Solutions to Exercises

Exercises 0.1
1. (a)[BB]True (b) [BB]Notvalid (c) [BB] False (0? is not positive.) ~ (d) Not valid
(e) True (f) Not valid (g) False

2. (a) [BB] True, because both4 =2+ 2and 7 < v/50 are true statements.
(b) False, because one of the two statements is false.
(c) [BB] False, because 5 is not even.
(d) True, because 16™/4 = 1.
(e) [BB] True, since 9 = 32 is true (or because 3.14 < 7).
() True, because (—4)? = 16 is true.
(g) [BB] True, because both hypothesis and conclusion are true.
(h) False, because the hypothesis is true but the conclusion is false.
(i) [BB] Not a valid mathematical statement.
(j) True, because both statements are true.
(k) True, because this is an implication with false hypothesis.
() False, because one of the sfatements is false while the other is true.
(m) False, because the hypothesis is true but the conclusion is false.
(n) [BB] False, because the area of a circle of radius r is not 27rr and its circumference is not 7r2.
(o) False, because the hypothesis of this implicatidn is true, but the co;iclusion is false.

(p) [BB] This is true: The hypothesis is true only when ¢ > b and b > aq, that is, when a = b, and
then the conclusion is also true. ’

(q) This implication is true because the hypothesis is always false.

3. (a) [BB]Ifz > 0, then % > 0.

(b) If a and b are rational numbers, then ab is a rational number.
(c) If f is a differentiable function, then f is continuous.
(d) [BB]If G is a graph, then the sum of the degrees of the vertices of G is even.
(e) [BB]If A is a matrix and A # 0, then A is invertible.
(f) If P is a parallelogram, then the diagonals of P bisect each other.
(g) If nis an even integer, then n < 0.
(h) If two vectors are orthogonal, then their dot product is 0.
(i) If n is an integer, then ni-}-l. is not an integer.
() If nis a natural number, thenn + 3 > 2.
4. (a) [BB] True (the hypothesis is false).
(b) True (hypothesis and conclusion are both true).



(c) [BB] True (the hypothesis is false).
(d) False (hypothesis is true, conclusion is false).
(e) [BB] False (hypothesis is true, conclusion is false: v/4 = 2).

Solutions to Exercises

(D True (g) [BB]True (h) True (i) [BB] True (the hypothesis is false: V2 = |z|)

() True (k) [BB] False (l) True

5. (a) [BB]a? < 0 and a is a real number (more simply, a = 0).

(b) z is notreal or z2 4 1 # 0 (more simply, x is any number, complex or real).

(c) [BB]z #1and z # —1. ‘

(d) There exists an integer which is not divisible by a prime.

(e) [BB] There exists a real number z such that n < z for every integer .
(f) (ab)c = a(bc) for all a, b, c. ' ‘

(g) [BB] Every planar graph can be colored with at most four colors.

(h) Some Canadian is a fan of neither the Toronto Maple Leafs nor the Montreal Canadiens.

(@i There exists z > 0 and some y such that 22 + 32 < 0.
G zrz>20rr < -2 -

(k) [BB] There exist integers a and b such that for all integers g and r, b # qa + 7.

() [BB] For any infinite set, some proper subset is not finite.

(m) For every real number z, there exists ah‘integer nsuchthatz <n <z +1.

(n) There exists an integer n such that 737 is an integer.
(V) a>zora>yora> 2. ’

(p) There exists a vector in the plane and there exists a normal to the plane such that the vector is not

orthogonal to the normal.

6. (a) [BB] Converse: If £ is an integer, then % and %. are also integers.
b

Contrapositive: If ¢ is not an integer, then ¢ is not an integer or ¢
(b) Converse: z = +1 — 2 = 1.
Contrapositive: £ # landz # —1 — 22 # 1.
(c) Converse: If t =1+ +v5orz =1 — /5, then 22 = z + 1.
Contrapositive: If z # 1+ /5 and z # 1 — /5, then 22 # = + 1.

(d) Converse: If n2 +n.— 2 is an even iht,cger, then n is an odd integer.

is not an integer.

Contrapositive: If n® + 2 — 2 is an odd integer, then n is an even integer.

(e) [BB] Converse: A connected graph is Eulerian:

Contrapositive: If a graph is not connected, then it is not Eulerian.
(f) Converse: a =0orb=0—ab=0.

Contrapositive: a # 0 and b # 0 — ab # 0.
(g) Converse: A four-sided figure is a square.

Contrapositive: If a figure does not have four sides, then it is not a square.

(h) [BB] Converse: If a® = b2 + c2, then ABAC is aright triangle.
Contrapositive: If a® # b% + ¢, then ABAC is not a right triangle.
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(i) Converse: If p(z) is a polynomial with at least one real root, then p(z) has odd degree.
Contrapositive: If p(z) is a polynomial with no real roots, then p(z) has even degree.

() Converse: A set of at most n vectors is linearly independent.
Contrapositive: A set of more than n vectors is not linearly independent.

(k) Converse: If f is not one-to-one, then, for all real numbers z and y, x # y and 22 + =y + % +
z+y=0.
Contrapositive: If f is one-to-one, then there exist real numbers z and y such that z = y or
2+zy+y’+z+y#0.

(1) [BB] Converse: If f is not one-to-one, then there exist real numbers z and y with z # y and
o +ry+y*+z+y=0.
Contrapositive: If f is one-to-one, then for all real numbers z and y either = y or 2 + xy +
v’ +zx+y=0.

7. (a) [BB] There exists a continuous function which is not differentiable.

(b) 2% > 0 for all real numbers z.

(c) [BB] For every real number z, there exists a real number y such that y > z.

(d) For every set of primes py, pa, . . ., P, there exists a prime not in this set.

(e) [BB] For every positive integer n, there exist primes p;, pa, . .., p; such thatn = p1ps - - - ps.

(f) For every real number z > 0, there exists a real number a such that a? = z.

(g) [BB] For every integer n, there exists an integer m such that m < n.

(h) For every real number = > 0, there exists a real number y > 0 such that y < z.

(i) [BB] There exists a polynomial p such that for every real number z, p(z) # 0.

(j) For every pair of real numbers = and y with z < y, there exists a rational number a such that
r<a<y.

(k) For every polynomial p(z) of degree 3, there exists a real number z such that p(z) = 0.
(1) There exists a matrix A # 0 such that A is not invertible.
(m) There exists a real number z such that z > 0. -
(n) For any integer n, n is not both even and odd.
(0) For all integers a, b, c, a® + b® # 3.
8. If a given implication “A — B” is false, then A is true and B is false. The converse, “B — A” is then

true because its hypothesis, B, is false. It is not possible for both an implication and its converse to be
false.

9. First we remember that = and y is true if = and y are both true and false otherwise. Now p <> g means
p — qgand g — p. Also

A. p — gqis true if p is false or if p is true and q is true.
B. g — pis true if q is false or if ¢ is true and p is true.

If p and q are both false, both statements A and B are true, so p < q is true. Similarly, if both p and ¢
are true, then statements A and B are again true, so p <> ¢ is true. Thus p < g is true if p and ¢ have
the same truth values. Suppose p and ¢ have different truth values. To be specific, say p is true and ¢
is false. If p is true and q is false, we see that statement A is false, so A and B is false. Similarly, if p
is false and q is true, then statement B is false, so A and B is false. This verifies statement (x).



4 Solutions to Exercises

Exercises 0.2
1. (a) [BB] Hypothesis: a and b are positive numbers.
Conclusion: a + b is positive.

(b) Hypothesis: T is a right angled triangle with hypotenuse of length c and the other sides of lengths

a and b.

Conclusion: a? + b? = 2.

(c) [BB] Hypothesis: p is a prime.

Conclusion: p is even.
(d) Hypothesis: n > 1 is an integer.

Conclusion: n is the product of prime numbers.
(e) Hypothesis: A graph is planar.

Conclusion: The chromatic number is 3.

2. (a) [BB] a and b are positive is sufficient for a + b to be positive; a + b is positive is necessary for a
and b to be positive.
(b) A right angled triangle has sides of lengths a, b, c, c the hypotenuse, is sufficient for a? + b% =
c2; a® 4+ b? = c? is necessary for a right angled triangle to have sides of lengths a, b, c, c the
hypotenuse.

(c) [BB] pis a prime is sufficient for p to be even; p is even is necessary for p to be prime.

(d) n» > 1 an integer is sufficient for n to be the product of primes; n a product of primes is necessary
for n to be an integer bigger than 1.

(e) A graph being planar is sufficient for its chromatic number to be 3. Chromatic number 3 is
necessary for a graph to be planar.

3. @[BBlz=-2 (b)a=b=-1 (c)[BB]z=4

1
d)8,9,11,12 e) vV2and — z=5y=2
(@ © 7 ® Yy
4. A can easily be proven false with the counterexample 0. No single counterexample can disprove a
statement claiming “there exists” so we prove B directly. B is false because the square of a real
number is nonnegative. '

5. [BB] This statement is true. Suppose the hypothesis, « is an even integer, is true. Then z = 2k for
some other integer k. Then = + 2 = 2k + 2 = 2(k + 1) is also twice an integer. So  + 2 is even. The
conclusion is also true.

6. The converse is “z + 2 is an even integer —  is an even integer.” This is true, for suppose that the
hypothesis,  + 2 is an even integer, is true. Then = + 2 = 2k for some integer k, so z = 2k — 2 =
2(k — 1) is also twice an integer. The conclusion is also true.

7. This is true. Let A be the statement “z is an even integer” and let B be the statement x + 2 is an even
integer”. In Exercise 5, we showed that A — B is true and, in Exercise 6, that the converse B — A is
also true. Thus A < B is also true.

8. (a) Ais false: n = 0 is a counterexample.
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9.

10.

11.

12.

13.

14.

15.

16.

(b) Converse: If ;77 is not an integer, then n is an integer. This is false: n = -12- is a counterexample

n+1l = 3/°
Contrapositive: If -2 is an integer, then n is not an integer. This is false: n = 0 is a counterex-
ample.

Negation: There exists an integer n such that ;% is an integer. This is true: Take n = 0.
(a) n prime — 2™ — 1 prime.
(b) n prime is sufficient for 2" — 1 to be prime.

(c) A is false. For example, n = 11 is prime, but 21* — 1 = 2047 = 23(89) is not. The integer
n = 11 is a counterexample to A.

(d) 2™ — 1 prime — n prime.
(e) The converse of A is true. To show this, we establish the contrapositive. Thus, we assume n is not

prime. Then there exists a pair of integers a and b such thata > 1, b > 1, and n = ab. Using the
hint, we can factor 2™ — 1 as

2" —1=(29)"-1=(2°-1)[(2°)°" 1 + (2°)° 2+ + 27 + 1.

Sincea > 1landb > 1, wehave 2% —1 > 1and (2)*~1 +(29)%=2+... 429 +1> 1,502" -1
is the product of two integers both of which exceed one. Hence, 2" — 1 is not prime.

[BB] The converse is the statement, “A continuous v

function is differentiable.” This is false. The abso-
lute value function whose graph is shown to the right ' z
is continuous, but not differentiable at z = 0.

(@ 2(n—-1) ®n
©) Apn = Ap_1, An1 = Ana, ..., Ao = A, A — A
[BB] A is true. It expresses the fact that every real number lies between two consecutive integers.

Statement B is most definitely false. It asserts that there is a remarkable integer n with the property
that every real number lies in the unit interval between n and n + 1.

A is false; B is true. There can be no y with the property described since y is not bigger than y + 1;
x = y + 1 provides a counterexample. To prove B, we note that for every real number z, we have
z+ 1> z and so z + 1 is a suitable y.

(a) This is false. Suppose such an n exists. Then ¢ = 1 is rational but nq is not an integer.

(b) This is true. Given a rational number g, there exist integers m and n, n # 0, such that ¢ = P
Then ng = m is an integer.

(a) Since n is even, n = 2k for some integer k. Thus n? + 3n = 4k2 + 6k = 2(2k? + 3k) is even too.
(b) The converse is the statement n2+3n even — n even. This is false and n = 1 is a counterexample.

(a) [BB] Case 1: a is even. In this case, we have one of the desired conclusions.
Case 2: a is odd. In this case, a = 2m + 1 for some integer m,soa + 1 =2m +2 =2(m + 1)
is even, another desired result.

®) [BBIn?2+n = n(n + 1) is the product of consecutive integers one of which must be even; so
n? + n is even.



17.

18.

19.

20.

21.

22.

Solutions to Exercises

n? —n+5=n(n— 1) + 5. Now either n — 1 or n is even, since these integers are consecutive. So
n(n — 1) is even. Since the sum of an even integer and the odd integer 5 is odd, the result follows.

[BB] 222 — 4z + 3 = 2(z? — 2z) +3 =2[(x —1)> — 1] +3=2(z — 1)> + listhesumof 1 and a
nonnegative number. So it is at least 1 and hence positive.

For a2 — b2 to be odd, it is necessary and sufficient for one of a or b to be even while the other is odd.
Here’s why.

Casei: a,beven.

In this case, a = 2n and b = 2m for some integers m and n, so a? — b% = 4n? — 4m? = 4(n? — m?)
is even.

Case i: a, b odd.

In this case, a = 2n + 1 and b = 2m + 1 for some integers m and n, s0 a? — b% = (4n® +4n +1) —
(4m?2 + 4m + 1) = 4(n? + n — m? — m) is even.

Case iii: a even, b odd.

In this case, a = 2n and b = 2m+1 for some integers n and m, so a® —b? = 4n? — (4m? +4m+1) =
4(n? —m? —m) — 1is odd.

Case iv: a odd, b even.

This is similar to Case iii, and the result follows.

[BB] (—) To prove this direction, we establish the contrapositive, that is, we prove that n odd implies
n? odd. For this, if n is odd, then n = 2m + 1 for some integer m. Thus n? = 4m? + 4m + 1 =
2(2m? + 2m) + 1 is odd.

(«—) Here we assume that n is even. Therefore, n = 2m for some integer m. So n? = (2m)? =
4m? = 2(2m?) which is even, as required.

1
Weassertthata:+—a; > 2 if and only if x > 0.

Proof. (—) We offer a proof by contradiction. Suppose z + % > 2but z > 0 is not true; thus

1, . . ..
r<0.Ifx=0, - is not defined, so z < 0. In this case, however, T + p < 0, a contradiction.

(«+—) Conversely, assume that z > 0. Note that (z — 1)2 > 0 implies z2 — 2z + 1 > 0, which in turn

implies 22 + 1 > 2z. Division by the positive number z gives = + p > 2 as required. ]

[BB] Since n is odd, n = 2k + 1 for some integer k.

Case 1: k is even.

In this case k = 2m for some integer m, son = 2(2m) +1=4m + 1.

Case 2: k is odd. :

In this case, k = 2m + 1 for some integer m, son = 2(2m +1) + 1 = 4m + 3.

Since each case leads to one of the desired conclusions, the result follows.
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23.

24.

25.

26.

27.

28.

29.

30.

31.

By Exercise 22, there exists an integer k such that n = 4k + 1 orn = 4k + 3.

Casel: n =4k + 1.

If k is even, there exists an integer m such that k = 2m, son = 4(2m) + 1 = 8m + 1, and
the desired conclusion is true. If k is odd, there exists an integer m such that k = 2m + 1, so
n=4(2m + 1) + 1 = 8m + 5, and the desired conclusion is true.

Case 2: n =4k + 3.

If k is even, there exists an integer m such that k = 2m, so n = 4(2m) + 3 = 8m + 3, and
the desired conclusion is true. If k is odd, there exists an integer m such that &k = 2m + 1, so

n = 4(2m + 1) + 3 = 8m + 7, and the desired conclusion is true. In all cases, the desired conclusion
is true.

[BB] If the statement is false, then there does exist a smallest positive real number r. Since %r is
positive and smaller than r, we have reached an absurdity. So the statement must be true.

We give a proof by contradiction. If the result is false, then both a > /n and b > /n. (Note that the
negation of an “or” statement is an “and” statement.) But then n = ab > /n\/n = n, which isn’t
true.

[BB] Since 0 is an eigenvalue of A, there is a nonzero vector x such that Ax = 0. Now suppose that A
is invertible. Then A=!(Ax) = A~10 =0, so x = 0, a contradiction.

(a) The given equation is equivalent to (b — 5)v/2 = 3 — a. If b # 5, then /2 = 2%‘; is a rational
number. This is false. Thus b = 5, so a = 3.

(b) Note that (a +bv/2)? = (a® + 2b%) + 2aby/2. Thus, if (a+ bv/2)? = 3+ 5+/2, then a2 + 2b? = 3
and 2ab = 5, by part (a). The second equation says a # 0 and b # 0. Since a and b are integers, it
follows that a? > 1 and b2 > 1 and a® + 2b% > 3 with equality if and only @ = +1 = b. But then
2ab # 5.

[BB] Observe that (1+a)(1+4b) = 1+a+b+ab = 1. Thus 1+ a and 1+b are integers whose product
is 1. There are two possibilities: 1 +a=1+b = 1,inwhichcasea =b=0,orl+a=1+4b= -1,
in which case a = b = —2.

We offer a proof by contradiction. Suppose — is not irrational. Then it is rational, so there exist integers
a

1
m and n, n # 0, such that 2 = %L Since ;11- # 0, we know also that m # 0. Now .= % implies

a = — is a rational number, a contradiction.
m

We give a proof by contradiction. Assume that a is rational, b is irrational and a + b is rational. Then
a+ b= 7 for integers m and n, n # 0. Since a is rational, a = % for integers k and ¢, ¢ # 0. Thus
™ L™ k  mf—kn
T T n £ nf

is the quotient of integers with nonzero denominator. This contradicts the fact that b is not rational.

[BB] We begin by assuming the negation of the desired conclusion; in other words, we assume that
there exist real numbers 1, y, z which simultaneously satisfy each of these three equations. Subtracting
the second equation from the first we see that z + 5y — 4z = —2. Since the third equation we were
given says x + 5y — 4z = 0, we have z + 5y — 4z equal to both 0 and to —2. Thus, the original
assumption has led us to a contradiction.



32.

33.

34.

35.

36.

37.

Solutions to Exercises

(a) [BB]False:z =y =0 isv a counterexample.
(b) False: a = 6 is a counterexample.

(c) [BB] False: x =0isa counterexample.v

(d) False: a = /2,b=—+2isa counterexample.
(e) [BB]False: a =b=+2isa counterexample.

—b+ /B2 — 4ac
(f) The roots of the polynomial az? + bz + c are x = bi—zljl___ﬂf. If b2 — 4ac > 0, Vb2 — 4ac
v —b+vb? -4
is real and not 0, so the formula produces two distinct real numbers x = ____+2a—ac and

—b— /b2 — 4dac
2a ’
(g) False: z = % is a counterexample.
(h) True: If n is a positive integer, then n > 1, so n? = n(n) > n.

xTr =

The result is false. A square and a rectangle (which is not a square) have equal angles but not pairwise
proportional sides.

(a) [BB] Since n2+1is even, n? is odd, so n must also be odd. Writing n = 2k+1, thenn?+1 = 2m
says 4k% + 4k + 2 = 2m, som = 2k% + 2k + 1 = (k + 1)® + k? is the sum of two squares as
required.

(b) [BB] We are given that n2+1 = 2m for n = 4373 and m = 9561565. Since n = 2(2186)+1, our
solution to (a) shows that m = k2 + (k + 1)? where k = 2186. Thus, 9561565 = 21862 + 21872

(a) 247+2 1 1 =4(2%") + 1 = 4(2")* + 1. Applying the given identity with z = 2", we get

27241 = (2.2 4 2rtl p)(2- 2% —2mt 4
(22n+1 + 2n+1 + 1)(22n+1 _ 2n+1 4 1)

With n = 4, we get 218 + 1 = (2% + 25 4 1)(2% — 25 + 1) = 545(481).
(b) 236 — 1= (218 —1)(218 + 1) = (2° — 1)(2° + 1)(545)(481) (using the result of part (a))
= 511(513)(545)(481).

If the result is false, then f(n) = ao + ain + - -+ + a;n! for some ¢t > 1. Since f(0) = ap = p
is prime, f(n) = p + ng(n) for g(n) = a; + azn + --- + a;n*~1. Replacing n by pn, we have
f(pn) = p + npg(pn). The right hand side is divisible by the prime p, hence f(pn) is divisible by p.
But f(pn) is prime, by hypothesis, so f(pn) = p. This means g(pn) = 0, contradicting the fact that a
polynomial has only finitely many roots.

We offer a proof by contradiction. Suppose all the digits occur just a finite number of times. Then
there is a number n; which has the property that after n; digits in the decimal expansion of 7, the
digit 1 no longer occurs. Similarly, there is a number n5 such that after no digits, the digit 2 no longer
occurs, and so on. In general, for each £ = 1,2,...,9, there is a number n such that after ny, digits,
the digit k£ no longer occurs. Let N be the largest of the numbers n1,ns,...,ng. Then after IV digits
in the decimal expansion of 7, the only digit which can appear is 0. This contradicts the fact that the
decimal expansion of 7 does not terminate.
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38. We have proven in the text that v/2 is irrational. Thus, if \/5\/5 is rational, we are done (with a =

b = v/2). On the other hand, if \/iﬁ is irrational, then let a = \/5\/§ and b = +/2 in which case
ab = \/52 = 2 is rational.

Chapter 0 Review

1. (a) This implication is true because the hypothesis is always false: a — b > 0 and b — a > 0 give
a > band b > a, which never holds.

(b) This implication is false: When a = b, the hypotheses are true while the conclusion is false.

2. (a) xis areal number and x < 5.

(b) For every real number z, there exists an integer n such that n < x.
(c) There exist positive integers z, y, z such that z3 + 33 = 23.
(d) There exists a graph with n vertices and n + 1 edges whose chromatic number is more than 3.

(e) There exists an integer n such that for any rational number a, a # n.
® a#0o0rb#0.

3. (a) Converse: If ab is an integer, then a and b are integers.
Contrapositive: If ab is not an integer, then either a or b is not an integer.
Negation: There exist integers a and b such that ab is not an integer.

(b) Converse: If z2 is an even integer, then z is an even integer.
Contrapositive: If 22 is an odd integer, then  is an odd integer.
Negation: There exists an even integer z such that 22 is odd.

(c) Converse: Every graph which can be colored with at most four colors is planar.
Contrapositive: Every graph which cannot be colored with at most four colors is not planar.
Negation: There exists a planar graph which cannot be colored with at most four colors.

(d) Converse: A matrix which equals its transpose is symmetric.

Contrapositive: If a matrix does not equal its transpose, then it is not symmetric.

Negation: There exists a symmetric matrix which is not equal to its transpose.
(e) Converse: A set of at least n vectors is a spanning set.

Contrapositive: A set of less than n vectors is not a spanning set.

Negation: There exists a spanning set containing less than n vectors.
() Converse: If z > —2and z < 1, then 22 + z — 2 < 0.

Contrapositive: If z < —2orz > 1,thenz? +z — 2 > 0.

Negation: There exists anz < —2or z > 1such thatz? +z — 2 < 0.

4. (a) Aisfalse: a = u=b=1,v = —1 provides a counterexample.
(b) Converse: Given four integers a, b, u,v with u # 0, v # 0,if a = b = 0, then au + bv = 0.
Negation: There exist integers a, b, u, v, u # 0, v # 0, withau +bv =0and a #Oor b # 0.

Contrapositive: Given four integers a, b, u,v with v # 0 and v # 0, if a # 0 or b # 0, then
au + bv # 0.
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11.

12.

13.

14.

15.

. The desired formula is ab =

Solutions to Review Exercises

(c) The converse is certainly true since Ou + Ov = 0.

(d) The negation is true: Takea =u=b=1and v = —1.
The contrapositive of A is false since A is false.

(a) There exists a countable set which is infinite.

(b) For all positive integers n, 1 < n.

(a) This is true. If z is positive,  + 2 is positive. In addition, if = is odd, x + 2 is odd.
(b) This is false. When z = —1, £ + 2 = +1 is a positive odd integer, while z is not.

(a) This statement expresses a well-known property of the real numbers. It is true.
(b) This is false. The conclusion would have us believe that every two real numbers are equal.

(a+b)—(a—b)*
4

which holds because (a + b)? — (a — b)? = (a® +
2ab + b?) — (a? — 2ab + b?) = 4ab.

. (—) Assume n3 is odd and suppose, to the contrary, that n is even. Thus n = 2z for some integer z.

But then n3 = 823 = 2(423) is even, a contradiction. This means that n must be odd.

(«—) Assume n is odd. This means that n = 2z + 1 for some integer z. Then n® = (2z + 1)3 =
8z3 + 1222 + 6z + 1 = 2(4x3 + 622 + 3x) + 1 is odd.

(@) a® —5a + 6 = (a — 2)(a — 3) is the product of two consecutive integers, one of which must be
even.

(b) The sum (a? — 5b) + (b2 — 5a) is (a® — 5a) + (b2 — 5b) = (a? — 5a + 6) + (b*> — 5b+ 6) — 12
is the sum of three even integers [using the result of part (a)] and hence even. Thus b% — 5a is the
difference of even integers and hence even as well.

The sum of the angles of a triangle is 180°, so ZC = 45° and ZD = 75°. Since triangles ABC and
AC DE DFE 8
DE imilar, — = =—, i —_— = — =16.
F are similar, A5 = DF° the length of AC'is |AB| x DF 12 x 5 16
The rectangle that remains has dimensions 1 by 7 — 1. These are in ratio
1 T+1 T+1 7+1 ,

T—1 (r-Dr+1) -1 7
using twice the fact that 72 = 7 + 1.

If the result is false, thenxz > —landz < 2,so0x+1>0andz —2 < 0. Butthenz? —z — 2 =
(z + 1)(x — 2) <0, a contradiction.

Suppose, to the contrary, that —— is the largest negative rational number, where x and y are positive
integers. Then — is rational and — < —, so —— > ——. Since —— is a negative rational number,
2y 2y 2y Y 2y

we have a contradiction.

We use a proof by contradiction which mimics that proof of the irrationality of 1/2 given in Problem 8.
Thus, we suppose that /3 = % is rational and hence the quotient of integers a and b which have no
factors in common. Squaring gives a? = 3b% and so a = 3k is a multiple of 3. But then 9k% = 3b2,
so 3k? = b2. This says that b is also a multiple of 3, contradicting our assumption that a and b have no
factors in common.



Section 1.1 1

16.

17.

18.

Let the rational numbers be § and §. We may assume that a, b, c,d are positive integers and that
& < §. Thus ad < bc. The hint suggests that $< is between ¢ and 5, and this is the case: § < &S
is equivalent to a(b + d) < b(a +c) and &5 < § is equivalent to (a + c)d < (b + d)c, both of which
are true because ad < bc.

On a standard checker board, there are 32 squares of one color and 32 of another. Since squares in
opposite corners have the same color, the hint shows that our defective board has 32 squares of one
color and 30 of the other. Since each domino covers one square of each color, the result follows.

(a) We leave the primality checking of f(1),..., f(39) to the reader, but note that f(40) = 412.

(®) f(k? + 40) = 402 + 80k? + k* + 40 + k2 + 41 = k* + 81k% + 412 = (k? +41)2 — k2 =
(k% 4+ 41 + k)(k% + 41 — k).

19. The answer is no, since 333333331 = 19607843 x 17.

Exercises 1.1

1.

(a) [BB]

pla|-q|(-9)Vp|pA((—q) VD)
T|T|F T T
T|F|T T T
F|T|F F F
F|F|T T F
® [p[a[»[(P)—d][pra] A V(D) —q)
T|T|F T T T
T|F|F T F T
FlT|T T F T
FI|F|T F F F
© [p[a]avr[pA@Vp) [~ A@VD) [~ (A(aVP) =P
T|lT| T T F F
T|F| T T F F
FlT| T F T F
F|F| F F T F
BBl [pTq[r[-a[pV(d) [~ @V(a) [P [P Vr ][ ®VE))A(=p) V)
T|T|T| F T F F T F
T|F|T| T T F F T F
FlT|T| F F T T T T
FlF|T| T T F T T F
T|T|F|F T F F F F
T|F|F| T T F F F F
F|T|F|F F T T T T
F|F|F| T T F T T F




12 Solutions to Exercises

©

plalr|g—r|p—=(g—r)|pAg|(@AgVr](p—=(g—7) = ((PAg)VT)
T|T|T| T T T T T
TI|F|T| T T F T T
FlT|T| T T F T T
F|l|F|lT| T T F T T
T|T|F| F F T T T
T|F|F| T T F F F
F|l|T|F| F T F F F
F|F|F| T T F F F

2. (a) If p — q is false, then necessarily p is true and g is false. (This is the only situation in which
p — g s false.) We construct the relevant row of the truth table for (p A (=g)) V ((-p) — g).

pla|q9|pA(—~q)|-v]|(-p)—a

T|F|T T F T

(A=) V (P —q)
T

(b) [BB] There are three situations in which p — ¢ is true. The question then is whether or not the

truth value of (p A (—q)) V ((=p) — g) is the same in each of these cases. We construct a partial
truth table. '

Pla]-9[PA(~d) [P (P)—=a] (PA (=) V (=p) — q)
T|T|F F F T T
F|F|T F T F F

As shown, (p A (=g)) V ((=p) — g) has different truth values on two occasions where p — ¢ is
true, so it is not possible to answer the question in this case.

3.BBl [p[q [ r [ s | gA(=r) [p=[gA(-n)] | -s] (ms) Vg
T|T|T|T|F F F F T
re(-s)va [lp— (@A) VY Iro (=) Va)l
T T

4 [plar s r[ar)[p—=@GA()]][-s] (s Vg

F|F|F|F| T F T T T
ro[(-s) Vel [ [p—= (gA(=r)] V [r < ((0s) V)]
F T
5. @ [BBl{p| g |pAg|pVa|(pAg)—(pVq)
T|T| T T T
T|F| F T T
F|T| F T T
F|F| F F T

The final column shows that (p A ¢) — (p V gq) is true for all values of p and g, so this statement
is a tautology. '



Section 1.1

(b) [BB]

13

pla|-p|[(-p)Ag]|-q[pV(-g) | ((-p)Ag)A(pV(—9)
T|T|F F F F
T|F|F F T F
FlT|T T F F
F|F|T F T F

The final column shows that ((—p) A g) A (p V (—gq)) is false for all values of p and g, so this
statement is a contradiction.

6. @ [p[g[p—gla—(—q ‘ _
TlT T T Since g — (p — q) is true for
| F F T all values of p and g, this
FlT T T statement is a tautology.
F|F T T
® P ]apAa[=»[-a[ (=) V(=9) [PAQ A=)V (=q)]
T|T T F | F F F
T|F F F | T T F
F\|T F T | F T F
F|F| F T | T T F
Since (p A g) A ((—p) V (—gq)) is false for all values of p and g, this statement is a contradiction.
7. (a) [BB]
pla|r|p—glg—or|(PogA(@g—T) Py
T|\T|T T T T T
T|F|T F T F. T
F|T\|T T T T T
F|F|T T T T T
T|T|F T F F F
T|F|F F T F F
F|T|F T F F T
F|F|F T T T T
(= A(g—=n—[p—r]
T Since [(p — q) A (g — )] — [p — r] is true for all
T values of p, g, and r, this statement is a tautology.
T .
T
T
T
T
T

(b) [BB]If p implies g which, in turn, implies r, then certainly p implies 7.

8. We must show that the given “or” statement can be both true and false. We construct truth tables for
each part of the “or” and show that certain identical values for the variables make both parts 7" (so that
the “or” is true) and other certain identical values for the variables make both parts F’ (so that the “or”

is false).
plr|s|—-r]|-s|(=r)—>(-s)|pVI-r)— (-s)
T|T|T|F | F T T
F|F|T|T|F F F
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Solutions to Exercises

TSIV

plag|r|s|t|-t|(=t)vp
T|{T|T|T|T|F T T
F|F|F|T|T|F F F
~q|(cg) —=r|[s= (=) VPRI VI(=g) — 7]
F T T

T F F

9. We are given that A is false for any values of its variables.

10.

11.

(a) [BB] An implication p — g is false only if p is true and q is false. Since A is always false, A — B
is always true. So it is a tautology.

(b) An implication p — q is false only if p is true and g is false. Since A is false and the tautology B
is true for any values of the variables they contain, B — A is always false. So it is a contradiction.

(a) The tables below show that when all three variables p, g and r are false, p — (¢ — ) is true,
whereas (p — ¢) — r is false. Thus these statements have different truth tables and hence are not

logically equivalent.
plalrlg—r|p—(g—r) plalrlp—g|llpog —r
F|F|F T T F|F|F T F
(b) The compound statement is false.
(@ [BBI[pq[pVa
T|T F
T\|F T
F|T T
F|F F

® [pTa[-p[PDAq[pY(=P)Ad [ Y (-P)Aq)Va
T|T| F F T T
T|F| F F T T
F|T| T T T T
F|F| T F F F

© BBl [pTqg[pvalpva[ (V) = (pVa)

rlrl F T T The truth table shosz that
rlrl T T T (pV q) — (pV q) is true for all
FlT!| T T T values of p and ¢, so itis a
F|F| F F T tautology.

@ [pTa[pValpog[-req) Columns three and five are the same.
T|T| F T F So the truth values of p V ¢ and
T|\F| T F T - (p < q) are the same for all values
F1T7| T F T of p and q. Thus these statements are
FIF| F T F logically equivalent.
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Exercises 1.2
1. 1. [BB] (Idempotence) The truth tables at

the right show that p Vp <= pand p|pVP p|PAP
PAp <= p. T| T T| T
F F F

2. (Commutativity) The truth tables show thatpV ¢ <= ¢gVpandpAq < gAp.

Pplag|pValaVp Pl a|pPANglgADp
T|T| T T T|T| T T
T|F| T T T|F| F F
F|\T{ T | T F|T| F F

3. [BB] (Associativity) The equality of the fifth and seventh columns in the truth table shows that
(pvVa)Vr) <= (pV(gVr)).

pla|r|pVeg|(@VeVr qgVr|[pV(gVr)
T|T|T| T T T T
T|F|T| T T T T
FlT|T| T T T T
F|F|T| F T T T
T|{T|F| T T T T
T|\F|F| T T F T
F|T|F| T T T T
F|F|F| F F F F

The equality of the fifth and seventh-columns in the truth table shows that (pAg) AT) =

(PA(gAT)). '
pla|r |pAg|(PAQ AT [gAT | pA(gAT)
T|T|T| T T T T
T|F|T| F F F F
FlT|T| F F T F
F|F|T| F F F F
T|T|F| T F F F
T|F|F| F F F F
F|T|F| F F F F
F|F|F| F F F F

4. (Distributivity) The equality of the fifth and eighth columns in the truth table shows that p V (g A
r) <= (pVa)A(pVr)).

plag|rlgAr[pV(gAT) |[pVa|pVr | (Ve A(pVrT)
T|T|T| T T T T T
T|FlT| F T T T T
FlT|T| T T T T T
F|F|T| F F F T F
T|T|F| F T T T T
T|F|F| F T T T T
F|T|F| F F T F F
F|F|F| F . F F F F
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The equality of the fifth and eighth columns in the truth table shows that p A (g V r) <=
(pAQV(pAT)).

=
3

()
<

REDEO R R R R R N P

pA(gVr) [p (pAg)V(PAT)

BRO RS R R R R R P

TMNRNNRNN L

RO R e R B B I
ST B B B B Hes R I 05
SRR R T B R B I
R R R e e T R
RO RS R R R R

5. [BB] (Double negation) The equality of
the first and third columns in the truth p|-p|~(p)

table shows that p <= - (-p). T|F T
F|T F

6. (The Laws of De Morgan) The equality of the fourth and seventh columns of the truth table shows
that =(p V q) <= ((-p) A (=9)).

p|lq|pVg|-(pVa) | -p]|-q| (-p)A(—9)
T|T| T F F|F F
T|F| T F. |F|T F
FlT| T F T|F F
F|F| F T T|T T

The equality of the fourth and seventh columns of the truth table shows that —=(p A q) <=

((=p) V (=9)).

plalpAg|~(pAg) | —p|—a]|(-p)V(~9)
T|T T F F | F F
T|F F T F | T T
F|T F T T | F T
F|F F T T | T T
7. [BB] The two truth tables show, p|l]|pVl p|l1l]|pAl
respectively, thatp V1 <= 1 and T|T T T!T T
pAl < p. F|T F|T| F
8. The two truth tables show, pl[O]pvoO p|O0|[pAO
respectively, that p V 0 <= p and rlrel 7 l7lF]l F
PAO < 0. F|F| F F|F| F
9. [BB] The two truth tables show,
respectively, that plplpv(p) |1 p|-p|pA(P) |0
(pV (-p)) <= 1land T|F T T T|F F
(p A (-p)) <> O. F|T T F|T F F
10. The truth tables show, respectively, that 1{-1]0 0|01
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11. [BB] The third and sixth plaglp—aq]|—-q|-p]|(-g)— (-p)
columns of the truth table show T|lT T Fl|F T
that T|F| F |T|F F
(r—4q) <= ((-g) — (-p)). Flr| T |F|T T
F | F T T | T T
12. The third and sixth plalrealroalemp oA la—p)
columns of the truth table T|T| T T T T
show that (p < ¢) <— £ ; § ; ? ?
((p—9) A(g—p))- rlrl T T T T
13. [BB] The third and fifth columns of plalp—gl-p|(op)Va
the truth table show that ; ? £ ? ?
=14 -p) Vq).
(r—q ((p) V9 rlel 7 |7 p
F|F T T T
2@ z‘i'zcceozs\‘/“[“"( ; ;\r‘;‘)‘} ;:'ﬂue'e plapAad][~(pAg) [PV [-(PAQ)
for all values of p and g, g § ? ; g:
this statement is a FlT F T T
tautology.
F|F F T T

(b) By one of the laws of DeMorgan, the negation is (—p) A (p A g). By associativity, this is logically
equivalent to [(—p) Ap] Ag <= 0 Agq <= 0. So the negation is a contradiction.

3. (a) [BB] Using one of the laws of De Morgan and one distributive property, we obtain
[(pAQ)V (~((=p) V)] <= [(PAQ)V (PA(-9))]
< [pA(@@V(m9)] = (PA1) &= p.
(b) The given compound statement is of the form z — (y — 2) which is equivalent to z — ((—y) V
z) <= (—z)V (-y)V z. (By associativity, no further parentheses are required here.) So the

given statement is equivalent to (—(p V 7)) V ((—g) A7) V (p V r). By commutativity, this is
(~(pVr))V(pVr)V((-g)Ar) <= 1V ((~gAT) <= 1. The given statement is a tautology!

(c) Using associativity to avoid extra parentheses, the left side of the given statement is

(p—q)V(g—r)] <= (-p)VaV(~q)Vr
< (-p)V1iVr < 1.

The given statement is equivalent to [1 A (r — s)] which is logically equivalent to r — s.

4 @IBBl [p[q[pAad]pVerg] ® [p[a[pva[pA(pVa)
T|T| T T T|T| T T
T|F| F T T|F| T T
FlT| F F FlT| T F
F|F| F F F|F| F F

5. (a {?B])Dist]ributivitygives [(0V@A(—p)] <= [(PA(-P))V(aA(=p))] <= [0V((-P)Ag)] <
-p) Agq|.
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(b) Wehave (p — (¢ — 7)) <= (p—((~g)Vr)) <= (-p)V(~g) VT
< (p)VrV(-q) <= (@A (-r)V(~q) <> (pA(-r) — (=9).

© (Ppe9) = (= A(@—-Dp)) <= (~((-p)Va)A(—-g) VD))

<= (A (=9) V(aA(-D))

= (eA (=) Va) A((pA(=9) V (-p))

= (Ve A((—9) V) AV (=p)) A((—a) V (=p)))
<= (VAL ADA((—q)V (-p)))

< Vg A((=g)V(-p)

< ((-p)V(-9)) A (q¢Vp)

= (p— () A((~g) = p) <= (pe(-9).

@ [BB]-[(p < q)V(PA(m9))] <= [~(p < g) A-(pA(-9))]
< [(p < (—9)) A ((—p) V q)), using Exercise 5(c).

(e) This is an immediate application of absorption law 4(b) with p A (—q) in place of p and g A (—r)
in place of g.

(f) Using property 12 and associativity, [p — (¢ V.r)] < [(-p)VqVr] < [~(pA(-g)]Vr
(by De Morgan) <= [p A (—q) — r] using 12 again.

® ~(Va VP Ag <= [(-p)A(=g)]VI[(-p)Ag] (DeMorgan) <= (-p) A[(=q)V
q] (distributivity) <= (-p)V1 < -p

A (mg) = q] <= [((pA(-9)) Ve <= [((-p) V@) V] < [(-p) V4]

(@A (9)) = (-p)] <= (A (~9))V (-p)] <= [(-p) VeV (-p)] < [(-p)Vd]

So these are both logically equivalent to (—p) V q.

. (a) We must show that A V @ and B V € have the same truth tables, given that A and B have the same
truth tables. This requires four rows of a truth table.

A|B|C|AVE|BVEC
T|\T|T| T T
T|T|F| T T
F|\F|T| T T
F|F|F| F F

The last two columns establish our claim.

(b) We must show that A A C and B A € have the same truth tables, given that A and B have the same
truth tables. This requires four rows of a truth table.

A|{B[C|AAC|BAC
T|T|T T T
T|\T|F| T T
F|F\|T F F
F|\F|F| F F

The last two columns establish our claim.
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- PlPVYDp
8. 1. [BB] The truth table shows that idempotence fails. T| F
) F F
Plqg|pVgig¥Vp
o ||| F | F
2. Commutativity still holds. | 7| g | 1 T
F|T T T
F|F F F
plag|r|pVg|(@PVeVr|gVr|pV(gVr)
T|T|T F T F T
T|F|T T F T F
o FlT|T| T F F F
3. [BB] Associativity holds. FIF|IT| F T T T
T|T|F F F T F
T|F|F| T T F T
F|T|F T T T T
F|F|F F F F F
4. Just one distributive law holds. The table which follows shows that p V (g A r) is not logically
equivalentto (p V.q) A (p V. 1), ~
pla|r|gAr|pV(gAr) |pVa|pVr| (VY aA(PYT)
T|F|T)| F T T F F

On the other hand, (p A (g V.1)) <=> (pAgq) V (p A ) as shown.

pla|r|aVr|pA(gVr) | pAg|pAT | (PAQ NV (DAT)
T|T|T| F " F T T F
T|F|T| T T F T T
FlT|T| F F F F F
Fl|F|T| T F F F F
T|T|F| T T T F T
T|F|F| F. F F F F
F|T|F| T F F F F
F|F|F| F " F F F F

6. Both laws of De Mo
(—9).

The next table shows that —(p

rgan fail. The tabiq shows that =(p V q) is not logically equivalent to (—p) A

p

q

pVg

~(pV.q)

Wi

—q | (=p) A (—q)

T

T

F

T

F

F

F

A q) is not logically equivalent to (=p) V (—gq).

q

PAG

- (pAq)

-p

—q | (-p)V (=9)

F

F

T -

T

T

7. [BB] The truth table shows that p V 1isno longer 1:
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10.

11.

Solutions to Exercises

‘ 0|pVvoO
8. The truth table shows thatp V 0 <= p: T|F| T
F | F F
: —_— p|p|pv(-p) |1
9. [BB] The truth table shows that (p V. (—p)) <= 1: T| F T T
. F| T T T
plalp—q|-p|(-P) Vg

12. [BB] This is no longer true: ‘

F|T T T F

Finally, neither law of absorption holds: p V (pAq) is not logically equivalent to p and p A (rVaq)
is not logically equivalent to p. .

Pl g |pAg|pV(pAg) pla|pVa|lpA(PVg)
T|T| T 'F T|T| F F

. (@ (pVq) A((—p) V (—g)) is not in disjunctive normal form because the terms are not joined by V.

(b) [BB] (p A q) V ((—p) A (—q)) is in disjunctive normal form.

(©) [BB] pV ((—p) A q) is not in disjunctive normal form: not all variables are included in the first
term.

(@ (pAq)V ((=p) A(—g) Ar) is not in disjunctive normal form: not all variables are included in the
first term. : .

) (pAgAT)V((=p) A (—g) A (—r)) is in disjunctive normal form.

(a) [BB] This is already in disjunctive normal form! The definition permits just a single midterm.

(b) [BB] One of the laws of De Morgan gives irnmediately that (p A q) V (=((-p) V q)) =
(eAQ)V (pA(=g))

© (p—9) <= (P V) <= (<) Ad) V((-p) A(=0)) V(g AD) V (¢ A (-D))]-

@ [(PVa) A((=p) V (=9))] <= [A((-P)V (-] Vg A ((-p) V (~a))] <= [(pA(-p))V
@A (V@A (=) V(@A (7)) <= [(PA (=) V ((-p) A g))]

@ [= ) AgAT)] <= [((P) VO A@QAT)] <= [(-P)AgAT)V (gAgAT)] =

[(-P) AgAT)V(PAGAT)V((-P) AgAT))] <= [((-p) AgAT)V (pAgAT)], omitting the
repeated minterm at the final step. .

® (pVianv(n))) <> (pvi@AnV@Er(n)]) < (pv@rpViaa() <
(ErOVEAC) VEADY @A) = ((BADVEA ) V(@A) «
(@AaARV ANV EADAIV A AT VRAGV PV ((-P)AGA (1))

. ((p/\ aAT)V (PAGA (o) V (A (~g) ATV (P A (=0) A(=r)) V ((=p) Ag A (1)) ) omitting
the repeated minterm at the final step.

August De Morgan was born in India in 1806, died in England in 1871 and lived his life without
the sight of his right eye, which was damaged at birth. He was the first Professor of Mathematics at
University College, London, founded the London Mathematical Society and was its first president. He
was apparently quite a man of principle. He refused to study for the MA degree because of a required
theological exam and twice resigned his chair at University College, on matters of principle. He was
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never a Fellow of the Royal Society because he refused to let his name be put forward and, similarly,
refused an honorary degree from the University of Edinburgh.

De Morgan’s mathematical contributions include the definition and introduction of “mathematical in-
duction”, the most important method of proof in mathematics today. See Section 5.1. His definition
of a limit was the first attempt to define the idea in precise mathematical terms. Nonetheless, it is the
area of mathematical logic with which De Morgan’s name is most closely associated. The “Laws of De
Morgan” introduced in this section, together with their set theoretical analogues—(AUB)¢ = A°N B¢,
(AN B)¢ = A°® U B¢ (see Section 2.2)—are used extensively and of fundamental importance. De
Morgan also developed a system of notation for symbolic logic that could denote converses and con-
tradictions.

Exercises 1.3

1. (a) [BB]Since [p— (g = r)] <= [p— ((—g) Vr)] < [(-p) V (—q) V r], the given argument
can be rewritten

[(=p)Vr]V(=9)
qa
(-p)Vr
which is valid by disjunctive syllogism.

(b) [BB] We analyze with a plaglr[p—=algVr[g]r—1(-9)
truth table. In row one, rlirlT!| T T | F F *
the premises are true but TIFI|T F T T T
the conclusion is not. F|T|T| T T | F F *
The argument is not F|F|T T T T T *
valid. T|T|F| T T | F T *

T|F|F F F T T
F|T|F T T F T *
‘F|F|F T F T T

(c) We analyze with a truth table. Pplg|r|p—2gqir—qg|r—p
In row three, the premises are TiT|T T T T *
true but the conclusion is not. T|IF|T F F T
The argument is not valid. F|T|T| T T F | x

F|F|T T F F
T|T|F T T T *
T|F|F F T T
F|T|F T T T *
F|F|F T . T T *

(d) This can be solved using a truth table with 16 rows. Alternatively, we can proceed as follows.

Assume that the argument is not valid. This means that we can find truth values for p, ¢, r and s
such that the premises are true but the conclusion is false. Since s — (r V q) is false, we must
have s true and r V q false. But this means both 7 and q are false. Since p — g is true and ¢
is false, p must be false. But then g V (—r) is true and p A s is false, contradicting the truth of
(g V (=r)) — (p A s). Hence we have a contradiction, so the argument is valid.
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This argument is valid. The second and third premises give ¢ by Modus Ponens. Together with
the first premise (double negation and dijunctive syllogism), we get —p.

This argument is valid. The first and third premises give —p by modus tollens. Together with the
second premise (double negation and a second application of modus tollens), we get .

If p is true and p implies g, then q is true.

This was PAUSE 5.

If p is true or q is true and p is not true, then ¢ must be true.

We do this by contradiction. So assume the premises are true but the conclusion is false. Since
p — r is false, we must have p true and r false. Since ¢ — r is true and r is false, ¢ must be false.
Then, since p — q is true, p must be false, giving a contradiction.

We prove this by contradiction. Assume p V g is false. This means both p and g are false. Since

p V 7 is true and p is false,  must be true. Since ¢ V (—r) is true and g is false,  must be false,
giving a contradiction.

[BB] We analyze with a truth table. plaglripvalp=rlg—=r|(®Ve—r
There are five rows when the T|\T|T| T T T T *
premises are all true and in each T\F\T| T T | T T *
case the conclusion is also true. The 5 g g ? ; ; ;: *
. . *
argument is valid. rlrlrpl T P 7 7
T|F|F T F T F
F|T|F T T F F
F|F|F F T T T *
We analyze with a partial truth table plr|aqgl|ls|pAg|rAs| (@A —(rAs)
showing the nine situations in il T T T
which both the premises are true. In Tlt|FlT| F | T T
every case, the conclusion is true. T|\T|F|F| F F T
The argument is valid. F|T|T|T| F T T
F|T|F|T F T T
F|T|F|F F F T
F|\F|T|T F F T
F|F|F|T F F T
F|F|F|F F F T

The second and third premises are p — r and 7 — s which together imply p — s by the chain
rule. Thus the argument becomes

PV
Pp—=s
qVs
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which we check with a truth table.

plg[s[pVeg[p—5s]qVs
T|t|T| T | T T |*
T|\FlT| T | T T |*
Flr|T| T | T | T |+
FIlF|T| F | T | T
T|\T|F| T | F | T
T|\F|\F| T | F | F
FIT|F| T | T | T |«
F|F|F| F | T | F

There are four rows when the premises are true and, in each case, the conclusion is also true. The
argument is valid.
(d) Since ((mg) A7) <= =(gV(-r))and =(pAs) <> [(-p)V (=s)] < (p — (—9)), the
premises become
(qv(-r)—p
p—(s)

so the chain rule gives (q V (—7)) — (—s), which is logically equivalent to (—(g V (—7))) V (—s),
which is the desired conclusion by a law of De-Morgan.

4. (a) [BB] Since [(—r) V (~q)] <= [g — ()], the first two premises give p — (-r) by the chain
rule. Now —p follows by modus tollens.

(b) This argument is not valid. If q and r are false, p and s are true, and ¢ takes on any truth value,
then all premises are true, yet the conclusion is false.

(c) [BB] This argument is valid. Since p « (¢ V s), we can replace ¢ V s with p so that the premises
become p V (—q), p — (pV ), (-r) V p. The first of these is logically equivalent to ¢ — p while
the third is 7 — p. Using Exercise 3(a), we getq V r — p, so certainlygVr — pVr.

(d) This argument is valid. To see this, note that the second premise is 7 — (£ V s), so the chain rule
gives 7 — p. Also, the first premise is ¢ — p. Exercise 3(a) tells us that (q V r) — p, so certainly
(gvr)—(pVr).

(e) This argument is not valid. If p and r are false while g and s are true, all premises are true, yet the
conclusion is false.

(f) [BB] This is valid. The first premise is ¢V [(—p) V s] while the second is (—q) Vr. Now (-p)VsVr
follows by resolution, and this is the conclusion.

() This argument is valid. The first premise is p V [(—q) V 7], which is (—g) Vp V r. Since g V 7,
resolution gives p V r. Using 7 — p and the result of part (f), we get p V p, which is p.

(h) This argument is valid. Using (g) twice, we have p — [s V (—p)] which is (—p) V s V (—-p), which
is (—p) V s, which is the conclusion.

p:  Istay up late at night

5. (a) [BB] Let p and ¢ be the statements 1 am tired in the morning.

p—q
The given argument is D
q
This is valid by modus ponens.
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p:  Istay up late at night
(b) [BB] Let p and ¢ be the statements g:  1am tired in the morning.
p—=q
The given argument is q .
p
Pla|Pq
This is not valid, as the truth table shows. T|T T *
In row three, the two premises are true T|F F
but the conclusion is false. F|T T *
F|F T
p:  Istay up late at night
(c) Let p and g be the statements 1 am tired in the morning.
p—q
The given argument is -q .
-p
This is valid by modus tollens.
p:  Istay up late at night
(d) Let pand ¢ be the statements - . I am tired in the morning.
p—4q
The given argument is -p .
-q
This is not valid, as the truth table P19 P91 7P} ™
shows. In row three, the two ; g ? ? ;
premises are true but the conclusion
. F|T T T | F |x
is false. rlF T l71|
p: Iwearared tie
(e) [BB] Let p and ¢ be the statements q: T wear blue socks.
pVyq
The given argument is —q
p
This is valid by disjunctive syllogism.
p: Iwearared tie
() Let p and g be the statements I wear blue socks.
pVg
The given argument is q
-p
This is not valid, as the truth table PlaipVglTp
shows. In row one, the two ;: ? g: f; *
premises are true but the conclusion
. F|T T T | *
is false. Flrl|l F T

p:  I'work hard
(g) [BB] Let p, g, and r be the statements ¢: I earn lots of money.
r:  Ipay high taxes.
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b—q
The given argument is g—or.
rT—p
P q r{p—=qlq—r|T—D
T|T|T T T T *
This is not valid, as the truth T|F|T F T T
table shows. In row five, the ;‘ g g: ; ; g *
1 *
concrosion s e, rlr|F| 7 | F | T
: T|F|F F T T
F|T|F T F T
F|F|F T T T *

p:  Iwork hard
(h) Letp, g, and r be the statements ¢: Iearn lots of money
r:  Ipay high taxes.
p—q
The given argumentis q—71 .
p—r
This is valid by the chain rule.

p: Iwork hard
(i) Letp, g, and r be the statements g: I earn lots of money
r:  Ipay high taxes.
p—q
The given argument is q—-r .
P

The conclusion is logically equivalent to r — p, so this is the same as Exercise 5(g), hence not
valid.

p:  Ilike mathematics
() Letp, g, and r be the statements q: Istudy
r:  Ilike football.

p—q
-q
pVvr ’
e
The first two premises give —p by modus tollens, so, since p V r is true, the conclusion follows by
disjunctive syllogism.

The given argument is

p:  Ilike mathematics
(k) Letp, g, and r be the statements g¢: Istudy
r:  Ilike football.
qVr
The given argument is T—p
(—mq) —p
qVr
This is the same as ~ (—r) V p and hence valid by resolution.
qVvp



26

Solutions to Exercises
p:  Ilike mathematics
q: Istudy
(1) [BB] Let p, ¢, and r be the statements r: 1pass mathematics
s: Igraduate.
p *)-’ q
. . -q)Vr
The given argument is (g .
sren e (2s) = (o)
s—q
p—q
This is the same as =T
rT—S
s§s—q

which is certainly not valid, as the following partial truth table shows.

plg|r|s|{p—=qlg—=r|r—os|s—q
F|\F|F|T| T | T T F

p: Ilike mathematics
g: Istudy
(m) Let p, g, and r be the statements r: 1pass mathematics
s: Igraduate.
pP—q
. . -q)Vr
The given argument is (~9)
sren e (23) = (=)
p—s
pP—4q
which is the same as =T
r—-s
p—s

which is valid by two applications of the chain rule.

6. [BB]rV g is logically equivalent to [-(—r) V g] <= [(-r) — ¢] so, with p — —r, we get p — q by
the chain rule.

7. We will prove by contradiction that no such conclusion is possible. Say to the contrary that there is
such a conclusion €. Since € is not a tautology, some set of truth values for p and ¢ must make C false.
But if 7 is true, then both the premises (—p) — 7 and r V g are true regardless of the values of p and g.
This contradicts € being a valid conclusion for this argument.

8. (a) [BB] p A q is true precisely when p and q are both true.

(b) By 8(a), we can replace p A g by the two premises p and q. Using modus ponens, p and p — r lead
to the conclusion r. Using modus tollens, g and s — (—q)) lead to the conclusion —s. Finally,
8(a) says we can replace —s and r with (—s) A r.

9. By Exercise 8(a), the final premise is equivalent to the list of premises g1, g2, . . . , ¢n. Now

[p1 = (@1 = 71)] <= [p1 = (1) V)] <= [(-p1) V (—q1) V1]
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Together with ¢, disjunctive syllogism gives (—p;) V 1 which is logically equivalent to p; — r1.
Thus the given premises imply

p1—/n

b2 — T2

Pn = Tn
which, again using 8(a), are logically equivalent to the single premise
(pr = 1) A(p2 > 1r2) A+ A(Pr = Tn).
10. [BB] In Latin, modus ponens means “method of affirming” and modus tollens means “method of

denying”. This is a reflection of the fact that modus tollens has a negative —p as its conclusion, while
modus ponens affirms the truth of a statement q.

Chapter 1 Review
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2. We have —r is F, so (-r) A sis F. Since g is T, this means ¢ — ((—r) A 's)is F. Butpis T, so
pV (g — ((-r) As))isT. Also r A tis T. Hence the entire statement has truth value T'.

3. (a) A truth table shows this is a contradiction.
~q | p|[pA(~g) | (=) Ve | pA (=9I A[(=p) V4]

NN
ST BRI (S
NN
NN Y
Sl T 5!
NNYS
ST eS|




Solutions to Review Exercises

(b) A truth table shows that this is neither a tautology nor a contradiction.

plalp—ag|pVa|(p—a— (V)
T|T T T T
T|F F T T
F|T T T T
F|F T F F
(c) A truth table shows this is a tautology.

pA(0g) [[PAGQ]—r | pVIEA(=g) — 7

MENNT YN N
MR N YNk
MmN NN
NoNTNTNEd
N TTTNY
NNTNNNSS
NNTNNNNS

(d) This is neither a tautology nor a contradiction.
plag|r|-q[(-gAr|pVg
T|\T|T|F F T
T|\F|T|T T T
F|\T|T|F F T
FI\F|T|T T F
T|T|F|F F T
T|\F|F|T F T
F|\T|F|F F T
FI\F|F|T F F

[(-g)Ar] = (pVa) | (PVe) = [(-g)Ar] [ (pVq) < [(-g) AT]

R R B e T B R
NNy
e I By TS Hes Bl |

4. Assume that some set of truth values on the variables makes A true. If B were false, this would make
A — B false and B — A true, contradicting logical equivalence. So B must be true also. Similarly, if
B is true, then A must also be true. We conclude that A is true if and only if B is true. This means A
and B are logically equivalent.

5. (a) Since A <= B, we know that A is true precisely when B is true. Since B <= €, B is true
precisely when € is true. Hence A is true if and only if C is true, thatis, A <= C.

(b) Property 12 says (p — q) < ((—p)Vq). Clearly, ((—p) Vq) <= (gV (—p)), so part (a) tells
us (p = g¢) <= (gV (-p)). But Property 12 also says ((—g) — (-p)) <= (=(~q) V (-p))
and clearly (—(—q) V (-p)) <= (g V (-p)). So we have (p — q) <= (qV (—p)) and also
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(qV (=p)) <= ((=g) — (-p)). Hence part (a) again gives (p — q) <= ((—g) — (-p)),
which is Property 11.

6. @ (p—g) —r) <= ((P)Vg —r) <= (~((-p) V) Vr) <= ((PA(~9) VT) <=
(eVr)A((—g) Vr)) <= ((pVT)A(=(g A (=r)))).
®) [p—~(@Vr)] < (-p)V(gVr) <> -pVqVr(associativity) <= [=(pA(-g)]V
r (De Morgan) <= [pA(—q)] — . '

7. @ (V@) AT)V((pVa)A(-p)
= (eAT)V(gAT)V((PA(=P)V (gA(=p))
<= ((pAT)V(gAT))V(0V(aA(-P)))
< ((pAT)V(gAT))V(aA(=p)
< (PATAQV(PATA(-q)V(@ATADP)V (¢ATA(-p))
V(g A (=p) A (=)
<= (PAgAT)V(PA(~q) AT)V((-p) AgAT)
V((=p) Ag A (-1))
®) [PV (gA (=) A-(gAT)
<= [pV@ACEMIA(-g)V(-r)]
= (V@A GD)) V(v @A G)IA D)
<= @A)V @AGET)AG)V (PA )V (gA (=r) A (=)
= @EA(QOAT)V(PA(-g) A(=r)) VOV (pAgA(-T))
VA (g A )V (eAGA () V((=p) AgA(-T))
= @EAQ)ATIV(PA(=g) A(=r))V (PAgA(-T))
VeAGA (=) V ((-p) AgA (o))
8. (a) This is not valid. If p is false and g is true, the premises are true but the conclusion is not.
(b) The first hypothesis can be rewritten as p V (—g), which is the same as ¢ — p. The second
hypothesis is (—p) V (—r), which is p — (—r). The third hypothesis is (—=r) — s. So the given
argument is
q—p
p— (-r)
(or)— s
q—s
Two applications of the chain rule tell us this is valid.

(c) This argument is not valid. If p, r and ¢ are true while g is false (and s takes on either truth value),
the hypotheses are true while the conclusion is false.

9. This argument is valid. The hypotheses can never both be true at the same time, so there can be no
case when the hypotheses are true while the conclusion is false.

10. (a) This argument, an example of resolution, is valid.

(b) This argument is not valid. We can write it as shown. p—q
When s and r are true and p is false, the hypotheses (mg)Vvr
are true, while the conclusion is false. (=r) — (-8)

s—p.
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Exercises 2.1

1.

(a) [BB] {—v/5,V5}

o {1,3,5,15,-1,-3,-5,—15}

(c) [BB]{0, ——% (Although ++/2 are solutions to the equation, they are not rational.)
@ {-1,0,1,2,3}

(e) This is the empty set. There are no numbers less than —4 and bigger than +4.

(a) [BB] For example, 1 +4, 1 + 24,1 + 37, —8 — 53 and 17 — 434.

(b) For example, {1 — 2v/2,1 — 5v/2,1 — 7/2, 316 — 21/2 and 394 — 7/2}.

©Ifz=0y==25andz/y =0. Ifz =1,y = +v/24, and z/y = +1//24 = +/24/24.
Ifz = 2,y = +v/21 and z/y = £2v/21/21. Five elements of the given set are 0, v/24/24,
—V/24/24, 21/21/21 and —2+/21/21.

@ {2,3,5,6,8}.

(a) [BB]{1,2},{1,2,3}, {1,2,4}, {1,2,3,4}

() 0,{1}, {2}, {1,2}

© 0, {1}, {2}, {3}, {4}, {1,3}, {1,4}, {2,3}, {2, 4}, {3,4}, {1,3,4}, {2,3,4}

) {3}, {4}, {1,3}, {1,4}, {2,3}, {2,4}. {3,4}, {1,2,3}, {1,2,4}, {1, 3,4}, {2,3,4}, {1,2,3,4}

@ {1,2,3},{1,2,4}, {1,2,3,4}

® 0, {1}, {2}.

4. [BB] Only (c) is true. The set A contains one element, {a, b}.

5.

(a) [BB] True. 3 belongs to the set {1,3,5}.

(b) False. {3} is a subset of {1, 3,5} but not a member of this set.

(c) True. {3} is a proper subset of {1, 3,5}.

(d) [BB]False. {3,5} is a subset of {1, 3,5}.

(e) False. Although {1, 3,5} is a subset of itself, it is not a proper subset.

(f) False. If a + 2b is in the given set, a is even, so a + 2b is even and can’t equal 1.

(g) False. Ifa +bv/2 =0and b # 0, then /2 = —% is the quotient of rational numbers and, hence,
rational. But this is not true.

(a) [BB] {0}; () {0,{0}}; © {0,{0,{0}},{0},{{0} }}.
(a) [BB] True. The empty set is a subset of every set.

(b) True. The empty set is a subset of every set.

(c) False. The empty set does not contain any elements.

(d) True. {0} is a set containing one element, namely, {.

(e) [BB]False. {1, 2} is a subset of {1,2,3,{1,2,3}}.

(f) False. {1, 2} is not an element of {1,2,3,{1, 2, 3}}.

(g) True. {1,2} is a proper subset of {1,2, {{1,2}}}.

(h) [BB] False. {1,2} is not an element of {1,2, {{1,2}}}.
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(i) True. {{1,2}} contains just one element, {1,2}, and this is an element of {1,2, {1,2}}.

8. [BB] Yes it is; for example, let z = {1} and A = {1, {1}}.

9.

10.

11.

12.

13.

14.

(@) i. {a,b,c,d} ii. [BB] {a,b,¢c}, {a,b,d}, {a,c,d}, {b,c,d}
iii. {a, b}, {a,c}, {a,d}, {b,c}, {b,d}, {c,d} iv. {a}, {b}, {c}. {d} v. 0
(b) 16
(a) If A =0, then P(A) = {0} is a set containing one element, so its power set contains two elements.

(b) P(A) contains two elements; P(P(A)) has four elements.

(a) [BB] 4; (b) [BB] 8.

(c) [BB] There are 2™ subsets of a set of n elements. (See Exercise 15 in Section 5.1 for a proof.)

(a) [BB] False. Let A = {2}, B = {{2}}, C = {{{2}}}. Then A is an element of B (thatis, A € B)
and B is an element of C (B € C), but A is not an element of C (since B is C’s only element).
(b) True. If z € A, then x € B since A C B. Butsince z € B, then z € C since B C C.

(c) True. As in the previous part, we know that A C C. To prove A # C, we note that there is some
x € C such that z ¢ B (since B ;C,: C). Then, since x ¢ B, z ¢ A. Therefore, x is an element of
C which is not in A, proving A # C.

(d) [BB] True. A € B means that A belongs to the set B. Since B is a subset of C, any element of B
also belongs to C. Hence, A € C.

(e) False. For example, let A = {1}, B = {{1},2} and C = {{1},2,3}. Then A € B, B C C, but
AgZC. A

(f) False. Let A = {1}, B={1,2},C ={{1,2},3}. Then AC Band Be C,but A¢ C.

(g) False. Same example as 12(f) where A Z C.

(a) This is false. As a counter-example, consider A = {1}, B = {2}. Then A is not a subset of B
and B is not a proper subset of A.

(b) The converse of the implication in (a) is the implication B G A — A ¢ B. This is true. Since
BC A there exists some element a € A which is not in B. Thus A is not a subset of B.

(a) [BB] True. (—) If C € P(A), then by definition of “power set,” C' is a subset of A; that is,
C CA.

(«—)If C C A, then C is a subset of A and so, again by definition of “power set,” C € P(A).
(b) True. (—) Suppose A C B. We prove P(A) C P(B). For this, let X € P(A). Therefore, X is

a subset of A; that is, every element of X is an element of B. Since A C B, every element of X
must be an element of B. So X C B; hence, X € P(B).

(+—) Conversely, assume P(A) C P(B). We must prove A C B. For any set A, we know that
A C Aand, hence, A € P(A). Here, with P(A) C P(B), we have, therefore, A € P(B); that
is, A C B, as desired.

(c) The double implication here is false because the implication — is false. If A = (), then P(A) =
{0} and {0} # 0.
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Exercises 2.2
1. (a) [BB]1A={1,2,3,4,5,6}, B={-1,0,1,2,3,4,5},C = {0,2, —2}.
(b) AuC ={-2,0,1,2,3,4,5,6}, BnC = {0,2},
B\ C={-1,1,3,4,5}, A® B = {-1,6,0},
C x (BN C) ={(0,0),(0,2),(2,0), (2,2), (—2,0), (-2,2)},
(ANB)NC={6},AN(B\C)=1{2,6},
(BU®) N {0} =0.
© §={(1,-1),(2,0),(3,1),(4,2),(5,3),(6,4)}; T = {(1,2), (2,2)}-
2. () [BBISNT = {v2,25}, SUT = {2,5,v2, 25,7, 5,4,6,3},
T x (SNT) = {(4,v2),(4,25), (25,v2), (25,25), (v'2, V2),
(v2,25), (6,v2), (6,25), (3, v2), (3,25)}-
(b) [BB1ZUS = {Vv2,7,5,0,1,-1,2,-2,...15 Zn S = {2,5,25};
ZuT ={v2,3,0,1,-1,2,-2,..},ZnT = {4,25,6}.
©) ZN(SUT)={2,5,25,4,6} = (ZN S)U(ZNT). The two sets are equal.
d Zu(SnT)={v2,0,1,-1,2,-2,...} =ZU {v/2} = (ZU S) N (ZUT).

The two sets are equal.
A

3. (a) [BB]{1,9,0,6,7}; (b) {4,6,5}; (c) {0,1}.
4. A={(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)} and B = {£3, £1,+2}.
5. (2) [BB] {c,{a,b}}; (®) {0}; ©) 4 (d) 0;
(e) [BB] 0; ® {A}.

6. (a) [BB] A¢=(-2,1]; (b) A® = (—00, —3] U (4, 00); (c) A°=R
7. (@ YNZ=1{3,4,5},s0X® (Y N2Z)={1,25}

b (XUuY)X=XnY*=X\Y=({1}.
8. (a) [BB] The subsets of A containing {1,2} are obtained by taking the union of {1, 2} with a subset

of {3,4,5,...,n}. Their number is the number of subsets of {3,4, 5, ...,n} which is 2" 2. (See
Exercise 11 of Section 2.1.)

(b) The subsets B which have the property that Bn{l 2} = () are exactly the subsets of {3, 4, 5,...,n}
and these number 2"~2,

(c) The subsets B which have the property that B U {1,2} = A are precisely those subsets which

contain {3,4, 5, ...,n} and these correspond, as in (a), to the subsets of {1, 2}. There are four.
9. [BB] (a,b)¢ = (—00,a] U [b,0), [a,b)¢ = (—00,a)U [b,00), (a,00)®=(—00,a],
(—00,b]¢ = (b, ).

10. (a) [BB]CS C T; ®)[BBIM NP =0 )M ¢ P; dCS\TCP;
e) (MUuCS)NPCTe ‘

11. (a) Negation: C'S € T'; Converse: T' C CS.
(b) Negation: M N P # 0; Converse: PC M€or PN M =0,
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12.

13.

14.
15.

16.
17.

18.

19.

20.

(c) Negation: M C P; No converse since the statement is not an implication.
(d) Negation: (M U CS) NP € T*; Converse: T¢ C (M UCS) N P.
(e) Negation: (M U CS)NPNT # P; Converse T° C (M UCS) N P.

(@ [BBIENP#0 ® 0€Z~N ) Ncz
d ZgN () (P~{2})cEe ® 2€ENP
(& ENP={2}

(a) [BB] Since A_3 C A3, A3U A_3 = As.

(b) Since A_3 C A3z, A3 N A 3=A_3.

© AsN(A3)°={a€Z|-3<a<8}={-2-1,0,1,2,3}.
(d) Since Ag C Ay C Az C A3 C Ay, wehave ()1, A; = Ao.

[BB] Region 2 represents (ANC)\.B. Région 3 represents ANBNC region 4 represents (ANB)\C.

@ ee c

® i (AUB)NC ={56} .
ii. AN (BN A)=A={1,2,4,7,8,9}
iii. (AUB)~ (ANC) =1{1,2,3,4,9}
v. A®C ={1,2,4,7,8,9} :
v. (ANC) x (AN B) ={(5,1),(5,2), (5,4), (6, 1), (6,2), (6, 4)}

(a) [BB] A C B, by Problem 7; (b) B C A, by PAUSE 4 with A and B reversed.

[BB] Think of listing the elements of the given set. There are n pairs of the form (1,b), n — 1 pairs of
the form (2,5), n — 2 pairs of the form (3, b), and so on until finally we list the only pair of the form

(n,b). Theansweris 14+2+3+---+n = in(n+1).

Since (1,1) € 4, (2,1) and (2,2) are in A. Since (2,1) € A, we get
(3,1) and (3,2) in A and since (2,2) € 4,(3,3) € A. Now

(3,1) € A— (4,1) and (4,2) € 4;(3,2) € A — (4,3) € A and
(3,3) € A — (4,4) € A. The points shown so far which belong to A
are plotted in the picture to the right and this makes it seem very
plausible that A contains the set {(m,n) € N x N | m > n}.

4
3| .
2

1

(@) Letz € B. Certainly z is also in A or in A°. This suggests cases.

Casel:Ifz € A, thenz € ANB,soz € C.
Case2: Ifx ¢ A, thenz € A°NB,soz € C.
In either case, z € C,s0 B C C. '
(b) [BB] Yes. Given ANB =ANC and AN B = A°NC, certainly we have AN B C C and

AN B C C so, from (a), we have that B C C. Reversing the roles of B and C in (a), we can
also conclude that C' C B; hence, B = C.

(@) The Venn diagram shown in Fig. 2.1 suggests the following counterexample: Let A = {1,2,3,4},
B ={3,4,5,6} and C' = {2,3,5,7}. Then AU(BNC) = AU {3,5} = {1,2,3,4,5} whereas
(AuB)NC ={1,2,3,4,5,6} N C = {2,3,5}.
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21.

22.

23.

24.

25.

26.

27.

Solutions to Exercises

(b) First, we prove AU(BNC) C (AUB)N(AUCQ).

Soletz € AU(BNC). Thenz € Aorz € BNC.Ifz € A, thenz € AUBandz € AUC, so
z€(AUB)N(AUC).Ifz € BNC,thenz € Bandz € Csox € AUB and x € AUC; that
is, z € (AU B) N (AU C). In either case, z € (AU B) N (AU C) giving the desired inclusion.
Second, we prove (AU B)N(AUC) C AU (BNC).

Soletz € (AUB)N(AUC). Thus,z € AUBandz € AUC.Ifz € A, thenz € AU(BNC).
If z ¢ A, then we must have z € B and z € C; thatis,z € BNC,soz € AU(BNC). In either
case, £ € AU (B N C) giving the desired inclusion and equality.

We use the fact that (X °)° = X for any set X.

LetX =A°andY = B¢. Then A = Xand B =Y, 50 (ANB)® = [X°NY*°|¢ = [(X UY)°]° (by
the first law of De Morgan) = X UY = A°U B¢, as required.

[BB] Using the fact that X \'Y = X N Y, we have

(ANB)NC=(ANB)NC*=AN(B°NC)=AN(BUC)*=AN(BUC).

We use the laws of De Morgan and the facts that (X°)¢ = X and X N X =  for any set X. We have
[(AUB)°N(A°UC)¢l*\ D¢ = [(A°NB°)N(ANCe)|*\ D = ¢\ D* =U~\D* =UN(D°)® =
UNnD=D.

AN(BNC)=AN(BNC) =AN(BNC®)* =AN(B°UC)=(ANB)U(ANC) =
(ANBYU(AN(C®)) =(ANB)U(ANCO)."

(@) [BBI(AUBUC)*=[AU(BUC)|*=A°N(BUC)*=A°Nn(B°NC°) = A°NnB°NC-.
(ANBNC)*=[AN(BNC)|]c=A°U(BNC)*= AU (B°UC°) = A°UB°UC".

b (ANB~NO)NA (ANBNC%)*NA=(A°UB°UC)NA

(AN(A°UB9))U(ANC)=(ANA)U(ANB°)U(ANC)

PU(ANBY)U(ANC)=(ANB)U(ANC)

(ANB)U(ANC)

(a) [BB] Looking at the Venn diagram at the right, A @ B consists A B

of the points in regions 1 and 3. To have A ® B = A, we must
have both regions 2 and 3 empty; that is, B = (). On the other @
hand, since A @ @) = A, this condition is necessary and
sufficient.

(b) Looking at the Venn diagram, AN B is the set of points in region 2 while AU B is the set of points
in regions 1, 2 and 3. Hence, AN B = A U B if and only if regions 1 and 3 are both empty; that
is, if and only if A = B.

(a) [BB] This does not imply B = C. For example, let A = {1,2}, B = {1}, C = {2}. Then
AUB=AUC,butB #C.

(b) This does not imply B = C. For example, let A = {1}, B = {1,2}, C = {1,3}. Then
ANB=ANC=A,butB #C.

(c) This does imply B = C, and here is a proof. First let b € B. Then, in addition, either b € A or
b¢ A

Casel: b ¢ A
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28.

29.

30.

In this case,b € A® B,sob € A® C and since b ¢ A it follows that b € C.

Case 2: b € A. Here we have b € BN A and, hence,b ¢ A® B,sob¢ A® C. Since b € A, we
must have b € C (otherwise,bc ANC C A C).

In either case, we obtain b € C. It follows that B C C. A similar argument shows C C B and,
hence, C = B. :

(d) This is false since for A =@, A x B = A x C = { regardless of B and C.

(a) True. Let (a,b) € A x B. Sincea € Aand A C C,wehavea € C. Sinceb € Band B C D,
b€ D. Thus, (a,b) e Cx Dand A x BC C x D.

(b) False: Consider A = {1}, B ={2,3},C = {1,2,3}.
(c) False. Let A= {1}, B=0,C = {2}, D ={3}. Then Ax B =0 C {(2,3)} = C x D, but
AgC.

(d) False since, by (b), the implication « is false.

(e) [BB] True. Letz € A. Thenz € AU B, soz € AN B and, in particular, z € B. Thus, A C B.
Similarly, we have B C A, so A = B.

Let (z,y) € (AN B) x C. Thismeansz € AN Bandy € C. Hence, z € A,z € B,y € C. Thus,
(z,y) € Ax Cand (z,y) € B x Ciie., (z,y) € (A x C)N (B x C). Therefore, (AN B) x C C
(AxC)Nn(BxC).

Now let (z,y) € (A x C) N (B x C). This means that (z,y) € A x C and (z,y) € B x C); that
is,trec A,re€ B,yec C,soxz € ANBandy € C. Hence, (z,y) € (AN B) x C. Therefore,
(AxC)N (B x C) C (AN B) x C and we have equality, as desired.

(a) False. Forexample, let A = {1,2}, B = {1} and C' = {2}. Then AN (BUC) = {1,2}\{1,2} =
0,but ( ANB)U(ANC) ={2}u{1} ={1,2}.

(b) True. Let (z,y) € (AN B) x C. Thismeansthatz € AN\ Bandy € C; thatis,z € A,z ¢ B,

y € C. Hence, (z,y) € Ax C,but (z,y) ¢ Bx C, so (z,y) € (A x C)\ (B x C). Therefore,
(ANB)xCC(AxC)N(BxO).
Now let (z,y) € (A x C)\ (B x C). This means that (z,y) € A x C, but (z,y) ¢ B x C. Since
(z,y) € AxC,wehavez € A,y € C. Since y € C and (z,y) ¢ B x C, we must have z ¢ B;
thatis,z € ANB,y € C,s0(z,y) € (AN B)xC. Therefore, (AxC)\(BxC) C (ANB)xC
and we have equality as claimed.

(c) [BB] True. Let (z,y) € (A® B) x C. This means thatz € A® B andy € C; thatis,x € AUB,
z¢ ANB,ye C.Ifz € A, thenz ¢ B,so (z,y) € (AxC) N (BxC). Ifz € B, then
z ¢ A, so(z,y) € (BxC)N\ (AxC). Ineither case, (z,y) € (A x C)® (B xC). So
(A®B)xCC(AxC)®(BxO0).
Now, let (z,y) € (A x C) & (B x C). This means that (z,y) € (A x C) U (B x C), but
(z,y) ¢ AxC)N(BxC). If (z,y) € Ax C, then (z,y) ¢ BxC,soz € A,y € C
and, therefore, z ¢ B. If (z,y) € B x C, then (z,y) ¢ AxC,soz € B,y € C and,
therefore, z ¢ A. In either case, z € A@ Bandy € C, so (z,y) € (A ® B) x C. Therefore,
(Ax C)® (B x C) C (A® B) x C and we have equality, as claimed.

(d) False. Let A = {1}, B = {2}, C = {3}, D = {4}. Thenl € AUB,4 € CUD, so
(1,4) € (AUB)x(CUD). But(1,4) ¢ AxCand (1,4) ¢ BxD,so(1,4) ¢ (AxC)U(BxD).

(e) False. Let A = {1,2}, B = {2}, C = {3}, D = {4}. Then, since 3 ¢ D, (2,3) € (Ax C) \
(B x D). However, because 2 € B,2 ¢ AN B,s0(2,3) ¢ (AN B) x (C \ D).
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31. George Boole (1815-1864) was one of the greatest mathematicians of the nineteenth century. He was
the first Professor of Mathematics at University College Cork (then called Queen’s College) and is
best known today as the inventor of a subject called mathematical logic. Indeed he introduced much
of the symbolic language and notation we use today. Like Charles Babbage and Alan Turing, Boole
also had a great impact in computer science, long before the computer was even a dream. He invented
an algebra of logic known as Boolean Algebra, which is used widely today and forms the basis of
much of the internal logic of computers. His books, “The Mathematical Analysis of Logic” and “An
Investigation of the Laws of Thought” form the basis of present-day computer science.

Exercises 2.3

1. [BB] S x B is the set of ordered pairs (s,b), where s is a student and b is a book; thus, S x B
represents all possible pairs of students and books. One sensible example of a binary relation is {(s,b) |
s has used book b}. '

2. A x B is the set of all ordered pairs (a, b) where a is a street and b is a person. One binary relation
would be {(a, b) | b lives on street a}.

3. (a) [BB] not reflexive, not symmetric, not transitive.
(b) (in most cases) reflexive, (in somewhat fewer cases) symmetric, certainly not transitive!
(c) [BB] not reflexive, not symmetric, but it is transitive.
(d) reflexive, symmetric, transitive.

(e) not reflexive, not symmetric, not transitive

4 BBl |a b c d ® |a b c d © J|a b c d
a| X X a| X %X X al| x x X
bl x x b X b
c X c| x X c X X
d X d d X
d |a b c d
a |l x x x X
b X X X
c X
d X X
5. (a)[BB] {(171)’(1’2)7(2a3)}; b) {(l?l)a(2a2)a(373)’(1,2)a(2’3)};
© {(1,2),(2,3),(2,1),(3,2)}; @ {(1,2),(1,3),(2,3) };

@ {(1,1),(2,2),(3,3),(1,2),(2,1),(2,3),(3:2)};
@ {(1,1),(2,2),(3,3),(1,2),(2,3),(1,3)}; (8) BB] {(1,2),(2,1),(1,1),(2.2)};
® {(1,1),(2,2),(3,3),(1,2),(2,3), (1,3), (2, 1), (3,2), (3, 1)}

6. The answer is yes and the only such binary relations are subsets of the equality binary relation. To see
why, let R be a binary relation on a set A which is both symmetric and antisymmetric. Let (a,b) € R.
Then (b,a) € R by symmetry, so a = b by antisymmetry.
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7. [BB] The argument assumes that for a € R there exists a b such that (a,b) € R. This need not be the
case: See Exercise 5(g).

8. (a) [BB] Reflexive: Every word has at least one letter in common with itself.
Symmetric: If a and b have at least one letter in common, then so do b and a.
Not antisymmetric: (cat, dot) and (dot, cat) are both in the relation but dot # cat!!
Not transitive: (cat, dot) and (dot, mouse) are both in the relation but (cat, mouse) is not.

(b) Reflexive: Let a be a person. If a is not enrolled at Miskatonic University, then (a,a) € R. On
the other hand, if a is enrolled at MU, then a is taking at least one course with himself, so again
(a,a) € R. -

Symmetric: If (a,b) € R, then either it is the case that neither a nor b is enrolled at MU (so
neither is b or a, hence, (b,a) € R) or it is the case that a and b are both enrolled and are taking
at least one course together (in which case b and a are enrolled and taking a common course, so
(b,a) € R). In any case, if (a,b) € R, then (b,a) € R.

Not antisymmetric: If a and b are two different students in the same class at Miskatonic Univer-
sity, then (a,b) € R and (b,a) € R, buta # b.

At most universities, this is not a transitive relation. Let a,b and c be three students enrolled at
MU such that a and b are enrolled in some course together and b and c are enrolled in some (other)

course together, but a and c are taking no courses together. Then (a,b) and (b, c) are in R but
(a,c) ¢ R.

9. (a) Not reflexive: (1,1) ¢ R.

Not symmetric: (1,2) € Rbut (2,1) ¢ R.
Antisymmetric: It is never the case that for two different elements a and b in A we have both
(a,b) and (b,a) in R.
Transitive vacuously; that is, there exists no counterexample to disprove transitivity: The situa-
tion (a,b) € R and (b, c) € R never occurs.

(b) [BB] Not reflexive: (2,2) ¢ R.
Not symmetric: (3,4) € R but (4,3) ¢ R.
Not antisymmetric: (1,2) and (2, 1) are both in R but 1 # 2.
Not transitive: (2, 1) and (1,2) are in R but (2, 2) is not.

(c) [BB] Reflexive: For any a € Z, it is true that a® > 0. Thus, (a,a) € R.
Symmetric: If (a,b) € R, then ab > 0, so ba > 0 and hence, (b,a) € R.
Not antisymmetric: (5,2) € R because 5(2) = 10 > 0 and similarly (2,5) € R, but 5 # 2.
Not transitive: (5,0) € R because 5(0) = 0 > 0 and similarly, (0, —6) € R; however, (5, —6) ¢
R because 5(—6) Z# 0.

(d) Reflexive: For any a € R, a? = a2, 50 (a,a) € R.
Symmetric: If (a,b) € R then a? = b2, so b?> = a? which says that (b,a) € R.
Not antisymmetric: (1,—1) € R and (—1,1) € Rbut 1 # —1.
Transitive: If (a,b) and (b, c) are both in R, then a? = b% and b?> = c?, so a? = c? which says
(a,c) € R.

(e) Reflexive: Forany a € R,a —a =0 < 3 andso (a,a) € R.
Not symmetric: For example, (0,7) € R because 0 — 7 = —7 < 3, but (7,0) ¢ R because
7T—0=7<£3.
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Not antisymmetric: (2,1) € R because2—1=1<3and (1,2) € Rbecause1 —2 = -1 < 3,
but 1 # 2.

Not transitive: (5,3) € R because 5 —3 =2 < 3 and (3,1) € R because 3 — 1 = 2 < 3, but
(5,1) ¢ Rbecause 5 —1 =4 £ 3.

(f) Reflexive: For any (a,b) € A, a — a = b — b; thus, ((a,b), (a,b)) € R.
Symmetric: If ((a, b), (¢, d)) € R, thena—c = b—d, so c—a = d—b and, hence, ((c,d), (a,b)) €
R.

Not antisymmetric: ((5,2), (15,12)) € R because 5—15 = 2—12 and similarly, ((15,12), (5,2)) €
R; however, (15,12) # (5, 2).

If ((a,b),(c,d)) € R and ((¢,d),(e,f)) € Rthena—c =b—dand ¢ — e = d — f. Thus,
a—e=(a—c)+(c—e)=(b-d)+(d— f)=b— fandso ((a,bd), (e, f)) € R.
(g) Not reflexive: If n € N, then n # n is not true.
Symmetric: If n; # no, then ny # n4.
Not antisymmetric: 1 # 2 and 2 # 1 so both (1,2) and (2,1) are in R, yet 1 # 2.
Not transitive: 1 # 2,2 £ 1,butl = 1.

(h) Not reflexive: (2,2) ¢ R because 2 + 2 # 10.
Symmetric: If (z,y) € R, then z + y = 10, 50 y + z = 10, and hence, (y,z) € R.
Not antisymmetric: (6,4) € R because 6 + 4 = 10 and similarly, (4,6) € R, but 6 # 4.
Not transitive: (6,4) € R because 6 + 4 = 10 and similarly, (4,6) € R, but (6,6) ¢ R because
6 + 6 # 10.
(i) [BB] Reflexive: If (z,y) € R%, thenz +y < z + ¥, so ((z,¥), (z,y)) € R.
Not symmetric: ((1,2),(3,4)) € Rsince 1 +2<3+4,but
((3,4),(1,2)) ¢ Rsince3+4 £ 1+2.
Not antisymmetric: ((1,2),(0,3)) € Rsincel +2<0+3
and ((0,3),(1,2)) € Rsince 0+ 3 <1+ 2, but (1,2) # (0, 3).
Transitive: If ((a,b), (c,d)) and ((c, d), (e, f)) are bothin R, then a+b < c+dand c+d < e+ f,
soa+ b < e+ f (by transitivity of <) which says ((a,b), (e, f)) € R.
() Reflexive: 2 =1 € N foranya € N.
Not symmetric: (4,2) € R but (2,4) ¢ R.

Antisymmetric: If 7 = n and % = m are integers then nm = 1 son, m € {£1}. Since a and b
are positive, so are n and m. Therefore,n =m = 1and a = b.

Transitive: The argument given in Example 24 for Z works the same way for N.

(k) Not reflexive: -8 is not defined, let alone an integer!
Not symmetric: As before.
Not antisymmetric: (4, —4) and (—4,4) are both in R.
Transitive: As shown in Example 24.
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10. (a)

(b) The relation is not reflexive because,
for example, (2,2) ¢ R. It is not tran-
sitive because, for example, (2,0) € R

(-2,0) and (0,1) € Rbut (2,1) ¢ R.

(c) The relation is symmetric since if
(z,y) € R, thenl < |z| + |y| < 2,
sol < |yl + |z] < 2,50 (y,7) € R.
It is not antisymmetric since, for exam-
ple, (0,1) € R and (1,0) € R, but
0#1.

11. (a) [BB] Reflexive: For any set X, we have X C X.

Not symmetric: Let a,b € S. Then {a} C {a, b} but {a, b} Z {a}.
Antisymmetric: If X CY andY C X, then X =Y.
Transitive: If X CY andY C Z, then X C Z.

(b) Not reflexive: For no set X is it true that XGX.

Not symmetric: As before. :

Antisymmetric “vacuously”: Itis 1mpos51b1e for X G YandY G X. (Recall that an implication
is false only when the hypothesis is true and the concluswn is false )

Transitive: As before. :

(c) Not reflexive: Since S # 0, there is some element a € S, and so some set X = {a} # 0 € P(S).

For this X, however, X N X = X #0,s0 (X,X) ¢ R.

Symmetric: If (X,Y) € R, then XNY = 0,50 Y N X = 0, hence, (Y, X) € R.

Not antisymmetric: Let a, b be two elements inSandlet X = {a},Y = {b}. Then (X,Y) € R
and (Y, X) e R,but X £Y. .

Not transitive: Let a,b be two elements in S and let X = {a} Y = {b}, Z = {a}. Then
(X,Y)eR,(Y,2) € R, but (X, Z)¢’R

12. (a) [BB] Reflexive: Any book has price > its own prlce and length > its own length, so (a,a) € R

for any book a.

Not symmetric: (Y, Z) € R because the price of Y is greater than the price of Z and the length
of Y is greater than the length of Z, but for these same reasons, (Z,Y) ¢ R.

Antisymmetric: If (a,b) and (b,a) are both in R, then a and b must have the same price and
length. This is not the case here unless a = b.

Transitive: If (a, b) and (b c) are in R, then the price of a is > the price of b and the price of b is
> the price of ¢, so the price of a is > the price of c. Also the length of a is > the length of b and
the length of b is > the length of ¢, so the length of a is > the length of c. Hence, (a,c) € R.

(b) Reflexive: For any book a, the price of a is > the price of a so (a,a) € R. (One could also use a

similar argument concerning length.)

Not symmetric: As in part (a), (Y, Z) € R,but (Z,Y) ¢ R.

Not antisymmetric: (W, X) € R because the price of W is greater than or equal to the price
of X, and (X, W) € R because the length of W is greater than or equal to the length of X, but
W # X.

Not transitive: (Z,U) ¢ 'R because the length of Z is > the length of U and (U, Y’) € R because
the price of U is > the price of Y, but (Z,Y’) ¢ R because neither is the price of Z > the price of
Y nor is the length of Z > the length of Y.
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13. Now the second binary relation would have an extra term, {Mike, 120}, and the third would have the
extra term, {Pippy Park, 120}. But, in addition, the entry {Pippy Park, 74} would be deleted. So Mike
is now clearly identified as the one who shot 120, and Pippy Park is where that occurred. Hence,
Mike’s round of 74 was at Clovelly. Since Edgar has only one entry in binary relation two, he must
have shot 72 at both courses. Finally, Bruce’s 74 must have been at Clovelly and hence his 72 was at
Pippy Park. All information has been retrieved in this case.

Exercises 2.4

1. Reflexive: For any citizen a of New York City, either a does not own a cell phone (in which case
a ~ a) or a has a cell phone and a’s exchange is the same as a’s exchange (in which case againa ~ a).

Symmetric: If @ ~ b and a does not have a cell phone, then neither does b, so b ~ a; on the other
hand, if a does have a cell phone, then so does b and their exchanges are the same, so again, b ~ a.

Transitive: Suppose a ~ band b ~ c. If a does not have a cell phone, then neither does b and, since
b ~ c, neither does ¢, so a ~ c. On the other hand, if a does have a cell phone then so does b and
a’s and b’s exchanges are the same. Since b ~ c, ¢ has a cell phone with the same exchange as b. It
follows that a and c have the same exchange and so, in this case as well, a ~ c.

There is one equivalence class consisting of all residents of New York who do not own a cell phone
and one equivalence class for each New York City exchange consisting of all residents who have cell
phones in that exchange.

2. (a) [BB] This is not reflexive: (2,2) ¢ R.
(b) This is not symmetric: (2,3) € R but (3,2) ¢ R.
It would also be acceptable to not that R is not transitive. (3,1) € R and (1,2) € R, but
(3,2) ¢ R.
(¢) This is not symmetric: (1, 3) is in the relation but (3, 1) is not.
It would also be acceptable to note that this relation is not transitive: (2,1) € R, (1,3) € R, but
(2,3) ¢ R.
3. [BB] Equality! The equivalence classes specify that z ~ y if and only if z = y.

4. (a) Reflexive: If a € S, then a and a have the same number of elements, so a ~ a.

Symmetric: If a ~ b, then a and b have the same number of elements, so b and a have the same
number of elements. Thus b ~ a.

Transitive: If a ~ b and b ~ c, then a and b have the same number of elements, and b and c have
the same number of elements, so a and ¢ have the same number of elements. Thus a ~ c.

(b) There are seven equivalence classes, represented by 0, {1}, {1,2}, {1,2,3}, {1,2,3, 4},{1,2,3,4,5},
{1,2,3,4,5,6}.

5. (a) [BB] Reflexive: If a € R\ {0}, then a ~ a because & =1 € Q.
Symmetric: If a ~ b, then ¢ € Q and this fraction is not zero (because 0 ¢ A). So it can be
inverted and we see that % =1/ % € Q too. Therefore, b ~ a.
Transitive: If a ~ band b ~ ¢, then § € Q and % € Q. Since the product of rational numbers is

rational, £ = %% isinQ,soa ~c.
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®) BBI1={ala~1}={a|§€Q}={alacQ}=Q~{0}
© [BB]%=%=2€Q,sox/§~\/l_2andhence%=\/_l_2.

6. Reflexive: Forany a € N, a ~ a since a? +a = a(a+ 1) is even, as the product of consecutive natural
numbers.
Symmetric: If a ~ b, then a® + b is even. It follows that either a and b are both even or both are odd.
If they are both even, b2 + a is the sum of even numbers, hence, even. If they are both odd, b2 + a is
the sum of odd numbers and, hence, again, even. In both cases b2 + a is even, so b ~ a.
Transitive: If a ~ b and b ~ c, then a® + b and b? + c are even, so (a? + b) + (b + c) is even; in
other words, (a2 + c) + (b + b) is even. Since b? + b is even, a? + c is even too; therefore, a ~ c.

The quotient set is the set of equivalence classes. Now

evens if a is even

—__ 2 . —
@={z|2"+aiseven} {odds if a is odd

So A/~={2Z,2Z + 1}.

7. (a) [BB] Reflexive: For any a € R, a ~ a becausea —a =0 € Z.
Symmetric: If a ~ b,thena—b € Z,sob—a € Z (because b —a = —(a — b)) and, hence, b ~ a.
Transitive: If a ~ b and b ~ c, then both a — b and b — c are integers; hence, so is their sum,
(@a—b)+(b—c)=a—c. Thus,a ~c.
(b) [BB] The equivalence class of 5is5 = {z € R | z ~ 5} = {z | z — 5 € Z} = Z, because
z —5 € Zimplies x € Z. .

5 {zeR|z~51}

{z|z-5% €2}

{z |z =53 +k, forsome k € Z}
{z|z=5+k+ 3, forsomek € Z}

= {z|z=n+3, forsomen € Z}

=
ol

(c) [BB]Foreacha € R,0 < a < 1, there is one equivalence class,
@ = {z € R| z = a + n for some integer n}.
The quotient setis {@ | 0 < a < 1}.

8. [BB] Reflexive: For any a € Z, a ~ a because 2a + 3a = 5a.
Symmetric: If a ~ b, then 2a + 3b = 5n for some integer n. So 2b + 3a = (5a + 5b) — (2a + 3b) =
5(a+ b) — 5n = 5(a + b — n). Since a + b — n is an integer, b ~ a.
Transitive: If a ~ band b ~ ¢, then 2a + 3b = 5n and 2b+ 3¢ = 5m for integers n and m. Therefore,
(2a+ 3b) + (2b+ 3c) = 5(n +m) and 2a + 3¢ = 5(n +m) — 5b = 5(n+m —b). Sincen+m — b
is an integer, a ~ c.

9. (a) Reflexive: For any a € Z, 3a + a = 4a is a multiple of 4, so a ~ a.
Symmetric: If a ~ b, then 3a + b = 4k for some integer k. Since (3a+b) + (3b+a) = 4(a+b),
we see that 3b + a = 4(a + b) — 4k is a multiple of 4, so b ~ a.
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11.

12.

Solutions to Exercises

Transitive: If a ~ b and b ~ ¢, then 3a + b = 4k for some integer k and 3b + ¢ = 4¢ for some
integer £. Since 4(k+£) = (3a+b) + (3b+c) = (3a+c) +4b, we see that 3a+c = 4(k+£) —4b
is a multiple of 4 and, hence, thata ~ c.

() 0={z € Z|z ~ 0} ={z | 3z = 4k for some integer k}. Now if 3z = 4k, k must be a multiple
of 3. So 3z = 12¢ forsome £ € Z and z = 4£. 0 = 4Z.

©2={reZ|z~2} ={z|3z+2 = 4kforsomeintegerk} = {z | 3z = 4k —
2 for some integer k} Now if 3z = 4k — 2, then 3z = 3k + k — 2 and so k — 2 is a multiple
of 3. Therefore, k = 3¢ + 2 for some integer £, 3z = 4(3{ +2) —2 =12{ + 6 and z = 4£ + 2.
So02=4Z+2.

(d) The quotient set is {4Z,4Z + 1,4Z + 2,4Z + 3}.

(a) Reflexive: For any a € Z, a ~ a because 3a + 4a = 7a and a is an integer.
Symmetric: If a,b € Z and a ~ b, then 3a + 4b = 7n for some integer n. Then 3b + 4a =
(7Ta+7b) — (3a +4b) =7a+ Tb— Tn =T(a + b —n) and a + b — n is an integer. Thus b ~ a.
Transitive: Suppose a,b,c € Zwitha ~ band b ~ c. Then 3a + 4b = Tn and 3b + 4c = Tm
for some integers n and m. Then 7n + 7Tm = (3a + 4b) + (3b + 4c) = (3a + 4c) + 7b, so
3a+4c=Tn+Tm—Tb="T7(n+m —b) and n + m — b is an integer. Thus a ~ c.

® 0={z€Z|x~0}={ze€Z|3x="Tnforsome integer n}. Now if 3z = 7n, n must be a
multiple of 3. So 3z = 21k for some k € Z and x = 7k. We conclude that 0 = 7Z.

(a) [BB] Reflexive: If a € Z \ {0}, then aa = a® > 0,s0a ~ a.
Symmetric: If a ~ b, thenab > 0. So ba > 0 and b ~ a.
Transitive: If a ~ band b ~ c, then ab > 0 and bc > 0. Also b2 > 0 since b # 0. Hence,

e = (aggb2 _ (abngc) >0

since ab > 0, bc > 0. Hence, a ~ c. ‘
b BB] 5 = {z€Z~{0}|z~5}={z|52>0}={z|z>0}

-5 = {z€Z~\{0}|z~-5}={z|-5z>0}={z|z <0}
(c) [BB] This equivalence relation partitions Z \ {0} into the positive and the negative integers.

(a) [BB] Reflexive: For any a € Z, a? — a? = 0 is divisible by 3, so a ~ a.
Symmetric: If a ~ b, then a? — b? is divisible by 3, so b? — a? is divisible by 3, s0 b ~ a.
Transitive: If a ~ b and b ~ c, then a® — b? is divisible by 3 and b?> — c? is divisible by 3, so
a? — ¢ = (a% — b?) + (b? — c?) is divisible by 3.

® 0 = {reZ|z~0}
= {z € Z| 2? is divisible by 3}
= {z €Z|zisdivisibleby 3} =3Z
{reZ|z~1}

|
I

{z | z? — 1 s divisible by 3}

{z | (x — 1)(z + 1) is divisible by 3}
{z | £ — 1 or z + 1 is divisible by 3}
3Z+1U3Z+2

(c) This equivalence relation partitions the integers into the two disjoint sets 3Z and (3Z+1)U(3Z+
2).
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13.

14.

15.

(a) [BB] Yes, this is an equivalence relation.
Reflexive: Note that if a is any triangle, a ~ a because a is congruent to itself.

Symmetric: Assume @ ~ b. Then a and b are congruent. Therefore, b and a are congruent, so
b~ a.

Transitive: If a ~ b and b ~ c, then a and b are congruent and b and c are congruent, so a and ¢
are congruent. Thus, a ~ c.
(b) Yes, this is an equivalence relation.
Reflexive: If a is a circle, then a ~ a because a has the same center as itself.

Symmetric: Assume a ~ b. Then a and b have the same center. Thus, b and a have the same
center, so b ~ a.

Transitive: Assume a ~ b and b ~ c¢. Then q and b have the same center and b and c have the
same center, so a and ¢ have the same center. Thus, a ~ c.
(c) Yes, this is an equivalence relation.
Reflexive: If a is a line, then a is parallel to itself, so a ~ a.
Symmetric: If a ~ b, then a is parallel to b. Thus, b is parallel to a. Hence, b ~ a.
Transitive: If a ~ b and b ~ c, then a is parallel to b and b is parallel to c, so a is parallel to c.
Thus, a ~ c.

(d) No, this is not an equivalence relation. The reflexive property does not hold because no line is
perpendicular to itself. Neither is this relation transitive; if £, is perpendicular to £, and ¢5 is
perpendicular to £3, then ¢; and £3 are parallel, not perpendicular to one another.

(a) [BB]R = {(1,1),(1,2),(2,1),(2,2),(3,3),(3,4), (3,5),(4,4), (4,5), (5,5), (4,3), (5,3),
(574)} '

®) R ={((1,1),(2,2),(3,3),(3,4), (4,3),(4,4),(5,5)}

c) R=1{(1,1),(1,2),(1,3),(1,4),(1,5),(2,1),(2,2), (2,3),(2,4), (2,5),(3,1),(3,2), (3, 3),
(3,4),(3,5),(4,1),(4,2),(4,3), (4,4), (4,5), (5,1),(5,2), (5,3),(5,4), (5,5)}

(a) As suggested in the text, we list the partitions of {a}. There is only one; namely, {a}.

(b) As suggested in the text, we list the partitiohs of {a,b}. There are two; namely, {a,b} and
{a}, {b}. '

(c) [BB] As suggested in the text, a good way to list the equivalence relations on {a, b, c} is to list the
partitions of this set. Here they are:

{{a}, {6}, {c} };
{{a,b,c} };
{{a,b},{c} }: {{a,c}, {8} 1 { {b,}, {a} }
There are five in all.
(d) As suggested in the text, we list the partitions of {a,b,c,d}.
{{a}, {0}, {c},{d} }
{{a,b,c,d} }
{{a,b},{c,d} }; { {a,c}, {b,d} }; { {a,d}, {b,c} }
{{a,b}, {c}. {d} }; { {a,c}, {0}, {d} }; { {a,d}, {b}, {c} }; { {b,c}, {a}, {d} };
{ {b,d},{a},{c} }; { {c,d},{a},{b} }
{{a,b,c},{d} }; {{a,b,d},{c} }; { {a,c,d},{b} }; { {b,c,d},{a} }

There are 15 in all. ‘
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16.

17.

18.

Solutions to Exercises

(a) [BB] The given statement is an implication which concludes “x — y = z — y,” whereas what is
required is a logical argument which concludes “so ~ is reflexive.”

A correct argument is this: For any (z,y) € R?, £ — y = = — y; thus, (z,y) ~ (z,y). Therefore,
~ is reflexive.

(b) There is confusion between the elements of a binary relation on a set A (which are ordered pairs)
and the elements of A which are themselves ordered pairs in this situation. The given statement
is correct provided each of x and y is understood to be an ordered pair of real numbers, and we
understand R = {(z,y) | z ~ y} but this is very misleading. Much better is to state symmetry
like this:

if (z,y) ~ (u,v), then (u,v) ~ (z,y).

(c) The first statement asserts the implication “z —y = v — v — (z,y) ~ (u,v)” which is the
converse of what should have been said. Here is the correct argument:

If (z,y) ~ (u,v), thenz — y = u — v, sou — v = = — y and, hence, (u,v) ~ (z,).

(d) This suggested answer is utterly confusing. Logical arguments consist of a sequence of implica-
tions but here it is not clear where these implications start. Certainly the first sentence is not an
implication.

If (z,y) ~ (u,v) and (u,v) ~ (w,2) thenz —y =u—vandu —v = w— 2z So
T —y = w — z and, hence, (z,y) ~ (w, 2).

(e) ~ defines an equivalence relation on R? because it is a reflexive, symmetric and transitive binary
relation on R2,

(f) The equivalence class of (0, 0) is

{(@,9) | (z,9) ~ (0,0} ={(z,9) |z -y =0 -0} = {(z,9) | y = 2}

which is a straight line of slope 1 in the Cartesian plane passing through the origin. The equiva-
lence class of (2, 3) is

{z9) | (@y) ~(2,3)}={(zy) |z-y=2-3=-1}={(z,y) |[y=z+1}
which is a straight line of slope 1 passing through the point (2, 3).

[BB] Reflexive: If (z,y) € R?, then 22 — y? = 22 — 2, 50 (z,y) ~ (=, ¥).
Symmetric: If (z,y) ~ (u,v), then 22 — 32 = u? — v?, so u? — v2 = 22 — y? and (u,v) ~ (z,y).

Transitive: If (z,y) ~ (u,v) and (u,v) ~ (w, 2), then 2 — y? = u? — v? and u? — v? = w? — 22,

sox? —y? =u? —v? =w? - 2% 2% — % = w? — 2% and (z,9) ~ (w, 2).

(0’_0)= {(xay) I ((E,y) ~ (0’0)} ={(x,y) | :1:2—y2 =0%2-0° =0} = {(x)y) l y=:l:$}

Thus, the equivalence class of (0, 0) is the pair of lines with equations y = z, y = —=z.

1,0) = {(z,9) | (z,9) ~ (1,0)} = {(z,9) | 2 — 4> =1* - 0* =1}
Thus, the equivalence class of (1, 0) is the hyperbola whose equation is 22 — y? = 1.

(a) This is an equivalence relation.
Reflexive: If (a,b) € R?, then a + 2b = a + 2b, so (a,b) ~ (a,b).
Symmetric: If (a,b) ~ (c,d), thena + 2b = c+ 2d, so ¢ + 2d = a + 2b and (¢, d) ~ (a, b).
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Transitive: If (a,b) ~ (c,d) and (¢,d) ~ (e, f), thena + 2b = ¢ + 2d and ¢ + 2d = e + 2f, so
a+2b=e+2f and (a,b) ~ (e, f).

The quotient set is the set of equivalence classes. We have

(a',b) = {(xay) l (:v,y) ~ (a?b)} = {(x)y) | z+2y= a+2b}
={(z,9) |y—b=—3(z—a)}

which describes the line through (a, b) with slope —%. The quotient set is the set of lines with

slope —%.

(b) This is an equivalence relation.
Reflexive: If (a,b) € R?, then ab = ab, so (a, b) ~ (a,b).
Symmetric: If (a,b) ~ (c,d), then ab = cd so cd = ab and (¢, d) ~ (a,b).
Transitive: If (a,b) ~ (¢,d) and (¢,d) ~ (e, f), then ab = cd and cd = ef, so ab = cd = ef,
ab = ef and (a,b) ~ (e, f).
The quotient set is the set of equivalence classes. We have

(a,0) = {(z,9) | (z,) ~ (a,0)} = {(z,) | =y = ab}

and consider two cases. If either a = 0 or b = 0, then (a,b) = {(z,y) | zy = 0}; that is,

{(z,y) | ¢ = 0 ory = 0}. Hence, (a, b) is the union of the x-axis and the y-axis. On the other
hand, if a # 0 and b # 0, then

@h) = {(@9) | 2y = ab} = {(=.9) |y = 2}

since z # 0 in this case. This time, (a, b) is the hyperbola whose equation is y = ab/z.

(c) This is not an equivalence relation. We have (0,2) ~ (1,1) because 02 + 2 = 2 = 1 + 1%
however, (1,1) # (0,2) because 12 + 1 = 2 # 4 = 0 + 22, The relation is not symmetric.

(d) Reflexive: For any (a,b) € R%, a = a, so (a,b) ~ (a,b).
Symmetric: If (a,b) ~ (c, d), then a = ¢, so ¢ = a and, hence, (c,d) ~ (a,b).
Transitive: If (a,b) ~ (c,d) and (c,d) ~ (e, f), then a = c and ¢ = e; hence, a = e and so
(a”b) ~ (e, f) .
Since the relation is reflexive, symmetric and transitive, it is an equivalence relation. The quotient
set is the set of equivalence classes. The equivalence class of (a, b) is

{(z,9) €R? | (z,9) ~ (a,0)} = {(z,y) €R?* |z =a}.
Geometrically, this set is the vertical line with equation z = a. The quotient set is the set of
vertical lines.
(e) This is not an equivalence relation. For example, it is not reflexive: (1,2) »# (1,2) because
12)=2#1=12
19. (a) “If@aNb=0,thena #b.”
(b) The converse is true. faNd = 0, thena € abuta ¢ b,soa #* b.

20. Remembering that Z is just the set of elements equivalent to z, we are given thata ~ b, ¢ ~ d and
d ~ b. By Proposition 2.4.3,a =b,c=dandd=b. Thusa=b=d =¢C.
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21.

22.

23.

24.

25.

Solutions to Exercises

(a) [BB] The ordered pairs defined by ~ are (1,1), (1,4), (1,9), (2,2), (2,8), (3,3), (4,1), (4,4),
(4,9), (5,5), (6,6), (7,7), (8,2), (8,8), (9,1), (9,4), (9,9).

() [BB1T={1,4,9}=4=9;2={2,8} =8;3={3};5={5};6 ={6}; 7= {7}

(c) [BB] Since the sets {1,4,9}, {2,8}, {3}, {6}, {6} and {7} partition A, they determine an equiv-
alence relation, namely, that equivalence relation in which a@ ~ b if and only if a and b belong to
the same one of these sets. This is the given relation.

[BB] Reflexive: If a € A, then a? is a perfect square, so a ~ a.
Symmetric: If a ~ b, then ab is a perfect square. Since ba = ab, ba is also a perfect square, so b ~ a.

Transitive: If a ~ b and b ~ c, then ab and bc are each perfect squares. Thus ab = z2 and bc = y?
oy ( zy

2
for integers = and y. Now ab®c = z2y?, so ac = = =3 ) . Because ac is an integer, so also

Ty . .
Ty is an integer. Therefore, a ~ c.

(a) The order pairs of ~ are (1,1), (2,2), (3,3), (4,4), (5,5), (6,6), (7,7), (1,2), (2,1), (1,4),
(4,1), (2,4), (4,2), (3,6), (6,3).

®) 1={1,2,4}=2=4,3={3,6}=6;5={5}; 7={7}.
(c) Thesets {1,2,4}, {3,6}, {5}, {7} partition A, so the given relation is an equivalence relation.

Reflexive: If a € A, then g =1=2%isapowerof 2,s0a ~ a.

b
Symmetric: If a ~ b, then % = 2t so g = 2%, Since —t is an integer, - is also a power of 2, so
b~ a.

e a : b . a ab o+
Transitive: If a ~ b and b ~ ¢, then 3 = 2% and E'= 24 for integers t and s. Thus p = 3o EAREN
showing that a ~ c. '

We have to prove that the given sets are disjoint and have union S. For the latter, we note that since
R is reflexive, for any a € S, (a,a) € R and so a and a are elements of the same set S;; that is,
a € S; for some i. To prove that the sets are disjoint, suppose there is some z € Sk N S,. Since
Sk € Ujzx Sj» there exists y € Sk such that y ¢ S; for any j # k. Similarly, there exists z € S,
such that z ¢ S; if j # £. Now if y,z € Sk, then (y,z) € R and z, z € S, implies (z,2) € R. By
transitivity, (y, z) € R, hence, y and z belong to the same set. But the only set to which y belongs is
Sk. Since z does not belong to Sy, we have a contradiction: No x € S NS¢ exists.

Exercises 2.5

1.

(a) [BB] This defines a partial order.
Reflexive: For any a € R, a > a.
Antisymmetric: If a,b € R,a > band b > a,thena = b.
Transitive: If a,b,c € R,a > band b > c, thena > c.
This partial order is a total order because for any a,b € R, eithera > borb > a.
(b) [BB] This is not a partial order because the relation is not reflexive; for example, 1 < 1 is not true.
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(c) This is not a partial order because the relation is not antisymmetric; for example, —3 < 3 because
(—3)% < 32 and 3 < —3 because 32 < (—3)2 but —3 # 3.

(d) This is not a partial order because the relation is not antisymmetric; for example, (1,4) =< (1,8)
because 1 < 1 and similarly, (1,8) < (1,4), but (1,4) # (1,8).

(e) This is a partial order.
Reflexive: For any (a,b) € N x N, (a,b) <X (a,b) because a < a and b > b.

Antisymmetric: If (a,b), (c,d) € N x N, (a,b) <X (¢,d) and (c,d) < (a,b), thena < ¢, b > d,
c<aandd >b. Soa = ¢, b=d and, hence, (a,b) = (c,d).

Transitive: If (a,b), (c,d), (e, f) € N x N, (a,b) =< (c,d) and (¢,d) < (e, f), thena < ¢, b > d,
c<eandd > f.Soa < e(because a < c < e) and b > f (because b > d > f) and, therefore,
(a,b) < (e, f)

This is not a total order; for example, (1,4) and (2, 5) are incomparable.
(f) This is reflexive and transitive but not antisymmetric and, hence, not a partial order. For example,
cat = dog and dog = cat but dog # cat.
2. (a) [BB] 1, 10, 100, 1000, 1001, 101, 1010, 11, 110, 111
(b) 1,11, 111, 110, 10, 101, 1010, 100, 1001, 1000
3. (@I[BB] (a,b),(a,c),(a,d), (b,¢), (b,d),(c,d);  (b) [BB] (a,b), (c,d);
© (a,b),(a,d),(c,d); @ (a,b),(a,c), (a,d);

) (a, d)1 (a7 6), (b’ e)’ (ba C), (b7 f)’ (09 f)1 (d’ e);
® (a, f),(d,¢),(d,b),(d,c), (d, h), (d, 1), (e,c), (e, i), (9, f), (h, ).

4. (a) [BB] a is minimal and minimum; d is maximal and maximum.
(b) [BB] a and c are minimal; b and d are maximal; there are no minimum nor maximum elements.
(c) a and c are minimal; b and d are maximal; there are no minimum nor maximum elements.
(d) a is minimal and minimum; b, ¢ and d and maximal; there is no maximum element.
(e) a and b are minimal; e and f and maximal; there are no minimum nor maximum elements.

(f) a, d, e and g are minimal; ¢, f and i are maximal; there are no minimum nor maximum elements.

5. (a) ® {a,b,c,d}
{a" ba C} q

{a’ b} [0} {aa C} {C, d}

- N W e Ut

{a}
6. (a) 1is minimal and minimum; 6 is maximal and maximum.

(b) {a} and {c, d} are minimal; there is no minimum.
The set {a, b, ¢, d} is maximal and maximum.

7. [BB] A g B and the set B contains exactly one more element than A.
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8. Helmut Hasse (1898—1979) was one of the more important mathematicians of the twentieth century.
He grew up in Berlin and was a member of Germany’s navy during the first World War. He received
his PhD from the University of Géttingen in 1921 for a thesis in number theory, which was to be the
subject of his life’s work. He is known for his research with Richard Brauer and Emmy Noether on
simple algebras, his proof of the Riemann Hypothesis (one of today’s most famous open problems)
for zeta functions on elliptic curves, and his work on the arithmetical properties of abelian number
fields. Hasse’s career started at Kiel and continued at Halle and Marburg. When the Nazis came
to power in 1933, all Jewish mathematicians, including eighteen at the University of Gottingen, were
summarily dismissed from their jobs. It is hard to know the degree of ambivalence Hasse may have had
when he received an offer of employment at Géttingen around this time, but he accepted the position.
While some of Hasse’s closest research collaborators were Jewish, he nonetheless made no secret of
his support for Hitler’s policies. In 1945, he was dismissed by the British, lost his right to teach and
eventually moved to Berlin. In May 1949, he was appointed professor at the Humboldt University in
East Berlin but he moved to Hamburg the next year and worked there until his retirement in 1966.

9. (a) [BB]Let (A, <) be a finite poset and let a € A. If a is not maximal, there is an element a; such
that a; > a. If a; is not maximal, there is an element a5 such that a; > a;. Continue. Since A
is finite, eventually this process must stop, and it stops at a maximal element. A similar argument
shows that (A, <) must also contain minimal elements.

(b) The result of (a) is not true in general. For example, (R, <) is a poset without maximal elements
and without minimal elements.

10. (a) Reflexive: For any a = (a1,a2) € A, a < a because a; < a; and a; + a2 < a1 + as.

Antisymmetric: If a = (aj,a2) and b = (b1,b2) are in A witha < band b < a, then a; < by,
a1 + az < by + by, and by < ay, by + by < a; + ap. Since a; < by and b; < a;, we have
a1 = by. Since a1 + az < by + be and a; = by, we have as < bs. Similarly, by < ag, so
as = bz. Thus a = b.

Transitive: If a = (a;,a2), b = (b1,b2) and ¢ = (c1,¢2) are elements of A with a < b and
b=<c,thena; <b;,a; +as < by +bg,and also by < cq, by + by < ¢y + co. Since a; < by
and b; < ¢1, we have a; < ¢;. Since a; + az < by + by and by + ba < ¢ + cg, we have
ai1+az2<c;+cy,s0a=xc -

This partial order is not a total order: for example, a = (0,0) and b = (—1, —2) are not compara-

ble.

(b) Let A =Z" and fora = (a1,a2,...,a,) and b = (b, b, ..., b,) in A, define a < b if and only

ifa; <b1,a1+az <by+by,a1+az+ag < by +by+bs, a1 +az+as+ag < by +by+bs+by,
..,a1+azx+--+ap <by+by+:--+ b,. Then < is a partial order on A.

11. (a) [BB] Suppose that a and b are two maximum elements in a poset (A4, <). Then a < b because b is
maximum and b < a because ¢ is maximum, so a = b by antisymmetry.

(b) Suppose that a and b are two minimum elements in a poset (A4, <). Then a < b because a is
minimum and b < a because b is minimum, so a = b by antisymmetry.

12. (a) [BB] Assuming it exists, the greatest lower bound G of A and B has two properties:
(I GCAGCB;
2) ifCCAandC C B,thenC CG.
We must prove that A N B has these properties. Note first that AN B C Aand AN B C B, so
A N B satisfies (1). Also,if C C Aand C C B, then C C AN B, so AN B satisfies (2) and
ANB=AAB.
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(b) Assuming it exists, the least upper bound of A and B has two properties:
(1) ACLBCL
2 ifACCandBCC,thenL CC.
We must prove that AU B has these properties. Since A C AUBand B C AUB, AU B satisfies
(1). Also,if ACCand BC C,then AUB C C, so AU B satisfies (2) and AUB = AV B.

13. (a) [BB]la V b = b and here is why. We are given a <X b and have b =< b by reflexivity. Thus b is an
upper bound for a and b. It is least because if ¢ is any other upper bound, then a < ¢, b=cin
particular, b < c.

(b) a A b = a and here is why. We are given a < band have a X a by reflexivity. Thus a is a lower
bound for a and b. It is greatest because if ¢ is any other lower bound, then ¢ = a, ¢ X b; in
particular, ¢ < a.

14. (a) [BB] Suppose x and y are each glbs of two elements a and b. Thenz < a,z X bimpliesz Xy
because y is a greatest lower bound, and y < a, y < b implies y <X z because x is greatest. So,
by antisymmetry, T = y.

(b) Suppose z and y are each lubs of two elements a and b. Thena X z, b < z implies y <X z because
y is a least upper bound, and a < y, b < y implies x < y because z is least. So, by antisymmetry,
x=y.

15. (a) In a totally ordered set, every two elements are comparable. So given a and b, either a < b or
b < a; hence, the elements max(a, b) and min(a, b) always exist. In a poset which is not totally
ordered, they don’t necessarily, however. In the two element poset {a}, {b} with the relation C,
for example, max({a}, {b}) does not exist because there is no element in the poset containing
both {a} and {b}. (Similarly, min({a}, {b}) does not exist.)

(b) To prove that a totally ordered set (A, <) is a lattice we must prove that every pair of elements has
a glb and lub. We claim that glb(a, b) = min(a, b) and lub(a, b) = max(a, ).
We show that glb(a, b) = min(a,b). (The argument to show that lub(a,b) = max(a,b) is very
similar.) Let m = min(a, b). (Note that m = a or m = b). Certainly we havem <X aand m X b
so m is a lower bound. Also, if for some element c we have ¢ < a and ¢ < b, then ¢ X m if
m = a, and ¢ < m if m = b. In either case, we have ¢ < m, so glb(a, b) is min(a, b) as required.

16. (a) [BB] (P(S), C) is not totally ordered provided |S| > 2 (since {a} and {b} are not comparable if
a # b). But () is a minimum because @ is a subset of any set and the set S itself is a maximum
because any of its subsets is contained in it.

(b) (Z,<) or (R, <) are obvious examples.
17. Suppose a is maximal in a totally ordered set (A, <) and let b be any other element of A. Since A is

totally ordered, either a < b or b < a. In the first case, a = b because a is maximal so in either case,
b < a. Thus, a is a maximum. ’

18. (a) [BB] We have to prove that if b < a, then b = a. So suppose b <X a. Since a is minimum, we have
also a < b. By antisymmetry, b = a.

(b) Let b be a minimal element. We claim b = a. To see why, note that a minimum implies a =X b.
Then minimality of b says a = b.
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Solutions to Review Exercises

Chapter 2 Review

1.

Since A ={1,2,3,4,5,6} and B = {3,4,5,6,7}, wehave A® B = {1,2,7} and (A® B)\ C =
{1,7}.

. @ A={-1,0,1,2}, B={-5,-3,-1,1},C = {-%,-2,0,+1,42,+},+1};

(b) ANB= {:l:l}’ S0 (A n B) X B = {(1! '—5)7 (la —3), (la —1)’ (la 1)1 (_lv _5)’ (_]-a _3)’
('—11 "‘1)1 (_1, 1)},
(¢) BNC = {-5,-3}); D AeC={-2-2-2,+1,+1}.

(a) True. (—) Suppose ANB =Aandleta € A. Thena € AN B,soa € B. Thus A C B.
(«—) Suppose A C B. To prove AN B = A, we prove each of the two sets, AN B and 4, is a
subset of the other. Let x € AN B. By definition of N, z is in both A and B, in particular, z € A.
Thus AN B C A. Conversely, let z € A. Since A C B, x € B. Since z is in both A and B,
re ANB. Thus AC AN B.

(b) This is false. If A =0, (AN B)UC = C while AN (BUC) = 0, soany C # 0, any B, and
A = ( provides a counterexample.

(c) False. Take A = B = 0.

. Letb € B and let a be any element of A. Then (a,b) € A x B, so (a,b) € A x C. Thus b € C. This

shows tht B C C and a similar argument shows C C B, so B = C.

. (@ Region2: (ANC)\B Region3: ANBNC Region4: (ANB)\ C

Region5: (BNC)N\ A Region6: B\ (AUC) Region7: C \ (AU B)
(b) Region 2,3,4,5,7is (AN B)UC;region2,3,4is AN (BUC)
(¢) B\ (C \ A) consists of regions 3, 4, and 6. (B \ C) \ A consists of region 6.
C

. (@
A B

®) i (AUB)NC ={2,3,8,9}
ii. AN(BNC)={2,3,7,9}

iii. A® B ={2,6,7,8,9}
iv. (AN B) x (BNC) ={(2,3),(2,8),(7,3),(7,8),(9,3),(9,8)}

P(A) = {m’ A}’ so P(P(A)) = {@, {m}v {A}v {@7 A}}

() TakeA=B=C’={3};ThenB\C=(?)sera(B\C)=A. On the other hand, A® B = ()
so (A®B)~C =0 # A.

(b) Let (a,b) € Ax B. Thena € Aand b € B. SinceaeAandAQC,aeC’. Since b € B and
BCD,be D.So(a,b) eCxD.Hence AXx BCC x D.

Take B=C=0,A={1}=D.ThenAx B=0=C x D,s0 Ax B C C x D. On the other
hand, A Z C.
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10. This follows quickly from one of the laws of De Morgan and the identity X \Y = X NY*“.

11.

12.

13.

14.

15.

16.

AN(BNC)=AN(BNC)=AN(B°UC®) i (ANB°)U(ANC%) =(ANB)U(ANDQ),
using (3), p. 62 at the spot marked with the arrow.

(a) A binary relation on A is a subset of A x A.
(b) If A has 10 elements, A X A has 100 elements, so there are 210 binary relations on A.

Reflexive: For any a with |a| < 1, we have a? = |a?| = |a]|a| < |a|, thus (a,a) € R.
Symmetric by definition.
Not antisymmetric because (3, 7)isin R ((3)2 < 3 and ()2 < 3) but 1 # 7.
Not transitive. We have (3,3) € R because (3)2 < 1 and (3)? < } and (},1) € R because
(3)2 < tand($)? < 3, but(3,2)isnotin R because (3)2 £ 1.
(a) Reflexive: For any natural number a, we have a < 2a, so a ~ a.
Not symmetric: 2 ~ 5 because 2 < 2(5), but 5 %% 2 because 5 £ 2(2).
Not antisymmetric: Let a = 1 and b = 2. Then a ~ b because 1 < 2(2) and also b ~ a because
2 <2(1). .
Not transitive: Leta = 3, b = 2, ¢ = 1. Then a ~ b because 3 < 2(2) and b ~ ¢ because
2 < 2(1). However, a o ¢ because 3 £ 2(1).
Since the relation is not transitive, it is not an equivalence relation and it is not a partial order.
(b) Not reflexive: (1,2) + (1,2) because 1 <2and 2 £ 1.
Not symmetric: (1,2) ~ (4, 3) because 1 < 2 and 3 < 4, but (4, 3) # (1,2) because 4 £ 3.

Not antisymmetric: (1,1) ~ (2,2) because 1 < 1 and 2 < 2, and (2,2) ~ (1,1) for the same
reason, but (1,1) # (2,2). ‘

Transitive: if (a,b) ~ (c,d) and (¢,d) ~ (e, f),thena < b,d < c,c< dand f < e, s0a<b
and f < e which implies (a, b) ~ (e, f).

This is not an equivalence relation because it’s not reflexive (or symmetric).

This is not a partial order because it’s not reflexive (or antisymmetric).

‘We must determine whether or not ¢ < b and b < a implies ¢ = b. Since the hypothesis is always
false, this implication is true. The relation is antisymmetric.

Reflexive: For any a € Z, 4a + a = 5a is a multiple of 5.

Symmetric: If aRb, then 4a + b is a multiple of 5, so 4b + a = 5(a + b) — (4a + b) is also a multiple
of 5, that is, bRa.

Transitive: If aRb and bRc, then both 4a + b and 4b + ¢ are multiples of 5, hence so is their sum,
4a + 5b + c. It follows that (4a + 5b + c) — 5b = 4a + cis also a multiple of 5, so aRc.

(a) Reflexive: For any a € Z, aRa because 2a + 5a = 7a is a multiple of 7.
Symmetric: If a,b € Z and aRb, then 2a + 5b = Tk for some integer k, so 5a +2b = 7(a+b) —
(2a + 5b) is the difference of multiples of 7, hence also a multiple of 7. Thus bRa.
Transitive: If a,b,c € Z with aRb and bRc, then 2a + 5b = 7k for some integer k and 2b +
5c = T¢ for some integer £. Thus (2a + 5b) + (2b + 5¢) = 2a + 7b + 5¢ = 7(k + £) and
2a + 5¢ = 7(k + £) — b is the difference of multiples of 7, hence a multiple of 7. Thus aRc.
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17.

18.

19.

20.

21.

22,

Solutions to Review Exercises

(b) We have OR7 and 7RO, yet 0 # 7. The relation is not antisymmetric, so it is not a partial order.

(—) Assume z ~ a. Lett € Z. Then t ~ z so t ~ a by transitivity. Thus ¢ € @. This proves T C @.
Similarly, @ C 7, s0o T =a.

(+—) Assume T = @. Since z € Z, by symmetry, z € @. Thus x ~ a.

Sincea € b,a ~ b and hence @ =_5 by Proposition 2.4.3. Similarly d € Eimplies d =0, hence@ = d.
Now d ¢ ¢ implies d # €, so €N d = () by Proposition 2.4.4. Since @ = d, so alsoa N¢ = 0.

(a) We must show that < is reflexive, antisymmetric and transitive on A. The relation is reflexive: For
any (a,b) € A, (a,b) ~ (a,b) because a < a and b < b.
It is antisymmetric: If (a,b), (c,d) € A, with (a,b) ~ (c,d) and (c,d) ~ (a,b), thena < c,
d<bc<aandb<d. Soa=c,b=d,hence, (a,b) = (c,d).
It is transitive: If (a,b), (c,d), (e, f) € A with (a,b) ~ (c,d) and (c,d) ~ (e, f), thena < c,
d<bc<eand f<d Soa<e(ecausea <c<e)and f < b (because f < d < b), so
(a,b) ~ (e, f)

(b) (A, <) is not totally ordered since, for example, (1,4) and (2, 5) are not comparable: (1,4) %
(2,5) because 5 £ 4 and (2, 5) + (1,4) because 2 £ 1.

(a) Reflexive: For any p € A, p ~ psince p = p.

Symmetric: If p ~ ¢ then either p = q (so ¢ = p) or the line through p and g passes through the
origin (in which case the line through g and p passes through the origin). Thus g ~ p.

Transitive: Suppose p ~ ¢ and g ~ r. If the points p, g, r are different, then the line through p
and q passes through the origin, as does the line through ¢ and r. Since the line through the origin
and q is unique, p and 7 lie on this line, p ~ 7. If p = r, then p ~ r. If p = g # r, then the line
through g and r passes through the origin, so the line through p and r passes through the origin;
thus p ~ r. The remaining case, p # ¢ = r is similar.

(b) The equivalence class of a point p is the line through the origin and p. The equivalence classes are
lines through the origin.

Reflexive: Forany A € P(Z), A C A.

Antisymmetric: If A, B C P(Z) with A C Band B C A, then A = B.

Transitive: If A, B,C C P(Z) with AC B,BC C,then A C C.

. a . .
(a) Reflexive: For any a € A, — = 1 is an integer, so a < a.
a

Antisymmetric: If a < b and b < a, then both 2 and % are (necessarily positive) integers. The
only positive integer whose reciprocal is also an integer is 1, so a = b.

Transitive: If a < b and b < ¢, then g and % are both integers. Thus g g = 5 is an integer. So
a=xc
8
b)) 4 6 (c) 1is minimal and minimum,; 6 and 8 are maximal. There is no maximum

element.

(d) (A4, =) is not totally ordered; for example, 4 and 6 are not comparable.
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23. Two elements of a poset can have at most one least upper bound and here’s why. Let ¢1, {2 each be

least upper bounds for elements a and b. Then £; is an upper bound for a and b, so 2 =< ¢; because {2
is least. Interchanging ¢;, £5 in the preceding statement gives £; < f2. So ¢; = {3 by antisymmetry.

Exercises 3.1

1.

(a) [BB] Not a function; f contains two different pairs of the form (3, —).

(b) Not a function with domain {1, 2, 3,4}. There’s no pair of the form (3, —).

(c) [BB] This is a function. 4

(d) Certainly not a function. There is more than one pair of the form (1, —): In fact, there are four!
(e) This is a function.

. (a) [BB] This is not a function unless each student at the University of Calgary has just one professor,

for if student a is taking courses from professors b; and b, the given set contains (a,b;) and
(a,b2).

(b) Assuming that each student currently registered at the University of Calgary is taking at least one
course, then this is a function.

(c) Assuming some student a has no classes on Friday afternoon, then this will not be a function since
the set would contain no pair of the form (a, —).

. [BB] A x Bis a function A — B if and only if B contains exactly one element.

To see why, first note that if B = {b}, then A x B = {(a,b) | a € A} is certainly a function.
Conversely, if A x B is a function but B contains two elements b, bo, then for any a € A, (a,b;) and
(a,bq) are both in A x B, so A x B is not a function.

(a) [BB] the function defined by f(n) = 2n, for example.

(b) the function defined by f(1) = 1 and forn > 1, f(n) = n — 1, for example.

(c) the constant function f(n) = 107 for all n, for example.

(d) the identify function, vy, for example: ¢(n) = n, for all n.

. (a) [BB]If z € X, then z is a country in the British Commonwealth with a uniquely determined

Prime Minister y who lives in that country; thatis, y € Y.
Ify € Y, then y is a person living in one of the countries in the British Commonwealth. Thus, the
domicile of y is a uniquely determined element z € X.

(b) If z; # x, are two different countries, then their Prime Ministers are different individuals, so
Prime Minister is one-to-one. On the other hand, Prime Minister is not onto since there are people
in a country who are not the Prime Minister.

(©) If z € X, then z is a country. If y is any person living in that country, then Domicile: y — z,
so Domicile is onto. On the other hand, if y; and y5 are different people living in country z, then
Domicile: y; — x and Domicile: ys — x, so Domicile is not one-to-one.

[BB] Parking rates, bus fares, admission prices are several common examples.
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10.

11.

12.

13.

14.

15.

16.

Solutions to Exercises

. (a) Jumps in the .graph ofy = |2z — 3] occur whenever 2z — 3 is an integer, thatis, at {3 | n € Z}.

(b) Jumps in the graph of y = [z + 7] occur whenever Xz + 7 is an integer, that is, at {4n | n € Z}.

(c) Jumps in the graph of y = [—'t—J occur whenever (z + 3) is an integer, that is, at {z | z =
5n—3,n € Z}.

. (a) [BB] The answer is “yes ” By deﬁmtioti of “floor”, we know that kz is the unique integer satisfy-

ingn—1<kx <n. Thus———<.'z:< Since%—l5%—%,wehave%—1<a:$%.
Thus z = | ]

(b) The multiples of 3 in the indicated interval are 3, 6,9, ..., 3k, where 3k = |50000]. Thus k =
| 52990 | = 16666.

[BB] We know that | x| is an integer less than or equal to = and that |y | is an integer less than or equal
to y. Thus |z| + |y] is an integer less than or equal to = + y. Since |z + y] is the greatest such
integer, we get the desued result

We know that [z] is an mteger greater than or equal to z and that [y] is an integer greater than or equal
to y. Thus [z] + [y] is an integer greater than or equal to z + y. Since [z + y] is the smallest such
integer, we get the desired result.

|z] is the unique integer which satisfies —1 < |z| < z. This implies (z+n)—1 < |z]+n < z+n.
But there is exactly one integer a in the range (z+n)—1<a < z+nandthatis |z +n]. This gives
the result.

We have f(1) =2(1) —5=-3, f(2) =22+1=35, f(3) =1, f(4) =17, f(5) = 5, and so0, as a
subset of S x Z, f = {(1,-3),(2,5),(3,1),(4,17), (5,5)}

No, f is not 1-1 because f(2) = f(5) but 2 # 5 (equivalently, (2, 5) and (5, 5) are both in f).

(a) [BB] add is not one-to-one since, for example, add(1,1) = add(0, 2) while (1,1) # (0,2). Itis
onto, however, because, for any y € R, the equation y = add(z) has the solution z = (y, 0).

(b) mult is not one-to-one since, for example, mult(1,4) = mult(2,2) while (1,4) # (2,2). Itis
onto, though, since for any y € R, the equation y = mult(x) has the solution z = (y, 1)

(a) [BB] g is not one-to-one since, for example, g(1) = g(—1) = 2. Neither is g onto: For any z € Z,
|z| > 0,s0|z|+1>1. Thus, for example, 0¢rngg.

(b) [BB] g is not one-to-one as in (a). This time it is onto, however, because for n € N, the equation
n = g(z) has the solution z =n — 1. (Note thatn > 0forn € N,so|[n — 1| =n—1))

(a) [BB]If f(z1) = f(z2), then 3z; + 5‘ = 3z3 + 5, 50 £1 = T3 which proves that f is one-to-one.
Also f is onto, since giveny € Q, y = f(%(y —5)) with 2 (y — 5) € Q.

(b) This function is one-to-one, as in (a), but it is not onto because f(n) = 3n+5 > 8 foranyn € N
and so, for example, 1 is not in the range of f.

(a) h is not one-to-one since, for éxample‘, h(1) =3 =h(—1)and 1 # —1.
his not onto since 1 ¢ rngh: 1 € Z, but if we try to solve 2 + 2 = 1, we obtain z2 = —1 which
has no solutions in Z.
(b) h is one-to-one since if h(z1) = h(zs), then 22 + 2 = 22 + 2, s0 22 = 72 and 7, = +z,. Since
z and x5 are both in N, we must have 1 = z.
. his not onto; as in (a), 1 is not in the range of h.
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17. (@)

(b

18. (a)

(b)

©

19. (a)

(®

©

@

The function is not onto since, for example, g(z) = 0 has no integer solutions (by the quadratic
formula), but it is one-to-one. To see why, suppose g(x1) = g(z2). Then 3z? + 14z, — 51 =
3z2 + 14z9 — 51, 50 3(z1 — T2)(x1 + x2) = 14(z2 — z1). Thus 1 = T or 1 + T2 = —%.
Since 1 and z, are integers, 1 + T3 = —1?4 is impossible. Thus, £1 = z2, S0 g is one-to-one.

Since the graph of g is a parabola, g is neither one-to-one nor onto.

[BB] Note that f(z) = (z + 7)2 — 100. If f(z1) = f(=2) it follows that (z + 7)% — 100 =
(z2 + 7)2 — 100, so (z1 + 7)? = (z2 + 7)? and, taking square roots, |z1 + 7| = |z2 + 7|. Since
1,72 € N,weknow 1 +7 > 0and zo + 7 > 0. Thus, 1 + 7 = 22 + 7 and £ = x2. Thus,
f is one-to-one, but it is not onto: For example, 1 € B, but there is no z € N with f(z) =1
since (z + 7)2 — 100 = 1 implies (z + 7)2 = 101 and this equation has no solution in the natural
numbers.

This function is not one-to-one since, for example, f(0) = f(—14) (= —51) and it is not onto, as
in (a).

This function is not one-to-one; as in (b), f(0) = f(—14). But it is onto since for any y > —100,
z = /100 + y — 7 is a solution to y = f(x). .

[BB] The domain of f is R. Its range is also R because every y € R can be written y = f(z)
for some z; namely, z = y!/3. The function is, therefore, onto. It is also one-to-one: If f(z1) =
f(z2), then 23 = z3 and this implies 71 = .

The domain of g is R and so is the range. For the latter, note that

(z) = 2 ifz>0
IE)= —z? ifz<0

so that if y > 0, then y = g(,/y) while if y < 0, y = g(—+/—y). Since rngg = R, g is onto. To
see that g is 1-1, either inspect the graph or assume g(z;) = g(x2) and consider the cases.

Case 1: Both z; and x, are nonnegative.

In this case, 23 = 23, s0 /22 = \/z3; hence, |7;| = |z2| and 1 = z2.

Case 2: Both z; and 5 are negative. _
In this case, —z3 = —z3, 50 22 = £, \/23 = \/23, |z1| = |72|, —21 = —z2 and 71 = 3.

Case 3: One of x;, 2 is nonnegative and the other is negative.

Here we may assume that z; is nonnegative, so 2 = —z3. Since the left side is at least 0 and the
right side is less than 0, the equation cannot be true.

In all cases £ = 2, s0 g is 1-1.

The domain of g is (%,oo) as given. Its range is R because for any y € R, y = f(z) for
T = 3(2¥ + 4). Since rngB = R, B is onto. It is also one-to-one: If B(x;) = B(x2), then
logy (3z1-4) — 9log;(372-4) g0 31y — 4 = 35 — 4 and T = Zo.

The domain of f is R as given. To find the range, we must remember that 2¢ > 0 for all ¢ and thus,
f(z) > 3forall z. In fact rng f = (3, 00) since, forany y > 3,y = f(z) forz = 1+logy(y—3).
Since rng f # R, f is not onto. It is one-to-one, however, for if f(z1) = f(x2), then 21714+ 3 =
272~1 4 3,50 27171 = 2%2~1, Taking log, of each side, 71 — 1 = z2 — 1, s0 z1 = Za.
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20.

21.

22,

Solutions to Exercises

(a) [BB] The graph of f shown at the right makes it clear that f is Y
one-to-one and onto.

(b) [BB] Solution 1. Since f: R — R is one-to-one by part (a), it is
also one-to-one as a function with domain Z. Here, however, f is
not onto for we note that f(0) = 0, f(1) = 4 and f is increasing,
so 1 is not in the range of f.

Solution 2. (This solution mimics that given in Problem 8 in our discussion of discrete functions in
this section.)

If f(z1) = f(z2), then 3z3+z; = 323+, 50 3(x3—23) = z2—=1 and 3(z; —x2) (z?+2172+22) =
zg — x1. If 1 # T2, we must have x2 + z125 + z% = —%, which is impossible for integers z1, x5.
Thus, 1 = x5 and f is one-to-one.

On the other hand, f is not onto. In particular, 1 is not in the range of f since 1 = f(a) for some a
implies 3a3 + a = 1; that is, a(3a + 1) = 1. But the only pairs of integers whose product is 1 are the

pairs 1,1 and —1, —1. So here, we’d have to have a = 3a%2 + 1 = 1 or a = 3a? 4+ 1 = —1, neither of
which is possible.
Y
(a) The graph of g shown at the right makes it clear that g is
onto but not one-to-one. /\
(b) Since g(0) = g(1), g is not one-to-one. Furthermore, g is

ISR

not onto; for example, 2 = g(x) has no integer solution
since 2 = z° — z + 1 implies 2(z2 — 1) = 1 (for an integer
z),s0r =22 —1=1orz = 22 — 1 = —1, neither of
which is possible.

(c) The argument given in (b) applies to this case as well, so g is not onto. To determine whether or
not g is one-to-one, suppose g(z1) = g(z2). Then 23 —x1 +1 = 3 — 2+ 1, s0 (z1 — z2)(z? +
7172 + 72) = 71 — T2. If 71 # x, we must have 22 + 172 + 23 = 1. For natural numbers
T1, T2, this is not possible because x% + T120 + z% > 3. Thus, 7 = x3 and g is one-to-one.

(a) [BB] This is not one-to-one since, for example, f(1,3) = f(4,1) = 11 while (1,3) # (4,1).
The function is not onto since, for example, the equation f(z) = 1 has no solution z = (n,m)
(because 2n + 3m > 5 for every n,m € N).

(b) [BB] This is not one-to-one since, for example, f(1,3) = f(4,1) = 11 while (1, 3) # (4,1). The
function is onto, however, since for k € Z, the equation k = f(z) has the solution z = (—k, k).

(c) This is not one-to-one since, for example, f(12,1) = f(1,8) (= 190) but (12,1) # (1,8). It’s not
onto because f(n,m) is even for any (n, m) so, for example, the equation f(n, m) = 1 cannot be
solved.

(d) This is not one-to-one since, for example, f(246,0) = f(0,89). It’s onto since (—17)(246) +
47(89) = 1 implies that for any k € Z, k = (—17k)(246) + (47k)(89) = f(47k, —17k).

(e) This is not one-to-one because, for example, f(7,8) = f(8, 7). It’s not onto because, for example,
the equation f(z) = 4 has no solution z = (n,m): n2 + m2 + 1 # 4 forn,m € Z.

(f) This is not one-to-one because, for example, f ('2, 2) = f(3,2) (= 2). Itis onto, however, because
1= f(1,2) and, forn > 2, we have n = f(n —1,1).
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23.

24.

25.

26.

27.

(—) Suppose f is one-to-one and 1 # T2. We must prove that z2 + z172 + a:2 + a(m1 +z2)+b #0.
Smce fi 1s one-to-one and r; # 2, we know that f(z1) # f(x2); thus, 3 + ax? + by + ¢ #
:v2 + azz + bz + c; equivalently,

(3 — 23) + a(z? — 23) + b(z1 — T2) #O.

Since 1 — z3 # 0 we may divide this last inequality by z; — z5. Since 23 — 23 = (z1 — z2)(22? +
z1%2 + 73) and 2?2 — 13 = (z1 — T2)(x1 + T2), we obtain (z? + z172 + 73) + a(z1 + T2) + b #0
as required.

(<) Suppose that z; # x2 implies 72 + 7122 + T3 + a(z; + T2) + b # 0. We must prove that f is
one-to-one. Thus, we assume f(z1) = f(z2) and prove z; = z2. The equation f(z1) = f(z2) says
z3 + az? + bxy + ¢ = T3 + az? + bxs + c; or, equivalently, as before,

(23 — 23) + a(2? — 22) + b(z1 — x2) =

If z1 # 72, then we divide by x1 — x> as before, obtaining 22 + 172 + 73 + a(z1 + 72) +b=0,a
contradiction. Thus ;1 = z5.

(a) [BB] We require z # 3, so we take A = {z € R | z # 3}. Thenrng f = {y | y # 0} because if
y;éO,y=f(z)fora;=3+%€domf.

(b) We require 1 — z > 0, so we take A = {x € R| z < 1}. Then rng f = {y | y > 0} because for
anyy >0,y = f(z) forz = 1—;17 € dom f.

(a) The function is not one-to-one because (a, ) and (d, ) are both in f, but a # d. Restricting the
domain to {a, b, c}, for instance, we obtain the one-to-one function {(a, @), (b, 3), (¢,7)}.

(b) [BB] Note that f(z) = —(2z — 3)2. This function is not one-to-one since, for example, f(1) =
f(2) (= —1). Restrict the domain to {z | z > 3/2} (orto {z | z < 3}).

(c) The sine function is not one-to-one since, for example, sin0 = sin#. The largest interval on
which a one-to-one function can be defined has length 7; for example, {z | —7/2 < z < 7/2}is
an interval on which sine is one-to-one.

(a) Reflexive: If f € A, then f(5) = f(5),s0 f ~ f.

Symmetric: If f ~ g, then f(5) = g(5), so g(5) = f(5) and hence, g ~ f.
Transitive: If f ~ g and g ~ h, then f(5) = g(5) and g(5) = h(5), so f(5) = g(5) = h(5) and
f~h.

(b) f={g: S — S| g(5) = f(5) = a}. Since there are three possible images for each of g(a) and
9(b), there are altogether 9 functions in f; namely,

fi= {(5’ a’)’ (a, 5)’ (b 5)} fa= {(5’ a), (a7 5)7 (bv a)}
f3= {(5’0')’ (a’ 5)’ (ba b)} fa= {(5’0')’ (a’ a)’ (b’ 5)}
fs= {(5v a’)’ (a'» a)7 (baa)} fe= {(5aa)’ (a” a’)’ (b, b)}
fr= {(5,(1), (a’ b)v (b’ 5)} fs= {(5’a)’(a’ b)’ (b’ a)}
fo ={(5,a),(a,b),(b,b)}

(a) Reflexive: If a € A, then a ~ a because f(a) = f(a).
Symmetric: If a,b € A and a ~ b, then f(a) = f(b), so f(b) = f(a); hence, b ~ a.
Transitive: If a,b,c € A,a ~ band b ~ ¢, then f(a) f(b) and f(b) = f(c), so f(a) = f(c),

implying a ~ c.
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28.

29.

Solutions to Exercises

(b) 0= {z € R| f(z) = f(0) = 0} = [0,1); 7/5 = [1,2) since |7/5] = 1; —3/4 = [-1,0) since
|—3/4] = —1.
) 1={1};2=1{2,3,6};4={4}; 5= {5}.
(a) [BB] Here are the functions X — Y
{(a,1),(6,1)} {(a,1),(5,2)} {(a,1),(b,3)}

{(a,2), (5, 1)} {(a,2),(5,2)} {(a,2),(b,3)}
{(a,3),(6,1)} {(a,3),(5,2)} {(a,3),(b,3)}.

Here are the functions Y — X:

{(1,a),(2,0),(3,0)} {(1,a),(2,0),(3,b)}
{(1,a),(2,0),(3,a)} {(1,a),(2,0),(3,0)}
{(1,0),(2,a),(3,a)} {(1,0),(2,a),(3,b)}
{(1,9),(2,0),(3,0)} {(1,0),(2,0),(3,0)}-

(b) [BB] There are no one-to-one functions Y — X . The one-to-one functions from X — Y are
{(a,1),(5,2)} {(a,1),(5,3)} {(a,2),(b,1)}
{(a,2),(5,3)} {(a,3),(6,1)} {(a,3),(b,2)}.
(c) [BB] There are no onto functions X — Y. The onto functions Y — X are
{(1,a),(2,a),(3,0)} {(L,0),(2,0),(3,a)}

{(1,a),(2,0),(3,0)} {(1,b),(2,a),(3,a)}
{(1,0),(2,a),(3,0)} {(1,6),(2,0),(3,a)}.

(a) There are no one-to-one functions Y — X. Here are the 24 one-to-one functions X — Y.

{(a,1),(5,2),(c,3)}
{(a,1),(5,3), (c,4)}
{(a,2),(,3),(c, 1)}
{(a,2),(b,4),(c,3)}
{(a,3),(b,1),(c,2)}
{(a,4),(b,1),(c,3)}
{(a,4),(b,2), (c, 1)}
{(a,3),(6,4), (¢, 2)}

{(a,1),(b,2), (c;4)}
{(a,1),(b,4),(c,2)}
{(a,2),(b,3), (c,4)}
{(a,2),(b,1),(c,3)}
{(a,3),(b,1),(c,4)}
{(a’ 3)7 (b’ 2)’ (C, 1)}
{(a,4),(b,2),(c,3)}
{(a,4),(b,3),(c, 1)}

{(aa 1),(b,3), (c, 2)}
{(a,1),(b,4),(c,3)}
{(a,2),(b,4),(c, 1)}
{(a,2),(b,1),(c,4)}
{(a,4),(b,1),(c,2)}
{(aa 3)a (ba 2)7 (C, 4)}
{(a,3),(b,4), (c, 1)}
{(a,4),(b,3),(c,2)}

(b) There are no onto functions X — Y. Here are the 36 onto functions Y — X.

{(1,0),(2,a),(3,0),(4,¢)}
{(1,0),(2,0),(3,¢), (4,a)}
{(la a), (2, b)1 (3’0')’ (4’ C)}
{(1,),(2,¢),(3,0), (4,0)}
{(1,a),(2,0),(3,¢),(4,a)}
{(la b), (2, C)v (3’ a), (4’ b)}
{(1,0),(2,a),(3,a),(4,0)}
{(1a 0)9 (27 b)a (3’ b)’ (4’ a')}
{(1a b)a (2’ a)a (3’ C), (4v a')}
{(1,0),(2,0),(3,0), (4,b)}
{(1,0),(2,¢),(3,0),(4,a)}
{(17 C), (2, a)’ (3a b)) (47 b)}

{(1,a),(2,0), (3,c), (4,0)}
{(1,0),(2,¢),(3,0),(4,0)}
{(1,a),(2,¢),(3,0),(4,0)}
{(1,0),(2,a),(3,¢),(4,b)}
{(1,a),(2,¢),(3,0),(4,a)}
{(1,0),(2,0),(3,b), (4, )}
{(1,0),(2,0),(3,0),(4,b)}
{(1,a),(2,¢),(3,¢),(4,0)}
{(1,0),(2,a),(3,0),(4,a)}
{(1,a),(2,0),(3,b),(4,0)}
{(1,0),(2,0),(3,0), (4,0)}
{(1,0),(2,0),(3,¢),(4,0)}

{(1,0),(2,0),(3,a),(4,0)}
{(1,¢),(2,0),(3,b), (4,a)}
{(1,0),(2,a),(3,b),(4,0)}
{(1,9),(2,0),(3,¢), (4,0)}
{(1,0),(2,a),(3,¢), (4,0)}
{(1,0),(2,0), (3,a), (4, o}
{(1, a), (2, b), (3’ b)a (4, C)}
{(1,0),(2,¢),(3,¢), (4,a)}
{(1,0),(2,0),(3,¢), (4, b)}
{(1,0),(2,0),(3,0a),(4,0)}
{(1, a), (21 c)’ (3’ b)’ (4, b)}
{(1,9),(2,0),(3,¢), (4,0)}
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30.

31.

32.

33.

34.

n
|1|2]3] 4
[BB] 1111 2 3 4 We guess that the number of
m 2111 4] 9] 16 .- functions X — Y is n™.
3(1] 8 (27 64 ’
4 (1|16 | 81 | 256
(@) Let A = {a1,0a3,...,a,}.

If f: A — B were one-to-one, then f(a1), f (a2),..., f(an) would be n different elements in B
- contradicting the fact that B has only m < n elements.
(b) Let B = {b1,b2,...,bn}. If f: A — B wereonto, then there would exist elements a,, az, . ..,anm

in A such that f (a,) = b, dlstmct by deﬁmtlon of “function.” But this contradicts the fact that A
has n < m elements. :

(a) [BB (—)] Suppose A and B each contain n.elements. Assume that f: A — B is one-to-one
andlet C = {f(a) | a € A}. Since f(a1) # f(a2) if a1 # a2, C is a subset of B containing n
elements; so C = B. Therefore, f is onto.

Conversely, suppose f is onto. Then {f(a) | a € A} = B and so the set on the left here contains
n distinct elements. Since A contains only n elements, we cannot have f(a1) = f(az2) for distinct
ay,as; thus, f is one-to-one.

(b) f(a) =2aforalla € N. This does not contradict (a) because N is not finite.
© f(1)=1,f(n)=n—1forn>2. Ag_ain there is no contradiction since N is not finite.

(a) [BB] 5 f . (b) [BB] The domain of f is R. The range is the set
g ' .. of all real numbers of the form 2n + a, where n € Z
2 f and 0 < a < 1. To prove this algebraically, we first
1 note that any y = 2n + a is f(z) forz =n +a. On
T, 123 - the other hand, suppose y = f(x) for some z. Writing
2 z=n+an=|z/,0<a<ltheny=z+|z] =
/}3’ (n +.a) +n = 2n + a as required.
- .

s is not one-to-one since, for example, s(3).= s(13) (= 3). Neither is s onto since, for any z, z — |z|
is in the interval [0,1) = {z € R| 0 < z < 1}, so, for example, 1 # s(z) for any .

Exercises 3.2

1.

2.

(BB] v
@ f1={15),(21,3,2,43),49} ) F"={14),(21),(33),(42),(55)}

[BB] Lety = f~!(x). Thenz = f(y) = —y% s0oy?> = —z and y = +/—z. Since y € dom f,
y >0, thus y = +v/~z = f~(z).

3. Lety = f~!(z). Thenz = f(y) =y?,s0y = £/z. Sincey € domf,y < 0,s0y = —/Z =

(@)
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4. Lety = f~Y(z). Thenz = f(y) = — /7, soy=a?=f1(z).
5. Since g(z) is an integer, f o g(z) = g(z). Similarly, g o f(z) = f(z).
6. (a) [BB] f~': R — Ris defined by Fi(z) = L(z - 5).

(b) f~': R — Ris defined by f~*(z) = (z +2)*/%.

(©) B~1: R — (%,00) is given by 8~ (z) = 5(2° +4).

—\/—_;i ifx <O0.
@ Ve v ®)

: ' if z >
(d) g~': R — Risdefined by g~ (z) = {\/5 ifz20

we

©vy 3 - @

—21

1 1 1 1
. B = , 1 = s = dzy —4=1x9—4.
7. (a) [BB]If f(z1) = f(z2), then +$1_4 1+$2_4 pea— w2_4an 1 To
Thus 1 = z2 and f is one-to-one. Next

"yemgfeoy=f(z) forsomez € A

. 1
< thereisanz €. Asuchthaty =1+ ——

z—4
<—>thereis'“anx€Asuchthaty—1= p—
"> thereisanz € Asuchthat (y —1)(z —4) =1

—y#L

Thus rng f = B = {y € R| y # 1} and f has an inverse B — A, To find a formula for (=),

lety = f~!(z),z € B. Thena:=f(y)=1+ﬁ,s0x—1=§—_1_—4,(z—1)(y—4)=1

and,sincez # 1,y —4 = a:—i;Iand‘f'*l(x) =y=4+

z—1
(b) Suppose f(z1) = f(z2). Then 5— 1 =5— ! so 1 _ ! 1+z1 =14z
PP V= 2 20 1+x1_ 1+ 22’ 14z1 14z 1= 2
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and z1 = zo. Thus f is one-to-one. Next

yermgf e y=f(z) forsomez € A

> thereisanx € Asuchthaty =5 — 1
14z
<> thereisanz € Asuchthaty — 5 = — 1
1+z
<> there is an £ € A such that (y — 5)(1 +z) = —1

cy#S.
Thus rng f = B = {y € R | y # 5} and f has an inverse B — A. To find a formula for f~1(z),

lety = f~(z),z € B. Thenx1= flyy=5- 1_{_y,sozz:—5 = 1y (z—-5)(1+y)=-1
1 = —— -1 = = —] — .
and, sincex #£5,1+y = z_5andf (z)=y 1 P
(c) Suppose f(z1) = f(z2). Then 321 = 322 , 80 62122 + 311 = 6x122 + 3z2 and
2z1+1 2z9 +1
1 = x9. Thus f is one-to-one. Now
yemgfoy=f(zr) forsomezec A
. T
+ thereisan x € A such that y = 971 1

« there is an x € A such that 2zy + y = 3z
> there is an z € A such that z(2y — 3) = —y

3
«— y # 5.
Thusmmgf=B={yeR|y# %} and £ has an inverse B — A. To find a formula for f~(z),
lety = f~'(z),z € B. Thenz = f(y) = 2;’%, 0 2zy + z = 3y and y(2z — 3) = —z. Since
2 € B, we know 2z — 3 05 thus, y = >— 5=/

:171—3_.’132—3

(d) Suppose f(z1) = f(z2). Then m =533 s0 £1Z2+371—322—9 = £1T2—371+3x2—9,

61 = 6z and 1 = x5. Thus f is one-to-one. Next

yemgf o y=f(z) forsomezrec A

+ thereis an x € A such that y = z=3
' z+3
— thereisanz € Asuchthaty(z +3) =z —3
> thereisan x € Asuchthatx —yz = 3y + 3
> thereisan z € A such that z(1 —y) = 3(y + 1)
cy#FL
Thusng f = B = {y € R| y # 1} and f has an inverse B — A. Lety = f~!(z) withz € B.

Thenw=f(y)=Z—;g,soz(y+3)=y—-3,my+3x=y—3,y(1—a:)=3(:1:+1). Since
_ 3(1+zx
£l f 1($)=y="£1—_-zlo
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10.

11.

12.

13.

14.

Solutions to Exercises

(a) First we show that f is one-to-one. Suppose then that f(z1) = f(x2). If z1 and z2 are both
negative, then 2|z,| = 2|z2|. Since |z| = —z for x < 0, we have —2z; = —2z> and hence,
1 = xo. If 1 and x5 are both > 0, we have 2z + 1 = 2z + 1, so 27 = 2z and again,
Ty = zo. Finally, we note that it is impossible for f(z1) = f(z2) with z; < 0 and x5 > 0 (or
vice versa) since in this case, one of f(z1), f(z2) is an even integer while the other is odd.

Next we show that f is onto. Suppose thatn € N. If n = 2k is even, then n = 2| — k| = f(—k)
since —k < 0, while if n = 2k + 1 is odd, then n = f(k) since k > 0. Since f is one-to-one and
onto, it has an inverse.

(b) Let f71(2586) = a. We must solve the equation 2586 = f(a). Since 2586 is even, we see that
2586 = f(—2586/2) = f(—1293).

(a) [BB] maternal grandmother (b) paternal grandmother (c) maternal grandfather

(d) mother-in-law (e) father ) father-in-law
(g) you (h) maternal grandmother (i) maternal grandmother

(@) [BB] fog= {(17 1)’ (3’ 8)’ (2’ 1)» (4’ 9)7 (5’ 1)};
g o f is not defined because rng f = {1,2,3,8,9} € domg = {1,2,3,4,5}.
f o f is not defined because rng f = {1,2,3,8,9} Z dom f = {1,2,3,4,5}.
909 =1{(1,2),(2,2),(3,2),(4,1),(5,2)}.
(b) f is one-to-one and onto;
g is not one-to-one: It contains both (1, 2) and (2, 2);
g is not onto: 4 is not in the range of g.
(c) Since f is one-to-one and onto, it has an inverse: f~1 = {(8,1), (9, 3), (3,4), (1,2),(2,5)}.

(d) Since g is not one-to-one (or since g is not onto), g does not have an inverse.

(2)[BB] g~'o fog=1{(1,3),(2,1),(3,2),(4,4)} ®) foglog=Ff;

© gofog ' ={(1,2),(2,4),(33),(4 1)} @ goglof=Ff;
©) f_l 09_1 ofog= {(1a 1)a (2’4)a (3a 2)a (4, 3)}

_ 1 B 1 L1 142 +1)  22°+3,
BBlgof@) = ogp i~ @ramis O TS T e T e
hogo f(z) =3;goho f(z) = g(3) = 1.

Since f~! o f(x) = x, we have go f~1 o f(z) = g(z) = p L
Since f~1(x) =  — 2, we have

-1 P VO S WS S Y (Gl ) et

f7ogof@) =1 ((a;+2)2+1)f(x+2)2+1 T T(@t2)+l

1 z+1 2 1
oo f(m _p(EFLy_@+l 2w+l 1y s 1
hogof(z) = h z )= z T f°9°h(x)'f(w+1)_-z}r—1+1_x+2‘

[BB1(g o f)(z) = g(f(z)) = f(x) — c. Thus the graph of g o f is the graph of f translated vertically
¢ units down if ¢ > 0 and —c units up if ¢ < 0. The graphs are identical if ¢ = 0.
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15. (fog)(z) = f(9(x)) = f(z —c). Thus the graph of f o g is the graph of f, but translated horizontally
c units to the right if ¢ > 0 and —c units to the left if ¢ < 0. The graphs are identical if ¢ = 0.

16. (a)

(®)

17. (a)

(b

18. (a)

(b)

19. (a)

(®

—z ifz>0 f(=z) ifz>0
h = f(—|z|) =
T ifr<0 wehave f o g(z) = f(~zl) {f(:c) ifz <O0.
So the graph of f o g is the same as the graph of f to the left of the y-axis (where x < 0) while

to the right of the y-axis, the graph of f o g is the reflection (mirror image) of the left half of the
graph of f in the y-axis. We call f o g an even function since it is symmetric with respect to the

y-axis: f o g(—z) = f o g(z).
—f(z) iff(z)=0

Since go f(z) = —|f(z)| = f(z) if f(z) <0

of f wherever the graph of f is below the z-axis (y < 0) while it is the reflection (mirror image)
of the graph of f in the x-axis wherever the graph of f is above the z-axis. (In particular, the
graph of g o f lies entirely on or below the z-axis.)

1

[BB] Since —|z| = {

the graph of go f is the same as the graph

foy(@)=fl9(x)) = f(:55) =1- T =1-(1-12) = ua).
1-z
1 _ —
gor(@) = g(r(2)) = 9(57) = T— = i = S =1~ 2= 5(a).
oo
[o]l[¢ f g h r s
tife f g h r s
fIWf g ¢t s h r
gllg ¢ f r s h
hilh 7 s ¢+ f g
rilr s h g ¢ f
s|ls h v f g
All these functions have inverses. f.unctlon ” : | fl9 | h l " | 5
inverse ||v|g|flh|r]|s

olt fi fo f3a fa fs
vlv fi fo f3 fa fs
Al ¢ fa fs fo fs
falfo fs ¢ fa f3 fi
fa|fs fa fs ¢ fi fo
fa|fa f3 AL f2 fs
fs|fs fo fa fi ¢ fa

function || v | fi | fo | fa | fa | f5

inverse [[ ¢ | f1|fa| fa| fs | fa

(BB] fog=1{(1,4),(2,3),(3,2),(4,1),(5,5)}; g o f = {(1,5),(2,3),(3,2),(4,4), (5, 1)}
Clearly, fog #go f.

f_l = {(1’2)’ (2, 1)’ (3,5), (47 3), (5, 4)}; g_l = {(1’3)’ (2, 4)’ (3’ 1)’ (4’ 5)’ (5’ 2)}

Functions f and g have inverses because they are one-to-one and onto while A does not have an
inverse because it is not one-to-one (equally because it is not onto).

All these functions have inverses.
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20.

21.

22.

23.

24.

Solutions to Exercises

© (fo9)™ ={(1,4),(2,3),(3,2),(4,1),(5,5)}
g7 o f1={(1,4),(2,3),(3,2),(4,1),(55} = (fog)™"
flog™t=1{(1,5),(2,3),(3,2),(4,4),(5, 1)} # (fog) ™.

2z
P 2z 2z
= ——2z = w_l = = e——— = .
(a) [BB]Forz € B, (f o g)(z) = f(5) zz_ml 2 T 2@ =T) 5 =%
2(z%5) 2z 2z
— x — z—2 = = — = b
(b) [BB] Forz € A, (9o f)(z) = 9(3%5 = 17— (-2 5 = @ and so, by
Proposition 3.2.7, f and g are inverses.

(a) Suppose 0 € A and leta = f(0). Then 0 = f~1(a) = }'(157 which is not possible for any real

number f(a).

(b) Since f and f* each have domain A, we have only to prove that f4(a) = a for all a € A. Let
then a be some element of A. Let a; = f(a), az = f(a1) = f(a), a3 = f(a2) = f3(a) and
as = f(as) = f*(a). We must show that ay = a. From a; = f(a), we have a = f~1(a;) =

! _ _1 _ inay = F1(ag) = 1
Flan) and so ai = f(fl) == From a3 = f(az2), we obtain ag = f~'(a3z) = Flaa) and so
as = f(as) = w " 1a = a as desired.

(a) [BB] Suppose g(b1) = g(b2) for b1,b2 € B. Since f is onto, by = f(a1) and by = f(az2) for
some aj,a2 € A. Thus, g(f(a1)) = g(f(az)); thatis, g o f(a1) = g o f(a2). Since go f is
one-to-one, a; = ag. Therefore, b; = f(a1) = f(az) = bs proving that g is one-to-one.

(b) Givenb € B, we must find a € A such that f(g) = b. Consider g(b) € C. Since go f: A — C'is
onto, there is some a € A with go f(a) = g(b); that is, g(f(a)) = g(b). But g one-to-one implies
f(a) = b, so we have the desired element a.

(a) [BB] Suppose f: A — Band g: B — C are one-to-one. We prove that go f: A — C'is one-to-
one. For this, suppose (go f)(a1) = (go f)(az) for some ay,az € A. Then g(f(a1)) = g(f(az2))
[an equation of the form g(b1) = g(b2)]. Since g is one-to-one, we conclude that f(a1) = f(a2),
and then, since f is one-to-one, that a; = as.

(b) Let f = {(1,1),(2,2)} and g = {(-1,5),(1,5),(2,10)}. Then g is not 1-1, but the composition
go f={(1,5),(2,10)} is. v

(c) Let f and g be functions, f: A — B, g: B — C and suppose go f: A — C'is 1-1. Then f must

be 1-1 since f(a1) = f(a2) implies g(f(a1)) = g(f(a2)), thatis, g o f(a1) = g o f(az), from
which we conclude that a; = ag, because g o f is 1-1.

(a) Suppose f: A — B and g: B — C are onto. We prove that go f: A — C is onto. Let then
¢ € C. We must find @ € A such that g o f(a) = c; that is, g(f(a)) = c [an equation of the form
g(b) = c]. Since g is onto, there is b € B such that g(b) = c. Also, since f is onto, we know there
isa € A suchthat b = f(a). Thus, g(f(a)) = g(b) = cas desired.

(b) [BB] With A = {1,2}, B = {~1,1,2}, C = {5,10}, f = {(1,1),(2,2)} and
g9 =1{(-1,5),(1,5),(2,10)}, we have go f = {(1,5),(2,10}. Thengo f: A — C is onto but f
is not.

(c) Suppose f: A — B,g: B —» Candgo f: A — C is onto. Then g must be onto because if
c € C, there exists a € A with g o f(a) = c (g o f is onto), so g(f(a)) = c. Thus, there exists
b € B with g(b) = ¢ (b = f(a)).
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25.

26.

27.

28.

[BB] Since a bijective function is, by definition, a one-to-one onto function, we conclude, by the results
of part (a) of the previous two exercises, that indeed the composition of bijective functions is bijective.

(@) f(1000) = 998; £(999) = f(f(1003)) = f£(1001) = 999; £(998) = f(£(1002)) = £(1000) =
998; f(997) = f(f(1001)) = £(999) = 999.
998 if niseven

Wi = {998,999}.
999 if nis odd. (c) We guess rng f = {998 }

(b) We guess that f(n) = {

1‘2 2

T1 T2 2 2,.2 2 2.2
Suppose f(z1) = f(x .Then— SO = , TIx5 + 22 = xix5 +
ppose f(z1) = f(x2) \/ ) \/:c2+2 .’1:1+2 :1;2+2 1T2 1 172
2:1}2, 2931 = 2:1: and 1 = *xo. Note that zo = —x is not possible (unless ; = x5 = 0) since
f(—z1) = NCES # 7 :1;21+ 5 = f(z1). Thus f is one-to-one. Next we note that
1
yemgf e y=f(z)forsomer e R y= \/.% for some = € R.
T
Now, if y = \/ﬁ, then y%(z? + 2) = 22, so 2%(y? — 1) = —2y> and this implies that y? # 1

(otherwise we have the equation 0 = 1) and also y2>—1 < 0 because 22 > 0, —2y? < 0 and the product
of two nonnegative numbers is nonnegative. If y € rng f, then y?> — 1 < 0; thatis, -1 < y < 1.

—22
On the other hand, if ~1 < y < 1, theny? — 1 < 0, —Zﬂ—l—
some x; hence y € rng f. This shows that rng f = B = (—1,1). To find a formula for f~!(z), let

y = f~Y(z)forz € B. Thenz = f(y) = ﬁ s022(y? +2) = g% and y2(a% — 1) = —
)
2

2:1:
Sincez2 -1 # 0,32 = —— 5 and since the fraction on the nght here is nonnegative, there are

(apparently) two solutions y = :b\/ . The equatlon = \/%, however, shows that x and

y have the same sign. Thus

> 0, and so this element is z2 for

2z
1—2z2
2

- ix_zz ifz < 0.

ifz>0
y=Ff"z)=

(a) From the graph, we see immediately that ¢ is one-to-one
and onto, so ¢ has an inverse. 2 \o

(b) [BB] Writingz = [2] +a,0 < a < 1,wehavet(r) = _qo_; 1 N 3
|z} — a. Now it is straightforward to see that ¢ is one-to- =
one: Suppose t(z;) = t(z2), where 21 = |z1] + a1, T2 = -
|z2]+azand 0 < aq,az < 1. Then |z ] —a; = |22] —a2, \
s0 |21 | — [%2] = a1 —a2. The left side is an integer; hence, \
so is the right. Because of the restrictions on a; and ay, the
only possibility is a; = az. Hence, also |z1]| = |z2], so
T = To.
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Solutions to Exercises

(c) Toseethattis onto, lety € R. Thenwe have y = |y| + bfor 0 < b < 1. If b = 0, then t(y) = y.
Otherwise, 0 < 1 —b < 1. So, with z = |y]| + 1 + (1 — b), we have |z| = |y] + 1. Thus,
t(z) =|z] —(1—-b)=(ly] +1) — (1 = b) = |y| + b = y. In any case, we have an z such that
t(z) =y.

(d) t7': R — Risgivenby t~1(z) = { 7 ifzeZ

) n+l+(1-b) ifz=n+bneZ0<b<l1

Exercises 3.3

1.
2.

[BB] Ask everyone to find a seat.

[BB] The two lists 12,22,32 42, ... and 1,2, 3,4, ... obviously have the same length; a2 — a is a
one-to-one correspondence between the set of perfect squares and N.

(@ z o 14,y & —3,{a,b,c} & t.

(b) The function f: 2Z — 17Z defined by f(2k) = 17k for 2k € 2Z.

(c) [BB] The function f: N x N — C defined by f(m,n) = m + ni forall m,n € N.

(d) The function f: N — Q defined by f(n) = n/2.

22 ifz>0
_1 —
7@ {1—2z if2<0

(@ If g(m1,m1) = g(m2, n2), then (my, f(n1)) = (ma, f(n2)), so m1 = mg and f(n1) = f(n2).
Since f is one-to-one, n; = ny. Thus (my,n1) = (Mg, n2), so g is one-to-one. To show that
g is onto, let (a,b) € N x Z. Since f is onto, there exists n € N such that f(n) = b. Then
g(a,n) = (a, f(n)) = (a,b),so gisonto.

(b) Let f: N — Z be any one-to-one onto function (for example, the function defined in Problem 29,
of this section). By part (a), the function g: N x N — N x Z defined by g(m, n) = (m, f(n)) is
a one-to-one correspondence N x N — N x Z.

. [BB] This is false. For example, |N| = [N U {0}|, as shown in the text.

. This is not a partial order because it is not antisymmetric. If a,b € S and a # b, then {a} < {b}

because |{a}| < |{b}| and for the same reason, {b} < {a}; however {a} # {b}.

. [BB] In this case, either S = () or S| = 1. This time, in each case, (S, X) is a partial order.

Case 1: If S = ), then P(S) contains a single element, {).

Reflexive: Certainly A < A for all A € P(S) since 0 = |0| < |0).

Antisymmetric: If A < B and B < A, then A = B since there is only one set in P(.5).

Transitive: If A < B and B < C, then A < C since necessarily A = B = C and for the single set A
inP(S), A=< A.

Case 2: If S contains one element, then P(S) = {0, S} contains two elements.

Reflexive: A < A for each A € P(S) because |A| < |A|.
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10.

11.

12.

13.

Antisymmetric: If A,B € P(S), A X B and B =< A, then we have |A| < |B| and |B| < |4|, so
|A| = |B|. Since P(S) does not contain different sets of the same cardinality, it follows that A = B.

Transitive: Suppose A < B and B <X C. If A = (), then |A| = 0 < |C| no matter what C is, so we’d
have A< C.If A= S,then A < Bmeans B=Sand B<CmeansC =S,s0A=B=C=S
and A < C.

f: Ax B — B x Adefined by f(a,b) = (b,a) is a one-to-one onto function.

(a) [BB] False. Let X = {1}, Y = {2}, Z = {3}. Then ((1,2),3) € (X xY) x Z but ((1,2),3) ¢
X x (Y x Z) (a set whose second coordinates are ordered pairs).

(b) [BB] Define f: (X XY)Xx Z — X x (Y x Z) by f((z,y), 2) = (=, (y, 2)).

(a) Reflexivity: For any set A, 1 4 is a one-to-one onto function A — A, so A has the same cardinality
as itself.

Symmetry: If A and B have the same cardinality, then there is a one-to-one onto function f: A —
B. Such a function has an inverse f~!: B — A which is one-to-one and onto (because it has an
inverse), so B and A have the same cardinality.

Transitivity: Suppose A, B and C are sets such that A and B have the same cardinality and
B and C have the same cardinality. Then there is a one-to-one onto function f: A — B and a
one-to-one onto function g: B — C. Since the composition of one-to-one functions is one-to-one
and the composition of onto functions is onto (Exercises 23 and 24 of Section 3.2),go f: A —» C
is one-to-one and onto. Thus, A and C have the same cardinality.

(b) [BB] By Problem 27, (0,1) and (1,00) have the same cardinality and (0,1) and (3, 00) have
the same cardinality. By transitivity of “same cardinality”, (1,00) and (3, 00) have the same
cardinality too.

(c) [BB] To find an explicit one-to-one onto function (1,00) — (3, 00), we use the function f defined

by f(z) = 1 1+3= L + 2 from (0, 1) to (3, 00) exhibited in Problem 27 and the function
v { 1

———— = = from (1, 00) to (0, 1), which is the inverse of the function

z+1-1 =z

exhibited in Problem 27—see line (3). The function we seek is the composition f o g, which is

defined by f o g(z) = f(9(z)) = % + 2 =z + 2, a rather obvious choice!
. x

g defined by g(z) =

d) f(zx)=z+b—a

(a) [BB] As suggested just before Problem 28, we look for a function defined with a rule like f(z) =
kz + € and discover (the rather obvious) f(z) =z + 1.

(b) The function defined by f(x) = 2z + 4 is a one-to-one correspondence between (0, 1) and (4, 6).

(c) The function f: (0,1) — (a,b) defined by f(z) = a + (b — a)z is a one-to-one correspondence,
and the function g: (0,1) — (c,d) given by g(z) = ¢+ (d — ¢)z is also a one-to-one correspon-
dence. Thus go f~1 provides a one-to-one correspondence (a, ) — (c, d). The reader may check

thatgo f~1(z) =c+ b_;(x—a).

(a) [BB] Using the result of Problem 27, we obtain the function defined by g(z) = % +9asa
one-to-one correspondence between (0, 1) and (10, 00).
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14.

15.

16.

17.

Solutions to Exercises

(b) [BB] The function f: (2,5) — (0, 1) defined by f(z) = %—x — % is a one-to-one correspondence,
as is the function g: (0,1) — (10, 00) defined by g(z) = % + 9. Thus, the composition g o

f:(2,5) — (10, 00) is also a one-to-one correspondence. Note that (go H(z) = ;—i—z +9.

(c) The function f: (a,b) — (0,1) defined by f(z) = : _Z is a one-to-one correspondence, as is
1
the function g: (0,1) — (c, 00) defined by g(z) = P 1+ c. Thus a one-to-one correspondence
(a,b) — (c, 00) is the composition g o f. Note that (g o f)(z) = H —-1l+4+ec

1
In Problem 27, p. 129, we saw that the function g: (0,1) — (0, c0) defined by g(z) = o lisa

r—a

one-to-one correspondence. Furthermore, the function f: (a,b) — (0,1) defined by f(z) = 5 is

a one-to-one correspondence. (See the remarks preceding Problem 28.) Thus g o f: (a,b) — (0, 00)
b—a
—-1.

is a one-to-one correspondence. Note that (g o f)(z) = P
[BB] f is certainly a function from R to Rt since 2% > 0 for all z € R. If 2% = 2Y, then zlog2 =
ylog2 (any base), so z = y. Thus, f is one-to-one. If r € R™, then 2'°82" = r, so f is onto. We
conclude that R and R™ have the same cardinality.

[BB] Since (a, b) has the same cardinality as R* by Exercise 14 and since R* and R have the same
cardinality by Exercise 15, the result follows by transitivity of the notion of “same cardinality”—see
Exercise 11.

f is certainly defined on (0, 1) and takes values in R. To show that f is one-to-one, assume f(z;) =
f(z2); that is, assume
I — % _ T2 — %
11;1(211 - 1) - 1)2(5122 - 1).

Then z2(z2 — 1)(z1 — 3) = z1(z1 — 1)(z2 — 3), s0
1173 — 375 — Tox1 + 32 = 7222 — 13t — 3135 + 1oy,
Therefore,
7173 — zox? — J23 + 122 + Jap — L3 =0
T122(z2 — 1) — 3(T2 + 21)(T2 — 71) + F(z2 — 1) =0
(2 —1)(2T122 — T2 — 21+ 1) =0

and s0 3 = 7 or 2122 — 23 — 1 + 1 = 0. Tlie second possibility is the same as z1z3 + (21 —
1)(z2 — 1) = 0 and, since for 0 < z1,z2 < 1 both 215 and (z; — 1)(z2 — 1) are nonnegative, this
case is impossible. We conclude that 1 = z; thus, f is one-to-one.

To show that f is onto, let 7 € R. We wish to find an z such that f(z) = r; that is, we wish to find an

x —
z such that ——2— = r. Hence, we wish to solve rz2 — (r+1z+ % = 0. If » = 0, the solution is

z(z —1)
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18.

19.

T = % If r # 0, the quadratic formula tells us that this equation has solutions

w_r+1:|:\/(r+1)2—2r _r+1Evri4l
- 2r - )

2r

We claim that the solution
o r+1—-vr2+1

2r

is always in (0,1). First note that if r > 0, then r + 1 > +/r2 + L since (r +1)2 > 72 + 1. On the
other hand, if r < 0, thenr + 1 < 1 < v/r2 + 1. In either case, we have shown that

r+1—+vr2+1
2r
To show that this expression is also less than 1, we will prove the equivalent inequality

1—-r—+r24+1
2r

Ifr > 0,thenl —r <1< /72 +1 giving the result. If » < 0, then 1 — r > /72 + 1 because (1 —
)2 > r2+1, again giving the result. Since f is one-to-one and onto, jt is a one-to-one correspondence.

>0.

<0.

Start at (0, 0) and move as illustrated.

L4 I<—-0<—O<—o<-—o<_o.__.
L I I<——0~<——4D<—.<—0 1
RN ot ’
T o
o 0——»0—-—;—»0—»1 °
@) 2,-2,4,-4,8,—8,16,16,... !
® 1=20,214,1,81 . o o o o § o o o

() 1,4,7,10,13,16,19,...
@ (1,1),(1,2),(1,3),(2,1),(2,2),(3,3),(3,1),(3,2), (3,3), (4,1),...

(e) [BB] Follow the procedure given in the text for all rational numbers and omit those with even

denominators. The listing starts 1, 2, %,3, 4, —g—, %,5,6, -g—, %, %, g, %,7, cee

(f) Follow the procedure given in the text for N x N but with two modifications. We include an extra
row across the bottom as follows: (1,0) (2,0) (3,0) (4,0) ... . Then, when
doing the listing, follow immediately every pair (a, b), b > 0, with the pair (a, —b). The first few
terms would be (1,0), (2,0), (1,1), (1,-1), (1,2), (1,—-2), (2,1), (2,-1), (3,0), (4,0), (3,1),
(3,-1),(2,2), (2,-2),....

(g) Firstof all, enumerate NU{0} x NU{0} by the diagonal procedure given in the text for N x N. The
first few terms would be (0, 0), (1,0), (0,1), (0,2), (1,1), (2,0), (3,0), (2,1), (1,2), (0, 3). Then
enumerate Z x Z by taking this list, replacing every element (a,0), a > 0, with (a,0), (—a,0);
every element (0,a), a > 0, with (0,a), (0, —a), and every pair (a,b), a,b > 0 with (a,b),
(aa _b)’ (_a7 b)’ (—a1 _b)
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20.

21.

22

23.

24.

Solutions to Exercises

(a) [BB] This set is uncountable. The function defined by f(z) = z — 1 gives a one-to-one corre-
spondence between it and (0, 1), which we showed in the text to be uncountable.

(b) This set is countably infinite. Just follow the sequence given in the text for the set of all positive
rationals, but omit any rational number not in (1, 2).

(c) This set is finite. In fact, it contains at most 992 elements since there are 99 possible numerators
and, for each numerator, 99 possible denominators.

(d) This set is countably infinite. List the elements as follows (déleting any repetitions such as

— .99 99 99 98 98 98
5/100—1/20) BT T042 6 T 7040

(e) [BB] This set is countably infinite. In Exercise 3(c) we showed it is in one-to-one correspondence
with N x N.

(f) This set is countably infinite because it is in one-to-one correspondence with Q via the function f
defined by f(a,b) = a.

(g) This set is uncountable. It is in one-to-one correspondence with [—1,1] = {z | =1 < z < 1} via
the function f defined by f(a,b) = a. The interval [—1, 1] contains (0, 1) which we showed in
the text to be uncountable.

(a) Finite! There is some minimum volume V' which a grain of sand must occupy. On the other hand,
there is a finite value M for the volume of all the sand. So the number of grains is < M/V.

(b) Countably infinite. Here is a listing: 3°,3!,3-1,32,3-2,.. ..

(c) The set of sentences in the English language is certainly not finite for if it were, and .S were the
sentence with the most words, then “S and roses are red.” would be a longer sentence. So we
have to decide if the set of sentences is countably infinite or uncountable. In fact, it is countably
infinite. To see this, first note that since there are only finitely many words (see part (c)) there are
only finitely many sentences k words long foreach k = 1,2,.... If ax 1, ax,2, a3, . . . is a list of
the sentences which are k£ words long (extended to a countably infinite list by defining all a;; =
“Jqrzx” after we run out of sentences), then the set of all sentences can be listed by the diagonal
scheme that we used for N x N: ay,1,a2,1,01,2,a1,3,a22 ..., where we omit all occurrences of
“Jqrzx.”’

(a) [BB] Impossible. To the contrary, suppose that the union were a finite set S. Since S has only
finitely many subsets (the precise number is 2/51), there could not have been infinitely many sets
at the outset.

(b) Impossible. The maximum number of elements in the union of sets A1, ..., A, occurs when each
intersection A; N A; is empty. Thus, |A; U A2 U -+ U Ay| < |A1| + |A2| + - -+ + |Ap|, which is
finite. )

(c) [BB] Impossible. If even one infinite set is contained in a union, then the union must be infinite.

[BB] Imagine S, sitting inside S5, both spheres with the same center. Rays emanating from this
common point establish a one-to-one correspondence between the points on S; and the points on Ss.

(a) [BB] Let sy, s2, s3, . . . be a countably infinite subset of S. Define f: S — S U {z} by
f(s1)=2=
f(sk+1) =sk fork>1
f(s) =38 1fs¢ {51,82,83,...}.

Then f is a one-to-one correspondence.
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26.

217.

28.

29.

(b) This follows immediately from part (a) since (0,1] = (0,1) U {1}.

We employ a concept known as stereographic projection. Imagine the sphere sitting on the Cartesian
plane with south pole at the origin. Any line from the north pole to the plane punctures the sphere at
a unique point and the collection of such lines establishes a one-to-one correspondence between the
points of the plane and the sphere except for the north pole. A small modification of this correspon-
dence finishes the job. Suppose po, p1,p2,. .. are the points of the sphere which correspond to the
points (0, 0),(1,0),(2,0),... in the plane; thus, the line from the north pole to (n,0) punctures the
sphere at p,, (in particular, po = (0,0)). Map the north pole to (0, 0), the origin to (1,0), p1 to (2,0),
and so forth and let all other points of the sphere go to the same points as before.

[BB] We are given that A = {a1,a2,...,a,} for some n € N and that B = {b, b2, b3,...}. Then
A U B is countably infinite because it is infinite and its elements can be listed as follows:

41,02, ...,0n,b1,b2,b3,...

a; 1fz§n

The function f: N — A U B corresponding to this listing is defined by f(i) = {b i
i—n 1 .

(a) We will do this by exhibiting a one-to-one correspondence between A x B and N x N, which was
shown in the text to be countable. Since A is countable, we can list its elements: a;,a2,as,... .
Since B is countable, we can list its elements: by, bo, b3,... . Define f: A x B — N x N by
f(ai, b)) = (3,7). If f(as,b;) = f(ak,be), then (i,5) = (k,€) soi = k,j = £ and (a;,b;) =
(ak,be). Thus, f is one-to-one. Also, for any (m,n) € N x N, we have f(am,b,) = (m,n), so
f is onto. Thus, f is a one-to-one correspondence.

(b) A polynomial of degree at most one with integer coefficients is an expression of the form a + bz,
where a,b € Z. The function a + bz — (a,b) is a one-to-one correspondence between these
polynomials and the set Z x Z, which is countable by Exercise 27(a). Thus the given set of
polynomials is countable too.

We offer a proof by contradiction. If | X'| = |P(X)], then there is a one-to-one onto function f: X —
P(X). Thus, for each z € X, f(z) is a subset of X. Define a subset Y of X as follows: for each
z € X,putz € Y ifand only if z ¢ f(z). Since f is onto, Y = f(y) for some y € X. Notice that
ify e Y, theny € f(y),soy ¢ Y = f(y), by definition. On the other hand, ify ¢ f(y) =Y, then
y € Y, again by definition. We reach the absurd situation that y is neither in or not in Y. It follows
that there can exist no onto function f: X — P(X).

Assume, to the contrary, that S is countable and, as in Problem 31, write each of its elements in a list
as

a1 =0.a11012a13G14 "

az = 0.a21a22a23024 - -

a3 = 0.a31a32033034 - - -

4 ifaii =3
3 ifa,-i =4,

Then b = 0.b1b2bs ... is in S, yet it is different from each a; because b; # a;; for each ¢. This
contradiction gives the result.

where each a; is 3 or 4. Define the sequence b, ba, bs,... by b; = {



