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1 COUNTING

1.1 BASIC COUNTING
Pages 7 to 8

Problem 1 Solution

The value of i ranges from 2 to n. When i = k, the variable j ranges from 2 to k.
Thus, there are at most k − 1 comparisons (because we stop if j = 2). Thus, the total
number of comparisons is

1 + 2 + · · · + n − 1 = n(n − 1)

2
.

The algorithm will make this number of comparisons if the original ordering is the
reverse of the sorted ordering.

Problem 2 Solution

Number the five teams 1–5. Team 1 must play all four others. Team 2 will be in one
of these games but must play in three more games with Teams 3, 4, and 5. Team 3
is in two of the games already mentioned and must still play Teams 4 and 5 for
two more games. Team 4 must play Team 5, in addition to playing in three of the
games already mentioned. Thus, there are 4 + 3 + 2 + 1 = 10 games. Alternatively,
there are five teams, each of which must play in four games, giving us 20 pairings
of two teams each. However, each game involves two of these pairings, so there are
20/2 = 10 games.
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Problem 3 Solution

The set of possible draws is a union of 52 sets (one for each possible first card), each
of size 51. So, by the product principle, there are 52 · 51 ways to draw the two cards.

Problem 4 Solution

The answer is the same as in Problem 3, except we can draw the cards in either order.
Therefore, the number of ways is 52 · 51/2 = 1326.

Problem 5 Solution

52 · 51 · 50, by two applications of the product principle.

Problem 6 Solution

10 · 9 = 90.

Problem 7 Solution(
10
2

)
= 10 · 9/2 = 45.

Problem 8 Solution

10 ·
(

9
2

)
, or 8

(
10
2

)
.

Problem 9 Solution

This formula counts the number of ways to choose a president and an executive
advisory board (not including the president) from a club of n people. The left side
chooses the president first, then the committee. The right side chooses the committee
first, then the president.

Problem 10 Solution
m · n.

Problem 11 Solution

By the product rule, there are 10 · 9 = 90 ways to choose two-scoop cones with
two different flavors. However, according to your mother’s rule, the order of scoops
doesn’t matter. Because each two-scoop cone can be ordered in two different ways
(e.g., chocolate over vanilla and vanilla over chocolate), we have 90/2 = 45 ways of
choosing two-scoop cones with different flavors. There are an additional ten cones
with the same flavor for both scoops, giving 55 possible cones.
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Problem 12 Solution

Because order does matter, we have 10 · 9 = 90 ways to choose ice cream cones
with two distinct flavors, plus ten more with the same flavor for both scoops, giving
100 choices.

Problem 13 Solution

1 + 2 + 4 + · · · + 219 = 220 − 1 = 1,048,575. Your justification may be neither
principle, only the sum principle (the set of all pennies is the union of the set of pennies
on Day 1 with those on Day 2, and so on), or both principles (the set of pennies
you receive on Day i is the union of two sets of pennies, each of the size that you
received on Day i − 1). As long as your explanation makes sense, any of these
answers is fine.

Problem 14 Solution

5 · 3 · 3 · 3 = 135.

Problem 15 Solution

Yes; in Line 4, j could start at i + 1 rather than i .

1.2 COUNTING LISTS, PERMUTATIONS, AND SUBSETS
Pages 17 to 19

Problem 1 Solution

For each piece of fruit, we have n choices of who to give it to. So, by version 2 of the
product principle, the number of ways to pass out the fruit is nk .

Problem 2 Solution

f1(1) = a f1(2) = a f1(3) = a

f2(1) = a f2(2) = a f2(3) = b

f3(1) = a f3(2) = b f3(3) = a

f4(1) = a f4(2) = b f4(3) = b

f5(1) = b f5(2) = a f5(3) = a

f6(1) = b f6(2) = a f6(3) = b

f7(1) = b f7(2) = b f7(3) = a

f8(1) = b f8(2) = b f8(3) = b

None are one-to-one; all but f1 and f8 are onto.
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Problem 3 Solution

f1(1) = a f1(2) = a

f2(1) = a f2(2) = b

f3(1) = a f3(2) = c

f4(1) = b f4(2) = a

f5(1) = b f5(2) = b

f6(1) = b f6(2) = c

f7(1) = c f7(2) = a

f8(1) = c f8(2) = b

f9(1) = c f9(2) = c

None of the functions are onto; all except f1, f5, and f9 are one-to-one.

Problem 4 Solution

If we list S as x1, x2, . . . , xs , then there is a bijection between functions from S to T
and lists f(x1), f(x2), . . . , f(xs). For each i , there are t choices for f(xi). So, by the
product principle, there are t s functions from S to T.

Problem 5 Solution

We are asking for the number of k-element permutations of n children, which is nk,
or zero, if k > n.

Problem 6 Solution

What matters is what subset of the n children get fruit, so the answer is
(

n
k

)
. If k > n,

the answer is zero.

Problem 7 Solution

First, note that “a five-digit base 10 number” means a string of five digits, where the
first digit is not 0 and each digit is in the set {0, 1, . . . , 9}. By the product rule, the
number of these is 9 · 104, or 90,000. If no two consecutive digits can be equal, then
there are nine choices for the first digit, nine for the second (any digit other than the
first), nine for the third (any digit other than the second), and so on. By the product
principle, the total number is 95.

By the sum principle, the total number of five-digit numbers equals the number that
have no two consecutive digits equal plus the number that have at least one pair of
consecutive digits equal. Thus, letting x denote the number of the latter, we have
9 · 104 = 95 + x ; so, x = 9 · 104 − 95 = 30,951.
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Problem 8 Solution

In both cases, there are two ways to decide whether the leftmost spot is for a student
or for an administrator. This decision determines which four places are for students
and which are for administrators. Thus, there are 4! ways to assign the students to
their places and 4! ways to assign the administrators to their places. In both cases, the
product principle leads us to conclude that there are 2 · 4! · 4! lists.

Problem 9 Solution

123 124 125 132 134 135 142 143 145 152 153 154

213 214 215 231 234 235 241 243 245 251 253 254

312 314 315 321 324 325 341 342 345 351 352 354

412 413 415 421 423 425 431 432 435 451 452 453

512 513 514 521 523 524 531 532 534 541 542 543

Six permutations correspond to any given three-element set. We have 60 permutations,
so there are 10 three-element sets.

Problem 10 Solution(
20
3

)
= 20 · 19 · 18/6 = 1140.

Problem 11 Solution(
10
4

)(
20
4

)
.

Problem 12 Solution

2
(

10
4

)(
20
4

)
4!4! = 2 · 10 4 20 4.

Problem 13 Solution

When both scoops have the same flavor, we have 10 possibilities, because there are only
10 flavors. When the scoops have different flavors, we have 45 possibilities, according
to your mother’s rule, as solved before. So, for ice cream, we have 10 + 45 = 55
possibilities. For topping, we have 3 possibilities. For whipped cream, nuts, and cherry,
because we may either have any, all, or none, we have 2 possibilities for each of them
(for example, either have cherry or don’t have cherry). By the product rule, we have
2 · 2 · 2 = 8 possibilities. Thus, we have 55 · 3 · 8 = 1320 possible sundaes.

1.2: Counting Lists, Permutations, and Subsets S5
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Problem 14 Solution

Although this problem is similar to Problem 13, we may have three different flavors
(there are 10 · 9 · 8/6 = 2880 ways to choose three flavors), two scoops of one flavor
and one of a second (there are 10 · 9 = 90 ways to do this), or three scoops of the same
flavor (there are 10 ways to choose these). Thus, we have 220 · 3 · 8 = 5280 different
sundaes.

Problem 15 Solution

Suppose we list the people in the club in some way and keep that list for the remainder
of the problem. Take the first person from the list and pair that person with any of the
2n − 1 remaining people. Now take the next unpaired person from the list and pair
that person with any of the remaining 2n −3 unpaired people. Continuing in this way,
once k pairs have been selected, take the next unpaired person from the list and pair
that person with any of the remaining 2n − 2k − 1 unpaired people. Every pairing can
arise in this way, and no pairing can arise twice in this process. Thus, the number of
outcomes is

∏n−1
i=0 2n − 2i − 1. For another solution, choose people in pairs. There are(

2n
2

)
ways to choose one pair,

(
2n−2

2

)
ways to choose a second pair, and once k pairs

have been chosen, there are
(

2n−2k
2

)
ways to choose the next pair. The number of lists

of pairs we get in this way is
∏n−1

i=0

(
2n−2i

2

)
= (2n)!

2i . Both ways of pairing people gets
listed n! times because we see all possible lists of pairs of length n. Therefore, the
number of actual pairings is

(2n)!

(2n)n!
= 2n!

2n · 2n − 2 · 2n − 4 · · · · · 2
=

n−1∏
i=0

(2n − 2i − 1) .

For the second question, multiply the answer to the first question by 2n to give (2n)!/n!.

Problem 16 Solution(
12
5

)
.
(

5
2

)(
4
2

)(
3
1

)
= 180.

(
5
2

)(
4
2

)(
1
1

)
+

(
5
2

)(
5
2

)(
2
1

)
—that is, either the versatile

player is playing center or not; if not, that player is available to play forward.

Problem 17 Solution

If f is one-to-one, it has n distinct values. Therefore, all elements of the range must
be values of f, so it must be onto. Thus, a one-to-one function from an n-element set
to an n-element set is onto. If we now suppose that f is onto, then f has n distinct
values because it maps onto a set of size n. But in this case, we may conclude that
because there are only n values of x , all the values of f(x) are different. Therefore, f
must be one-to-one.
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Problem 18 Solution

a. If f is a bijection, we may define g(y) to be the unique x such that f(x) = y.
This defines a function because different values of y are related to different
values of x . But then f(g(y)) is the result of applying f to the unique x with
f(x) = y, so f(g(y)) = y. Also, g( f(x)) is the unique x that is related to f(x),
so g( f(x)) = x . This shows that if f is a bijection, then f has an
inverse function. On the other hand, if f has an inverse function g and if
f(x) = f(x ′), then g( f(x)) = g( f(x ′)), which gives us x = x ′. Therefore, if f
has an inverse function, then f is one-to-one. Further, if f has an inverse
function g, then because y = f(g(y)) and g(y) is in the domain of f, there is
an x in the domain of f (namely, g(y)) such that f(x) = y; so, f is onto.

b. Suppose g and h both satisfy the definition of being inverses to f. Suppose
y is in the range of f and g(y) = x . Then, f(g(y)) = f(x) and
h( f(g(y))) = h( f(x)) = x . Because f(g(y)) = y, we have h(y) = x as well.
Thus, for any y in the range of f, h(y) = g(y), which means that g and h are
equal. Thus, f has only one inverse function.

1.3 BINOMIAL COEFFICIENTS
Pages 26 to 28

Problem 1 Solution

220, 220.
(

n
k

)
equals

(
n

n−k

)
.

Problem 2 Solution

1 8 28 56 70 56 28 8 1

Problem 3 Solution

a. (x + 1)5 = x5 + 5x4 + 10x3 + 10x2 + 5x + 1.

b. (x + y)5 = x5 + 5x4 y + 10x3 y2 + 10x2 y3 + 5xy4 + y5.

c. (x + 2)5 = x5 + 10x4 + 40x3 + 80x2 + 80x + 32.

d. (x − 1)5 = x5 − 5x4 + 10x3 − 10x2 + 5x − 1.

Problem 4 Solution

(x + y)4 = x4 +
(

4
1

)
x3 y1 +

(
4
2

)
x2 y2 +

(
4
3

)
x1 y3 + y4. To expand the product, we

create all possible products of x’s and y’s by selecting y from some of the factors and
x from the remaining ones. Then we add all these products. There is 1 =

(
4
0

)
way to

choose a y from none of our four x + y factors. Thus, the coefficient of x4 is 1. There

1.3: Binomial Coefficients S7
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are
(

4
1

)
ways to choose a y from one of the four factors. Because we choose x from

the remaining factors, this choice gives us the term
(

4
1

)
x3 y. There are

(
4
2

)
ways to

choose y from two of our four factors, so the coefficient of x2 y2 is
(

4
2

)
. There are

(
4
3

)

ways to choose y from three of our factors, so the coefficient of xy3 is
(

4
3

)
. There is

1 =
(

4
4

)
way to choose y from all the factors, so the coefficient of y4 is 1.

Problem 5 Solution

10!/(3!3!4!) = 4200. This is the number of ways to label three of the chairs with the
label green, three of the chairs with the label blue, and four of the chairs with the label
red.

Problem 6 Solution

The multinomial coefficient
(

n
n1,n2,...,nk

)
is the coefficient of xn1

1 xn2
2 · · · xnk

k in

(x1 + x2 + · · · + xk)
n . The proof is just like the proofs of the binomial theorem

and the trinomial theorem.

Problem 7 Solution

If N is a set and K is a subset of N, let N − K stand for the set of all elements of
N that are not in K. If f(K ) = N − K, then f is a bijection that maps the k-element
subsets of N onto the (n − k)-element subsets of N.

Problem 8 Solution(
m+n

n

)
or

(
m+n

m

)
, because of the following:

• From any line segment on our path, we have two choices: horizontal and
vertical. Clearly, we need n vertical line segments and m horizontal line
segments to reach (m, n) in exactly m + n steps.

• By deciding on our choice of n vertical lines, we have also decided the choice
of m horizontal lines, because we must choose a horizontal line for each step
that is not a vertical line. We could also start by choosing m horizontal lines,
which automatically decides the choice of n vertical lines. Thus, the number
of ways to choose the path is the number of ways to choose the n places for
vertical lines from m + n places or the m places for horizontal lines from
m + n places.

Problem 9 Solution
∑n

i=0

(
n
i

)
xi yn−i = yn +

(
n
1

)
xyn−1 +

(
n
2

)
x2 yn−2 + · · · + xn.
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Problem 10 Solution

Once we choose four disjoint subsets from a 12-element set, we may label them in 4!
ways. That is, choosing the sets does not tell us which set to label with which label.
Therefore, the number of choices of the four sets is the number of labelings divided
by 4!, namely, 12!

4!(3!)4 . The number of ways to choose three disjoint subsets of size four

from a 12-element set is 12!
3!(4!)3 .

Problem 11 Solution

For the first case, the president may be chosen from 20 persons, and after that, the vice
president may chosen from 19 persons, the secretary from 18 persons, and the treasurer
from 17 persons. The nominations committee may be chosen from the remaining
16 persons without order mattering. So, there are 20 · 19 · 18 · 17 ·

(
16
3

)
ways to choose

the committee. For the second case, the nominating committee may be chosen from
the 20 persons without order mattering. So, there are 20 · 19 · 18 · 17 ·

(
20
3

)
ways to

choose the committee.

Problem 12 Solution

(
n − 1

k − 1

)
+

(
n − 1

k

)
= (n − 1)!

(k − 1)!(n − k)!
+ (n − 1)!

k!(n − k − 1)!

= (n − 1)!k

(k)!(n − k)!
+ (n − 1)!(n − k)

k!(n − k)!

= (n − 1)!(k + n − k)

k!(n − k)!

= n!

k!(n − k)!
=

(
n

k

)
.

Problem 13 Solution

Proof 1:

n!

k!(n − k)!
= n!

(n − k)!k!
.

Proof 2: The number of ways to choose the k elements that are in a k-element subset
is the same as the number of ways to choose the elements that are not in the subset,
and there are n − k such elements.

1.3: Binomial Coefficients S9
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Problem 14 Solution

Proof 1:
(

n

k

) (
k

j

)
= n!

k!(n − k)!

k!

j!(k − j)!

= n!

(n − k)! j!(k − j)!

= n!

j!(n − j)!

(n − j)!

(k − j)!(n − k)!

=
(

n

j

) (
n − j

k − j

)
.

Proof 2: The number of ways to choose k items from n items and then choose j items
from the chosen k items is

(
n
k

)(
k
j

)
. We can also carry out this process in the following

way: First choose j items from n items, and then choose k − j more items from the
remaining n − j items. The number of ways to do this is

(
n
j

)(
n− j
k− j

)
.

Problem 15 Solution

Proof 1:
(

n

k

) (
n − k

j

)
= n!(n − k)!

k!(n − k)! j!(n − k − j!)
= n!

k! j!(n − k − j)!
.

Similarly,
(

n
k

)(
n−k

j

)
equals the same expression.

Proof 2: There are two ways of choosing two disjoint sets, one with k elements and
one with j elements. We can pick the k-element set first, then choose j elements from
what is left, or we can pick the j-element set first, then choose k elements from what
is left.

Problem 16 Solution

n k 3 4 5 6

6 20 15 6 1

7 35 21 7

8 56 28

9 84

Problem 17 Solution

The formula is simply the expansion of (1 − 1)n .
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Problem 18 Solution

(1 + x)n = ∑n
i=0

(
n
i

)
xi . Taking the derivative of both sides, we get

n(1 + x)n−1 =
n∑

i=1

i
(

n

i

)
xi−1 .

Thus, if we let x = 1, we have n2n−1 = ∑n
i=1 i

(
n
i

)
.

Problem 19 Solution

False.
(

4
2

)
is 6, but

(
2
0

)
+

(
2
1

)
+

(
2
2

)
is 4. The correct statement is

(
n

k

)
=

(
n − 2

k − 2

)
+ 2

(
n − 2

k − 1

)
+

(
n − 2

k

)
.

The proof consists of applying the Pascal relationship to both
(

n−1
k−1

)
and

(
n−1

k

)
and

adding the results.

1.4 EQUIVALENCE RELATIONS AND COUNTING
Pages 38 to 41

Problem 1 Solution

(n − 1)! ways.

Problem 2 Solution

If we rotate a scarf through 180 degrees, we do not change the scarf, but we do get
the reversed row of circles. Thus, two arrangements of n circles are equivalent if one
is the reverse of the other. The equivalence classes have two members, so the number
of ways to embroider the circles on the scarf is n!/2.

Problem 3 Solution

There are
(

5
2

)
= 10 ways to choose the two places out of five in which the golden

apples are placed. For equivalence class counting, there are 5! ways to line up the
apples. Two ways are equivalent if we interchange the golden apples or mix up the red
apples in any way. Thus, there are 2 · 3! arrangements per equivalence class. Therefore,
there are 5!/(2 · 3!) equivalence classes. This means that there are 5!/(2 · 3!) ways to
line up the apples. Note that the second answer is simply the usual formula for the
first answer.
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Problem 4 Solution

Passing out the apples corresponds to choosing a k-element multiset from the n chil-
dren. Choosing a k-element multiset from the children tells us how many apples to
give each child. Thus, there are

(
n+k−1

k

)
ways to pass out the apples.

Problem 5 Solution

Number the places around the table consecutively from 1 to 2n. A seating gives a list
of the 2n people. Once we decide the gender of the person in Seat 1, we have n! ways
to seat that gender and n! ways to seat the other gender. By the product principle, we
have 2 · n! · n! lists of people corresponding to seating arrangements. But there are 2n
lists that correspond to the same circular arrangement. Therefore, the number of ways
to seat the people is 2n!n!/2n = n!(n − 1)!.

Another way is to seat one gender in (n − 1)! ways and then seat the other gender
in the n places between members of the first group in n! ways. Then, by the product
principle, we have (n − 1)!n! seating arrangements.

Problem 6 Solution

Give one apple to each child. Then pass out k−n apples to the children in
(

n+k−n−1
k−n

)
=(

k−1
k−n

)
ways.

Problem 7 Solution

Select k books in
(

n
k

)
ways, and place one on the far left of each shelf in n! ways.

Then shelve the remaining k − n books in nk−n ways. This gives
(

k

n

)
n!nk−n = k!(k − 1)!

(k − n)!(n − 1)!

ways to shelve all the books.

Problem 8 Solution

a.
(

k+n−1
k

)
, or the number of ways to choose the places where the red checkers

go. This is also the way to put k identical books and n − 1 identical blocks
of wood in a line, because it is the number of ways to choose where the
books (or the blocks of wood) go.

b. The number of red checkers between black checker number i − 1 and black
checker number i (or before black checker number 1) is the multiplicity of i
(or 1). The number of red checkers after the last black checker is the
multiplicity of black checker n.
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c. Parts a and b count the same thing, so the number of k-element multisets
chosen from an n-element set is

(
n+k−1

k

)
.

Problem 9 Solution

If you think of the value of xi as the multiplicity of i in a multiset, then the number of
solutions is the number of multisets,

(
n+k−1

k

)
.

Problem 10 Solution

If you think of xi as the multiplicity of i in a multiset, then you are counting the
number of k-element multisets chosen from {1, 2, . . . , n} in which every element has
multiplicity at least 1. This is the same as the number of k − n element multisets of
{1, 2, . . . , n}, which is

(
k−1
k−n

)
. To see why this is the answer, think of giving k identical

apples to n children. Give each child one apple and then distribute the remaining k −n
apples however you want.

Problem 11 Solution

Imagine this circular arrangement as a linear arrangement. If both the n red checkers
and the n + 1 black checkers were distinguishable, there would be (n + n + 1)! =
(2n + 1)! possible linear arrangements. When we think of the red checkers (and
the black ones) as indistinguishable, we have n!(n + 1)! lists per equivalence class,
because these lists would be equivalent if we mixed n red checkers among themselves
and n + 1 black checkers among themselves. Each linear arrangement of n red and
n + 1 black checkers corresponds to 2n + 1 other arrangements, which become
identical when we put them into a circle. (This would not be the case if we had n
red and n black checkers; think about alternating red and black.) So, the number of
arrangements is

(2n + 1)!

(2n + 1)n!(n + 1)!
= (2n)!

n!(n + 1)!
= 1

n + 1

(
2n

n

)
.

Problem 12 Solution

a. For S(n, n), each element must be in a part by itself. There is one such
partition, so S(n, n) = 1. For S(n, 1), every element must be in the same part,
so S(n, 1) = 1.

b. An element a may be in a part by itself or not. The number of partitions in
which a is in a part by itself is S(n − 1, k − 1), because then we have to choose
remaining k − 1 parts from remaining n − 1 elements. Otherwise a is in a part
with other elements. Because a can be in any of the k parts and the other n − 1
elements may be partitioned into k parts in S(n − 1, k) ways, we have

1.4: Equivalence Relations and Counting S13
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kS(n − 1, k) partitions of this type. By the sum principle, we get
S(n, k) = S(n − 1, k − 1) + kS(n − 1, k).

c.
n k 1 2 3 4 5 6

1 1

2 1 1

3 1 3 1

4 1 7 6 1

5 1 15 25 10 1

6 1 31 90 65 15 1

Problem 13 Solution

There are six lists of four letters: you can make a list by choosing two of the four
places for the red beads in

(
4
2

)
= 6 ways. The equivalence classes are {RRBB, RBBR,

BBRR, BRRB} and {RBRB, BRBR}. Because the sizes of the equivalence classes are
not the same, you cannot apply Theorem 1.5.

Problem 14 Solution

a. “Greater than” is transitive. “Is a brother of” is not transitive (Paul can be a
brother to Bob and Bob to Paul, but Paul is not a brother to Paul). “Is a sibling
of” is not transitive but is symmetric. “Is a sibling of or is” is transitive,
symmetric, and reflexive.

b. x is in the same equivalence class as x , so it is reflexive. If x is in the same
equivalence class as y, then y is in the same equivalence class as x . Therefore,
it is symmetric. If x is in the same equivalence class as y and y is in the same
equivalence class as z, then x is in the same equivalence class as z. Therefore,
it is transitive.

c. If Sx and Sy have a common element, such as a, then we have that a is related
to both x and y. We also have that y is related to a by symmetry. For any
element b in Sy , we have b is related to y. Then b is related to a by transitivity
and related to x again by transitivity. Thus, we have b ∈ Sx , which shows that
Sy ⊆ Sx . Similarly, we have Sx ⊆ Sy . Therefore, we have Sx = Sy . Thus, if
Sx and Sy have a common element, they are identical. If Sx and Sy have no
common element, they are disjoint. Therefore, we can use the relationship to
divide S into disjoint sets: the sets Sx . Note that by reflexivity, any element x is
in the set Sx . Thus, a reflexive symmetric transitive relation is an equivalence
relation.

d. Part b says that an equivalence relation, as defined in the text, is reflexive,
symmetric, and transitive. Part c says that a reflexive, symmetric, and transitive
relation is an equivalence relation, as was defined in the text.
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Problem 15 Solution

The original version computes the entire Pascal triangle up to the element in row n
and column k each time it is called. Your new version should store that information
globally so that it only has to do one addition each time it computes a new value in
Pascal’s triangle.

Problem 16 Solution

a. This problem asks you to count functions from the candy to the people, so
the answer is nk .

b. This asks for one-to-one functions from the candy to the people, so the
answer is nk. Note how the notation for counting one-to-one functions is
similar to the notation for counting functions.

c. A distribution is equivalent to a k-element multiset of the n-element set of
people. Thus, there are

(
n+k−1

k

)
distributions.

d. This asks for k-element subsets of the n people, so the answer is
(

n
k

)
.

e. This is the number of k-element permutations of the n objects, so the answer
is nk.

f. Because you are counting functions, the answer is nk .

g. By definition,
(

n
k

)
.

h. By the theorem for counting multisets,
(

n+k−1
k

)
.

i. This is asking for the number of lists of k distinct people chosen out of n.
Such a list is a k-element permutation of the n elements, so the answer is nk.

j. This is asking for the number of k-element multisets of an n-element set,
and this number is

(
n+k−1

k

)
.

k. Because it matters who gets which type, this is the same as asking how
many one-to-one functions there are from a k-element set to an n-element
set. Thus, the answer is nk.
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