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2.1. (a) T(z[n]) = g[njz[n]
e Stable: Let |z[n]| < M then |T{z[n]| < |g[n]|M. So, it is stable if |g[n]| is bounded.

e Causal: y:1[n] = g[n]zi[n] and y2[n] = g[n]z2(n], so if z1[n] = z2[n] for all n < ng, then
y1[n] = y2[n] for all n < ng, and the system is causal.

e Linear:
T(az:1[n] + bz2[n]) = g[n](azi[n] + bz2[n]
= ag[n]z:1[n] + bg[n]z2[n]
= aT(zi[n]) + bT(z2[n])
So this is linear.
e Not time-invariant:
T(z[n —no]) = g[njz[n — no]

#  y[n — no] = g[n — nolz[n — no]

which is not TL
e Memoryless: y[n] = T(z[n]) depends only on the n* value of z, so it is memoryless.

(b) T(z[n]) = Tk=n, k]
e Not Stable: |z[n]| < M — [T(z[n])| < Y}_,, lzk]| < In —no|M. As n = oo, T — oo, 50 not

stable.
e Not Causal: T'(z[n]) depends on the future values of z[n] when n < no, so this is not causal.
o Linear:
T(azi[n] + bz2[n]) = Z az1 [k] + bz [k]
k=no
= a Z zi[n] + b Z z2[n]
k=ng k=ng
= aT(z1[n]) + bT (z2[n])
The system is linear.
e Not TI:
T(zln—no]) = Y zfk—no]
=ng
n—ng
= > alk
k=0
n—ng
# yln—nol= Y ali
k=no

The system is not TI.
e Not Memoryless: Values of y[n] depend on past values for n > ng, so this is not memoryless.

(©) T(aln]) Tpinl,, <lk]

o Stable: [T(z[n])| < Spine . |z[k]] < Tpin2,. zlkIM < |2no + 1|M for |z[n]| < M, so it is
stable.

e Not Causal: T(z[n]) depends on future values of z[n], so it is not causal.

e Linear:

n+no

Z azy[k] + bz, [k]

k=n—ng

T(az;i[n] + bza[n])

n+ng n+ng

a Y. m[kl+b Y =a[k] = aT(z[n]) + bT (z2[n])

k=n—ng k=n-—ng

o
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This is linear.
o TI:
n+ng

T(z[n—no] = Z z[k — ng]

k=n—ng
n

> alk]

k=n-—ng

y[n — noj

1l

This is TI.
e Not memoryless: The values of y[n] depend on 2ng other values of z, not memoryless.
(d) T(z[n]) = z[n — no
e Stable: |T'(z[n])| = |z[n — no]| < M if |z[n] < M, so stable.
o Causality: If ng > 0, this is causal, otherwise it is not causal.
e Linear:

T(az1[n] + bza[n]) azi[n — no] + bzafn — ngj

aT (z1[n]) + bT (z2[n])

This is linear.
o TI: T(z[n — n4] = z[n — ng — na] = y[n — ng4). This is TL.
o Not memoryless: Unless ng = 0, this is not memoryless.
() T(z[n]) = =l
Stable: |z[n]| < M, |T(z[n])| = |e*!"]] < el*l?ll < M this is stable.
e Causal: It doesn’t use future values of z[n], so it causal.
¢ Not linear:

T(az1[n] + bza[n]) = eo=(nl+bealn]

- ea.zl[n]ebzz[n]

aT (z1[n]) + bT (z2[n])

AL

This is not linear.
TL T(z[n — no]) = €*l*~™l = y[n — ny), so this is TL
e Memoryless: y[n] depends on the n** value of = only, so it is memoryless.
(f) T(z[n]) = az[n] +b
e Stable: |T'(z[n])| = Jaz[n] + b] < a|M| + |b|, which is stable for finite @ and b.
o Causal: This doesn’t use future values of z[n], so it is causal.
e Not linear:

T(czy[n] + dz2[n]) = aczin] + adzz(n] +b
# cI(z1[n]) + dT (z2[n])

This is not linear.
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TL T(z[n — no)]) = az[n — no] + b = y[n — ne). It is TL
Memoryless: y[n] depends on the n** value of z[n] only, so it is memoryless.

(8) T(z[n]) = z[-n]

Stable: |T(z[n])] < |z[—n]| < M, so it is stable.
Not causal: For n < 0, it depends on the future value of z[n], so it is not causal.
Linear:

T(az1[n] + bzz[n]) az;[—n] + bzaz[-n]

aT (z1[n]) + bT(z2[n])

I

This is linear.
Not TI:
T(z[n — no)) z[~n — ng)

# y[n —no] = z[-n + ng

This is not TI.
Not memoryless: For n # 0, it depends on a value of z other than the n‘* value, so it is not
memoryless.

(h) T(z[n]) = z[n] + u[n + 1]

Stable: |T(z[n])| < M + 3 for n > —1 and |T'(z[n])] < M for n < —1, so it is stable.
Causal: Since it doesn’t use future values of z[n], it is causal.
Not linear:
T(az1[n] + bz2[n]) = azi[n] + bza[n] + 3ufn + 1]
# aT(z1[n]) + T (z2[n])

This is not linear.
Not TI:

T(z[n —no] = z[n - ng] + 3uln + 1]
y[n — no
z[n — ng] + 3u[n —ng +1]

I

This is not TI.
Memoryless: y[r] depends on the n** value of z only, so this is memoryless.
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2.2. For an LTI system, the output is obtained from the convolution of the input with the impulse response
of the system:

vinl= 3 Alkleln — 4

k=-o0
(a) Since h[k] # 0, for (Ng < n < M),
N
ylnl= Y hlklz[n — k]
k=Np
The input, z[n] # 0, for (N, < n < N3), so
z[n — k] #0, for N2 < (n—k) < N3

Note that the minimum value of (n — k) is N;. Thus, the lower bound on n, which occurs for
k ==IVbiS
Ny = Ny + Ns.

Using a similar argument,
Ns = N; + Nj.

Therefore, the output is nonzero for

(A%'+'A&) <n< (Aﬁ +'A&).

(b) If z[n] # 0, for some n, < n < (n, + N — 1), and h[n] # 0, for some n; < n < (ny + M — 1), the
results of part (a) imply that the output is nonzero for:

(no+mn1))<n<(no+m+M+N-2)

So the output sequence is M + N — 1 samples long. This is an important quality of the convolution
for finite length sequences as we shall see in Chapter 8.
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2.3. We desire the step response to a system whose impulse response is
hln] = a "u[-n], for0<a < 1.
The convolution sum: -
ylnl= ) hlklaln — k]
k=-—00
The step response results when the input is the unit step:
z[n] = ufn] = 1, forn>0
M=UMU=10, forn<0
Substitution into the convolution sum yields
oo
ylnl= > o *u[-kluln— k]
k=—00
Forn < 0
[e o]
yn] = ) o*
k=-o0
o0
-
k=-n
— a_n
T 1-a
For n > 0:
0
yln] = ) a7*
k=—00
oo
= ak
k=0
_ 1
T 1-a
5
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2.4. The difference equation: 3 .
yln] - Jyln — 1)+ gyln — 2 = 22fn — 1]

To solve, we take the Fourier transform of both sides.
Y (') - %Y(e"“)e—"" + gY(e"")e"Z“’ =2-X(e')e
The system function is given by:

Y (e7%)
X (eiw)
2e~iw

— 3o—jw 4 lo—j2w
1-4e + ge

H(eY) =

The impulse response (for z[n] = &[n]) is the inverse Fourier transform of H(e?*).

-8 8

oy =
H(e™) 1+ te—dw 1o ze~v

Thus, . .
h[n] = —S(Z)"u[n] + 8(5)"u[n].
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2.5. (a) The homogeneous difference equation:
yln] = 5y[n — 1] + by[n — 2] = 0

Taking the Z-transform,
1-527146272=0

1-2:"1H(1-32"1) =0.
The homogeneous solution is of the form
yn[n] = A1(2)" + A2(3)".
(b) We take the z-transform of both sides:
Y(2)[1 =527 +627%) =221 X(2)
Thus, the system function is

Y(2)

H(z) XG)

1—-2z"1 + 1-32z"1

where the region of convergence is outside the outermost pole, because the system is causal. Hence
the ROC is |z| > 3. Taking the inverse z-transform, the impulse response is

hin] = —2(2)"ufn] + 2(3)"u[n].

(c) Let z[n] = u[n] (unit step), then

X(z) = 'l_—lz—:f
and
Y(z) = X(z)-H(2)
2271

(1=2"1)(1-22"1){1 - 32~1)°
Partial fraction expansion yields

1 4 3
Y(e) = 1-2z1 1-2z1 +1—3z‘1'

The inverse transform yields:

yln] = ufn] — 4(2)"u[n] + 3(3)"u[n].
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2.6. (a) The difference equation:
yln] - 33l ~ 1] = zn] + 2aln ~ 1] + 2l ~ 2
Taking the Fourier transform of both sides,
Y(e)[1 - —;-e’j‘”] = X(e?)[1 +2e77 +e77%].

Hence, the frequency response is

- Y (e7¥)
_ 142e7I 4 eI
- 1- e v

(b) A system with frequency response:

1-le™ ¥ 433

Jjw —
H(Y) = 1+%e_—ju+%e—j2w

Y (e7¥)
X(eiv)

cross multiplying,
j 1 —fw 3 —jow jw 1 —Jjw —j3w
Y(e"")[1+§e I + 7€ 729 = X (e )[1——2-6 W e,
and the inverse transform gives

yl) + 3yl — 1]+ Syl — 2] = aln] — 3l — 1] + ol - 3|
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2.7. z[n] is periodic with period N if z[n] = z[n + N] for some integer N.
(a) z[n] is periodic with period 12:
eI(3n) = Qi (F)n+N) _ gi(Fn+2mk)
= 27k = %N, for integers k, N

Making k£ = 1 and N = 12 shows that z[n] has period 12.
(b) z[n] is periodic with period 8:
1) — giCE)(n+N) _ i(3En+2nk)

3

k =
= 27 7

N, for integers k, N

= N= g-k, for integers k, N

The smallest k for which both k and N are integers are is 3, resulting in the period N being 8.
(c) z[n] = [sin(nn/5)]/(7n) is not periodic because the denominator term is linear in n.
(d) We will show that z[n] is not periodic. Suppose that z[n] is periodic for some period N:
(TN = (TN _ i(Fgnetank)
T
V2
= N = 2v/2k, for some integers k, N

There is no integer k for which NNV is an integer. Hence z{n] is not periodic.

= 27k = —N, for integers k, N
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2.8. We take the Fourier transform of both h[n] and z[n], and then use the fact that convolution in the time
domain is the same as multiplication in the frequency domain.

5
1+ femiv
H(e™)X (™)

5 1
[Tl Tl
3 2
1+ ledo | 1-lew

H(e™)

l

Y (el®)

s = 2(3)"uln] +3(~3) uln]

10
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2.9.

(a) First the frequency response:

Y(e) - ge_j“'Y(ej“’) + ée"zj“’Y(ej“') = %e_zj“’X(ej“’)

Y(e?v)
X(e5%)

1, 2w
3€

H(Y) =

1-3e—Jo + Le2w
Now we take the inverse Fourier transform to find the impulse response:

-2 2

HE™) = 1 le—iv 1= ze~iv

Hin] = =2(3)"uln] +2(3)"uln)
For the step response s[nj:
s[n] = i hikJuln — k]

k=-—00

= ) hlK]
k=-—o0

IS T ¢V 1- (1/2)"+

= -2—-——1-_—1-/-?3———11,[11] + 2———1t-1—/—2-—u[n]

o 1 n 1 n
= 1+ ()" -25)"uln]
(b) The homogeneous solution yx[n] solves the difference equation when z[n] = 0. It is in the form
ya[n] = 3 A(c)™, where the c’s solve the quadratic equation
5 1
2 _ = - =
c 6c+ 6 0

So for ¢ = 1/2 and ¢ = 1/3, the general form for the homogeneous solution is:

wnln] = 41 ()" + Aa(3)"

(c) The total solution is the sum of the homogeneous and particular solutions, with the particular
solution being the impulse response found in part (a):

ya[n] + ypln]
= MG+ 4G+ ~25) sl + 2(3)"uln)

y[n]

Now we use the constraint y[0] = y[1] = 1 to solve for A; and A,:

yl0) = A1+A4:-2+2=1
y[l] = A1/2+A4:/3-2/3+1=1
Ai+4 =1
A2+ A42/3 = 2/3
With 4; = 2 and A; = —1 solving the simultaneous equations, we find that the impulse response
is
= l n l ny - .1_ n _1_ n
ylnl = 2(3) (3) +-2(3) uln] + 2(3) u[n]
11
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2.10. (a)
y[n] = hin]*z[n]
o0
= Z a*u[—k — 1ju[n — k]
k=—o00
Z af, n<-1
_ k=—00
= -1
Z a", n>-1
k=—o0
an
_ < —
_ 1-1/a’ ns-1
= 1/a > -1
1-1/a’

(b) First, let us define v[n] = 2"u[—n — 1]. Then, from part (a), we know that

2n+1’ n < -1

win] = u[n] *x v[n] = { 1,

n>-1
Now,
yln] = uln—4]*vn]
= wn -4
2% n<3
- 1, n>3

(c) Given the same definitions for v[n] and w[n] from part(b), we use the fact that h[n] = 2" "lu[—(n -
1) — 1] = v[n — 1] to reduce our work:

z[n] * h[n]

z[n] * v[n — 1]

wln — 1]

_ { 2", n<0

y[n]

1, n>0
(d) Again, we use v[n] and w[n] to help us.

z[n] * hln]

(uln] - ufn — 10]) » vln]

= w[n] - w[n - 10]

= (2"u[~(n+1)] + ufn]) ~ (2" u[~(n ~ 9)] + uln — 10))
9(n+1) __ 2(n—9)’ n< -2

y[n]

Il

= 1 - 2(n=9) -1<n<8
0, n>9
12
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2.11. First we re-write z[n] as a sum of complex exponentials:

ej-xn/4 - e-—j1rn/4
2j

z[n] = sin(zg—l)

Since complex exponentials are eigenfunctions of LTI systems,

H ej1r/4 ej1m/4 - H e—j1r/4 e—Jimn/4
ORE CACAEY (Gl

Evaluating the frequency response at w = +x/4:

We get:

H(T) = ..1_:_6__]1 =2(1 - j) = 2v/2e"/4
T 1¥1j2e7 9=
- 1- ej"/z )
-3 - . = i} =2 jn/4
H(e %) 13120 2(1 + j) = 2v2

2V~ im/4eimn/4 _ 0.\ [2ei™/4e=imn/4
yln] = %

2V/2sin(rn/4 - w/4).

13
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2.12. The difference equation:
y[n] = ny[n — 1] + z[n]
Since the system is causal and satisfies initial-rest conditions, we may recursively find the response to
any input.

(a) Suppose z{n] = §[n]:
y[n] =0, forn <0

y[0] =1
yl=1
y[2] =2
y[3]=6
yl4] =24

y[n] = k[n] = n'u[n]
(b) To determine if the system is linear, consider the input:

z{n] = ad[n] + bd[n]

performing the recursion,

y[n] =0, forn <0
yl0]=a+b
y[lj=a+b

y[2] =2(a+1)
y[3] = 6(a + b)
y[4] = 24(a + b)

Because the output of the superposition of two input signals is equivalent to the superposition of
the individual outputs, the system is LINEAR.

(c) To determine if the system is time-invariant, consider the input:
z[n] = 8[n—1]

the recursion yields
y[n]=0, forn <0

y[0]=0
y1]=1
y2] =2
y[3]=6
yl4] =24

Using h[n] from part (a),
h[n - 1] = (n - 1)!‘(1.[7’1. - 1] # y["’]lz[n]:é[n—-l]

Conclude: NOT TIME INVARIANT.

14
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2.13. Eigenfunctions of LTI systems are of the form a", so functions (a), (b), and (e) are eigenfunctions.

Notice that part (d), cos(won) = .5(e7“°™ + ¢~9“°™) is a sum of two o™ functions, and is therefore not
an eigenfunction itself.

15
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2.14. (a) The information given shows that the system satisfies the eigenfunction property of exponential
sequences for LTI systems for one particular eigenfunction input. However, we do not know the
system response for any other eigenfunction. Hence, we can say that the system may be LTI, but
we cannot uniquely determine it. = (iv).

(b) If the system were LTI, the output should be in the form of A(1/2)", since (1/2)™ would have been
an eigenfunction of the system. Since this is not true, the system cannot be LTL. = (i).

(c) Given the information, the system may be LTI, but does not have to be. For example, for any
input other than the given one, the system may output 0, making this system non-LTI. = (iii).
If it were LTI, its system function can be found by using the DTFT:

_ 1
T 1-lemiw
1
M) = (run
16
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2.15. (a) No. Consider the following input/outputs:
1
zifn] =6[n] = wiln] = (7)"uln]
1
] =dn -1 = y2ln] = (3)" uln]

Even though o3[n] = z1[n — 1], y2ln] # y1fn — 1] = (2)*uln - 1]

(b) No. Consider the input/output pair z[n] and y,[n] above. z[n] = 0 for n < 1, but y2[0] # 0.

(c) Yes. Since h[n] is stable and multiplication with u{n] will not cause any sequences to become
unbounded, the entire system is stable.

17
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2.16. (a) The homogeneous solution yx[n] solves the difference equation when z[n] = 0. It is in the form

ya[n] = 3 A(c)™, where the ¢’s solve the quadratic equation

1 1
2 -_—— ——
c 4c+ 3 0
So for ¢ = 1/2 and ¢ = —1/4, the general form for the homogeneous solution is:

1 1
yaln] = A (3)" + A2(=2)"
(b) Taking the z-transform of both sides, we find that
Loa_1 5 _
Y(2)(1 yid i ) =3X(2)
and therefore

Y(z)
HE) = %@
_ 3
T 1-1/42"1-1/82"2
_ 3
T (1+1/4z7)(1-1/2271)
1 2

1+1/42-1 + 1-1/2z1

The causal impulse response corresponds to assuming that the region of convergence extends outside

the outermost pole, making
he[n] = ((=1/4)" + 2(1/2)")u[n]

The anti-causal impulse response corresponds to assuming that the region of convergence is inside
the innermost pole, making

hac[n] = —((—-1/4)™ + 2(1/2)™)u[-n — 1]

(c) he[n] is absolutely summable, while h,.[n] grows without bounds.

(d)
Y(z) = X(2)H(2)
B 1 1
T o1-121 (143270 -327Y)
_ 1/3 2 2/3
= T¥1/41 T1-1/21 T1-1/221
11, 1 2.1,
vial = 33l + e+ DGl 1)+ 2 ()

18
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2.17. (a) We have
1, for0<n<M
rin] = 0, otherwise

Taking the Fourier transform

M
n=0
1-— e—-ju(M+1)

1 —eiw

S M1 M1
ju, (€T e <
= 2 n -
€ elW — e—Iw

—jMw Sin( M‘é&w)
€7\ Tsin(/2)

R(e™)

Il

(b) We have
1(1 +cos(§2), for0<n<M
0, otherwise

wln] = {

‘We note that, ) orm
wln] =r[n] - 5[1 + cos(-EI——)].

Thus,
i v = 1 2MN\\ _iun
W(e) = R(@)* ), 5(1+cos(5r)e
n=—oo
o= 1 1 izen 1 _i2mn g,
= R()* Y 5L+ 56 F +2e e
n=--00

R(e) + (35(0) + 3800+ 30) + 360 = 37)

(c)
YRE®

- T O

A

(Wl @ )

D\

2\l
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2.18. h[n] is causal if h[n] = 0 for n < 0. Hence, (a) and (b) are causal, while (c), (d), and (e) are not.

20
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2.19. h[n] is stable if it is absolutely summable.
(a) Not stable because h[n] goes to co as n goes to co.
(b) Stable, because h[n] is non-zero only for 0 < n < 9.
(c) Stable.
-1 )
Yill= Y 3n=Y(1/3)"=1/2<
n n=-—00 n=1
(d) Not stable. Notice that
5
> Isin(n/3)| = 2v3
n=0
and summing |k[n]| over all positive n therefore grows to co.
(e) Stable. Notice that |h[n]| is upperbounded by (3/4)!™!, which is absolutely summable.

(f) Stable.
2, ,-5<n<-1
hln]=< 1, ,0<n<4
0, ,otherwise
So 3 |h[n]| = 15.

21



ch02.gxd 9/21/09 4:03 AM Page 22 $

© 2010 by Oppenheim. Published by Pearson Prentice Hall, Pearson Education, Inc., Upper Saddle River, NJ.
All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this
material may be reproduced, in any form or by any means, without permission in writing from the publisher.

2.20. (a) Taking the difference equation y[n] = (1/a)y[n — 1] + z[n — 1] and assuming h[0] = 0 for n < 0:

hlo] = 0
A1l = 1
h2l = 1/a

R3] = (1/a)

hln] = (1/a)" lu[n-1]

(b) h[n] is absolutely summable if |1/a] < 1 or if |a| > 1

22
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2.21.
1 o900
(a) I T1/2
“®* 17233256 °
b ® 00 0|
“* 0512325 "
© LK)
12
0 1 2 "™
@ ]..I
~*1 o012 ***"
(e) L 4

|
{
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2.22. For an LTT system, we use the convolution equation to obtain the output:

ylnl= Y aln - KRk
k=—o00
Letn=m+ N:
yfm+N] = > z[m+ N - Klh[k]
k=-o00
= ) z[(m—-k)+ Na[k]
k=-—o00

Since z[n] is periodic, z[n] = z[n + rN] for any integer r. Hence,

o

ym+N] = > z[m - klh{k]

k=-—00

y[m]

So, the output must also be periodic with period N.

24
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2.23. (a) Since cos(nn) only takes on values of +1 or -1, this transformation outputs the current value of
z[n] multiplied by either £1. T'(z[n]) = (—1)"z[n].
e Hence, it is stable, because it doesn’t change the magnitude of z[n] and hence satisfies bounded-
in/bounded-out stability.
e It is causal, because each output depends only on the current value of z[n].
o It is linear. Let y1[n] = T'(z1[n]) = cos(wn)z;[n], and yq[n] = T(z2[n]) = cos(rn)zz[n]. Now

T(az1[n] + bzz[n]) = cos(nn)(azy[n] + bzz[n]) = ay:[n] + byz[n]

e It is not time-invariant. If y[n] = T(z[n]) = (-1)"z|n], then T'(z[n —1]) = (~1)*z[n — 1] #
y[n —1].
(b) This transformation simply “samples” z[n] at location which can be expressed as k2.
o The system is stable, since if z[n] is bounded, z[n?] is also bounded.
e It is not causal. For example, T'z[4] = z[16].
e It is linear. Let y1[n] = T(z1[n]) = z1[n?], and y2[n] = T(z2[n]) = z2[n?]. Now

T(azy[n] + bz2[n]) = az; [n?] + bz2[n?]) = ay1[n] + byz[n]

e It is not time-invariant. If y[n] = T(z[n]) = z[n?], then T(z[n — 1]) = z[n® — 1] # y[n — 1].
(c) First notice that
<]
> 8ln— k] = u[n]
k=0
So T(z[n]) = z[nJu[r]. This transformation is therefore stable, causal, linear, but not time-
invariant.
To see that it is not time invariant, notice that T'(6[n]) = é[n], but T'(d[n + 1]) = 0.
(d) T(zln]) = XiZn- (k]
o This is not stable. For example, T(u[n]) = co for alln ; 1.
o It is not causal, since it sums forward in time.
e It is linear, since

> amfk]+bmakl=a Y @kl+b Y z2fk]
k=n—1 k=n-1 k=n-—-1
e It is time-invariant. Let .
yln] =T([r) = ) alk),
k=n~1
then -
Teln-n)= Y. o[kl =yln—nol
k=n—ng—1
25
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2.24. For an arbitrary linear system, we have
y[n] = T{z[n]},

Let z[n] = 0 for all n.
y[n] = T{z[n]}
For some arbitrary z;[n], we have
y1[n] = T{z:1[n]}

Using the linearity of the system:

T{z[n] + z:[n]} T{z[n]} + T{z:1[n]}

= y[n]+u(n]

Since z[n] is zero for all n,
T{z[n] + z:[n]} = T{z:[n]} = y:[n]

Hence, y[n] must also be zero for all n.
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2.25. Given the difference equation
y[n]+2y[n—1]—3y[n—2] = x[n],
1. Let x[n]=6[n] and let y,[n]=2(-2)" u[n]+% (L) u[n]. Substituting y,[r] in the

difference equation gives

0. n<0
83 481 =1, n=0
30 3 1 (1 3 1) = =
v, [n]+2y,[n-1]-3y,[n-2]= 8(%(—z)+%(7))+2(ﬁ+%)_0’ "=l
83 (-1)" ) J 2+ )")
n>?2
(-7 @) =0

The right hand side is ¢ [n] , showing that y, [n] is a particular solution of the equation
with x[n] = 5[n] .

2. Let x[n] =0 and let y[n] = Az" . Substituting in the difference equation gives
8Az" +2A4z" 342" =0
8+2z71-322=0
8z°+2z-3=0
(4z+3)(2z —1) =0.
Then y[n] will be a solution of the equation for z=-2 and z=1. The homogeneous

solution of the difference equation is a linear combination of the two possibilities,
yi[n]=4(-3) +4,(3)".
3. Let x[n] = 5[n] The initial rest condition implies y[—2] = y[—l] =0. Then when n=0
8y[0]+2y[-1]-3y[-2]=8y[0]=5[0]=1.
SO y[O] =+. Next, when n=1,
8y[1]+2x[0]-3y[-1]=8y[1]+2(3)=6[1] =0,
so y[1]=-%. Finally, when n=2,
8y[2]+2y[1]-3»[0]=8y[2]+2(-%)-3(3) =5[2] =0,
so y[2]=+% -
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2.26. System 1:

The input (%)" is an eigenfunction of a LTI system. The response to this input would have

to be of the form A(4)". Since the given output is ()", the system cannot be LTI. The

answer is (e).

System 2:
Since the frequency of the output sinusoid is the same as that of the input sinusoid, the

system could be LTI. We know that H (ei" 7) =3je’* , but we do not know H (ef’”) for

other values of @. Thus the system is not uniquely specified and the answer is (d).

System 3:

, 1
The Fourier transform of the input is X (e" “ ) = llﬁ This input has no spectral nulls,

5

and the given output could be produced by an LTI system with this input. Given the input
and output we can find the frequency response, which will uniquely specify the system.
Consequently the answer is ©. We note, however, that the system is unstable and non-
causal, and that the given output does not actually have a Fourier transform. We can proceed
formally, however, as follows:

Let us write the response to the given input as y[n] =y [n] +, [n] , Where

y[n]=-6(%) u[-n—1] and y,[n]=-6(%) u[n]. The second term, y,[n], has Fourier
transform Y, (e-"’” ) = 11_76_10 . For the first term, we begin with the formal transformation
—le
—12><2"u[n] > LZ_
1-2e¢77°

It follows that

—12¢77°
1-2e77°
—-12¢””

1_75/0"

—12><2"_'u[n—1] <~

—12x2_”_'u[—n—l]<—>
Now we have
Y(e)=1,(e")+,(e")
—12¢” -6
= — .
1-2¢/ 1-1e™
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The frequency response H (ef‘”) is given by

36e’” 12
1-2¢/° 1-le™
Taking the inverse Fourier transform we obtain the impulse response:

h[n] = —65[n]—18(%)” u[—n—l]—l2(%)n u[n]

(Looking ahead to Chapter 3, this problem can be solved using the z-transform without the
“formal” Fourier transform step needed here.)
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1.

2.

2.27. Problem 1 from Fall 2003 Background exam
Note: There is a very similar problem in Fall06 background exam, worth checking out

Problem

For each of the systems below, choose the strongest valid conclusion of the following:

The system must be LTT and is uniquely specified by the information given.

The system must be LTT, but cannot be uniquely determined from the information given.

. The system could be LTI, and if it is the information given uniquely specifies the system.

The system could be LTI, but cannot be uniquely determined from the information given.

. The system could not possibly be LTI.

o[n] 275 u[n]
—— System (a) ——

(3)" uln] o[n]

— > System (b) ———

z[n] + ay[n] 5 T'(z[n]) + oT'(y[n])
va. w[n4.], i ystem (c)
cos (%n) 3 cos (%”) + %Sin (%n + %)

—— System (d) ———

z[n] yln] = 0.2y[n + 1] + z[n]

—— System (e) ——
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Solution from Fall 2003 background exam

(a)

To prove that a system is LTI, it must show linearity and time invariance for all inputs.
In this case we are only given one input signal, so we cannot prove that the system is LTI.
However, we cannot disprove it either.

However, if it is LTI then it is completely characterized, since the input is the delta
function.

The system could be LTI, and if it is the information given uniquely specifies the system.

(3)

Similarly we cannot show that the system is LTI, but cannot disprove it either. The input
signal (%)n u[n] does not have any spectral nulls, so if the system were LTI it would be
completely characterized.

The system could be LTI, and if it is the information given uniquely specifies the system.

(3)

Again, we cannot show that the system is LTI. We have linearity but not necessarily time
invariance. In this case it is not said whether T(-) is known or not. If it is know, then
with the assumption of LTI it will be completely specified, otherwise it is not.

The system could be LTI. (3) or (4)

First note that cos(m/3n) is an eigenfunction of an LTI system, and so is sin(w/2n).
Therefore if the system were LTI it is not possible to get a sin(7w/2n) term in the output
if there is no such term in the input.

The system is not LTI (5)

A system described by a difference equation need to have zero initial conditions to be
LTI

The system could be LTI, but cannot be uniquely determined from given information. (4)
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2.28. a.

Input-output pair (4) shows input x, [n] =0 [n] producing response

Y, [n] = 5[}1] + 5[}1 —1] . If the system were time invariant, then input x[n] = 5[}1 —1]
would produce response y[n] =0 [n — 1] +0 [n — 2] . This implies that input (3),
x,[n]=6[n—1]+---, must produce a response §[n—1]+---. Butin fact y;[1]=0. Thus

the system is time-varying.

We observe that x,[n]+x,[n]-2x,[n]-2x,[n]=0for all n. However

Y [n] +, [n] -2y, [n] -2y, [n] # 0 for all n. Therefore the system is nonlinear.

We observe that 4 (x, [n]—x,[n]+x,[n+1])=5[n]. Since the system is LTI, the
impulse response h[n] is given by
h[n]:%(y2 [7]-y;[n]+ ¥ [n+1]):5[n—1]+5[n—3].

Let x[n] denote the given input and y[n] the desired response. We observe that
x[n]=x[n]+x [n-2]. Since the system is LTI,

ylnl=yln]+ nln-2]
:5[71]+5[n—2]+§[n—3]+5[n—4]+§[n—5]+5[n—6].
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2.29.

A.
yln] =[] [
= 3 ulk]nln—4]
gh[n k]
Therefore _
y[0]=h[0]=1

y[1]=A[1]+n[0]=
y[2]=h[2]+ 1]+ k[0] =3

y[3]=k§(;h[3—k]=4

y[4]:2
y[5]=0
y[6]=0.

l\.)—.

yin

l T
—o—o0—9o

01
B. Since the system is LTI, shifting the input in time shifts the output in time. Thus if
yln]=x[n]=h[n]

2I
g——.——.h—.—— n

4

and
Y [n] = x[n—4]*h[n],
then
Y [n] = y[n—4].
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C. Using the principle of linearity, convolution is an associative operation. Then
v [n] = (u[n]-u[n-4])xh[7]
:u[n]*h[n]—u[n—4]*h[n]
=y[n]-nln]-
W2 [n
2 }
1
. lsers, .,
1 23 4
-2 -2
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2.30. A wln]=x[n]sh[n]= > x[k]h[n-k]
k=—0
Graphical approach:

01 2 3 n

Case 1: When n<0, no overlap so w[n] =0. (Note: causal sequence.)
Case 2: Partial overlap, n>0 and n—3<0 or n<3
when n=0, w[0]=1

when n=1, w[l]=1-1=0
when n=2, w[2]=1—1+1=1
Case 3: Complete overlap, n>3. w[n]=1-1+1-1=0
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Plotting w [n] ,

w[n]

0123435

The overall output y[n] = w[n]* h, [n] = i h, [k]w[n - k]

k=—w0

Flip and slide w[n]:

w[n—k]

Case 1: No overlap, n<-3, so y[n] =0

Case 2: Partial overlap, n>-3 and n—2<-3 or n<-1
y[=3]=1
y[2]=0+1=1

Case 3: Complete overlap, n<0 and n—2>-3 or n>-1
y[-1]=1+0+1=2
v[o]=2

Case 4: Partial overlap, n>0 and n—2<0 or n<2
y[i]=1
y[2]=1

Case 5: No overlap, n—2>0 or n>2
y[n]=0
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Plotting y [n] ,

y[n]

eooll I ,2T
—4-3-2-101

Notice, length(y) = length(w)+length (A, )—1.

B. The overall response of the cascaded system is given by

)= [n] ]
ALLIC

Following identical steps as in A, the convolution result is given by the following:

hn]

4

il

43-2-101 2 4

Note the following:
1. length (h) = length (hl ) + length (h2 ) -1
2. h[n] is zero except 0<n<3
hy,[n] is zero except —3<n<0
h[n] is zero except —3<n<3 (thatis, 0+(-3)<n<3+0

3. The convolution of two boxes is a triangle.

wla]=x{n] [

C. =28[n]*h[n]+45[n—4]*h[n]-26[n-12]*h[n]

=2h [n]+4h [n-4]-2h [n-12]
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wn]

4
2 TTTIII[ 1112131415
— o o & , "
1 23456 78 910 1617

D. Similarly, y[n]=2h[n]+4h[n—4]—2h[n—12]

2h[n]
8
6 6
4I 4
2 I 2
4-32-101 234
4h[n—-4]
16
12 12
8 W N 8
4 I 4
LT, .
01 2345678
—2h[n—-12]

1 234 5678
-2

L4
-6

101112 13 14151617

—6
-12
y[n] 16¢
14 ¢
124 el2
109

8 e
e {T
6 7

43210 1 234 5

9 10111213 14151617
—eo—0— /1
8 1 ll
L)
_4 4
6

-12
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2.31. A. LTI systems are stable iff Z ‘h[n]‘ < (the summation should converge).

Then

S = Jaf u[n]

n=-w
0

=2 Ja
n=0

S will converge only when |a| <l and S =

n

—— <o,
1=d

Therefore the system is stable for |a| <1.

B. y[n]:ay[n—1]+x[n]—aNx[n—N]. Therefore,

h[n]=ah[n—1]+5[n]—aN5[n—N].
Since the system is causal, h[—l] =0. Then
h[0]=0+1-0=1
h[l]:a, h[2]:a2, h[N]:aN—aN =0
h[N+1]=ax0+0-0=0.

hn]

1

2
a

-1
PREPY W 1 PREPY
T n

012 N-IN

C. We see that even though it is a recursive system (with feedback), its impulse response is
finite in length. The length of 4[n] is N terms. Hence this system is FIR.

D. FIR systems are always stable as the sum z ‘h[n]‘ has at most a finite number of

nonzero terms.
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2.32. For (-1 < a < 0), we have

XE) =t
(a) real part of X (e'“):
Xa(e®) = 1-[(X(e¥)+ X ()
1 — acos(w)

1~ 2acos(w) + a®

(b) imaginary part:

Xi(e) = % X () — X*(e™)]
_ —asin(w)
T 1-2acos(w) + a2
(¢) magnitude:
IX(e)] = [X(e)X"(e)]

1 2
(1 — 2a cos(w) + a2)
(d) phase:

iy —asin(w)
LX(e’¥) = arctan (———-——1 — acos(w))
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2.33. y[n] :—2x[n]+4x[n—1]—2x[n—2]
A. Impulse response:
h[n] = —25[n]+45[n—1]—25[n—2]

H(e")=-2+4e /" -2 >
=-2e (e-’“’ +e —2)
=2/ (2 cos(w)— 2)

47 (1 —cos(a)))

4™ (2 sin’ (a)/2))

8sin’ (w/2)e .

The delay is n, =1.

Frequency Response Magnitude

 (rad/sample)
Frequency Response Phase

ZH(

o (rad/sample)
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D. If

X, [n] =1+¢/%™

+e’

/0 4 A

then
W [n] = H(ejo)ejon +H(e/%ﬂ)ej%n

=0xe’" +8sin’ (r/4)e e’

| T
=8x—e ") _w<n<w.

E. Using the convolution sum,

”, [n]:ki h[k]x, [n—k]
- z BkN(1+ ¢ Juln -]
-3 nlk](1+e0)

k
0, n <0 (as the system is causal)

» = zn:h[k](l +e/3 ) ), nx0
k=0

Consider n=>0,

»[n]= (ih[k](l+ o/ 5k) )j _(ki h[k](l 43 h )j

_ ::ho[k] + (gh[k]e’gkjejg ]— (;; h[k](l +e/10H) )j
=1 (e”)+ H (e e —(kglh[k](nefﬁ""‘) )j

Now ( i h[k](1+e’%("_k) )j becomes zero for n>2 since h[n]=0 for n>2. Thus

k=n+1

v, [n]=n[n] foralln=2.

42




ch02.gxd 9/21/09 4:09 AM Page 43 $

© 2010 by Oppenheim. Published by Pearson Prentice Hall, Pearson Education, Inc., Upper Saddle River, NJ.
All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this
material may be reproduced, in any form or by any means, without permission in writing from the publisher.

2.34. A.

H(ejw ) — 1_1'258:{@ — Y(ef‘”)
1-0.8¢7"  x(e)
X(e)-1.25X (" )e " =Y (e )=0.8Y (" )e "
Taking the inverse Fourier transform of both sides,
y[n]—0.8y[n—1] = x[n]—l.25x[n—l]
y[n] = 0.8y[n—1]+x[n]—l.25x[n—1]

5

Then

B.
H(e”)=1 —M
1-0.8¢77*
Then
h[n]=5[n]-0.45(0.8)"" u[n-1]
from the transform tables.
C.

‘H(ef“’)2 :H(ef”’)H*(ef“’)

_(1-1.255/‘“’ j(l—lQSe’“’j
1-0.8¢ 7 )\ 1-0.8¢"
1-1.25¢"" —1.25¢7 +(1.25)°
1-08¢/—0.8¢ " +(0.8)’
_1-2.5c0s(w)+1.5625
1-1.6cos(w)+0.64
| 2.5625-2.5¢cos(@)  2.5625(1-0.9756cos(w))
1.64—1.6cos(w)  1.64(1-0.9756c0s(o))

~2.5625
1.64

=(1.25)’

So
G=1.25

D. If x[n]=cos(0.27n), then

y[n]= ‘H(e’o'z” ) cos(0.27m +/H (efo'z” ))
Now
, 1 - 027
pi(eme) Lt
—1.25¢/02107
Therefore

y[n]=1.25¢c0s(0.27n+0.2107)
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2.35. A. Note 1: The sequence h[n] is one of the so-called “Barker codes.”

Note 2: The impulse response of the filter satisfies h[n] = x[4 - n] , that is, h[n] is the
“matched filter” for x[n] .

Using “flipping and shifting,”
x[#]

i}

h[n—k]

B. Using “flipping and shifting,”

LuF

gives

-2 10 |
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2.36. A.
” 1 e/
H(e") = 1—08¢ " 1-08¢"
h[n] = (0.8)" u [n] + (0.8)"72 u [n - 2]
B.

-2

H(e”’): Y(ejw) _ l+e
X(ef”’) 1-0.8¢77?

Y(e-’”’)—O.8e’-’“’Y(ej”’)=X(ej‘”)+e’jz‘”X(ej‘”)
y[n]—0.8y[n—1]=x[n]+x[n—2]
y[n]:0.8y[n—1]+x[n]+x[n—2]

C. Using the frequency response we can write the output as
ylnl= (e )4+2|H (e )|cos(@n+ L1 ("))

=0, which means 1+¢** =0, or @, =7/2.

To get y[n]= constant we need ‘H (e-’“’O)

1+1
Th =4 =40.
et y[n] 1-0.8
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sin(0.57m)

2.37. A. The impulse response £, [n] =2 corresponds to a frequency response of

zn
o\ |2, o<z/2
Hz(e’ )_{O, r2<w<rx
Then
H(e-’“’) =H, (e-"” )H2 (ef‘”)
0, |o|<z/4
=e"x92, 7m/4<|o|<x/2
0, 7/2<|o|<7m.
B.
|H(ej“)) /ZH (ej“’)
i
2 -
| —
. V1
_r z =z 7 ¢ zl

C. Method 1 (Easiest):
The overall cascade system can be viewed as the difference of two lowpass filters with a

one-sample delay.
sin(5(n-1)) 5 sin(%(n—-1))

71'(}’1—1) 71'(}’1—1)

h[n]:2

Method 2 (Harder):
The overall cascade system can be viewed as having a lowpass response modulated up to

frequency 37/8.

L G B

71'(}’1—1)

Method 3 (Direct):
Just evaluate

h|n]= i [; H(ef‘” )ef"”’da)
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2.38. A.
4] an
1e
n—->5 o 1 2 3 4 k
B. Clearly, h[n]:O for n-5<0or n<35.
Then h[n] increases linearly until n—5=4 or n=9.
After n=9 the output is constant at h[n] =5.
0, n<5
h[n]: n-4, 5<n<9
5, n>9.
hn]
5._
e |
N S S S——
0 5 9 "
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2.39. The ideal delay system:

y[n] = T{z[n]} = z[n — n,]
Using the definition of linearity:

T{az:[n] + bz2[n]} az1[n — n,) + bxa[n — ny)

ayi[n] + byz[n]

I

So, the ideal delay system is LINEAR.
The moving average system:

M,
Vil =Tl = gy 3 ot
by linearity:
1 M,
T{az1[n] + bz2[n]} = A YA kng(aa:l[n] + bzz[n])
1 M 1 M,
MLl kng az[n] + M TG T1 k—_gl bza[n]
= ayi[n] + byz[n]
Conclude, the moving average is LINEAR.
48
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2.40. z[n] is periodic with period N if z[n] = z[n + N] for some integer N.
(a) z[n] is periodic with period 5:
I BEn) — (B (nt+N) _ gi(3FEnt2nk)
= 27k = %N, for integers k, N

Making k = 1 and N = 5 shows that z[n] has period 5.
(b) z[n] is periodic with period 38. Since the sin function has period of 27:

(c) This is not periodic because the linear term n is not periodic.
(d) This is again not periodic. e/ is periodic over period 27, so we have to find k, N such that

:z:[n -I-N] = ej(n+N) = e_7'(1'l+27rk)

Since we can make k£ and N integers at the same time, z[n] is not periodic.
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2.41. Since H(e™7¥) = H*(e’“), we can apply the results of Example 2.13 from the text,

™

7 T LHET)

yln] = [H(F)] cos(Spn +

To find H(e? %), we use the fact that H(e/*) is periodic over 27, so

H(F)=H(e %) =%

Therefore,
11w
12

2
y[n] = cos(ggr-n + -:15 + —31) = cos(?%rn + )
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2.42. The autocorrelation function of s[n] is
o, [m]= E{ s|n]s[n+ m]}
Substituting s[n]=x[n]w[n] gives
o [m]= E{ x[n]w[n]x[n+m]w[n+m]}.
Since x[n] and w|[n] are statistically independent we have
o, [m]= E{ x[n]x[n+m]}E{ wln|w|n +m]}
= E{x [n]x[n +m]}0"i5[m].
Then @, [m]=0 for m=0,so s[n] is white.

We can find the mean of s [n] by

E{ s[n]}: E{ x[n]w[n]}: E{ x[n]}E{ w[n]}z 0,
where we have used the statistical independence of x[n] and w [n] together with the fact that

x[n] and w[n] each have zero mean. The variance of s[n] is then given by
02 = E1* [} 2 s ]
= E{s*[n]}
=¢,0]
= E{x2 [n]}ofv

Since x[n] has zero mean, E{x’[n]}=0. Then o] =070, as was to have been shown.
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2.43. We have (1) u[n]—> g[n]. If H (ej "’) is the frequency response of system T, then

()= H(e")——

1-le’
3
Solving for H (ef‘”) gives
H(e”)=G(e")(1-4e )
= G(ej“’)—ée’j“’G(ej“’).
Taking the inverse Fourier transform gives the impulse response h[n] as
)= el -+eln-1].
We are also given that x[n] - y[n] Thus we have
y[n]=x[n]h[n]
=[]+ [n] -+ [n-1)

[ g[n]-4x[n]* g[n-1].
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2.44. 1.

5. If x[n](L)X(e

]

0

j"’) = z x[n]e’j“’" . Then

The Fourier transform of x[n] is given by X (e

X(ej’”)wzo = nix[n] =12.
X(ej“’ ) L= nzzw;nx[n]e_j”” = ni(—l)" x[n] =—j12.

The inverse Fourier transform is given by 5 f X (e-’“’)ef"’"da) =x[n]. Then

[;X(ej‘” )e-’”’"da) =27x[n]

[{”X(e-’“’ )ej‘”oda) =27x[0]

f”X(e-’“’)da) =27 (2-)).

o X(e).
S{x[-n]]

RIEP
11113J5

) then x, [}« jS{ (e where x, [n] = 4(x[n] = [-n])

If x[n](L)X(ef ) then x[-n

ER{xo [n]}

502
1
I 12 12
Y o _4T_2 ! T o n
5 1 3|5

|
5.4 -32-1 J
-1

3/2
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2.45. x[n]=cos(0.47n)+sin(0.67n)+58[n—2]+2u[n]

After passing through the first system,

w[n] = x[n]—x[n —1]
= cos(0.47m) —cos(0.47r(n — 1)) + sin(0.67m) — sin(0.67r(n —1))
+55[n—2]—55[71—3]+2u[n]—2u[n—1]

Note that 2u [n] —2u [n - 1] =20 [n] .

After passing through the second system,

1.

The cosine terms come through, as 0.47 <@, =0.57

2. The sine terms get filtered out, as 0.67 >, =0.57

3. The impulses give a delayed and scaled impulse response back

y [n] = cos(0.47m) —cos (0.47r (n — 1)) +5 Sin(O'Sﬂ (n _ 2))

V4 (n - 2)
sin(O.S;r(n—3)) sin(0.577n)
- 72'(}’1—3) 2 n
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-b", n<-1
2.46. x[n]=-b"u[-n—-1]= ’ ]
0, otherwise
Then
0
X(ej”’): z x[n]e_j”’”
n=—c0
-1
_ z _ bne— Jon
n=—w

Let k=-n. Then

where the last step is true only for ‘b‘]ef‘”’ <1,or ‘b"‘ <1, or |p|>1. Now we have
-y
N

e

~ 1
X(e”
") =15
only when |b|>1.
Now suppose
: 2e 7 1 :
Y(e” )= — =7 — ¢/
(") =1 1-(=2)e ¢

Using the above transform pair and then shifting to the right by one,

y[n)=2]~(=2)" u[~(n-1) 1] [=2(=2) " u[-]
= (=2) u[-n].
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2.47. x[n] = w[n]cos(w,n)
A. Fourier transforming gives
X(ef‘”):iW(e-’“’)*{ﬂé(a)—a)o)+7r5(a)+a)o)}
- %{ﬂ'W (e"(“’_“’°) ) +aW (e"(“’+w°) )}

= 3w (" ) d (1),

for -r<w<rx.
B. We know from tables that if

[ ]_ I, 0<sn<M
Y= 0, otherwise,

then the DTFT Y(ef‘”) is
Y(ejw ) — Sin(
Let M =2L. Then we have

[ ] 1, 0<n<2L
nl=
Y 0, otherwise,

o(M+1)/2)
sin(@/2)

—joM/[2

with DTFT

o) sin(a)(2L+1)/2) oL
Y( )_ sin(w/2)
Now w[n]=y[n+ L], which implies W(ef‘”) = Y(e-”") /I That is,
W(e/”’)z sin(@(2L+1)/2)

sin(@/2)

X e""

4 2L+1
/\/\/\ /\/\/\ @

~ \/ o, \/ 4
}0‘ 27/(2L+1)

As o, gets closer to @ =0, the two peaks merge into a single peak. We will have two
2
2L+1°

distinct peaks if @, >
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2.48. (a) Notice that z;[n] = z2[n] + z3[n + 4], so if T{-} is linear,

T{z:[n]} T{z2[n]} + T{z3[n + 4]}

y2[n] + y3[n + 4]

Il

From Fig P2.4, the above equality is not true. Hence, the system is NOT LINEAR.
(b) To find the impulse response of the system, we note that

8[n] = z3[n + 4]
Therefore,

T{5[n]} y3[n+4]

= 36[n + 6] + 26[n + 5]

(c) Since the system is known to be time-invariant and not linear, we cannot use choices such as:
8[n] = z1[n] — 22[n]

and 1
3[n] = —2-z2[n +1]

to determine the impulse response. With the given information, we can only use shifted inputs.
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2.49. (a) Suppose we form the impulse:
1 1
6[11] = §$1 [n] - -2-:02['!1] + (Bg[’n]
Since the system is linear,
1 1
L{d[n]} = z3[n] ~ 532(n] + ys[n]
A shifted impulse results when:
Bn — 1] = ~3zaln] + a2l
= —5a1[n] + 3z2[n
The response to the shifted impulse
1 1
L{d[n — 1]} = —5wln] + 532[n]

Since,
L{é[n]} # L{é[n — 1]}
The system is NOT TIME INVARIANT.
(b) An impulse may be formed:
blr) = 521l ~ 52ln] + s[n]

since the system is linear,

L{é[n]}

Jiln] = Jaln] + ysfrl
= hn]

from the figure,
y1[n] = —é[n + 1] + 38[n] + 34[n — 1] + d[n — 3]

v2[n] = ~6[n + 1] + &[n] — 38[n — 1] - é[n — 3]
ys[n] = 26[n + 2] + 8[n + 1] — 38[n] + 26[n - 2]
Combining:
hin] = 28[n+ 2]+ d8[n + 1] — 26[n] + 35[n — 1]
+24[n — 2] + é[n — 3]
3

=Y

'3-2-1 01 2

-2
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2.50. (a) The homogeneous solution to the second order difference equation,
3 1
yln] = guln — 1] + gyln — 2] = 2z[n - 1],
is obtained Ly setting the input (forcing term) to zero.

o]~ 3yl — 1]+ gyln =2 = 0

Solving, 3
_3,1, 1 e
1 4z + 8z =0,
1 1 4y _
(1 5% )a i° ) =0,

and the homogeneous solution takes the form
1 n 1 n
ynln] = A (5)" + A2(3)",

for the constants A; and A,.
(b) Substituting the intial conditions,

-l = 47+ A =1,

and
yh[O] =A;+ A4, =0.
We have
24, +44; =1

A +A, =0
Solving,

A1 = —1/2
and

Ay =1/2.

(c) Homogeneous equation:
1
yln] —yln -1+ Jyln -2 =0

Solving,

1-z714 %z—z =0,

i 1
(1- 327 - 527 =0,
and the homogeneous solution takes the form
1
wnln] = 41(5)"
Invoking the intial conditions, we have
yn[-1] =24, =1

yn[0] = A1 =0
Evident from the above contradiction, the initial conditions cannot be met.
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(d) The homogeneous difference equation:
1
yln] —yln -1+ Jyln -2 =0
Suppose the homogeneous solution is of the form
1 1
ya[n] = A1(3)" +nB1(3)"
substituting into the difference equation:

yn[n] —yaln — 1]+ i.yh[n -2]=0

MG +B(R) G ~ (= DBy ()

1 1 n—2 l _ }_ n—-2
ZA1(§) +4(n 2)31(2) 0.

(e) Using the solution from part (d):
1 1
ya[n] = A41(3)" + nBi(3)"

and the initial conditions

(-1 =1
and
yn[0] =0,
we solve for A; and Bi:
A =0
B, = -1/2.
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2.51. (a) For z;[n] = é[n],

For z3[n] = é[n — 1],

y1(0]
yi(1]

v200] = 1

y2[1]

ay[0] =a

ay[0] + z2[1] = a + 1 # y1 (0]

Even though z2[n] = z1[n — 1], y2[n] # yz2[n — 1]. Hence the system is NOT TIME INVARIANT.
(b) A linear system has the property that
T{az;[n] + bz2[n]} = aT{z1[n]} + bT{z2[n]}}

Hence, if the input is doubled, the output must also double at each value of n.
Because y[0] = 1, always, the system is NOT LINEAR.
(c) Let z3 = az;[n] + Bz2[n).

Forn > 0:

For n < 0:

For n = 0:

Conclude,

ys[n]

y3[n]

z3[n] + ays[n — 1]
azi[n] + Bza[n] + a(zs[n — 1] + y3[n — 2})

k=0

n—1 n—1
a Z a*zi[n — k] + B Z akzz[n-— k]
k=0

a(hln] * 21[n]) + B(hln] * 22[n])

ayi[n] + Byz[n].

0~ (ysln + 1) - z3[n))

n
—a Z a*z[n

k=-1
ay1[n] + Byz([n].

—k]-8 Z a*zy[n — K

k=-1

y3[n] = n1[n] = y2[n] = 0.

ys[n] = ayi[n] + Byz[n], for all n.
Therefore, the system is LINEAR. The system is still NOT TIME INVARIANT.
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2.52. For the input

cos(mn)u[n]
(=1)"u[n],

z[n]

the output is

> (/2) ulk)(-1) " Fuln - k]
k=—00
(=)™ > G/ (-1)7*
k=0
=Dy (-i/2)*
k=0

- o (=5)

y[n]

For large n, (—3/2)(™+t1) — 0. Thus, the steady-state response becomes
_ ="
il = 157
cos(mn)
1+3/2°
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2.53. The input sequence,
e )
zfn] = Y dln + 16k],
k=~o00
has the Fourier representation

(o<

X(ev) = Z i S[n + 16k]e=7«n

Nn=—00 k=—o00

1 & 2rk
% Z 6(w+¥).

k=—00

Therefore, the frequency representation of the input is also a periodic impulse train. There are 6
frequency impulses in the range —7 < w < 7.

We sketch the magnitudes of X (e’*) and H(e?¥):

jo
HE .
J\‘ T X@E? )l

~6n—dn-2n 0 2n 4n 6n ©
16 16 16 16 16 16

From the sketch, we observe that the LTI system is a lowpass filter which removes all but three of the
frequency impulses. To these, it multiplies a phase factor e=73.

The Fourier transform of the output is

Jw -_ —_e ) -
Y(e) = 158@)+ e Bow - T
1 Y 21!'
—el 7 —_—
+16¢ 65(w+16)

Thus the output sequence is )

] = 1 + C()5(27rn_l_37r
M =16"3“® 16

s
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2.54. (a) From the figure,

(z[n] + z[n] * h1[n]) * ha[n]
(z[n] * (8[n] + ha[n])) * hz[n].

y[n]

Let h[n] be the impulse response of the overall system,
y[n] = z[n] * h[n].

Comparing with the above expression,

h[n] (8[n] + ha[n]) * he[n]
ho [n] +h [n] * ho [TL]

a™u[n] + B Vufn - 1].

I

(b) Taking the Fourier transform of h[n] from part (a),

H(ev) = f: h[_n]e'j“"‘

oo
= Z a™u[n]e” " + 3 Z " Dy[n — 1)e73n

n=—o00 n=—o00
oo oo
- Z ate~ivn 4+ 3 Za(l—l)e—Jul,
n=0 =0

where we have used ¢ = (n — 1) in the second sum.

- 1 Be~i¥
Jw = T a
H(e™) l—qe 7v  1—qe v
—jw
%—t—gz_—;, for |a| < 1.

Note that the Fourier transform of a"u[n] is well known, and the second term of h[n] (see part (a))
is just a scaled and shifted version of a™u[n]. So, we could have used the properties of the Fourier
transform to reduce the algebra.

(c) We have

Y (e?)

X (ei?)
14 Be=7¥
1—aeiv’

H(ev)

cross multiplying, ‘ ) _ )
Y (€)1 - ae™] = X(e?¥)[1 + Be™¥]
taking the inverse Fourier transform, we have
y[n] — ayln — 1] = z[n] + Bz[n — 1].
(d) From part (a):
hin] =0, for n < 0.

This implies that the system is CAUSAL.

If the system is stable, its Fourier transform exists. Therefore, the condition for stability is the
same as the condition imposed on the frequency response of part (b). That is, STABLE, if || < 1.
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f: z[n]e™7™u=0
> aln)

6

2.55. (a)

X (e'w) |w=0

(b) X(ejw”w:" — Z z[nle—jﬂn
> an)(-1”

2

I

¢) Because z[n] is symmetric about n = 2 this signal has linear phase.
(c) y g p
X (7)) = A(w)e 12

A(w) is a zero phase (real) function of w. Hence,

LX) =-2w, -nm<w<T
(d)
i X(e'?)e " dw = 2nz[n]
-
forn =0: .
X (e7)dw = 27z[0] = 47
-7

(e) Let y[n] be the unknown sequence. Then
YY) = X(e™v)

Z z[n]e?v™

Z z[—nje~v"
> ylnje

Hence y[n] = z[—n].
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(f) We have determined that: ) ‘
X (&) = A(w)e 72

Xr(e’¥) = Re{X(e’*)}
= A(w)cos(2w)

= -;—A(w) (ejz"’ + e~72)

Taking the inverse transform, we have

1 1 1 1
ia[n + 2] + Ea[n - 2] = 5.’13[1’1- + 4] + Ea:[n]

12 ¢! 1/2
SR 2 P

112 -172
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2.56. Let z[n] = é[n], then ‘
XEe)=1
The output of the ideal lowpass filter:
W(e) = X(e?“)H(e?¥) = H(e?¥)
The multiplier: _
(—=1)"w[n] = e~ 7" w(n]
causes a shift in the frequency domain:
W(e!“™) = H(eJw™)
The overall output: '
y[n] = e7""w(n] + win]
Y(e/) = H('“™™) + H(e™)
Noting that:
j(w=7)y — 1, zzr_ < le <7
B { 0, <%
Y (e?¥) = 1, thus y[n] = é[n].
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2.57. (a) We first perform a partial-fraction expansion of X (e/*):

1-a?
(1 - ae~7%)(1 — aeiv)
1 aelv
1-ae i@ ' 1~ ae
z[n] = a"un]+a u[-n 1]
alnl

X(e7)

(b)
1 [" 1 el 4 e~Iv

il Jjw = — " jwy___ T~
5 ) X (e?*) cos(w)dw 5 _”X(e’) 5 dw

- (L /" X (£5)e7 duo + — “X(efW)e-fwdw)
z\ar ), G

1
= -2-(:t:[n — 1]+ z[n +1))

= _;_(aln—1|+a|n+1|)
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2.58. (a)
y[n] z[n] + 2z[n — 1] + z[n — 2]
= z[n] x hn]
= z[n] * (§[n] + 26[n — 1] + é[n — 2])
hin] = §[n]+26[n — 1]+ é[n —2]

(b) Yes. h[n] is finite-length and absolutely summable.

(©)

H(ev)

(d)

Magnitude

(e)

h[n]

|H (e)]
LH(Y) =

= 1+277Y +e7 %
1. 1 .
—Iw (eI e Iw

2e (2eJ +1+2e )

1l

i

2e™7 (cos(w) + 1)

i

2(cos(w) + 1)

-w

Phase A

1
2T
1

27 Jcan>
1

21 J<2n>
1

e~ it ___

/ H,(e7“)e? dw
<2m>

H(?@rm)edon gy
H(e?@)edw=mngy,

H(e®)e ™ do
T J<2n>
~1"h[n]

8[n] — 26[n — 1] + d[n — 2]

ar—

y
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2.59. (a) Notice that
s[n] =1+ cos(mn) =1+ (-1)°

S(e™) =21y 6w — k)
k

s[n] . SE? )
' 2n
- -7 T (O]
(b) Since y[n] = z[n]s[n],
Ye) = o / " () X (1) du
- 5 " 5(e7)X (9 )du

-7

= X(e) + X (&™)

Y (e’*) contains copies of X (e7“) replicated at intervals of 7.
(c) Since wln] = y[n]+ (1/2)(y[n + 1] + y[n - 1)),

W (') Y () + -;— (7Y (%) + e 7Y (e¥))

Y (/) (1 + cos(w))

(d) The following figure shows X (e’*), Y (e?*), and W (e’*) for a < 2 and a > 2. Notice that

jwy 17 leﬁﬂ/a,
X )'{‘0, /o< lwl 2 n

So, for a > 2, Y(e/*) contains two non-overlapping replications of X (ej“’), whereas for a < 2,
“aliasing” occurs. When there is aliasing, W (e?“) is not at all close to X (e/¥). Hence, a must be
greater than 2 for w(n] to be “close” to z[n].

X, Y, and W for a<2 X,Y,andWfora>2
2 6
1.5 4
N 'R
1 K
x x 2
0.5
0 - 0
-2 0 2 -2 [o] 2
® )
3 6
25
—=. — 4
L2 )
= x 2
15 ._4 -
1 0
-2 0 2 -2 0 2
® ®
6
10
— 4 —
% S
5
) 2 s A K
0 0 .
-2 [+] 2 -2 0 2
® ®
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2.60. (a) We start by interpreting each clue.
(i) The system is causal implies
hin] =0forn <0.
(ii) The Fourier transform is conjugate symmetric implies h[n] is real.
(iii) The DTFT of the sequence h[n + 1] is real implies h[n + 1] is even.
From the above observations, we deduce that h[n] has length 3, therefore it has finite duration.

(b) From part (a) we know that h[n] is length 3 with even symmetry around A[1]. Let h[0] = h[2] = a
and h[1] = b, from (iv) and using Parseval’s theorem, we have

2a% +b* = 2.
From (v), we also have
2a-b=0.
Solving the above equations, we get
1
hl0)] = —
o= 7
2
hll] = —
g V3
1
hl2] = —
4= 7
or
1
hl0}] = ——
=7
RI = -=
V3
1
hl2] = —-—.
4=
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2.61. (a) Carrying out the convolution sum, we get the following sequence g[n]:
4
®

3 3 f3
HIIT

01 2 3 4 5 6 7 8 9 10
(b) Again carrying out the convolution sum, we get the following sequence r[n}:

3

r[n]

-
10 |11 12 113 ll4 *415 16

-8
-12
-16
-20

(c) Let a[n] = v[—n] and b[n] = w[—n], then:

+00
> alklbln — k]
k=—00
+o00
Y v[—kwlk —n]
k=—o00
+o00
Z v[rjw[-n — r] where r = —k

= q[-n].

a[n] * b[n]

We thus conclude that g[—n] = v[—n] * w[—n].
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2.62.
157n =«
z[n] = cos( 7 73
= cos(—lrﬁ——zr-
4 3
T
= cos( , +§)
&3 T e i%e~iT
- 2 2

yln] = €777
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2.63. (a)

hin] + (e77*°"z[n])

y[n]

+§ e~ 9ok z(klh[n — k).

k=—00

Let z[n] = az:[n] + bzs[n], then:

h[n] * (e77“°" (az, [n] + bz [n]))

y[n]

+o00
= Z e~k (az, [k] + bz [k])h[n — K]

k=-—00
+00 +oo
= a Y e kg [klhn -kl +b Y e “kzy[k]h[n — k]
k=—0c0 k=—00

ay1[n] + byz[n]

where y;[n] and y2[n] are the responses to zi[n] and z3[n] respectively. We thus conclude that
system S is linear.

(b) Let z2[n] = z[n — ng), then:

h[n] * (e73“°"z,[n])

y2[n]

“+o0
= ) e irHgyln — k]h[k]

k=—00

+oo )
= z eI (=K gln — ny — k]h[k]
k=-00

# y[n —nol.

We thus conclude that system S is not time invariant.

(c) Since the magnitude of e~7“°™ is always bounded by 1 and h[n] is stable, a bounded input z[n]
will always produce a bounded input to the stable LTI system and therefore the output y[n] will
be bounded. We thus conclude that system S is stable.

(d) We can rewrite y[n] as:

yln] hin] * (e™7*°"z[n])

+00

= ) eioln=Rg[n — klhlk]
k=—00
+00

= Z e wonelwok zin — k]h[k]

k=-o00

+o00 )
= e7dwon )" edwokgln — klhfk].

k=—00

System C should therefore be a multiplication by e~7«°".
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2.64. (a) Hy(e’) corresponds to a frequency shifted version of H(e’“), specifically:

Hi(e) = H(e/“™™).
‘We thus have:
; 0 lw| < 0.87
Jwy — ]
Hie )‘{ 1, 08r<|w| <.

This is a highpass filter.

Hl(ej“’)

—r —0.87 0 08r m
(b) Hz(e?) corresponds to a frequency modulated version of H(e’*), specifically:
H(e?”) = H(e’) * (§(w — 0.57) + &(w + 0.57)) where |w| < 7.
We thus have:

. 0 , |w<0.3m
Hy(e)=<¢ 1 , 037r<|w| <0.77
0, 07Tr<|w| <.
This is a bandpass filter.

Hz(ej“)

> W

-1 —077r —037 0 037 O07r =

(¢) H3(e?™) corresponds to a periodic convolution of Hj,(e’*) with another lowpass filter, specifically:
jw 1 i i jw—0
H3(e'%) = P H(e%)Hp(e7°77) db
where H(e’*) is given by:
; 1 jw] <0.17
Jwy ’
Hie )_{ 0, 0lr<|w|<7

Carrying out the convolution, we get:

0.1 , |w<0lrm
Hs(e™)=¢ -l 4015 , 017 <|w| <037
0, 03r<|w| <.

4 H(e?)

/1IN

-7 -0.37 0 0.37 s
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2.65. Note that X (e7*) is real, and Y (e7%) is given by:

joy _ | —iX(E¥) , 0<w<m
Y(e )—{ +jX (%) , -m<w<O.

w(n] = z[n] + jy[n], therefore: ' . .
W(e) = X () + jY ().

Using the above, we get:

iy X(¥) , O<w<m
iY(e )—{ -X(e*) , -m<w<0.
We thus conclude:
, 2X (e?¥) O<w<m
Jwy _ y
W(e )—{ 0, - T<w<0.
W(e??)
2
+ + > W
-7 0 Wr T
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2.66. (a) Using the change of variable: r = —k, we can rewrite R;[n] as:
oo
R:[n] = Z z*[—rlz[n — r] = £*[—n] * z[n].
r=—o00

We therefore have:
oln] = 2*[-n].
(b) The Fourier transform of z*[—n] is X*(e’*), therefore:

Ro(e™) = X* (/)X (™) = |X (™).
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2.67. (a) Note that zz[n] = — ’,:::; z[n — k]. Since the system is LTI, we have:
k=4
valn] ==Y yln — &l.
k=0
(b) By carrying out the convolution, we get:
-1 , n=0,n=2
hln]=<¢ -2 , n=1
0 , ow.
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2.68. The system is not stable, any bounded input that excites the zero input response will result in an
unbounded output.

The solution to the difference equation is given by:
y[n] = yzir [n] + Yzsr [n]

where y,i-[n] is the zero input response and y,,.[n] is the zero state response, the response to zero initial

conditions:
1
Yzir[n] = a(i)ﬂ where a is a constant determined by the initial condition.
1
yzsr[n] = (§)nu[,n’] * :z:[n.]

An example of a bounded input that results in an unbounded output is:
z[n] = é[n + 1).
The output is unbounded and given by:

el = ()"l +1] - 5(5)"
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2.69. The definition of causality implies that the output of a causal LTI system may only be derived from
past and present inputs.

The convolution sum:

> hlklz{n - k]

y[n] =
= ;V_: hlklz[n — k] + Y hlklz[n — k]
k=—o00 k=0

Note that the first summation represents a weighted sum of future values of the input. Thus, if the
system is causal,

-1
> hlklz[n - k] =0.
k=-—o00
This can only be guaranteed if h[k] = 0 for n < 0.
Using reverse logic, we can show that if h[n] =0 for n < 0,

ylnl = 3 hlklafn — &.

=0

Since the convolution sum specifies that the input is formed from past and present input values, the
system is, by definition, causal.
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2.70. The system could be LTI. A possible impulse response is:

hln]

(31n] ~ goln — 1) = (3)"

n _1las
@ -3
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2.71. Let the input be z[n] = d[n — 1], if the system is causal then the output, y[n], should be zero for n < 1.

Let’s evaluate y[0):

y[0]

This proves that the system is not causal.

| B
—_— Jw
ey Y (e’) dw
+m

5/
2m J_ .

2
3n

0.

e IweTIw/2 gy
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2.72. z,[n] is even-symmetric around n = 1.5, furthermore since }_ z;[n] < 0 and we want A4;(0) > 0, we
need to include a 7 factor in the phase. An appropriate choice for 6, (w) is therefore:

3
0 (w) = —3w +7  |wl <.
4 6:(w)
s
]
2 \
: - w
0 \W 27
_z
2 T
—1" 1-
z2[n] is odd-symmetric around n = 3, therefore:
f2(w) = —3w + g w] < 7.
4 6:(w)
T +
: \
N
n * n 11w y - W
0 2 T 1% \& |2
-z 4
-—ﬂ' o
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2.73. (a)
E(”) = Hi(e)X(e™)
F(ei*) = E(e*)
= Hi(e™)X(e7)
G(e*) = Hi(e)F(e™)

Hy(e7)Hy(e77*) X (e77¥)
Y(ej"’) = G(e™¥)
Hy(e ) Hy(e?) X (7).

(b) Since:
Y (e?¥) = Hy(e™9)Hy (V) X (e7¥),

We get:
H(e™) = Hy(e™“) Hi (™).
(c) Taking the inverse transform of H(e’*), we get:

h[n} = ha[—n] * by [n].
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2.74. (a) Using the properties of the Fourier transform and the fact that (—1)" = e/™", we get:

V(Ee©) = X&)

W(e) = Hi(e“)V (™)
= Hy(e™)X (/)

Y() = W(“ ™)

Hy (™)X (e7)

H(e’) is thus given by:

H(e') = Hy(eF0—™).
H(e'?) = Hy (/™).

With the given choice of H;(e?*),

; 0 jwl < T~ w,
Jjwy — )
H(e™) { 1 , 7—we<|w| <.

H(elv)
1
| > W
- =T+ we 0 T — We T
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2.75. If z)[n] = z3[n], w;[n] and wz[n] will not be necessarily equal.
wifn] = z[-n-2]
wyln] = z[-n+2]

# z2[-n-2]
A simple counterexample is z;[n] = z;[n] = §[n]. Then:
wiln] = én+2]
weln] = é[n—2].
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2.76. (a) The overall system is not guaranteed to be an LTI system. A simple counterexample is:

(b)

wln] = zn]
yoln] = zln]
yln] = wilnlyeln] = 2*[n]

which is not a linear system, therefore the system is not LTI

ni(e) = Hi(eY)X(e)
Y2(¢’?) = Hy(e“)X(e™)
Y(e¥) = Y(e)*Ya(e).
Using the above relationships, we get:
iwy _ J unspecified , 0 < |w|<0.6m
Y(e )‘{ 0, 06r<|w<m
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2.77. The first difference:
y[n] = V(z[n]) = z[n] — z[n - 1].

(a) To determine if the system is linear:

V(azi[n] + bzz[n]) az[n] + bxz[n] — azi[n — 1] — bxa[n — 1]
a(z1[n] — z1[n — 1]) + b(z2[n] — z2[n — 1])

V(az1[n]) + V(az2[n]).

Therefore, the system is LINEAR.
To determine if the first difference is time invariant:

V(ziln-1]) = z[n-1-z[rn-2]
y[n —1].

i

The system is TIME INVARIANT.
(b) The impulse response is obtained by setting the input to z[n] = d[n],

y[n] = h[n] = é[n] — é[n — 1]
(c) Taking the Fourier transform of the result of part (b), we find that the system function is
H(¥)=1-¢7v.
Thus the magnitude of the frequency response is

V(1 - e ) (1 - e-1v)
V2 - 2cos(w).

H(&™)

|H(e™)|

1ef Bl

e} 4

14}

12p E

osf

oef

c.af -

o2} 4

We calculate the phase of the frequency response:
H(e’) = (1 = cos(w)) + j sin(w)
Thus,

LH(e’¥) = arctan (—-————1 _S_u;(::()w))
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4 LH ()

B!

1
[XE]

(d) In general,

V(z[n}) z[n] * (8[n] — é[n — 1))

z[n] — z[n - 1].

So, for z[n] = fn] * gln],
V(z[n]) fIn] * g[n] * (8[n] — [n — 1])
fIn] = V(g[n])
V(f[r]) * gln]-
Where we have used the commutivity of the convolution operator to obtain the last two equalities.
(e) We desire the inverse system, h;[n], such that

‘ hi[n] * V(z[n]) = z[n]

i

The inverse system must satisfy:
hi[n] * h[n] = é[n],

in the frequency domain, ) )
Hi(e)H(e™) = 1.

Recall from part (c), . )
H(vY)=1-e7v.

So, )
H;(e™) = pppu
and
hi[n] = u[n].

Hence, the unit step is the inverse system for the first difference.
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2.78. For impulse response h[n], the frequency response of an LTI system is given by
. ad .
H(e)= Y hln]e™ivn
n=-oo
(a) Suppose the impulse response is h*[n],
e . i . *
Z h*[nle”v" = ( z h[n]e""")
n=--00 n=—oo
= H*(e™v).

(b) We have

i

H*(e)

( Z h[n]e_j“’")

= > Rk[n]e?m.
If h[n] is real,
H* () = Z h[n]e?™

n=—0oo

= H(e ™).

Hence, the frequency response is conjugate symmetric.
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2.79. The analysis equation for the Fourier transform:

0o

X(e®)= > a[n]e7in

n=—oo

(a) The Fourier transform of z*[n],

E z*[nle " = (Z z[n]e’“")

n=—0oo n=—oo
= X*(eim).
(b) The Fourier transform of z*[—n],
) ) =) )
Z z* [_n]e—]wn — Z z" U]e]wl
n=—00 l=—o00
[o'e) ) *
- ( ) :c[l]e““")
I=—o00
= X*(&v).
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2.80. From property 1:

o0

X*(e )= Y z*[n]e"
for z[n] real, z[n] = z*[n], so T
X*(e) = i z[n)e=7on
- X

Thus, the Fourier transform of a real input is conjugate symmetric.
X (/) = Xgr(e™) + j X1(e™)

X*(e7%) = Xp(e™ ) — j X1(e¥)

From property 7, X (e’“) = X*(e~7*) for z[n] real. Thus,
Xr(e™) + jX1(e™) = Xr(e™¥) - jX1(e™7).

‘We may infer ) )
property 8: Xg(e’) = Xp(e™*)
property 9: X;(e?¥) = —X(e™?¥)

X (&) = | X ()]l £X ()
X*(e77) = |X (e77) e I EX ()
From property 7: 4 '
X(eY) = X"(e™7¥).
So,

property 10: |X(e/)| = | X (e™7*)|
property 11: /X(e?) = —/X(e™?¥).
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2.81. Theorem 1:

o

Z (az1[n] + bza[n])e~ 7" z az;[n]e ™ + i bzz[n]e 7™

n=-—00 n=—0o0 n=-—00

aXi(e) + bXz(e?¥)

Il

Il

Theorem 2:

(o] (o]

Z z[n — ngle” " Z z[¢le~iw(t—ma)

n=-—00 €=—00

I

[ <]

= glwme Z :z:[l]e‘j“"

{=~c0

= efmax(e)

Theorem 3:

©o oo

Z z[n]ejwone—jwn - Z z[n]e——j(w—uo)n

n=-oo n=-—0co

= X(ej(w—wo))

Theorem 4:

[>~] oo

Z z[—nle " Z z[l]e?*

n=-—-00 =—00

= X(e)

Theorem 5:

Z nzlnle " = —Jl%( Z z[n]e""‘"‘)

n=+00 n=—oo

= (X))
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2.82. The output of an LTI system is obtained by the convolution sum,

oo

yinl= Y slklhin - K.

k=—00

Taking the Fourier transform,

Y (e7°) i ( i z[k]h[n — k]) eivn

I

n=-00 \k=-—o00

= > x[k]( > -h[n-k]e-fw")
k=—o0 n=-—00

= i z[k]e‘j“"‘( i h[n—-k]e"j“’("_"))
k=—o0 n=--00

Hence, ) ) )
Y(e?Y) = X(e?“)H (7).

94



ch02.gxd

9/21/09 4:14 AM Page 95

—p—

© 2009 by Oppenheim. Published by Pearson Prentice Hall, Pearson Education, Inc., Upper Saddle River, NJ.
All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this
material may be reproduced, in any form or by any means, without permission in writing from the publisher.

2.83. The Modulation theorem:

jwy — =
Y (e?¥) o

the time-domain representation,

yln]

Il

@n)?
1

-

-

z[njw(n]

s
X ()W (e7w=9) do

-

! / @ [ doX (%)W (ew=9))giun

-

il i 36 jén
o dé X (e’%)w[n]e’
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2.84. (a) The Fourier transform of y*[—n] is Y*(e’*), and X (e’“)Y (/%) forms a transform pair with z[n] *
y[n]. So ‘ 4 :
G(eY) = X (7)Y " (e?¥)
and
gln] = z[n] xy™[-n]

form a transform pair.

(b)
e IR T S LU R S B
= > Y alklyk-nlen
n=-0o0 k=—o00
forn=0:

= [ XY= Y okl

k=—00

(c) Using the result from part (b):

sin(wn/4)
27n

sin(7mn/6)
Smn

z[n] =

¥'[n] =

We recognize each sequence to be a pulse in the frequency domain:

} X(e7)
1
2
i x x i
=% i 0 3 m
} ()
1
5
_ T n —+ - w
- s 0 % u
Substituting into Eq. (P2.77-1):
(=) 1 - ) )
> vl = 5 [ XY (@)
n=-00 TJn
1,11 27
= = P&
= L
T 60
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2.85. X(e'v) is given by:

(a)

z[n], n even
0, n odd

1 Jjrn
5(1+e ) z[n]

Ys[n]

which transforms to 1
Yo(e) = 5 [X(e) + X ()]

Ys(ejw)
1
2
—r 0 -
(b)
ya[n] = z[2n]
Yy(e) = %[X(ej%)JrX(eﬂ%”))]
= Y,(e'%)
Ya(e?)
%
T 2 0 2 e
()
wln = { g/ o
Ye(e?) = X (e/*)
> W
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2.86. (a)
[~}
@ (—~N,-w) = Z z[n — N)z*[n + N]ei“™.
n=-—0oo
o0
&;(N,w) = () z[n+ Nla"[n— Nemiwn)*
n=-00
e .
= Z (z[n + N]z*[n — N]e™7“")*
n=—0oo
o -
= Z z*[n + Nl]z[n — N]e’*"
n=—oo
= &;(-N,-w).
(b)
o .
®,(N,w) = Z Aa™*Ny[n + N]da" Nu[n — N]e~3v"
n=-—0oo
oo
= A2 Z a2re—iwn
n=N
[o <)
— A2 Z (GZe—jw)n
n=N
Y (it
- 1 — a2e~iw
_ 2 a2Ne—ij
- 1-a%e~iw’
()
o0
X(ej(v+(w/2))) = Z 2,[n]e—f(v+w2)ﬂ_
. n=-—00
(=]
X*(edv-@/A)y = z z*[n)ed (V= /Dn,
n=—oo

Let § =& [T X(ej(”“'(“’/z)))X*(ej(”"(“’/z)))ejz"N dv, then:

o

o0
S = Z g[n]e~I(v+e/2n Z ¥ [k]ei(v—w/Dki2eN gy
27r

“T n=—00 k=-00

= 2—1“- Z Z m[n]z*[k]e‘jw elk=n+2N) 4,

-7

cwintk) 2sin(w(k — N
= 27r Z Z alnfa’[Kle™ ™ 2sn(k( n-:2+N2 :

n=-—00 k=—00

= Z z[n]z*[n — 2N]e"M
n=—oo
oo
= Z z[n + N]z*[n — N]e77"
n=-—00

= &,;(N,w).

n=—o0 k=-—00

We thus conclude that:
&, (N,w) = .l_ X(eJ(U+(W/2)))X (e7 (v (@/2))ei2N gy
2n

-
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2.87.
win] = afn] + y[n]
The mean of wn]:
my = E{w[n]}
= E{z[n] +y[n]}
= E{z[n]} + E{y[n]}
Mg + My
The variance of w(n]:
‘7120 = E{(w[n] - mw)z}
= E{w’[nl}-m?
= E{(z[n] + y[n])*} - m,,
= E{z’[n]} + 2E{z[nly[n]} + E{y’[n]} - m] - 2momy — m]
If z[n] and y[n] are uncorrelated:
o, = E{z’[n]} -mi + E{y’[n]} - m]
= a: + az
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2.88. Let e[n] be a white noise sequence and E{s[n]e[m]} = 0 for all n and m.
E{y[nlyln+m]} = E{s[n]e[n]s[n + mle[n + m]}
= E{s[n]s[n + mle[n]e[n + m]}
Since s[n] is uncorrelated with e[n]:
E{ylnlyln+m]} = E{s[n]s[n + m|} E{e[nle[n + m]}
= o2025[m)]
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2.89. (a)
¢zz[m] = E(z[n]z[n + m])
E((s[n] + e[n])(s[n + m] + e[n + m]))
E(s[n)s[n + m]) + E(e[ne[n + m]) + E(s[n]e[n + m]) + E(e[n]s[n + m])
bss[m] + deelm] + 2E(e[n]) E(s[n]) since s[n] and e[n] are independent and stationary.
= ¢ss[m] + Pee[m] where we assumed e[n] has zero mean.

Taking the Fourier transform of the above equation, we get:
.. (79) = Byg(€7¥) + Bee(e™).

(b)
dze[m] = E(z[n]e[n +m])
E((s[n] + e[n])e[n + m])
E(s[n])E(e[n]) + ¢ee[m] since s[n] and e[n] are independent and stationary.
= Pee[m] where we assumed e[n] has zero mean.

il

Taking the Fourier transform of the above equation, we get:

-2 (ejw) = Pee (eJU ) -

(c)
dzslm] = E(z[n]s[n + m])
E((sln] + e[))sln + m])
¢ss[m] + E(e[n])E(s[n]) since s[n] and e[n] are independent and stationary.

= Psslm] where we assumed e[n] has zero mean.

Taking the Fourier transform of the above equation, we get:

®,5(e7) = Byq(e).
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2.90. (Throughout this problem, we will assume |a| < 1.)

()
énn[m] = h[m]*h[—m].

Taking the Fourier transform, we get:

Bun(eY) = H(¥)H(e™)
’ 1 1
= T —ae) (1-ae)
1 1 1

)-

1—a2(1—ae‘j“’ + 1 — aedv

Taking the Inverse Fourier transform, e get:

] _ a'nl
¢hh[m - 1 — 0.2

(b) Using part (a), we get:

I

|H (™) H(e™)H* (€)
H(e“)H(e~7*) since h[n] is real
= <I>hh(ej"’)
1 1
(1 - ae=¥) (1 — aeiv)
1 1 1
1 —a2(1 ~ae"Iv ' 1—ae

)-

(c) Using Parseval’s theorem:
+o0

> |hf)?

n=—0o0

“+o0

= Y la*"uln]
e
= > (laP)"
n=0
1
1—lal*’

L[ HEe)P
2 J_.
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2.91. The first-backward-difference system is given by:
y[n] = z[n] — z[n — 1].
(a)

¢yy[m] = E(ylnlyln +m])

E((z[n] — z[n — 1]))(z[n + m] — z[n + m — 1]))

= E(z[n]z[n + m]) — E(z[n]z[rn + m — 1]) — E(z[n — 1]z[n + m])
+E(z[n — 1)z[n + m — 1))

= ¢zo[m] — ¢ze[m — 1] - ¢z?l:[m +1] + Pzz[m]

= 2@ze[m] — ¢zz[m — 1] — ¢zz[m + 1]

= 202%8[m] — 028[m — 1] — o28[m + 1].

202 Pyy[m]

To get the power spectrum, we take the Fourier transform of the autocorrelation function:

®,,(e) = 202 -oleIY — o2
202 — 202 cos(w)
202(1 — cos(w)).

@, (&™) normalized by oF

=3 2 —1 o 1 z £

(b) The average power of the output of the system is given by ¢,[0]:

$yy[0] = 2‘72-

(c) The noise power increased by going through the first-backward-difference system. This tells us
that the first backward difference amplifies the noise of a signal.
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2.92. (a)
E{z[nlyln]} = E{zln] D hinlzln -k}
= i h[k|E{z[n]z[n — K}
k=—00
= i h[k]¢n[k]
k=-00

Because z[n] is a real, stationary white noise process:
$z2[n] = 024[n].

Therefore,

i

o2 S HHGH

k==—00

a2h[0].

E{z(ny(nl}

(b) The variance of the output:

Q
|

2 = B{(yln] -my)*}
E{y’In]} - m}-

When a zero-mean random process is input to a determistic LTI system, the output is also zero-
mean:

yln) = zln]*hinl

o

S alklhln - k).

k=—00

[l

Taking the expected value of both sides:

S Efalnl}hin -

my, =
k=-—00
my = 0, ifynz =0.
So,
0;‘; = E{’.‘IZ[‘"]}
= E{ f: himlzln—m] Y h[k]x[n—k]}
m=—00 k=—o00
= i i hm]h[k)E{z[n — m]z[n — ]}
m=-—00 k=—00
= o2 i f: h[m]h[k]6[m — k]
m=—00 k=-—00
az = o2 Z h?[m].
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2.93. Using the solution to problem 2.85:
(a)
(=<}
03 = o2 Z h3[k]
k=—o00
this statement is TRUE, because z[n] is a white noise sequence.
(b) Since y[n] is not a white noise sequence, this statement is FALSE.
(c) Let
hi[n] = a"uln]
ha[n] = b"uln].
These systems are cascaded:
hln] = ha[n] x he[n]
n
= Zakbn'k, n>0
k=0
1-— (a /b)n+1
g —_—— e
o ()
w(n] = z[n] * h[n].
Since z[n] is zero-mean, m,, = 0 also.
o, = E{w’[n]}
o0
= o2 k).
k=0
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2.94. (a) x[n] is a stationary white noise process.

yln] = i hiklzg[n -k}, n>0

k=—o00

E{y[n]} = E{ > h[k]a:[n——k]}, n>0

k=—o00

Y hikIE{z[n ~ K]}

k=-—o00
_ { Mz E::—oo hlk], n>0
- 0, n<o0
(b)
¢yy[n1:.n2] = E{y[m]y[nz]},
= E{ 2 hlk]z[n, — k] i h[m]z[ns — m]} , n>0
k=—o00 m=—00
= Zl i hlk]h[m]E{z[n: — k]z[ns — m]}
k=—0c0 m=—00
= Xl: 22 hlk}h[m]@zz[n1 — k,n2 — m].
k=—00 m=-o00
(c)
lim m, ST Bk = me > Rk
k=—00 _ my-k=—oo
lim "Z "Z hik]A[mlgezlns — ksna —m] = > D hlk]hlm]éza[k.m]
ny,nN2—>00 k=00 TM=—00 . kz==—00 mM=-—00
(d)
h[n] = a™u[n]
E{yln]} = m: Y a"uln]
k=—o00
—_ 1 __za'
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2.95.(a) No, the system is not linear. In the expression of y[n], we have nonlinear terms such as z2[n] and

(b)
(©)
(d)

divisions by z[n], z[n — 1] and z[n + 1].

Yes, the system is shift invariant. If we shift the input by no, mg[n] shifts by no as well as o2[n]
and o2[n], therefore y[n] shifts by no and the system is thus shift invariant.

If z[n] is bounded, m[n] is bounded so is ¢02[n] and o2[n]. As a result, y[n] is bounded and
therefore the system is stable.

No, the system is not causal. Values of the output at time n depend on values of the input at time
n + 1 (through ¢2[n] and m[n]). Since present values of the ouput depend of future values of the
input, the system cannot be causal.

When o2 [n] is very large, 02[n] is zero, therefore:

yin] = mq[n]
n+1

1
3 > ak)

k=n—1

which is the average of the previous, present and next value of the input.

When o2 [n] is very small (approximately zero), then:

yln] = z[n].

y[n] makes sense for these extreme cases, because in very small noise power, the ouput is equal to
the input since the noise is negligible. On the other hand, in very large noise power, the input is
too noisy and so the output is an average of the input.
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2.96. (a)
E{z[n]z[n]} = ¢22[0].
(b)
Bo(e™) = X(M)X*(e)
= W(e“)H ()W (e?)H* (e7¥)
= ®yu(e)|H ()
— 2 1
= vl cos(w) +1/4°
(c)

$zz[n] = Guwuln] *h[n] * h[—n]

((-;—)nu[n] N (%) - u[—n])

= o’ﬁ,d);.,.[n].

2
Ow
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2.97. (a)
Pyz[n] = E{ylk]z[k — n]}

= E { > hrlelk—r] S Amlok —n - m]}

=00 M=—00

Note that ¢;,[n] = E{z[pjv[p — €]}, therefore:

00

$u:ln) = D D hirlalmlE{alplvlp - (n+ € - 5)]}

r=—00 Mm=—00

h[—n] * h[n] * ¢zo[n].
q)yz(ej”) = IH(ejw)lz‘I’zv(ejw)-

I

(b) No, consider z[n] white and
v[n] = —z[n]
¢zu[n] = —024[n]
., (e’) = —a2.
Noting that |H(e?*)|? is positive,
By.(e’) = —oZ|H(e™)|?

Hence, the cross power spectrum can be negative.
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2.98. (a) Since f[n] = e[n] —e[n — 1], B .
Hi(@¥)=1-e77".

®f(e?) is given by:

®55(e7) Hy(e7)Hy(e77) Ree(e’)
(1-e ) (1 -e¥)a?
02(2 - —eIv)

= 02(2 - 2cos(w)).

W (@) normalized by a

EXS

a}

2.8 L

2}

1.8f

ost
-a — -2 © E]

(b) @¢s[m] is the inverse Fourier transform of ®¢y (e7*). Using part (a), we get:

b55lm] = 02(28[m] — 8[m + 1] — §[m — 1]).

()

Bge(e’) = Ha(e’)Ha(e™)®ss(e™)
02(2-2cos(w)) , |w| <we
0, w<|wl <.

© (@™ With o, = 2 rediane. normaiizea by o

28 4

aF 4

1.5 4

F 4

os} T
: °

1 [ ;
= 5p ) Beale)do

= —l-/ ) 02(2 — 2cos(w)) dw
2w

2
= 2~ sin(we))

(d)

QN

—we
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