for the acceleration we have
d=—RO%hg = (—1.728x10° ft/s?) ii . (3)
The magnitude of the above vector is
|a| = 17,280 ft/s>.
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Problem 2.268 |

A top-slewing crane is lifting an object C at a constant rate of
z = 5.3ft/s while rotating at a constant rate @ = 0.12rad/s
about the vertical axis. If the distance between the object and

the axis of rotation of the crane’s boom is r = 46ft and it is
being reduced at a constant rate of 6.5 ft/s, find the velocity and
acceleration of C, assuming that the swinging motion of C can be
neglected.

Solution

Referring to the figure at the right, we define a cylindrical coordinate system with
the R direction parallel to the crane’s boom going from the vertical axis of the crane
toward point C, with the z axis coinciding with the vertical axis of the crane and
pointing in the direction opposite to gravity, and with the 8 direction defined in such a
way the triad (1R, tig, 11;) is right-handed. Interpreting the data given in the problem
statement, in addition to having R = 46 ft, we can write:

R=—65ft/s, 6 =0.12rad/s, % =53ft/s, (1)

R =0, 6 =0, 2 =0. 2)

Substituting the values into the equation for the velocity, namely, 7 = Riig + RO g + Z Uiz, we have

Ue = (—6.5007ig + 5.5204i9 + 5.3001i;) ft/s.

For the acceleration, substituting the given values into the equation @ = (R — Réz) ugR+ (RQ +2R 9) g +

Z g, gives

dc = (—0.66241 g — 1.5601ig) ft/s>.
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Problem 2.269 |

The system depicted in the figure is called a spherical pendulum. The
fixed end of the pendulum is at O. Point O behaves as a spherical
joint; i.e., the location of O is fixed while the pendulum’s cord can
swing in any direction in the three-dimensional space. Assume that
the pendulum’s cord has a constant length L, and use the coordi-
nate system depicted in the figure to derive the expression for the
acceleration of the pendulum.

[a]

Solution

Keeping in mind that the length of the pendulum is constant, we have that the position vector of the pendulum
bob is described as ¥ = L ii,, where the radial coordinate r is such that

r = L = constant. (1
Therefore, the time derivatives of the radial coordinate must be equal to zero, i.e.,
F=0 and ¥ =0. )
Now recall that the acceleration in spherical coordinates is given by
i = (F—r¢*>—r6%sin®¢) it, + (rd +27¢p—rb?sing cos ) fig + (rf sin ¢ + 270 sin ¢ +2rH6 cos ¢) dp.

Therefore, using Egs. (1) and (2) the acceleration becomes

a=—L (452 + ézsinzq&) Uy + L (qb —ézsinq&cosqb) g + L (ésinq’) +2<ﬁécos¢) Ug.
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Problem 2.270{

Revisit Example 2.29, and assuming that the plane is accelerating,
determine the relation(s) that the radar readings obtained by the
station at A need to satisfy for you to conclude that the jet is flying
along a straight line whether at constant altitude or not.

Solution

For the plane to fly along a straight line, the airplane’s velocity and acceleration vectors must be parallel.
This condition is expressed by the following vector equation:

Uxd=0. ey
Recalling that we can write
UV=v,Ur +Vplg +vgtlg and da =a,i, +agyiy +aplg, 2)
the condition in Eq. (1) takes on the form
U xd = (vgap — vgag) i, + (vear — vrag) iy + (Vrag — vpar) tig = 0. 3)
The above equation is satisfied if and only if
vpag —vgay =0, wvgar —vrag =0, and vray —vgar = 0. 4

Next, using Eq. (2.105) on p. 143 of the textbook and Eq. (2.107) on p. 144 of the textbook, we can rewrite
Egs. (4) as follows:

r¢'>(r§ sing + 270 sing + 2r¢39 cos¢) — ré sing(r¢ + 27 — r6? sin¢ cos ¢) = 0,
ré sing (¥ — r¢p? — r62 sin? o) — f(ré sing + 270 sing + 2r¢3é cos¢) =0,
F(ré + 27 — r6? sinp cos @) — r¢(¥ — r¢p> — r6? sin ¢) = 0.

The above equations are those that need to be satisfied by the radar reading to conclude that the plane is flying
along a straight line.
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Problem 2.271 |

P
<

A golfer chips the ball on a flat, level part of a golf course as shown. Letting
a = 23°, B = 41°, and the initial speed be vy = 6 m/s, determine the x and y
coordinates of the place where the ball will land.

Solution
For projectile motion ay = 0, a, = 0, and a; = —g. Hence
X =xo+4Xol. y=yo+yoi. and z=zo+Zol — 381"

Attime ¢t = O the ball is at the origin of our coordinate system so xo = yo = zo = 0. The initial components
of the velocity are

Xo = vgcosfBcosa, Yo =wvpcosPBsine, and Zg = vgsinp.
Using the equations written so far, we have that the motion of the ball is described by the following equations:
x = (vocosBcosa)t, y = (vgcosBsina)t, and z = (vgsinp)t— %gtz.

To determine the location of landing, we observe that the z coordinate of the landing spot must be z = 0.
Next we find the time corresponding to z = 0, i.e.,

. 2vg sin B

Z=(vosinﬂ)t—%gt2=0 = .

The x and y components of the position corresponding to this time are

2vg si v2 sin 28 cos
Xland = (vg cos B cos oz)(M) = Xland = # = 3.345m,
g g
20 sin v2 sin 28 sin«
Vland = (UO COSIB sina) (O—IB) = Yland = % = 1.420m,
g g

where we have used the following numerical data: vg = 6m/s, @ = 23°, 8 = 41°,and g = 9.81 m/s?. In
summary, the location of the ball’s landing spot is identified by the following coordinates

Xland = 3.345m,  Yiang = 1.420m, and Zjng = 0.
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Problem 2.272 i

Relative to the cylindrical coordinate system shown, with origin at T’

0, the radial and z coordinates of point G are R = d + (L/2)cos =ile i,
and z = —(L/2)sin B, respectively, where d = 0.5m and L =

0.6 m. The shaft CD rotates as shown with a constant angular velocity

ws = 10rad/s, and the angle 8 varies with time as follows: f =
Bosin(Qwt), where B9 = 0.3rad, @ = 2rad/s, and ¢ is time in
seconds. Determine the velocity and the acceleration of G fort = 3 s
(express the result in the cylindrical component system (i g, tig, tiz),
with g = i, X UR).

Solution
The problem gives the radial and vertical coordinates of point G, which are
R=d+%Lcos,B and zz—%Lsin,B. (1)

In addition, the angle S is given as a function of time: f = B¢ sin(2wt?). Substituting the expression for 8
into Egs. (1) we have the R and z coordinates of G directly as a function of time:

R=d+ %L cos[Bo sin(2wt)] and z = —%L sin[Bo sin(2w?)]. 2)
Now we recall that, in cylindrical coordinates, the velocity is given by
U =R+ ROtig + 215, 3)

The quantities R and Z can be computed by differentiating Eqs. (2) with respect to time. This process, while
possibly tedious, is straightforward and gives

R = —LBow sin[Bo sinRwt)] cosQwt), ()]
z = —LBow cos[Bo sin(Qwt)] cosQwt). (5)
As far as 0 is concerned, we observe that the whole system rotates in the 6 direction with a constant angular

velocity wg:
0 = wy = constant. (6)

Recalling thatd = 0.5m, L = 0.6 m, wy = 10rad/s, Bo = 0.3rad, and w = 2rad/s, for t = 3 s, we can
evaluate the first of Egs. (2) as well as Eqgs. (4)—(6) to obtain

R =0.7961m, R =0.04869m/s, z = —0.2999m/s, and 6 = 10.00rad/s. @)

Using the results in Egs. (7) we can evaluate Eq. (3) to obtain the velocity at t = 3s:

¥ = (0.0486971 g + 7.961 fig — 0.299971,) m/s.

In cylindrical coordinates, the acceleration is given by

i=(R—RO?) i, + (RG +2R0) lig + % 1. (8)
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We have already computed the terms R, R, 0. Hence, we only need to determine the terms R, 6 ,and Z to
compute the acceleration of point G. Differentiating Egs. (4)—(6) with respect to time we have

R = 2L,Boa)2{sin(2wt) sin[Bo sin(2wt)] — Bo cos[Bo sin(2wt)] 0052(20)1)}, ©)]
6=0 (10)
z = 2LBow*{sin(2wt) cos[By sin(2wt)] + Po sin[Bo sin(2wt)] cos* 2wt)}, (11)

Again recalling that d = 0.5m, L = 0.6 m, ws = 10rad/s, Bo = 0.3rad, and w = 2rad/s, fort = 3s, we
can evaluate Eqgs. (9)—(11) for r = 3 s wo obtain

R=-01798m/s®>, 6 =0, and % = —0.8120m/s>. (12)

Hence, using Eqgs. (7) and (12), we can evaluate the expression in Eq. (8) for # = 3 s to obtain

a=(—79.790g + 0.9738 g — 0.812011;) m/s>.
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Problem 2.273 i

An airplane is traveling at a constant altitude of 10,000 ft, with
a constant speed of 450 mph, within the plane whose equation is
given by x + y = 10 mi and in the direction of increasing x. Find
the expressions for 7, é, ¢ T, 9 and ¢ that would be measured
when the airplane is closest to the radar station.

x4+ y=10mi

Solution

The figure at the right shows the trace of the path of the airplane on the
xy plane. Since the airplane is moving along a straight line with constant
speed, then the airplane’s velocity is constant. Letting vy be the speed of ¢
the airplane, the velocity and acceleration of the airplane are

y
. xy trace of path of plane
(0.10) mi | y

‘4/55\\ top view
P/

Yo . ol s [ (10.0)mi
v=—@{—7) and a=0. (1 VI DTN
V2 g .
We denote by P the point on the airplane’s path that is closest to the origin ¢ e

O. The point P’ in the figure is the projection of P on the xy plane. Letting £ = 5 mi, the coordinates of P’
are (£, £, 0), so that the coordinates of P are

P: (£, L, h), (2)
where we have denoted by /4 the altitude of the airplane (see bottom right figure).
Using Eq. (2) and the Pythagorean theorem, the distance between P IZ ug P Uy
and O is A o

r =202+ h2 3)

Observing that P’ lies on the line bisecting the first quadrant of the
xy plane at a distance £+/2 from O, we have that the angles 6 and ¢
identifying P are

h
0 =45° and ¢ = 90° —tan"! (—) = 75.01°, 4
¢ L2 X

where we have used the data &7 = 10,000 ft and £ = 5mi = 5(5280) ft. We now recall that the unit vectors
ur,ug, and 11y of a spherical coordinate system with origin at O and coordinates (r, 6, ¢) can be expressed
in terms of the Cartesian base vectors 7, 7, and k as follows

Uy =sin¢cos9i—|—sin¢sin9j+cos¢l€, (5)
ﬁ¢,:cos¢cos@i+cos¢sin9j—sin¢l€, (6)
g = —sinf17 + cosb j. @)

Using the first of Egs. (1) and Eqgs. (3)—(6), the components of the velocity in the i, i1y, and iiy directions
are

Vo
V2
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Vo

Vg =1 =T -lg = ézmcosgb(cose—sine) 9)
vg=rfsing =0-lp = 0= 00 (sin + cos 6), (10)

_sin¢\/§«/2€2 + h?

where we have used the expression for r in Eq. (3). Recalling that v = 450 mph = 450% ft/s, £ =
5mi = 5(5280) ft, and & = 10,000 ft, and using Egs. (4), we can evaluate Egs. (8)—(10) to obtain

F=0, ¢=0, and 6= —0.01768rad/s.

The second of Eqgs. (1) states that all of the components of the acceleration are equal to zero. Therefore, we
have

ar =7 — rq52 —rf? sin2¢ =0 = 7= rgi')2 + r6? sin2¢, (11
ag :rg$—|—2i'¢.3—rézsin¢cos¢ =0 = ¢= 62 sin¢cos¢—2£¢5 12)
r
ag = rlsing + 270 sing + 2rgfcosp =0 = & =-2"0—2pf(tang)". (13)
r

Recalling again that v9 = 450 mph = 450% ft/s, £ = 5mi = 5(5280) ft, and 2 = 10,000 ft, and using
Egs. (4), as well as Egs. (8)—(10), we can evaluate Egs. (11)—(13) to obtain

F=1127ft/s>, ¢ =78.10x10"%rad/s>, and 6 = 0.
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Problem 2.274 |

A carnival ride called the ocfopus consists of eight arms that rotate about the z axis at the constant angular
velocity =6 rpm. The arms have a length L = 22 ft and form an angle ¢ with the z axis. Assuming that
¢ varies with time as ¢ (¢) = ¢o + ¢1 sinwt with ¢g9 = 70.5°, ¢; = 25.5°, and w = 1rad/s, determine
the magnitude of the acceleration of the outer end of an arm when ¢ achieves its maximum value.

2]

Photo credit: © Gary L. Gray

Solution
Since ¢ and ¢; are positive, the function ¢ (¢) = ¢ + ¢1 sinw? is maximum when sin wt = 1:
d = Pmax = Po +¢1 for wt = (w/2)rad. (1)
Next, we recall that the components of acceleration in spherical coordinates are
ar =7 —r¢? — 62 sin? @,
ap = ré +2f¢—r92 sin ¢ cos ¢, 2)
ag = ré sin¢ + 276 sin¢ + 2r<,i39 cos ¢.
To use these equations we need the values of r, 7, ¥, ¢, §, 0, and 6 for ¢ = ¢max- First we observe that
r=L=costant = 7=0 and ¥ =0. 3)
Using the given ¢ (¢), we have
gﬁ = ¢prwcoswt and ¢ = —¢ 1w’ sinwt. @

Finally, for 6 and 6 we have _ .
f = 6rpm = constant = 6 =0. 5

Using the results in Egs. (3)—(5), for ¢ = ¢max = ¢o + ¢1 the components of acceleration become
ar = —L6%sin*(¢o + ¢1).  ap = —Lp1w> — LO>sin(do + ¢1) cos(do + ¢1). ag =0,  (6)
where we have used the fact that, for ¢ = ¢Pmax, sinwt = 1 and cos wt = 0. Recalling that the magnitude of

the acceleration is |a| = ,/a? + aé + ag, using Eqgs. (6), for ¢ = ¢max, we have

5 o 2 . 2

|| = \/ [—L62sin®(¢o + ¢1)]” + [~Lp1w? — LO? sin(do + ¢1) cos(do + ¢1)]”.
which, recalling that ¢o = 70.5° = 70.57%g5 rad, ¢1 = 25.5° = 25.555 rad, o = lrad/s, L = 22ft, and
6 = 6rpm = 6%—75 rad/s, can be evaluated to obtain

= 12.36ft/s°.

‘ Eid’max
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Problem 2.275 |

A particle is moving over the surface of a right cone with angle
and under the constraint that R26 = K, where K is a constant. The
equation describing the cone is R = z tan . Determine the expressions
for the velocity and the acceleration of the particle in terms of K, 8, z,
and the time derivatives of z.

Solution

We use the the cylindrical coordinate system implied by the problem’s figure. Next we recall that the general
expressions for the velocity and acceleration in cylindrical coordinates are as follows:

U=Ragr+ROGg+20, and a@=(R— RO?)iig+ (RO +2R0) g + % ii,. (1)

The problem is solved by determining all of the terms in the expressions for ¥ and @ and then substituting the
terms in question into the above equations.

We begin by determining the terms related to the coordinate R. We are told that R = ztan 8. Hence,
recalling that 8 is constant, we have

R=ztamp = R=ztamfp = R=7Ztanp. ()

Next we consider the terms related to 6. Specifically, we start with the constraint equation R20 = K, and

obtain K K .
b= 3)

N - .
R?  z%tan?f z3tan? B

Substituting the first two of Eqs. (2) and the second of Egs. (3) into the first of Egs. (1), we have

g + Z15.

K
ztan B

UV =ZtanBuR +

Substituting Egs. (2) and the last two of Egs. (3) into the second of Egs. (1), we have

K?
- . A~ e A
a=|\Ztanf— —S——— Jugr+Ziz.
z3tan3 B
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Problem 2.276 |

Solve Prob. 2.275 for general surfaces of revolution; that is, R is no
longer equal to z tan B, but is now an arbitrary function of z, that is,
R = f(z). The expressions you need to find will contain K, f(z),
derivatives of f(z) with respect to z, and derivatives of z with respect to
time.

R

. 4

Solution

We use the cylindrical coordinate system implied by the problem’s figure. Next we recall that the general
expressions for the velocity and acceleration in cylindrical coordinates are as follows:

U=Rilg+ ROlg+20, and d=(R— RO?)iig + (RH +2RE)iig + % ii. (1)

The problem is solved by determining all of the terms in the expressions for ¥ and a and then substituting the
terms in question into the above equations.

We begin by determining the terms related to the coordinate R. Since we are told that R = f(z), and
keeping in mind that z = z(¢), using the chain rule, we have

. dRdz . df 4 (.df
R=aza = R=g dt( )

. .d d?
R=z 2]

dz dz?’ @

Next we consider the terms concerning the coordinate 6. Recalling that we have the constraint equation
K = R20. Hence, we can write

K j_dodz _ 2K df

"o - T aa T P ©)

K=R% = 0

Recalling that R = f(z), substituting the expression for R from Egs.(2) along with the expression for 6
from Egs. (3) into the first of Egs. (1) we have

af . . K A
——ZUr +———Up + 2 Uz.

dz f(2)

U=

Again recalling that R = f(2), substituting the expressions for R and R from Eqgs.(2) along with the
expressions for 6 and 6 from Egs. (3) into the second of Egs. (1) we have

2 2
- ., 2d°f K PN
a= Z+ZF_ 7 UR + ZUz.
@)
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Problem 2.277 |

In a racquetball court, at point P with coordinates xp = 35ft,
yp = 16ft, and zp = 1ft, a ball is imparted a speed v9 = 90 mph
and a direction defined by the angles & = 63° and 8 = 8° (8 is the
angle formed by the initial velocity vector and the xy plane). The
ball bounces off the left vertical wall to then hit the front wall of
the court. Assume that the rebound off the left vertical wall occurs
such that (1) the component of the ball’s velocity tangent to the
wall before and after rebound is the same and (2) the component of x
velocity normal to the wall right after impact is equal in magnitude
and opposite in direction to the same component of velocity right
before impact. Accounting for the effect of gravity, determine the
coordinates of the point on the front wall that will be hit by the ball
after rebounding off the left wall.

Solution

From P to the left wall the racquetball undergoes projectile motion and therefore the components of the
ball’s acceleration in the given coordinate system are axy = 0, ay, = 0, and a; = —g. In turn, the coordinates
of the ball as a function of time are

x=xp+Xot, y=yp+yol. and z=2zp+Zol— 381>, (1)
where xp = 35ft, yp = 16ft, and zp = 1 ft. Next, the initial components of velocity are
Xo = —vgcosfBsinf, yg= —vgcosBcos, and Zog = vgsinp. 2)
The first part of the motion of the ball is described by
x =xp —(vocosBsinf)t, y = yp—(vocosBcosh)t, and z =zp + (vosinpf)t — %gtz. 3)

Letting the subscript Iw stand for ‘left wall’, we must have y(#,,) = 0 so that

yp —(vgcosBcostyy =0 =  fy = _rr 0.2696s. (@)
vg cos f cos 0

The corresponding x and z coordinates at ¢ = f;, are

Xiw = xXp — (vo cos B sin 0) = xw = 3.598ft, (®))
Zw = 2P + (Vosin By, — 380w = 2w = 47831t (6)

where, in Egs. (4)—(6), we have used the fact that xp = 35ft, yp = 16ft, zp = 1ft, v9 = 90mph =

903280 fi/s, B = 8°, and 6 = 63°.

After impact the x and y components of velocity are

Xw = —vgcos Bsinf and i, = vocos B cosh. (7
The z component of velocity after impact is calculated with the constant acceleration equation v = vy + at.

Zlw = Vo Sin B — gliy. (8)
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After the impact with the left wall, the ball is again in projectile motion. Hence, the equations describing the
motion of the ball after the impact are

x = xjw — (vocos Bsinf)t, y = (vocosBcosf)t, and z =z + (vosinf — gtw)t — %gtz, 9

where we have “reset” the time variable so that # = 0 now corresponds to when the ball bounces off the the
left wall. We are now ready to consider the impact of the ball with the front wall. Letting the subscript fw
stand for ‘front wall’, we must have x (¢s,) = 0, so that

Xiw = Xiw — (vocos BsinO)tpy =0 =ty = L = 0.03089s. (10)
v cos f sin 0

The corresponding values of the y and z coordinates are

Yiw = (vo cos B cos )15y =  yw = 1.833ft, (11)
Ztw = 2w + (Vo sin B — i)ty — 3815, = Zpw = 5.067fL. (12)

In summary, the coordinates of the point on the front wall that is impacted by the ball, we have

Xtw =0, yrw = 1.833ft, and zp, = 5.067 ft.
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Problem 2.278 |

An airplane is being tracked by a radar station at A. At the instant
= 0, the following data is recorded: r = 15km, ¢ = 80°,
9 = 15°, 7 = 350km/h, ¢§ = —0.002rad/s, § = 0.003rad/s.
If the airplane is flying to keep each of the spherical velocity
components constant for a few minutes, determine the spherical
components of the airplane’s acceleration when t = 30s.

Solution

In spherical coordinates, the components of acceleration are
ar =F — rq§2 — 762 sin? ¢,
ag = ré + 2i-¢ — r?sin ¢ cos ¢, (1)
ag = ré sin¢g + 276 sin¢g + 2r<]59 cos ¢.

To solve this problem, we must provide the values of r, 7, ¥, ¢, ¢, ¢, 6, and 6 for t = 30s.
We will now use the assumption that the velocity components are constant to determine the value of the
quantities just listed. The expression of the velocity in spherical coordinates is

U=ril, +rdlg+rosingig = v,y + vy iig + vglig. )
Then, under the assumption that v, is constant, for the radial coordinate r we have
vr(0) = 7(0) = constant = #(¢) =0 and r(¢) =r(0)+ 7 (0)r. 3)

Recalling that r(0) = 15km = 15,000 m and that 7/(0) = 350km/h = 350 ;288 m/s, then, using Egs. (3),
att = 30s we have

r(30s) = 17920, 7(30s) =97.22m/s, and #(30s) =0. 4)

Next we proceed to determine the values of ¢, gf), and ¢ att = 30s. To do so, referring to Eq. (2), we
start from the consideration that vy = r¢. Hence, using the expression for r in the last of Egs. (3) we have

r@¢© s r(0H0©)

7(0) + 7(0) ¢=- ' - ®

Vp = r¢ = constant = r(0)$(0), = ¢ = r0) + 7 (0) 2

The last two of Egs. (5) will allow us to compute ¢ and ¢ at t = 30s. However, we also need the value of ¢
att = 30s. To compute such a value we now proceed to integrate the second of Egs. (5) with respect to time.
This gives

. dp  r(0)p(0) [ r(0)$(0)
b=w=" = s0-eo=[ SRR
r(0)$(0) (0)
> 90 =900+ “D00 n(l + r(O)’) ©)

Using the last of Egs. (6) and the last two of Egs. (5) we then have

$(30s) = 76.86°, $(30s) = —0.001674rad/s, and H(30s) = 9.086x 10 ®rad/s>, (7

This solutions manual, in any print or electronic form, remains the property of McGraw-Hill, Inc. It may be used and/or possessed only by permission June 25, 2012
of McGraw-Hill, and must be surrendered upon request of McGraw-Hill. Any duplication or distribution, either in print or electronic form, without the
permission of McGraw-Hill, is prohibited.



Dynamics 2e 361

where we have used the following numerical data: »(0) = 15km = 15,000m, 7#(0) = 350km/h =
3504208 m/s, ¢(0) = 80°, and ¢(0) = ~0.002rad/s. _

Next we proceed to determine the values of 8, and 6 at ¢ = 30 s. We start from the fact that vg = r0 sin¢
is assumed to be constant. Hence, we have

. B . . r(0)6(0) sin$(0)
r)0(t)sing(t) = r(0)0(0)sing(0) = 6(r) = s o)
I _r(06(0) sin¢(0){r'(;) sin'¢§t) + r(t)[cos ¢(t)]¢(t)}' @)
r2(t) sin” ¢(¢)

Hence, recalling that 7(0) = 15km = 15,000m, #(0) = 350km/h = 3501900 1y /5 4(0) = 80°, A(0) =
0.003 rad/s, and using Eqgs. (4) and (7), for ¢t = 30, we have

6(30s) = 0.002540rad/s and 6(30s) = —0.00001279rad/s>. )

In conclusion, substituting Eqgs. (4), (7), and (9) into Egs. (1), for t = 30 s we have

ar = —0.1598m/s*>, ap = —0.1884m/s*>, and ay = 0.2232m/s’.
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E8 Problem 2.279 &2

An airplane is being tracked by a radar station at A. At the instant
t = 0, the following data is recorded: r = 15km, ¢ = 80°, 0 =
15°, 7 = 350km/h, § = —0.002rad/s, 6 = 0.003 rad/s. If the
airplane is flying to keep each of the spherical velocity components
constant, plot the trajectory of the airplane for 0 < ¢t < 150s.

Solution

To plot the trajectory of the airplane we need to find expressions for the coordinates of the airplane as a
function of time. Clearly, this must be done while enforcing the condition that the velocity components
remain constant during the time interval of interest. For this purpose, we consider the general expression for
the velocity in spherical coordinates, which is

Bzfﬁr+rq§ﬁ¢+résin¢ﬁ9:vrﬁr+v¢ﬁ¢+v9ﬁ9. (1)
Then, under the assumption that v, is constant, for the radial coordinate r we have
vr(0) = 7(0) = constant = r(t) = r(0) + 7#(0)z, 2)

where r(0) = 15km and that 7(0) = 350 km/h.
Next we proceed to determine an expression for ¢ (¢). To do so, referring to Eq. (1), we start from the
consideration that vy = r¢. Hence, using the expression for r in the last of Egs. (2) we have

r(0)$(0)

vy = r¢ = constant = r(0)¢p(0), = ¢ = m

3
Then, to determine ¢ (¢) we now proceed to integrate the last of Eqs. (3) with respect to time. This gives

L r(0)¢(0)
r(0) + 7 (0)¢

B r(0)¢(0) #(0)
=  ¢@)=¢(0)+ T())ln(l + @I), ()

. d¢ _ r(0)$(0) VN
i=F =" 5 s0-90= [

where r(0) = 15km = 15,000 m, 7(0) = 350km/h, ¢(0) = 80°, and ¢(0) = —0.002 rad/s.
Next we try and provide an expression for 8(¢). We start from the fact that vg = r6 sin ¢ is assumed to
be constant. Hence, we have

OB sing(t) = rOBO)sing(0) = o) = (QIOseO) )
r(t)sing(t)

Although the expressions for r(¢) and ¢(¢) are currently known, even if one were to substitute these
expressions into the above equation, we would obtain an expression for 6 that cannot be integrated with
respect to time in closed-form. Hence, we must proceed to integrate with respect to time numerically. This
can be done with appropriate mathematical software. We have used Mathematica as described below. Once
r(t), ¢(t), and 6(¢) are known, in order to plot the trajectory of the airplane, we need to transform the
spherical coordinates into corresponding Cartesian coordinates. We do so using the following relations:

X = rsin¢ cos 6, (6)
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y = rsin¢sin6, @)
Z =rcose. ()

The code provided below first defines the known parameters of the problem. Then the functions giving r(¢)
and ¢ (¢) are stated, followed by the instructions necessary to determine 6(¢). Once the solution for 8(z) is
obtained, the spherical coordinates of the airplane are transformed into corresponding Cartesian coordinates
and the resulting trajectory is plotted for 0 < ¢ < 150s. Referring to the plot of the trajectory, the airplane is
moving from the upper right to the lower left.

1000.

Parameters = {rO - 15000., ¢0 » 80. Degree, 60 » 15. Degree, rDot0 -» 350. - .
3600.

$Dot0 —» -0.002, 6Dot0 - 0.003};

r[t ] =r0 +xrDotOt;

r0 ¢Dot0
o[t ] := 0 + ——— Log[1+
rDot0

rDotO0
]
r0
r0 6Dot0 Sin[¢0]

r[t] Sin[¢[t]]

@Solution = N'DSolve[{e' [t] = , 6[0] = eo} /. Parameters, 6[t],

{t, 0, 150.}];

x[t ] :=r[t] Sin[¢[t]] Cos[6[Lt]] /. 6Solution[[1l]];
y[t ] :=x[t] Sin[¢[t]] Sin[6[t]] /. 6Solution[[1]];
z[t ] :=r[t] Cos[¢[t]] /. 6Solution[[1l]];

ParametricPlot3D[{x[t], y[t], z[t]} /. Parameters, {t, 0, 150.},
AxesLabel » {"x(m)", "y (m)", "z (m)"}]

Executing the above code yields the following plot (except for the labels “start” and “finish”):

x(m) 20000

22000
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Problem 2.280 i

The velocity and acceleration of point P expressed relative to frame A at some time ¢ are
Up/a = (12.5i4 + 734 ja) m/s and dps4 = (7.23i4 —3.24 j4) m/s%.

Knowing that frame B does not move relative to frame A, determine the expressions for the velocity
and acceleration of P with respect to frame B. Verify that the speed of P and the magnitude of P’s
acceleration are the same in the two frames.

YA yp

jB ap
B

lB ]

A 15° —
JA xXp

[ X
A ~ A

P

Solution

To express the velocity and acceleration vectors relative to the reference frame B, the base vectors of frame A
need to be expressed in terms of the base vectors of frame B. Because of the orientation of frame B relative
to A, we have

14 = cos(15°)ig +sin(15°) jp and j4 = —sin(15°)ip + cos(15°) jg, (1)
Substituting the expressions in Egs. (1) into the given expression for the velocity of P, we have
Up/p = {[12.5¢c0s(15°) — 7.345in(15°)] ig + [12.5sin(15°) + 7.34cos(15°)] jp} m/s. )

The magnitude of Up, g is

VB/p = \/[12.5 cos(15°) — 7.34sin(15°)]% + [12.5sin(15°) + 7.34 cos(15°)] m/s

= \/12.52[0052(15°) + sin?(15°)] 4 7.342[cos2(15°) + sin?(15°)] m/s
= V12,52 +7.342m/s = vp;4, (3)

where we have used the trigonometric identity sin® o + cos? @ = 1. Equation (3) states that the speed of P
as seen by the two frames is the same. Evaluating Egs. (2) and (3), we have

vp/p = (10.171 +10.33 jgp)m/s and vp,;gp = vp;q4 = 14.50m/s.

Substituting Egs. (1) into the given expression for the acceleration of P, we have
dp/p = {[7.23c0s(15°) + 3.24sin(15°)]7g + [7.23 sin(15°) — 3.24 cos(15°)] jg} m/s”. 4)

The magnitude of ap,p is
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lap/g| = \/[7.23 cos(15°) + 3.24sin(15°)]2 4 [7.23 sin(15°) — 3.24 cos(15°)] m/s>

= \/7.232[cos2(15°) + sin?(15°)] + 3.242[cos2(15°) + sin?(15°)] m/s>

= V7232 +3242m/s* = |dp/a|. (5)

where we have used the trigonometric identity sin? & + cos? @ = 1. Equation (5) states that the magnitude of
the acceleration of P as seen by the two frames is the same. Evaluating Egs. (4) and (5), we have

ap/p = (7.8221p — 1.258 jp)m/s* and |dp/p| = |dp/a| = 7.923m/s>.
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Problem 2.281 |

The motion of a point P with respect to a Cartesian coordinate system is described Y
by 7 = {2417 + [4In(t + 1) + 2¢?] j} ft, where ¢ is time expressed in seconds.
Determine the average velocity between ;1 = 4s and 7 = 6. Then find the time
t for which the x component of P’s velocity is exactly equal to the x component
of P’s average velocity between times 71 and #;. Is it possible to find a time at '
which P’s velocity and P’s average velocity are exactly equal? Explain why. Hint:
Velocity is a vector.

~>

~>

Solution

The average velocity over the time interval [¢1, £5] is

- F(t2) — 7 (t1)
Vayg = ———— .

D

I — 1

Using the given function for 7(¢), for 1, = 4s and t, = 65, we have

Davg = (0.44957 + 20.67 f) ft/s, 2)

Next, we compute the velocity of P by differentiating the position vector 7(¢) with respect to time. This gives

T I Y * )il A3
v—[ﬁlﬁ-( +1—-H)J] /S. )

To determine ¢ we then need to solve the equation

vy (t) = (L\/_f) ft/s = 0.4495ft/s, 4)

which, can be solved for 7 to obtain

{ =4.949s. 5)

Substituting the result in Eq. (5) to compute the y component of the velocity vector in Eq. (3), we have

Uy (t) = 20.47ft/s # (Vavg)y- (6)

This result implies that

In general, it is not possible to find a time instant in an interval [ty 73]
for which the velocity and the average velocity are equal.

While it is always possible for a scalar function to find a value of time ¢ at which the function is equal to its
average over a time interval containing 7, when it comes to a vector function, finding a common time that
works for every scalar component is, in general, not possible.
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® Problem 2.282 @

The figure shows the displacement vector of a point P between two
time instants 71 and #;. Is it possible for the vector 17an shown to be the r P(tz)
average velocity of P over the time interval [¢1, £5]? P(1y)

avg
Math of P

Solution

No. ¥,y must have the same direction as AF (1, 12).
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Problem 2.283 |

A dynamic fracture model proposed to explain the behavior of cracks cracked panel

propagating at high velocity views the crack path as a wavy path. ¥ Y

In this model, a crack tip appearing to travel along a straight path Twavy crack path
actually travels at roughly the speed of sound along a wavy path. SN

Let the wavy path of the crack tip be described by the function - *

A
y = h sin(2wx /1), where h is the amplitude of the crack tip fluctu- | |

ations in the direction perpendicular to the crack plane and A is the

corresponding period. Assume that the crack tip travels along the

wavy path at a constant speed vy (e.g., the speed of sound). crack faces
Find the expression for the x component of the crack tip velocity

as a function of vg, A, &, and x.

épparent crack path

Solution

Using the coordinate system shown, the velocity of the crack tip has the form v = x7 + y J. Hence, letting

vs be the speed of the crack, we must have
vy = /%2 + y2. (1)

Now recalling that y = hsin(2wx /1), we have

. dy dx . 2hmx 2w x
y= -— = y= cos| — ). 2

T dx di ) A
Substituting Eq. (2) into Eq. (1) we have

s 2hmx 2rx\ 1% . 2hm 2rx\1?
Vg = X< + 1 CoS T =|X| 1+ TCOS T s (3)

which can be solved to find that the x component of the velocity is

B UgA
\/)\2 + 4h272 cos? (Z”Tx) ’

X

where we have chosen x to be positive since the crack is assumed to propagate in the positive x direction.
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E8 Problem 2.284 &2

A dynamic fracture model proposed to explain the behavior of cracks cracked panel

propagating at high velocity views the crack path as a wavy path. 7 Y

In this model, a crack tip appearing to travel along a straight path (W'dvy crack path
actually travels at roughly the speed of sound along a wavy path. - 7 )
Let the wavy path of the crack tip be described by the function - !

A
y = h sin(2wx /1), where h is the amplitude of the crack tip fluctu- | |

ations in the direction perpendicular to the crack plane and A is the

corresponding period. Assume that the crack tip travels along the

wavy path at a constant speed vs (e.g., the speed of sound). crack faces
Denote the apparent crack tip velocity by v,, and define it as the

average value of the x component of the crack velocity, that is,

1 A
va:X/(; Uy dX.

In dynamic fracture experiments on polymeric materials, v, =
2vg/3, vg is found to be close to 800 m/s, and A is of the order
of 100 um. What value of & would you expect to find in the experi-
ments if the wavy crack theory were confirmed to be accurate?

épparent crack path

Solution

To solve this problem we need to first determine the x component of the velocity of the crack tip. Once, we
determine an expression for vy, then we will solve the equation stated in the problem numerically for /.

We begin by observing that, using the coordinate system shown, the velocity of the crack tip has the form
U = x1+ yJ. Hence, letting vy be the speed of the crack, we must have

vs = /X2 + y2. (1)

Now recalling that y = hsin(2wx /A1), we have

2 X 2
. dyd_x o = hmx cos(%). )

VS axdi YT
Substituting Eq. (2) into Eq. (1) we have

s 2hmx 2rx\ 1% . 2hm 2rx\ 1%
Vg = ¢/ X° + 7 cos - = |x|4/1 + Tcos - , 3)

which can be solved to find that the x component of the velocity is
. UgA
2 9
\/)&2 + 4h272 cos? (22%)

“

Ux=)'C

where we have chosen X to be positive since the crack is assumed to propagate in the positive x direction.
Now, that vy is known, using the formula for v, given in the problem statement, we have

1 [* UgA A Vs
Vg = T dx = dx. &)
0 \//\2 + 4h272 cos? (—zﬁx) 0 \/)Lz + 4h272 cos? (—2’/{)‘)
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Recall that we have vy = 800m/s, v, = %vs, and A = 100 um. Hence, since the variable x in Eq. (5) has
the role of dummy variable of integration, Eq. (5) is an equation in the single unknown /4. The equation
in question is an integral equation and can be solved numerically using appropriate mathematical software.
We have used Mathematica with the code given below. As is often the case with the numerical solution
of equations, we had to supply Mathematica with an initial guess for the solution. Since the quantity /4 is

expected to be of the same order of a few pm, our guess for s was set to 1 um.

2
Parameters = {vs - 800., va-»> —800., A > 10'4};
3

vs
IntegralEq[h ] := NIntegrate[ /. Parameters,

2
\/AZ +4 12 n? Cos[”"]
A

{x, 0, A/. Parameters}]

FindRoot[(va /. Parameters) == IntegralEq[h], {h, 10.'6}]

The execution of the code above yields the following result:

h=29.43x10"°m.
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28 Problem 2.285 &2

The motion of a peg sliding within a rectilinear guide is controlled by x I'l
an actuator in such a way that the peg’s acceleration takes on the form
¥ = ag(2cos 2wt — Bsinwt), where ¢ is time, ag = 3.5m/s%, w =
0.5rad/s, and B = 1.5. Determine the total distance traveled by the
peg during the time interval 0s < ¢ < 5sif X(0) = aof/w + 0.3m/s.
When compared with Prob. 2.57, why does the addition of 0.3 m/s in
the initial velocity turn this into a problem that requires a computer to
solve?

Solution

We begin by obtaining an expression for the velocity of the peg as a function of time. Since the acceleration
is given as a function of time, we can integrate it as follows:

t
v =x(0) + / ag(2cos2wt — Bsinwt) dt
0

2
= v= aoE +0.3m/s —i—ao(— sin 2wt + ﬁcosa)t) —agﬁ, (D)
W 2w w w

which we can simplify to obtain
ag .
v = — [sin2wt + B coswt] + 0.3 m/s. 2)
D)

To find the distance traveled, we need to establish if and when the peg switches direction during the time
interval considered. This can be easily done by using any appropriate mathematical software that can plot the
function v over the time interval considered. Recalling that ag = 3.5m/s?, @ = 0.5rad/s, and B = 1.5, we
have used Mathematica with the following code:

Parameters = {a0 » 3.5, w-» 0.5, 8> 1.5};

a0
Plot [— (Sin[2wt] +BCos[wt]) +0.3 /. Parameters, {t, 0, 5}, Frame -» True,
w

FrameLabel - {"t (s)", "v (m/s)"}, GridLines - Automatic, AspectRatio -» 1]

The above code yields the following plot:

0/ ) .
5

: \
ol .

0O 1 2 3 4 5
t (s)

v (m/s)

As can be seen from the above plot, the velocity changes sign near ¢ = 3s. Hence, we need to solve the
equation v = 0 to determine where exactly the sign switch occurs. Because the expression we have for v
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includes the constant term 0.3 m, the equation v = 0 cannot be solved analytically. Hence, we will solve it
numerically. This can be done with any appropriate mathematical software. As is common with root finding
algorithms, we need to provide a guess for the solution. Based on the graph presented above, we set our
guess to ¢ = 3s and then use the following Mathematica code:

Parameters = {a0 » 3.5, w-» 0.5, 8> 1.5};

a0
FindRoot[— (Sin[2wt] +BCos[wt]) +0.3 == 0 /. Parameters, {t, 3}
w

which yields the following solution:
t =3.166s. (3)

Using this result, and letting d denote the distance traveled, we have

3.166s 5s
d = / |:a_0 coswt(2sinwt+£)+0.3 m/s] dl—/ [a_o coswt(2sinwt+£)+0.3 m/si| dt. (4)
0 w 3.166sL @

The above integrals can be computed either numerically or analytically. Since this is a computer problem, we
have chosen to carry out the integration numerically. We have used Mathematica with the following code:

Parameters = {a0 » 3.5, w > 0.5, 8> 1.5};
a0

d=NIntegrate[— (Sin[2wt] +BCos[wt]) +0.3 /. Parameters, {t, 0, 3.166}] -
w

a0
NIntegrate[— (Sin[2wt] +BCos[wt]) +0.3 /. Parameters, {t, 3.166, 5}]
w

The execution of the above code, yields the following result:

d =52.81m.
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Problem 2.286 |

The acceleration of an object in rectilinear free fall while immersed in a linear viscous Y
fluidis a = g — C4v/m, where g is the acceleration of gravity, Cy; is a constant
drag coefficient, v is the object’s velocity, and m is the object’s mass. Letting v = 0
and s = 0 for ¢t = 0, where s is position and ¢ is time, determine the position as a
function of time. \m\

Solution

The acceleration is given as a function of velocity. Recalling that ¢ = dv/dt, we can separate the time and
velocity variables as follows:

dv ! v dv -m C
dt = — = /dt:/— = z=—ln(1——dv), (D
a 0 o §—Cqv/m Ca mg
where we have enforced the condition that v = 0 for t = 0. We now solve the last of Egs. (1) for v. This
gives
C C C
e_Wdt=1——dv = v=@(l—e_n?’). ()
mg Caq

Now that we have velocity as a function of time, we recall that v = ds/dt, so that we can separate the
variables s and ¢ by writing

s t C
ds =vdt = / ds = e (l—e_"ft) dt, 3)
0 Ca Jo
where we have enforced the condition that s = 0 for r = 0. Carrying out the above integration and

simplifying, we have

C
§ = m—g[Cdt + m(e_n?’ - 1):|
C
d
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Problem 2.287 |

Heavy rains cause a stretch of road to have a coefficient of friction AT o
that changes as a function of location. Under these conditions, the \
acceleration of a car skidding while trying to stop can be approxi-
mated by § = —(ug —cs)g, where uy is the friction coefficient un-
der dry conditions, g is the acceleration of gravity, and ¢, with units
of m™!, describes the rate of friction decrement. Let ; = 0.5,
¢ =0.015m™!, and v9 = 45km/h, where vy is the initial velocity
of the car. Determine the time it will take the car to stop and the
percent increase in stopping time with respect to dry conditions,
i.e., when ¢ = 0. Hint:

1
———dx=1o (x—i— 1+x2).
/v1+x2 g

Solution

We are given the acceleration as a function of position. We will first relate the acceleration to the velocity
using the chain rule, and then relate the velocity to position:

ds ds ds
- =

v s
az%dl azgs' = ads=s5ds = /;Oidézj(;—(,uk—cs)gds, (1)

where v = §, v = vg for s = 0, and where we have used the given expression of the acceleration in that last
of Egs. (1). Carrying out the integration, we have

=

8 $ g /¢
vz—%v(z)zz(cs—,uk)zo = vz\/;\/gvg-i-(cs—ﬂk)z—/i;z{- 2

This result will be needed later. We now determine the expression for the stopping position of the car, which
we will denote by sy (f stands for final). Setting v = 0 for s = 57 in Eq. (2), and solving for sz, we have

2
mr 1 cv
L. S 'U“lzc__o'

c c g

8 = 3)
Only the smaller of the two roots in Eq. (3) makes physical sense (once the car stops, it will not stop at an
increased position). Hence, we select the following root:
2
U 1 5 €V
Sfp=——= -—. 4
f - c Ky 2 4
Note that we could have identified the correct the solution to choose by evaluating the two roots numerically.
Recalling that u; = 0.5, ¢ = 0.015m™!, g = 9.81m/s?, and vg = 45km/h = 45%, the roots
corresponding to the minus and plus signs are sy = 26.31 m and sy = 40.35 m, respectively.
We now go back to Eq. (2) and proceed to determine the relation between position and time. To do so, we
recall that v = ds/dt. Observing that we have the velocity as a function of position, we can separate the

variables s and ¢ as follows: d¢t = ds/v. Hence, using Eq. (2), we have

iy Sr
/ dt = \/E/ ds . (5)
0 g Jo \/§v§+(cs—uk)2—ui
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where we have enforced the condition that s = 0 for # = 0 and we have denoted by 7 the time at which the
car comes to a stop. To carry out the integration, we let

Cc
A= E”g - Ui 6)

and we perform the following change of variables of integration:

1
xX=cs—ur = ds=—dx. 7
c
For s = 0 we have x = —uy and for s = sy we have x = ¢s¢ — ui. Hence, Eq. (5) becomes
1 esr—Hhe dx
tf = —— / . ®)
VEE J—py VvA+Xx
Using the hint, we obtain
L o) [ T LAl + \/A +(esr — i) ©
tr = n(x + +x ) = Iy = n ,
Ve VE Lk Jav
which, recalling the definition of A in Eq. (6), after simplification yields
1 csF —
In S~ Mk (10)

Zf= = n .
V€8 von/c/g — ik

Realling that ¢ = 0.015m™!, g = 9.81m/s?, g = 0.5, and vo = 45km/s = 45% m/s, we can evaluate
sy in Eq. (4) and then evaluate 75 in Eq. (10) to obtain

tr = 5.839s. (11)

With dry conditions, i.e., for ¢ = 0, the acceleration of the car would be § = —u g. Hence, we can use the
constant acceleration equation § = S + a.t to find the stopping time. This gives

0=vo—purgtyr = 1ty =2.548s. (12)

Comparing this result to that in Eq. (11), we find the percent increase to be

tfwel - [fdry x

Stopping time percent increase = ;
f dry

100 = Stopping time percent increase = 129.1%.
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Problem 2.288 |

The acceleration of a particle of mass m suspended by a linear spring with spring constant

k and unstretched length Ly (when the spring length is equal to Lg, the spring exerts

no force on the particle) is given by X = g — (k/m)(x — Lo). Assuming thatatt = 0

the particle is at rest and its position is x = 0 m, derive the expression of the particle’s k. L,
position x as a function of time. Hint: A good table of integrals will come in handy.

m
Solution
We have acceleration as a function of position and we integrate it as follows:
d% dx x x k
a=—— = xdx = — —(x—Lo) | dx.
dx dt /0 /0 |:g m ( O) ]
k kL k 2k L
%)'czzgx——x2+—0x = )'c=\/2gx——x2+ Ox.
2m m m m
Now that we have x as a function of x, we relate it to time as follows:
. dx d * dx x dx
X = E = dt = 7 = t = .
0 0 0 \/x(ﬂinﬁ-i-%’)—,%xz
Now we let A = % (yjnﬁ + Zg) =2 (Lo + %) and we rewrite the expression for ¢ as follows:
m [*  dx m x x
t:‘/—/ — = t=2,/—tan! (L) .
k Jo Ax —x2 k VA—=x) o

Making use of the trigonometric identity 1 + tan? = sec? §, we have that

t |k X t |k t |k

tan® [ =/ — | = = x|sec?|=y/—]|=Atan?| =/ —].

2V m A—x 2V m 2Vm

Now making use of the trigonometric identity sin®(6/2) = %(1 — cos #), we can express X as
t |k A [ k
x = Asin® [ =4/ — = x=—|1-—cos —t]].
2V m 2 m
Finally, recalling that A4 is the quantity 2 (Lo + %), the expression for x can be written as
gm k
x=|Lo+ —)|1—cos —t]].
k m
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Problem 2.289 i

at A and lands at B below. Letting « = 18° and B = 25°, determine the
speed of the car at A if the car is to be airborne for a full 3 s. Furthermore,
determine the distance d covered by the car during the stunt, as well as
the impact speed and angle at B. Neglect aerodynamic effects. Express
your answer using the U.S. Customary system of units.

AW

In a movie scene involving a car chase, a car goes over the top of a ramp A o
L Q‘ﬁ
d

Solution

This is a projectile problem and we begin by relating the jump speed vg
to the velocity of the car and then to the car’s trajectory. Referring to
the figure at the right, the initial velocity and acceleration in the (x, y)

coordinate system are =
Xo = vocos(a + B), Yo = vosin(a + p), (1)
X = gsinpf, y = —gcos f. 2)

Using constant acceleration equations, we have that the coordinates of the (airborne) car as a function of time
are

x = vgcos(a + B)t + %g sin 12, 3)
y = v sin(e + B)t — %g cos B 12. 4

We want to satisfy the condition that y = 0 at 7 =ty = 3s, where the subscript f stands for flight.

tf cos
0:vosin(a+,8)tf—%gcos,3t} = vg= 81y cos p

~ 2sin(e + B)’ )

Recalling that g = 32.2ft/s?, tr = 3s, B = 25° and @ = 18°, we can evaluate the result in the last of
Egs. (5) to obtain

vo = 64.19ft/s.

We now observe that the distance d is equal to the value of x at time r = 7. Using Eq. (3) and the expression
for vg in the last of Egs. (5), we have that the distance d is given by

_ gtycosp
~ 2sin(o + p)

To find the impact speed and the impact angle, we need to determine the velocity at impact. To do so, we
use the constant acceleration equation v = vg + a.t to obtain

cos(a + )iy + 3gsinfi; = | d=202.1ft (6)

U; = [vocos(a + B) + gsin B t]i + [vosin(a + B) —gcosBtr] j
cos

. ~ 1 ~
_— — =gt , (7
2tan(oz+/3)+smﬂ]l 58trcosBj, (7)

= 51' =gl‘f|:

where we have used the expression for vg in the last of Egs. (5). Therefore, the impact speed is

2
cos f8 1
— 3 2
v; = gt ——— +sinfB | + ;cos?fB. (8)
V2 tan(a + B) 4
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Recalling that g = 32.2ft/s?, tr = 3s, B = 25° and a = 18°, we can evaluate the result in Eq. (8) to
obtain

v; = 98.08 ft/s.

We now compute the impact angle of the car with the ground at B measuring it with respect to the slope. This
angle is given by

-1
i
Impact angle = tan™ ! (—f) = tan~! {% cos 8 [#&iﬂ) + sin ﬂ:| } )

X

Recalling that 8 = 25° and & = 18°, we can evaluate the above result to obtain

Impact angle = 26.51° measured clockwise from the slope.
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Problem 2.290 |

Consider the problem of launching a projectile a distance R from VY
O to D with a known launch speed vg. It is probably clear to you
that you also need to know the launch angle 6 if you want the

projectile to land exactly at R. But it turns out that the condition Vo

determining whether or not vy is large enough to get to R does V4

not depend on 6. Determine this condition on vg. Hint: Find vg

as a function of R and 6, and then remember that the sine function o L 10 o
R !

is bounded by 1.

Solution

For projectile motion we have the initial velocity and acceleration in the (x, ¥) coordinate system, i.e.,

Xo = vocosf, Yo = vgsind, (1)
X =0, y=-g (2)

Using the constant acceleration equations, we obtain
X =vgcosft and y:vosiHGZ—%gtz. 3)
For t = tp we have y(tp) = 0. Using this fact in the second of Egs. (3), yields

2vg sin 6
i = Vg sin ‘ @
g

Then substituting Eq. (4) into the first of Egs. (3) and setting x = R, we obtain

2
v R
R= 22sinfcos = vi= &

— 5
g sin 20 )

where we have used the trigonometric identity 2 sin 6 cos @ = sin 26. Since we must have |sin20| < 1, we
have a corresponding condition on vg of the following form:

vo > v/ gR.
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Problem 2.291 |

A skater is spinning with her arms completely stretched out and with an
angular velocity @ = 60rpm. Letting r, = 0.55ft, and £ = 2.2 ft and
neglecting the change in w as the skater lowers her arms, determine the
velocity and acceleration of the hand A right when § = 0° if the skater
lowers her arms at the constant rate ,3 = 0.2rad/s. Express the answers i
using the component system shown, which rotates with the skater and for

which the unit vector J (not shown) is such that j = k x 7.

Solution

Referring to the figure at the right, let Q be the fixed point on the spin axis ©

that is at the same height as the shoulders. Then the position of A relative 1>

to Q is .
Faj0 = (rp +Lcos B)i —Lsinfk. (1) Ay 0

Since Q is a fixed point, the time derivative of 74/ ¢ is the velocity A:

{;’A:—Eﬂsinﬂf—l—(rb—|—Ecosﬂ)f—€ﬂ'cosﬂl€—£sinﬁlé. ) k

Since 7 always points towards A, I changes its orientation with the angular 4k
velocity @ = w k. In addition, since k does not change its orientation, then 0
k is constant. Hence, using the concept of time derivative of a unit vector, we have

l;:a)k:,xi:a)j and k =0. 3)
Substituting Egs. (3) into Eq. (2) gives
on :—E,Bsinﬂi+(rb+€cos;3)wj—£Bcos,Bl€. (€))

For 8 = 0, we then have

Ualg_g = (5 + Do —pk = B4l g = (17.28 ] - 0.4400 k) ft/s, (5)

where we have used the data: r;, = 0.55ft, £ = 2.2ft, » = 60rpm = 60%—75 rad/s, andB = 0.2rad/s. To
determine a4, we differentiate v4 in Eq. (4) with respect to time and, recalling that ﬁ and k are constant, we
Obtain . . . . . . A
dg = —LB%cosBi—LBsinBi—LBwsinB ]+ (rp + LcosB)w | + £B%sin fk. (6)
Using the first of Eqs. (3), and observing that the same idea that allowed us to derive the first of Eqs. (3) tells
usthat ] = wk X j = —w1, Eq. (6) can be simplified to
g = _[513'2 cos B + w?(rp + £ cos B)]i— 20lBsinB ]+ LB%sin k. (7

Hence, for 8 = 0 the acceleration of A is

dnlg_y = [—B* — 02 (rp + 0)]i = dalg_o = —108.7 j /s, (8)

where we have used the data: r, = 0.55ft, £ = 2.2ft, w = 60rpm = 60%—’5 rad/s, and,B = 0.2rad/s.
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Problem 2.292 |

A roller coaster travels over the top A of the track section shown with a
speed v = 60 mph. Compute the largest radius of curvature p at A such
that the passengers on the roller coaster will experience weightlessness at
A.

Solution

To experience weightlessness, the passengers must be in free fall, i.e., their acceleration must be equal
to the acceleration of gravity. Since the tangent to the trajectory at A is horizontal, at A the direction of
acceleration must be toward C, i.e., it must be completely in the normal direction. With this in mind, using
normal-tangential components and recalling that the normal acceleration is given by v2/p, we must have

— =g = p=— = o = 240.5ft,

where we have used the fact that v = 60 mph = 60% ft/s and g = 32.2ft/s.
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Problem 2.293 |

Determine, as a function of the latitude A, the normal acceleration "\b op
of the point P on the surface of the Earth due to the spin wg of
Earth about its axis. In addition, determine the normal acceleration
of the Earth due to its rotation about the Sun. Using these results,
determine the latitude above which the acceleration due to the orbital
motion of the Earth is more significant than the acceleration due
to the spin of the Earth about its axis. Use Rg = 6371 km for the
mean radius of the Earth, and assume the Earth’s orbit about the Sun
is circular with radius Rp = 1.497x 108 km.

equator

Solution

Assuming that the center of the Earth is fixed and the Earth rotates as shown, the point P moves around a
circle centered at the spin axis of the Earth with radius pp = Rg cos A. The speed of vp = ppwpg cosA.
Therefore, the normal acceleration of P due to rotation is

2 2 p2 2
_vp wy RE cos A
app, = — ===

=3 7 apy = a)% REgcosA = 0.03369cosz\m/sz, (D)
pp E COS

where we have used the data Rg = 6371km = 6371x103m and wg = 1rev/day = (24)%+00) rad/s. We
now model the motion of the Earth around the Sun as a circular motion along a circle centered at the Sun
with radius Rp and angular speed wp. The speed of P due to this motion is the same as that of the Earth,
namely, vg = Rowo. The corresponding normal acceleration is

2 2 p2
v w5 R
agn=-L£=-"9229 = |4g, =wiRo = 0.005942m/s’, )
po Ro

where we have used the data wp = lrev/year = (365)(2%% rad/s and Rp = 1.497x108km =

1497 x 108 m.
The latitude A at which the acceleration due to the motion of the Earth around the Sun is equal to that due
to the Earth’s spin about its own axis is

2
ws” R

w%REcoskza)éRo = /\zcos_l(ﬁ). 3)
ERE

Recalling that R = 6371km = 6371x10>°m, wg = 1rev/day = (M)%%rad/s, wo = lrev/year =

__2r — 8 — 8
(365)(24)(3600) rad/s, and Rp = 1.497x10°km = 1497 x 10° m, we can evaluate the last of Egs. (3) to
obtain
A =79.84°.
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Problem 2.294 |

A car is traveling over a hill with a speed vg = 160km/h. Using the Cartesian coordinate system shown,
the hill’s profile is described by the function y = —(0.003m~!)x2, where x and y are measured in
meters. At x = —100 m, the driver realizes that her speed will cause her to lose contact with the ground
once she reaches the top of the hill at O. Verify that the driver’s intuition is correct, and determine
the minimum constant time rate of change of the speed such that the car will not lose contact with
the ground at O. Hint: To compute the distance traveled by the car along the car’s path, observe that
ds = /dx2 + dy? = \/1 + (dy/dx)? dx and that

/\/1+C2x2dx= %\/1+C2x2+%ln(Cx+ \/1+C2x2).

y

Vo dy ‘
— ds (0) X
A

I

dx

Solution

The minimum speed to lose contact with the ground is such that

2
V.
? =g = vk, =gp0). (1)

To calculate the radius of curvature at the origin of the coordinate system indicated in the problem’s figure we
use the following equation:

/2 273/2
1+ (dy/dx)?|’ 1 + (0.006x)
p(x) = [ !dzy/dxz‘] = p0) = [ 0.00€ ] = 166.7m. 2
. x=0
Therefore
Umin = /pg = 40.44m/s. 3)

Since vg = 160km/h = 44.44m/s, we conclude that

The car will lose contact with the ground.

Now we have to find the minimum constant value of v = a. such that the car does not lose contact. Since
we need to relate a change in speed to a change in position, we can use the constant acceleration equation
v? — vg = 2a(s — so) with so = 0 and vy = vpin, where s is the path coordinate along the profile of the

hill and the subscript f stands for ‘final.” This gives

2Sf

2 2

Vpin — Vo = 2d¢S = e =

To evaluate this equation we need to express the path coordinate s in terms of the Cartesian coordinates x and
y. Taking advantage of the hint given in the problem, we can write

0 0
X 1
Sf=/ \/1+(—O.006x)2dx= |:—\/1+C2x2+—ln(Cx+\/1+C2x2>:| = 105.7 m,
—100m 2 2C —100m
)
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where C = —0.006 m~!. Using this result in Eq. (4), along with the fact that vy = 160km/h = 44.44m/s
and vpin = 40.44m/s (see Eq. (3)), we have

ac = —1.606 m/s>.
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A jet is flying straight and level at a speed v9 = 1100km/h when it turns to
change its course by 90° as shown. The turn is performed by decreasing the
path’s radius of curvature uniformly as a function of the position s along the
path while keeping the normal acceleration constant and equal to 8g, where g is
the acceleration due to gravity. At the end of the turn, the speed of the plane is
vr = 800km/h. Determine the radius of curvature ps at the end of the turn and
the time 75 that the plane takes to complete its change in course.

Solution

The radii of curvature at the beginning and end of the maneuver are

v2 vZ
o = 9 and pr = f (D
an an

Recalling that a, = 8g = 8(9.81 m/s?) and vy = 800km/s = 800 ;288 m/s, the radius of curvature at the
end of the turn is

pr = 629.2m.

Since p decreases uniformly with the position s along the airplane’s path, we
have dp/ds = constant. Denoting the (nondimensional) constant in question
by y, we have that the radius of curvature, expressed as a function of s has the
following form:

p(s) = po + ys, 2)
where y will be determined later, and where, referring to the figure at the right,
s = 0 corresponds to the beginning of the turn. At every point on the trajectory,
we can find the osculating circle (the circle tangent to the path and center on
the concave part of the trajectory). Let C(s) denote the center of the osculating
circle at s and consider the radial segment of length p(s) going from C(s) to the
airplane. Let the orientation of this segment be the angle 8(s) that the segment forms with the line connecting
C(0) and the airplane when s = 0 so that 6(0) = 0, O(Sf) = —JT rad. The angular velocity v = 0 is the
time rate of change of the orientation of the unit vector 7y so that (see Eq. (2.62) on p. 93 of the textbook)

v(s
o(s) = 29, G)
p(s)
where v(s) is the speed of the plane. Then manipulating the above equation, we have
v(s) dO(s) dO(s)ds d9(s) do(s) 1 ds
= = = = = — de = —, 4
0l) =25 Tar as ar ='W = s o e P

where we have separated the variables 8 and s. Using Eq. (2), and recalling that 8 = 0 for s = 0, and that
6 = laradfors = sy, we can integrate the last of Egs. (4) as follows:

2
(7r/2)rad Sy d
: s 1 po + s P
[ d9=/ = %nradz—ln(—f = énrad——l i NE)
0 0__Potys Y Po Y _\po
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which can be solved for y to obtain

2 4 v
y = In br = y= In el , (6)
7 rad 00 7 rad Vo
where we have used Eq. (1) and the following property of logarithms: In x” = n In x. From Eq. (2) we see
that y = dp/ds. Next recalling that a,, = 8g and a, = v?/p, we can write

v? =38 = 21;@—8@ = v@—4 (7
= o8P ds gds ds &y

We now observe that v% is also the quantity v = dv/dt. Therefore, we can write

W_hgy = a= )
dr &Y  4gy’
Letting # = 0 correspond to the beginning of the maneuver, we have v = vg forf = 0 and v = vy forz = 1r
so that we can integrate the last of Eqs. (8) as follows:

tfdt:fvf LI Al BN _ vy —vo)rrad ©)
0 v

- — lr = s
. 4gy 77 Tagy 7~ T6gIn(vs/vo)

where we have used the last of Egs. (6). Recalling that we have g = 9.81m/s?, vg = 1100km/h =
11004290 1y /5, and vy = 800km/h = 8004200 11y /5. we can evaluate the last of Egs. (9) to obtain

3600 3600
ty = 5.238s.
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Problem 2.296 i

The mechanism shown is called a swinging block slider crank. First used in various steam lo-
comotive engines in the 1800s, this mechanism is often found in door-closing systems. Let
H = 125m, R = 0.45m, and r denote the distance between B and O. Assum-
ing that the speed of B is constant and equal to 5m/s, determine 7, ¢, ¥, and ¢ when
6 = 180°.

swinging X

Solution

We start by defining a polar coordinate system with
origin at O and radial direction along the segment OB
so that the coordinate r measures the distance from
O to B. We take as transverse coordinate the angle ¢.
Observe that for 0 < 8 < 180°, r is growing. For 6 =
180°, r achieves its maximum value rp,x = R + H,
and for 180° < 0 < 360°, r decreases. Therefore,
the rate of change of r for 6 = 180° must be equal to
Z€ero, 1.e.,

Flg=1800 = 0- (1
In polar coordinates, the velocity of B is expressed as
Up = Fil, +rdiy. 2)

For 8 = 180°, recalling that B is moving counterclockwise with the constant speed vg, we have

Vo
R+H

3

ﬁB{0=180° = rmaX(¢‘9=180°) Ug = —vouy = d’|0=180° =

Recalling that vg = 5m/s, R = 0.45m, and H = 1.25m, we can evaluate the last of Egs. (3) to obtain

bl g 1800 = —2-9411ad/s.

Next we recall that the general expression of the acceleration in polar coordinates is
ap = (F —r¢?) iy + (ré + 27 ) 0y. @)
Recalling that, for & = 180°, 7 = R+ H, 7 = 0, and ¢ takes on the expression in the last of Eqgs. (3), Eq. (4)

reduces to )

. . o . R
aBlg_g00 = (r|9=180° - R—|——H) ity + (R + H)p|g_ 500] - ®)
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Since B is in uniform circular motion along a circle with center at A, the acceleration of B is always directed

toward A and, for 0 = 180°, we must have
_ V5.
4Blo=1800 = ~ p Ur-

Setting Eqs. (5) and (6) equal to each other component by component, we have
2 2
. Vg Yy . ) 1 1
Flo=1s0e ~ R+H R = Flooise = vo(—R TH ﬁ)
and
(R+ H)$[g_ 500 = 0.

(6)

(N

(®)

Recalling that vo = 5m/s, R = 0.45m, and H = 1.25m, we can evaluate the last of Egs. (7) and Eq. (8) to

obtain

) 3 N
r’0=180° = —40.85m/s” and ([)‘9:1800 = 0.

This solutions manual, in any print or electronic form, remains the property of McGraw-Hill, Inc. It may be used and/or possessed only by permission
of McGraw-Hill, and must be surrendered upon request of McGraw-Hill. Any duplication or distribution, either in print or electronic form, without the
permission of McGraw-Hill, is prohibited.

June 25, 2012



Dynamics 2e 389

Problem 2.297 |

The cam is mounted on a shaft that rotates about O with constant angu- y
lar velocity wc¢am. The profile of the cam is described by the function
L(¢) = Ro(1 + 0.25cos> ¢), where the angle ¢ is measured relative
to the segment OA, which rotates with the cam. Letting Ry = 3cm,
determine the maximum value of angular velocity wmax such that the
maximum speed of the follower is limited to 2m/s. In addition, com-  cam
pute the smallest angle i, for which the follower achieves it maximum
speed.

follower

Solution

Let y denote the position of the follower when in contact with the cam. In addition, let ¢y (where the
subscript f stands for follower) denote the value of ¢ that identifies the radial line on the cam that goes from
point O to the follower. Hence, we have that the relation between ¢¢ and 6 is ¢y = 90° — 6. Keeping in
mind that y describes the velocity of the follower, we have

) de d
y =L(¢r) = Ro(1 + 0.25 cos® ¢r) = y= —ﬂ (1
d¢f dt
Since ¢'f = —fand§ = Weam, WE have
- dl dt
)y =—0—- = y=- — 2
y by Y = —Ocm ry @)
Since weam is constant, y is maximum when % is maximum. Hence, taking the derivative of £(¢y) with
respect to ¢ ¢, we have '
dt
—— = —0.75Rq cos® ¢y sin . 3)
dor
To maximize %, we differentiate the above quantity with respect to ¢ and set the result equal to 0. This
gives '
d2€ ) 3 2 2
W = 1.5Rocos ¢y sin” ¢y —0.75Rpcos” ¢y =0 = cos”" ¢y —2sin”" ¢y =0
S

= singrl;, = V1/3 and cos’dsl; =2/3. (4)

Thus, the maximum magnitude of Eq. (3) and the maximum magnitude of Eq. (2) are, respectively,

' dt Ro d . Wcam Ro (5)
— = —— an ‘ YVmax ‘ = .
df e 2V/3 2V3
Setting |Ymax| = Vmax and solving for wc,m, we have
Umax2 \/g
Wmax = ———— = Wmax = 230.9rad/s, (6)
Ro
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where we have used the data vy, = 2m/s and Ry = 3cm = 0.03000 m. The minimum angle 6 for which
the follower achieves its maximum speed is obtained by recalling that ¢ = 90° — 6 and that, by the first of
Egs. (4), we have

singr = V1/3 = ¢=sin V1/3]; =90°=60 = Opn=90"—sin" V1/3, ()

which can be evaluated to obtain

Omin = 54.74°.
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A car is traveling at a constant speed vg = 210km/h along a circular turn
with radius R = 137 m (the figure is not to scale). The camera at O is L
tracking the motion of the car. Letting L = 15 m, determine the camera’s R
rotation rate, as well as the corresponding time rate of change of the rotation

rate when ¢ = 30°. B

Solution

The orientation of the camera is described by the angle 6 shown in the
figure at the right. Let r represent the distance from O to the car. From the Be—
geometry of the figure we have

R si R si
tan 0 = sin ¢ = f=tan"! sin ¢ . (D
R+ L —Rcos¢ R+ L — Rcos¢

Differentiating the first of Eqgs. (1) with respect to time, we have

0 . Rcosgi)(R+L—Rcos¢)—stin2¢¢ o h— [(RL+Rz)cosr,zS—Rz]COSZO(l.S )
cos26 (R+ L — Rcos¢)? N (R+ L — Rcos¢)? ’
Since the car is in uniform circular motion with constant speed vg, we have
¢ = —vo/R, 3)

where the minus sign is due to the fact that the car is moving counterclockwise. Substituting Eq. (3) in Eq. (1)
gives

vo [R? — (RL + R?)cos ¢] cos? 0
R (R+ L — Rcos )2

Recalling that R = 137m, L = 15m, and vg = 210km/h = 2103230 m/s,for ¢ = 30° we can first
evaluate 6 from the second of Eqs. (1) (this gives = 64.04°) and then evaluate 6 in Eq. (4) to obtain

= (4)

6 = 0.05391 rad/s.

Differentiating Eq. (4) with respect to time we have

. vy . [R? = (RL + R*)cosp] wvo ,.d ([R*—(RL+ R?)cos¢]) .
p—ty ——2 —_— —_— .
0 R 6 cos O sin 6 (R+ L — Reosg)? +Rcos 9a’¢ (R+ L Rcos)? ¢ ®)

Carrying out the differentiation with respect to ¢ of the term in braces, we have

d ([R?—(RL+ R*)cos¢]|  (RL+ R?)sin¢ 2R sin[R? — (RL + R?) cos ¢] ©
dp| (R+L—Rcos¢)2 | (R+ L — Rcosg)? (R + L — Rcos ¢)3 '
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Recalling that ¢ is given in Eq. (3), and substituting Eqs. (4) and (6) into Eq. (5), we obtain

[R? — (RL + R?)cos ¢]?
(R+ L — Rcosg¢)*
v, (RL + R?)sing Rsing[R? — (RL + R?) cos ¢]
— —5cos” 6 5 —2 3
R (R+ L — Rcoso) (R+ L — Rcos¢)

. 1]2
0 =—-2cos30sind
R2

(N

Recalling again that R = 137m, L = 15m, and v9 = 210km/h = 210% m/s, for ¢ = 30°, again we
can first evaluate # from the second of Egs. (1) (this gives # = 64.04°), and then evaluate 6 in Eq. (7) to

obtain

6 = —0.2380rad/s>.
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Problem 2.299 |

A plane is initially flying north with a speed vg = 430 mph relative to the ground
while the wind has a constant speed vy = 12 mph in the north-south direction.
The plane performs a circular turn with radius of p = 0.45 mi. Assume that the
airspeed indicator on the plane measures the absolute value of the component
of the relative velocity of the plane with respect to the air in the direction of
motion. Then determine the value of the tangential component of the airplane’s
acceleration when the airplane is halfway through the turn, assuming that the
airplane maintains constant the reading of the airspeed indicator.

Solution

Let the subscripts P and W denote quantities pertaining to the airplane and wind, iy
respectively. Then, referring to the figure on the right and using a normal tangential ’\9 /
component system, the velocity of the airplane and wind are o,

vp =vpii; and Uw = vw(—cosBil; + sinfiy). (nH

Therefore the velocity of the airplane relative to the wind is

Up,w = (vp + v cos ) 1li; — vy sin 6 ily,. () P

Now we recall that the quantity measured by the airspeed indicator is the component of Tp,y that is in the
direction of motion, i.e.,
Vai = |Up4 + l¢| = vp + v cos 0,

where the subscript ‘ai’ stands for ‘airspeed indicator.” Now, recalling that the measure of 6 in radians is
given by 8 = s/p, we can rewrite vy as follows:

Vs = Up + Uy COS i 3)
o

Observing that for 8 = 0 we have v,; = vo + v and recalling that v,; is maintained constant along the turn,
we can solve Eq. (3) for vp as a function of s to obtain

s
vp(s) = vo-l—vW(l—cos—). 4
P
The tangential component of acceleration is the time derivative of Eq. (4). Hence, we can write
dvp d d
atzﬂ—szvpﬂ = a;=|vy+vw 1—(:osi U—Wsini. ®))
ds dt ds 0 o) 0

For s/p = (r/4) rad, we have sin(s/p) = cos(s/p) = ~/2/2. Therefore, midway through the turn, we have
V2 |ow 2
a = |:vo+vw(1—— Uy 6)

2 2p

Recalling that v9 = 430mph = 430% ft/s, vw = 12mph = 12%38 ft/s, and p = 0.45mi =

0.45(5280) ft, we can evaluate the above expression to obtain

a; = 3.330ft/s%
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Problem 2.300 i

A fountain has a spout that can rotate about O and whose angle 8 is controlled so as to vary with time
according to B = Bo[l + sin®(wt)], with B = 15° and @ = 0.4 rad/s. The length of the spout is
L = 1.5ft, the water flow through the spout is constant, and the water is ejected at a speed vo = 61t/s,
measured relative to the spout.

Determine the largest speed with which the water particles are released from the spout.

Vo

(N ?\\ B

| 0

Solution

We define a polar coordinate system with origin at O and transverse coordinate coinciding with B. The
expression of the velocity of the water particles as they leave the spout is given by

U=ri,+LAig = v=+i2+(LP)2 (1)
where, based on the problem statement,
F=v9=6ft/s and /3 = 2Bow sinwt cos wt = Bow sin(Qwt), 2)

where we have used the trigonometric identity 2 sin x cos x = sin(2x). Substituting Egs. (2) into the last of
Egs. (1) we obtain the following expression for the speed:

v = \/v% + [LBow sin(wt)]?. 3)

From the above expression, recalling that vy, B¢, and w are constant, we see that v is maximum when
sin(2wt) is maximum. Since the sine function has maximum value equal to 1, we have

Umax = V3 + L2B2w? = | vmax = 6.020ft/s, (4)

where we have used the following numerical data: vo = 6ft/s, L = 1.5ft, Bo = 15°, and v = 0.4z rad/s.
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Problem 2.301 |

A fountain has a spout that can rotate about O and whose angle 8 is controlled so as to vary with time
according to B = Bo[l + sin®(wt)], with B = 15° and @ = 0.4 rad/s. The length of the spout is
L = 1.5ft, the water flow through the spout is constant, and the water is ejected at a speed vo = 61t/s,
measured relative to the spout.

Determine the magnitude of the acceleration immediately before release when § = 15°.

Vo

(N ?\\ B

| 0

Solution

We define a polar coordinate system with origin at O and transverse coordinate coinciding with B. The
expression of the acceleration in polar coordinates is

a=(F—rp*)i, + (rp +2ip)iig. (1)
Now, recalling that vg is constant, when the water particles leave the spout we have
r=0L,F=uvy, i =0, ,3 = 2Bow sinwt coswt = Pow sin(Cwt), and,g =202 Bg coswt), (2)

where we have used the trigonometric identity 2 sin x cos x = sin(2x). Now, we observe that 8o = 15°,
and therefore for § = 15°, we must have 8 = B¢ and sin(w?) = 0, which implies sin(2wt) = 0 and
cos(2wt) = 1. Hence, for f = 15°, we have

r=L, i=vy, =0 B=0, and B =202, 3)
so that, for § = 15°, the acceleration takes the form
d=2Lo*Bolig. 4)

Consequently, for 8 = 15°, we have

| = 2Lo*By = | |d| = 1.240ft/s?, )

where we have used the following numerical data: L = 1.5ft, Bo = 15°, and w = 0.47 rad/s.

This solutions manual, in any print or electronic form, remains the property of McGraw-Hill, Inc. It may be used and/or possessed only by permission June 25, 2012
of McGraw-Hill, and must be surrendered upon request of McGraw-Hill. Any duplication or distribution, either in print or electronic form, without the
permission of McGraw-Hill, is prohibited.



396 Solutions Manual

Problem 2.302 |

A fountain has a spout that can rotate about O and whose angle 8 is controlled so as to vary with time
according to B = Bo[l + sin®(wt)], with B = 15° and @ = 0.4 rad/s. The length of the spout is
L = 1.5ft, the water flow through the spout is constant, and the water is ejected at a speed vo = 61t/s,
measured relative to the spout.

Determine the highest position reached by the resulting water arc.

Yo
h
L
S
| 0
Solution
Referring to the figure at the right, in the solution of this problem v o

~>

we will use two coordinate systems. The first is a polar coordinate
system with origin at O and transverse coordinate . Let f be the .
value of B corresponding to the trajectory of the water jet achieving “r

the maximum height. Then the second is a fixed Cartesian coordi- \%/ B —X
nate system with origin coinciding with the position of the mouth | 0

of the spout corresponding to . Letting v denote the speed of the
water particles at the spout’s mouth, then the velocity of the water particles at the spout’s mouth is

v = v(cos B7 +sinf ). (1)

Once the water particles leave the spout, they are in projectile motion and the trajectory with the maximum
height is determined both by the vertical component of the speed, i.e,

vy = vsinf, 2

and the vertical position of mouth of the water spout.
To derive an expression for the speed v of the water particles as they leave the spout, we use the chosen
polar coordinate system, for which the velocity at the mouth of the spout is expressed as

U=ri,+LBhg = v=+i2+(LP)>2 (3)
where, based on the problem statement,
F =v9 = 6ft/s and ﬂ = 2Bow sinwt cos wt = Bow sin(2wt), 4)

where we have used the trigonometric identity 2 sin x cos x = sin(2x). Substituting Egs. (2) into the last of
Egs. (3) we obtain the following expression for the speed:

v = \/v(z) + [LBow sin(Qwt)]?. (5)

Consequently, the vertical component of velocity at the spout is

vy = \/v(z) + [LBow sin2w?)]2 sin [ Bo(1 + sin® wr)]. (6)
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Now let i = hy + h, where h; is the height of the mouth of the spout with respect to the base of the spout,
and where /i, is the maximum elevation of the water jet measured from the horizontal line going through the
mouth of the spout. Hence, for 4#; we have

hi = Lsin = Lsin[Bo(1 + sin® wt)]. (7

By contrast, /&, is found using the constant acceleration equation v? = vg + 2a(s — sg) in the vertical

direction. Recalling that v, = 0 for y = h», we have

2
0= {\/vg + [LBow sin(2w1)]? sin [ Bo(1 + sin? a)t)]} —2gha,
which can be solved for /5 to obtain

ha = é {v8 + [LBow sin2w)]2) sin® [Bo(1 + sin” wi)]. ®)

Consequently, the expression for the height of the water jet as a function of time is
1
h = L sin [ﬂo(l + sin? wt)] + 2—{1)8 + [LBow sin(2a)t)]2} sin? [,80(1 + sin? a)t)]. ©)
g

This function needs to be maximized. This can be done by differentiating & with respect to time and setting
the result equal to zero. Doing so, after simplification, yields the following equation:

/320_;) sin(2wt) {2Lg cos [Bo(1 + sin? wt)] 4+ 2LBo cos(2wr) sin? [Bo(l + sin? wt)]

+ [v3 + L2B2 + w*sin®(2wt)] sin [2Bo(1 + sin2 a)t)]} —0 (10)

Recalling that we have L = 1.5ft, B9 = 15°, @ = 0.4 rad/s, and g = 32.2ft/s?, and although this may
require plotting the terms within braces as a function of time, it turns out that the term within braces can
never be equal to zero. Hence, the solution of the above equation reduces to the solution of the equation
nmw 12 nmw
sinwt) =0 = t=0£— and t=—=+—, with n=0,1,2,... (11)
) 2w o
Since the function 8 = Bo(1 + sin? wt) is at a maximum for ¢ = 5o £ 2L the function / will also achieve
its maxima for t = 5= + %’ In addition, since the function / is a periodic function with period %, the values
of h fort = 5= £ " are all identical to one another and we can therefore evaluate /iymax by simply letting
t = %, i.e., forn = 0. Hence, recalling that L = 1.5ft, Bo = 15°, w = 0.4 rad/s, and g = 32.2 ft/sz,

20’

fort = 5> = 1.250s, we can evaluate / in Eq. (9) to obtain
hmax = 0.8898 ft.
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Problem 2.303 i

The piston head at C is constrained to move along the y axis. Let the crank
AB be rotating counterclockwise at a constant angular speed 6 = 2000 rpm,
R = 3.5in., and L = 5.3 in. Obtain the angular velocity of the connecting rod BC
by differentiating the relative position vector of C with respect to B when 6 = 35°.
Hint: You will also need to determine the velocity of B and enforce the constraint
that demands that C move only along the y axis.

Solution

Referring to the figure at the right, we can describe the position of C relative to B
as follows:

Fc/p = Licyp. (1)
Then, using the concept of time derivative of a vector, we have that

c/p = Liic/p = Ldpc X iic/p. (2)

where @pc is the angular velocity of the vector 7¢/p and therefore the angular
velocity of the connecting rod. Next, we note that T———x

dpc = —dk and c/p =sin¢l 4 cos¢ j. 3)
Substituting Egs. (3) into Eq. (2) and carrying out the cross-product, we have
Uc/B =L1ftc/3 = Lp(cos¢pi —sing f). 4)

To enforce the condition that C can only move in the y direction, we must compute the velocity of B and
then apply the relative kinematics equation Uc = v + V¢, p. Since B is in uniform circular motion along a
circle of radius R and center 4, we have

ig = —6R(cos 07 + sinfb }). 5
Therefore, combining Eqgs. (4) and (5), we have
ic = g + vc/p = (L cosd — ORcos0) — (Ldsing + ORsinb) }. (6)
Since vc, = 0, we have
Lpcos —ORcos =0 = qﬁ:fzzzj)@ = cT)Bcz—fzzzj)élg, 7

where we have used the definition in the first of Egs. (3). In order to complete our calculation, we need to
determine the angle ¢. Using trigonometry, we see that

Lsing = Rsin = ¢ = sin [(R/L)sin6)]. ®)

For ) = 35° and recalling that R = 3.5in. and L = 5.3 in., we can first compute the angle ¢ from the last of
Eqgs. (8) (this gives ¢ = 22.26°), and then, using # = 2000 rpm, we can evaluate the last of Egs. (7) to obtain

@pc = (—1169pm) k.
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Problem 2.304 i

A child A is swinging from a swing that is attached to a trolley that is free to
move along a fixed rail. Letting L = 3 m, if at a given instant ap = 47.98 m/s2,
6 = 23°, 6 = —3.512rad/s, and § = —16rad/s?, determine the magnitude of
the acceleration of the child relative to the rail at that instant.

Solution

The acceleration of A relative to B is most easily described by setting up a polar
coordinate system with origin at B, radial coordinate r going from B to A, and
transverse coordinate 6. Recalling that the expression of the angular acceleration
in polar coordinates is d = (¥ — r62) i, = (r6 + 276) iy and observing that the
length of the rope is constant so that r = L, we have

dap = —L6%0, + L1y, (1)

The acceleration of the trolley can be described using the chosen component system
as follows:
ag = ap(sinO i, + cos 0 iig). )

Hence, using relative kinematics, the acceleration of A relative to the fixed rail is
dg = (apsinf — Léz) ir + (apcosf + Lé) fg.

Consequently, we have

laa| = \/(aB sin 6 — L9'2)2 + (aB cos O + Lé)z.

3)

“)

Recalling that L = 3m, ap = 47.98 m/s?, § = 23°, 0 = —3.512rad/s, and 6 = —16rad/s?, we can

evaluate the above expression to obtain

|ldg| = 18.65m/s%.
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Problem 2.305 |

Block B is released from rest at the position shown, and it has a ~——d =2.5m
constant acceleration downward ag = 5.7m/ s2. Determine the i Dl P,
velocity and acceleration of block A at the instant that B touches
the floor.

Solution

The length of the rope is

L=,/d?+y%+ yg. (1)

For ¢t = 0, we have that y4(0) = [ — w. Letting 77 represent the
time at the final position, the length of the rope at the initial and final YA
positions is

L =./d?>+y3(0)+yg(0) and L = /d?+ yZ(ir)+yp(iy).

2 |
Equating these two expressions for L and rearranging terms, we Ll
have

\/d2+yf1(ff) = \/d2+yi(0)—[y3(tf)—y3(0)] = 0. 3)
Ssquaring both sides of the above equation, with yp (tf) — yg(0) = h, we obtain
d? + y3(tr) = d* + y3(0) — 2 \[d? + y}(0) + 2. @

Solving the above equation for y4(¢), we have

yalty) = \/yfl(O) + h% —2h,/d? + y3(0) = 0.1864m, (5)

where we have used the following numerical data: y4(0) =/ —w = 3.75m, h = 2m, and d = 2.5m. Next,
differentiating Eq. (1) with respect to time and solving for y4, we have

YAYA . . —YVB

—2 g
d2 _j’_yi YA

2

0=

Now, we use the constant acceleration equation §~ = &3 + 2a.(s — sp) to find yp after B has traveled a

distance h. This gives

.2 .
Yg =2a0h = yp = +/2a0h =4.775m/s, @)
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where we have used the fact that jp = a9 = 5.7m/s?> and h = 2m. Then, using Eq. (5) and the last of
Egs. (7), and recalling that d = 2.5 m, we can evaluate Eq. (6) to obtain for # = 7 to obtain

Yalty) = —64.22m/s. (8)

Now we differentiate Eq. (6) with respect to time to obtain

)"'A=ﬂ /d2+yi+yB;)A /dZ_J’_yle_ﬂ

Recalling that d = 2.5m and jp = ag = 5.7 m/s?, and using the (full precision) value of y,4 (r) in Eq. (5),
the (full precision) value of y4(tr) in Eq. (8), and the (full precision) value of yp(Zr) in the last of Egs. (7),
we can evaluate the above expression for 1 = #¢ to obtain

Ja(tr) = —22,080m/s”.
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Problem 2.306 |

At a given instant, an airplane is flying horizontally with speed vg =
290 mph and acceleration ag = 12 ft/s?. At the same time, the airplane’s
propellers rotate at an angular speed @ = 1500 rpm while accelerating at
arate @ = 0.3 rad/s>. Knowing that the propeller diameter is d = 14 ft,
determine the magnitude of the acceleration of a point on the periphery
of the propellers at the given instant.

Solution

Using a cylindrical coordinate system with origin at the propeller’s axis of rotation and z axis in the direction
of motion, the general expression for acceleration is

a=(R—RO?)iig + (RO +2R0)tg + Z 1.
For the propeller tip we have R = d/2, R =0, R = 0, 7 = ay, 0 = w, and 6 = «. Thus, the acceleration is

. dw? | +dozA 4 aoi
a=————1Uu —Uu apoUz,
) R ) 0 olUz

and the magnitude of the acceleration is

2\ 2 2
\a\:\/(_d%) +(d7“) +a} = | |a] =172,700ft/s",

where we have used the data ag = 12ft/s?, w = 1500 rpm = 1500%—75 rad/s, @ = 0.3rad/s?, and d = 14ft.
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Problem 2.307 i

A golfer chips the ball as shown. Treating «, 8, and the initial speed v as 2
given, find an expression for the radius of curvature of the ball’s trajectory as a ﬁ
function of time and the given parameters. Hint: Use the Cartesian coordinate
system shown to determine the acceleration and the velocity of the ball. Then
reexpress these quantities, using normal-tangential components.

Solution

This is 3-D projectile motion. We will follow the hint and develop equations both in Cartersian components
as well as in normal-tangential components. In Cartesian coordinates the components of acceleration are

X=0, =0, and Z=-—g.

Using constant acceleration equations, the velocity vector expressed in the (7, j, k) and (i1, iy, i) compo-
nent systems are

= vgcos Bcosal + vgcos Bsina J + (vosin B — gr) k.

<L
|

<L
|

=V Uy,

where, v is the speed, which can be given the form

v= /v +vi+uZ = vz\/v(z,—i-gztz—Zvogtsin,B, (1)

and where the tangent unit vector i, can be related to the base vectors of the Cartesian component system as
follows:

. vocosfcosa .,  vgcosfBsina .  vosinf — gt »
0y = : P+ . i+ : k. )

To express the acceleration in normal-tangential components, we will need an expression for the time
derivative of the speed. Hence, we proceed to differentiate v with respect to time, to obtain

2, _ .
b = 871 — vogsinp = & (g1 — vy sin ). 3)

\/v% + g2t2 —2vpgtsinf Y

The acceleration vector expressed in the (7, J, k) and (i1, i, t1}) component systems are

v? -
t+—1, and a=-—gk.
0

<

a="v
Equating the above expressions for the acceleration, we obtain an expression for the normal unit vector
N A
ln ——ﬁ(vut+g )- 4)

Using Eq. (3), we can rewrite Eq. (4) as follows:

. 1 . . ~
Up = —%[— (gt —vosinp) 1y +k].
v? v
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Now, recalling that we must have 1, - 11, = 1, we obtain the following equation:

p’g? 1 2 A
l=— |:1—|——2(gt—v0sin,3)2+—(gt—vosinﬂ)k-ﬁ,] 5)
v v v

Observe that the last term on the right-hand side of Eq. (5) requires the computation of the product k- Us.
. . . . rooA inB—gt
Ehls computation can be done by using Eq. (2), which shows that k - i, = W. Consequently, Eq. (5)
ecomes

2,2 1 2 ’g?
=8 [1 + = (gt —vosin B)? — (g1 — v Sinﬁ)z} = LV — et —vosinp?’] ©
v v v v

Keeping in mind that the above expression is to be solved for p, the term v? — (gt — vg sin ,3)2 can be
simplified using Eq. (1) and the trigonometric identity cos?> @ = 1 — sin? 6 as follows:

v? — (gt —vgsinB)? = v — g%t? + 2gtvg sin f — v(z, sin? B = v% — v% sin’ B

= v(z)(l —sin? B) = vg cos? . (7)

This result allows us to rewrite Eq. (6) as follows:

2,2

| = pvf v2 cos? B. )
Solving Eq. (6) for p, we have
3
v
gupcos B

Finally, substituting the expression for v in Eq. (1), we have

_ (v% + g212 — 2vggt sin B)3/2
= gvg cos B ’
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Problem 2.308 i

A carnival ride called the octopus consists of eight arms that rotate about the z axis with a constant angular
velocity 0=6 rpm. The arms have a length L = 8 m and form an angle ¢ with the z axis. Assuming that
¢ varies with time as ¢ (¢) = ¢o + ¢1 sinwt with ¢g9 = 70.5°, ¢; = 25.5°, and w = 1rad/s, determine
the magnitude of the acceleration of the outer end of an arm when ¢ achieves its minimum value.

6
L ¢
Photo credit: © Gary L. Gray

Solution
Using a spherical coordinate system the components of acceleration of a point C at the end ) ec
of an arm with constant length L are ¢ i

ar = —L¢fa)2 cos? wt — L2 sin2(¢o + ¢1 sinwt), 1 "9 y

ag = —Lo’¢1 sinot — LO? sin(go + ¢1 sinwt) cos(do + ¢1 sinwt), )

ag = 2L¢1wé cos wt cos(¢o + ¢1 sinwt). 3)

To determine the minimum value of ¢, recall that ¢ = ¢o + ¢1 sinw?. Because the mininum of the sine
function is equal to —1, then the minimum value of ¢ is

Pmin = do — 1 = 45° = fmrad, )

where we have used the data ¢9 = 70.5° and ¢ = 25.5°. We observe that ¢, occurs when sin(wt) = —1,
i.e., when

a)t|¢ - =270° = 37 rad. ®)

3

Evaluating the acceleration components for ¢ = ¢min = %71 rad and wt = 3

7 rad, we have

ay = —%Léz, agp = L(a)2¢1 — %éZ)’ and ag = 0. (6)

Consequently, the magnitude of the acceleration for ¢ = Pin is |d|g,,, = +/aZ + aé + ag, which gives

@, = Ly10*+wtg? - 0262 = |ld|, =2.534m/s,

where we have used the following numerical data: L = 8m, 6 = 6rpm = 6%—’5 rad/s, ® = lrad/s, and

$1 = 25.5° = 25.57%, rad.
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