A01_KLEI7369_08_SE_IRM.QXD 3/22/07 10:17 AM Page i Team B ve403; #EQY107:Kleitz_IRM:

Instructor's Resource Manual to accompany

DIGITAL ELECTRONICS A Practical Approach

Eighth Edition

William Kleitz

Containing

Solutions and Answers to In-Text Problems William Kleitz, Tompkins Cortland Community College

Solutions to Standard Logic Laboratory Manual Michael Wiesner and Vance Venable

> **Test Item File** Sohail Anwar

Upper Saddle River, New Jersey Columbus, Ohio This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their courses and assessing student learning. Dissemination or sale of any part of this work (including on the World Wide Web) will destroy the integrity of the work and is not permitted. The work and materials from it should never be made available to students except by instructors using the accompanying text in their classes. All recipients of this work are expected to abide by these restrictions and to honor the intended pedagogical purposes and the needs of other instructors who rely on these materials.

Copyright © 2008 by Pearson Education, Inc., Upper Saddle River, New Jersey 07458.

Pearson Prentice Hall. All rights reserved. Printed in the United States of America. This publication is protected by Copyright and permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department.

Pearson Prentice Hall[™] is a trademark of Pearson Education, Inc. **Pearson**[®] is a registered trademark of Pearson plc **Prentice Hall**[®] is a registered trademark of Pearson Education, Inc.

Instructors of classes using Kleitz, *Digital Electronics: A Practical Approach, Eighth Edition*, may reproduce material from the instructor's resource manual for classroom use.

10 9 8 7 6 5 4 3 2 1 ISBN-13: 978-0-13-175736-3 ISBN-10: 0-13-175736-9

EQA

This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their courses and assessing student learning. Dissemination or sale of any part of this work (including on the World Wide Web) will destroy the integrity of the work and is not permitted. The work and materials from it should never be made available to students except by instructors using the accompanying text in their classes. All recipients of this work are expected to abide by these restrictions and to honor the intended pedagogical purposes and the needs of other instructors who rely on these materials.

Copyright © 2008 by Pearson Education, Inc., Upper Saddle River, New Jersey 07458.

Pearson Prentice Hall. All rights reserved. Printed in the United States of America. This publication is protected by Copyright and permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department.

Pearson Prentice Hall[™] is a trademark of Pearson Education, Inc. **Pearson**[®] is a registered trademark of Pearson plc **Prentice Hall**[®] is a registered trademark of Pearson Education, Inc.

Instructors of classes using Kleitz, *Digital Electronics: A Practical Approach, Eighth Edition*, may reproduce material from the instructor's resource manual for classroom use.

10 9 8 7 6 5 4 3 2 1 ISBN-13: 978-0-13-243579-6 ISBN-10: 0-13-243579-9

Preface

This *Instructor's Resource Manual* is part of the extensive package of ancillary material available to enhance the teaching and learning process. These products represent the most thorough selection of print, electronic, multimedia, and Internet tools available. This package underscores Prentice Hall's commitment to enable you to prepare and deliver readily the best content presentations and student learning and testing tools. These products very effectively complement the parent textbook, *Digital Electronics: A Practical Approach, Eighth Edition,* the best-selling work in this discipline by respected author William Kleitz.

Components in this *Instructor's Resource Manual* are:

- Solutions and Answers to In-text Problems, by William Kleitz
- Solutions to the Standard Logic Laboratory Manual to accompany Digital Electronics (ISBN 0-13-223982-5), by Michael Wiesner and Vance Venable.
- Test Item File containing over 1000 additional multiple-choice questions that can be used to develop weekly quizzes, tests, or final exams.

Other parts of the overall ancillary package from Prentice Hall are:

 Two CD-ROM's packaged with each copy of the parent textbook, containing: Selected schematics from the text rendered in Multisim 6.0, 7.0, 8.0, and 9.0.
 Solutions to in-text Altera CPLD examples Solutions to in-text Xilinx CPLD examples Texas Instruments' fixed-function data sheets

- PowerPoint slides on CD-ROM (ISBN 0-13-223981-7) containing: All figures from the text Lecture notes for all chapters Also available online.
 - Three Laboratory Manuals
 Standard Logic

 Laboratory Manual to accompany Digital
 Electronics, by Michael Wiesner and Vance
 Venable (ISBN 0-13-223982-5)
 - 2. Altera CPLDs Digital Logic Simulation and CPLD Programming, by Steve Waterman (DeVry University) (ISBN 0-13-171514-3)
 - Xilinx CPLDs *Digital Electronics Laboratory Experiments*, by James Stewart and Chao-Ying Wang (DeVry University) (ISBN 0-13-113124-9)
- TestGen, a computerized test bank for producing customized tests and quizzes (ISBN 0-13-243607-8)
- *Companion Website*, a student resource containing additional multiple-choice questions and other textbook-related links, found at http://www.prenhall.com/kleitz

For more information about these supplements, contact your Prentice Hall sales representative. And for more information about other new technology products, visit www.prenhall.com

Œ

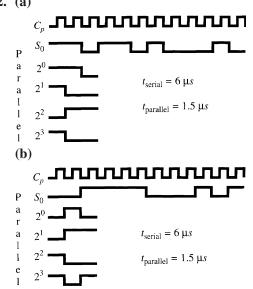
Contents

Solutions and Answers to In-text Problems......1

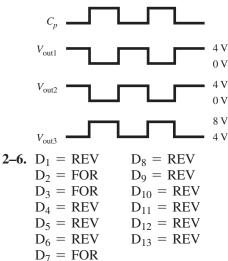
Solutions to the Standard Logic Laboratory Manual.....49

Æ

Solutions and Answers to In-text Problems

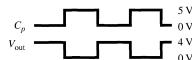

Chapter 1

- **1–1.** (a) 6_{10} (b) 11_{10} (c) 9_{10} (d) 7_{10} (e) 12_{10} (f) 75_{10} (g) 55_{10} (h) 181_{10} (i) 167_{10} (j) 118_{10}
- **1–2.** (a) $1011 \ 1010_2$ (b) $1101 \ 0110_2$ (c) $0001 \ 1011_2$ (d) $1111 \ 1011_2$ (e) $1001 \ 0010_2$
- **1–3.** (a) 31_8 (b) 35_8 (c) 134_8 (d) 131_8 (e) 155_8
- **1–4.** (a) $100\ 110_2$ (b) $111\ 100_2$ (c) $110\ 001_2$ (d) $011\ 010_2$ (e) $101\ 111_2$
- **1–5.** (a) 23_{10} (b) 31_{10} (c) 12_{10} (d) 58_{10} (e) 41_{10}
- **1–6.** (a) 176_8 (b) 61_8 (c) 127_8 (d) 136_8 (e) 154_8
- **1–7.** (a) B9₁₆ (b) DC₁₆ (c) 74_{16} (d) FB₁₆ (e) C6₁₆
- **1–8.** (a) $1100\ 0101_2$ (b) $1111\ 1010_2$ (c) $1101\ 0110_2$ (d) $1010\ 1001\ 0100_2$ (e) $0110\ 0010_2$
- **1–9.** (a) 134_{10} (b) 244_{10} (c) 146_{10} (d) 171_{10} (e) 965_{10}
- **1–10.** (a) $7F_{16}$ (b) 44_{16} (c) $6B_{16}$ (d) $3D_{16}$ (e) $1D_{16}$
- **1–11.** (a) 98_{10} (b) 69_{10} (c) 74_{10} (d) 36_{10} (e) 81_{10}
- **1–12.** (a) $1000 0111_{BCD}$ (b) $0001 0100 0010_{BCD}$ (c) $1001 0100_{BCD}$ (d) $0110 0001_{BCD}$ (e) $0100 0100_{BCD}$


- **1–13.** (a) 010 0101
 - **(b)** 0100100 0110001 0110100
 - (c) 1001110 0101101 0110110
 - (d) 1000011 1010000 1010101
 - (e) 1010000 1100111
- **1–14.** (a) 25 (b) 243134 (c) 4E2D36 (d) 435055 (e) 5067
- **1–15.** (a) Tank A, temperature high; tank C, pressure high
 - (b) Tank D, temperature and pressure high
 - (c) Tanks B and D, pressure high
 - (d) Tanks B and C, temperature high
 - (e) Tank C, temperature and pressure high
- **1–16.** 0001 0010 0000_{BCD}
- **1–17.** (a) sku43 (b) 534B553433₁₆
- **1–18.** (a) 68HC11EMFN, C3 (b) 27C64, A8 (c) 2N3904, F4 (d) DB9, E1
- 1-19. 16-MAR 1995 Revision A
- **1–20.** (a) 2 (b) 2 (c) 4 (d) 1
- **E1–1.** (a) 0000 0101
 - (**b**) Eleven
 - (c) 0E
 - (**d**) 27
- **E1–2.** (a) 40
 - **(b)** 55
 - (c) Tank B pressure and temperature are
 - HIGH.
 - (d) All pressures are HIGH.

Chapter 2

2-1. (a) $t_p = 1/2$ MHz = 0.5 μ s (b) $t_p = 1/500$ kHz = 2 μ s (c) $t_p = 1/4.27$ MHz = 0.234 μ s (d) $t_p = 1/17$ MHz = 58.8 ns (e) $f = 1/2 \ \mu$ s = 500 kHz (f) $f = 1/100 \ \mu$ s = 10 kHz (g) $f = 1/0.75 \ ms = 1.33 \ kHz$ (h) $f = 1/1.5 \ \mu$ s = 0.667 MHz **2-2.** (a)


- **2-3.** (a) $8 \times (1/3.7 \text{ MHz}) = 2.16 \,\mu\text{s}$ (b) 1.21 μ s occurs during the 5th period which is LOW.
- **2-4.** (a) $3 \times (1/8 \text{ MHz}) = 0.375 \ \mu \text{s}$ (b) $6 \times (1/4.17 \text{ MHz}) = 1.44 \ \mu \text{s}$
- 2–5.

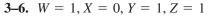
- **2-7.** $V_1 = 0$ V $V_5 = 4.3$ V $V_2 = 4.3$ V $V_6 = 5.0$ V $V_3 = 4.3$ V $V_7 = 0$ V $V_4 = 0$ V
- **2–8.** That diode will conduct, lowering V_6 to 0.7 V ("AND").
- **2–9.** That diode will conduct, raising V_7 to 4.3 V ("OR").
- **2–10.** $V_{\text{out1}} \approx 0 \text{ V}, V_{\text{out2}} \approx 5 \text{ V}$
- 2–11.

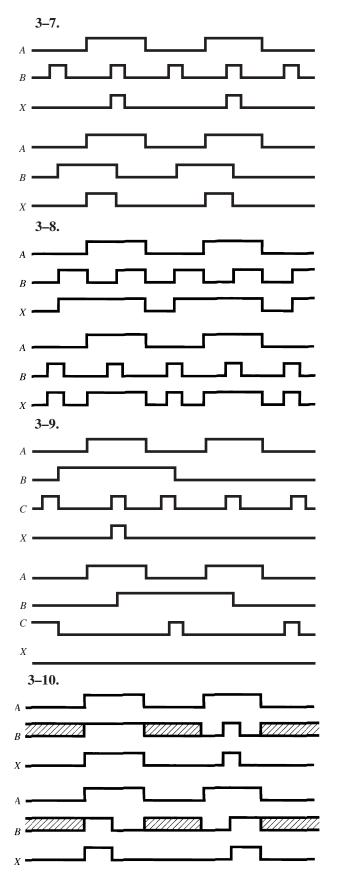
- **2–12.** Input signal to BASE (B); output signal from COLLECTOR (C).
- 2-13. The transistor is cutoff; $V_{out} = 5 \text{ V} \times 1 \text{M} \Omega / (330 \Omega + 1 \text{ M} \Omega)$ $V_{out} = 4.998 \text{ V}$
- 2-14. V_{out} is lowered with a smaller load resistor; $V_{\text{out}} = 5 \text{ V} \times 470 \Omega / (330 \Omega + 470 \Omega)$ $V_{\text{out}} = 2.94 \text{ V}$
- **2–15.** Because, when the transistor is turned on (saturated), the collector current will be excessive ($I_C = 5 \text{ V}/R_C$).
- **2–16.** $I_C = 5 \text{ V}/100 \ \Omega = 50 \text{ mA}$
- **2–17.** The totem-pole output replaces R_C with a transistor that acts like a variable resistor. The transistor prevents excessive collector current when it is cut off and provides a high-level output when turned on.
- 2–18.

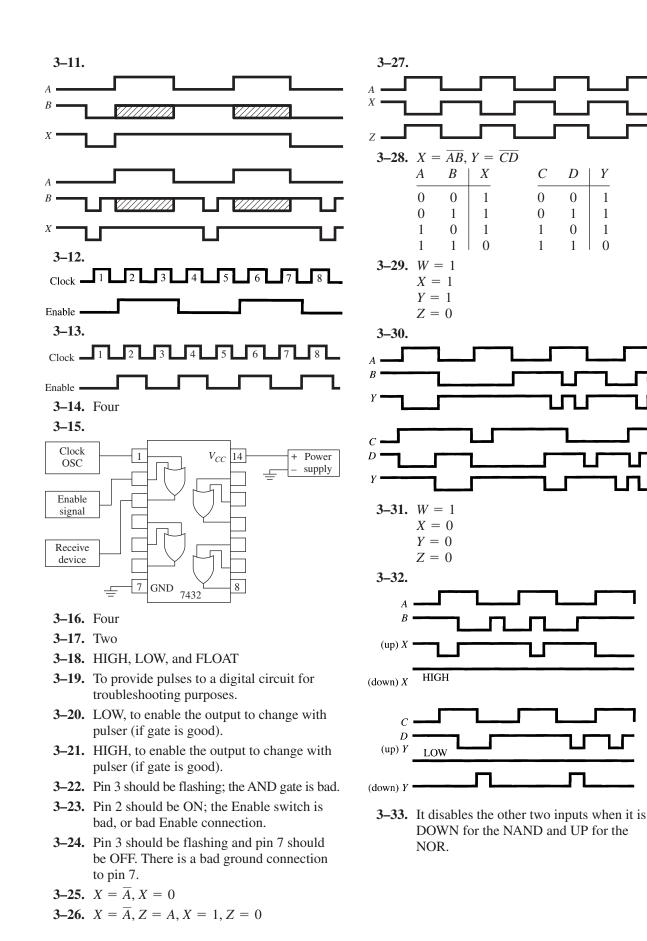
- **2–19.** (a) 8.0 MHz (b) 125 ns
- **2–20.** (a) 9.8304 MHz (b) 101.73 ns
- 2-21. P3 parallel, P2 serial
- **2–22.** reverse
- **2–23.** A HIGH on pin 2 will turn Q1 on, making RESET_B approximately zero.
- **E2–1.** (a) Let
 - **(b)** 24
- E2-2. (a) Sit
- **(b)** 3
- E2-3. (a) Cp = 5V/0V, Vout3 = 0V/5Vinverse of each other (b) Cp = 5V/0V, Vout3 = 0V/8V
 - (c) Cp and Vout3 are in phase.

- E2-4. (a) Cp = 5V/0V, Vout3 = 10V/6V, in phase
 (b) Cp = 5V/0V, Vout3 = 10V/8V
 (c) it would be inverted.
 E2-5. (a) V1 = 4.3V, V2 = 0V, V3 = 4.3V,
- E2-5. (a) V1 = 4.5V, V2 = 0V, V3 = 4.5V, V4 = 0.7V(b) V1 = 0V, V2 = 4.3V, V3 = 0V, V4 = 5.0V (Both diodes are reverse biased.)
- E2-6. (a) Cp = 5V/0V, Vout = 0V/5V, inverse of each other (b) Cp = 5V/0V, Vout = 0V/8V

Chapter 3

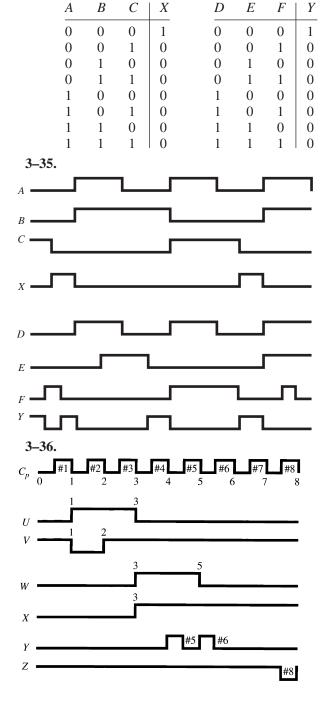

3–1.	(a)	A	В	С	X	
		0	0	0	0	
		0	0	1	0	
		0	1	0	0	
		0	1	1	0	
		1	0	0	0	
		1	0	1	0	
		1	1	0	0	
		1	1	1	1	
	(b)	A	В	С	D	X
		0	0	0	0	0
		0	0	0	1	0
		0	0	1	0	0
		0	0	1	1	0
		0	1	0	0	0 0
		0	1	0	1	0
		0	1	1	0	0
		0	1	1	1	0
		1	0	0	0	0
		1	0	0	1	0
		1	0	1	0	0
		1	0	1	1	0
		1	1	0	0	0
		1	1	0	1	0
		1	1	1	0	0
		1	1	1	1	1
	-8	-	FC			

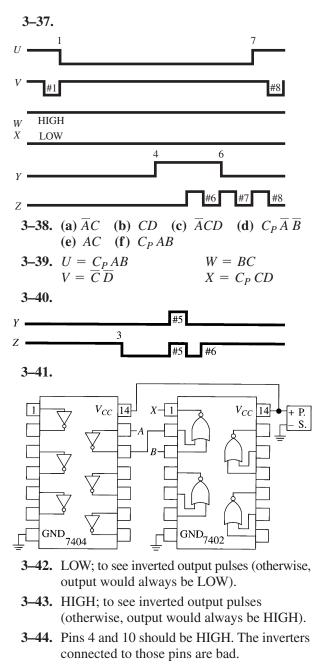

- **3–2.** $2^8 = 256$
- 3-3. (a) The output is HIGH whenever all inputs are HIGH; otherwise, the output is LOW.(b) The output is HIGH whenever any


input is HIGH; otherwise, the output is LOW.

3–4. W = 0, X = 1, Y = 0, Z = 0

3-5. X = ABC X = ABCDX = A + B + C





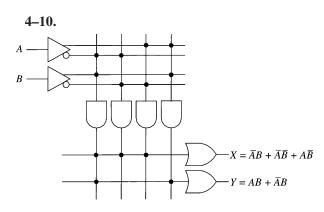
SOLUTIONS AND ANSWERS TO IN-TEXT PROBLEMS

A01_KLEI7369_08_SE_IRM.QXD 3/12/07 12:16 PM Page 5 Team B ve403, PEQY107:Kleitz_IRM:

3–34. $X = \overline{A + B + C}$ $Y = \overline{D + E + F}$

- **3–45.** There is no problem.
- **3–46.** The inverter is not working.
- **3–47.** With all inputs HIGH, pin 8 should be LOW. Next try making each of the 8 inputs LOW, one at a time, while checking for a HIGH at pin 8.
- **3–48.** Pins 8 and 12 should be LOW. The NORs connected to those pins are bad.
- **3-49.** AND 74HC08; U3:A = location C2, U3:B = location D2 OR - 74HC32; location B7
- 3-50. (a) flashing (b) HIGH
- **3–51.** pin 20 = LOW (GND), pin 40 HIGH (+5)

- **3–52.** Because they are all part of one IC package.
- **3–53.** Place probe "A" on the input of the inverter (WATCHDOG_CLK). Using the same settings for probe "B" as "A," place probe "B" on the output of U4:A. "B" should be the complement of "A."
- 3-54. all HIGH
- **3–55.** OE_B
- **E3–1.** (a) X = 1, Y = 1
- **(b)** X = 0, Y = 0Y (c) A В Χ B Α 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 1 1 1 1 1 1 1 1 1 E3-2. (a) AND (**b**) OR E3-3. (a) Up (b) Down **E3–4.** Up ('1') E3-5. (a) Vcc (b) Logic pulser (c) Logic probe (d) Ground (e) Vcc E3-6. Password for Options-Circuit Restrictions Hide component faults is: wk5e (a) Gates 2 and 3 **(b)** Gate 3 (c) Gates 1 and 4 **E3-7.** (a) X = 0, Y = 0**(b)** X = 1, Y = 1(c) A В Y B Χ A 0 0 1 0 0 1 0 1 1 0 1 0 0 0 1 0 1 1 0 0 1 1 1 1 E3-8. (a) NOR (b) NAND E3-9. (a) Yes (b) X = AB(c) 6mS **E3–10.** (a) T1 = 6mS, T2 = 10mS,T2 - T1 = 4mS**(b)** Two (c) 1mS
- E3-11. (a) NAND (b) NOR E3-12. (a) OR


(b) NAND

- **E3-13.** (a) X = C', D', Cp(b) Y = BD'
- E3–14. Password for Options-Circuit Restrictions-Hide component faults is: wk5e
 (a) U1b, U1c, are bad
 (b) U2c, U2d are bad
- E3–15. Password for *Options-Circuit Restrictions-Hide component faults* is: wk5e
 (a) U1b, U1c, U1d are bad
 (b) U2a, U2c are bad
- E3–16. Password for *Options-Circuit Restrictions-Hide component faults* is: wk5e
 (a) U1a, U1c are bad
 (b) U2c, U2d are bad
- E3–17. Password for Options-Circuit Restrictions-Hide component faults is: wk5e
 (a) U1b, U1c are bad
 (b) U2a, U2d are bad

Chapter 4

- **4–1.** The 7400-series uses hard-wired logic. The designer must use a different IC for each logic function. Programmable logic contains thousands of logic gates that can be custom-configured by the designer to perform any logic desired.
- **4–2.** Schematic capture using a CAD system or a Hardware Description Language like VHDL.
- 4–3. Hardware Description Language
- **4–4.** (1) Define the problem, (2) develop the equations, (3) enter the design, (4) simulate the I/O conditions, (5) program the PLD, (6) test the PLD with actual I/O.
- **4–5.** (a) 3, (b) 5
- **4–6.** A small indented circle
- **4–7.** They receive programming information from a PC and program the on-board CPLD that can then be tested with actual I/O signals.
- **4–8.** (a) 3
 - **(b)** 2
 - (c) 3
- **4–9.** The PLA provides programmable OR gates for combining the product terms.

A01_KLEI7369_08_SE_IRM.QXD 3/12/07 12:16 PM Page 7 Team B ve403 PEQY107:Kleitz_IRM:

- **4–11.** So that it won't lose its programmed logic design when power is removed.
- 4–12. (a) 2500 usable gates, 128 macrocells(b) 2400 usable gates, 108 macrocells
- **4–13.** The look-up table method

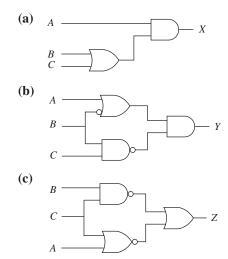
4–14.	Inpu	its	Output	
	A	В	X	
	0	0	1	
	0	1	0	
	1	0	1	
	1	1	0	

- **4–15.** They must be re-programmed.
- **4–16.** Schematic entry using a CAD system and VHDL entry using a text editor.
- **4–17.** It translates the information from the design entry stage into a binary file that is later used to program the CPLD.
- **4–18.** It defines the IC pin as an input or output and connects it to the internal CPLD circuitry.
- 4-19. Text
- **4–20.** (a) Library declares which VHDL library to use.
 - (b) Entity defines the input/output ports.
 - (c) Architecture defines the logic expressions.
- 4-21. ENTITY and 3 IS

PORT(

```
A, B, C: IN bit;
```

X :OUT bit);


END and3;

4–22. ARCHITECTURE arc OF and 3 IS BEGIN

X <= (A AND B AND C);

END arc;

4–23.

Chapter 5

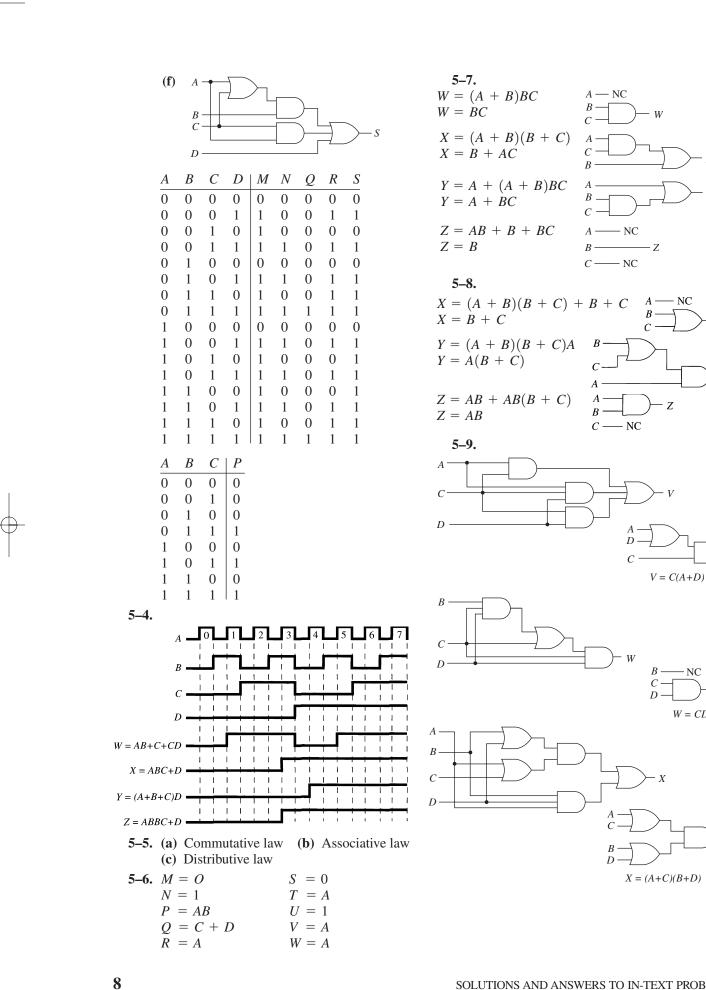
5-1.
$$W = (A + B)(C + D)$$

 $X = AB + BC$
 $Y = (AB + B)C$
 $Z = (AB + B + (B + C))D$
5-2. (a) $R = TPF$
(b) $G = TP(M + F)$

(c)
$$B = F(H + T + P)$$

5–3.

(


(

(a) $A \xrightarrow{B} \xrightarrow{C} \xrightarrow{D} \xrightarrow{M} M$

(b)
$$A \xrightarrow{B} \xrightarrow{D} N$$

d)
$$A \xrightarrow{B} \xrightarrow{Q} Q$$

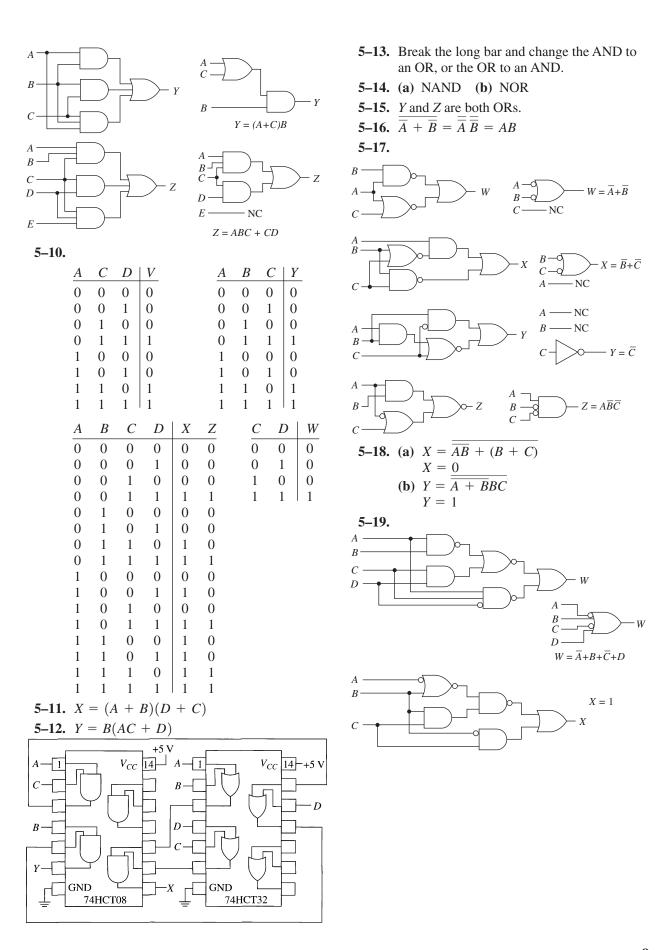
(e)
$$A \longrightarrow R$$

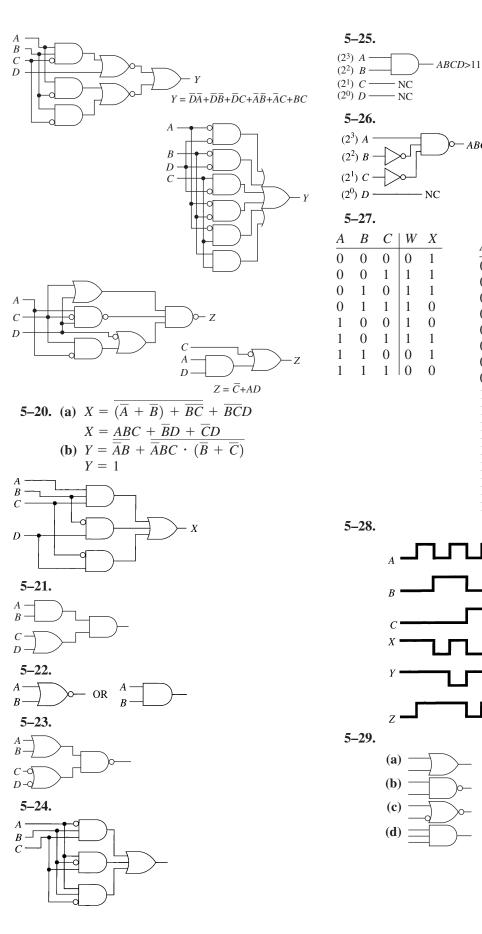
SOLUTIONS AND ANSWERS TO IN-TEXT PROBLEMS

Χ

NC

Ζ


NC


W = CD

Χ

W

X

SOLUTIONS AND ANSWERS TO IN-TEXT PROBLEMS

ABCD>7 and <10

В

A

0 0

0 0

0 0

0 1

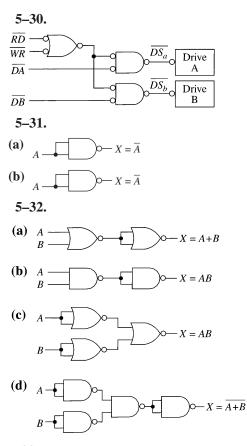
0 1

1 0

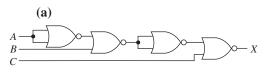
1 1

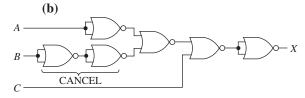
1 1

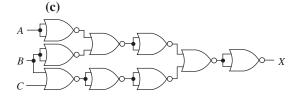
1 1

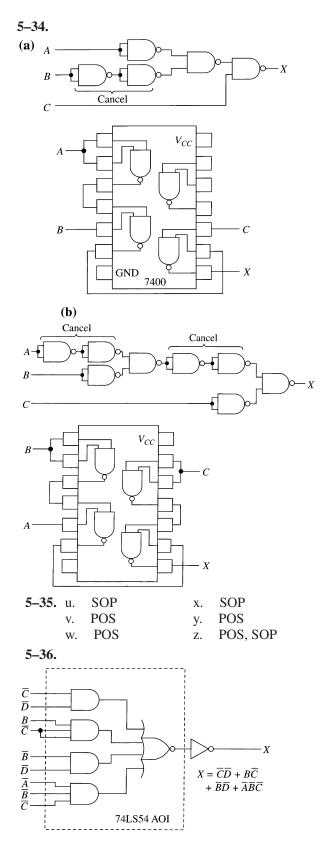

ւր

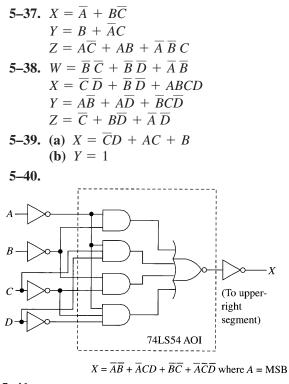
С

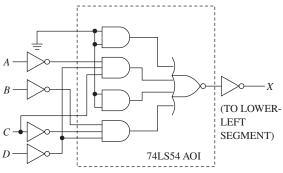

 $D \mid Y$

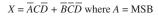

1 1


Ζ




5-33.



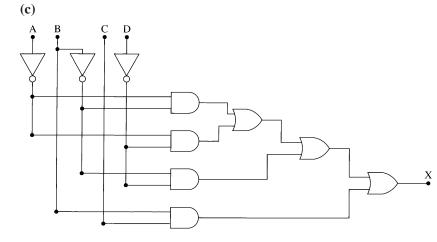


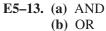
5-41.

- 5-42. Pin 6 should be ON; bad gate.
- **5–43.** The IC checks out OK. The problem is that pin 9 should be connected to pin 10 (not 9 to GND).
- 5–44. The output (pin 8) would be stuck high.

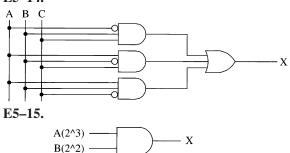
5–45. WATCHDOG_EN
$$\cdot$$
 Qa

5–46. WATCHDOG_EN \cdot Qa + Qb

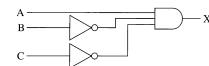

5-47. (a) pin
$$6 = \overline{P1.0} + \overline{A15}$$
 (b) AND
(c) quad 2 input AND
(d) \overline{RD} is LOW or \overline{WR} is LOW

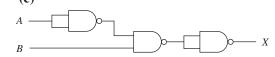

- **5–48.** Pin 20 of U10 goes LOW if RESET and A15 are both LOW.
- **E5-1.** (a) B = KD + HD(b) B = D(K + H)
- **E5-2.** (a) Seven (b) X = AB + BC

(b) X = BC + A**E5-4.** (a) X = (A + B)(B + C) + (B + C)(b) Six (c) X = B + C**E5–5.** (a) 2 **(b)** X = BC(c) R - X CE5-6. (a) Ten (b) X = ABD + CD(c) Α Х Ð C-**E5–7.** X = AB'C' + A'BC' + AB'C**E5–8.** X = A'BC' + AB'C + A'BC + ABC**E5–9.** (a) 2 **(b)** X = B'C'**E5–10.** (a) X = ((A + B)'(B + C))'**(b)** 7 (c) X = A + C' + B**E5–11.** (a) 6 **(b)** X = B' + C'(c) C


E5–3. (a) 5

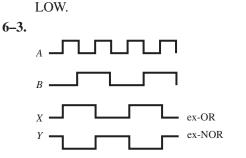
E5-12. (a) 11 (b) X = A'B' + A'D' + B'D' + BC




E5-16.

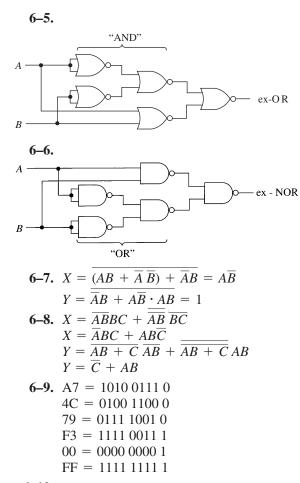
- E5–17. Password for *Options-Circuit Restrictions-Hide component faults* is: wk5e
 - (a) U1b is bad (b) U1a is bad
- E5–18. Password for *Options-Circuit Restrictions-Hide component faults* is: wk5e(a) U1a is bad(b) U1b is bad
- E5–19. Password for *Options-Circuit Restrictions-Hide component faults* is: wk5e
 (a) U2b is bad
 (b) U3a is bad
- E5–20. Password for *Options-Circuit Restrictions-Hide component faults* is: wk5e
 (a) U2b is bad
 (b) U1b is bad
- E5–21. Password for *Options-Circuit Restrictions-Hide component faults* is: wk5e(a) U1a is bad(b) U2a is bad
- E5-22. Password for Options-Circuit Restrictions-Hide component faults is: wk5e
 (a) U3a is bad
 (b) U2a is bad

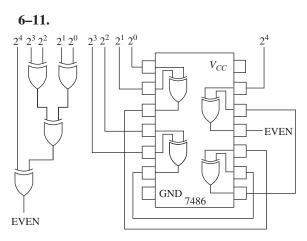
SOLUTIONS AND ANSWERS TO IN-TEXT PROBLEMS


- **E5–23.** Password for *Options-Circuit Restrictions-Hide Component faults* is: **wk5e**
 - (a) 3(b) Gate 2
 - (b) Gate 2 (c)

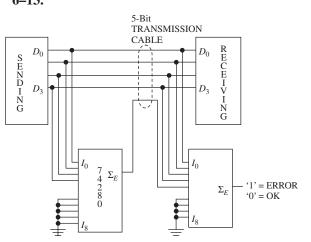
- **E5–24.** Password for *Options-Circuit Restrictions-Hide Component faults* is: **wk5e**
 - (a) X = (A'B')'
 - **(b)** X = A + B
 - (c) No
 - (d) Yes, Gate 1

Chapter 6

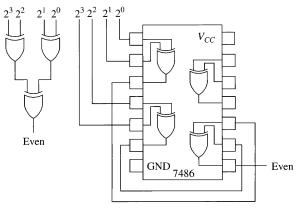

- 6–1. (a) Exclusive-OR produces a HIGH output for one or the other input HIGH, but not both.(b) Exclusive-NOR produces a HIGH output for both inputs HIGH or both inputs LOW.
- 6-2. (a) An OR outputs a HIGH for both inputs HIGH.(b) An AND outputs a LOW for both inputs

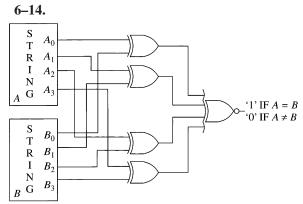


6-4. $W = \overline{AB} \cdot A + B = AB + \overline{A} \overline{B}$ (ex-NOR) $X = AB + \overline{A} + \overline{B} = AB + \overline{A} \overline{B}$ (ex-NOR)


$$Y = \overline{AB} \cdot \overline{AB} = \overline{AB} + A\overline{B} \text{ (ex-OR)}$$

 $Z = \overline{\overline{AB}} + \overline{\overline{A} + \overline{B}} = AB$ (neither)





6-15. Yes; LOW