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Introduction

1.1

1.

For y > 3/2, the slopes are negative, therefore the solutions are decreasing. For
y < 3/2, the slopes are positive, hence the solutions are increasing. The equilibrium
solution appears to be y(t) = 3/2, to which all other solutions converge.
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4.

For y > −1/2, the slopes are positive, and hence the solutions increase. For y <
−1/2, the slopes are negative, and hence the solutions decrease. All solutions
diverge away from the equilibrium solution y(t) = −1/2.

5. For all solutions to approach the equilibrium solution y(t) = 2/3, we must have
y ′ < 0 for y > 2/3, and y ′ > 0 for y < 2/3. The required rates are satisfied by the
differential equation y ′ = 2− 3y.

8.

Note that y ′ = 0 for y = 0 and y = 5. The two equilibrium solutions are y(t) = 0
and y(t) = 5. Based on the direction field, y ′ > 0 for y > 5; thus solutions with
initial values greater than 5 diverge from the solution y(t) = 5. For 0 < y < 5, the
slopes are negative, and hence solutions with initial values between 0 and 5 all
decrease toward the solution y(t) = 0. For y < 0, the slopes are all positive; thus
solutions with initial values less than 0 approach the solution y(t) = 0.
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10.

Observe that y ′ = 0 for y = 0 and y = 2. The two equilibrium solutions are y(t) = 0
and y(t) = 2. Based on the direction field, y ′ > 0 for y > 2; thus solutions with
initial values greater than 2 diverge from y(t) = 2. For 0 < y < 2, the slopes are
also positive, and hence solutions with initial values between 0 and 2 all increase
toward the solution y(t) = 2. For y < 0, the slopes are all negative; thus solutions
with initial values less than 0 diverge from the solution y(t) = 0.

11. -(j) y ′ = 2− y.

13. -(g) y ′ = −2− y.

14. -(b) y ′ = 2 + y.

16. -(e) y ′ = y (y − 3).

19. The difference between the temperature of the object and the ambient tem-
perature is u− 70 (u in ◦F). Since the object is cooling when u > 70, and the rate
constant is k = 0.05 min−1, the governing differential equation for the temperature
of the object is du/dt = −.05 (u− 70).

20.(a) Let M(t) be the total amount of the drug (in milligrams) in the patient’s
body at any given time t (hr). The drug enters the body at a constant rate of 500
mg/hr. The rate at which the drug leaves the bloodstream is given by 0.4M(t).
Hence the accumulation rate of the drug is described by the differential equation
dM/dt = 500− 0.4M (mg/hr).
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(b)

Based on the direction field, the amount of drug in the bloodstream approaches the
equilibrium level of 1250 mg (within a few hours).

22.

All solutions become asymptotic to the line y = t− 3 as t→∞.

25.

For all y(0), there is a number tf that depends on the value of y(0) such that
y(tf ) = 0 and the solution does not exist for t > tf .
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1.2

4.(a) The equilibrium solution satisfies the differential equation dye/dt = 0. Setting
aye − b = 0, we obtain ye(t) = b/a.

(b) Since dY/dt = dy/dt, it follows that dY/dt = a(Y + ye)− b = a Y .

6.(a) Consider the simpler equation dy1/dt = −ay1. As in the previous solutions,
rewrite the equation as (1/y1)dy1 = −a dt. Integrating both sides results in y1(t) =
c e−at.

(b) Now set y(t) = y1(t) + k, and substitute into the original differential equation.
We find that −ay1 + 0 = −a(y1 + k) + b. That is, −ak + b = 0, and hence k = b/a.

(c) The general solution of the differential equation is y(t) = c e−at + b/a. This
is exactly the form given by Eq.(17) in the text. Invoking an initial condition
y(0) = y0, the solution may also be expressed as y(t) = b/a+ (y0 − b/a)e−at.

11. The general solution of the differential equation dQ/dt = −r Q is Q(t) =
Q0e

−rt, in which Q0 = Q(0) is the initial amount of the substance. Let τ be
the time that it takes the substance to decay to one-half of its original amount,
Q0. Setting t = τ in the solution, we have 0.5Q0 = Q0e

−rτ . Taking the natural
logarithm of both sides, it follows that −rτ = ln(0.5) or rτ = ln 2.

14.(a) The accumulation rate of the chemical is (0.01)(300) grams per hour. At
any given time t, the concentration of the chemical in the pond is Q(t)/106 grams
per gallon. Consequently, the chemical leaves the pond at a rate of (3× 10−4)Q(t)
grams per hour. Hence, the rate of change of the chemical is given by

dQ

dt
= 3− 0.0003Q(t) g/hr.

Since the pond is initially free of the chemical, Q(0) = 0.

(b) The differential equation can be rewritten as dQ/(10000−Q) = 0.0003 dt. In-
tegrating both sides of the equation results in − ln |10000−Q| = 0.0003t+ C. Tak-
ing the exponential of both sides gives 10000−Q = c e−0.0003t. Since Q(0) = 0, the
value of the constant is c = 10000. Hence the amount of chemical in the pond at
any time is Q(t) = 10000(1− e−0.0003t) grams. Note that 1 year= 8760 hours. Set-
ting t = 8760, the amount of chemical present after one year is Q(8760) ≈ 9277.77
grams, that is, 9.27777 kilograms.

(c) With the accumulation rate now equal to zero, the governing equation becomes
dQ/dt = −0.0003Q(t) g/hr. Resetting the time variable, we now assign the new
initial value as Q(0) = 9277.77 grams.

(d) The solution of the differential equation in part (c) is Q(t) = 9277.77 e−0.0003t.
Hence, one year after the source is removed, the amount of chemical in the pond is
Q(8760) ≈ 670.1 grams.
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(e) Letting t be the amount of time after the source is removed, we obtain the equa-
tion 10 = 9277.77 e−0.0003t. Taking the natural logarithm of both sides, −0.0003 t =
ln(10/9277.77) or t ≈ 22, 776 hours≈ 2.6 years.

(f)

1.3

1. The differential equation is second order, since the highest derivative in the
equation is of order two. The equation is linear, since the left hand side is a linear
function of y and its derivatives.

3. The differential equation is fourth order, since the highest derivative of the
function y is of order four. The equation is also linear, since the terms containing
the dependent variable is linear in y and its derivatives.

4. The differential equation is second order. Furthermore, the equation is nonlinear,
since the dependent variable y is an argument of the sine function, which is not a
linear function.

5. y1(t) = et, so y ′1(t) = y ′′1 (t) = et. Hence y ′′1 − y1 = 0. Also, y2(t) = cosh t, so
y ′1(t) = sinh t and y ′′2 (t) = cosh t. Thus y ′′2 − y2

= 0.

7. y(t) = 3t+ t2, so y ′(t) = 3 + 2t. Substituting into the differential equation, we
have t(3 + 2t)− (3t+ t2) = 3t+ 2t2 − 3t− t2 = t2. Hence the given function is a
solution.

8. y1(t) = t/3, so y ′1(t) = 1/3 and y ′′1 (t) = y ′′′1 (t) = y ′′′′1 (t) = 0. Clearly, y1(t)
is a solution. Likewise, y2(t) = e−t + t/3, so y ′2(t) = −e−t + 1/3, y ′′2 (t) = e−t ,
y ′′′2 (t) = −e−t, y ′′′′2 (t) = e−t. Substituting into the left hand side of the equation,
we find that e−t + 4(−e−t) + 3(e−t + t/3) = e−t − 4e−t + 3e−t + t = t. Hence both
functions are solutions of the differential equation.
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9. y1(t) = t−2, so y ′1(t) = −2t−3 and y ′′1 (t) = 6 t−4. Substituting into the left hand
side of the differential equation, we have t2(6 t−4) + 5t(−2t−3) + 4 t−2 = 6 t−2 −
10 t−2 + 4 t−2 = 0. Likewise, y2(t) = t−2 ln t, so y ′2(t) = t−3 − 2t−3 ln t and y ′′2 (t) =
−5 t−4 + 6 t−4 ln t. Substituting into the left hand side of the equation, we have

t2(−5 t−4 + 6 t−4 ln t) + 5t(t−3 − 2t−3 ln t) + 4(t−2 ln t) =

= −5 t−2 + 6 t−2 ln t+ 5 t−2 − 10 t−2 ln t+ 4 t−2 ln t = 0.

Hence both functions are solutions of the differential equation.

11. Let y(t) = ert. Then y ′(t) = rert, and substitution into the differential equation
results in rert + 2ert = 0. Since ert 6= 0, we obtain the algebraic equation r + 2 = 0.
The root of this equation is r = −2.

12. y(t) = ert, so y ′(t) = r ert and y ′′(t) = r2ert. Substituting into the differential
equation, we have r2ert + rert − 6 ert = 0. Since ert 6= 0, we obtain the algebraic
equation r2 + r − 6 = 0, that is, (r − 2)(r + 3) = 0. The roots are r1 = 2, r2 = −3.

13. Let y(t) = ert. Then y ′(t) = rert, y ′′(t) = r2ert and y ′′′(t) = r3ert. Substitut-
ing the derivatives into the differential equation, we have r3ert − 3r2ert + 2rert = 0.
Since ert 6= 0, we obtain the algebraic equation r3 − 3r2 + 2r = 0 . By inspection,
it follows that r(r − 1)(r − 2) = 0. Clearly, the roots are r1 = 0, r2 = 1 and r3 = 2.

15. y(t) = tr, so y ′(t) = r tr−1 and y ′′(t) = r(r − 1)tr−2. Substituting the deriva-
tives into the differential equation, we have t2

[
r(r − 1)tr−2

]
− 4t(r tr−1) + 4 tr = 0.

After some algebra, it follows that r(r − 1)tr − 4r tr + 4 tr = 0. For t 6= 0, we ob-
tain the algebraic equation r2 − 5r + 4 = 0 . The roots of this equation are r1 = 1
and r2 = 4.

16. The order of the partial differential equation is two, since the highest derivative,
in fact each one of the derivatives, is of second order. The equation is linear, since
the left hand side is a linear function of the partial derivatives.

17. The partial differential equation is fourth order, since the highest derivative,
and in fact each of the derivatives, is of order four. The equation is linear, since
the left hand side is a linear function of the partial derivatives.

18. The partial differential equation is second order, since the highest derivative of
the function u(x, y) is of order two. The equation is nonlinear, due to the product
u · ux on the left hand side of the equation.

19. If u1(x, y) = cos x cosh y, then ∂2u1/∂x
2 = − cos x cosh y and ∂2u1/∂y

2 =
cos x cosh y. It is evident that ∂2u1/∂x

2 + ∂2u1/∂y
2 = 0. Also, when u2(x, y) =

ln(x2 + y2), the second derivatives are

∂2u2
∂x2

=
2

x2 + y2
− 4x2

(x2 + y2)2
and

∂2u2
∂y2

=
2

x2 + y2
− 4y2

(x2 + y2)2
.
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Adding the partial derivatives,

∂2u2
∂x2

+
∂2u2
∂y2

=
2

x2 + y2
− 4x2

(x2 + y2)2
+

2

x2 + y2
− 4y2

(x2 + y2)2
=

=
4

x2 + y2
− 4(x2 + y2)

(x2 + y2)2
= 0.

Hence u2(x, y) is also a solution of the differential equation.

21. Let u1(x, t) = sin (λx) sin (λat). Then the second derivatives are

∂2u1
∂x2

= −λ2 sin λx sin λat and
∂2u1
∂t2

= −λ2a2 sin λx sin λat.

It is easy to see that a2∂2u1/∂x
2 = ∂2u1/∂t

2. Likewise, given u2(x, t) = sin(x− at),
we have

∂2u2
∂x2

= − sin(x− at) and
∂2u2
∂t2

= −a2 sin(x− at).

Clearly, u2(x, t) is also a solution of the partial differential equation.

23.(a) The kinetic energy of a particle of mass m is given by T = mv2/2, in which
v is its speed. A particle in motion on a circle of radius L has speed L (dθ/dt),
where θ is its angular position and dθ/dt is its angular speed.

(b) Gravitational potential energy is given by V = mgh, where h is the height
above a certain datum. Choosing the lowest point of the swing as the datum, it
follows from trigonometry that h = L(1− cos θ).

(c) From parts (a) and (b),

E =
1

2
mL2(

dθ

dt
)2 +mgL(1− cos θ) .

Applying the chain rule for differentiation,

dE

dt
= mL2 dθ

dt

d2θ

dt2
+mgL sin θ

dθ

dt
.

Setting dE/dt = 0 and dividing both sides of the equation by dθ/dt results in

mL2 d
2θ

dt2
+mgL sin θ = 0,

which leads to Equation (12).

24.(a) The angular momentum is the moment of the linear momentum about a given
point. The linear momentum is given by mv = mLdθ/dt. Taking the moment about
the point of support, the angular momentum is

M = mvL = mL2 dθ

dt
.
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(b) The moment of the gravitational force is −mgL sin θ. The negative sign is
included since positive moments are counterclockwise. Setting dM/dt equal to the
moment of the gravitational force gives

dM

dt
= mL2 d

2θ

dt2
= −mgL sin θ,

which leads to Equation (12).
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