Instructor's Solutions Manual

JOHN POLKING

Rice University

DAVID ARNOLD

College of the Redwoods

Differential Equations With Boundary Value Problems

SECOND EDITION

POLKING

BOGGESS

ARNOLD

Editor-in-Chief: Sally Yagan

Supplement Editor: Jennifer Urban

Executive Managing Editor: Kathleen Schiaparelli

Assistant Managing Editor: Karen Bosch Production Editor: Amanda Phillips

Supplement Cover Manager: Paul Gourhan Supplement Cover Design: Joanne Alexandris

Manufacturing Buyer: Ilene Kahn

Manufacturing Manager: Alexis Heydt-Long

© 2006 Pearson Education, Inc. Pearson Prentice Hall Pearson Education, Inc. Upper Saddle River, NJ 07458

All rights reserved. No part of this book may be reproduced in any form or by any means, without permission in writing from the publisher.

Pearson Prentice HallTM is a trademark of Pearson Education, Inc.

The author and publisher of this book have used their best efforts in preparing this book. These efforts include the development, research, and testing of the theories and programs to determine their effectiveness. The author and publisher make no warranty of any kind, expressed or implied, with regard to these programs or the documentation contained in this book. The author and publisher shall not be liable in any event for incidental or consequential damages in connection with, or arising out of, the furnishing, performance, or use of these programs.

This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their courses and assessing student learning. Dissemination or sale of any part of this work (including on the World Wide Web) will destroy the integrity of the work and is not permitted. The work and materials from it should never be made available to students except by instructors using the accompanying text in their classes. All recipients of this work are expected to abide by these restrictions and to honor the intended pedagogical purposes and the needs of other instructors who rely on these materials.

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

ISBN 0-13-186235-9

Pearson Education Ltd., London

Pearson Education Australia Pty. Ltd., Sydney

Pearson Education Singapore, Pte. Ltd.

Pearson Education North Asia Ltd., Hong Kong

Pearson Education Canada, Inc., Toronto

Pearson Educación de Mexico, S.A. de C.V.

Pearson Education—Japan, Tokyo

Pearson Education Malaysia, Pte. Ltd.

Contents

1	Introduction to Differential Equations		
	1.1 Differential Equation Models	1	
	1.2 The Derivative	2 5	
	1.3 Integration	5	
2	First-Order Equations	12	
	2.1 Differential Equations and Solutions	12	
	2.2 Solutions to Separable Equations	21	
	2.3 Models of Motion	30	
	2.4 Linear Equations	32	
	2.5 Mixing Problems	46	
	2.6 Exact Differential Equations	52	
	2.7 Existence and Uniqueness of Solutions	56	
	2.8 Dependence of Solutions on Initial Conditions	64	
	2.9 Autonomous Equations and Stability	66	
3	Modeling and Applications	79	
	3.1 Modeling Population Growth	79	
	3.2 Models and the Real World	85	
	3.3 Personal Finance	85	
	3.4 Electrical Circuits	91	
4	Second-Order Equations	94	
	4.1 Definitions and Examples	94	
	4.2 Second-Order Equations and Systems	102	
	4.3 Linear, Homogeneous Equations with Constant Coefficients	119	
	4.4 Harmonic Motion	127	
	4.5 Inhomogeneous Equations; the Method of Undetermined Coefficients	149	
	4.6 Variation of Parameters	162	
	4.7 Forced Harmonic Motion	170	

	5	The Laplace Transform				
		5.1	The Definition of the Laplace Transform	194		
		5.2	Basic Properties of the Laplace Transform	204		
		5.3	The Inverse Laplace Transform	215		
		5.4	Using the Laplace Transform to Solve Differential Equations	225		
		5.5	Discontinuous Forcing Terms	245		
		5.6	The Delta Function	264		
		5.7	Convolutions	268		
	6	Nu	merical Methods	281		
***************************************		6.1	Euler's Method	281		
		6.2	Runge-Kutta Methods	301		
		6.3	Numerical Error Comparisons	323		
		6.4	Practical Use of Solvers	333		
	7	Ma	trix Algebra	343		
		7.1	Vectors and Matrices	343		
		7.2	Systems of Linear Equations with Two or Three Variables	350		
		7.3	Solving Systems of Equations	359		
		7.4	Homogeneous and Inhomogeneous Systems	371		
		7.5	Bases of a Subspace	380		
		7.6	Square Matrices	387		
		7.7	Determinants	393		
	8	An	Introduction to Systems	404		
		8.1	Definitions and Examples	404		
		8.2	Geometric Interpretation of Solutions	410		
		8.3	Qualitative Analysis	420		
		8.4	Linear Systems	426		
		8.5	Propeerties of Linear Systems	433		
	9	Lin	near Systems with Constant Coefficients	447		
***********		9.1	Overview of the Technique	447		
		9.2	Planar Systems	460		
		9.3	Phase Plane Portraits	480		
		9.4	The Trace-Determinant Plane	489		
		9.5	Higher Dimensional Systems	505		
		9.6	The Exponential of a Matrix	530		
		9.7	Qualitative Analysis of Linear Systems	562		

Contents	٧

		gher-Order Linear Equations homogeneous Linear Systems	571 587	
10	Nonlinear Systems		604	
		ne Linearization of a Nonlinear System	604	
		ong-Term Behavior of Solutions	615	
		variant Sets and the Use of Nullclines	620	
		ong-Term Behavior of Solutions to Planar Systems	628	
		onserved Quantities	637 642	
		onlinear Mechanics ne Method of Lyapunov	656	
		redator–Prey Systems	664	
11	11 Series Solutions to Differential Equations		668	
A CONTRACTOR OF THE PARTY OF TH	11.1 Re	eview of Power Series	668	
	11.2 Se	eries Solutions Near Ordinary Points	677	
	11.3 Le	egendre's Equation	705	
		pes of Singular Points—Euler's Equation	718	
	11.5 Se	eries Solutions Near Regular Singular Points	727	
		eries Solutions Near Regular Singular Points — the General Case	768	
	11.7 Be	essel's Equation and Bessel Functions	813	
	1200	•		
12		ier Series	823	
12	Fouri	ier Series omputation of Fourier Series	823	
12	Fouri	omputation of Fourier Series onvergence of Fourier Series	823 846	
_12	Fouri 12.1 Co 12.2 Co 12.3 Fo	omputation of Fourier Series onvergence of Fourier Series ourier Cosine and Sine Series	823 846 852	
12	Fouri 12.1 Cc 12.2 Cc 12.3 Fo 12.4 Th	omputation of Fourier Series onvergence of Fourier Series ourier Cosine and Sine Series ne Complex Form of a Fourier Series	823 846 852 882	
12	Fouri 12.1 Cc 12.2 Cc 12.3 Fo 12.4 Th	omputation of Fourier Series onvergence of Fourier Series ourier Cosine and Sine Series	823 846 852	
<u>12</u> 13	Fouri 12.1 Cc 12.2 Cc 12.3 Fo 12.4 Th 12.5 Th	omputation of Fourier Series onvergence of Fourier Series ourier Cosine and Sine Series ne Complex Form of a Fourier Series	823 846 852 882	
4.0	Fouri 12.1 Co 12.2 Co 12.3 Fo 12.4 Th 12.5 Th	omputation of Fourier Series convergence of Fourier Series courier Cosine and Sine Series ne Complex Form of a Fourier Series ne Discrete Fourier Transform and the FFT	823 846 852 882 889 893	
4.0	Fouri 12.1 Co 12.2 Co 12.3 Fo 12.4 Th 12.5 Th Partia 13.1 De 13.2 Se	omputation of Fourier Series convergence of Fourier Series courier Cosine and Sine Series the Complex Form of a Fourier Series the Discrete Fourier Transform and the FFT al Differential Equations the rivation of the Heat Equation the Equation of Variables for the Heat Equation	823 846 852 882 889 893 893 894	
4.0	Fouri 12.1 Co 12.2 Co 12.3 Fo 12.4 Th 12.5 Th Partia 13.1 De 13.2 Se 13.3 Th	omputation of Fourier Series convergence of Fourier Series courier Cosine and Sine Series the Complex Form of a Fourier Series the Discrete Fourier Transform and the FFT al Differential Equations the rivation of the Heat Equation the Paration of Variables for the Heat Equation the Wave Equation	823 846 852 882 889 893 894 902	
4.0	Fouri 12.1 Co 12.2 Co 12.3 Fo 12.4 Th 12.5 Th Partia 13.1 De 13.2 Se 13.3 Th 13.4 La	omputation of Fourier Series convergence of Fourier Series courier Cosine and Sine Series the Complex Form of a Fourier Series the Discrete Fourier Transform and the FFT al Differential Equations the rivation of the Heat Equation the Paration of Variables for the Heat Equation the Wave Equation the Paration of Equation the Paraticon of Para	823 846 852 882 889 893 894 902 907	
4.0	Fouri 12.1 Co 12.2 Co 12.3 Fo 12.4 Th 12.5 Th Partia 13.1 De 13.2 Se 13.3 Th 13.4 La 13.5 La	computation of Fourier Series convergence of Fourier Series courier Cosine and Sine Series the Complex Form of a Fourier Series the Discrete Fourier Transform and the FFT al Differential Equations the rivation of the Heat Equation the Paration of Variables for the Heat Equation the Wave Equation the Paration of Paration Paraticles (Paration of Paration of Paraticles) The Paraticles (Paraticles) T	823 846 852 882 889 893 894 902 907 911	
4.0	Fouri 12.1 Co 12.2 Co 12.3 Fo 12.4 Th 12.5 Th Partia 13.1 De 13.2 Se 13.3 Th 13.4 La 13.5 La 13.6 St	computation of Fourier Series convergence of Fourier Series courier Cosine and Sine Series the Complex Form of a Fourier Series the Discrete Fourier Transform and the FFT al Differential Equations the rivation of the Heat Equation the Paration of Variables for the Heat Equation the Wave Equation the Paper Series the Heat Equation the Heat Equation the Paper Series the Heat Equation	823 846 852 882 889 893 894 902 907 911 915	
4.0	Fouri 12.1 Co 12.2 Co 12.3 Fo 12.4 Th 12.5 Th Partia 13.1 De 13.2 Se 13.3 Th 13.4 La 13.5 La 13.6 St 13.7 Or	computation of Fourier Series convergence of Fourier Series courier Cosine and Sine Series the Complex Form of a Fourier Series the Discrete Fourier Transform and the FFT al Differential Equations The erivation of the Heat Equation The exparation of Variables for the Heat Equation The Wave Equation The explanation of the Heat Equation The palace's Equation The explanation of the Heat Equation The explanation of the Heat Equation The wave Equation The explanation of the Heat Equation Th	823 846 852 882 889 893 894 902 907 911 915 918	
4.0	Fouri 12.1 Co 12.2 Co 12.3 Fo 12.4 Th 12.5 Th Partia 13.1 De 13.2 Se 13.3 Th 13.4 La 13.5 La 13.6 St 13.7 Or 13.8 Te	computation of Fourier Series convergence of Fourier Series courier Cosine and Sine Series the Complex Form of a Fourier Series the Discrete Fourier Transform and the FFT al Differential Equations the rivation of the Heat Equation the Paration of Variables for the Heat Equation the Wave Equation the Paper Series the Heat Equation the Heat Equation the Paper Series the Heat Equation	823 846 852 882 889 893 894 902 907 911 915	

Chapter 1. Introduction

Section 1.1. Introduction to Differential Equations

- 1. Let y(t) be the number of bacteria at time t. The rate of change of the number of bacteria is y'(t). Since this rate of change is given to be proportional to y(t), the resulting differential equation is y'(t) = ky(t). Note that k is a positive constant since y'(t) must be positive (i.e. the number of bacteria is growing).
- 2. Let y(t) be the number of field mice at time t. The rate of change of the number of mice is y'(t). Since this rate of change is given to be inversely proportional to the square root of y(t), the resulting differential equation is $y'(t) = k/\sqrt{y(t)}$. Note that k is a positive constant since y'(t) must be positive (i.e. the number of mice is growing).
- 3. Let y(t) be the number of ferrets at time t. The rate of change of the number of ferrets is y'(t). Since this rate of change is given to be proportional to the product of y(t) and the difference between the maximum population and y(t) (i.e. 100 y(t)), the resulting differential equation is y'(t) = ky(t)(100 y(t)). Note that k is a positive constant since y'(t) must be positive (i.e. the number of ferrets is growing provided y(t) < 100).
- 4. Let y(t) be the quantity of radioactive substance at time t. The rate of change of the material is y'(t). Since this rate of change (decay) is given to be proportional to y(t), the resulting differential equation is y'(t) = -ky(t). Note that k is a positive constant since y'(t) must be negative (i.e. the quantity of radioactive material is decreasing).
- 5. Let y(t) be the quantity of material at time t. The rate of change of the material is y'(t). Since this rate of change (decay) is given to be inversely proportional to y(t), the resulting differential equation is y'(t) = -k/y(t). Note that k is a positive constant since y'(t) must be negative (i.e. the quantity of material is decreasing).

- 6. Let y(t) be the temperature of the potato at time t. The rate of change of the temperature is y'(t). Since this rate of change is given to be proportional to the difference between the potato's temperature and that of the surrounding room (i.e. y(t) 65), the resulting differential equation is y'(t) = -k(y(t) 65). Note that k is a positive constant since y'(t) must be negative (i.e. the potato is cooling) and since y(t) 65 > 0 (i.e. the potato is hotter than the surrounding room).
- 7. Let y(t) be the temperature of the thermometer at time t. The rate of change of the temperature is y'(t). Since this rate of change is given to be proportional to the difference between the thermometer's temperature and that of the surrounding room (i.e. 77 y(t)), the resulting differential equation is y'(t) = k(77 y(t)). Note that k is a positive constant since y'(t) must be positive (i.e. the thermometer is warming) and since 77 y(t) > 0 (i.e. the thermometer is cooler than the surrounding room).
- 8. Let x(t) be the position (displacement) of the particle at time t. The force on the particle is given to be proportional to this displacement. Therefore, the force, F, is equal to -kx(t) where k is a positive constant. The negative sign is present since the direction of F is opposite to that of x(t). Newton's law states F = ma where m is the mass of the object and a = x''(t) is its acceleration. Therefore, F = ma becomes -kx(t) = mx''(t), which is the differential equation governing the motion of this particle.
- 9. Let x(t) be the position (displacement) of the particle at time t. The force on the particle is given to be proportional to the square of the particle's velocity, i.e. $(x'(t))^2$. As a first guess, one might surmise that the force is given by $F = -k(x'(t))^2$, where k is a positive constant. However, closer inspection reveals that this will have the force pointing to

the left, regardless of whether the velocity is positive or negative. We can work around this difficulty by letting the force equal F = -kx'(t)|x'(t)|. The reader will recognize that the force is positive when x'(t) < 0, while the force is negative when x'(t) > 0, thus insuring that the force is always opposite the particle's motion. Newton's law states F = ma where m is the mass of the object and a = x''(t) is its acceleration. Therefore, F = ma becomes -k(x'(t))|x'(t)| = mx''(t), which is the differential equation governing the motion of this particle.

10. Let x(t) be the position (displacement) of the particle at time t. The force on the particle is given to be inversely proportional to the square of this displacement. The direction of F is opposite to that of x(t). Therefore, the force, F, is equal to -k/[x(t)|x(t)|] where k is a positive constant. Note

that we have written x(t)|x(t)| instead of $x(t)^2$ since -k/[x(t)|x(t)|] is negative when x(t) is positive and -k/[x(t)|x(t)|] is positive when x(t) is negative. This agrees with the desired direction of F. Newton's law states F = ma where m is the mass of the object and a = x''(t) is its acceleration. Therefore, F = ma becomes

$$\frac{-k}{x(t)|x(t)|} = mx''(t)$$

which is the differential equation governing the motion of this particle.

11. Let V(t) be the voltage drop across the inductor and I(t) be the current at time t. The rate of change of the current is I'(t). Since the voltage drop is proportional to the rate of change of I, we obtain the differential equation V(t) = kI'(t), where k is a constant.

Section 1.2. The Derivative

1.
$$D_x(3x - 5) = 3D_xx - D_x5$$

= 3(1) - 0
= 3

2.
$$D_x(5x^2 - 4x - 8) = 5D_xx^2 - 4D_xx - D_x8$$

= $5(2x^2) - 4(1) - 0$
= $10x^2 - 4$

3.
$$D_x(3\sin 5x) = 3D_x \sin 5x$$
$$= 3(\cos 5x)D_x(5x)$$
$$= 15\cos 5x$$

4.
$$D_x(\cos 2\pi x) = (-\sin 2\pi x)D_x(2\pi x)$$
$$= -2\pi \sin 2\pi x$$

5.
$$D_x(e^{3x}) = e^{3x} D_x(3x)$$

= $3e^{3x}$

6.
$$D_x(5e^{x^2}) = 5D_x e^{x^2}$$

 $= 5e^{x^2}D_x(x^2)$
 $= 5e^{x^2}(2x)$
 $= 10xe^{x^2}$

7.
$$D_x \ln |5x| = \frac{1}{5x} D_x(5x)$$

= $\frac{1}{x}$

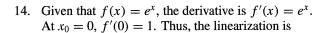
8.
$$D_x \ln(\cos 2x) = \frac{1}{\cos^2 2x} D_x \cos 2x$$

= $\frac{1}{\cos 2x} (-\sin 2x) D_x (2x)$
= $-2 \tan 2x$

9.
$$D_x x \ln x = (D_x x) \ln x + x D_x \ln x$$
$$= (1) \ln x + x \left(\frac{1}{x}\right)$$
$$= 1 + \ln x$$

10.
$$D_x e^x \sin \pi x = (D_x e^x) \sin \pi x + e^x D_x \sin \pi x$$
$$= e^x \sin \pi x + e^x (-\cos \pi x) D_x (\pi x)$$
$$= e^x (\sin \pi x - \pi \cos \pi x)$$

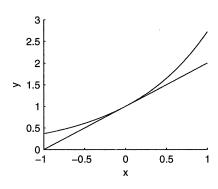
11.
$$D_x \left(\frac{x^2}{\ln x} \right) = \frac{(D_x x^2) \ln x - x^2 D_x \ln x}{(\ln x)^2}$$
$$= \frac{2x \ln x - x^2 \left(\frac{1}{x} \right)}{(\ln x)^2}$$
$$= \frac{2x \ln x - x}{[\ln x]^2}$$


12.
$$D_x\left(\frac{x\ln x}{\cos x}\right) = \frac{D_x(x\ln x)\cos x - x\ln xD_x\cos x}{\cos^2 x}$$
$$= \frac{(1+\ln x)\cos x - x\ln x(-\sin x)}{\cos^2 x}$$
$$= \frac{(1+\ln x)\cos x + x\sin x\ln x}{\cos^2 x}$$

13. If
$$L(x) = f(x_0) + f'(x_0)(x - x_0)$$
, then

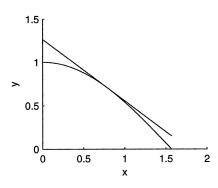
$$R(x) = f(x) - L(x)$$

= $f(x) - f(x_0) - f'(x_0)(x - x_0)$.


Thus,

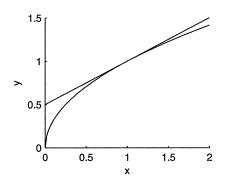
$$\lim_{x \to x_0} \frac{R(x)}{x - x_0} = \lim_{x \to x_0} \left[\frac{f(x) - f(x_0)}{x - x_0} - f'(x_0) \right]$$
$$= f'(x_0) - f'(x_0)$$
$$= 0.$$

$$L(x) = f(0) + f'(0)(x - 0) = 1 + x.$$


The graph of f, together with its linear approximation at $x_0 = 0$, is shown in the following figure.

15. Given that $f(x) = \cos x$, the derivative is $f'(x) = -\sin x$. At $x_0 = \pi/4$, $f'(\pi/4) = -\sqrt{2}/2$. Thus, the linearization is

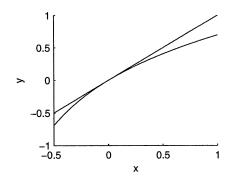
$$L(x) = f(\pi/4) + f'(\pi/4)(x - \pi/4)$$
$$= \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2} \left(x - \frac{\pi}{4} \right).$$

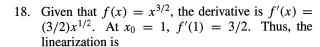

The graph of f, together with its linear approximation at $x_0 = \pi/4$, is shown in the following figure.

16. Given that $f(x) = \sqrt{x}$, the derivative is $f'(x) = 1/(2\sqrt{x})$. At $x_0 = 1$, f'(1) = 1/2. Thus, the linearization is

$$L(x) = f(1) + f'(1)(x - 1) = 1 + \frac{1}{2}(x - 1).$$

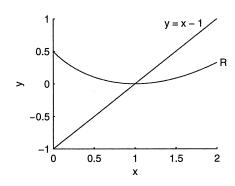
The graph of f, together with its linear approximation at $x_0 = 1$, is shown in the following figure.




17. Given that $f(x) = \ln(1+x)$, the derivative is f'(x) = 1/(1+x). At $x_0 = 0$, f'(0) = 1. Thus, the linearization is

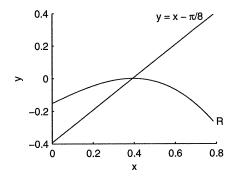
$$L(x) = f(0) + f'(0)(x - 0) = x.$$

The graph of f, together with its linear approximation at $x_0 = 0$, is shown in the following figure.


4 Chapter 1 Introduction

$$L(x) = f(1) + f'(1)(x - 1) = 1 + \frac{3}{2}(x - 1).$$

The graph of y = x - 1, together with the graph of the remainder R(x) = f(x) - L(x), is shown in the following figure.

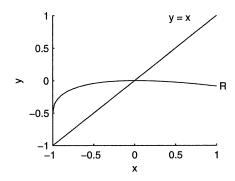


Note that both graphs approach zero as $x \to 1$, but the graph of R approaches zero at a more rapid rate.

19. Given that $f(x) = \sin 2x$, the derivative is $f'(x) = 2\cos 2x$. At $x_0 = \pi/8$, $f'(\pi/8) = \sqrt{2}$. Thus, the linearization is

$$L(x) = f(\pi/8) + f'(\pi/8)(x - \pi/8)$$
$$= \frac{\sqrt{2}}{2} + \sqrt{2}\left(x - \frac{\pi}{8}\right).$$

The graph of $y = x - \pi/8$, together with the graph of the remainder R(x) = f(x) - L(x), is shown in the following figure.

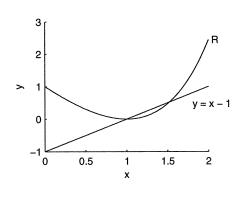


Note that both graphs approach zero as $x \to \pi/8$, but the graph of R approaches zero at a more rapid rate

20. Given that $f(x) = \sqrt{x+1}$, the derivative is $f'(x) = 1/(2\sqrt{x+1})$. At $x_0 = 0$, f'(0) = 1/2. Thus, the linearization is

$$L(x) = f(0) + f'(0)(x - 0) = 1 + \frac{1}{2}x.$$

The graph of y = x, together with the graph of the remainder R(x) = f(x) - L(x), is shown in the following figure.

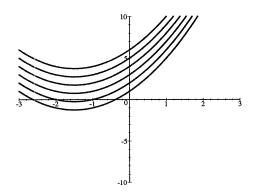


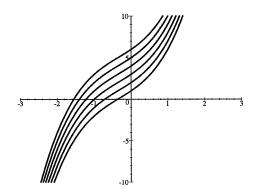
Note that both graphs approach zero as $x \to 0$, but the graph of R approaches zero at a more rapid rate.

21. Given that $f(x) = xe^{x-1}$, the derivative is $f'(x) = (x+1)e^{x-1}$. At $x_0 = 1$, f'(1) = 2. Thus, the linearization is

$$L(x) = f(1) + f'(1)(x - 1) = 1 + 2(x - 1).$$

The graph of y = x - 1, together with the graph of the remainder R(x) = f(x) - L(x), is shown in the following figure.

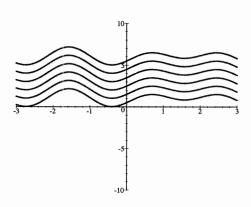



Note that both graphs approach zero as $x \to 1$, but the graph of R approaches zero at a more rapid rate.

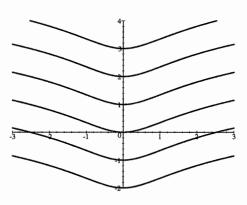
Section 1.3. Integration

1.
$$y' = 2t + 3$$
. Integrate to obtain $y = t^2 + 3t + C$. $t^3 + t^2 + 3t + C$.

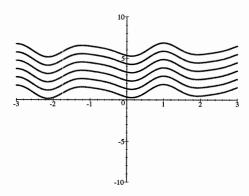
$$t^3 + t^2 + 3t + C.$$



2.
$$y' = 3t^2 + 2t + 3$$
. Integrate to obtain $y = 3$. $y' = \sin 2t + 2\cos 3t$. Integrate to obtain $y = 3$

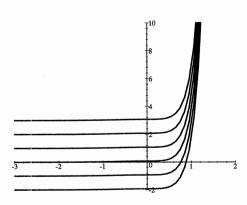

$$3 \quad v' = \sin 2t + 2\cos 3t$$
 Integrate to obtain $v =$

6 Chapter 1 Introduction


$$(-1/2)\cos 2t + (2/3)\sin 3t + C$$
.

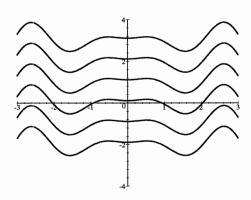
$$y = (1/2) \ln u + C = (1/2) \ln(1 + t^2) + C.$$

- 6. $y' = 3t/(1 + 2t^2)$. Let $u = 1 + 2t^2$, du = 4t dt and get dy = (3/4)du/u. Integrate to obtain $y = (3/4) \ln u + C = (3/4) \ln(1 + 2t^2) + C$.
- 4. $y' = 2\sin 3t \cos 5t$. Integrate to obtain $y = (-2/3)\cos 3t (1/5)\sin 5t + C$.


- 3 2 0 2 3
- 7. $y' = t^2 e^{3t}$. Integrate by parts with $u = t^2$ and $dv = e^{3t}$ to obtain

$$y = \frac{t^2 e^{3t}}{3} - \int \frac{e^{3t} 2t}{3} dt$$

Integrate by parts once more and obtain

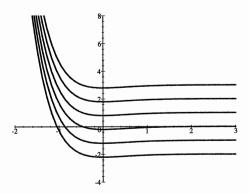

5.
$$y' = t/(1+t^2)$$
. Use $u = 1+t^2$, $du = 2t dt$ and get $dy = (1/2)du/u$. Integrate to obtain

$$y = \frac{t^2 e^{3t}}{3} - \frac{2t e^{3t}}{9} + \frac{2e^{3t}}{27} + C$$

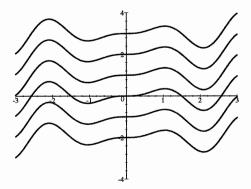
8. $y' = t \cos 3t$. Integrate by parts with u = t, $dv = \cos 3t$ and obtain

$$y = \frac{t \sin 3t}{3} + \frac{\cos 3t}{9} + C$$

9. $y' = e^{-2\omega} \sin \omega$. Integrate by parts with $u = e^{-2\omega}$ and $dv = \sin \omega$ to obtain


$$\int e^{-2\omega} \sin \omega \, d\omega = -e^{-2\omega} \cos \omega - 2 \int \cos \omega e^{-2\omega} \, d\omega.$$
 11. $x' = s^2 e^{-s}$. Integrate by parts with $u = s^2$ and

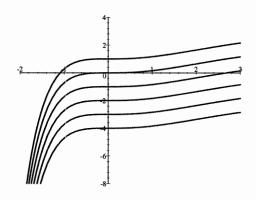
Integrate by parts again with $u = e^{-2\omega}$ and dv = $\cos \omega$, to obtain


$$\int e^{-2\omega} \sin \omega \, d\omega = -e^{-2\omega} \cos \omega - 2 \sin \omega e^{-2\omega}$$
$$-4 \int \sin \omega e^{-2\omega} \, d\omega$$

Then add the integral on the right to the integral on the left, which then becomes $5 \int \sin \omega e^{-2\omega} d\omega$; divide by the 5 and obtain the answer:

$$y = \left(-e^{-2\omega}\cos\omega - 2\sin\omega e^{-2\omega}\right)/5 + C$$

10. $y' = x \sin 3x$. Integrate by parts with u = xand $dv = \sin 3x$ to obtain $y = (-x/3)\cos 3x +$ $(1/9) \sin 3x + C$.



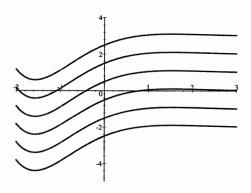
 $dv = e^{-s}$ and obtain

$$x = -s^2 e^{-s} + 2 \int e^{-s} s \, ds.$$

Integrate by parts again with u = s and $dv = e^{-s}$ to obtain the answer:

$$x = -s^2 e^{-s} - 2s e^{-s} - 2e^{-s} + C.$$

12.

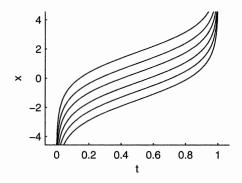

$$\int e^{-u}\cos u\,du = e^{-u}\sin u + \int \sin u e^{-u}\,du.$$

Integrate by parts again, with $U = e^{-u}$ and $dV = \sin u$ and obtain

$$\int e^{-u} \cos u \, du = e^{-u} \sin u - e^{-u} \cos u - \int \cos u e^{-u} \, du.$$

Add the integral on the right to the left side; then divide by 2 and obtain the answer:

$$y = (e^{-u} \sin u - e^{-u} \cos u)/2 + C.$$

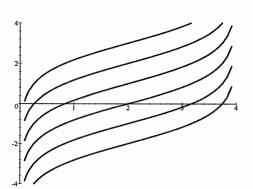


13. Use partial fractions to write

$$r' = \left[\frac{1}{u} + \frac{1}{1 - u}\right].$$

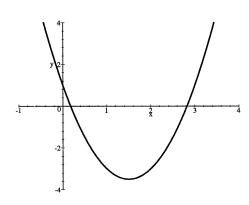
Then integrate to obtain

$$r = \ln u - \ln(1 - u) = \ln\left(\frac{u}{1 - u}\right).$$

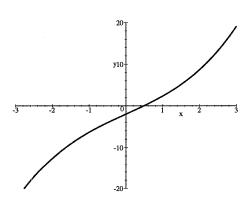


14. Use partial fractions to write

$$y' = \frac{3}{4} \left[\frac{1}{x} + \frac{1}{4 - x} \right].$$

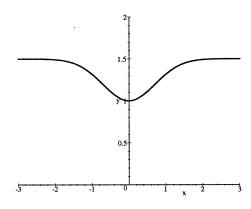

Then integrate to obtain

$$y = (3/4)(\ln x - \ln(4 - x)) = \ln\left(\frac{x}{4 - x}\right)^{3/4}$$
.

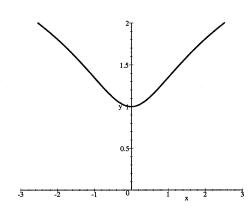


15. y' = 4t - 6. Integrate y' to obtain $y = 2t^2 - 6t + C$; the initial condition y(0) = 1 gives 1 = C; so

$$y(t) = 2t^2 - 6t + 1.$$



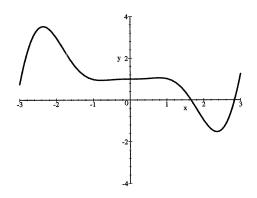
16. $y' = x^2 + 4$. Integrate to obtain $y = x^3/3 + 4x + C$; the initial condition y(0) = -2 gives -2 = C; so $y(t) = x^3/3 + 4x - 2$.



17. $x'(t) = te^{-t^2}$. Integrate to obtain $x(t) = (-1/2)e^{-t^2} + C$; the initial condition x(0) = 1 gives 1 = (-1/2) + C; so C = 3/2 and x(t) = 1

$$(-1/2)e^{-t^2} + (3/2).$$

18. $r'(t) = t/(1+t^2)$. Integrate to obtain $r(t) = (1/2) \ln(1+t^2) + C$; the initial condition, r(0) = 1 gives $1 = (1/2) \ln 1 + C$ or C = 1; so $r(t) = (1/2) \ln(1+t^2) + 1$.

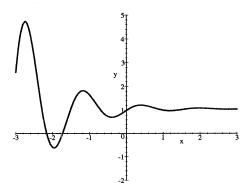


19. $s'(r) = r^2 \cos 2r$. Integrate by parts twice with dv being the trig - term ($\cos 2r$ and then $\sin 2r$ to obtain

$$s(r) = \frac{r^2 \sin 2r}{2} + \frac{r \cos 2r}{2} - \frac{\sin 2r}{4} + C.$$

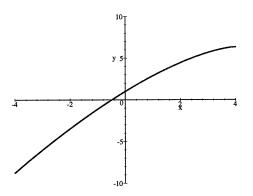
The initial condition, s(0) = 1 gives 1 = C so

$$s(r) = \frac{r^2 \sin 2r}{2} + \frac{r \cos 2r}{2} - \frac{\sin 2r}{4} + 1$$

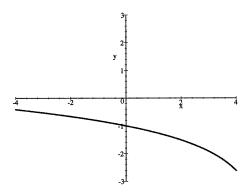


20.
$$P'(t) = e^{-t} \cos 4t$$
. Integrate by parts twice as done in the solution to Exercise 12 above to obtain

$$P(t) = \frac{4}{17} \left(e^{-t} \sin 4t - (1/4)e^{-t} \cos 4t \right) + C$$


The initial condition, P(0) = 1 gives 1 = -1/17 + C or C = 18/17; so

$$P(t) = \frac{4}{17} \left(e^{-t} \sin 4t - (1/4)e^{-t} \cos 4t \right) + \frac{18}{17}$$



21.
$$x'(t) = \sqrt{4-t}$$
. Integrate to obtain $x(t) = (-2/3)(4-t)^{3/2} + C$. The initial condition, $x(0) = 1$ gives $1 = (-2/3)(4)^{3/2} + C = -16/3 + C$ or

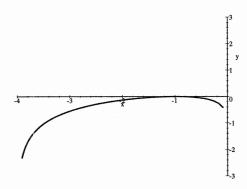
$$C = 19/3$$
. So $x(t) = (-2/3)(4-t)^{3/2} + 19/3$.

22. u'(x) = 1/(x - 5). Integrate to obtain $u(x) = \ln |x - 5| + C$. The initial condition, u(0) = -1 gives $-1 = \ln 5 + C$ or $C = -1 - \ln 5$; so $u(x) = \ln |x - 5| - 1 - \ln 5$.

23.
$$y'(t) = \frac{t+1}{t(t+4)}$$
. Partial fractions gives

$$y'(t) = \frac{1/4}{t} + \frac{3/4}{t+4}$$

Integrating, we obtain


$$y(t) = (1/4) \ln |t| + (3/4) \ln |t + 4| + C$$

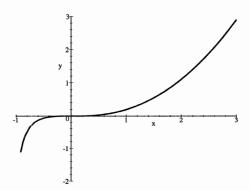
The initial condition, y(-1) = 0 gives

$$0 = (1/4) \ln 1 + (3/4) \ln 3 + C = (3/4) \ln 3 + C$$

or $C = -(3/4) \ln 3$. So

$$y(t) = (1/4) \ln |t| + (3/4) \ln |t + 4| - (3/4) \ln 3$$

24.
$$v'(r) = \frac{r^2}{r+1}$$
. By long division, we obtain


$$v'(r) = r - 1 + \frac{1}{r+1}$$

Integrating, we obtain

$$v(r) = \frac{r^2}{2} - r + \ln|r + 1| + C$$

The initial condition, v(0) = 0 gives $0 = \ln 1 + C = C$; so

$$v(r) = \frac{r^2}{2} - r + \ln|r + 1|$$

- 25. Let s(t) be the height of the ball at time t seconds. If g = -9.8 is the gravitational constant, then s''(t) = g. Integrating we obtain, $s' = gt + v_0$, where v_0 is a constant. The initial condition s'(0) = 50 gives $v_0 = 50$; so s'(t) = gt + 50. The velocity at t = 3 seconds is s'(3) = 3g + 50 = 20.6 meters/second. Integrating s', gives $s(t) = gt^2/2 + 50t + s_0$. The initial condition, s(0) = 3 gives $s_0 = 3$, so $s(t) = gt^2/2 + 50t + 3$. The height at t = 3 seconds is s(3) = (9/2)g + 153 = 108.9 meters.
- 26. Let s(t) be the height of the ball at time t seconds. If g = -9.8 is the gravitational constant, then s''(t) = g. Integrating we obtain, $s' = gt + v_0$, where v_0 is a constant. The initial condition s'(0) = 0 (dropped from rest) gives $v_0 = 0$; so s'(t) = gt. The velocity at t = 3 is s'(3) = 3g = -29.4 meters/sec. Integrating s', gives $s(t) = gt^2/2 + s_0$. The initial condition s(0) = 200 gives $s_0 = 200$, so $s(t) = gt^2/2 + 200$; the height at t = 3 seconds is s(3) = (9/2)g + 200 = 155.9 meters.
- 27. Let s(t) be the height of the ball at time t seconds. If g = -9.8 is the gravitational constant, then s''(t) = g. Integrating we obtain, $s' = gt + v_0$, where v_0 is a constant. The initial condition s'(0) = 120 gives $v_0 = 120$, so s'(t) = gt + 120. The maximum height occurs when the velocity reaches zero, i.e. when gt + 120 = 0, or t = -120/g = 12.24 seconds. Integrating s' gives $s(t) = gt^2/2 + 120t + s_0$. The initial condition s(0) = 6 gives $s_0 = 6$, so $s(t) = gt^2/2 + 120t + 6$. When t = 12.24, the maximum height is s(12.24) = 740.69 meters.
- 28. Let s(t) be the height of the ball at time t seconds. If g = -9.8 is the gravitational constant, then s''(t) = g. Integrating we obtain, $s' = gt + v_0$, where v_0 is a constant. The initial condition s'(0) = -25 gives $v_0 = -25$, so s'(t) = gt 25. Integrating again gives $s(t) = gt^2/2 25t + s_0$. The initial condition s(0) = 1000 gives $s_0 = 1000$ and so $s(t) = gt^2/2 25t + 1000 = -4.9t^2 25t + 1000$. The ball hits the ground when s(t) = 0 which occurs at approximately t = 11.96 seconds.