362

Teaching Suggestions

In this part of the Instructor’s Resource Guide, 1 suggest how the text can be used effectively to teach an intro-

ductory course in discrete mathematics. These views are based on my personal teaching experience as well as on

the experiences of some of the many instructors who have used the text in previous editions.

In the following material I provide an overview of each chapter of the text. Along with a description of the
contents of that chapter, I describe its importance in an introductory course. After this overview, I give detailed
information about each section of the chapter. First, I state the section goals and identify the prerequisites for

that section. Then, I give my suggestions on how to teach from the section. In particular, I identify troublesome

concepts and suggest how to handle them. I point out particularly useful examples and important concepts. Finally,
I describe exercises that I feel are noteworthy, especially those that tie together diverse concepts or introduce new
ideas. I hope this information makes teaching from the text easier and more rewarding for you.

Overview:

SECTION 1.1
Goals:

CHAPTER 1
The Foundations: Logic and Proofs

Chapter 1 begins with an introduction to propositional and predicate logic. It then continues
with presentations of the rules of inference for both propositional and predicate logic. After
developing logic and rules of inference, the chapter introduces an arsenal of proof methods.
The chapter concludes with a discussion of proof strategy, as well as the process of formulating
conjectures and then using proof methods and strategies to settle them. The material on logic
and proof in this chapter provides the foundations needed throughout higher mathematics and
computer science. Without a firm foundation in logic, students have a great deal of difficulty
with this course and subsequent courses. If you are lucky enough to have students with strong
backgrounds, you might be able to cover quickly, or even skip, some of the contents of this
chapter. But be sure to cover what your students need from this chapter, or the rest of the
course could be tough sledding.

The first five sections deal with logic; propositional logic is covered in Sections 1.1-1.3,
and predicate logic is covered in Sections 1.4 and 1.5. Studying logic is the best way to start
a course in discrete mathematics (unless, of course, your students already know this material)
because students must be able to think logically and carry out precise reasoning. Section 1.6
introduces rules of inference, and Section 1.7 introduces basic proof methods. Section 1.8
introduces additional methods of proof and addresses key aspects of strategies for developing
proofs. Take note that the proof methods discussed in Sections 1.7 and 1.8 are used throughout
the text, particularly in the coverage of sets and functions in Chapter 2, and in the coverage of
algorithms and number theory in Chapters 3 and 4. Chapter 5 introduces another key proof
method, mathematical induction, together with its variants.

Propositional Logic

To introduce the basic terminology of propositional logic, including logical connectives, to
show how to construct truth tables, to illustrate the importance of logic with applications,
and to motivate the study of logic through logic puzzles and system specifications.



Teaching Suggestions 363

Prerequisites:

Advice:

Exercises:

SECTION 1.2
Goals:

Prerequisites:

Advice:

Exercises:

SECTION 1.3
Goals:

Prerequisites:

None.

The material on logical connectives is straightforward. Most difficulties with this material
involve confusion between common English usage and precise mathematical definitions. In
particular, students have trouble with inclusive versus exclusive or; make sure the distinction
is clear (see Examples 6-9).

Stress the definition of a conditional statement, especially when the premise is false. That
is, emphasize that p — ¢ is false only when p is true and ¢ is false. This material is used
extensively in Section 1.6 when rules of inference are covered, in Section 1.7 when methods
of proving conditional statements are discussed, and in Sections 5.1-5.3 when mathematical
induction and its variants are covered. Go over the different ways conditional statements
are expressed; these are listed after Definition 5. Define the converse, contrapositive, and
inverse of a conditional statement (see Example 10); these terms are often confused with each
other. Be sure to discuss the notion of equivalence of compound propositions. Explain that
a conditional statement and its contrapositive are logically equivalent, whereas a conditional
statement and its converse or inverse are not logically equivalent. Introduce biconditionals
and how they are expressed. Mention that biconditionals are often implicitly stated. Briefly
introduce truth tables; they are used extensively in Section 1.3. Also, quickly mention the
precedence of logical operators.

Exercises 49-51 introduce fuzzy logic, which is used in expert systems and artificial intelligence.
Exercises 52-54 cover some logical paradoxes.

Applications of Propositional Logic

To introduce some important applications of propositional logic, including many important ap-
plications in computer science. Also, to work with logic puzzles, which provide an entertaining
way to learn and enjoy propositional logic.

Section 1.1.

Cover the material on translating English sentences into logical statements; students often
need help with this important task. The subsection on system specifications is of particular
appeal to students in computer science and engineering; it shows that logic is of immediate
practical importance. Computer science students are usually familiar with logical operators
from their use in programming, so make the connection between the material in this section
and logical operators used in programming languages. (In fact almost everyone has been forced
to understand logical operations from doing Boolean searches on the web—see Example 6.)
You may want to spend time covering the subsection on logical puzzles; many people find
these puzzles fascinating—in particular, see Example 8, which introduces one of Raymond
Smullyan’s knights and knaves puzzles. A brief introduction to logic circuits is included here
for instructors who want to make the connection between formal logic and logic circuits. (A
thorough treatment of logic circuits is found in Chapter 12.)

Exercises 7-12 are devoted to system specifications. Exercises 17-22 and 36—42 are logical puz-
zles that can challenge students. Exercises 23-27 are puzzles involving Smullyan’s knights and
knaves, and Exercises 28-35 are puzzles involving knights, knaves, and spies, also introduced
by Smullyan.

Propositional Equivalences

To show how propositional equivalences are established and to introduce the most important
such equivalences.

Section 1.1.



364

Advice:

Exercises:

SECTION 1.4
Goals:

Prerequisites:

Advice:

Exercises:

Teaching Suggestions

Introduce the notion of propositional equivalences by establishing De Morgan’s laws—see Ex-
ample 2. Table 6 presents basic propositional equivalences. We will see similar tables for set
identities in Section 2.2 and for Boolean algebra in Section 12.1. Mention that these properties
hold in a wide variety of settings that all fit into one abstract form. Many students have the
tendency to just memorize the properties, so stress that it is more important to understand
their meaning and why they are true. Explain the different ways that such propositional
equivalences can be established, including by the use of truth tables, by showing that the
propositions are true (or false) for precisely the same sets of values, and by using previously
proved equivalences, including those in Tables 6-8. (Note: We discuss rules of inference for-
mally in Section 1.6 and introduce proofs in Section 1.7. Some practice with straightforward
proofs here will help motivate the in-depth coverage that will follow.) The concept of propo-
sitional satisfiability is introduced in this section. The section concludes with a discussion of
how the n-Queens problem and Sudoku puzzles can be modeled as satisfiability problems.

The exercise set introduces some new topics, including duality, disjunctive normal form, and
functional completeness. Students can learn about duality by doing Exercises 38-43. Exer-
cises 44-46 develop the concept of disjunctive normal form. Exercises 47-49 introduce the
concept of functional completeness, and Exercises 50-58 introduce the operators NAND (|)
and NOR () and show that the sets {|} and {]} are both functionally complete. Exer-
cises 64—66 deal with satisfiability and Exercises 70—-72 involve Sudoku.

Predicates and Quantifiers

To introduce predicate logic, especially existential and universal quantification. Moreover, to
explain how to translate between English sentences (or mathematical statements) and logical
expressions.

Sections 1.1 and 1.3.

This section is important because students often have trouble proving statements that involve
quantification, including the inductive step in mathematical induction. Make sure they have a
clear idea what the truth values of existential and universal quantifications mean. Tell students
that a quantification is not well-defined unless the domain is specified and that changing the
domain can change the truth value of the quantification. Mention that a statement of the form
Va P(x) can be shown to be false with a counterexample. Explain how to negate existential
and universal quantifications (see Table 2). We will need this in Sections 1.7 and 1.8 when
we discuss how to prove theorems that involve quantification (in particular, with existence
proofs and counterexamples). Discuss the different ways to express universal and existential
quantifications in English.

Devote special attention to the subsection on translating English sentences into logical
statements; this is a particularly difficult task for many students. Be sure to stress that there
is more than one way to translate a particular English sentence into a logical statement; see
Examples 23 and 24. Example 25 illustrates how to use quantifiers in system specifications.
Examples 26 and 27, taken from Lewis Carroll, illustrate the subtleties of translating English
sentences into correct statements involving predicate and propositional logic. The subsec-
tion on logic programming shows that the material in this section is important in computer
programming and Al.

Exercises 23-28 provide a wide variety of examples of how quantifiers are used when En-
glish sentences are translated into logical statements. Exercises 32-36 deal with negations
involving quantified statements. Exercises 4044 cover the use of quantifiers to express system
specifications. Exercises 48-51 introduce some useful logical equivalences called null quan-
tifications. FExercises 54-56 deal with the uniqueness quantifier. Exercises 57-60 deal with
Prolog. Exercises 61-64 are questions based on work by Lewis Carroll.



Teaching Suggestions 365

SECTION 1.5
Goals:

Prerequisites:

Advice:

Exercises:

SECTION 1.6
Goals:

Prerequisites:

Advice:

Exercises:

SECTION 1.7
Goals:

Nested Quantifiers

This section explains how to work with nested quantifiers and makes clear that the order of
quantification matters. This section helps students gain maturity working with complicated
logical expressions involving multiple quantifiers.

Sections 1.1, 1.3, and 1.4.

Describe how nested quantifiers work (see Table 1); you may find the analogy to nested loops
useful. Use Examples 1-5 to illustrate the meaning of statements involving nested quanti-
fiers. Cover Example 4 to illustrate that the order of quantification is important when several
different quantifications occur in the same statement. Cover the process of translating math-
ematical statements into logical expressions involving nested quantifiers—see Examples 6-8.
In particular, students who have studied the definition of limit should see Example 8. Then
discuss the translation between complicated statements in English and logical expressions in-
volving nested quantifiers—see Examples 9-13. Cover Examples 14-16 to illustrate how to
negate logical expression involving quantifiers. In particular, Example 16 shows how to use
quantifiers and predicates to express that a limit does not exist.

Exercises 14-16 involve translating English sentences into logical expressions involving nested
quantifiers. Exercises 17-18 involve translating system specifications into logical expressions
involving nested quantifiers. Exercises 19-23 involve translating mathematical statements into
expressions involving nested quantifiers, and Exercises 24 and 25 are about the reverse process.
Negations of statements involving nested quantifiers are the subject of Exercises 36-38. Prenex
normal form is introduced in Exercises 50-51.

Rules of Inference

To introduce the notion of a valid argument and rules of inference for propositional logic.
To explain how to use rules of inference to build correct arguments in propositional calcu-
lus. Moreover, to introduce rules of inference for predicate logic and how to use these rules
of inference to build correct arguments in predicate logic. To show how rules of inference
for propositional calculus and predicate calculus can be combined. Finally, to learn how to
distinguish between correct and incorrect arguments.

Sections 1.1, 1.3, 1.4, and 1.5.

Explain what it means for an argument form to be valid in propositional logic. Be sure to
tell students that if the hypotheses in a valid argument form are not true, the conclusion
of the argument may not be true. Introduce the basic rules of inference for propositional
calculus—see Table 1. You may want to cover Examples 6 and 7, which show how to use rules
of inference to construct valid arguments in propositional logic. Describe the rules of inference
for quantified statements—see Table 2. Explain how rules of inference for propositional logic
and predicate logic can be combined.

Mention begging the question; students will think this is not likely to occur, but you can
show them examples from their own arguments.

Exercises 23 and 24 ask students to find an error in an incorrect argument in predicate calculus.
Exercise 26 asks for a justification of a rule of inference in predicate calculus called the rule
of universal transitivity. Exercises 27-29 ask students to use rules of inference in predicate
calculus to construct valid arguments.

Introduction to Proofs

To introduce the notion of proof and basic methods of proof, including direct proof, proof by
contraposition, and proof by contradiction. Furthermore, to learn how to distinguish between
correct and incorrect arguments, and to understand and construct basic types of proofs.



366
Prerequisites:
Advice:
Exercises:

SECTION 1.8
Goals:

Prerequisites:

Advice:

Teaching Suggestions

Sections 1.1, 1.3-1.6.

Begin with definitions of important terms, including theorem, proof, corollary, lemma, and
conjecture. A key goal is for students to understand what constitutes a valid proof; they need
to be able to understand existing proofs and create their own. Let them know that axioms
and previously proven results can be used and that arguments must follow correct rules of
inference for propositions and for predicates. (You may want to review the axioms for the real
numbers in Appendix 1.) Students need to understand the difference between a formal proof
and an informal one that could be expanded into a formal proof if necessary.

Spend substantial time showing how to prove conditional statements using direct proofs
and proofs by contraposition; this will pay off when you discuss mathematical induction and
whenever you prove theorems that are universal quantifications of conditional statements.
Introduce some aspects of proof strategy that tell you when to try a direct proof and when
to use an indirect proof (proof by contraposition or contradiction). Illustrate this by cover-
ing Examples 8 and 9. Be sure to spend adequate time discussing proof by contradiction.
Example 10 illustrates a proof by contradiction and foreshadows the pigeonhole principle dis-
cussed in depth in Section 6.2. Explain what it means to show that statements are equivalent.
Example 14 illustrates how the equivalence of three statements can be established.

Assign some of Exercises 1-4, 6, 7, 9, 10, 17, 19, and 20 to give students practice with direct
proofs, proof by contraposition, and proof by contradiction. In these exercises the method of
proof is specified. Also assign some of Exercises 5, 8, 13, 14, 15, 16, and 18 to give students
practice determining which method of proof to use. You may want to assign Exercises 11
and 12, which ask students to either prove or disprove a statement. Exercises 24-26 require
proof by contradiction; these are really just examples of the pigeonhole principle. Exercises 28—
30 ask students to show that two statements are equivalent. Exercises 32-35 and 43-44 ask
for proofs that three or four statements are equivalent.

Proof Methods and Strategy

To learn important methods of proofs including proof by cases and existence proofs, supple-
menting the basic methods introduced in Section 1.7. To introduce key strategies for proving
theorems, to understand the roles of conjectures and counterexamples, and to learn about
some important open problems.

Sections 1.1, 1.3, and 1.4-1.7.

Introduce proof by exhaustion and proof by cases. You may want to cover Example 4, which
shows how a proof by cases is used to prove that the absolute value of the product of two
numbers is the product of their absolute values. Mention the notion of without loss of generality
and how it can be used to simplify proofs that might need to consider separate cases. Cover
some of the common errors that arise in incorrect proofs by cases.

Introduce existence proofs, and discuss the difference between constructive and noncon-
structive existence proofs. Examples 11 and 12 provide good examples of nonconstructive
existence proofs. Explain what is needed in a uniqueness proof, and use Example 13 to illus-
trate how a uniqueness proof proceeds.

The material presented here provides students with a window into what mathematics is
really about. Explain some of the strategies used to find proofs of theorems. Explain that the
proof methods studied in Section 1.7 and the first part of this section provide the tool kit, but
the art of finding proofs is something altogether different. You can illustrate this by covering
Examples 14 and 15. Also, be sure to cover Example 16, which illustrates how leveraging an
existing proof can provide a good starting point for constructing a new proof.

Use the material on tilings to discuss the role of conjectures and how to use the proof
methods developed in the text to settle them. This material requires no extra machinery,



Teaching Suggestions 367

Exercises:

Overview:

SECTION 2.1
Goals:
Prerequisites:

Advice:

Exercises:

so it is quite accessible. Formulating conjectures about tilings of checkerboards, and parts of
checkerboards, is easy, but settling these conjectures ranges from straightforward to extremely
tricky.

Devote some time to discussing the role of open problems. Students will find the story
behind Fermat’s Last Theorem compelling. Learning about easily understood conjectures that
remain unsolved, such as the 3x + 1 conjecture, also motivates many students.

To give student practice with proof by cases, assign some of Exercises 2, 3, 5, and 6. Exer-
cises 7 and 8 involve the notion of without loss of generality. Exercises 10-14 ask for existence
proofs, together with an explanation why the proof is constructive or nonconstructive. Ex-
ercises 25 and 26 introduce the harmonic and quadratic means and give students practice
with formulating and proving their own conjectures. Exercise 28 is an excellent example of
working backwards. Exercise 35 provides an opportunity for students to adapt an existing
proof. The famous three jug problem is the subject of Exercise 40, which asks students to
prove or disprove that you can solve this problem. Exercises 43-52 asks students questions
about tilings of checkerboards. Exercises 43-46 ask students to prove or disprove a statement
about tilings; this provides practice analyzing whether a conjecture is true and which proof
method to use to prove the conjecture or to show that it is false. Exercise 50 is a challenging
exercise about tilings that has a particularly elegant solution.

CHAPTER 2

Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

Chapter 2 presents an introduction to basic discrete structures, namely sets, functions, se-
quences, summations, and matrices. Some, but likely not all, of this material may be review
for your students. You should quickly cover, or not cover at all, material that your students
already know. However, be sure to cover topics that your students may not already know,
such as set identities, countability, the floor and ceiling functions, and summation formulae.

Sets
To introduce the basic terminology of set theory.
Chapter 1.

Make sure students understand that when specifying the elements of sets the number of times
an element is listed and the order in which the elements are listed do not matter. These facts
are illustrated by Example 6. Students have trouble distinguishing between the sets () and
{0}, so explain that the empty set is the set with no elements and that it is a subset of every
set. I like to start with the empty set and take the power set and then the power set again
to force students to see the difference between the empty set, the set containing the empty
set, and other confusing sets. You may want to present the proof of Theorem 1, which shows
that every nonempty set has at least two subsets, the set itself and the empty set, especially
because this is an excellent illustration of proof methods covered in Section 1.7.

Russell’s paradox is described in Exercise 50. This is a difficult exercise for students, but it is
important since it shows that a consistent set of axioms is needed for set theory. Exercise 49
shows how to define ordered pairs in terms of sets.



368

SECTION 2.2
Goals:
Prerequisites:

Advice:

Exercises:

SECTION 2.3

Goals:

Prerequisites:

Advice:

Exercises:

Teaching Suggestions

Set Operations
To show how set identities are established and to introduce the most important such identities.
Chapter 1 and Section 2.1.

The relationship between set identities and logical equivalences becomes clear when set oper-
ations are expressed using set builder notation and logical operators. Show students several
different ways to prove a set identity, namely by showing that each side is a subset of the
other, by a membership table, by the use of logical equivalences, or by using set identities that
have already been established. Explain that the set identities in Table 1 are analogous to the
propositional equivalences in Section 1.3 and to Boolean identities that will be given in Chap-
ter 12. We touch briefly on how to count elements in the union of two sets, foreshadowing the
treatment of inclusion—exclusion in Chapter 8. The subsections on how computers represent
sets and on multisets and their applications will be of particular interest to computer science
students.

The notion of the symmetric difference of two sets is introduced in the exercise set and studied
in Exercises 38-49. Fuzzy sets, used in expert systems and artificial intelligence, are the subject
of Exercises 73-75. You can ask your creative students to make the connection between fuzzy
logic, introduced in Section 1.1, and fuzzy sets. Multisets are dealt with in Exercises 67-70.
The successor of a set is defined in the preamble to Exercise 65. Jaccard similarity and distance
are described in the preamble to Exercises 71 and 72.

Functions

To introduce the concept of a function, the notion of one-to-one functions, onto functions, and
the floor and ceiling functions.

Chapter 1 and Sections 2.1 and 2.2.

We define functions as assignments and their graphs as the sets of ordered pairs determined
by these assignments. As such, the graph of a function is a type of relation, a topic we cover
in Chapter 9. Although functions are discussed in a general setting, most of the examples
deal with functions from one discrete set to another, as is appropriate for a course in discrete
mathematics. Sometimes students have trouble with the definitions of one-to-one and onto
functions. Use Figure 5 to help make these concepts clear. Show students how to express
the definitions of one-to-one and onto in terms of quantifiers. Make sure your students have
a clear understanding of the floor and ceiling functions; there is often confusion about their
values at negative real numbers. Examples 29 and 30 show how these functions are applied
in basic problems in data communications. Table 1 displays useful properties of the floor
and ceiling functions. Make sure students are familiar with these properties. Proving results
about the floor and ceiling functions provides more practice with methods of proof. Example 33
illustrates computations with the factorial function; be sure to cover this if your students are
not already familiar with factorials. Finally, the notion of a partial function, important in the
study of Turing machines, is introduced.

Exercises 48-59 give students the opportunity to work with the properties of the floor and ceil-
ing functions, and Exercises 60—63 involve application of these functions to simple calculations
in data communications. Exercise 74 asks students to show that the notions of one-to-one and
onto are equivalent when the domain and codomain are finite sets of the same size. Exercise 81
establishes some important facts about the cardinality of finite sets and Exercise 82 establishes
an important result about infinite sets.



Teaching Suggestions 369

SECTION 2.4
Goals:

Prerequisites:

Advice:

Exercises:

SECTION 2.5
Goals:

Prerequisites:

Advice:

Exercises:

Sequences and Summations

To introduce terminology used for sequences and summations. To introduce recurrence rela-
tions and some methods for solving them. To work with summations and establish several
important summation formulae.

Chapter 1 and Section 2.3.

The first part of this section deals with sequences. Recurrence relations are introduced and
the method of iteration for solving them is discussed. Example 11 illustrates how recurrence
relations are used to solve a problem involving compound interest. The topic of integer se-
quences is covered, which requires more critical and creative thinking than the other material.
Examples 12-16 involve conjecturing a formula or rule for generating the terms of a sequence
when only the first few terms are known. Encourage students to try the On-Line Encyclo-
pedia of Integer Sequences, mentioned in this section. Students should also understand that
sequences and strings are just special types of functions.

The second part of the section introduces summation notation. Make sure students can
work with the different forms of this notation and with shifting indices in summations. In
particular, this will be helpful later when we prove summation formulae using mathematical
induction.

Exercises 9-10 ask students to conjecture the formula or rule for generating the terms of a
sequence from the first few terms; these exercises are more challenging than Exercises 5-6,
which ask students to list the terms of sequences defined in different ways. Exercises 7-8
are interesting since they point out that there are many different naturally arising sequences
that have the same initial terms. Exercises 18-24 deal with solving problems using recurrence
relations. Telescoping sums are defined in Exercise 35 and are used to find the sums of the
first n positive integers and the squares of these integers in Exercises 37 and 38, respectively.
Product notation is introduced in the exercise set. Assign Exercise 45 if you wish to cover
this.

Cardinality of Sets

To master the concept of the cardinality of sets. In particular, to understand the difference
between countable sets and uncountable sets.

Chapter 1 and Sections 2.1-2.3.

In general, the material in this section is more difficult than earlier material. Use the idea of
Hilbert’s Grand Hotel to explain the concept of countable sets. Students find this idea quite
helpful when learning about countable sets. Showing that the set of positive rational numbers
is countable is covered in Example 4. The proof that the set of real numbers is uncountable,
using the Cantor diagonalization method, is elegant and quite subtle; it is given in Example 5.
Motivate this by using a numerical example for the construction of a real number that was
not listed. Mention the notion of computable and uncomputable functions and explain why
uncomputable functions exists. Finally, better students may be fascinated by the continuum
hypothesis, briefly described at the end of the section.

Exercises 5-9 ask questions about finding rooms for newly arriving guests at Hilbert’s Grand
Hotel. Exercises 15 and 16 ask students to show that a set containing an uncountable set is
also uncountable and a subset of a countable set is countable, respectively. Exercises 25-26
and 31-32 provide alternative methods of proving that the set of positive rational numbers
is countable. Exercise 39 asks for a proof that there are functions that are not computable.
Exercise 41 guides students through a proof of the Schréoder-Bernstein theorem (Theorem 2
in the text).



370

SECTION 2.6
Goals:

Prerequisites:

Advice:

Exercises:

Overview:

SECTION 3.1
Goals:
Prerequisites:

Advice:

Teaching Suggestions

Matrices

To introduce basic properties of matrices and matrix arithmetic, including Boolean operations
on zero—one matrices.

Chapter 1 and Sections 2.3 and 2.4.

This section presents a brief review of the material on matrices needed in later sections of the
text. Students should understand how matrix multiplication is defined and know that it is
not commutative. The material on zero—one matrices and Boolean operations on them will be
new to most students. This material is used only in Section 9.4, when the transitive closure
of relations is discussed, and it may be omitted if you do not intend to cover that section.

Make sure students know what a diagonal matrix is (see Exercise 14). You may want to assign
Exercises 18-21, which deal with the notion of the inverse of a matrix.

CHAPTER 3
Algorithms

Section 3.1 introduces the concept of an algorithm. The purpose of this material is to en-
sure that students understand what an algorithm is and the different ways algorithms are
expressed. The section illustrates the concept of an algorithm by covering searching and sort-
ing algorithms. The notion of a greedy algorithm is also introduced. Section 3.2 introduces
asymptotic notations used to describe the growth of functions, including big- O, big-Omega,
and big-Theta notations. Section 3.3 describes how to express the complexity of an algorithm.
This is important since later chapters discuss a variety of algorithms and their complexity.
The notion of an algorithm paradigm is also discussed in Section 3.3. Appendices 2 and 3
are relevant to this chapter. In particular, Appendix 3 introduces pseudocode, which is used
throughout the chapter, and Appendix 2 reviews exponential and logarithmic functions, which
are important in the discussions of complexity.

Algorithms
To introduce the concept and basic properties of an algorithm.
Chapters 1 and 2.

The algorithm for finding the largest element in a finite sequence of integers provides a good
example of an algorithm since it is simple and it solves a useful problem. Students should
understand the steps used in actually solving a problem. First we find an algorithm, which
is expressed initially in English and then in pseudocode. Next, we study the complexity of
the algorithm. Then we construct a computer program to implement it. Finally we verify
the correctness of the program. We concentrate on the mathematical portions of the study
of algorithms in the text, namely, how to solve problems using algorithms (in this section),
how to study their complexity (in Section 3.3), and how to prove them correct (in Sections 5.4
and 5.5).

Introduce the problems of searching and sorting and present the linear and binary searches
and one or both of the bubble sort and the insertion sort. (We will study the complexity of
these algorithms later on.) This may be a good time to introduce the notion of a greedy
algorithm. The change-making algorithm presented here provides an easy introduction to this
topic and the question of whether a particular greedy algorithm produces optimal solutions.
Example 7 introduces the problem of the most possible talks that can be scheduled in a lecture



Teaching Suggestions 371

Exercises:

SECTION 3.2
Goals:

Prerequisites:

Advice:

Exercises:

SECTION 3.3
Goals:
Prerequisites:

Advice:

hall given their start and end times. This is a good example for examining different criteria
to be used at each step.

The subsection on the famous halting problem, which computer science majors should
see again in a Theory of Computation course, is optional. It is a beautiful example of proof
by contradiction, but the argument is subtle (and gives students difficulties), partly because
of its self-referential nature.

A variant of the binary search algorithm is introduced in Exercise 26. This version of the
algorithm stops if the middle term at any stage equals the desired integer. The ternary search
algorithm is introduced in Exercise 27; this exercise gives students the opportunity to develop
a search algorithm on their own, generalizing the binary search algorithm. The selection sort
is introduced and studied in Exercises 43-44 and the binary insertion sort in Exercises 49-51.
Exercises 60 and 62 ask for counterexamples that show that a particular criteria for each step
of a greedy algorithm does not always lead to an optimal solution. The notion of a stable
assignment is introduced in the preamble to Exercise 64, the deferred acceptance algorithm is
introduced in the preamble of Exercise 65, and a vote algorithm is introduced in the preamble
to Exercise 68.

The Growth of Functions

To introduce big-O and related big-Omega and big-Theta notation, and to show how to
estimate the size of functions using this notation.

Chapters 1 and 2.

Students have trouble with big-O notation. Often they cannot decide how to choose the
witnesses C' and k in the definition. Show them how different pairs of constants can be used as
witnesses. Give several different examples to illustrate the concept. Show how the definition of
this notation involves the use of existential and universal quantifiers. Cover Examples 5 and 6,
which give estimates for the sum of the n smallest positive integers and for n!, respectively.
Go over the useful big-O estimates for logarithms, powers, and exponential functions; these
provide useful guides for comparing the growth of common functions. Cover big-Omega and
big-Theta notation and discuss the connections between them and big-O notation. Indicate
the importance of big-O in estimating the complexity of algorithms. We will study this
formally in Section 3.3.

Exercises 21 and 22 ask that a list of functions be ordered so that each is big-O of the next
function on the list. Another type of asymptotic notation is introduced in the exercise set—
little-o notation, which depends on the notion of a limit. If your students have a satisfactory
background working with limits you may want to assign some of Exercises 63-71, which deal
with this concept. We will use the result in Exercise 74 when we use trees to study the
complexity of sorting algorithms in Section 11.2.

Complexity of Algorithms
To introduce computational complexity analysis.
Chapters 1 and 2 and Sections 3.1-3.2.

This section deals with complexity of algorithms. This is an important mathematical part of
computer science. We define different types of complexity but concentrate on time complexity.
Explain the distinction between worst-case and average-case complexity. Tell students the
merits, as well as the drawbacks, of using big-O estimates. Explain how the witnesses C' and
k in a big- O estimate have practical implications. Because average case complexity depends on
notions of probability, a topic not formally studied until Chapter 7, tell students in an informal



372

Exercises:

Overview:

SECTION 4.1
Goals:

Prerequisites:

Advice:

Teaching Suggestions

way how average-case analysis depends on the distribution of input values. The complexity
of matrix multiplication is studied and the problem of determining the best order for matrix-
chain multiplication is introduced—we return to this problem in the exercises of Section 9.1.
The notion of algorithmic paradigms is introduced in this section and brute-force algorithms
are discussed. (The algorithmic paradigm of greed was introduced in Section 3.1; among
the other algorithmic paradigms covered in the book are divide-and-conquer and dynamic
programming in Chapter 8 and backtracking in Chapter 11.) I suggest giving students an
informal introduction to tractable, intractable, solvable, unsolvable, NP, and NP-complete
problems. A more formal treatment of these topics can found at the conclusion of the last
section of the last chapter of the text.

Exercises 1-4 ask students to give big-O estimates when various segments of algorithms,
expressed as blocks of pseudocode, are carried out. Exercise 12 develops a big-Theta estimates
for the number of steps used by an algorithm; the big-Omega part of this is harder than the
big-O part. You may want to assign Exercise 14, which deals with Horner’s method for
evaluating polynomials. Have students compare the complexity of this algorithm with the
conventional method described in Exercise 13.

CHAPTER 4
Number Theory and Cryptography

Section 4.1 introduces some basic notions of number theory, including divisibility of integers
and congruences. Section 4.2 introduces base b representations of integers (including binary,
octal, and hexadecimal) and presents algorithms for integer arithmetic. Primes are discussed
in Section 4.3, including conjectures about primes. Section 4.3 also introduces greatest com-
mon divisors and the Euclidean algorithm. The fundamental theorem of arithmetic is also
introduced in Section 4.3. In Section 4.4, we see how to solve linear congruences. We also see
how to solve systems of linear congruences using the Chinese remainder theorem. Section 4.5
presents several important applications of congruences, namely pseudorandom number gen-
eration, hashing, and check digits. Finally, Section 4.6 provides an introduction to the basic
ideas of cryptography. In this section, both classical and modern cipher systems are stud-
ied. Public-key cryptography and two important cryptographic protocols—key exchange and
signed messages—are studied.

Divisibility and Modular Arithmetic

To introduce some fundamental concepts from number theory, including the division algorithm,
congruences, and the rules of modular arithmetic.

Chapters 1 and 2.

Be sure you mention that what is called the division algorithm is not really an algorithm,
because this is quite confusing. (We will present an algorithm that finds the quotient and
remainder in Section 4.2.)

Explain the difference between congruence notation and the mod function. Cover the
basic properties of congruences; we will need this material in Chapter 9 when we discuss
congruence modulo m as an equivalence relation. Be sure to mention that working with
congruences is similar to working with equalities, but that division of both sides of a congruence
by the same integer may not produce a valid congruence. If you plan on covering recursive



Teaching Suggestions 373

Exercises:

SECTION 4.2
Goals:

Prerequisites:

Advice:

Exercises:

SECTION 4.3
Goals:

Prerequisites:

Advice:

algorithms in Section 5.4, be sure to cover Corollary 2, which is used to develop an efficient
recursive algorithm for modular exponentiation.

You may want to cover the notion of arithmetic on Z,,. This material will be useful to
students who study abstract algebra in the future.

Exercises 21-22 establish the relationship between the congruence notation and the mod func-
tion. Exercises 40-42 ask that certain results pertaining to congruences be established. These
exercises give students some practice working with the notion of a congruence. Exercises 48-50
asks for proofs of properties of addition and multiplication in Z,, .

Integer Representations and Algorithms

To study representations of integers in different bases, including binary, octal, and hexadecimal
representations, and to introduce algorithms involving integers based on these representations.

Chapters 1-3 and Section 4.1.

If your students do not have practice using different bases for representing integers, spend some
time on the discussion of such representations in this section. Show students how to convert
from one base to another (see Algorithm 1). The algorithms for addition, subtraction, and
multiplication of integers were the first procedures to be called algorithms. Students need to
study this type of algorithm in order to understand how computers perform arithmetic. (Note:
We will introduce a more efficient algorithm for multiplication in Section 8.3.) Performing
modular exponentiation is important in cryptography; it is presented as Algorithm 5.

The exercise set introduces other ways to represent integers, including those important in
computer arithmetic. In particular, balanced ternary expansions are described in Exercise 30,
one’s complement representations are defined in the preamble to Exercise 40, two’s complement
representations are defined in the preamble to Exercise 46, binary coded decimal expansions are
discussed in Exercise 53, and Cantor expansions are introduced in the preamble to Exercise 54.
The simple conversions between binary, octal, and hexadecimal notations are the subject of
Exercises 5-19. The complexity of modular exponentiation is the subject of Exercise 64.

Primes and Greatest Common Divisors

To introduce some fundamental concepts from number theory, including primality, prime
factorization, and greatest common divisors. To introduce some important conjectures about
primes.

Chapters 1-2 and Sections 3.1 and 4.1.

Students often do not see that when factoring an integer it is necessary to do trial divisions
only by integers less than or equal to the square root of the integer being factored. This is
emphasized in Example 3. Show how to use the sieve of Eratosthenes to find all primes less
than a positive integer. Be sure to prove that there are infinitely many primes (Theorem 3);
this is one of most elegant and famous proofs in mathematics. Briefly address the subject
of primes in arithmetic progressions, addressing Dirichlet’s theorem and the result of Green
and Tao about arithmetic progressions of prime numbers. Be sure to mention the twin prime
conjecture, the recent proof by of the bounded gap conjecture, and improvements to Zhang’s
bound. These demonstrate that new results are still being discovered and also illustrate how
an open question can inspire work on similar or partial results. Discussing the search for new
Mersenne primes (which can be monitored on the web) also illustrates that number theory
is an active field. Briefly discuss conjectures about primes and some of the famous open
questions about them, such as Goldbach’s conjecture. New discoveries about prime numbers
often find their way into the popular press and are the focus of many websites.



374

Exercises:

SECTION 4.4
Goals:

Prerequisites:

Advice:

Exercises:

SECTION 4.5
Goals:

Prerequisites:

Advice:

Teaching Suggestions

Introduce the greatest common divisor and least common multiple of two integers. Make
it clear that using prime factorizations to find greatest common divisors is easy once these
factorizations are known, but that factoring integers is extremely time consuming. Next,
introduce the Fuclidean algorithm. Besides being one of the oldest algorithms invented, it is
an excellent illustration of the concept of an algorithm. We will study the complexity of the
Euclidean algorithm in Section 5.3. (We defer the complexity analysis to that section because
we will need an estimate for the size of Fibonacci numbers, which we will establish there.)

After showing that the greatest common divisor of two positive integers can be expressed
as a linear combination of these integers, you can show that the prime factorization of an
integer is unique (up to the order of the factors); the fact that every positive integer has a
prime factorization is proved in Section 5.2.

Exercise 11 asks for a proof that log, 3 is irrational; it is a simple, but challenging, exercise
that follows from the fundamental theorem of arithmetic. The Euler ¢-function is introduced
in the preamble to Exercise 21. The extended Euclidean algorithm is covered in Exercises 41—
45. Exercises 54 and 55 asks students to adapt the proof in the text that there are infinitely
many primes to prove that there are infinitely many primes of the forms 3k 4+ 2 and 4k + 3,
respectively. Exercises 56 and 57 challenge students to present two different ways to show that
the set of positive rational numbers is countable using material from this section.

Solving Congruences

To learn how to solve linear congruences and simultaneous systems of linear congruences. To
introduce Fermat’s little theorem, pseudoprimes, primitive roots, and discrete logarithms.

Chapters 1 and 2 and Sections 4.1 and 4.3.

Introduce the concept of a linear congruence. Explain what an inverse modulo m is and how
to use inverses to solve linear congruences. Describe how to use the Euclidean algorithm to
find modular inverses. Then introduce systems of linear congruences using Sun-Tsu’s puzzle
as motivation. Introduce the Chinese remainder theorem and explain the proof of the part
of the theorem that asserts existence of a simultaneous solution. You may want to also show
how to solve systems of linear equations by back substitution, besides using the construction
in the proof of the theorem to find solutions. You may also want to illustrate how arithmetic
with large integers can be carried out using the Chinese remainder theorem.

Present Fermat’s little theorem and illustrate its use in computations. Introduce the no-
tion of a pseudoprime and discuss the importance of pseudoprimes for finding large primes.
You may want to discuss Carmichael numbers too. Introduce the notions of primitive roots.
Discuss discrete logarithms, especially if you plan to cover cryptographic protocols in Sec-
tion 4.6.

Exercise 19 outlines a proof of Fermat’s little theorem. Exercise 30 establishes the uniqueness
part of the Chinese remainder theorem. Exercise 37 uses Fermat’s little theorem to show that
341 is a pseudoprime to the base 2. Miller’s test and the concept of a strong pseudoprime is
introduced in the preamble to Exercise 44. Quadratic residues are introduced in the preamble
to Exercise 58 and addressed in Exercises 58—64.

Applications of Congruences

To introduce three important applications of congruences, which show the usefulness of number
theory and also are important in their own right.

Chapters 1 and 2 and Sections 4.1, 4.3, and 4.4.

Explain what a hashing function is and explain how to h(k) = k mod m for hashing. Describe
what a collision is and describe how to use a linear probing function to resolve collisions.



	Teaching Suggestions
	The Foundations: Logic and Proofs
	Basic Structures: Sets, Functions, Sequences, Sums, and Matrices
	Algorithms
	Number Theory and Cryptography
	Induction and Recursion
	Counting
	Discrete Probability
	Advanced Counting Techniques
	Relations
	Graphs
	Trees
	Boolean Algebra
	Modeling Computation


