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CHAPTER 1

The Integers

1.1. Numbers and Sequences

1.1.1. a. The set of integers greater than 3 is well-ordered. Every subset of this set is also a subset of the set
of positive integers, and hence must have a least element.

b. The set of even positive integers is well-ordered. Every subset of this set is also a subset of the set
of positive integers, and hence must have a least element.

c. The set of positive rational numbers is not well-ordered. This set does not have a least element.
If a/b were the least positive rational number then a/(b + a) would be a smaller positive rational
number, which is a contradiction.

d. The set of positive rational numbers of the form a/2 is well-ordered. Consider a subset of numbers
of this form. The set of numerators of the numbers in this subset is a subset of the set of positive
integers, so it must have a least element b. Then b/2 is the least element of the subset.

e. The set of nonnegative rational numbers is not well-ordered. The set of positive rational numbers
is a subset with no least element, as shown in part c.

1.1.2. Let S be the set of all positive integers of the form a − bk. S is not empty because a − b(−1) = a + b
is a positive integer. Then the well-ordering principle implies that S has a least element, which is the
number we’re looking for.

1.1.3. Suppose that x and y are rational numbers. Then x = a/b and y = c/d, where a, b, c, and d are integers
with b �= 0 and d �= 0. Then xy = (a/b) · (c/d) = ac/bd and x + y = a/b + c/d = (ad + bc)/bd where bd �=
0. Because both x + y and xy are ratios of integers, they are both rational.

1.1.4. a. Suppose that x is rational and y is irrational. Then there exist integers a and b such that x = a
b where

a and b are integers with b �= 0. Suppose that x+ y is rational. Then there exist integers c and d with
d �= 0 such that x + y = c

d . This implies that y = (x + y) − x = (a/b) − (c/d) = (ad − bc)/bd, which
means that y is rational, a contradiction. Hence x + y is irrational.

b. This is false. A counterexample is given by
√

2 + (−√
2) = 0.

c. This is false. A counterexample is given by 0 · √2 = 0.

d. This is false. A counterexample is given by
√

2 · √2 = 2.

1.1.5. Suppose that
√

3 were rational. Then there would exist positive integers a and b with
√

3 = a/b. Con-
sequently, the set S = {k√3 | k and k

√
3 are positive integers} is nonempty because a = b

√
3. Therefore,

by the well-ordering property, S has a smallest element, say s = t
√

3. We have s
√

3 − s = s
√

3 − t
√

3 =
(s − t)

√
3. Because s

√
3 = 3t and s are both integers, s

√
3 − s = (s − t)

√
3 must also be an integer. Fur-

thermore, it is positive, because s
√

3 − s = s(
√

3 − 1) and
√

3 > 1. It is less than s because s = t
√

3,
s
√

3 = 3t, and
√

3 < 3. This contradicts the choice of s as the smallest positive integer in S. It follows
that

√
3 is irrational.
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2 Section 1.1

1.1.6. Let S be a set of negative integers. Then the set T = {−s : s ∈ S} is a set of positive integers. By the
well-ordering principle, T has a least element t0. We prove that −t0 is a greatest element of S. First note
that because t0 ∈ S, then t0 = −s0 for some s0 ∈ S. Then −t0 = s0 ∈ S. Second, if s ∈ S, then −s ∈ T ,
so t0 ≤ −s. Multiplying by −1 yields s ≤ −t0. Because the choice of s was arbitrary, we see that −t0 is
greater than or equal to every element of S.

1.1.7. a. Because 0 ≤ 1/4 < 1, we have [1/4] = 0.

b. Because −1 ≤ −3/4 < 0, we have [−3/4] = −1.

c. Because 3 ≤ 22/7 < 4, we have [22/7] = 3.

d. Because −2 ≤ −2 < −1, we have [−2] = −2.

e. We compute [1/2 + [1/2]] = [1/2 + 0] = [1/2] = 0.

f. We compute [−3 + [−1/2]] = [−3 − 1] = [−4] = −4.

1.1.8. a. Because −1 ≤ −1/4 < 0, we have [−1/4] = −1.

b. Because −4 ≤ −22/7 < −3, we have [−22/7] = −4.

c. Because 1 ≤ 5/4 < 2, we have [5/4] = 1.

d. We compute [[1/2]] = [0] = 0.

e. We compute [[3/2] + [−3/2]] = [1 + (−2)] = [−1] = −1.

f. We compute [3 − [1/2]] = [3 − 0] = [3] = 3.

1.1.9. a. Because [8/5] = 1, we have {8/5} = 8/5 − [8/5] = 8/5 − 1 = 3/5.

b. Because [1/7] = 0, we have {1/7} = 1/7 − [1/7] = 1/7 − 0 = 1/7.

c. Because [−11/4] = −3, we have {−11/4} = −11/4 − [−11/4] = −11/4 − (−3) = 1/4.

d. Because [7] = 7, we have {7} = 7 − [7] = 7 − 7 = 0.

1.1.10. a. Because [−8/5] = −2, we have {−8/5} = −8/5 − [−8/5] = −8/5 − (−2) = 2/5.

b. Because [22/7] = 3, we have {22/7} = 22/7 − [22/7] = 22/7 − 3 = 1/7.

c. Because [−1] = −1, we have {−1} = −1 − [−1] = −1 − 1 = 0.

d. Because [−1/3] = −1, we have {−1/3} = −1/3 − [−1/3] = −1/3 − (−1) = 2/3.

1.1.11. If x is an integer, then [x] + [−x] = x − x = 0. Otherwise, x = z + r, where z is an integer and r is a
real number with 0 < r < 1. In this case, [x] + [−x] = [z + r] + [−z − r] = z + (−z − 1) = −1.

1.1.12. Let x = [x] + r where 0 ≤ r < 1. We consider two cases. First suppose that r < 1
2 . Then x + 1

2 =
[x] + (r + 1

2 ) < [x] + 1 because r + 1
2 < 1. It follows that [x + 1

2 ] = [x]. Also 2x = 2[x] + 2r < 2[x] + 1
because 2r < 1. Hence [2x] = 2[x]. It follows that [x]+ [x+ 1

2 ] = [2x]. Next suppose that 1
2 ≤ r < 1. Then

[x] + 1 ≤ x + (r + 1
2 ) < [x] + 2, so that [x + 1

2 ] = [x] + 1. Also 2[x] + 1 ≤ 2[x] + 2r = 2([x] + r) = 2x <

2[x] + 2 so that [2x] = 2[x] + 1. It follows that [x] + [x + 1
2 ] = [x] + [x] + 1 = 2[x] + 1 = [2x].

Copyright c© 2011 Pearson Education, Inc. Publishing as Addison-Wesley



Chapter 1 3

1.1.13. We have [x] ≤ x and [y] ≤ y. Adding these two inequalities gives [x] + [y] ≤ x + y. Hence [x + y] ≥
[[x] + [y]] = [x] + [y].

1.1.14. Let x = a+r and y = b+s, where a and b are integers and r and s are real numbers such that 0 ≤ r, s <
1. By Exercise 14, [2x] + [2y] = [x] + [x + 1

2 ] + [y] + [y + 1
2 ]. We now need to show that [x + 1

2 ] + [y + 1
2 ] ≥

[x + y]. Suppose 0 ≤ r, s < 1
2 . Then [x + 1

2 ] + [y + 1
2 ] = a + b + [r + 1

2 ] + [s + 1
2 ] = a + b, and [x + y] =

a+b+[r+s] = a+b, as desired. Suppose that 1
2 ≤ r, s < 1. Then [x+ 1

2 ]+[y+ 1
2 ] = a+b+[r+ 1

2 ]+[s+ 1
2 ] =

a + b + 2, and [x + y] = a + b + [r + s] = a + b + 1, as desired. Suppose that 0 ≤ r < 1
2 ≤ s < 1. Then

[x + 1
2 ] + [y + 1

2 ] = a + b + 1, and [x + y] ≤ a + b + 1.

1.1.15. Let x = a + r and y = b + s, where a and b are integers and r and s are real numbers such that 0 ≤
r, s < 1. Then [xy] = [ab + as + br + sr] = ab + [as + br + sr], whereas [x][y] = ab. Thus we have [xy] ≥
[x][y] when x and y are both positive. If x and y are both negative, then [xy] ≤ [x][y]. If one of x and y
is positive and the other negative, then the inequality could go either direction. For examples take x =
−1.5, y = 5 and x = −1, y = 5.5. In the first case we have [−1.5 · 5] = [−7.5] = −8 > [−1.5][5] = −2 · 5 =
−10. In the second case we have [−1 · 5.5] = [−5.5] = −6 < [−1][5.5] = −1 · 5 = −5.

1.1.16. If x is an integer then −[−x] = −(−x) = x, which certainly is the least integer greater than or equal
to x. Let x = a + r, where a is an integer and 0 < r < 1. Then −[−x] = −[−a − r] = −(−a + [−r]) =
a − [−r] = a + 1, as desired.

1.1.17. Let x = [x] + r. Because 0 ≤ r < 1, x + 1
2 = [x] + r + 1

2 . If r < 1
2 , then [x] is the integer nearest to x and

[x + 1
2 ] = [x] because [x] ≤ x + 1

2 = [x] + r + 1
2 < [x] + 1. If r ≥ 1

2 , then [x] + 1 is the integer nearest to
x (choosing this integer if x is midway between [x] and [x + 1]) and [x + 1

2 ] = [x] + 1 because [x] + 1 ≤
x + r + 1

2 < [x] + 2.

1.1.18. Let y = x + n. Then [y] = [x] + n, because n is an integer. Therefore the problem is equivalent to prov-
ing that [y/m] = [[y]/m] which was done in Example 1.34.

1.1.19. Let x = k + ε where k is an integer and 0 ≤ ε < 1. Further, let k = a2 + b, where a is the largest integer
such that a2 ≤ k. Then a2 ≤ k = a2 + b ≤ x = a2 + b + ε < (a + 1)2. Then [

√
x] = a and [

√
[x]] = [

√
k] =

a also, proving the theorem.

1.1.20. Let x = k + ε where k is an integer and 0 ≤ ε < 1. Choose w from 0, 1, 2, . . . , m − 1 such that w/m ≤
ε < (w + 1)/m. Then w ≤ mε < w + 1. Then [mx] = [mk + mε] = mk + [mε] = mk + w. On the
other hand, the same inequality gives us (w + j)/m ≤ ε + j/m < (w + 1 + j)/m, for any integer j =
0, 1, 2, . . . , m− 1. Note that this implies [ε + j/m] = [(w + j)/m] which is either 0 or 1 for j in this range.
Indeed, it equals 1 precisely when w+j ≥ m, which happens for exactly w values of j in this range. Now
we compute

∑m−1
j=0 [x + j/m] =

∑m−1
j=0 [k + ε + j/m] =

∑m−1
j=0 k + [ε + j/m] = mk +

∑m−1
j=0 [(w + j)/m] =

mk +
∑m−1

j=m−w 1 = mk + w which is the same as the value above.

1.1.21. a. Because the difference between any two consecutive terms of this sequence is 8, we may compute
the nth term by adding 8 to the first term n − 1 times. That is, an = 3 + (n − 1)8 = 8n − 5.

b. For each n, we have an −an−1 = 2n−1, so we may compute the nth term of this sequence by adding
all the powers of 2, up to the (n − 1)th, to the first term. Hence an = 5 + 2 + 22 + 23 + · · · + 2n−1 =
5 + 2n − 2 = 2n + 3.

c. The nth term of this sequence appears to be zero, unless n is a perfect square, in which case the term
is 1. If n is not a perfect square, then [

√
n] <

√
n, where [x] represents the greatest integer function.

If n is a perfect square, then [
√

n] =
√

n. Therefore, [[
√

n]/
√

n] equals 1 if n is a perfect square and 0
otherwise, as desired.

d. This is a Fibonacci-like sequence, with an = an−1 + an−2, for n ≥ 3, and a1 = 1, and a2 = 3.

Copyright c© 2011 Pearson Education, Inc. Publishing as Addison-Wesley



4 Section 1.1

1.1.22. a. Each term given is 3 times the preceding term, so we conjecture that the nth term is the first term
multiplied by 3, n − 1 times. So an = 2 · 3n−1.

b. In this sequence, an = 0 if n is a multiple of 3, and equals 1 otherwise. Let [x] represent the greatest
integer function. Because [n/3] < n/3 when n is not a multiple of 3 and [n/3] = n/3 when n is a
multiple of 3, we have that an = 1 − [[n/3]/(n/3)] .

c. If we look at the difference of successive terms, we have the sequence 1, 1, 2, 2, 3, 3, . . . . So if n is
odd, say n = 2k +1, then an is obtained by adding 1+1+2+2+3+3+ · · ·+k +k = 2tk to the first
term, which is 1. (Here tk stands for the kth triangular number.) So if n is odd, then an = 1 + 2tk
where k = (n − 1)/2. If n is even, say n = 2k, then an = a2k+1 − k = 1 − k + 2tk.

d. This is a Fibonacci-like sequence, with an = an−1 + 2an−2, for n ≥ 3, and a1 = 3, and a2 = 5.

1.1.23. Three possible answers are an = 2n−1, an = (n2 − n + 2)/2, and an = an−1 + 2an−2.

1.1.24. Three possible answers are an = an−1an−2, an = an−1 + 2n − 3, and an = the number of letters in the
nth word of the sentence “If our answer is correct we will join the Antidisestablishmentarianism Society
and boldly state that ‘If our answer is correct we will join the Antidisestablishmentarianism Society and
boldly state....’ ”

1.1.25. This set is exactly the sequence an = n − 100, and hence is countable.

1.1.26. The function f(n) = 5n is a one-to-one correspondence between this set and the set of integers, which
is known to be countable.

1.1.27. One way to show this is to imitate the proof that the set of rational numbers is countable, replacing
a/b with a + b

√
2. Another way is to consider the function f(a + b

√
2) = 2a3b which is a one-to-one map

of this set into the rational numbers, which is known to be countable.

1.1.28. Let A and B be two countable sets. If one or both of the sets are finite, say A is finite, then the listing
a1, a2, . . . , an, b1, b2, . . ., where any bi which is also in A is deleted from the list, demonstrates the count-
ability of A ∪ B. If both sets are infinite, then each can be represented as a sequence: A = {a1, a2, . . .},
and B = {b1, b2, . . .}. Consider the listing a1, b1, a2, b2, a3, b3, . . . and form a new sequence ci as follows.
Let c1 = a1. Given that cn is determined, let cn+1 be the next element in the listing which is different
from each ci with i = 1, 2, . . . , n. Then this sequence is exactly the elements of A ∪ B, which is therefore
countable.

1.1.29. Suppose {Ai} is a countable collection of countable sets. Then each Ai can be represented by a se-
quence, as follows:

A1 = a11 a12 a13 . . .
A2 = a21 a22 a23 . . .
A3 = a31 a32 a33 . . .

...
Consider the listing a11, a12, a21, a13, a22, a31, . . . , in which we first list the elements with subscripts

adding to 2, then the elements with subscripts adding to 3 and so on. Further, we order the elements
with subscripts adding to k in order of the first subscript. Form a new sequence ci as follows. Let c1 =
a1. Given that cn is determined, let cn+1 be the next element in the listing which is different from each

ci with i = 1, 2, . . . , n. Then this sequence is exactly the elements of
∞⋃

i=1

Ai, which is therefore countable.

1.1.30. a. Note that
√

2 ≈ 1.4 = 7/5, so we might guess that
√

2 − 7/5 ≈ 0. If we multiply through by 5 we
expect that 5

√
2 − 7 should be small, and its value is approximately 0.071 which is much less than

1/8 = 0.125. So we may take a = 5 ≤ 8 and b = 7.

Copyright c© 2011 Pearson Education, Inc. Publishing as Addison-Wesley



Chapter 1 5

b. As in part a., note that 3
√

2 = 1.2599 . . . ≈ 1.25 = 5/4, so we investigate 4 3
√

2 − 5 = 0.039 . . . ≤ 1/8.
So we may take a = 4 ≤ 8 and b = 5.

c. Because we know that π ≈ 22/7 we investigate |7π − 22| = 0.0088 . . . ≤ 1/8. So we may take a =
7 ≤ 8 and b = 22.

d. Because e ≈ 2.75 = 11/4 we investigate |4e − 11| = 0.126 . . ., which is too large. A closer approxi-
mation to e is 2.718. We consider the decimal expansions of the multiples of 1/7 and find that 5/7 =
.714 . . ., so e ≈ 19/7. Therefore we investigate |7e − 19| = 0.027 ≤ 1/8. So we may take a = 7 ≤ 8
and b = 19.

1.1.31. a. Note that
√

3 = 1.73 ≈ 7/4, so we might guess that
√

3 − 7/4 ≈ 0. If we multiply through by 4 we
find that |4√3 − 7| = 0.07 . . . < 1/10. So we may take a = 4 ≤ 10 and b = 7.

b. It is helpful to keep the decimal expansions of the multiples of 1/7 in mind in these exercises. Here
3
√

3 = 1.442 . . . and 3/7 = 0.428 . . . so that we have 3
√

3 ≈ 10/7. Then, as in part a., we investigate
|7 3
√

3 − 10| = 0.095 . . . < 1/10. So we may take a = 7 ≤ 10 and b = 10.

c. Because π2 = 9.869 . . . and 6/7 = 0.857 . . ., we have that π2 ≈ 69/7, so we compute |7π2 − 69| =
0.087 . . . < 1/10. So we may take a = 7 ≤ 10 and b = 69.

d. Because e3 = 20.0855 . . . we may take a = 1 and b = 20 to get |1e3 − 20| = 0.855 . . . < 1/10.

1.1.32. For j = 0, 1, 2, . . . , n + 1, consider the n + 2 numbers {jα}, which all lie in the interval 0 ≤ {jα} <
1. We can partition this interval into the n + 1 subintervals (k − 1)/(n + 1) ≤ x < k/(n + 1) for k =
1, . . . , n+1. Because we have n+2 numbers and only n+1 intervals, by the pigeonhole principle, some
interval must contain at least two of the numbers. So there exist integers r and s such that 0 ≤ r < s ≤
n + 1 and |{rα} − {sα}| ≤ 1/(n + 1). Let a = s − r and b = [sα] − [rα]. Because 0 ≤ r < s ≤ n + 1, we
have 1 ≤ a ≤ n. Also, |aα− b| = |(s− r)α− ([sα]− [rα])| = |(sα− [sα])− (rα− [rα]a)| = |{sα}−{rα}| <
1/(n + 1). Therefore, a and b have the desired properties.

1.1.33. The number α must lie in some interval of the form r/k ≤ α < (r + 1)/k. If we divide this interval
into equal halves, then α must lie in one of the halves, so either r/k ≤ α < (2r + 1)/2k or (2r + 1)/2k ≤
α < (r + 1)/k. In the first case we have |α − r/k| < 1/2k, so we take u = r. In the second case we have
|α − (r + 1)/k| < 1/2k, so we take u = r + 1.

1.1.34. Suppose that there are only finitely many positive integers q1, q2, . . . , qn with corresponding integers
p1, p2, . . . , pn such that |α − pi/qi| < 1/q2

i . Because α is irrational, |α − pi/qi| is positive for every i, and
so is |qiα − pi| so we may choose an integer N so large that |qiα − pi| > 1/N for all i. By Dirichlet’s
Approximation Theorem, there exist integers r and s with 1 ≤ s ≤ N such that |sα − r| < 1/N < 1/s,
so that |α− r/s| < 1/s2, and s is not one of the qi. Therefore, we have another solution to the inequality.
So no finite list of solutions can be complete, and we conclude that there must be an infinite number of
solutions.

1.1.35. First we have |√2− 1/1| = 0.414 . . . < 1/12. Second, Exercise 30, part a., gives us |√2− 7/5| < 1/50 <

1/52. Third, observing that 3/7 = 0.428 . . . leads us to try |√2 − 10/7| = 0.014 . . . < 1/72 = 0.0204 . . . .

Fourth, observing that 5/12 = 0.4166 . . . leads us to try |√2−17/12| = 0.00245 . . . < 1/122 = 0.00694 . . . .

1.1.36. First we have | 3
√

5 − 1/1| = 0.7099 . . . < 1/12. Second, | 3
√

5 − 5/3| = 0.04 . . . < 1/32. Third, because
3
√

5 = 1.7099 . . ., we try | 3
√

5 − 17/10| = 0.0099 . . . < 1/102. Likewise, we get a fourth rational number
with | 3

√
5 − 171/100| = 0.000024 . . . < 1/1002. Fifth, consideration of multiples of 1/7 leads to | 3

√
5 −

12/7| = 0.0043 . . . < 1/72.

1.1.37. We may assume that b and q are positive. Note that if q > b, we have |p/q − a/b| = |pb − aq|/qb ≥
1/qb > 1/q2. Therefore, solutions to the inequality must have 1 ≤ q ≤ b. For a given q, there can be
only finitely many p such that the distance between the rational numbers a/b and p/q is less than 1/q2

Copyright c© 2011 Pearson Education, Inc. Publishing as Addison-Wesley



6 Section 1.1

(indeed there is at most one.) Therefore there are only finitely many p/q satisfying the inequality.

1.1.38. a. Because n2 is an integer for all n, so is [n2], so the first ten terms of the spectrum sequence are 2, 4,
6, 8, 10, 12, 14, 16, 18, 20.

b. The sequence for n
√

2, rounded, is 1.414, 2.828, 4.242, 5.656, 7.071, 8.485, 9.899, 11.314, 12.728,
14.142. When we apply the floor function to these numbers we get 1, 2, 4, 5, 7, 8, 9, 11, 12, 14 for
the spectrum sequence.

c. The sequence for n(2 +
√

2), rounded, is 3.414, 6.828, 10.24, 13.66, 17.07, 20.48, 23.90, 27.31, 30.73,
34.14. When we apply the floor function to these numbers we get 3, 6, 10, 13, 17, 20, 23, 27, 30, 34,
for the spectrum sequence.

d. The sequence for ne, rounded is 2.718, 5.436, 8.155, 10.87, 13.59, 16.31, 19.03, 21.75, 24.46, 27.18.
When we apply the floor function to these numbers we get 2, 5, 8, 10, 13, 16, 19, 21, 24, 27, for the
spectrum sequence.

e. The sequence for n(1 +
√

5)/2, rounded, is 1.618, 3.236, 4.854, 6.472, 8.090, 9.708, 11.33, 12.94, 14.56,
16.18. When we apply the floor function to these numbers we get 1, 3, 4, 6, 8, 9, 11, 12, 14, 16 for the
spectrum sequence.

1.1.39. a. Because n3 is an integer for all n, so is [n3], so the first ten terms of the spectrum sequence are 3, 6,
9, 12, 15, 18, 21, 24, 27, 30.

b. The sequence for n
√

3, rounded, is 1.732, 3.464, 5.196, 6.928, 8.660, 10.39, 12.12, 13.86, 15.59, 17.32.
When we apply the floor function to these numbers we get 1, 3, 5, 6, 8, 10, 12, 13, 15, 17 for the spec-
trum sequence.

c. The sequence for n(3 +
√

3)/2, rounded, is 2.366, 4.732, 7.098, 9.464, 11.83, 14.20, 16.56, 18.93, 21.29,
23.66. When we apply the floor function to these numbers we get 2, 4, 7, 9, 11, 14, 16, 18, 21, 23 for
the spectrum sequence.

d. The sequence for nπ, rounded is 3.142, 6.283, 9.425, 12.57, 15.71, 18.85, 21.99, 25.13, 28.27, 31.42.
When we apply the floor function to these numbers we get 3, 6, 9, 12, 15, 18, 21, 25, 28, 31, for the
spectrum sequence.

1.1.40. Because α �= β, their decimal expansions must be different. If they differ in digits that are to the left of
the decimal point, then [α] �= [β], so certainly the spectrum sequences are different. Otherwise, suppose
that they differ in the kth position to the right of the decimal. Then [10kα] �= [10kβ], and so the spectrum
sequences will again differ.

1.1.41. Assume that 1/α + 1/β = 1. Note first that for all integers n and m, mα �= nβ, for otherwise, we
solve the equations mα = nβ and 1/α + 1/β = 1 and get rational solutions for α and β, a contradiction.
Therefore the sequences mα and nβ are disjoint.

For an integer k, define N(k) to be the number of elements of the sequences mα and nβ which are
less than k. Now mα < k if and only if m < k/α, so there are exactly [k/α] members of the sequence
mα less than k. Likewise, there are exactly [k/β] members of the sequence nβ less than k. So we have
N(k) = [k/α] + [k/β]. By definition of the greatest integer function, we have k/α− 1 < [k/α] < k/α and
k/β − 1 < [k/β] < k/β, where the inequalities are strict because the numbers are irrational. If we add
these inequalities we get k/α + k/β − 2 < N(k) < k/α + k/β which simplifies to k − 2 < N(k) < k.
Because N(k) is an integer, we conclude that N(k) = k− 1. This shows that there is exactly one member
of the union of the sequences mα and nβ in each interval of the form k− 1 ≤ x < k, and therefore, when
we apply the floor function to each member, exactly one will take on the value k.

Conversely, suppose that α and β are irrational numbers such that 1/α + 1/β �= 1. If 1/α + 1/γ = 1
then we know from the first part of the theorem that the spectrum sequences for α and γ partition the
positive integers. By Exercise 40, we know that the spectrum sequences for β and γ are different, so the
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sequences for α and β can not partition the positive integers.

1.1.42. The first two Ulam numbers are 1 and 2. Because 3 = 1 + 2, it is the third Ulam number and because
4 = 1 + 3, it is the fourth Ulam number. Note that 5 is not an Ulam number because 5 = 1 + 4 = 2 + 3.
The fifth Ulam number is 6 because 6 = 4 + 2 and no other two Ulam numbers have 6 as their sum. We
have 7 = 4 + 3 = 6 + 1, so 7 is not an Ulam number. The sixth Ulam number is 8 = 6 + 2. Note that 9 =
8 + 1 = 6 + 3 and 10 = 8 + 2 = 4 + 6 so neither 9 nor 10 is an Ulam number. The seventh Ulam number
is 11 because 11 = 8 + 3 is the unique way to write 11 as the sum of two distinct Ulam numbers. Next
note that 12 = 8 + 4 = 1 + 11 so that 12 is not an Ulam number. Note that 13 = 11 + 2 is the unique way
to write 13 as the eighth Ulam number. We see that 14 = 13 + 1 = 11 + 3 and 15 = 2 + 13 = 4 + 11, so
that neither 14 nor 15 are Ulam numbers. We note that 16 = 3 + 13 is the unique way to write 16 as the
sum of two Ulam numbers, so that the ninth Ulam number is 16. Note that 17 = 1 + 16 = 4 + 13 so that
17 is not an Ulam number. Note that 18 = 2 + 16 is the unique way to write 18 as the sum of two Ulam
numbers so that 18 is the tenth Ulam number. In summary, the first ten Ulam numbers are: 1, 2, 3, 4, 6,
8, 11, 13, 16, 18.

1.1.43. Assume that there are only finitely many Ulam numbers. Let the two largest Ulam numbers be un−1

and un. Then the integer un +un−1 is an Ulam number larger than un. It is the unique sum of two Ulam
numbers because ui + uj < un + un−1 if j < n or j = n and i < n − 1.

1.1.44. Suppose that e is rational so that e = a/b where a and b are integers and b �= 0. Let k ≥ b be an integer
and set c = k!(e − 1 − 1/1! − 1/2! − 1/3! − · · · − 1/k!). Because every denominator in the expression
divides evenly into k!, we see that c is an integer. Because e = 1 + 1/1! + 1/2! + · · · , we have 0 < c =
k!(1/(k + 1)! + 1/(k + 2)! + · · · ) = 1/(k + 1) + 1/(k + 1)(k + 2) + · · · < 1/(k + 1) + 1/(k + 1)2 + · · · . This
last geometric series is equal to 1/k, so we have that 0 < c < 1/k, which is impossible because c is an
integer. Therefore e must be irrational.

1.1.45. To get a contradiction, suppose that the set of real numbers is countable. Then the subset of real num-
bers strictly between 0 and 1 is also countable. Then there is a one-to-one correspondence f : Z+ →
(0, 1). Each real number b ∈ (0, 1) has a decimal representation of the form b = 0.b1b2b3 . . . , where bi is
the ith digit after the decimal point. For each k = 1, 2, 3, . . ., Let f(k) = ak ∈ (0, 1). Then each ak has a
decimal representation of the form ak = ak1ak2ak3 . . . . Form the real number c = c1c2c3 . . . as follows:
If akk = 5, then let ck = 4. If akk �= 5, then let ck = 5. Then c �= ak for every k because it differs in the
kth decimal place. Therefore f(k) �= c for all k, and so f is not a one-to-one correspondence. This gives
us our contradiction, and so we conclude that the real numbers are uncountable.

1.2. Sums and Products

1.2.1. a. We have
5∑

j=1

j2 = 12 + 22 + 32 + 42 + 52 = 55.

b. We have
5∑

j=1

(−3) = (−3) + (−3) + (−3) + (−3) + (−3) = −15.

c. We have
5∑

j=1

1/(j + 1) = 1/2 + 1/3 + 1/4 + 1/5 + 1/6 = 29/20.

1.2.2. a. We have
4∑

j=0

3 = 3 + 3 + 3 + 3 + 3 = 15.

b. We have
4∑

j=0

(j − 3) = (−3) + (−2) + (−1) + 0 + 1 = −5.

c. We have
4∑

j=0

(j + 1)/(j + 2) = 1/2 + 2/3 + 3/4 + 4/5 + 5/6 = 71/20.
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1.2.3. a. We use the formula from Example 1.15 as follows. We evaluate the sum
∑

j=082j

= 29 − 1 = 511 as in

Example 1.17. Then we have
∑

j=182j

=
∑

j=082j

−20 = 510.

b. We could proceed as in part (a), or we may do the following:
8∑

j=1

5(−3)j =
7∑

j=0

5(−3)j+1

=
7∑

j=0

−15(−3)j . We may apply the formula in Example 1.15 to this last sum, with a = −15, n =

7 and r = −3, to get the sum equal to
−15(−3)8 − (−15)

−3 − 1
= 24600.

c. We manipulate the sum as in part b., so we can apply the formula from Example 1.15.
8∑

j=1

3(−1/2)j =

7∑
j=0

3(−1/2)j+1 =
7∑

j=0

(−3/2)(−1/2)j =
(−3/2)(−1/2)8 − (−3/2)

−1/2 − 1
= −255

256
.

1.2.4. a. We have
10∑

j=0

8 · 3j =
8 · 311 − 8

3 − 1
= 708584, using the formula from Example 1.15 with a = 8, n = 10

and r = 3.

b. We have
10∑

j=0

(−2)j+1 =
10∑

j=0

(−2)(−2)j =
(−2) · (−2)11 − (−2)

(−2) − 1
= −1366, using the formula from Ex-

ample 1.15 with a = −2, n = 10 and r = −2.

c. We have
10∑

j=0

(1/3)j =
(1/3)11 − 1
(1/3) − 1

=
88573
59049

, using the formula from Example 1.15 with a = 1, n =

10 and r = (1/3).

1.2.5. The sum
∑n

k=1[
√

k] counts 1 for every value of k with
√

k ≥ 1. There are n such values of k in the
range k = 1, 2, 3, . . . , n. It counts another 1 for every value of k with

√
k ≥ 2. There are n− 3 such values

in the range. The sum counts another 1 for each value of k with
√

k ≥ 3. There are n − 8 such values in
the range. In general, for m = 1, 2, 3, . . . , [

√
n] the sum counts a 1 for each value of k with

√
k ≥ m, and

there are n − (m2 − 1) values in the range. Therefore
∑n

k=1[
√

k] =
∑[

√
n]

m=1 n − (m2 − 1) = [
√

n](n + 1) −∑[
√

n]
m=1 m2 = [

√
n](n + 1) − ([

√
n]([

√
n] + 1)(2[

√
n] + 1))/6.

1.2.6. We see that tn =
∑n

j=1 j, and tn−1 =
∑n−1

j=1 j =
∑n−1

j=1 (n− j). Now, tn−1 + tn =
∑n−1

j=1 (n− j + j)+n =
n(n − 1) + n = n2.

1.2.7. The total number of dots in the n by n + 1 rectangle, namely n(n + 1) is 2tn because the rectangle is
made from two triangular arrays. Dividing both sides by 2 gives the desired formula.

1.2.8. From the closed formula for the nth triangular number, we have 3tn + tn−1 =
3(n(n+1)/2)+(n−1)(n−1+1)/2 = 3n(n+1)/2+n(n−1)/2 = (3n2 +3n+n2−n)/2 = (4n2 +2n)/2 =
2n(2n + 1)/2 = t2n as desired.

1.2.9. From the closed formula for the nth triangular number, we have t2n+1 − t2n = ((n + 1)(n + 1 + 1)/2)2 −
(n(n + 1)/2)2 = (n + 1)2((n + 2)2/4 − n2/4) = (n + 1)2(n2 + 4n + 4 − n2)/4 = (n + 1)2(4n + 4)/4 =
(n + 1)3, as desired.

1.2.10. It is clear that p1 = 1. Suppose we know pk−1. To compute pk we consider k nested pentagons as in
the figure. Note that pk −pk−1 counts the number of dots on three sides of the outer pentagon. Each side
consists of k dots, but two of the dots belong to two sides. Therefore pk − pk−1 = 3k − 2, which is the
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formula desired. Then pn = 3n− 2+ pn−1 = 3n− 2+3(n− 1)− 2+ pn−2 = 3n− 2+3(n− 1)− 2+3(n−
2)−2+pn−3 = · · · = 3n−2+3(n−1)−2+ · · ·+3(1)−2 =

∑n
k=1(3k−2). Evaluating this sums gives us

pn =
∑n

k=1(3k−2) = 3
∑n

k=1 −2
∑n

k=1 1 = 3tn−2n = 3n(n+1)/2−2n = (3n2+3n−4n)/2 = (3n2−n)/2.

1.2.11. From Exercise 10, we have pn = (3n2 − n)/2. On the other hand, tn−1 + n2 = (n − 1)n/2 + n2 =
(3n2 − n)/2, which is the same as above.

1.2.12. a. Consider a regular hexagon which we border successively by hexagons with 3, 4, 5, . . . on each side.
Define the hexagonal number hk to be the number of dots contained in the k nested hexagons.

b. First note that h1 = 1. To get a recursive relationship we consider hk − hk−1, which counts the dots
added to the (k − 1)st hexagon to obtain the kth hexagon. To do this, we must add 4 sides of k dots
each, but 3 of the dots belong to two sides. Therefore hk − hk−1 = 4k − 3. A closed formula is then
given by adding these differences together: hk =

∑k
i=1(4i − 3) = 4tk − 3k = 4k(k + 1)/2 − 3k =

2k2 − k.

1.2.13. a. Consider a regular heptagon which we border successively by heptagons with 3, 4, 5, . . . on each
side. Define the heptagonal numbers s1, s2, s3, . . . , sk, . . . to be the number of dots contained in the k
nested heptagons.

b. First note that s1 = 1. To get a recursive relationship we consider sk − sk−1, which counts the dots
added to the (k − 1)st heptagon to obtain the kth heptagon. To do this, we must add 5 sides of k
dots each, but 4 of the dots belong to two sides. Therefore sk − sk−1 = 5k − 4. A closed formula is
then given by adding these differences together: sk =

∑k
i=1(5i−4) = 5tk −4k = 5k(k +1)/2−4k =

(5k2 − 3k)/2.

1.2.14. From Exercise 12 we have hn = 2n2−n. Also, t2n−1 = (2n−1)(2n−1+1)/2 = n(2n−1) = 2n2−n = hn.

1.2.15. From Exercise 10 we have pn = (3n2 − n)/2. Also, t3n−1/3 = (1/3)(3n − 1)(3n)/2 = (3n − 1)(n)/2 =
(3n2 − n)/2 = pn.

1.2.16. First consider the difference Tk − Tk−1. This counts the number of dots on one face of the kth tetra-
hedron. But this is simply the kth nested triangle used to define the triangular numbers. Therefore,
Tk − Tk−1 = tk. Hence, because T1 = t1 = 1, it follows that Tn =

∑n
k=1 tk.

1.2.17. We continue with the formula from Exercise 16. Tn =
∑n

k=1 tk =
∑n

k=1 k(k + 1)/2. Exploiting the
same technique as in Example 1.19, we consider (k + 1)3 − k3 = 3k2 + 3k + 1 = 3(k2 + k) + 1 and solve
for k2 + k to get k2 + k = ((k + 1)3 − k3)/3 − (1/3). Then Tn = (1/2)

∑n
k=1 k(k + 1) = (1/6)

∑n
k=1((k +

1)3 − k3) − (1/6)
∑n

k=1 1. The first sum is telescoping and the second sum is trivial, so we have Tn =
(1/6)((n + 1)3 − 13) − (n/6) = (n3 + 3n2 + 2n)/6.

1.2.18. Using the fact n! = n · (n− 1)!, we find that 1! = 1, 2! = 2, 3! = 6, 4! = 24, 5! = 120, 6! = 720, 7! = 5040,
8! = 40320, 9! = 362880, and 10! = 3628800.

1.2.19. Each of these four quantities are products of 100 integers. The largest product is 100100, because it
is the product of 100 factors of 100. The second largest is 100! which is the product of the integers
1, 2, . . . , 100, and each of these terms is less or equal to 100. The third largest is (50!)2 which is the prod-
uct of 12, 22, . . . , 502, and each of these factors j2 is less than j(50 + j), whose product is 100!. The small-
est is 2100 which is the product of 100 2’s.

1.2.20. a.

n∏
i=1

kai = kn
n∏

i=1

ai.

b.

n∏
i=1

iai = (a1)(2a2) · · · (nan) = (1 · 2 · · ·n)(a1a2 · · · an) = n!
n∏

i=1

ai.
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c.

n∏
i=1

ak
i =

(
n∏

i=1

ai

)k

.

1.2.21.

n∑
k=1

(
1

k(k + 1)

)
=

n∑
k=1

(
1
k
− 1

k + 1

)
. Let aj = 1/(j + 1). Notice that this is a telescoping sum, and

using the notation in the text preceding Example 1.15, we have
n∑

k=1

(
1

k(k + 1)

)
=

n∑
j=1

(aj−1 − aj) =

a0 − an = 1 − 1/(n + 1) = n/(n + 1).

1.2.22.

n∑
k=2

1
k2 − 1

=
1
2

n∑
k=2

(
1

k − 1
− 1

k + 1

)
=

1
2

n∑
k=2

((
1

k − 1
− 1

k

)
+

(
1
k
− 1

k + 1

))
=

1
2

n∑
k=2

(
1

k − 1
− 1

k
) +

1
2

n∑
k=2

(
1
k
− 1

k + 1
) =

1
2
(1 − 1

n
) +

1
2
(
1
2
− 1

n + 1
) =

3
4
− 2n + 1

2n(n + 1)
.

1.2.23. We sum both sides of the identity (k + 1)3 − k3 = 3k2 + 3k + 1 from k = 1 to k = n.
∑n

k=1((k +
1)3 − k3) = (n + 1)3 − 1, because the sum is telescoping.

∑n
k=1(3k2 + 3k + 1) = 3(

∑n
k=1 k2) +

3(
∑n

k=1 k) +
∑n

k=1 1 = 3(
∑n

k=1 k2) + 3n(n + 1)/2 + n. As these two expressions are equal, solving for∑n
k=1 k2, we find that

∑n
k=1 k2 = (n/6)(2n + 1)(n + 1).

1.2.24. We sum both sides of the identity (k + 1)4 − k4 = 4k3 + 6k2 + 4k + 1 from k = 1 to k = n. Using
Exercise 19 we find that

∑n
k=1 k3 = n2(n + 1)2/4.

1.2.25. a. 10! = (7!)(8 · 9 · 10) = (7!)(720) = (7!)(6!).

b. 10! = (7!)(6!) = (7!)(5!) · 6 = (7!)(5!)(3!).

c. 16! = (14!)(15 · 16) = (14!)(240) = (14!)(5!)(2!).

d. 9! = (7!)(8 · 9) = (7!)(6 · 6 · 2) = (7!)(3!)(3!)(2!)

1.2.26. Because c = a1!a2! · · · an! and b = (a1!a2! · · · an!)−1, it follows that c! = c·(c−1)! = c·b! = a1!a2! · · · an!·
b!.

1.2.27. Assume that x ≤ y. Then z! = x! + y! ≤ y! + y! = 2(y!). Because z > y we have z! ≥ (y + 1)y!. This
implies that y + 1 ≤ 2. Hence the only solution with x, y, and z positive integers is x = y = 1 and z = 2.

1.2.28. a.

n∏
j=2

(1 − 1
j
) = (1 − 1/2)(1 − 1/3) · · · (1 − 1/n) =

1
2

2
3

3
4
· · · n − 1

n
=

1
n

.

b.

n∏
j=2

(1 − 1
j2

) =
n∏

j=2

(1 − 1/j)
n∏

j=2

(1 + 1/j) =
(

1
n

)(
3
2

4
3

5
4
· · · n + 1

n

)
=

n + 1
2n

.

1.3. Mathematical Induction

1.3.1. For n = 1 we have 1 < 21 = 2. This is the basis step. Now assume n < 2n. We then have n + 1 <
2n + 1 < 2n + 2n = 2n+1. This completes the inductive step and the proof by mathematical induction.

1.3.2. We have 2 = 2, 2 + 4 = 6, 2 + 4 + 6 = 12, 2 + 4 + 6 + 8 = 20, and 2 + 4 + 6 + 8 + 10 = 30. We
conjecture that

∑n
j=1 2j = n(n + 1) because this formula holds for small values of n. To prove this

by mathematical induction we have
∑1

j=1 2j = 2 = 2 · (1 + 1) so the result is true for 1. Now as-
sume that the formula holds for n. Then

∑n+1
j=1 2j = (

∑n
j=1 2j) + 2(n + 1) = n(n + 1) + 2(n + 1) =

(n + 1)(n + 2). This completes the proof.
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1.3.3. For the basis step we have
1∑

k=1

1
k2

= 1 ≤ 2 − 1
1

= 1. For the inductive step, we assume that
n∑

k=1

1
k2

≤

2 − 1
n

. Then,
n+1∑
k=1

1
k2

=
n∑

k=1

1
k2

+
1

(n + 1)2
≤ 2 − 1

n
+

1
(n + 1)2

by the induction hypothesis. This is less

than 2 − 1
n + 1

+
1

(n + 1)2
= 2 − 1

n + 1
(1 − 1

n + 1
) ≤ 2 − 1

n + 1
, as desired.

1.3.4. For the basis step, we have
1∑

k=1

1
k(k + 1)

=
1
2

. For the inductive step, we assume that
n∑

k+1

1
k(k + 1)

=

n

n + 1
. Then,

n+1∑
k=1

1
k(k + 1)

=
n∑

k=1

1
k(k + 1)

+
1

(n + 1)(n + 2)
=

n

n + 1
+

1
(n + 1)(n + 2)

=
n + 1
n + 2

, as desired.

1.3.5. We see that A =
(

1 1
0 1

)
,A2 =

(
1 2
0 1

)
,A3 = A2A =

(
1 3
0 1

)
and so on. We conjecture that

An =
(

1 n
0 1

)
. To prove this by mathematical induction we first note that the basis step follows be-

cause A =
(

1 1
0 1

)
. Next, we assume that An =

(
1 n
0 1

)
. Then An+1 = AnA =(

1 n
0 1

) (
1 1
0 1

)
=

(
1 n + 1
0 1

)
.

1.3.6. The basis step holds because 1 = 1 · (1+1)/2. For the inductive step assume that
∑n

j=1 j = n(n+1)/2.
It follows that

n+1∑
j=1

j =
n∑

j=1

j + (n + 1) =
n(n + 1)

2
+ (n + 1) = (n + 1)(

n

2
+ 1) =

(n + 1)(n + 2)
2

.

This finishes the inductive proof.

1.3.7. For the basis step, we have
∑1

j=1 j2 = 1 = 1(1+1)(2 · 1+1)/6. For the inductive step, we assume that∑n
j=1 j2 = n(n + 1)(2n + 1)/6. Then,

∑n+1
j=1 j2 =

∑n
j=1 j2 + (n + 1)2 = n(n + 1)(2n + 1)/6 + (n + 1)2 =

(n + 1) (n(2n + 1)/6 + n + 1) = (n + 1)(2n2 + 7n + 6)/6 = (n + 1)(n + 2)[2(n + 1) + 1]/6, as desired.

1.3.8. For the basis step, we have
∑1

j=1 j3 = 1, and (1(1+1)/2)2 = 1 also. For the inductive step, we assume
that

∑n
j=1 j3 = (n(n+1)/2)2. Then,

∑n+1
j=1 j3 =

∑n
j=1 j3 +(n+1)3 = (n(n+1)/2)2 +n3 +3n2 +3n+1 =

((n + 1)(n + 2)/2)2, as desired.

1.3.9. For the basis step, we have
∑1

j=1 j(j + 1) = 2 = 1(2)(3)/3. Assume it is true for n. Then
∑n+1

j=1 j(j +
1) = n(n + 1)(n + 2)/3 + (n + 1)(n + 2) = (n + 1)(n + 2)(n/3 + 1) = (n + 1)(n + 2)(n + 3)/3.

1.3.10. For the basis step, we have
∑1

j=1(−1)j−1j2 = 1 = (−1)1−11(1 + 1)/2. For the inductive step, we as-
sume that

∑n
j=1(−1)j−1j2 = (−1)n−1n(n + 1)/2. Then,

∑n+1
j=1 (−1)j−1j2 =

∑n
j=1(−1)j−1j2+

(−1)n(n + 1)2 = (−1)n−1n(n + 1)/2 + (−1)n(n + 1)2 = (−1)n 1
2 (n + 1)[2(n + 1) − n] =

(−1)(n+1)−1(n + 1)(n + 2)/2, as desired.

1.3.11. We have
n∏

j=1

2j = 2
∑ n

j=1 j = 2n(n+1)/2 because
n∑

j=1

j =
n(n + 1)

2
.

1.3.12. We use mathematical induction. For n = 1 we have
∑1

j=1 j · j! = 1 · 1! = 1 = (1 + 1)! − 1 = 1. Now
assume that

∑n
j=1 j · j! = (n + 1)! − 1. Then

∑n+1
j=1 j · j! = (n + 1)! − 1 + (n + 1) · (n + 1)! = (n + 1)!(1 +

n + 1) − 1 = (n + 2)! − 1. This completes the proof.

1.3.13. We will prove this using mathematical induction. We see that 12 = 4 · 3. Now assume that postage of
n cents can be formed, with n = 4a + 5b, where a and b are nonnegative integers. To form n + 1 cents
postage, if a > 0 we can replace a 4-cent stamp with a 5-cent stamp; that is, n + 1 = 4(a − 1) + 5(b + 1).
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If no 4-cent stamps are present, then all 5-cent stamps were used. It follows that there must be at least
three 5-cent stamps and these can be replaced by four 4-cent stamps; that is, n + 1 = 4(a + 4) + 5(b− 3).

1.3.14. We prove this using mathematical induction. We see that 54 = 4 · 10 + 2 · 7. Now assume that postage
of n cents can be formed, with n = 10a + 7b, where a and b are positive integers. To form n + 1 cents
postage, if a > 1 we can replace 2 ten-cent stamps with 3 seven-cent stamps, that is, n + 1 = 10(a− 2) +
7(b+3). If a < 2, then notice that b ≥ 7. We can replace 7 seven-cent stamps with 5 ten-cent stamps, that
is, n + 1 = 10(a + 5) + 7(b − 7).

1.3.15. We use mathematical induction. The inequality is true for n = 0 because H20 = H1 = 1 ≥ 1 =
1 + 0/2. Now assume that the inequality is true for n, that is, H2n ≥ 1 + n/2. Then H2n+1 =

∑2n

j=1 1/j +∑2n+1

j=2n+1 1/j ≥ H2n +
∑2n+1

j=2n+1 1/2n+1 ≥ 1 + n/2 + 2n · 1/2n+1 = 1 + n/2 + 1/2 = 1 + (n + 1)/2. This
completes the inductive proof.

1.3.16. For the basis step, we have H20 = H1 = 1 ≤ 1 + 0 = 1. For the inductive step, we assume that H2n ≤
1 + n. Then,

H2n+1 = H2n +
2n+1∑

j=2n+1

1
j

< 1 + n + 2n 1
2n

= 1 + (n + 1),

as desired.

1.3.17. For the basis step, we have (2 · 1)! = 2 < 22·1(1!)2 = 4. For the inductive step, we assume that (2n)! <
22n(n!)2. Then [2(n + 1)]! = (2n)!(2n + 1)(2n + 2) < 22n(n!)2(2n + 1)(2n + 2) < 22n(n!)2(2n + 2)2 =
22(n+1)[(n + 1)!]2, as desired.

1.3.18. We will use the second principle of mathematical induction to prove this. For the basis step, we have
x − y is a factor of x1 − y1. For the inductive step, we assume that x − y is a factor of xn − yn and
xn−1 − yn−1. Then, xn+1 − yn+1 = (xn − yn)(x + y) + xy(xn−1 − yn−1). Because x− y is a factor of both
(xn − yn)(x + y) and xy(xn−1 − yn−1), it is a factor of xn+1 − yn+1.

1.3.19. Let A be such a set. Define B as B = {x − k + 1 | x ∈ A and x ≥ k}. Because x ≥ k, B is a set of
positive integers. Because k ∈ A and k ≥ k, k − k + 1 = 1 is in B. Because n + 1 is in A whenever n is,
n + 1− k + 1 is in B whenever n− k + 1 is. Thus B satisfies the hypothesis for mathematical induction,
i.e. B is the set of positive integers. Mapping B back to A in the natural manner, we find that A contains
the set of integers greater than or equal to k.

1.3.20. The basis step holds because 24 = 16 < 4! = 24. Now assume that 2n < n!. Then 2n+1 = 2 · 2n <
2 · n! < (n + 1) · n! = (n + 1)!.

1.3.21. For the basis step, we have 42 = 16 < 24 = 4!. For the inductive step, we assume that n2 < n!. Then,
(n + 1)2 = n2 + 2n + 1 < n! + 2n + 1 < n! + 3n < n! + n! = 2n! < (n + 1)n! = (n + 1)!, as desired.

1.3.22. The basis step is clear when n = 0. For the inductive step, we assume that 1 + hn ≤ (1 + h)n. Then,
(1+h)n+1 = (1+h)n(1+h) ≥ (1+hn)(1+h) = 1+nh+h+nh2 ≥ 1+h(n+1) because nh2 is positive.
This last inequality proves the induction hypothesis.

1.3.23. We use the second principle of mathematical induction. For the basis step, if the puzzle has only one
piece, then it is assembled with exactly 0 moves. For the induction step, assume that all puzzles with
k ≤ n pieces require k − 1 moves to assemble. Suppose it takes m moves to assemble a puzzle with
n + 1 pieces. Then the m move consists of joining two blocks of size a and b, respectively, with a + b =
n + 1. But by the induction hypothesis, it requires exactly a − 1 and b − 1 moves to assemble each of
these blocks. Thus, m = (a − 1) + (b − 1) + 1 = a + b + 1 = n + 1. This completes the induction.

1.3.24. The n = 2 case does not follow from the n = 1 case, because, when n = 2, the set of horses labelled
1 to n − 1 (which is just the set containing horse 1) does not have any common elements with the set of

Copyright c© 2011 Pearson Education, Inc. Publishing as Addison-Wesley



Chapter 1 13

horses labelled from 2 to n (which is just the set containing horse 2.)

1.3.25. Suppose that f(n) is defined recursively by specifying the value of f(1) and a rule for finding f(n+1)
from f(n). We will prove by mathematical induction that such a function is well-defined. First, note that
f(1) is well-defined because this value is explicitly stated. Now assume that f(n) is well-defined. Then
f(n + 1) also is well-defined because a rule is given for determining this value from f(n).

1.3.26. The function is f(n) = 2n. For the basis step, we have f(1) = 2 = 21. For the inductive step, we as-
sume that f(n) = 2n. Then, f(n + 1) = 2f(n) = 2 · 2n = 2n+1, as desired.

1.3.27. We have g(1) = 2, g(2) = 2g(1) = 4, g(3) = 2g(2) = 24 = 16, and g(4) = 2g(3) = 216 = 65536.

1.3.28. The basis step is given. For the inductive step, we assume that the value of f at the first n positive
integers are uniquely determined. Then f(n + 1) is uniquely determined from the rule. Therefore, by
mathematical induction, f(n) is determined for every positive integer n.

1.3.29. We use the second principle of mathematical induction. The basis step consists of verifying the for-
mula for n = 1 and n = 2. For n = 1 we have f(1) = 1 = 21 + (−1)1 and for n = 2 we have f(2) =
5 = 22 + (−1)2. Now assume that f(k) = 2k + (−1)k for all positive integers k with k < n where n > 2.
By the induction hypothesis it follows that f(n) = f(n − 1) + 2f(n − 2) = (2n−1 + (−1)n−1) + 2(2n−2 +
(−1)n−2) = (2n−1 + 2n−1) + (−1)n−2(−1 + 2) = 2n + (−1)n. This finishes the proof.

1.3.30. Because 25 = 32 > 25 = 52, the basis step holds. Assume that 2n > n2. Note that for n > 4, 2n2 =
n2 + n2 > n2 + 3n = n2 + 2n + n > n2 + 2n + 1 = (n + 1)2. Then we have (n + 1)2 < 2n2 < 2 · 2n = 2n+1,
which completes the induction.

1.3.31. We use the second principle of mathematical induction. We see that a0 = 1 ≤ 30 = 1, a1 = 3 ≤ 3i =
3, and a2 = 9 ≤ 32 = 9. These are the basis steps. Now assume that ak ≤ 3k for all integers k with 0 ≤
k < n. It follows that an = an−1 + an−2 + an−3 ≤ 3n−1 + 3n−2 + 3n−3 = 3n−3(1 + 3 + 9) = 13 · 3n−3 <
27 · 3n−3 = 3n. The induction argument is complete.

1.3.32. a. For the basis step notice that for 1 ring only, 1 = 21 − 1 moves are needed. For the inductive step
we assume that it takes 2n − 1 steps to transfer n rings. To make the inductive step, first transfer n
of n + 1 rings to the third peg. This takes 2n − 1 steps. Now transfer the bottom ring to the second
peg. This is one step. Then transfer the n rings on the third peg to the second peg. This is 2n − 1
more steps. Altogether, this takes 2n − 1 + 1 + 2n − 1 = 2n+1 − 1 steps.

b. The world will last, according to this legend, 264 − 1 = 18, 446, 744, 073, 709, 551, 615 seconds =
3.07445 · 1017 minutes = 5.12409 · 1015 hours = 2.13503 · 1014 days = 5.84942 · 1011 years, that is
more than 580 billion years.

1.3.33. Let Pn be the statement for n. Then P2 is true, because we have ((a1 + a2)/2)2 − a1a2 = ((a1 −
a2)/2)2 ≥ 0. Assume Pn is true. Then by P2, for 2n positive real numbers a1, . . . , a2n we have a1 +
· · · + a2n ≥ 2(

√
a1a2 +

√
a3a4 + · · · + √

a2n−1a2n). Apply Pn to this last expression to get a1 + · · · +
a2n ≥ 2n(a1a2 · · · a2n)1/2n which establishes Pn for n = 2k for all k. Again, assume Pn is true. Let
g = (a1a2 · · · an−1)1/(n−1). Applying Pn, we have a1 + a2 + · · · + an−1 + g ≥ n(a1a2 · · · an−1g)1/n =
n(gn−1g)1/n = ng. Therefore, a1 + a2 + · · · + an−1 ≥ (n − 1)g which establishes Pn−1. Thus P2k is true
and Pn implies Pn−1. This establishes Pn for all n.

1.3.34. There are four 2 × 2 chess boards with one square missing. Each can be covered with exactly one
L-shaped piece. This is the basis step. Now assume that any 2n × 2n chess board can be covered with L-
shaped pieces. Consider a 2n+1 × 2n+1 chess board with one square missing. Split this into four 2n × 2n

chess boards three of which contain every square and the fourth has one square missing. By the induc-
tive hypothesis we can cover the fourth 2n × 2n chess board because it is missing one square. Now use
one L-shaped piece to cover the three squares in the other three chess boards that touch at the center of
the larger 2n+1 × 2n+1 chess board. What is left to cover is all the rest of the squares in each of the three
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2n × 2n chess boards. The inductive hypothesis says that we can cover all the remaining squares in each
of these chess boards. This completes the proof.

1.3.35. Note that because 0 < p < q we have 0 < p/q < 1. The proposition is trivially true if p = 1. We pro-
ceed by strong induction on p. Let p and q be given and assume the proposition is true for all rational
numbers between 0 and 1 with numerators less than p. To apply the algorithm, we find the unit fraction
1/s such that 1/(s−1) > p/q > 1/s. When we subtract, the remaining fraction is p/q−1/s = (ps−q)/qs.
On the other hand, if we multiply the first inequality by q(s−1) we have q > p(s−1) which leads to p >
ps − q, which shows that the numerator of p/q is strictly greater than the numerator of the remainder
(ps− q)/qs after one step of the algorithm. By the induction hypothesis, this remainder is expressible as
a sum of unit fractions, 1/u1 + · · ·+ 1/uk. Therefore p/q = 1/s + 1/u1 + · · ·+ 1/uk which completes the
induction step.

1.3.36. a. Because 1/2 < 2/3, we subtract to get 2/3 = 1/2 + 1/6.

b. Because 1/2 < 5/8, we subtract to get 5/8 = 1/2 + 1/8.

c. Because 1/2 < 11/17 we subtract to get 11/17 = 1/2 + 5/34. The largest unit fraction less than 5/34
is 1/7 so we subtract to get 11/17 = 1/2 + 1/7 + 1/238.

d. The largest unit fraction less than 44/101 is 1/3 so we subtract and get 44/101 = 1/3 + 31/303. The
largest unit fraction less than 31/303 is 1/10, so we subtract to get 44/101 = 1/3 + 1/10 + 7/3030.
The largest unit fraction less than 7/3030 is 1/433, so we subtract to get 44/101 = 1/3 + 1/10 +
1/433+1/1311990. (Note that this is the result of the “greedy algorithm.” Other representations are
possible, such as 44/101 = 1/3 + 1/10 + 1/440 + 1/26664.)

1.4. The Fibonacci Numbers

1.4.1. a. We have f1 = 1, f2 = 1, and fn = fn−1 + fn−2 for n ≥ 3. Hence f3 = f2 + f1 = 1 + 1 = 2, f4 =
f3 + f2 = 2+1 = 3, f5 = 3+2 = 5, f6 = 5+3 = 8, f7 = 8+5 = 13, f8 = 13+8 = 21, f9 = 21+13 =
34, and f10 = 34 + 21 = 55.

b. We continue beyond part (a) finding that f11 = f10 + f9 = 55 + 34 = 89, f12 = 89 + 55 = 144, and
f13 = 144 + 89 = 233.

c. We continue beyond part (b) finding that f14 = f13 + f12 = 233 + 144 = 377, and f15 = 377 + 233 =
610.

d. We continue beyond part (c) finding that f16 = 610 + 377 = 987, f17 = 987 + 610 = 1597, and f18 =
1597 + 987 = 2584.

e. We continue beyond part (d) finding that f19 = 2584 + 1597 = 4181, f20 = 4181 + 2584 = 6765.

f. We continue beyond part (e) finding that f21 = 6765 + 4181 = 10946, f22 = 10946 + 6765 = 17711,
f23 = 17711 + 10946 = 28657, f24 = 28657 + 17711 = 46368, and f25 = 46368 + 28657 = 75025.

1.4.2. a. We continue from Exercise 1 part (a), finding that f11 = 55 + 34 = 89 and f12 = 89 + 55 = 144.

b. We continue from Exercise 1 part (c), finding that f16 = 610 + 377 = 987.

c. We computed f24 = 46368 in Exercise 1 part (f).

d. We continue from Exercise 1 part (f), finding that f26 = 75025 + 46368 = 121393, f27 = 121393 +
75025 = 196418, f28 = 196418 + 121393 = 317811, f29 = 317811 + 196418 = 514229, and f30 =
514229 + 317811 = 832040.
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e. We continue from part (d), finding f31 = 832040+514229 = 1346269, and f32 = 1346269+832040 =
2178309.

f. We continue from part (e), finding f33 = 2178309 + 1346269 = 3524578, f34 = 3524578 + 2178309 =
5702887, f35 = 5702887 + 3524578 = 9227465 and f36 = 9227465 + 5702887 = 14930352.

1.4.3. Note that from the Fibonacci identity, whenever n is a positive integer, fn+2 − fn = fn+1. Then we
have 2fn+2 − fn = fn+2 +(fn+2 − fn) = fn+2 + fn+1 = fn+3. If we add fn to both sides of this equation,
we have the desired identity.

1.4.4. Assuming n is a positive integer, we have compute 2fn+1 + fn = fn+1 + (fn+1 + fn) = fn+1 + fn+2 =
fn+3. If we subtract fn from both sides of this equation, we have the desired identity.

1.4.5. For n = 1 we have f2·1 = 1 = 12 +2 ·1 ·0 = f2
1 +2f0f1, and for n = 2, we have f2·2 = 3 = 12 +2 ·1 ·1 =

f2
2 +2f1f2. So the basis step holds for strong induction. Assume, then that f2n−4 = f2

n−2+2fn−3fn−2 and
f2n−2 = f2

n−1 +2fn−2fn−1. Now compute f2n = f2n−1 +f2n−2 = 2f2n−2 +f2n−3 = 3f2n−2−f2n−4. Now
we may substitute in our induction hypotheses to set this last expression equal to 3f2

n−1 + 6fn−2fn−1 −
f2

n−2 − 2fn−3fn−2 = 3f2
n−1 + 6(fn − fn−1)fn−1 − (fn − fn−1)2 − 2(fn−1 − fn−2)(fn − fn−1) = −2f2

n−1 +
6fnfn−1 − f2

n + 2fn(fn − fn−1)− 2fn−1(fn − fn−1) = f2
n + 2fn−1fn which completes the induction step.

1.4.6. For n a positive integer greater than 1, we have fn+2 = fn+1 + fn = (fn + fn−1) + fn = (fn + (fn −
fn−2)) + fn = 3fn − fn−2. Adding fn−2 to both sides yields the desired identity.

1.4.7. Note that f1 = 1 = f2, f1 + f3 = 3 = f4, and f1 + f3 + f5 = 8 = f6 so we conjecture that f1 + f3 +
f5 + · · · + f2n−1 = f2n. We prove this by induction. The basis step is checked above. Assume that our
formula is true for n, and consider f1 + f3 + f5 + · · · + f2n−1 + f2n+1 = f2n + f2n+1 = f2n+2, which is
the induction step. Therefore the formula is correct.

1.4.8. Note that f2 = 1 = f3 − 1, f2 + f4 = 4 = f5 − 1, and f2 + f4 + f6 = 12 = f7 − 1, so we conjecture that
f2 +f4 +f6 + · · ·+f2n = f2n+1−1. We prove this by induction. The basis step is checked above. Assume
that our formula is true for n, and consider f2 +f4 +f6 + · · ·+f2n +f2n+2 = f2n+1−1+f2n+2 = f2n+3−
1, which is the induction step. Therefore the formula is correct. Another solution is to subtract the for-
mula in Exercise 7 from the formula in Example 1.27, as follows:

∑n
i=1 f2i =

∑2n
i=1 fi −

∑n
i=1 f2i−1 =

(f2n+2 − 1) − f2n = f2n+1 − 1.

1.4.9. First suppose n = 2k is even. Then fn − fn−1 + · · ·+ (−1)n+1f1 = (f2k + f2k−1 + · · ·+ f1)− 2(f2k−1 +
f2k−3 + · · ·+ f1) = (f2k+2 − 1)− 2(f2k) by the formulas in Example 1.27 and Exercise 7. This last equals
(f2k+2 − f2k)− f2k − 1 = f2k+1 − f2k − 1 = f2k−1 − 1 = fn−1 − 1. Now suppose n = 2k + 1 is odd. Then
fn −fn−1 + · · ·+(−1)n+1 = f2k+1− (f2k −f2k−1 + · · ·− (−1)n+1f1) = f2k+1− (f2k−1−1) by the formula
just proved for the even case. This last equals (f2k+1 − f2k−1) + 1 = f2k + 1 = fn−1 + 1. We can unite
the formulas for the odd and even cases by writing the formula as fn−1 − (−1)n.

1.4.10. For n = 1 we have f3 = 2 = f2
2 +f2

1 = 12 +12. And when n = 2 we have f5 = 5 = 22 +12 = f2
3 +f2

2 , so
the basis steps hold for mathematical induction. Now assume, for the strong form of induction, that the
identity holds for all values of n up to n = k. Then f2k−3 = f2

k−1 + f2
k−2 and f2k−1 = f2

k + f2
k−1. Now we

calculate f2k+1 = f2k +f2k−1 = f2k−1 +f2k−2 +f2k−1 = 2f2k−1 +(f2k−1−f2k−3) = 3f2k−1−f2k−3. Now
substituting in the induction hypothesis, makes this last expression equal to 3(f2

k +f2
k−1)−f2

k−1−f2
k−2 =

3f2
k + 2f2

k−2 − (fk − fk−1)2 = 2f2
k + f2

k−1 + 2fkfk−1 = 2f2
k + (fk+1 − fk)2 + 2fk(fk+1 − fk) = f2

k+1 + f2
k ,

which completes the induction step.

1.4.11. We can construct an induction proof similar to the ones in Exercises 5 and 10, or we may proceed as
follows. From Exercise 5, we have f2n = f2

n + 2fn−1fn = fn(fn + fn−1 + fn−1) = (fn+1 − fn−1)(fn+1 +
fn−1) = f2

n+1 − f2
n−1, which is the desired identity.

1.4.12. Let Sn = fn +fn−1 +fn−2 +2fn−3 + · · ·+2n−4f2 +2n−3f1. We proceed by induction. If n = 3 we have
S3 = f3+f2+f1 = 2+1+1 = 4 = 23−1, and when n = 4 we have S4 = f4+f3+f2+2f1 = 3+2+1+2·1 =
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8 = 24−1, so the basis steps hold. Now assume the identity holds for all values less or equal to n and
consider Sn+1 = fn+1 +fn +fn−1 +2fn−2 +4fn−3 + · · ·+2n−4f3 +2n−3f2 +2n−2f1. We use the Fibonacci
identity to expand every term except the last two to get Sn+1 = (fn + fn−1) + (fn−1 + fn−2) + (fn−2 +
fn−3)+2(fn−3 +fn−4)+4(fn−4 +fn−5)+ · · ·+2n−4(f2 +f1)+2n−3f2 +2n−2f1. Next we regroup, taking
the first term from each set of parentheses, plus the second last term together in one group, the last term
from each set of parentheses together in another group, and leaving the last term by itself to get Sn+1 =
(fn + fn−1 + fn−2 + 2fn−3 + 4fn−4 + · · · + 2n−4f2 + 2n−3f2) + (fn−1 + fn−2 + fn−3 + 2fn−4 + 4fn−5 +
· · · + 2n−4f1) + 2n−2f1. The first group is seen to be equal to Sn when we realize that the last f2 = f1.
The second group is equal to Sn−1, so we have Sn+1 = Sn + Sn−1 + 2n−1 = 2n−2 + 2n−2 + 2n−1 = 2n by
the induction hypothesis. Therefore, by mathematical induction, the proposition is proved.

1.4.13. We proceed by mathematical induction. For the basis step,
∑1

j=1 f2
j = f2

1 = f1f2. To make the in-
ductive step we assume that

∑n
j=1 f2

j = fnfn+1. Then
∑n+1

j=1 f2
j =

∑n
j=1 f2

j + f2
n+1 = fnfn+1 + f2

n+1 =
fn+1fn+2.

1.4.14. We use mathematical induction. We will use the recursive definition fn = fn−1 + fn−2, with f0 =
0 and f1 = 1. For n = 1 we have f2f0 − f2

1 = 1 · 0 − 12 = −1 = (−1)1. Hence the basis step holds.
Now assume that fn+1fn−1 − f2

n = (−1)n. Then fn+2fn − f2
n+1 = (fn+1 + fn)fn − fn+1(fn + fn−1) =

f2
n − fn+1fn−1 = −(−1)n = (−1)n+1. This completes the proof.

1.4.15. From Exercise 13, we have fn+1fn − fn−1fn−2 = (f2
1 + · · · + f2

n) − (f2
1 + · · · f2

n−2) = f2
n + f2

n−1. The
identity in Exercise 10 shows that this is equal to f2n−1 when n is a positive integer, and in particular
when n is greater than 2.

1.4.16. Because f1f2 = 1 · 1 = 12 = f2
2 , the basis step holds. By the induction hypothesis we have f1f2 + · · ·+

f2n−1f2n +f2nf2n+1 +f2n+1f2(n+1) = f2
2n +f2nf2n+1 +f2n+1f2(n+1) = f2n(f2n +f2n+1)+f2n+1f2(n+1) =

f2nf2(n+1) + f2n+1f2(n+1) = (f2n + f2n+1)f2(n+1) = f2
2(n+1).

1.4.17. For fixed m, we proceed by induction on n. The basis step is fm+1 = fmf2 +fm−1f1 = fm ·1+fm−1 ·1
which is true. Assume the identity holds for 1, 2, . . . , k. Then fm+k = fmfk+1 + fm−1fk and fm+k−1 =
fmfk + fm−1fk−1. Adding these equations gives us fm+k + fm+k−1 = fm(fk+1 + fk) + fm−1(fk + fk−1).
Applying the recursive definition yields fm+k+1 = fmfk+2 + fm−1fk+1, which is precisely the identity.

1.4.18. We’re given that L1 = 1 and L2 = 3. Adding each consecutive pair to generate the next Lucas number
yields the sequence 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, . . . .

1.4.19. A few trial cases lead us to conjecture that
∑n

i=1 Li = Ln+2 − 3. We prove that this formula is correct
by induction. The basis step is L1 = 1 and L3 − 3 = 4 − 3 = 1, which checks. Assume that the formula
holds for n and compute

∑n+1
i=1 Li =

∑n
i=1 Li + Ln+1 = Ln+2 − 3 + Ln+1 by the induction hypothesis.

This last equals (Ln+2 + Ln+1) − 3 = Ln+3 − 3, which completes the induction step.

1.4.20. A few trial cases lead us to conjecture that
∑n

i=1 L2i−1 = L2n − 2. We prove that this formula is
correct by induction. The basis step is L1 = 1 = L2 − 2. Assume that the formula holds for n and
compute

∑n+1
i=1 L2i−1 =

∑n
i=1 L2i−1 + L2n+1 = L2n − 2 + L2n+1 = L2n+2 − 2, which completes the in-

duction step.

1.4.21. A few trial cases lead us to conjecture that
∑n

i=1 L2i = L2n+1 − 1. We prove that this formula is cor-
rect by induction. The basis step is L2 = 3 = L3 − 1. Assume that the formula holds for n and compute∑n+1

i=1 L2i =
∑n

i=1 L2i + L2n+2 = L2n+1 − 1 + L2n+2 = L2n+3 − 1, which completes the induction step.

1.4.22. We proceed by induction. The basis step is when n = 2, and we have L2
2 − L3L1 = 32 − 4 · 1 =

5 = 5(−1)2. Now assume the identity holds for n. Then for n + 1 we have L2
n+1 − Ln+2Ln = (Ln +

Ln−1)Ln+1−(Ln+1+Ln)Ln = LnLn+1+Ln−1Ln+1−Ln+1Ln−L2
n = −(L2

n−Ln−1Ln+1) = −(5(−1)n) =
5(−1)n+1, where we apply the induction hypothesis at the penultimate step.
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1.4.23. We proceed by induction. The basis step is L2
1 = 1 = L1L2−2 = 1·3−2. Assume the formula holds for

n and consider
∑n+1

i=1 L2
i =

∑n
i=1 L2

i + L2
n+1 = LnLn+1 − 2 + L2

n+1 = Ln+1(Ln + Ln+1) − 2 = Ln+1Ln+2−
2, which completes the induction step.

1.4.24. For n = 2, we have L2 = 3 = 1+2 = f1 + f3. For n = 3, we have L3 = 4 = 1+3 = f2 + f4. This serves
as the basis step. Now assume that the statement is true for k = 2, 3, 4, . . . , n. Then Ln+1 = Ln +Ln−1 =
(fn+1 + fn−1) + (fn + fn−2) = (fn+1 + fn) + (fn−1 + fn−2) = fn+2 + fn, which completes the induction.

1.4.25. For the basis step, we check that L1f1 = 1 · 1 = 1 = f2 and L2f2 = 3 · 1 = 3 = f4. Assume the identity
is true for all positive integers up to n. Then we have fn+1Ln+1 = (fn+2 − fn)(fn+2 + fn) from Exercise
24. This equals f2

n+2 − f2
n = (fn+1 + fn)2 − (fn−1 + fn−2)2 = f2

n+1 + 2fn+1fn + f2
n − f2

n−1 − 2fn−1fn−2 −
f2

n−2 = (f2
n+1 − f2

n−1) + (f2
n − f2

n−2) + 2(fn+1fn − fn−1fn−2) = (fn+1 − fn−1)(fn+1 + fn−1) + (fn −
fn−2)(fn + fn−2) + 2(f2n−1), where the last parenthetical expression is obtained from Exercise 15. This
equals fnLn + fn−1Ln−1 + 2f2n−1. Applying the induction hypothesis yields f2n + f2n−2 + 2f2n−1 =
(f2n + f2n−1) + (f2n−1 + f2n−2) = f2n+1 + f2n = f2n+2, which completes the induction.

1.4.26. For the basis step, we check that when n = 1, 5f2 = 5 · 1 = 1 + 4 = L1 + L3 and when n = 2, 5f3 =
10 = 3 + 7 = L2 + L4. Now assume the identity holds for integers less than n, and compute 5fn+1 =
5fn + 5fn−1 = (Ln−1 + Ln+1) + (Ln−2 + Ln) = (Ln−1 + Ln−2) + (Ln+1 + Ln) = Ln + Ln+1, which com-
pletes the induction step.

1.4.27. We prove this by induction on n. Fix m a positive integer. If n = 2, then for the basis step we need to
show that Lm+2 = fm+1L2 + fmL1 = 3fm+1 + fm, for which we will use induction on m. For m = 1 we
have L3 = 4 = 3 · f2 + f1 and for m = 2 we have L4 = 7 = 3 · f3 + f2, so the basis step for m holds.
Now assume that the basis step for n holds for all values of m less than and equal to m. Then Lm+3 =
Lm+2 + Lm+1 = 3fm+1 + fm + 3fm + fm−1 = 3fm+2 + fm+1, which completes the induction step on
m and proves the basis step for n. To prove the induction step on n, we compute Lm+n+1 = Lm+n +
Lm+n−1 = (fm+1Ln + fmLn−1) + (fm+1Ln−1 + fmLn−2) = fm+1(Ln + Ln−1) + fm(Ln−1 + Ln−2) =
fm+1Ln+1 + fmLn, which completes the induction on n and proves the identity.

1.4.28. First check that α2 = α + 1 and β2 = β + 1. We proceed by induction. The basis steps are α + β =
(1 +

√
5)/2 + (1 − √

5)/2 = 1 = L1 and α2 + β2 = (1 + α) + (1 + β) = 2 + L1 = 3 = L2. Assume the
identity is true for all positive integers up to n. Then Ln+1 = Ln + Ln−1 = αn + βn + αn−1 + βn−1 =
αn−1(α + 1) + βn−1(β + 1) = αn−1(α2) + βn−1(β2) = αn+1 + βn+1, which completes the induction.

1.4.29. We find that 50 = 34 + 13 + 3 = f9 + f7 + f4, 85 = 55 + 21 + 8 + 1 = f10 + f8 + f6 + f2, 110 = 89 + 21 =
f11 + f8 and 200 = 144 + 55 + 1 = f12 + f10 + f2. In each case, we used the “greedy” algorithm, always
subtracting the largest possible Fibonacci number from the remainder.

1.4.30. Suppose there is a positive integer that has no Zeckendorf representation. Then by the well-ordering
property, there is a smallest such integer, n. Let fk be the largest Fibonacci number less than or equal to
n. Note that if n = fk, then n has a Zeckendorf representation, contrary to our assumption. Then n− fk

is a positive integer less than n, so it has a Zeckendorf representation n − fk =
∑m

i=1 fai . Because n has
no Zeckendorf representation, it must be that one of the fai ’s is equal to or consecutive to fk. That is,
one of fk−1, fk, or fk+1 appears in the summation for n − fk. Then n =

∑m
i=1 fai + fk ≥ fk−1 + fk =

fk+1. But this contradicts the choice of fk as the largest Fibonacci number less than n. This establishes
existence. To establish uniqueness of the Zeckendorf representation, suppose that there is a positive in-
teger that has two distinct representations. Then the well-ordering property gives us a smallest such
integer, n. Suppose n =

∑m
i=1 fai =

∑l
j=1 fbl

are two distinct representations for n. Then no fai = fbj ,
else we could cancel this term from each side and have a smaller integer with two distinct representa-
tions. Without loss of generality, assume that fa1 > fa2 > · · · > fam and fb1 > fb2 > · · · > fbl

and that
fa1 > fb1 . If b1 is even, we compute n =

∑l
i=1 fbi ≤ fb1 + fb1−2 + fb1−4 + · · ·+ f2 = fb1+1 − 1 by Exercise

4. But this last is less than or equal to fa1 − 1 < n, a contradiction. If b1 is odd, we compute, now using
Exercise 3, n =

∑l
i=1 fbi ≤ fb1 + fb1−2 + fb1−4 + · · · + f3 = fb1+1 − f1 ≤ fa1 − 1 < n, which is also a

contradiction. This proves uniqueness.
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1.4.31. We proceed by mathematical induction. The basis steps (n = 2 and 3) are easily seen to hold. For the
inductive step, we assume that fn ≤ αn−1 and fn−1 ≤ αn−2. Now, fn+1 = fn + fn−1 ≤ αn−1 + αn−2 =
αn, because α satisfies αn = αn−1 + αn−2.

1.4.32. We proceed by the second principle of mathematical induction on n. For the basis step, we observe
that

(
0
0

)
= f0+1 = 1. For the inductive step, we assume that

(
n
0

)
+

(
n−1

1

)
+

(
n−2

2

)
+ · · · = fn+1, and that(

n−1
0

)
+

(
n−2

1

)
+

(
n−3

2

)
+ · · · = fn. Now,

(
n+1

0

)
+

(
n
1

)
+

(
n−1

2

)
+ · · · =

(
n
0

)
+ [

(
n−1

1

)
+

(
n−1

0

)
] + [

(
n−2

2

)
+(

n−2
1

)
] + · · · =

(
n
0

)
+

(
n−1

1

)(
n−2

2

)
+ · · · + (

n−1
0

)
+

(
n−2

1

)
+ · · · = fn+1 + fn = fn+2.

1.4.33. Using Theorem 1.3 and the notation therein, we have α2 = α + 1 and β2 = β + 1, because they
are roots of x2 − x − 1 = 0. Then we have f2n = (α2n − β2n)/

√
5 = (1/

√
5)((α + 1)n − (β + 1)n) =

(1/
√

5)
(∑n

j=0

(
n
j

)
αj − ∑n

j=0

(
n
j

)
βj

)
= (1/

√
5)

∑n
j=0

(
n
j

)
(αj − βj) =

∑n
j=1

(
n
j

)
fj because the first term

is zero in the penultimate sum.

1.4.34. We prove this using mathematical induction. For n = 1 we have

F1 =
(

1 1
1 0

)
=

(
f2 f1

f1 f0

)
where f0 = 0. Now assume that this formula is true for n. Then

Fn+1 = FnF =
(

fn+1 fn

fn fn−1

)(
1 1
1 0

)
=

(
fn+1 + fn fn+1

fn + fn−1 fn

)
=

(
fn+2 fn+1

fn+1 fn

)
.

1.4.35. On one hand, det(Fn) = det(F)n = (−1)n. On the other hand,

det
(

fn+1 fn

fn fn−1

)
= fn+1fn−1 − f2

n.

1.4.36. We proceed by induction. Clearly the basis step holds. For the inductive step, we assume that gn =
afn−2 + bfn−1. Then, gn+1 = gn + gn−1 = afn−2 + bfn−1 + afn−3 + bfn−2 = afn−1 + bfn.

1.4.37. We use the relationship fn = fn+2 − fn+1 to extend the definition to include negative indices. Thus,
f0 = 0, f−1 = 1, f−2 = −1, f−3 = 2, f−4 = −3, f−5 = 5, f−6 = −8, f−7 = 13, f−8 = −21, f−9 = 34, f−10 =
−55.

1.4.38. We conjecture that f−n = (−1)n+1fn. The basis step is given in Exercise 55. Assume the conjecture is
true for n. Then f−(n+1) = f−(n−1)−f−n = (−1)nfn−1− (−1)n+1fn = (−1)n(fn−1 +fn) = (−1)n+2fn+1,
which completes the induction step.

1.4.39. The square has area 64 square units, while the rectangle has area 65 square units. This corresponds to
the identity in Exercise 14, which tells us that f7f5 − f2

6 = 1. Notice that the slope of the hypotenuse of
the triangular piece is 3/8, while the slope of the top of the trapezoidal piece is 2/5. We have 2/5−3/8 =
1/40. Thus, the “diagonal” of the rectangle is really a very skinny parallelogram of area 1, hidden visu-
ally by the fact that the two slopes are nearly equal.

1.4.40. First check that α2 = α + 1 and β2 = β + 1 as in the solution to Exercise 18. We compute a1 =
(1/

√
5)(α − β) = (1/

√
5)

(
(1 +

√
5/2 − (1 −√

5/2
)

= (1/
√

5)
(
2
√

5/2
)

= 1 and a2 = (1/
√

5)(α2 − β2) =
(1/

√
5)(α+1−β−1) = (1/

√
5)(α−β) = 1. Finally, we check that an−1 +an−2 = (1/

√
5)(αn−1−βn−1)+

(1/
√

5)(αn−2 − βn−2) = (1/
√

5)(αn−1 + αn−2 − βn−1 − βn−2) = (1/
√

5)(αn−2(α + 1) − βn−2(β + 1)) =
(1/

√
5)(αn−2α2 − βn−2β2) = (1/

√
5)(αn − βn) = an. Because these an satisfy the defining relationships

of the Fibonacci numbers, we can conclude that an = fn for n = 1, 2, . . . .

1.4.41. We solve the equation r2 − r − 1 = 0 to discover the roots r1 = (1 +
√

5)/2 and r2 = (1 − √
5)/2.

Then according to the theory in the paragraph above, fn = C1r
n
1 + C2r

n
2 . For n = 0 we have 0 =

C1r
0
1 + C2r

0
2 = C1 + C2. For n = 1 we have 1 = C1r1 + C2r2 = C1(1 +

√
5)/2 + C2(1 −√

5)/2. Solving
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these two equations simultaneously yields C1 = 1/
√

5 and C2 = −1/
√

5. So the explicit formula is fn =
(1/

√
5)rn

1 − (1/
√

5)rn
2 = (rn

1 − rn
2 )/

√
5.

1.4.42. First note that G(x) − xG(x) − x2G(x) =
∑∞

k=0 fkxk − ∑∞
k=0 fkxk+1 − ∑∞

k=0 fkxk+2 =
∑∞

k=0 fkxk −∑∞
k=1 fk−1x

k −∑∞
k=2 fk−2x

k = f0x
0 + f1x− f0x+

∑∞
k=2(fk − fk−1 − fk−2)xk = 0+ x− 0+

∑∞
k=2 0xk =

x. Solving this for G(x) yields G(x) = x/(1 − x − x2). Let α and β be defined as in Exercise 30.
Then the denominator of G(x) factors as −(x + β)(x + α). Expand G(x) into partial fractions to get
G(x) = (1/

√
5) (β/(x + β) − α/(x + α)) . Because 1/α = −β we can write the above as G(x) = (1/

√
5)

(1/(1 − xα) − 1/(1 − xβ)) . But these last two fractions represent the sums of geometric series, so we
have G(x) = (1/

√
5)

(
(1 + αx + (αx)2 + · · · ) − (1 + βx + (βx)2 + · · · )) = (1/

√
5)(0 + (α − β)x + (α2 −

β2)x2 + · · · ). Thus the coefficient on the nth power of x is given by (1/
√

5)(αn − βn) = fn, for all n ≥ 0.

1.4.43. We seek to solve the recurrence relation Ln = Ln−1 +Ln−1 subject to the initial conditions L1 = 1 and
L2 = 3. We solve the equation r2 − r − 1 = 0 to discover the roots α = (1 +

√
5)/2 and β = (1 −√

5)/2.
Then according to the theory in the paragraph above Exercise 41, Ln = C1α

n +C2β
n. For n = 1 we have

L1 = 1 = C1α + C2β. For n = 2 we have 3 = C1α
2 + C2β

2. Solving these two equations simultaneously
yields C1 = 1 and C2 = 1. So the explicit formula is Ln = αn + βn.

1.4.44. Let H(x) =
∑∞

k=0 Lkxk be the generating function for the Lucas numbers. Note that we define L0 = 2
so that L0+L1 = 3 = L2. Consider H(x)−xH(x)−x2H(x) =

∑∞
k=0 Lkxk−∑∞

k=0 Lkxk+1−∑∞
k=0 Lkxk+2

=
∑∞

k=0 Lkxk −∑∞
k=1 Lk−1x

k −∑∞
k=2 Lk−2x

k = L0x
0 + L1x−L0x +

∑∞
k=2(Lk −Lk−1 −Lk−2)xk = 2 +

x−2x+
∑∞

k=2 0xk = 2−x. We solve for H(x) and find its partial fraction expansion H(x) = (2−x)/(1−
x − x2) = (1/(2

√
5))

(
(5 +

√
5)/(x + α) − (5 −√

5)/(x + β)
)
, where α and β are defined as in Exercise

30. We multiply the top and bottom of the first fraction by β and use the fact that αβ = 1, and similarly
treat the second fraction to get the above equal to 1/(1 − αx) + 1/(1 − βx). But these are the representa-
tions for the sums of geometric series, so we have H(x) = (1+αx+(αx)2+ · · · )+(1+βx+(βx)2+ · · · ) =
2 + (α + β)x + (α2 + β2)x2 + · · · . Therefore, Ln = αn + βn the coefficient on the nth power of x.

1.4.45. First check that α2 = α + 1 and β2 = β + 1. We proceed by induction. The basis steps are (1/
√

5)(α −
β) = (1/

√
5)(

√
5) = 1 = f1 and (1/

√
5)(α2 − β2) = (1/

√
5)((1 + α) − (1 + β)) = (1/

√
5)(α − β) = 1 =

f2. Assume the identity is true for all positive integers up to n. Then fn+1 = fn + fn−1 = (1/
√

5)(αn −
βn) + (1/

√
5)(αn−1 − βn−1) = (1/

√
5)(αn−1(α + 1) − βn−1(β + 1)) = (1/

√
5)(αn−1(α2) − βn−1(β2)) =

(1/
√

5)(αn+1 − βn+1), which completes the induction.

1.5. Divisibility

1.5.1. We find that 3 | 99 because 99 = 3 · 33, 5 | 145 because 145 = 5 · 29, 7 | 343 because 343 = 7 · 49, and
888 | 0 because 0 = 888 · 0.

1.5.2. We see that 1001 is divisible by 7, 11, and 13.

1.5.3. a. Yes, 0 = 7 · 0.

b. Yes, 707 = 7 · 101.

c. By the division algorithm, we have 1717 = 245 · 7 + 2. Because the remainder is nonzero, we know
that 7 � 1717.

d. By the division algorithm, we have 123321 = 17617 · 7 + 2. Because the remainder is nonzero, we
know that 7 � 123321.

e. By the division algorithm, we have −285714 = −40817 · 7 + 5. Because the remainder is nonzero,
we know that 7 � −285714.
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f. By the division algorithm, we have −430597 = −61514 · 7 + 1. Because the remainder is nonzero,
we know that 7 � −430597.

1.5.4. a. Yes, 0 = 22 · 0.

b. By the division algorithm, we have 444 = 20 · 22 + 4. Because the remainder is nonzero, we know
that 22 � 444.

c. Yes, 1716 = 22 · 78.

d. Yes, 192544 = 22 · 8752.

e. Yes, −32516 = 22 · −1478.

f. By the division algorithm, we have −195518 = −8888 · 22 + 18. Because the remainder is nonzero,
we know that 22 � −195518.

1.5.5. a. We have 100 = 5 · 17 + 15, so the quotient is 5 and the remainder is 15.

b. We have 289 = 17 · 17, so the quotient is 17 and the remainder is 0.

c. We have −44 = −3 · 17 + 7, so the quotient is −3 and the remainder is 7.

d. We have −100 = −6 · 17 + 2, so the quotient is −6 and the remainder is 2.

1.5.6. a. The positive integers which divide 12 are 1, 2, 3, 4, 6, and 12.

b. The positive integers which divide 22 are 1, 2, 11 and 22.

c. The positive integers which divide 37 are 1 and 37.

d. The positive integers which divide 41 are 1 and 41.

1.5.7. a. The positive integers which divide 13 are 1 and 13.

b. The positive integers which divide 21 are 1, 3, 7, and 21.

c. The positive integers which divide 36 are 1, 2, 3, 4, 6, 9, 12, 18, and 36

d. The positive integers which divide 44 are 1, 2, 4, 11, 22, and 44.

1.5.8. a. The positive integers which divide 8 are 1, 2, 4, and 8. The positive integers which divide 12 are 1,
2, 3, 4, 6, and 12. The largest integer in both sets is 4, so (8, 12) = 4.

b. The positive integers which divide 7 are 1 and 7. The positive integers which divide 9 are 1, 3 and
9. The largest integer in both sets is 1, so (7, 9) = 1.

c. The positive integers which divide 15 are 1, 3, 5, and 15. The positive integers which divide 25 are
1, 5 and 25. The largest integer in both sets is 5, so (15, 25) = 5.

d. The positive integers which divide 16 are 1, 2, 4, 8, and 16. The positive integers which divide 27
are 1, 3, 9, and 27. The largest integer in both sets is 1, so (16, 27) = 1.

1.5.9. a. The positive integers which divide 11 are 1 and 11. The positive integers which divide 22 are 1, 2
and 11. The largest integer in both sets is 11, so (11, 22) = 11.
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b. The positive integers which divide 36 are 1, 2, 3, 4, 6, 9, 12, 18, and 36. The positive integers which
divide 42 are 1, 2, 3, 6, 7, 14, 21, and 42. The largest integer in both sets is 6, so (36, 42) = 6.

c. The positive integers which divide 21 are 1, 3, 7, and 21. The positive integers which divide 22 are
1, 2, 11, and 22. The largest integer in both sets is 1, so (21, 22) = 1.

d. The positive integers which divide 16 are 1, 2, 4, 8, and 16. The positive integers which divide 64
are 1, 2, 4, 8, 16, 32, and 64. The largest integer in both sets is 16, so (16, 64) = 16.

1.5.10. Note that 10 is divisible by 2 and 5. Because 2, 4, 6, and 8 are divisible by 2 and because 5 is divisible
by 5, none of these integers is relatively prime to 10. This leaves 1, 3, 7, and 9, which are all relatively
prime to 10.

1.5.11. The only positive integers which divide 11 are 1 and 11. Therefore each of 1, 2, 3, . . . , 10 is relatively
prime to 11.

1.5.12. Because (a, b) = (b, a) we can assume without loss of generality that a ≤ b. We check to see that this
leaves us with (1, 1), (1, 2), (1, 3), . . . , (1, 10), (2, 3), (2, 5), (2, 7), (2, 9), (3, 4), (3, 5), (3, 7), (3, 8), (3, 10),
(4, 5), (4, 7), (4, 9), (5, 6), (5, 7), (5, 8), (5, 9), (6, 7), (7, 8), (7, 9), (7, 10), (8, 9) and (9, 10).

1.5.13. Without loss of generality, we assume a < b. This leaves us with (10, 11), (10, 13), (10, 17), (10, 19),
(11, 12), (11, 13), . . . , (11, 20), (12, 13), (12, 17), (12, 19), (13, 14), (13, 15), . . . , (13, 20), (14, 15), (14, 17),
(14, 19), (15, 16), (15, 17), (15, 19), (16, 17), (16, 19), (17, 18), (17, 19), (17, 20), (18, 19) and (19, 20).

1.5.14. Suppose that a | b and b | a. Then there are integers k and l such that b = ka and a = lb. This implies
that b = klb, so that kl = 1. Hence either k = l = 1 or k = l = −1. It follows that either a = b or a = −b.

1.5.15. By hypothesis we know b = ra and d = sc, for some r and s. Thus bd = rs(ac) and ac | bd.

1.5.16. We have 6 | 2 · 3, but 6 divides neither 2 nor 3.

1.5.17. If a | b, then b = na and bc = n(ca), i.e. ac | bc. Now, suppose ac | bc. Thus bc = nac and, as c �= 0, b =
na, i.e., a | b.

1.5.18. Suppose a | b. Then b = na, and b − a = na − a = (n − 1)a. Because a and b are positive (n − 1)a is
positive and a ≤ b.

1.5.19. By definition, a | b if and only if b = na for some integer n. Then raising both sides of this equation to
the kth power yields bk = nkak whence ak | bk.

1.5.20. Suppose that x and y are even. Then x = 2k and y = 2l where k and l are integers. Hence x + y =
2k +2l = 2(k + l) so that x+y is also even. Suppose that x and y are odd. Then x = 2k +1 and y = 2l+1
where k and l are integers. Hence x + y = (2k + 1) + (2l + 1) = 2k + 2l + 2 = 2(k + l + 1), so that x + y is
even. Suppose that x is even and y is odd. Then x = 2k and y = 2l +1 where k and l are integers. Hence
x + y = 2k + (2l + 1) = 2(k + l) + 1. It follows x + y is odd.

1.5.21. Let a and b be odd, and c even. Then ab = (2x + 1)(2y + 1) = 4xy + 2x + 2y + 1 = 2(2xy + x + y) + 1,
so ab is odd. On the other hand, for any integer n, we have cn = (2z)n = 2(zn) which is even.

1.5.22. By the division algorithm, there exist integers s, t such that a = bs + t, 0 < t < b because b � a. If t is
odd, then we are done. If t is even, then b − t is odd, |t − b| < b, and a = b(s + 1) + (t − b).

1.5.23. By the division algorithm, a = bq + r, with 0 ≤ r < b. Thus −a = −bq − r = −(q + 1)b + b − r. If 0 ≤
b − r < b then we are done. Otherwise b − r = b, or r = 0 and −a = −qb + 0.
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1.5.24. We have a = qb + r = (tc + s)b + r = tcb + bs + r.

1.5.25. a. The division algorithm covers the case when b is positive. If b is negative, then we may apply the
division algorithm to a and |b| to get a quotient q and remainder r such that a = q|b| + r and 0 ≤
r < |b|. But because b is negative, we have a = q(−b) + r = (−q)b + r, as desired.

b. We have 17 = −7(−2) + 3. Here r = 3.

1.5.26. This is called the least remainder algorithm. Suppose that a and b are positive integers. By the divi-
sion algorithm there are integers s and t with a = bs + t and 0 ≤ t < b. If 0 ≤ t ≤ b

2 set r = t, e = 1, and
q = s, so that a = bq + er with 0 ≤ r ≤ b

2 . If b
2 < t < b set r = b− t, e = −1, and q = s+1 so that bq + er =

b(s + 1) + (t − b) = bs + t = a and 0 < r = t − b < b
2 . Hence there are integers q, e and r such that a =

bq + er where e = ±1 and 0 ≤ r ≤ b
2 .

1.5.27. By the division algorithm, let m = qn + r, with 0 ≤ r < n − 1 and q = [m/n]. Then [(m + 1)/n] =
[(qn + r + 1)/n] = [q + (r + 1)/n] = q + [(r + 1)/n] as in Example 1.31. If r = 0, 1, 2, . . . , n − 2, then
m �= kn − 1 for any integer k and 1/n ≤ (r + 1)/n < 1 and so [(r + 1)/n] = 0. In this case, we have
[(m + 1)/n] = q + 0 = [m/n]. On the other hand, if r = n − 1, then m = qn + n − 1 = n(q + 1) − 1 =
nk − 1, and [(r + 1)/n] = 1. In this case, we have [(m + 1)/n] = q + 1 = [m/n] + 1.

1.5.28. Suppose n = 2k. Then n − 2[n/2] = 2k − 2[2k/2] = 0. On the other hand, suppose n − 2[n/2] = 0.
Then n/2 = [n/2] and n/2 is an integer. In other words, n is even.

1.5.29. The positive integers divisible by the positive integer d are those integers of the form kd where k is a
positive integer. The number of these that are less than x is the number of positive integers k with kd ≤
x, or equivalently with k ≤ x/d . There are [x/d] such integers.

1.5.30. There are [1000/5] = 200 positive integers not exceeding 1000 that are divisible by 5, [1000/25] =
40 such integers that are divisible by 25, [1000/125] = 8 such integers that are divisible by 125, and
[1000/625] = 1 such integer that is divisible by 625.

1.5.31. There are [1000/7] − [100/7] = 142 − 14 = 128 integers between 100 and 1000 that are divisible by 7.
There are [1000/49] − [100/49] = 20 − 2 = 18 integers between 100 and 1000 that are divisible by 49.

1.5.32. The number of integers not exceeding 1000 that are not divisible by either 3 or 5 equals 1000 −
([1000/3] + [1000/5]) + [1000/15] = 533.

1.5.33. Using the Principle of Inclusion-Exclusion, the answer is 1000 − ([1000/3] + [1000/5] + [1000/7]) +
([1000/15] + [1000/21] + [1000/35])− ([1000/105) = 1000− (333 + 200 + 142) + (66 + 47 + 28)− 9 = 457.

1.5.34. For an integer to be divisible by 3, but not by 4, an integer must be divisible by 3, but not by 12. There
are [1000/3] = 333 positive integers not exceeding 1000 that are divisible by 3. Of these [1000/12] = 82
are divisible by 12 (because anything that is divisible by 12 is automatically divisible by 3). Hence there
are 333 − 83 = 250 possible integers not exceeding 1000 that are divisible by 3, but not by 4.

1.5.35. Let w be the weight of a letter in ounces. Note that the function −[−x] rounds x up to the least in-
teger less than or equal to x. (That is, it’s the equivalent of the ceiling function.) The cost of mailing a
letter weighing w ounces is, then, 44 cents plus 17 cents for each ounce or part thereof more than 1, so
we need to round w − 1 up to the next integer. So the cost is c(w) = 44 − [1 − w]17 cents. Suppose that
44− [1−w]17 = 181 then −[1−w]17 = 181− 44 = 137 which is not a multiple of 17, so no letter can cost
$1.81. Suppose that 44− [1−w]17 = 265 then −[1−w]17 = 265−44 = 221 = 13 ·17. Then [1−w] = −13,
so −13 ≤ 1 − w < −12, or 13 < w ≤ 14. So a letter weighing at least 13 ounces but less than 14 ounces
would cost $2.65.

1.5.36. Note that a3 − a = a(a2 − 1) = (a − 1)a(a + 1). By the division algorithm a = 3k, a = 3k + 1, or a =
3k + 2, where k is an integer. If a = 3k, 3 divides a, if a = 3k + 1 then a − 1 = 3k, so that 3 divides a − 1,
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and if a = 3k+2, then a+1 = 3k+3 = 3(k+1), so that 3 divides a+1. Hence 3 divides (a−1)a(a+1) =
a3 − a for every nonnegative integer a. (Note: This can also be proved using mathematical induction.)

1.5.37. Multiplying two integers of this form gives us (4n + 1)(4m + 1) = 16mn + 4m + 4n + 1 = 4(4mn +
m + n) + 1. Similarly, (4n + 3)(4m + 3) = 16mn + 12m + 12n + 9 = 4(4mn + 3m + 3n + 2) + 1.

1.5.38. Suppose that n is odd. Then n = 2t + 1 where t is an integer. It follows that n2 = (2t + 1)2 = 4t2 +
4t + 1 = 4t(t + 1) + 1. Now if t is even, then t = 2u where u is an integer. Hence n2 = 8u(2u + 1) + 1 =
8k + 1, where k = u(2u + 1) is an integer. If t is odd, then t = 2u + 1 where u is an integer. Hence n2 =
(8u + 4)(2u + 2) + 1 = 8(2u + 1)(u + 1) + 1 = 8k + 1, where k = (2u + 1)(u + 1).

1.5.39. Every odd integer may be written in the form 4k + 1 or 4k + 3. Observe that (4k + 1)4 = 162k4 +
4(4k)3 + 6(4k)2 + 4(4k) + 1 = 16(16k4 + 16k3 + 6k2 + k) + 1. Proceeding further, (4k + 3)4 = (4k)4 +
12(4k)3 + 54(4k)2 + 108(4k) + 34 = 16(16k4 + 48k3 + 54k2 + 27k + 5) + 1.

1.5.40. The product of the integers 6k + 5 and 6l + 5 is (6k + 5)(6l + 5) = 36kl + 30(k + l) + 25 = 6[6kl + 5(k +
l) + 4] + 1 = 6N + 1 where N = 6kl + 5(k + l) + 4. Hence this product is of the form 6N + 1.

1.5.41. Of any consecutive three integers, one is a multiple of three. Also, at least one is even. Therefore, the
product is a multiple of 2 · 3 = 6.

1.5.42. The basis step is completed by noting that 15−1 = 0 is divisible by 5. For the inductive hypothesis, as-
sume that n5 −n is divisible by 5. This implies that there is an integer k such that n5 −n = 5k. It follows
that (n+1)5 − (n+1) = (n5 +5n4 +10n3 +10n2 +5n+1)− (n+1) = (n5 −n)+5(n4 +2n3 +2n2 +n) =
5k + 5l = 5(k + l). Hence (n + 1)5 − (n + 1) is also divisible by 5.

1.5.43. For the basis step note that 03 + 13 + 23 = 9 is a multiple of 9. Suppose that n3 + (n + 1)3 + (n + 2)3 =
9k for some integer k. Then (n + 1)3 + (n + 2)3 + (n + 3)3 = n3 + (n + 1)3 + (n + 2)3 + (n + 3)3 − n3 =
9k + n3 + 9n2 + 27n + 27 − n3 = 9k + 9n2 + 27n + 27 = 9(k + n2 + 3n + 3) which is a multiple of 9.

1.5.44. We prove this by mathematical induction. We will prove that f3n−2 is odd, f3n−1 is odd, and f3n is
even whenever n is a positive integer. For n = 1 we see that f3·1−2 = f1 = 1 is odd, f3·1−1 = f2 = 1 is
odd, and f3·1 = f3 = 2 is even. Now assume that f3n−2 is odd, f3n−1 is odd, and f3n is even where n is
a positive integer. Then f3(n+1)−2 = f3n+1 = f3n + f3n−1 is odd because f3n is even and f3n−1 is odd,
f3(n+1)−1 = f3n+2 = f3n+1 + f3n is odd because f3n+1 is odd and f3n is even, and f3(n+1) = f3n+3 =
f3n+2 + f3n+1 is even because f3n+2 and f3n+1 are odd. This completes the proof.

1.5.45. We proceed by mathematical induction. The basis step is clear. Assume that only f4n’s are divisible
by 3 for fi, i ≤ 4k. Then, as f4k+1 = f4k + f4k−1, 3 | f4k and 3 | f4k+1 gives us the contradiction 3 | f4k−1.
Thus 3 � f4k+1. Continuing on, if 3 | f4k and 3 | f4k+2, then 3 | f4k+1, which contradicts the statement
just proved. If 3 | f4k and 3 | f4k+3, then because f4k+3 = 2f4k+1 + f4k, we again have a contradiction.
But, as f4k+4 = 3f4k+1 + 2f4k, and 3 | f4k and 3 | 3 · f4k+1, we see that 3 | f4k+4.

1.5.46. We proceed by induction. The basis step is clear. Suppose fn is divisible by 4. By Exercise 34,
fn+1, fn+2, fn+4, fn+5 are all odd. Suppose fn+3 is divisible by 4. Now, fn+3 = 2fn+1 + fn. Because
fn and fn+3 are divisible by 4, so must by 2fn+1. This is a contradiction. On the other hand, fn+6 =
8fn+1 + fn. Because both terms are multiples of 4, so is fn+6.

1.5.47. First note that for n > 5, 5fn−4 +3fn−5 = 2fn−4 +3(fn−4 +fn−5) = 2fn−4 +3fn−3 = 2(fn−4 +fn−3)+
fn−3 = 2fn−2 + fn−3 = fn−2 + fn−2 + fn−3 = fn−2 + fn−1 = fn, which proves the first identity. Now
note that f5 = 5 is divisible by 5. Suppose that f5n is divisible by 5. From the identity above f5n+5 =
5f5n+5−4 + 3f5n+5−5 = 5f5n+1 + 3f5n, which is divisible by 5 because 5f5n+1 is a multiple of 5 and, by
the induction hypothesis, so is f5n. This completes the induction.

1.5.48. We use mathematical induction on the integer m. For m = 1 we have fn+1 = fn−1f1+fnf2 = fn−1+fn

which is true from the definition of the Fibonacci numbers. For m = 2 we have fn+2 = fn−1f2 + fnf3 =
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fn−1 +2fn = fn−1 +fn +fn = fn+1 +fn which is true from the definition of the Fibonacci numbers. This
finishes the basis step of the proof. Now assume that fn+m = fmfn+1 + fm−1fn holds for all integers m
with m < k. We will show that it must also hold for m = k. We have fn+k−2 = fk−2fn+1 + fk−3fn and
fn+k−1 = fk−1fn+1 +fk−2fn. Adding these two equations gives fn+k−2−fn+k−1 = fn+1(fk−2 +fk−1)+
fn(fk−3 + fk−2). Hence fn+k = fn+1fk + fnfk−1. Hence the identity is also true for m = k. We now
show that fm | fn if m | n. Because m | n we have n = km. We prove this using mathematical induction
on k. For k = 1 we have n = m so fm | fn because fm = fn. Now assume fmk is divisible by fm. Note
that fm(k+1) = fmk+m = fmk−1fm + fmkfm+1. The first product is divisible by fm because fm is a factor
in this term and the second product is divisible by fm by the inductive hypothesis. Hence fm | fm(k+1).
This finishes the inductive proof.

1.5.49. Iterating the transformation T starting with 39 we find that T (39) = 59; T (59) = 89; T (89) = 134;
T (134) = 67; T (67) = 101; T (101) = 152; T (152) = 76; T (76) = 38; T (38) = 19; T (19) = 29; T (29) = 44;
T (44) = 22; T (22) = 11; T (11) = 17; T (17) = 26; T (26) = 13; T (13) = 20; T (20) = 10; T (10) = 5; T (5) =
8; T (8) = 4; T (4) = 2; T (2) = 1.

1.5.50. If 3n is odd, then so is n. So, T (n) = (3n + 1)/2 = 22k/2 = 22k−1. Because T (n) is a power of 2, the
exponent will decrease down to one with repeated applications of T .

1.5.51. We prove this using the second principle of mathematical induction. Because T (2) = 1, the Collatz
conjecture is true for n = 2. Now assume that the conjecture holds for all integers less that n. By assump-
tion there is an integer k such that k iterations of the transformation T , starting at n, produces an integer
m less than n. By the inductive hypothesis there is an integer l such that iterating T l times starting at m
produces the integer 1. Hence iterating T k + l times starting with n leads to 1. This finishes the proof.

1.5.52. Suppose n = 2k for some k. Then T (n) = k < 2k = n. Suppose that n = 4k + 1 for some k.
Then T (T (n)) = T (6k + 2) = 3k + 1 < 4k + 1 = n. Now suppose that n = 8k + 3, where k is an
even number. T (T (T (T (n)))) = 9k/2 + 1 < 8k + 3 = n. This leaves 17 numbers to be considered,
7, 11, 15, 23, 27, 31, 39, 43, 47, 55, 59, 63, 71, 75, 79, 87, 91, 95. These can be methodically tested. The worst
of them is 27, which requires over 70 applications of T to reach 1.

1.5.53. We first show that (2 +
√

3)n + (2 −√
3)n is an even integer. By the binomial theorem it follows that

(2 +
√

3)n + (2 − √
3)n =

∑n
j=0

(
n
j

)
2j
√

3
n−j

+
∑n

j=0

(
n
j

)
2j(−1)n−j

√
3

n−j
= 2(2n +

(
n
2

)
3 · 2n−2+

(
n
4

)
32 ·

2n−4 + · · · ) = 2l where l is an integer. Next, note that (2−√
3)n < 1. Because (2+

√
3)n is not an integer,

we see that [(2 +
√

3)n] = (2 +
√

3)n + (2 −√
3)n − 1. It follows that [(2 +

√
3)n] is odd.

1.5.54. Suppose [a/2] + [a/3] + [a/5] = a. By the division algorithm, there exist integers q and r such that
a = 30q + r with 0 ≤ r ≤ 29. Because a is positive, we must have q ≥ 0. Then [a/2] + [a/3] + [a/5] =
[(30q + r)/2] + [(30q + r)/3] + [(30q + r)/5] = 15q + [r/2] + 10q + [r/3] + 6q + [r/5] = 31q + [r/2] + [r/3] +
[r/5] = 30q + r. Simplifying gives us q = r − [r/2] − [r/3] − [r/5]. Note the following fact: If c and b are
positive integers, the division algorithm gives us integers s and t with c = sb + t and 0 ≤ t < b. Then
[c/b] = [(sb + t)/b] = sb/b = (c − t)/b ≥ (c − (b − 1))/b. Using this inequality in our last equation gives
us q ≤ r − (r − 1)/2 − (r − 2)/3 − (r − 4)/5 = r(−1/30) + 59/30 ≤ 59/30 because r ≥ 0. Thus q = 0
or 1, which forces 1 ≤ a ≤ 30(1) + 29 = 59. So we need only check these 59 numbers. We compute
a − ([a/2] + [a/3] + [a/5]) for a = 1, 2, 3, . . . , 59 and find the 29 solutions: 6, 10, 12, 15, 16, 18, 20, 21, 22,
24, 25, 26, 27, 28, 31, 32, 33, 34, 35, 37, 38, 39, 41, 43, 44, 47, 49, 53, and 59.

1.5.55. We prove existence of q and r by induction on a. First assume that a ≥ 0. Assume existence in the
division algorithm holds for all nonnegative integers less than a. If a < b, then let q = 0 and r = a, so
that a = qb + r and 0 ≤ r = a < b. If a ≥ b, then a − b is nonnegative and by the induction hypothesis,
there exist q′ and r′ such that a− b = q′b+ r′, with 0 ≤ r′ < b. Then a = (q′ +1)b+ r′, so we let q = q′ +1
and r = r′. This establishes the induction step, so existence is proved for a ≥ 0. Now suppose a < 0.
Then −a > 0 so from our work above, there exist q′ and r′ such that −a = q′b + r′ and 0 ≤ r′ < b. Then
a = −q′b − r′. If r′ = 0, we’re done. If not, then 0 ≤ b − r′ < b and a = (−q′ − 1)b + b − r′, so letting q =
−q′ − 1 and r = b − r′ satisfies the theorem. Uniqueness is proved just as in the text.
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CHAPTER 2

Integer Representations and Operations

2.1. Representations of Integers

2.1.1. We have 1999 = 7 ·285+4, 285 = 7 ·40+5, and 40 = 7 ·5+5, and 5 = 7 ·0+5. The sequence of remain-
ders gives the base 7 digits. Hence (1999)10 = (5554)7. We have (6105)7 = 6·73+1·72+0·7+5 = (2112)10.

2.1.2. We have 89156 = 8 · 11144 + 4, 11144 = 8 · 1393 + 0, 1393 = 8 · 174 + 1, 174 = 8 · 21 + 6, 21 = 8 · 2 + 5,
and 2 = 8 · 0 + 2. The sequence of remainders gives us (89156)10 = (256104)8. We have (706113)8 =
7 · 85 + 6 · 83 + 82 + 8 + 3 = (232523)10.

2.1.3. We have (10101111)2 = (175)10, and (999)10 = (1111100111)2.

2.1.4. We have (101001000)2 = 23 + 26 + 28 = (328)10.

2.1.5. We group together blocks of four binary digits starting from the right. We have (0101)2 = (5)16,
(1111)2 = (F )16, (1000)2 = (8)16. Hence (100011110101)2 = (8F5)16. Likewise, (1110)2 = (E)16,
(0100)2 = (4)16, and (0111)2 = (7)16. Therefore, (11101001110)2 = (74E)16.

2.1.6. Each hexadecimal digit corresponds to a block of four binary digits. Translating each hexadecimal
digit into the corresponding block of four binary digits gives (ABCDEF )16 =
(101010111100110111101111)2, (DEFACED)16 = (1101111011111010110011101101)2, and (9A0B)16 =
(1001101000001011)2.

2.1.7. This is because we are using the blocks of three digits as one “digit,” which has 1000 possible values.

2.1.8. The proof of Theorem 1.10 goes through exactly, with the inequality 0 ≤ ai ≤ b − 1 replaced by 0 ≤
ai <| b | at each step.

2.1.9. We find that (101001)−2 = 1(−2)5 + 0(−2)4 + 1 · (−2)3 + 0(−2)2 + 0(−2)1 + 1(−2)0 = −39 and
(12012)−3 = 1(−3)4 + 2(−3)3 + 0(−3)2 + 1(−3)1 + 2(−3)0 = 26.

2.1.10. −7 = (−2) · 4 + 1, 4 = (−2) · (−2) + 0,−2 = (−2) · 1 + 0, 1 = (−2) · 0 + 1, so (−7)10 = (1001)−2. −17 =
(−2) · 9 + 1, 9 = (−2) · −4 + 1,−4 = (−2) · 2 + 0, 2 = (−2) · −1 + 0,−1 = (−2) · 1 + 1, 1 = (−2) · 0 + 1, so
(−17)10 = (110011)−2. 61 = (−2) · −30 + 1,−30 = (−2) · 15 + 0, 15 = (−2) · −7 + 1− 7 = (−2) · 4 + 1, 4 =
(−2) · 2 + 0, 2 = (−2) · 1 + 1, 1 = (−2) · 0 + 1, so (61)10 = (1001101)−2.

2.1.11. If m is any integer weight less than 2k, then by Theorem 1.10, m has a base two expansion m =
ak−12k−1+ak−22k−2+· · ·+a121+a020, where each ai is 0 or 1. The 2i weight is used if and only if ai = 1.

2.1.12. To show existence, mimic the proof of Theorem 2.1 using Exercise 18 of Section 1.5. To show unique-
ness, assume that a given number has two representations and look at the difference of these represen-
tations. Observe that a number is equal to 0 if and only if ej is 0 for all j. The result follows.

2.1.13. Let w be the weight to be measured. By Exercise 10, w has a unique balanced ternary expansion. Place
the object in pan 1. If ei = 1 then place a weight of 3i into pan 2. If ei = −1 then place a weight of 3i in
pan 1. If ei = 0 then do not use the weight of 3i. Now the pans will be balanced.
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2.1.14. Each base 9 digit corresponds to two base 3 digits and vice versa. The correspondence is (0)9 =
(00)3, (1)9 = (01)3, (2)9 = (02)3, (3)9 = (10)3, (4)9 = (11)3, (5)9 = (12)3, (6)9 = (20)3, (7)9 = (21)3, (8)9 =
(22)3. To convert a base 9 expansion to a base 3 expansion we simply replace each base 9 digit with the
corresponding two base 3 digits. To convert a base 3 expansion to a base 9 expansion, we start at the
right of the expansion and replace blocks of two base 3 digits to the corresponding base 9 digit, putting
an initial 0 in the last block from the left if it consists only of 1 digit.

2.1.15. To convert a number from base r to base rn, take the number in blocks of size n. To go the other way,
convert each digit of a base rn number to base r, and concatenate the results.

2.1.16. If n = (akak−1 . . . a1a0)b, then n = akbk + ak−1b
k−1 + · · · + a1 + a0. Now it follows directly that n =

(akbk−j + ak−1b
k−j−1 + · · · + aj)bj + aj−1b

j−1 + · · · + a0.

2.1.17. Multiplying n by bm gives bmn = bm(akbk + ak−1b
k−1 + · · · + a1b + a0) = (akbk+m + ak−1b

k+m−1 +
· · · + a1b

m+1 + a0b
m + 0 · bm−1 + · · · + 0) = (akak−1 . . . a1a000 . . . 00)b, where we have placed m zeroes

at the end of the base b expansion of n.

2.1.18. a. 22 = (10110)2, and because 22 > 0, the one’s complement representation is 22 is 010110.

b. 31 = (11111)2, and because 31 > 0, the one’s complement representation of 31 is 011111.

c. 7 = (00111)2, and because −7 < 0, the one’s complement of −7 is a 1 followed by the complement
of the binary representation of 7, to wit, 111000.

d. 19 = (10011)2, and because −19 < 0, the one’s complement of −19 is a 1 followed by the comple-
ment of the binary representation of 19, to wit, 101100.

2.1.19. a. The lead digit is a one, so the number is negative. Its absolute value has a binary representation of
the complement of 1001, i.e. 0110. Thus 11001 is the one’s complement representation of −6.

b. 01101 is the one’s complement representation of 13.

c. 10001 is the one’s complement representation of −14.

d. 11111 is a one’s complement representation of 0. Note that 00000 also represents 0.

2.1.20. Take the complement of each and every digit.

2.1.21. If m is positive, then an−1 = 0 and an−2an−3 . . . a0 is the binary expansion of m. Hence, m =∑n−2
i=0 ai2i as desired. If m is negative, then the one’s complement expansion for m has its leading bit

equal to 1. If we view the bit string an−2an−3 . . . a0 as a a binary number, then it represents (2n−1 −
1) − (−m), because finding the one’s complement is equivalent to subtracting the binary number from
111 · · · 1. That is (2n−1 − 1) − (−m) =

∑n−2
i=0 ai2i. Solving for m gives us the desired identity.

2.1.22. a. 22 = (10110)2. Because 22 is positive, we append a leading 0 to this expansion to obtain 010110 as
the two’s complement representation of 22.

b. 31 = (11111)2. Because 31 is positive, we append a leading 0 to this expansion to obtain 011111 as
the two’s complement representation of 31.

c. Because −7 is negative, we consider the binary expansion of 25 − 7 = 25 = (11001)2, and then ap-
pend a leading 1 to obtain 111001 as the two’s complement representation of −7.

d. Because −19 is negative, we consider the binary expansion of 25 − 19 = 13 = (01101)2, and then
append a leading 1 to obtain 101101 as the two’s complement representation of −19.

Copyright c© 2011 Pearson Education, Inc. Publishing as Addison-Wesley



Chapter 2 27

2.1.23. a. Because the first digit is a 1, we know that the integer is negative and that (1001)2 = 9 is the binary
expansion of 24 − |x|. So |x| = 16 − 9 = 7, and thus x = −7.

b. Because the first digit is a 0, we know that the integer is positive and hence x = (1101)2 = 13.

c. Because the first digit is a 1, we know that the integer is negative and that (0001)2 = 1 is the binary
expansion of 24 − |x|. So |x| = 16 − 1 = 15, and thus x = −15.

d. Because the first digit is a 1, we know that the integer is negative and that (1111)2 = 15 is the binary
expansion of 24 − |x|. So |x| = 16 − 15 = 1, and thus x = −1.

2.1.24. If m is positive, then an−1 = 0 and
∑n−2

i=0 ai2i is the binary expansion of m. Hence m = −an−12n−1 +∑n−2
i=0 ai2i. If m is negative, then an−1 = 1 and

∑n−2
i=0 ai2i is the binary expansion of 2n−1 + m. Hence,

m = −an−12n−1 +
∑n−2

i=0 ai2i.

2.1.25. If each of the digits in the two’s complement representation for m is complemented and then 1 is
added to the resulting binary number, the result is the two’s complement representation for −m. To see
this note that m + (−m) + (−1) = (binary expansion of m) + (2n−1+binary expansion for 2n−1 − m) +
(−1) = 2n−1+2n−1−1 = 2n−1 = (111 . . . 1)2. Therefore the two’s complement representation of −m−1
is the complement of m.

2.1.26. If m is positive, the representations are identical. If m is negative, then we compare the solutions to
Exercises 25 and 20 to see that we need only add 1 to the one’s complement representation of m to ob-
tain the two’s complement.

2.1.27. Because 4 bits are required for every decimal digit, 4n bits are required to store the number in this
manner.

2.1.28. We see that 3! is the largest factorial less than 14. We have 14 = 2 · 3! + 2. Next, we find that 2 =
1 · 2! + 0. It follows that 14 = 2 · 3! + 1 · 2! + 0 · 1! = (210)!. We see that 4! is the largest factorial less
than 56. We have 56 = 2 · 4! + 8. Next, we find that 8 = 1 · 3! + 2, and 2 = 1 · 2! + 0. It follows that 56 =
2 · 4! + 1 · 3! + 1 · 2! + 0 · 1! = (2110)!. We see that 5! is the largest factorial less than 384. We have 384 =
3 · 5! + 24. Next we see that 384 = 1 · 4!. Hence 384 = 3 · 5! + 1 · 4! + 0 · 3! + 0 · 2! + 0 · 1! = (31000)!.

2.1.29. We first show that every positive integer has a Cantor expansion. To find a Cantor expansion of the
positive integer n, let m be the unique positive integer such that m! ≤ n < (m + 1)!. By the division
algorithm there is an integer am such that n = m! · am + rm where 0 ≤ am ≤ m and 0 ≤ rm < m!. We
iterate, finding that rm = (m − 1)! · am−1 + rm−1 where 0 ≤ am−1 ≤ m − 1 and 0 ≤ rm−1 < (m − 1)!.
We iterate m − 2 more times, where we have ri = (i − 1)! · ai−1 + ri−1 where 0 ≤ ai−1 ≤ i − 1 and 0 ≤
ri−1 < (i − 1)! for i = m + 1,m,m − 1, . . . , 2 with rm+1 = n. At the last stage we have r2 = 1! · a1 + 0
where r2 = 0 or 1 and r2 = a1.

Now that we have shown that every integer has a Cantor expansion, we must show that this expan-
sion is unique. So suppose that n has two different Cantor expansions n = amm! + am−1(m− 1)! + · · ·+
a22! + a11! = bmm! + bm−1(m − 1)! + · · · + b22! + b11!, where aj and bj are integers, and 0 ≤ aj ≤ j and
0 ≤ bj ≤ j for j = 1, 2, . . . , m. Suppose that k is the largest integer such that ak �= bk, and without loss
of generality, assume ak > bk, which implies that ak ≥ bk + 1. Then akk! + ak−1(k − 1)! + · · · + a11! =
bkk! + bk−1(k− 1)! + · · ·+ b11!. Using the identity

∑k
j=1 j · j! = (k + 1)!− 1, proved in Exercise 16 of Sec-

tion 1.3, we see that bkk!+ bk−1(k− 1)!+ · · ·+ b11! ≤ bkk!+ (k− 1) · (k− 1)!+ · · ·+1 · 1! ≤ bkk!+k!− 1 =
(bk + 1)k! − 1 < akk!. This is a contradiction, so the expansion is unique.

2.1.30. If Player One takes 2 matches then they must be from the same stack. Player Two may then win by
taking the other two. If Player One takes only one match, then Player Two can take one match from the
other stack, which is a winning position as discussed in the description of Nim.

2.1.31. Call a position good if the number of ones in each column is even, and bad otherwise. Because a player
can only affect one row, he or she must affect some column sums. Thus any move from a good position
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produces a bad position. To find a move from a bad position to a good one, construct a binary number
by putting a 1 in the place of each column with odd sum, and a 0 in the place of each column with even
sum. Subtracting this number of matches from the largest pile will produce a good position.

2.1.32. Let (w, x, y, z) represent the number wxyz, where w, x, y, z are single digits. Let a, b, c, d be the digits
of a fixed point n of T (a number such that T (n) = n). We first show that all four digits of n are different.
Suppose, to the contrary, that b = c. Then (a, b, b, d) − (d, b, b, a) = (a − 1 − d, 9, 9, 10 + d − a). Because
n is a fixed point, we can now see that it must have two 9s, and as b = c, in fact it must have three 9s.
So a = b = c = 9. From this, because d �= 10 + d − a = d + 1, we know that d = 8 − d, and d = 4. But
(9, 9, 9, 4) − (4, 9, 9, 9) = (4, 9, 9, 5), so there is not a fixed point with b = c. Therefore, b �= c. Suppose,
now, that a > b > c = d. Then (a, b, c, c)− (c, c, b, a) = (a− c, b−1− c, c+9− b, 10+ c−a). As, b− c−1 <
a − c, a − c > b − c − 1 < b, and c + 9 − b ≥ 10 + c − a, we know that a and b are a − c and c + 9 − b,
perhaps not respectively. If a = a− c, then c = 0. But then b = 9− b, which is impossible. If a = c+9− b,
then b = a − c and a = c + 9 − a − c, from which it follows that 9 is even. So we conclude that c �=
d. Suppose that a = b > c > d. Then (a, a, c, d) − (d, c, a, a) = (a − d, a − c − 1, c − a + 9, 10 + d − a).
From the inequalities a ≥ a − d ≥ a − c > a − c − 1 and c − a + 9 ≥ d + 1 − a + 9 = 10 + d − a we
may conclude that c and d are a − c − 1 and 10 + d − a, perhaps not respectively. If c = a − c − 1, then
we see that a must be odd. But in this case d = 10 + d − a also, which tells us that a must be even. If,
on the other hand, c = 10 + d − a and d = a − c − 1, then c = 10 + a − c − 1 − a = 9 − c, which is
impossible. We conclude here that a �= b. Suppose that a = b > c = d. Then (a, a, c, c) − (c, c, a, a) =
(a − c, a − c − 1, c − a + 9, 10 + c − a). Because a − c > a − c − 1, a − c = a and c = 0. Now a − c − 1 =
c, so a = 1. But (1, 1, 0, 0)− (0, 0, 1, 1) = (1, 0, 8, 9), so clearly this does not give a fixed point. So we now
know that a > b > c > d. Now, (a, b, c, d) − (d, c, b, a) = (a − d,−1 + b − c, 9 − b + c, 10 − a + d). Note
that a − d > −1 + b − c, and 9 + c − b > 10 + d − a > d. So, d is either −1 + b − c or 10 + d − a. If d =
10 + d − a, then a = 10, which is not a single digit. Thus, d = −1 + b − c. Now, we see that c is either
a− d or 10 + d− a. If c = a− d, then d = −1 + b− c = −1 + b− a + d. From this, we arrive at a + 1 = b, a
contradiction. Thus c = 10 + d − 1. If a = a − d, then d = 0. Proceeding along with thought, b = c + 1 =
9 + c − b now, which tells us that b = 8, c = 7 and a = 4. This is a contradiction. Thus a = 9 + c − b and
b = a − d. We now have four equations in four unknowns. Solving this system, we find that a = 7, b =
6, c = 4, and d = 1. This gives a fixed point, namely 6174.

2.1.33. a. First show that the result of the operation must yield a multiple of 9. Then, it suffices to check only
multiples of 9 with decreasing digits. There are only 79 of these. If we perform the operation on
each of these 79 numbers and reorder the digits, we will have one of the following 23 numbers:
7551, 9954, 5553, 9990, 9981, 8820, 9810, 9620, 8532, 8550, 9720, 9972, 7731, 6543, 8730, 8640, 8721,
7443, 9963, 7632, 6552, 6642, or 6174. It will suffice to check only 9810, 7551, 9990, 8550, 9720, 8640,
and 7632, because the other numbers will appear in the sequences which these 8 numbers generate.

b. From the solution in part (a), construct a tree from the last seven numbers. The longest branch is six
steps. Every number will reach the tree in two steps. The maximum is given by 8500 (for instance)
which takes eight steps.

2.1.34. Let a0 = (a, b, c, d) be a base 5 fixed point of T5. Then T5(a0) = (a, b, c, d) − (d, c, b, a) =
(a − d, b − 1 − c, c + 4 − b, d + 5 − a), for all a0, with b �= c. Note that the center two digits of T (a0)
sum to (3)5, and the outer two to (10)5. Because the order of the digits is irrelevant, we need only
examine four cases: (1034)5, (1124)5, (2033)5, and (2124)5. By checking these cases one at a time, we
find that they all go to (3032)5, which is a fixed point of T5. Similarly, if b �= c, then T5(a0) is one of
(0444)5, (1443)5, (2442)5, (3441)5, and (4440)5. By symmetry, we need only check (0444)5, (1443)5, and
(2442)5. All of these do, in fact, go to (3032)5, the Kaprekar’s constant for the base 5.

2.1.35. Consider a0 = (3043)6. Then T6((3043)6) = (3552)6, T6((3552)6) = (3133)6, T6((3133)6) = (1554)6,
T6((1554)6) = (4042)6, T6((4042)6) = (4132)6, and T6((4132)6) = (3043)6 = a0. So T6 repeats with pe-
riod 6. Therefore, it never goes to a Kaprekar’s constant for the base 6. Hence, there is no Kaprekar’s
constant for the base 6.
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2.1.36. Let (abc)10, be the digits of an integer with a ≤ b ≤ c, and a, b, and c not all the same. Then (abc)10 −
(cba)10 = ((a − c)(9)(10 + c − a))10, so the form of the next integer is 9bc. Then (9bc)10 − (cb9)10 = ((9 −
c − 1)(9)(1 + c))10. After re-ordering, we see that after two iterations we must have one of the numbers
891, 792, 693, or 594. Then T (981) = 792, T (792) = 693, T (693) = 594, and T (594) = 495, up to order of
the digits. Therefore 495 is a Kaprekar’s constant for three-digit base 10 integers.

2.1.37. Suppose n = ai + aj = ak + al with i ≤ j and k ≤ l. First suppose i �= j. Then n = ai + aj = 2i + 2j is
the binary expansion of n. By Theorem 2.1, this expansion is unique. If k = l then ak + al = 2k+1 which
would be a different binary expansion of n, so k �= l. Then we must have i = k and j = l by Theorem
2.1, so the sum is unique. Next suppose i = j. Then n = 2i+1 and so ak +al = 2k +2l = 2i+1. This forces
k = l = i, and again the sum is unique. Therefore {ai} is a Sidon sequence.

2.2. Computer Operations with Integers

2.2.1. To add (101111011)2 and (1100111011)2 we first add 1 and 1, obtaining the rightmost bit 0 and the
carry 1. Then we add the bits 1 and 1 and the carry 1, obtaining the second bit from the right in the sum
1 and the carry 1. Then we add the bits 0 and 0, and the carry 1, obtaining the third bit from the right in
the sum, 1. Then we add the bits 1 and 1, obtaining the fourth bit from the right in the sum, 0, and the
carry 1. Then we add the bits 1 and 1 and the carry 1, obtaining the fifth bit from the right in the sum 1,
and the carry 1. Then we add the bits 1 and 1 and the carry obtaining the sixth bit from the right in the
sum 1, and the carry 1. Then we add the bits 1 and 0 and the carry 1 obtaining the seventh bit from the
right in the sum, 0, and the carry, 1. Then we add the bits 0 and 0 and the carry 1, obtaining the eighth
bit from the right in the sum 1. Then we add the bits 1 and 1, obtaining the ninth bit from the right, 0,
and the carry 1. Then we add the (leading) bit 0 and the bit 1 and the carry 1, obtaining the tenth bit in
the sum, 0, and the carry, 1, which is the leading bit from the left. Hence the sum is (10010110110)2.

2.2.2. We have (10001000111101)2 + (11111101011111)2 = (110000110011100)2

2.2.3. We have (1111000011)2 − (11010111)2 = (1011101100)2

2.2.4. We have (1101101100)2 − (101110101)2 = (111110111)2

2.2.5. To multiply (11101)2 and (110001)2 we need to add 20(110001)2 = (110001)2, 22(110001)2 = (11000100)2,
23(110001)2 = (110001000)2, and 24(110001)2 = (1100010000)2. The first bit and carry are computed
from 1 + 0 + 0 + 0 = 1. The second bit and carry are computed from 0 + 0 + 0 + 0 = 0. The third bit and
carry are computed from 0+1+0+0 = 1. The fourth bit and carry are computed from 0+0+1+0 = 1.
The fifth bit and carry are computed from 1 + 0 + 0 + 1 = 10. The sixth bit and carry are computed from
(with the carry 1) 1 + 1 + 0 + 0 + 0 = 10. The seventh bit and carry are computed from (with the carry 1)
1+0+1+0+0 = 10. The eighth bit and carry are computed from (with the carry 1) 1+0+1+1+0=11. The
ninth bit and carry are computed from (with the carry 1) 1+0+0+1+1= 11. The tenth bit and eleventh bit
are computed from (with the carry 1) 1+0+0+0+1=10. Hence (11101)2 · (110001)2 = (10110001101)2.

2.2.6. We have (1110111)2 · (10011011)2 = (100100000001101)2

2.2.7. We have (110011111)2 = (11111)2 · (1101)2 + (1100)2

2.2.8. We see that, because of the length of the words (11101)2 and (110100111)2, that our quotient has
four digits. We begin with (110100111)2 = 23(11101)2 + (10111111)2. We continue with (10111111)2 =
22(11101)2 + (1001011)2 and (1001011)2 = 2(11101)2 + (10001)2. Thus, when (110100111)2 is divided by
(11101)2, we get a quotient of (1110)2 and a remainder of (10001)2.

2.2.9. We have (1234321)5 + (2030104)5 = (3314430)5

2.2.10. We have (4434201)5 − (434421)5 = (3444230)5
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2.2.11. We have (1234)5 · (3002)5 = (3023)5 + (4312000)5 = (4320023)5

2.2.12. We have (14321)5 = (22)5 · (334)5 + (313)5

2.2.13. To add (ABAB)16 and (BABA)16 we first add the rightmost hexadecimal digits B and A obtaining
the rightmost digit of the sum, 5, and carry, 1. Then we add the hexadecimal digits in the second po-
sition from the right and the carry, namely A,B and 1, obtaining the second digit from the right in the
sum, 6, and the carry, 1. Then we add the hexadecimal digits in the third position from the right, namely
B, A, and 1, obtaining the digit in the third position from the right, 6, and the carry, 1. Finally, we add
the hexadecimal digits in the leftmost position and the carry, namely A,B, and 1, obtaining the second
hexadecimal digit from the left in the sum, 6, and the leftmost hexadecimal digit in the sum 1. Hence
the sum is (16665)16.

2.2.14. We have (FEED)16 − (CAFE)16 = (33EF )16

2.2.15. We have (FACE)16 · (BAD)16 = (B705736)16

2.2.16. We have (BEADED)16 = (11C)16 · (ABBA)16 + (2B95)16

2.2.17. We represent the integer (18235187)10 using three words: ((018)(235)(187))1000 and the integer (22135674)10
using three words: ((022)(135)(674))1000, where each base 1000 digit is represented by three base 10 dig-
its in parentheses. To find the sum, difference, and product of these integers from their base 1000 repre-
sentations we carry out the algorithms for such computations for base 1000. The details are omitted.

2.2.18. The algorithms for addition, subtraction, multiplication, and integer division for numbers written in
a negative base are identical to those written in a positive base.

2.2.19. To add numbers using the one’s complement representation, first decide whether the answer will be
negative or positive. To do this is easy if both numbers have the same lead (sign) bit; otherwise conduct
a bit-by-bit comparison of a positive summand’s digits and the complement of the negative’s. Now, add
the other digits (all but the initial (sign) bit) as an ordinary binary number. If the sum is greater than 2n

we have an overflow error. If not, consider the three quantities of the two summands and the sum. If
exactly zero or two of these are negative, we’re done. Otherwise, we need to add (1)2 to this answer.
Also, add an appropriate sign bit to the front of the number.

2.2.20. To subtract b from a, obtain −b as in Exercise 20, Section 2.1. Then add a and −b as in Exercise 19.

2.2.21. Let a = (amam−1 . . . a2a1)! and b = (bmbm−1 . . . b2b1)!. Then a+b is obtained by adding the digits from
right to left with the following rule for producing carries. If aj + bj + cj−1, where cj−1 is the carry from
adding aj−1 and bj−1, is greater than j, then cj = 1, and the resulting jth digit is aj + bj + cj−1 − j − 1.
Otherwise, cj = 0. To subtract b from a, assuming a > b, we let di = ai − bi + ci−1 and set ci = 0 if
ai − bi + ci−1 is between 0 and j. Otherwise, di = ai − bi + ci−1 + j + 1 and set ci = −1. In this manner,
a − b = (dmdm−1 . . . d2d1)!.

2.2.22. a. We have (374)12 eggs removed from (B03)12 eggs (where B is the base 12 digit that represents the
decimal integer 11). Because (B30)12 − (374)12 = (778)12 there are 7 gross, 7 dozen, and 8 eggs left.

b. We have (5)12 times (237)12 eggs in the delivery. Because (5)12 · (237)12 = (B5B)12 there were 11
gross, 5 dozen, and 11 eggs in the delivery.

c. We have three groups of eggs each containing (BA6)12/(3)12 eggs. Because (BA6)12/(3)12 =
(3B6)12, each group contains 3 gross, 11 dozen, and 6 eggs.

2.2.23. We have (an . . . a15)210 = (10(an . . . a1)10 + 5)2 = 100(an . . . a1)210 + 100(an . . . a1)10 + 25 =
100(an . . . a1)10((an . . . a1)10 + 1) + 25. The decimal digits of this number consist of the decimal dig-
its of (an . . . a1)10((an . . . a1)10 + 1) followed by 25 because this first product is multiplied by 100 which
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shifts its decimal expansion two digits.

2.2.24. We have (an . . . a1B)22B = (2B(an . . . a1)10 + B)2 = (2B)2(an . . . a1)210 + 4B2(an . . . a1)2B + B2 =
(2B)2(an . . . a1)2B((an . . . a1)2B + 1) + 25. The base 2B digits of this number consist of the base 2B dig-
its of (an . . . a1)2B(an . . . a1)2B +1 followed by B2 because this first product is multiplied by (2B)2 which
shifts its base 2B expansion two digits. To finish the proof, note that B2 = (B/20)2B =
(2B)(B/2) + 0 is valid when B is even. Furthermore, when B is odd, B2 = ((B − 1)/2B)2B =
(2B)((B − 1)/2) + B.

2.3. Complexity and Integer Operations

2.3.1. a. We have 2n + 7 is O(n) because 2n + 7 ≤ 9n for every positive integer n.

b. Note that n2/3 is not O(n) for if C is a real number it follows n2/3 > Cn whenever n > 3C.

c. We have 10 is O(n) because 10 ≤ 10n whenever n is a positive integer.

d. We have n2 + 1 ≤ 2n2 whenever n is a positive integer. Hence log(n2 + 1) ≤ log(2n2) = 2 log n +
log 2 ≤ 3n whenever n is a positive integer. It follows that log(n2 + 1) is O(n).

e. Note that
√

n2 + 1 ≤
√

2n2 ≤ √
2 · n whenever n is a positive integer. Hence

√
n2 + 1 is O(n).

f. We have (n2 + 1)/(n + 1) < (2n2/n = 2n whenever n is a positive integer. Hence (n2 + 1)/(n + 1)
is O(n).

2.3.2. Note that for n ≥ 1, 2n4 + 3n3 + 17 ≤ 2n4 + 3n4 + 17n4 = 22n4. So we take K = 22, in the definition.

2.3.3. First note that (n3 + 4n2 log n + 101n2) is O(n3) and that (14n log n + 8n) is O(n log n) as in Example
2.12. Now applying Theorem 2.3 yields the result.

2.3.4. Note that n! =
∏n

j=1 j ≤ ∏n
j=1 n = nn whenever n is a positive integer. Hence n! = O(nn).

2.3.5. Use Exercise 4 and follow Example 2.12 noting that (log n)3 ≤ n3 whenever n is a positive integer.

2.3.6. Note that n! =
∑n

j=1 jm ≤ ∑n
j=1 nm = nm+1. Hence

∑n
j=1 jm = O(nm+1).

2.3.7. Let k be an integer with 1 ≤ k ≤ n. Consider the function f(k) = (n + 1 − k)k, whose graph is a
concave-down parabola with k-intercepts at k = 0 and k = n + 1. Because f(1) = f(n) = n, it is clear
that f(k) ≥ n for k = 1, 2, 3, . . . , n. Now consider the product (n!)2 =

∏n
k=1 k(n + 1 − k) ≥ ∏n

k=1 n, by
the inequality above. This last is equal to nn. Thus we have nn ≤ (n!)2. Taking logarithms of both sides
yields n log(n) ≤ 2 log(n!), which shows that n log(n) is O(log(n!)).

2.3.8. There exist by hypothesis k1 and k2 such that f1 ≤ k1O(g1) and f2 ≤ k2O(g2). Let k = max{c1k1, c2k2}.
Then c1f1 + c2f2 ≤ c1k1O(g1) + c2k2O(g2) ≤ k(O(g1) + O(g2)) = kO(g1 + g2).

2.3.9. Suppose that f is O(g) where f(n) and g(n) are positive integers for every integer n. Then there is an
integer C such that f(n) < Cg(n) for all x ∈ S. Then fk(n) < Ckgk(n) for all x ∈ S. Hence fk is O(gk).

2.3.10. Suppose f(n) = O(log2 n). Then f(n) ≤ k log2 n = k log2 r logr n = k′ logr n. Conversely, if f(n) ≤
k logr n = k(log2 n)/(log2 r) = k′ log2 n, and so f(n) = O(log2 n).

2.3.11. The number of digits in the base b expansion of n is 1 + k where k is the largest integer such that
bk ≤ n < bk+1 because there is a digit for each of the powers of b0, b1, . . . , bk. Note that this inequality
is equivalent to k ≤ logb n < k + 1, so that k = [logb n]. Hence there are [logb n] + 1 digits in the base b
expansion of n.
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2.3.12. For addition, three numbers (two operations) must be added for each digit. Thus it takes less than or
equal to 2n operations to add two numbers. Subtraction follows in a similar manner.

2.3.13. To multiply an n-digit integer by an m-digit integer in the conventional manner, one must multiply
every digit of the first number by every digit of the second number. There are nm such pairs.

2.3.14. a. There are n− 1 addition signs in 1 + 2 + · · ·n, so there are n− 1 additions total. Each addition takes
at most 2[log2 n]+2 bit operations (see solution to Exercise 12 and Exercise 11). So, the total number
of bit operations is at most 2(n − 1)([log2 n] + 1).

b. Here we have one multiplication, which will require at most ([log2 n + 1] + 1)2 operations. Shifting
is one bit operation, so the total number of bit operations is at most ([log2 n + 1] + 1)2 − 1.

2.3.15. a. We use the result of Theorem 2.6. Let m = [log2 n + 1]. If we first multiply consecutive pairs of
integers in the the product, we have O(n/2) multiplications of integers with at most m bits. By
Theorem 2.6, there is an algorithm for doing this using O(m log2 m log2 log2 m) operations. Now
we have [n/2] integers of at most 2m bits. If we multiply pairs of these integers together, then
by Theorem 2.6 again, this results in O((n/4)(2m) log2 m log2 log2 m), where we use the fact that
log2 km log2 log2 km = O(log2 m log2 log2 m) for any constant k. Continuing in this manner we find
that computing n! takes O(

∑m
j=1 n/(2j)2j−1 log2 m log2 log2 m) = O((n/2)m2 log2 m log2 log2 m) =

O(n log2
2 n log2 log2 n log2 log2 log2 n) operations.

b. We need to find three factorials, which will have the same big-O value as in part (a). We will also
need to perform one subtraction (which will not affect the big-O value), one multiplication and one
division. The factorials have at most n log n bits, so by Theorem 2.5, the multiplication will take at
most O((n log n)1+ε) bit operations. By Theorem 2.7, the division will take O((n log n)1+ε), so in to-
tal the number of bit operations is O((n log n)1+ε).

2.3.16. Let m be an integer. Then m has n = [log2(m)+1] bits, from Exercise 11. Using the method of Example
2.1, we need to perform the division algorithm n times. Each division takes O(n2) = O([log2(m)+1]2) =
O(log2 m). Therefore, the binary expansion can be found in O(log3 m) bit operations.

2.3.17. (1001)2 ·(1011)2 = (24 +22)(10)2(10)2 +22(10−01)2(11−10))2 +(22 +1)(01)2(11)2 = (10100)2(100)2 +
(100)2(01)2(01)2 + (101)2(01)2(11)2 = (1010000)2 + (100)2 + (1111)2 = (1100011)2

2.3.18. (10010011)2 · (11001001)2 = (28 + 24)(1001)2(1100)2 + 24(1001 − 0011)2(1001 − 1100))2 +
(24 + 1)(0011)2(1001)2 = (100010000)2(1101100)2 − (10000)2(0110)2(0011)2 + (10001)2(11011)2 =
(110110000000000)2 + (11011000000)2 − (100100000)2 + (111001011)2 = (111001101101011)2, where we
have used identity (1.9) with n = 2 to do the smaller multiplications.

2.3.19. a. ab = (102n + 10n)A1B1 + 10n(A1 − A0)(B0 − B1) + (10n + 1)A0B0 where Ai and Bi are defined as
in identity (1.9).

b. 73 · 87 = (102 + 10)7 · 8 + 10(7 − 3)(7 − 8) + (11)3 · 7 = 5600 + 560 − 40 + 210 + 21 = 6351.

c. 4216 · 2733 = (10100)42 · 27 + (100)(42− 16)(33− 27) + (101)16 · 33. Then, 42 · 27 = (102 + 10)4 · 2 +
10(4− 2)(7− 2) + (11)2 · 7 = 1134, and, 26 · 06 = (102 + 10)2 · 0 + 10(2− 6)(6− 0) + (11)6 · 6 = 156,
and 16 · 33 = (102 + 10)1 · 3 + 10(1 − 6)(3 − 3) + (11)6 · 3 = 528. Then 4216 · 2733 = (10100)1134 +
(100)156 + (101)528 = 11522328.

2.3.20. Note that an element of the kth column of A will be multiplied with each element of the kth row of
B. Thus, each of the n2 entries of A will be multiplied n entries of B. In other words, n3 multiplications
will be performed.

2.3.21. That the given equation is an identity may be seen by direct calculation. The seven multiplications
necessary to use this identity are: a11b11, a12b21, (a11 − a21 − a22)(b11 − b12 − b22), (a21 + a22)(b12 − b11),
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(a11 + a12 − a21 − a22)b22, (a11 − a21)(b22 − b12), a22(b11 − b21 − b12 + b22).

2.3.22. We proceed by mathematical induction. Exercise 21 serves to complete the basis step. For the induc-
tive hypothesis, assume that it requires 7k multiplications to multiply two 2k × 2k matrices, and fewer
than 7k+1 additions. Note that the identity from Exercise 21 holds when the entries of the 2× 2 matrices
are themselves square matrices, all the same size. Thus we may view a 2k+1 × 2k+1 matrix as a 2 × 2
matrix whose entries are 2k × 2k matrices. Thus we will need to multiply 2k × 2k matrices seven times,
requiring 7 · 7k = 7k+1 multiplications. Similarly, we will need to add 2k × 2k matrices 18 times, requir-
ing exactly 18 · 2k additions. But 18 · 2k < 7 · 3 · 2 · 2k−1 < 72 · 2k−1 < 7k+1, as desired.

2.3.23. Let k = [log2 n] + 1. Then the number of multiplications for 2k × 2k matrices is O(7k). But, 7k =
2(log2 7)([log2 n]+1) = O(2log2 n log2 72log2 7) = O(nlog2 7). The other bit operations are absorbed into this
term.
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CHAPTER 3

Primes and Greatest Common Divisors

3.1. Prime Numbers

3.1.1. a. We see that 101 is prime because it is not divisible by any positive integers other than 1 or 101. To
verify this it is sufficient to check that 101 is not divisible by any prime not exceeding

√
101. The

only such primes are 2, 3, 5, and 7 and none of these divide 101.

b. We see that 103 is prime because it is not divisible by any positive integers other than 1 or 103. To
verify this it is sufficient to check that 103 is not divisible by any prime not exceeding

√
103. The

only such primes are 2, 3, 5, and 7 and none of these divide 103.

c. We see that 107 is prime because it is not divisible by any positive integers other than 1 or 107. To
verify this it is sufficient to check that 107 is not divisible by any prime not exceeding

√
107. The

only such primes are 2, 3, 5, and 7 and none of these divide 107.

d. We see that 111 is not prime because it is divisible by 3.

e. We see that 113 is prime because it is not divisible by any positive integers other than 1 or 113. To
verify this it is sufficient to check that 113 is not divisible by any prime not exceeding

√
113. The

only such primes are 2, 3, 5, and 7 and none of these divide 113.

f. We see that 121 is not prime because it is divisible by 11.

3.1.2. a. We have 201 = 3 · 67, so 201 is not prime.

b. We have 203 = 7 · 29, so 203 is not prime.

c. We have 207 = 9 · 23, so 207 is not prime.

d. 211 is prime.

e. We have 213 = 3 · 71, so 213 is not prime.

f. We have 221 = 13 · 17, so 221 is not prime.

3.1.3. The primes less than 150 are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79,
83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149

3.1.4. In addition to the primes in Exercise 3, we have 151, 157, 163, 167, 173, 179, 181, 191, 193, 197 and 199.

3.1.5. Suppose that n = x4 − y4 = (x − y)(x + y)(x2 + y2), where x > y. The integer n can not be prime
because it divisible by x + y which can not be 1 or n.

3.1.6. We note that n must be positive. Otherwise n3 + 1 is less than or equal to 1 and no such integers are
prime. Because n3 + 1 = (n + 1)(n2 − n + 1), n3 + 1 is not prime unless one of the two factors on the
right hand side of this equation is 1 and the other is n3 + 1. But n + 1 is greater than 1 for every positive
integer n, and the only way for n + 1 = n3 + 1 is when n = 1 as is easily verified. It is this case we have
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13 + 1 = (1 + 1)(12 − 1 + 1) = 2. Hence 2 is the only prime of this form.

3.1.7. Using the identity given in the hint with k such that 1 < k < n and k | n, then ak − 1 | an − 1. Because
an − 1 is prime by hypothesis, ak − 1 = 1. From this, we see that a = 2 and k = 1, contradicting the fact
that k > 1. Thus we must have a = 2 and n is prime.

3.1.8. Because Qn is a positive integer greater than 1, by Lemma 3.1 it has a prime divisor p. If p ≤ n, then
p|n!, so then p|Qn − n! = 1, a contradiction. Therefore, we must have p > n. So we can construct an infi-
nite sequence of primes as follows. Choose p1 to be a prime divisor of Q1. Then choose p2 to be a prime
divisor of Qp1 , and in general choose pk+1 to be a prime divisor of Qpk

. Then p1 < p2 < · · · < pk < · · · ,
which proves that there are infinitely many primes.

3.1.9. We need to assume n ≥ 3 to assure that Sn > 1. Then by Lemma 3.1, Sn has a prime divisor p. If p ≤
n then p|n!, and so p|n! − Sn = 1, a contradiction. Therefore we must have p > n. Because we can find
arbitrarily large primes, there must be infinitely many.

3.1.10. a. We proceed by induction. When n = 1 we have p1 = 2 ≤ 220
= 2. Now assume that pk ≤ 22k

for
k = 1, 2, . . . , n − 1. Then by Euclid’s proof, a prime q other than p1, p2, . . . , pn divides Qn. Then
pn < q ≤ Qn = p1p2 · · · pn + 1 ≤ 220

221 · · · 22n−1
= 220+21+···+2n−1

= 22n−1−1 + 1. Because the in-
equality is strict and we are dealing with integers we have pn ≤ 22n−1−1 ≤ 22n−1

, which completes
the induction step.

b. By part a., the (n+1)st prime is less than or equal to 22n

, and because a power of 2 can not be prime
itself when n > 0, we must have at least n + 1 primes strictly less than 22n

.

3.1.11. Q1 = 3, Q2 = 7, Q3 = 31, Q4 = 211, Q5 = 2311, Q6 = 30031. The smallest prime factors are 3, 7, 31,
211, 2311, and 59, respectively.

3.1.12. Let Q = p1p2 · · · pn−1 + 1, where pi is the ith prime. Then by Euclid’s proof, some prime q different
from p1, p2, . . . , pn−1 divides Q. Then pn ≤ q ≤ Q.

3.1.13. If n is prime, we are done. Otherwise n/p < ( 3
√

n)2. If n/p is prime, then we are done. Otherwise, by
Theorem 3.2, n/p has a prime factor less than

√
n/p < 3

√
n, a contradiction.

3.1.14. Suppose p = 3k + 1 for some positive integer k. If k is odd, then k = 2n + 1 for some integer n and so
p = 3(2n + 1) + 1 = 6n + 4 = 2(3n + 2) which is clearly not prime, a contradiction. Therefore, k must be
even, say k = 2n for some integer n. Then p = 3(2n) + 1 = 6n + 1 as desired.

3.1.15. a. The arithmetic progression is 3n + 1 and the first values are 4, 7, 10, . . .. The first prime is 7.

b. We list the first few numbers of the shape 5n + 4 until we find a prime: 9, 14, 19, which is prime.

c. We list the first few numbers of the shape 11n + 16 until we find a prime: 27, 38, 49, 60, 71, which is
prime.

3.1.16. a. We list the first few numbers of the shape 5n + 1 until we find a prime: 6, 11, which is prime.

b. We list the first few numbers of the shape 7n + 2 until we find a prime: 9, 16, 23, which is prime.
(But if we begin with n = 0, the first term is 2, which is prime.)

c. We list the first few numbers of the shape 23n + 13 until we find a prime: 36, 59, which is prime.
(But if we begin with n = 0, the first term is 13 which is prime.)
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