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Chapter 1 Solutions

Solutions to Section 1.1

True-False Review:

(a): FALSE. A derivative must involve some derivative of the function y = f(x), not necessarily the first
derivative.

(b): FALSE. The order of a differential equation is the order of the highest, not the lowest, derivative
appearing in the differential equation.

(c): FALSE. This differential equation has order two, since the highest order derivative that appears in the
equation is the second order expression y”.

(d): FALSE. The carrying capacity refers to the maximum population size that the environment can
support in the long run; it is not related to the initial population in any way.

(e): TRUE. The value y(0) is called an initial condition to the differential equation for y(t).

(f): TRUE. According to Newton’s Law of Cooling, the rate of cooling is proportional to the difference
between the object’s temperature and the medium’s temperature. Since that difference is greater for the
object at 100°F than the object at 90°F, the object whose temperature is 100°F has a greater rate of
cooling.

(g): FALSE. The temperature of the object is given by T'(t) = T}, + ce**, where T}, is the temperature
of the medium, and ¢ and k are constants. Since e=*! # 0, we see that T(t) # T, for all times ¢t. The
temperature of the object approaches the temperature of the surrounding medium, but never equals it.

(h): TRUE. Since the temperature of the coffee is falling, the temperature difference between the coffee
and the room is higher initially, during the first hour, than it is later, when the temperature of the coffee
has already decreased.

(i): FALSE. The slopes of the two curves are negative reciprocals of each other.

(j): TRUE. If the original family of parallel lines have slopes k for k # 0, then the family of orthogonal tra-
jectories are parallel lines with slope —%. If the original family of parallel lines are vertical (resp. horizontal),
then the family of orthogonal trajectories are horizontal (resp. vertical) parallel lines.

(k): FALSE. The family of orthogonal trajectories for a family of circles centered at the origin is the family
of lines passing through the origin.

(1): TRUE. If v(¢) denotes the velocity of the object at time ¢ and a(t) denotes the velocity of the object
at time ¢, then we have a(t) = v/(¢), which is a differential equation for the unknown function v(¢).

(m): FALSE. The restoring force is directed in the direction opposite to the displacement from the equi-
librium position.

(n): TRUE. The allometric relationship B = Bym?/*, where By is a constant, relates the metabolic rate
and total body mass for any species.

Problems:
1. The order is 2.

2. The order is 1.
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3. The order is 3.
4. The order is 2.

5. We compute the first three derivatives of y(¢) = Int:
dy 1 d?y 1 dy 2

a ¢ a2 2 aB B
(WY _2 _ &y
dt ) 3 dt3’

6. We compute the first two derivatives of y(z) = «/(z + 1):

Therefore,

as required.

dy 1 d*y 2
== and — =
de (x4 1)2 dx? (x+1)3
Then
Jr@* e 2 P42+ -2 (@+)+(E+2°-3) 1 +I3+2I2*3
YT " o +1 (x+1)3 (x4+1)3 N (x+1)3 (x4 1)2 (1+z)3

as required.

7. We compute the first two derivatives of y(x) = e” sina:

d d?
% = e”(sinz + cosx) and chg = 2¢” cos z.
Then
2ycotx — @ = 2(e” sinx) cot z — 2e” cosz =0
da? ’
as required.
_,dT d . . . .
8. (T —Tn) o = —k = ﬁ(ln |T — T,,|) = —k. The preceding equation can be integrated directly to
yield In|T — T,| = —kt + ¢;. Exponentiating both sides of this equation gives |T' — T},| = e ¥+ which

can be written as
T-1T,, = ce kt

)

where ¢ = +e°'. Rearranging yields T'(t) = T}, + ce™**.

9. After 4 p.m. In the first two hours after noon, the water temperature increased from 50° F to 55°
F, an increase of five degrees. Because the temperature of the water has grown closer to the ambient air
temperature, the temperature difference |T' — T},,| is smaller, and thus, the rate of change of the temperature
of the water grows smaller, according to Newton’s Law of Cooling. Thus, it will take longer for the water
temperature to increase another five degrees. Therefore, the water temperature will reach 60° F more than
two hours later than 2 p.m., or after 4 p.m.

10. The object temperature cools a total of 40° F during the 40 minutes, but according to Newton’s Law of
Cooling, it cools faster in the beginning (since |T' — T,,| is greater at first). Thus, the object cooled half-way
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from 70° F to 30° F in less than half the total cooling time. Therefore, it took less than 20 minutes for the
object to reach 50° F.
. . . 9 5 dy dy r
11. The given family of curves satisfies: ° 4+ 9y* = ¢ = 22 + 18yd— =0= T o
x x Yy

Orthogonal trajectories satisfy:

d 9 1d d

L NN 9 = —(Inly|) = 9 = In|y| = 9In|z| + ¢; = y = ka?, where k = e

dx T ydr =« dx T

Figure 0.0.1: Figure for Problem 11

12. Given family of curves satisfies: y = cx? = ¢ = — . Hence,
x
W _ o ( y ) _ %
— =2cx=c(=5)x=—".
dx x x
Orthogonal trajectories satisfy:

@7I

dy 2 2 L, 2 2
Ir o ydm T (y*) x Yy 2:c + e Y +x ca,

where ¢y = 2¢;.

d d
R . N
dxr dx T

13. Given a family of curves satisfies: y =

Orthogonal trajectories satisfy:

d d d (1 1 1
—yzgzy—y:xz— —?) == —y? = 2%+ c; = y* — 2% = ¢y, where ¢ = 2¢;.
de y dx dx 2 2

14. The given family of curves satisfies: y = cx® = ¢ = % Hence,
T

dy 4 Y\ a_ 9y
£:5cx 25(5)1‘ =
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Y
x

N —

Figure 0.0.3: Figure for Problem 13

Orthogonal trajectories satisfy:
dy T dy d (5 4 5 4 1, 9 9
dx 5y Yix * dx ( 4 * 27 2" ta yte=a

where ¢y = 2¢;.
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Figure 0.0.4: Figure for Problem 14

d
15. Given family of curves satisfies: y = ce®* = d—y = ce” = y. Orthogonal trajectories satisfy:
x

dy 1 dy d<1

1
=——=y—=—-1= ) =—1= ¢y =— =y’ =2 .
dz Y Yo dz 2y> 27 rha 4 T

—
N
2

Figure 0.0.5: Figure for Problem 15

d 1
16. Given family of curves satisfies: y? = 22 + ¢ = & —.Orthogonal trajectories satisfy:
Ty

dy 1 dy d _
Ve y= Y == L) = L=l = st =y =
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Figure 0.0.6: Figure for Problem 16

d d
17. y = ca™ = & emz™ ™t but ¢ = Yoo W T Orthogonal trajectories satisfy:
xm dz x
dy x dy x d (1, x 1, 1, 9 1 5
= =y = —— — | = =—— = —y'=——1"4cg = y* = ——2a° + co.
dz my Yix m dz <2y m 2Y 2m ta Y m e
d
18. y=mz +c—= d—y =m.
x
Orthogonal trajectories satisfy:
dy 1
- = Yy=——x+C
dz m
d d
19. y2:mx+c:>2y—y:m:>7yzﬂ.
dz de 2y
Orthogonal trajectories satisfy:
d 2 d 2 d 2 2 «
==y T =S = ) = =y =~ Tr o =y = e F
dz m dx m dz
d d
20'y2+mx2:cz>2y£+2mx:02>£:_@
dx dx y

Orthogonal trajectories satisfy:

dy _y _ ady 1

d 1

ot ol Wy =—=mly| =lnz| +e1 = y" = c2z

22 —|—y2
2x

d 2 2
230—1—2:1/%:20:96 +y .

21. The given family of curves satisfies: 2% + y? = 2cr = ¢ = . Hence,

xT
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Therefore,

so that

Orthogonal trajectories satisfy:

d
22, u:x2+2y2:>():2:c—|—4yd—y
x

Orthogonal trajectories satisfy:

dy _ 2y

-1 dy

dzx T dx

—_— == =
X

2

23. my = tan (a1) = tan (a2 — a)

d2y _

24. 44

Figure 0.0.7: Figure for Problem 22

_ tan (ag) — tan (a) _ my —tan (a)
1+ tan (az)tan(a) 1+ matan (a)’

d 2
—(nly|) == = Inly| =2In|z| + ¢; = y = ca2”.
dx x

g = % =gt+c = yt) = g + ¢1t + co. Now impose the initial conditions. y(0) = 0 =

s = 0.9£(0) = ¢; = 0. Hence, the solution to the initial-value problem is: y(t) = %. The object hits the

ground at time, to, when y(to) = 100. Hence 100 =

g=9.8 ms2.

2
%, so that tg =

(c)2017 Pearson Education. Inc.
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2

25. From Wg = g, we integrate twice to obtain the general equations for the velocity and the position of

d 1
the ball, respectively: d—:: =gt +cand y(t) = ith + ct 4+ d, where ¢, d are constants of integration. Setting

y = 0 to be at the top of the boy’s head (and positive direction downward), we know that y(0) = 0. Since the
object hits the ground 8 seconds later, we have that y(8) = 5 (since the ground lies at the position y = 5).

5—32
From the values of y(0) and y(8), we find that d = 0 and 5 = 32¢g + 8c. Therefore, ¢ = 3 J.
(a). The ball reaches its maximum height at the moment when y'(¢) = 0. That is, gt + ¢ = 0. Therefore,
2g —
p=—C=370 L3085
g 89

(b). To find the maximum height of the tennis ball, we compute
y(3.98) ~ —253.51 feet.
So the ball is 253.51 feet above the top of the boy’s head, which is 258.51 feet above the ground.

2

26. From dTg = g, we integrate twice to obtain the general equations for the velocity and the position of

d 1
the rocket, respectively: ditJ =gt+cand y(t) = ith +ct+d, where ¢, d are constants of integration. Setting
y = 0 to be at ground level, we know that y(0) = 0. Thus, d = 0.

(a). The rocket reaches maximum height at the moment when y'(t) = 0. That is, gt + ¢ = 0. Therefore, the
time that the rocket achieves its maximum height is ¢t = — £, At this time, y(t) = —90 (the negative sign

g
accounts for the fact that the positive direction is chosen to be downward). Hence,

o0 — (_C>_1 <_C)2+C<_C>_62_62__62
Y\ Ty 29\ 7y g 29 g 29

Solving this for ¢, we find that ¢ = 4+,/180g. However, since ¢ represents the initial velocity of the rocket,
and the initial velocity is negative (relative to the fact that the positive direction is downward), we choose

c = —/180g ~ —42.02 ms~', and thus the initial speed at which the rocket must be launched for optimal
viewing is approximately 42.02 ms™!.

c —42.02

(b). The time that the rocket reaches its maximum height is t = —— ~ — Dal = 4.28 s.
g .

2
27. From Wg = g, we integrate twice to obtain the general equations for the velocity and the position of
d 1
the rocket, respectively: d—ZtJ =gt+cand y(t) = igt2 +ct+d, where ¢, d are constants of integration. Setting

y = 0 to be at the level of the platform (with positive direction downward), we know that y(0) = 0. Thus,
d=0.

(a). The rocket reaches maximum height at the moment when y'(¢t) = 0. That is, gt + ¢ = 0. Therefore, the

c
time that the rocket achieves its maximum height is ¢ = ——. At this time, y(¢) = —85 (this is 85 m above
g

the platform, or 90 m above the ground). Hence,

95 ( c) 1 ( c>2+ ( c) 2 A 2
—_ :y —_— :—g _—— C _— = 0 — = ——,
g 2 g g 29 g 29
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Solving this for ¢, we find that ¢ = £./170g. However, since ¢ represents the initial velocity of the rocket,
and the initial velocity is negative (relative to the fact that the positive direction is downward), we choose

¢ = —/I70g ~ —40.84 ms~', and thus the initial speed at which the rocket must be launched for optimal

viewing is approximately 40.84 ms~!.

—40.84

—4.16s.
9.81 i

~ _
~

(b). The time that the rocket reaches its maximum height is ¢t = —

Qo

28. If y(t) denotes the displacement of the object from its initial position at time ¢, the motion of the object
can be described by the initial-value problem

d*y dy
— = 0)=0, —(0)=-2.
Y=g w0 =0, L)
. L . . d?y dy gt?
We first integrate this differential equation: a2 =9 = pri gt + ¢ = y(t) = 5 + c1t + co. Now
d
impose the initial conditions. y(0) = 0 = ¢3 = 0. d—zt/(O) = —2 = ¢; = —2. Hence the solution to the
_ . gt? . 9(10)2
initial-value problem is y(t) = 5 2t. We are given that y(10) = h. Consequently, h = 5 2-10 =

h = 10(5g — 2) ~ 470 m where we have taken g = 9.8 ms~2.

29. If y(t) denotes the displacement of the object from its initial position at time ¢, the motion of the object
can be described by the initial-value problem

d*y dy
— = 0) =0, —(0) = wp.
=g w0 =0, LO)=u
d*y dy gt?
We first integrate the differential equationzﬁ =g= i gt+c = y(t) = 5 + c1t + c2. Now impose
the initial conditions. y(0) =0 = ¢y = 0. d—?z(()) = v9 = ¢1 = vg. Hence the solution to the initial-value
2
problem is y(t) = 97 +wvot. We are given that y(tg) = h. Consequently, h = gt2 + voto. Solving for vy yields
2h — gt?
v = —————.
0 2%
30. From y(t) = A cos (wt — ¢), we obtain
&y _ —Awsin (wt — ¢) and Q = —Aw? cos (wt — )
dt dt? ’
Hence,
d*y 2 2 2
e +w 'y = —Aw” cos (wt — ¢) + Aw” cos (wt — ¢) = 0.

Substituting y(0) = a, we obtain a = Acos(—¢) = Acos(¢). Also, from %(0) = 0, we obtain 0 =

—Awsin(—¢) = Awsin(¢). Since A # 0 and w # 0 and |¢| < 7w, we have ¢ = 0. It follows that a = A.

d d?
31. y(t) = cycos(wt) + cosin (wt) = d—i’ = —cwsin (wt) + cow cos (wt) = Wg = —cjw?cos (wt) —
d2
cow? sin (wt) = —w?[c; cos (wt) + cgcos (wt)] = —w?y. Consequently, dTg + w?y = 0. To determine the

(c)2017 Pearson Education. Inc.
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amplitude of the motion we write the solution to the differential equation in the equivalent form:

y(t) = /i + 3

We can now define an angle ¢ by

cos (wt

sin (wt)] .

C1 ) + C2

C1 . Co
and sin¢g =

2 2 2 2"
c+c VASIR S

Then the expression for the solution to the differential equation is

y(t) = \/ 2 + c3[cos (wt) cos ¢ + sin (wt) sin @] = (/3 + ¢ cos (wt + ¢).

Consequently the motion corresponds to an oscillation with amplitude A = \/c? + c3.

cosp =

32. In this problem we have mg = 3g, M = 2700g, a = 1.5. Substituting these values into Equation (1.1.26)

yields
1 1/4 1/4 ‘
m(t) { [ <900> ] ‘

Therefore the mass of the heron after 30 days is

1/4 4
1
m(30) = 2700 {1 _ [1 _ (900> ] 6—45/(4(2700)1/4)} ~ 1271.18¢g.

33. In this problem we have mg = 8g, M = 280g, a = 0.25. Substituting these values into Equation (1.1.26)

yields
1 1/4 » 4
m(t) =280<¢1— |1— (35) e—t/(16(280) /1) L

We need to find the time, ¢ when the mass of the rat reaches 75% of its fully grown size. Therefore we need

to find ¢ such that
75 [ 1 1/4 /(16(280)1/4) !
—_— f— — — [— t
100 280 =280< 1 1 (35> e .

Solving algebraically for ¢ yields

Moy 1/4
t=16-(280)"/*.1n %
| 1—(75/100))"/

] ~ 140 days.

Solutions to Section 1.2

True-False Review:

(a): TRUE. This is condition 1 in Definition 1.2.8.

(c)2017 Pearson Education. Inc.
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(b): TRUE. This is the content of Theorem 1.2.12.

(c): FALSE. There are solutions to y” + y = 0 that do not have the form ¢ cosx + 5cg cosz, such as
y(z) = sinz. Therefore, ¢; cosx + 5ca cosx does not meet the second requirement set forth in Definition
1.2.8 for the general solution.

(d): FALSE. There are solutions to y” +y = 0 that do not have the form ¢; cosx + 5ep sinz, such
as y(x) = cosx + sinx. Therefore, ¢; cosx + 5ey sina does not meet the second requirement set form in
Definition 1.2.8 for the general solution.

(e): TRUE. Since the right-hand side of the differential equation is a function of  only, we can integrate
both sides n times to obtain the formula for the solution y(z).

Problems:

1. Linear.

2. Non-linear, because of the 32 expression on the right side of the equation.

3. Non-linear, because of the term yy” on tthe left side of the equation.

4. Non-linear, because of the expression tany appearing on the left side of the equation.

5. Linear.

1
6. Non-linear, because of the expression — on the left side of the equation.
Y

7. y(x) = c1e7°% + €7 = ¢/ = —5c1e % + 5eaedT = 3" = 25c1e7°% + 25c0e5T =y — 25y =
(25¢1€75% 4 25¢9€57) — 25(c1e™®® + c2e7®) = 0. Thus y(z) = c1e7%% + c2e® is a solution of the given
differential equation for all z € R.

8. y(x) = ¢1cos82x + casin2x = y' = —2¢;sin2x + 2cpco82x = y” = —4dc¢j cos2x — degsin2z =
y" + 4y = (—4eq cos2x — deasin2z) + 4(cy cos2x + cosin2x) = 0. Thus y(x) = c¢1cos2x + cosin2x is a
solution of the given differential equation for all z € R.

9. y(z) = c1e® + c2e™ 2 = 3 = c1€® — 2c0e7 % = ¢y = c1e% + dcoe™® = Yy +y' — 2y = (c1e” +
dege™ ) + (c1e® — 2cge %) — 2(cre® + cae2%) = 0. Thus y(z) = c1e® + coe™ 2% is a solution of the given
differential equation for all z € R.
1 1
10. = =y = =
y@) = — y CEWIE

equation for x € (—oo0, —4) or z € (—4, 00).

—y2. Thus y(x) = is a solution of the given differential

T+ 4

Y Thus y(x) = ¢1y/x is a solution of the given differential equation for

C1
11. = — = =
y(z) = c1v/r =y N

all z € {z: 2z > 0}.
12. y(z) = cre ¥ sin (22) = ¥’ = 2c1e” cos (2z)—cre ¥ sin (2z) = 3" = —3c1e” ¥ sin (22)—4cre " cos (22) =
y" +2y' +5y = —3cre” 7 sin (2x) —4cre”* cos (2x) +2[2¢1e7 7 cos (22) — cre” T sin (22)] + 5[ere ¥ sin (22)] = 0.

Thus y(x) = cie”* sin (2z) is a solution to the given differential equation for all z € R.

13. y(x) = c¢ycosh(3x) + cosinh (3z) = ¢y’ = 3¢y sinh (3x) 4 3co cosh (3x) = ¢’ = 9¢y cosh (3x) +

(c)2017 Pearson Education. Inc.
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9cy sinh (3z) = y”" — 9y = [9c; cosh (3z) + 9cg sinh (3x)] — 9[c; cosh (32) + cosinh (3z)] = 0. Thus y(x) =
¢1 cosh (3x) + co sinh (32) is a solution to the given differential equation for all = € R.

c c 3c c 12¢ 2c 12¢ 2c
14. y(x):x—},)Jrf:>y’=—m—j—x%=>y”:x—;+x—;:>x2y”+5xy’+3y:x2 (1_514-x32>+

3
e (-2 2 +3 (C—l + 0—2) = 0. Thus y(x) C—l + 2 is a solution to the given differential equation
xt 22 3z 3 x

for all x € (—00,0) or z € (0,00).

15. y(z) = c1z’lne =y = c;(2zlnz +2) =y’ = c1(2Inz + 3) = 22" — 32y + 4y = 2% - c;(2Inz +
3)—3x-ci(2xInz + ) +4cix?lne = c12? [(2Inx + 3) — 3(2zxInz + 1) + 4lnz] = 0. Thus y(z) = c1z?Inz
is a solution of the given differential equation for all x > 0.

16. y(z) = c12?cos(3Inz) = 3y = ¢1[2rcos(3Inz)—3xsin(3Inz)] = v = ¢1[~Tcos(3Inz)—6sin(3Inz)] =
22y —3xy'+13y = 22-¢1[~T cos(3Inx)—9sin(3Inz)]—3x-¢1[27 cos(3 In 2)—3x sin(3 In x)]+13¢122 cos(3Inz) =

c1x? {[~Tcos(3Inz) — 9sin(3Inx)] — 3[2cos(3Inz) — 3sin(3Inx)] + 13cos(3Inz)} = 0. Thus y(z) = c12% cos(3Inz)
is a solution of the given differential equation for all = > 0.

17. y(x) = 1/ +32% = o/ = +6r = y" = —

&1 C1 2 1 / 2 €1
— +6 = 2z —xy' +y =2z — +6)—
2\/x 4/ 23 sy ( 4V a3 )

x (2(\:} + 63:) +(c1v/T+322%) = 922, Thus y(x) = ¢11/7+ 322 is a solution to the given differential equation
T

for all x € {x: x > 0}.

2 2

18. y(z) = c12? + cox® — 2% sinx =y = 2c12 + 3ca2? — 2% cosw — 2xsiny = y” = 2¢; +6cx + 2% sinw —

2z cosx — 2z cos —2sin x. Substituting these results into the given differential equation yields

22y — day’ + 6y = 2%(2¢1 + 6cox + 2?sinx — 4z cosx — 2sinx) — 4x(2c1x + 3cox? — 2 cosx — 2xsin )

+6(c12?® + cpx® — 22 sinx)

_ 2 3 4o 1.3 92 2 3 3 2

= 2c12° 4+ 6cox” 4+ " sinx — 4x° cosx — 2x” sinx — 8ci1x 12¢co2° 4 42° cosx + 8x~ sinx
+ 6¢12% + 692 — 622 sinx

=ztsinz.

2

Hence, y(x) = c12% + co2® — 2? sinz is a solution to the differential equation for all z € R.

19. y(z) = 1™ + e’ = ' = ac1e + beae?™ =y = a’c1e™ + b2cye’®. Substituting these results
into the differential equation yields
Y’ — (a+Db)y + aby = a®c1e% + b2 cee’™ — (a + b)(ac1e®® + beae®™) + ab(c1e® + coeb™)
= (a*c; — a*cy — abey + abey)e™ + (bPcy — abey — b2 ey + abcz)eb“c
=0.
Hence, y(z) = c1e%® + c2¢ is a solution to the given differential equation for all x € R.

20. y(z) = e*(c1 + cox) = Yy’ = €*(c2) + ae™(c1 + c2x) = e (ca + acy + acox) = Yy = ea®(aca) +
ae®(cog + acy + acox) = ae®(2¢o 4+ acy + acox). Substituting these into the differential equation yields
y" — 2ay’ + a*y = ae®®(2cy + acy + acaw) — 2ae** (cy + acy + acaw) + a*e(cy + o)
= ae®(2co + acy + acox — 2¢o — 2ac1 — 2acox + acy + acax)
=0.
Thus, y(x) = e**(c1 + cax) is a solution to the given differential eqaution for all 2 € R.

(c)2017 Pearson Education. Inc.
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21. y(z) = e**(c¢1 cosbx + co sin bx) so,
y' = e (—bcy sin bx + beg cos br) + ae® (1 cos bz + co sin bx)

= e"[(bcg 4 acy) cosbx + (acy — bey) sinbz] so,
y" = e [—b(bcy + acy) sin bz + b(acy + bey ) cos bx] + ae®[(beg + acy) cos bx + (aca + bey ) sin bz
= e“[(a*c; — bPey + 2abey) cos ba + (acy — b*cy — abey) sin ba].
Substituting these results into the differential equation yields
y" = 2ay’ + (a® + b*)y = (e*[(a®cy — bPcy + 2abey) cosbr + (a*cy — b%cy — abey) sin b))
— 2a(e[(bey + acy) cosbx + (acy — bey) sinbx]) 4 (a? + b?) (e (cq cos bx + co sin b))
= e‘“”[(a201 — b2y + 2abey — 2abes — 2a%cy + a’ey + bzcl) cos bx
+ (a*cy — b*cy — 2abey + 2abey — 2a*cy + a’ey + bPey) sin ba]
Thus, y(z) = €**(c; cos bx0+ ¢ sinbr) is a solution to the given differential equation for all € R.

22. y(x) = "™ = y/ = re"® = 3y’ = r2e"®. Substituting these results into the given differential equation
yields €™ (r? —r — 6) = 0, so that 7 must satisfy r> —r — 6 = 0, or (r — 3)(r + 2) = 0. Consequently r = 3
and r = —2 are the only values of r for which y(x) = e"* is a solution to the given differential equation. The
corresponding solutions are y(r) = 3% and y(z) = e~ 2%,

23. y(z) = " =y = re" = y"" = r2e"™. Substituting these results into the given differential equation
yields €™ (r? + 6r + 9) = 0, so that 7 must satisfy 72 + 6r + 9 =0, or (r + 3)? = 0. Consequently r = —3 is
the only value of r for which y(z) = €"® is a solution to the given differential equation. The corresponding
solution are y(z) = e~3%.

24. y(x) = 2" =y =ra" ! = ¢ = r(r —1)a" 2. Substitution into the given differential equation yields
a"[r(r — 1) +r — 1] = 0, so that r must satisfy 72 — 1 = 0. Consequently » = —1 and r = 1 are the only
values of r for which y(z) = 2" is a solution to the given differential equation. The corresponding solutions
are y(z) = v~ and y(x) = x.

25. y(x) = 2" =y =ra" 1 = ¢ = r(r—1)a" 2. Substitution into the given differential equation yields
2" [r(r — 1) + 5r + 4] = 0, so that r must satisfy r? + 4r + 4 = 0, or equivalently (r + 2)? = 0. Consequently
r = —2 is the only value of r for which y(z) = z" is a solution to the given differential equation. The

corresponding solution is y(r) = 272

26. y(z) = jz(5x? — 3) = 5(52® — 32) = ¢/ = 1(152% — 3) = ¢/ = 15x. Substitution into the Legendre
equation with N = 3 yields (1 — 2?)y” — 2xy’ + 12y = (1 — 22)(152) + x(1522 — 3) + 6x(5z? — 3) = 0.
Consequently the given function is a solution to the Legendre equation with N = 3.

27. y(z) = ag+a1x+ax? = 3y = a1 +2axx = y"" = 4a,. Substitution into the given differential equation
yields (1—22)(2a2) —z(a1 +2a22) +4(ag+a12+azx?) = 0 = 3a12+2a2+4ag = 0. For this equation to hold

for all = we require 3a; = 0, and 2as + 4ag = 0. Consequently a; = 0, and as = —2ag. The corresponding
solution to the differential equation is y(z) = ag(1 — 22?). Imposing the normalization condition y(1) = 1
requires that ag = —1. Hence, the required solution to the differential equation is y(z) = 222 — 1.

d d T o
28. rsiny — €% = c = TSy 2 +siny — ¥ =0 = 2 = =Y
dx dx T Ccosy

(c)2017 Pearson Education. Inc.
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dy dy dy  1—y?
29. 1y’ +2y—r=c=20y— + 1y’ +2—> —1=0= > = ——.
wersy = Wi TV T dx  2(zy+1)

d d 1—ye™
30. eV 4+ =c= exy[x—y—ky] -1=0= xemy—y—kye” =1 = —2" Given y(l) =0 =

dx dz I rery
%) — 1 = ¢ = ¢ = 0. Therefore, e® — x = 0, so that y = e

x
dy
T Y d dy _ 2®(1—y?) +ye?/?

31. ey/$+my2—x:c:>ey/f”72+2xyfy+y2—1:0:>—
x dz

dr — z(ev/* + 2z%y)

d d — 2zy? 1
32. 22y? —sinz = ¢ = 2x2y—y + 2xy? —cosz = 0 = Y _ LT 2TY Since y(m) = —, then
dx dx 2x2y T
? 1+sinz 1
2 () —sinm = ¢ = ¢ = 1. Hence, 2%y? —sinz = 1 so that y? = —5 - Since y(m) = —, take the
™ x 77
T sms
branch of y where x < 0 so y(z) = vitsnr
x
dy .
33. oy = Sine = y(x) = —cosx + ¢ for all z € R.
x
dy —2/3 1/3
34. i /3 = y(x) = 32'/3 + c for all = # 0.
x
%y dy
35. — =xe* = — =ze” — e + ¢ = y(v) = xe” —2e” + 1z + ¢ for all z € R.
da? dx
d2
36. 2Y 2™, where n is an integer.
dax? J
If n = —1 then d—y =Inlz|+c = y(x) =xln|z|+ caz + cp for all z € (—o0,0) or z € (0, 00).
x
d
If n = —2 then d—y =214 = y(x) =c1x+ca —In|z| for all € (—00,0) or z € (0,00).
v dy l.n+1 xn+2
If —1 and —2 then — = —y="—- for all z € R.
n # and n # en - n+1+01 Y (n—l—l)(n+2)+clx+02 or all x
dy 1, 1, 1, 1
37. it lna::>y(x):§x ln:cfgx +c =3 Blnz—1)+c. y(l):2:>2:§(071)+01:>
x
19 1 19 1
=g Therefore, y(z) = §x3(31nx -1)+ 9 9% [3(3Inx — 1) +19].
d*y dy .
38. —— =cosx = = =sinzr+c = y(x) = —cosx + c1x + co.

x x
Thus, ¢ (0) =1 = ¢; =1, and y(0) = 2 = ¢ = 3. Thus, y(z) =3+ 2z — cosz.

a3 d? d
39. —y:6:vz —y:3x2+c1 :>—y:a:3+clx+02:>y: Lod 4 Leia? 4+ com + cs.
da3 dx? dx 4 2
Thus, y”(0) =4 = ¢; = 4, and ¢y (0) = =1 = ¢2 = —1, and y(0) = 1 = ¢3 = 1. Thus, y(z) =

ix4—|—2x2—x+1.

40. y' = ze” =y = xe” — " + ¢ = y = xe” — 2" + 17 + o,

(c)2017 Pearson Education. Inc.
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Thus, y'(0) =4 = ¢; =5, and y(0) = 3 = ¢z = 5. Thus, y(z) = ze® — 2¢* + 5z + 5.

41. Starting with y(z) = c1e” + coe™*, we find that y/'(z) = c1e® — cae™ and y”(z) = c1e” + cee~*. Thus,
Yy’ —y =0, s0 y(x) = c1€” + cae”* is a solution to the differential equation on (—oo, o). Next we establish
that every solution to the differential equation has the form cije® + coe™®. Suppose that y = f(z) is any
solution to the differential equation. Then according to Theorem 1.2.12, y = f(z) is the unique solution to
the initial-value problem

y'—y=0, y0)=f(0),  y(0)=f(0).

However, consider the function

o) = OO o SO 1O,

This is of the form y(z) = c1€* 4 coe™, where ¢; = M and ¢y = M, and therefore solves the

differential equation 3" —y = 0. Furthermore, evaluation this function at = 0 yields

y(0)=/f(0)  and  y(0)=f(0).

Consequently, this function solves the initial-value problem above. However, by assumption, y(z) = f(z)
solves the same initial-value problem. Owing to the uniqueness of the solution to this initial-value problem,
it follows that these two solutions are the same:

x

f(x) =cre® + coe ™.

Consequently, every solution to the differential equation has the form y(x) = c¢1e® + coe™®

this is the general solution on any interval I.

, and therefore

d? d
42. Tg — e T — d—y = —e "4+ = ylr) = e +cx+cy. Thus, y(0) =1 = ¢ = 0, and
€L X
y(1) =0=c1 = —é. Hence, y(z) = e * — %x
d*y dy , .
43. i —6—4lnr = e =2z —4drxlnz + ¢ = y(r) = —22°Inz + ¢z + ¢2. Since, y(1) = 0 =
-z x
2¢? 22
c1 + ¢ = 0, and since, y(e) = 0 = ec; + ¢ = 2¢2. Solving this system yields ¢; = %702 _ 2 .
e— e —
2¢2 )
Thus, y(z) = (x—1)—222Inz.

e—1
44. y(x) = ¢ cosx + cosinx

(a). y(0) =0=0=rc1(1) + 2(0) = ¢; = 0. y(7m) = 1 = 1 = ¢2(0), which is impossible. No solutions.
(b). y(0) =0=0=1c1(1) + c2(0) = c1 = 0. y(m) = 0 = 0 = ¢2(0), s0 ¢z can be anything. Infinitely

many solutions.

45-50. Use some kind of technology to define each of the given functions. Then use the technology to
simplify the expression given on the left-hand side of each differential equation and verify that the result
corresponds to the expression on the right-hand side.

51. (a). Use some form of technology to substitute y(z) = a+bx + cx? + dz3 + ex* + f2° where a, b, ¢, d, e, f
are constants, into the given Legendre equation and set the coefficients of each power of x in the resulting
equation to zero. The result is:

e=0, 20f+184=0, e+2c=0, 3d+14b=0, ¢+ 15a = 0.

(c)2017 Pearson Education. Inc.
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Now solve for the constants to find: a = c=¢e¢ =0, d = —%b, f= —%d = 25—11). Consequently the
corresponding solution to the Legendre equation is:

14 21
y(z) = bx ( - EmQ + 5x4) .

Imposing the normalization condition y(1) = 1 requires 1 = b(1 — % +
required solution is y(z) = $x(15 — 7022 + 63z*).

21

5

) => b= 22, Consequently the

[e’s) _1\k T 2
52. (2)- Jola) = 3 ((k!l)l (5) ol la?idaty

(b). A Maple plot of J(0,x,4) is given in the accompanying figure.
J(0,x,4)

+

0.8+

0.6+

Approximation to the first

0.41 positive zero of Jy(x)

0.2

T T T T X
0 1 2 3 4
-0.2

Figure 0.0.8: Figure for Problem 52(b)

(¢). From this graph, an approximation to the first positive zero of Jy(x) is 2.4. Using the Maple internal
function BesselJZeros gives the approximation 2.404825558.

(¢) A Maple plot of the functions Jy(x) and J(0,x,4) on the interval [0,2] is given in the accompanying
figure. We see that to the printer resolution, these graphs are indistinguishable. On a larger interval, for
example, [0,3], the two graphs would begin to differ dramatically from one another.

(d). By trial and error, we find the smallest value of m to be m = 11. A plot of the functions J(0,z) and
J(0,z,11) is given in the accompanying figure.

Solutions to Section 1.3

True-False Review:

(a): TRUE. This is precisely the remark after Theorem 1.3.2.

(b): FALSE. For instance, the differential equation in Example 1.3.7 has no equilibrium solutions.
(c): FALSE. This differential equation has equilibrium solutions y(z) = 2 and y(z) = —2.

(d): TRUE. For this differential equation, we have f(x,y) = x? + y%. Therefore, any equation of the form
2% 4+ y? = k is an isocline, by definition.

(c)2017 Pearson Education. Inc.
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Jo(x), J(O, x, 4)
1,

0.8

0.6+

0.4+

0 02 04 06 08 1 12 14 16 18 2

Figure 0.0.9: Figure for Problem 52(c)

J(, x), J(0, x, 11)
11

0.8
0.6
0.4
0.2

0 AN RN
-0.2 — J(0,x)

—0.41 /

Figure 0.0.10: Figure for Problem 52(d)

(e): TRUE. Equilibrium solutions are always horizontal lines. These are always parallel to each other.

(f): TRUE. The isoclines have the form % =k, or 22 +y? = 2ky, or 2®+ (y—k)? = k?, so the statement
is valid.

(g): TRUE. An equilibrium solution is a solution, and two solution curves to the differential equation

% = f(z,y) do not intersect.
Problems:

d
1. y = ce*® = ¢ = ye~2*. Hence, d—y = 2ce?® = 2y.
x

1 d
2. yze”ﬁlnyzcmic:ﬁ,m#o. Hence, d—y:ce”:glny,x;ﬁo.
x x x

(c)2017 Pearson Education. Inc.
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2
3. y=ca? = c= 2. Hence, 2 =2z =22%z =Y.
x? dx x? x
d
4. y=cz~! = ¢ = ry. Hence, 2= —(zy)z~2 = Y
dx x
2
Y dy dy ¢ _y

5. 92 =cr=—=c=>. H , 2y—= =¢, so that, — = — = —.

Y= =cx ¢ = —. Hence, 2y=— = ¢, so that, -~ 5 2z

2,2 d 2,2 d 2,2
6. 22 +y? = 2cx = Tty = c. Hence, 2x+2y—y = 2c = Ty , so that, y—y S Ty
5 2 dx dx 2z
d _
Consequently, w_v—r
dx 2ry
z? + y?
7. -2+ y—0c)? =22 = 22 —2cx +9y> —2cy = 0 = ¢ = ﬁ Differentiating the given
rTy
d 2 2 2 2 d

equation yields 2(z — ¢) + 2(y — c)% = 0, so that 2 {x — M] 2 { — ;(x—:—yy)] ﬁ = 0, that is

dy 2% 4+ 2zy — 12
der 2+ 2zy — 22’

—2y + \/4y? + 422
8. 2cy=0? - = +2cy—2>=0=c= Y y e = —y + /2% + y2. Hence, 20%223:,

2
d r x

SOthathzz—Tm

d d
9. x2+y2:c:>2x+2y—y:O:>£ —

dx dx y

Figure 0.0.11: Figure for Problem 9
— 3 dy o 2 _ oY o_ 3y s _ _ 3 _
10. y = cx® = P 3cx® = 3—x° = —. The initial condition y(2) = 8 = 8 = ¢(2)° = ¢ = 1. Thus
x x x

the unique solution to the initial value problem is y = z3.

(c)2017 Pearson Education. Inc.
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8— ,8)

-2 2

d d 2 d
11. y2:cx:>2y—y:c:>2yfy:yf:>fy
dx dx x dx

y(1) = 2 = ¢ = 4, so that the unique solution to the initial value problem is y* = 4x.

= y2x = 2z -dy — y - dr = 0. The initial condition

Figure 0.0.13: Figure for Problem 11

(c)2017 Pearson Education. Inc.
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12. (z —c)? + 9% = ® = 22 — 2cw + % +y? = 2, so that

2% —2cx +y* =0. (0.0.1)

Differentiating with respect to x yields
2x — 2¢+ Qy% =0. (0.0.2)
But from (0.0.1), ¢ = m22_;y2 which, when substituted into (0.0.2), yields 2x — <x2 Iy2> + Qy% =0,
that is, Z—i = y22;yx2. Imposing the initial condition y(2) = 2 = from (0.0.1) ¢ = 2, so that the unique

solution to the initial value problem is y = +y/z(4 — x).

y(x)
A
3]

Figure 0.0.14: Figure for Problem 12

13. Let f(x,y) = xsin (x + y), which is continuous for all z,y € R.

—= =z cos (x + y), which is continuous for all z,y € R.

Jy

d
By Theorem 1.3.2, d—y =zsin(z +y), y(xro) = yo has a unique solution for some interval I € R.
x

dy T
14. 2= ———(y* -9 0) =3.
flxy) = — 1 (y* — 9), which is continuous for all z,y € R.
x
of 2wy

—- = —5 - which is continuous for all x,y € R.
oy x?+41
So the initial value problem stated above has a unique solution on any interval containing (0, 3). By inspection
we see that y(x) = 3 is the unique solution.

(c)2017 Pearson Education. Inc.
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15. The initial-value problem does not necessarily have a unique solution since the hypothesis of the existence

and uniqueness theorem are not satisfied at (0,0). This follows since f(z,y) = zy'/2, so that i %my*1/2
Y
which is not continuous at (0,0).
2 of . :
16. (a). f(z,y) = —22y° = 50 = —4xy. Both of these functions are continuous for all (z,y), and
Y
therefore the hypothesis of the uniqueness and existence theorem are satisfied for any (xo,yo)-
1 2z
b . = — L — _2 2.
(b). y(2) = 5 = R zy
1
c). = .
(©). y(@) = 57
1
(i)- y(0)=1= 1=~ = c = 1. Hence, y(x) = pCRE The solution is valid on the interval (—oo, 00).
¢ T
y(x)
1.2
8
0.4
| ! | i
2 2

Figure 0.0.15: Figure for Problem 16¢(i)

1
(). y1)=1=1= = ¢ = 0. Hence, y(z) = —;. This solution is valid on the interval (0, 00).
x

1+c¢
1 1 : L . .
(iii). y(0) = -1 = —1 = — = ¢ = —1. Hence, y(z) = prREE This solution is valid on the interval
c x2 —
(-1,1).
(d). Since, by inspection, y(x) = 0 satisfies the given initial-value problem, it must be the unique solution
to the initial-value problem.

17. (a). Both f(z,y) = y(y — 1) and ? = 2y — 1 are continuous at all points (x,y). Consequently, the

hypothesis of the existence and uniqueness theorem are satisfied by the given initial-value problem for any
0, Yo-
(b). Equilibrium solutions: y(x) = 0,y(z) = 1.
: - . . . Co Py dy
(c). Differentiating the given differential equation yields i (2y — 1)d— = (2y — )y(y — 1). Hence the
x x
solution curves are concave up for 0 < y < %, and y > 1, and concave down for y < 0, and % <y<l

(d). The solutions will be bounded provided 0 < yo < 1.

18. (a). Equilibrium solutions: y(z) = —2, y(z) = 1.

(c)2017 Pearson Education. Inc.
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y(x)

g4

Ny
X
I I I I I i
6

Y
x

-3

Figure 0.0.17: Figure for Problem 16¢(iii)

d
(b). (Ty = (y + 2)(y — 1) = the solutions are increasing when y < —2 and y > 1, and the solutions are
x

(c)2017 Pearson Education. Inc.
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Figure 0.0.18: Figure for Problem 17(d)

decreasing when —2 < y < 1.
d? d
(c). Differentiating the given differential equation yields d—xz =(2y+ 1)% =(2y+1)(y+2)(y—1). Hence
the solution curves are concave up for —2 < y < —%, and y > 1, and concave down for y < —2, and
1
-5 <y<l
2

19. (a). Equilibrium solution: y(z) = 2.

d
(b). d—y = (y — 2)? = the solutions are increasing when y < 2 and y > 2.
x

2

d d
(c). Differentiating the given differential equation yields d—;; =2(y—2)

d—y = 2(y — 2)3. Hence the solution
T

curves are concave up for y > 2, and concave down for y < 2.

20. (a). Equilibrium solutions: y(z) =0, y(z) = 1.

d
(b). d—y = y?(y — 1) = the solutions are increasing when y < 1, and the solutions are decreasing when
x

d? d
(c). Differentiating the given differential equation yields d—xg = (3y%— 2y)£ =933y —2)(y—1). Hence the

solution curves are concave up for 0 < y < —%, and y > 1, and concave down for y < 0, and 2/3 <y < 1.
21. (a). Equilibrium solutions: y(z) =0, y(z) = 1, y(z) = —1.

d
(b). d—y = (y+2)(y — 1) = the solutions are increasing when —1 < y < 0 and y > 1, and the solutions are
x

decreasing when y < —1, and 0 < y < 1.
2 dy

d
(c). Differentiating the given differential equation yields ﬁ = (3y* — 1)% =By = Dyly— Dy +1).

Hence the solution curves are concave up for —1 < y < —%, and 0 <y < %, and y > 1, and concave down

fory<—1,and—%<y<0,and%<y<1.

22. y' = 4x. There are no equilibrium solutions. The slope of the solution curves is positive for > 0 and

is negative for x < 0. The isoclines are the lines z = %.
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Slope of Solution Curve | Equation of Isocline
-4 r=—1
-2 x=-1/2
0 z=0
2 x=1/2
4 r=1
y(x)
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Figure 0.0.19: Figure for Problem 22

23. ¢y = % There are no equilibrium solutions. The slope of the solution curves is positive for z > 0 and
increases without bound as  — 07. The slope of the curve is negative for x < 0 and decreases without
bound as  — 0~. The isoclines are the lines + = k.

x

Slope of Solution Curve | Equation of Isocline
+4 x==+1/4
+2 x==+1/2
+1/2 x =42
+1/4 x =44
+1/10 z = +10

24. 3y’ = 2 +y. There are no equilibrium solutions. The slope of the solution curves is positive for y > —x,
and negative for y < —x. The isoclines are the lines y + x = k.

Slope of Solution Curve | Equation of Isocline

-2 Yy=—x—2

-1 y=-—x—1

0 Y=z

1 y=—-x+1

2 y=—-x+2
Since the slope of the solution curve along the isocline y = —x — 1 coincides with the slope of the isocline,
it follows that y = —z — 1 is a solution to the differential equation. Differentiating the given differential

(c)2017 Pearson Education. Inc.
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Figure 0.0.20: Figure for Problem 23
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25

equation yields: y” = 1+9 = 1+ z +y. Hence the solution curves are concave up for y > —z — 1, and
concave down for y < —z — 1. Putting this information together leads to the slope field in the accompanying

figure.

—

—_—
—
—_——

Figure 0.0.21: Figure for Problem 24

3=
X

AN S

A N

25. y = % There are no equilibrium solutions. The slope of the solution curves is zero when = 0. The
solution has a vertical tangent line at all points along the x-axis (except the origin). Differentiating the

z , 1

1
differential equation yields: v’ = — — =y =--

up for y > 0 and 3?2 > 2%, y <0 and y? < z

) Y
2

The isoclines are the lines % = k.

22
3
Y

1
E (y2
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— 22). Hence the solution curves are concave

and concave down for y > 0 and y? < 2%; y < 0 and y? > x2.
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Slope of Solution Curve | Equation of Isocline
+2 y=tx/2
+1 y ==+
+1/2 y =12z
+1/4 y = +dx
+1/10 y =110z

Note that y = +x are solutions to the differential equation.

y(x)
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G RN
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Figure 0.0.22: Figure for Problem 25

26. y = —%. Slope is zero when = = 0 (y # 0). The solutions have a vertical tangent line at all points
along the z-axis(except the origin). The isoclines are the lines 747790 = k. Some values are given in the table
below.

Slope of Solution Curve | Equation of Isocline
+1 y = tdx
+2 y = +2x
+3 y = +4x/3
4 Adxy 4 1622 4(y? + 422
Differentiating the given differential equation yields: 3y’ = —— + xéy = —— - i = —M.

Y
Consequently the solution curves are concave up for y < 0, and concave down for y > 0. Putting this
information together leads to the slope field in the accompanying figure.

27. 3y = 22y. Equilibrium solution: y(x) = 0 = no solution curve can cross the z-axis. Slope: zero
when x = 0 or y = 0. Positive when y > 0 (z # 0), negative when y < 0(z # 0). Differentiating the given
d? d
differential equation yields: d—z = 2xy+x2d—y = 2zy+aty = zy(2+23). So, when y > 0, the solution curves
x x
are concave up for x € (—oo, (—2)/3), and for z > 0, and are concave down for z € ((—2)'/3,0). When
y < 0, the solution curves are concave up for x € ((—2)'/2,0), and concave down for 2 € (—o0, (—2)/3) and

for > 0. The isoclines are the hyperbolas z?y = k.

(c)2017 Pearson Education. Inc.
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Figure 0.0.23: Figure for Problem 26

Slope of Solution Curve

Equation of Isocline

+2 y = +2/22
+1 y=+1/2?
+1/2 y = +1/(2z)?
+1/4 y = +1/(42)?
+1/10 y = £1/(10z)2
0 y=20

28. y' = 2% cosy. The slope is zero when x = 0. There are equilibrium solutions when y = (2k + 1)5. The
slope field is best sketched using technology. The accompanying figure gives the slope field for -5 <y < 37"

29. i = 22 4 y2. The slope of the solution curves is zero at the origin, and positive at all the other points.
There are no equilibrium solutions. The isoclines are the circles 22 + y? = k.

Slope of Solution Curve | Equation of Isocline
1 r=+1/4
2 x==+1/2
3 r=+£2
4 x==+4
) r = =*10
30. % = —55(T = 70). Equilibrium solution: T'(f) = 70. The slope of the solution curves is positive for

(c)2017 Pearson Education. Inc.
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(T — 70) = k.

1
80

=90
86
70
o4
50

(T — 70). Hence the solution curves are concave

Equation of Isocline

1
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~1/1
1/5
1/5
1/4

Figure 0.0.25: Figure for Problem 28

dt?
up for T' > 70, and concave down for T' < 70. The isoclines are the horizontal lines —

d*T
Slope of Solution Curve

2xy.
1492

T > 70, and negative for T' < 70.

31. ¢/
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Figure 0.0.27: Figure for Problem 30

33. ¢y =3z —y.

34. ¢ = 22%siny.

2 + 92
35. ) =~
Y = 370522
1—y2
36,y = — 94
Y T 9 0522

37. (a). Slope field for the differential equation y’ = 2~ !(3sinz — y).

(b). Slope field with solution curves included.

The figure suggests that the solution to the differential equation are unbounded as z — 0.

(c). Slope field with solution curve corresponding to the initial condition y(%) = %
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Figure 0.0.28: Figure for Problem 31
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Figure 0.0.29: Figure for Problem 32
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Figure 0.0.30: Figure for Problem 33
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This solution curve is bounded as x — 0F.
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Figure 0.0.32: Figure for Problem 35

y(x)
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Figure 0.0.33: Figure for Problem 36

(d). In the accompanying figure we have sketched several solution curves on the interval (0,15].
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y(x)
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Figure 0.0.34: Figure for Problem 37(a)
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Figure 0.0.36: Figure for Problem 37(c)

The figure suggests that the solution curves approach the z-axis as z — oo.
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Figure 0.0.37: Figure for Problem 37(d)

dy

38. (a). Differentiating the given equation gives i 2kx = 2=. Hence the differential equation of the
x

d
orthogonal trajectories is d—y =——.
x

x

Figure 0.0.38: Figure for Problem 38(a)

(b). The orthogonal trajectories appear to be ellipses. This can be verified by integrating the differential
equation derived in (a).

Qo

39. If a > 0, then as illustrated in the following slope field (a = 0.5,b = 1), it appears that lim;_, o i(t) =

If a < 0, then as illustrated in the following slope field (a = —0.5,b = 1) it appears that i(¢) diverges as
t — 00.

If a = 0 and b # 0, then once more i(t) diverges as t — oo. The accompanying figure shows a represen-
tative case when b > 0. Here we see that lim;_, . i(t) = +o00. If b < 0, then lim;_, o, i(t) = —o0.

If « = b =0, then the general solution to the differential equation is i(t) = ig where i is a constant.
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Figure 0.0.39: Figure for Problem 39 when a > 0
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Figure 0.0.40: Figure for Problem 39 when a < 0
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Figure 0.0.41: Figure for Problem 39 when a =0

Solutions to Section 1.4
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True-False Review:

dz
form, according to Definition 1.4.1, for a separable differential equation.

(a): TRUE. The differential equation 2% = f(z)g(y) can be written ﬁﬂ = f(«), which is the proper

(b): TRUE. A separable differential equation is a first-order differential equation, so the general solution
contains one constant. The value of that constant can be determined from an initial condition, as usual.

(c): TRUE. Newton’s Law of Cooling is usually expressed as % = —k(T — Ty,,), and this can be rewritten

as
1 dr

- =
T—1T,, dt
and this form shows that the equation is separable.

(d): FALSE. The expression 2 + y? cannot be separated in the form f(x)g(y), so the equation is not
separable.

(e): FALSE. The expression zsin(zy) cannot be separated in the form f(x)g(y), so the equation is not
separable.

(f): TRUE. We can write the given equation as e—y% = e”, which is the proper form for a separable
equation.

(g): TRUE. We can write the given equation as (1 + yQ)% = x%, which is the proper form for a separable
equation.

(h): FALSE. The expression Z:fz cannot be separated in the form f(x)g(y), so the equation is not
separable.

1

3 2,2
(i): TRUE. We can write “4t2 %" — gy 50 we can write the given differential equation as ;

x2+ay
is the proper form for a separable equation.

g—y = z, which
X

Problems:

1. Separating the variables and integrating yields

2

d
7y:2/$d1‘:>111‘y|:$2+61:}y(]}):cem
Y

2. Separating the variables and integrating yields

dx 1
—2
dy= | -2 =)=
/y y /x2+1 y() tan" !z + ¢

3. Separating the variables and integrating yields

/eydy:/e*“;d:v:O:eere*z =c=y(r)=ln(c—e").

4. Separating the variables and integrating yields

/%y :/(lmx)_ld:c:y(x) = clnz.

(c)2017 Pearson Education. Inc.
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5. Separating the variables and integrating yields

dz d
/z72:/gy:ln|x—2|—ln|y|=c1:>y($)=C(3U—2>-

6. Separating the variables and integrating yields

d 2
%:/ a dr = Inly — 1| =In|2* + 3| + ¢; = y(z) = c(z* +3) + 1.

2 +3
dy 2 dy dy . . . L
T.y—ar—=3—-22"— = x(22 — 1)=— = (3 — y). Separating the variables and integrating yields
dx dx dx
dy dx dx 2
- —= —/—/—m— = -Ihly-3|=- | — d
y—3 /x(2x—1) nly =3 /x+/2z—1x
= —Inly—3|=—Injz|+In|2z - 1|+
—_ T = (x)_ca:—?)
-3 2z-1) 2 YT u 1

d cos (x — d COS T COS si cos
dy _ s(z—y) dy  cosz by:>f1nyd x

8. A = =/
dx sin x sin y dr  sinzsiny cosy cosy
COSs y = CCSsCx.

dr = —In|cosy| = In|sinz|+c¢; =

dy (y? —1) dy 1 xdx
'dx72@—®uwﬁ):$I@+D@—1f72f@—$@—D

1 dy 1 dy 1 / dx / dx
N AR B A ) — -1 1|+In|y — 1| = 21 — 2|1 -1
2 yri2) -1 2( iz ) w-1) = Iy =df=2mje =2 =t

,y # 1. Thus,

y—1 (x —2)2 (z—1) +c(z —2)?
=c

y+1 x—1 (x—1)—c(x—2)?

are solutions of the given differential equation. The former is included in the above solution when ¢ = 0.

= y(z) =

. By inspection we see that y(z) = 1, and y(z) = —1

dy 2%y —32 dy x? 16
10. — = 2 = = de =1 -2 =- 1+ ——)de =1 —2| =
dr = 16—a2 J =l mtr =y =A== (1 g ) de = Iy =2
dx dx dx
co 16 e — =2 = —o =16 (<3 5+ 4SS ) = iy -2 = a4 2ot 4] -
A\ 2
21n|x—4|+01:>y(x):2+c<m+ > e ".
r—4
dy dy dx dy 1 1 1
11. (z— —b)—=—(y—c) =0 = = — = — dr =
(z=a)(= )d:L' (y=c) fy—c f(zfa)(xfb) fyfc a—bf t—a z-0)%
r —q|/@0 r—p\ /(@b r—a)\ @D
Inly—c| =ln|¢g = |(y—¢) == y—c=c —
x—0 T—a x—0
@) = cto r—a) Y@
Y = N .

(c)2017 Pearson Education. Inc.
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d d d
12. ($2+1)£+y2:_1:>f1+yy2 :—f1+xx2 = tan"ly = tan"'2 + ¢, but y(0) = 1 s0 ¢ = %
11—z
Thus, tan~y = tan~! z 4 — :
us, tan™" y = tan x—|—4 or y(x) Tz
d d 2
13. (1—x2)£+my:ax=>fa7yy:—%f—?xﬁdxﬁ—lMa—y\:—%ln\l—x2|+01:>y(x):

a+ cv1— 22, but y(0) = 2a so ¢ = a and therefore, y(x) = a(l + V1 — z2).

d . d . .
14. P =1 M — = —tanzcoty = -/ Y 4y = / ST e = —In|cosxcosy| = ¢, but
dx sinz siny dx cosy cos T
y(%) = Z so ¢ =1n(2). Hence, —In|cosz cosy| =In(2) = y(z) = cos™* (§ secx).
dy 3 . dy . 1 .
15. p yPsine = [ = [ sinadx for y # 0. Thus 52 = — cosxz+c. However, we cannot impose the
x

initial condition y(0) = 0 on the last equation since it is not defined at y = 0. But, by inspection, y(x) =0

is a solution to the given differential equation and further, y(0) = 0; thus, the unique solution to the initial

value problem is y(x) = 0.
d d

16. % =3y-DV? = fﬁ

c=-2=2/y—1=32r—2= \/y—1=1%(x—1). This does not contradict the Existence-Uniqueness

theorem because the hypothesis of the theorem is not satisfied when = = 1.

=2fdrify#1= 20y— 1Y% =2z +cbut y(1) =1 s0

dv m
17. (a). mY =mg—kv? = —— "
(@). mo = mg =k — S o]

m
be written as " Ik

dv = dt. If we let a = /7% then the preceding equation can

dv = [ dt which can be integrated directly to obtain

ﬂln a—+v i
2ak a—v/) “

1
a2 — p2

that is, upon exponentiating both sides,

a—v

Tmposing the initial condition v(0) = 0, yields ¢ = 0 so that

a+v 2aky
=em".
a—v

Therefore,

which can be written in the equivalent form

o(t) = atanh (f)

(b). No. Ast — oo,v — a and as t — 0 v — 0.

(c)2017 Pearson Education. Inc.
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2

d

(c). v(t) = atanh (%) = dit/ = atanh (£) = a [tanh (£)dt = y(t) = %ln(cosh(%)) + ¢; and if

a2
y(0) = 0 then y(t) = — In [cosh (£)].

g

. . . I dy x 1 .
18. The required curve is the solution curve to the initial-value problem ool y(0) = 5. Separating
€L Y
the variables in the differential equation yields 4y~ 'dy = —1dz, which can be integrated directly to obtain
2

2% = —% + c¢. Imposing the initial condition we obtain ¢ = %7 so that the solution curve has the equation
2y? = —a? + 3, or equivalently, 4y? + 22 = 1.

d
19. The required curve is the solution curve to the initial-value problem aTy = e Y y(3) = 1. Separating
x

the variables in the differential equation yields eYdy = e®dx, which can be integrated directly to obtain
e¥ = e® 4 c. Imposing the initial condition we obtain ¢ = e — €3, so that the solution curve has the equation
e¥ = e® + e — €3, or equivalently, y = In(e® + e — €3).

d
20. The required curve is the solution curve to the initial-value problem d—y = 2%y?,y(—1) = 1. Separating
x
the variables in the differential equation yields y%dy = 2%dx, which can be integrated directly to obtain
—1 = 123 4 ¢ Imposing the initial condition we obtain ¢ = —2, so that the solution curve has the equation
Yy 3 3
Yy = —ﬁ, or equivalently, y = 27313.

1
21. (a). Separating the variables in the given differential equation yields ﬁdv = —dt. Integrating we
v
obtain tan~! (v) = —t + ¢. The initial condition v(0) = v implies that ¢ = tan~! (v), so that tan~! (v) =
—t+tan~! (vg). The object will come to rest if there is time ¢, at which the velocity is zero. To determine t,,
we set v = 0 in the previous equation which yields tan=! (0) = ¢, +tan~! (vy). Consequently, t, = tan=! (vy).

dv
The object does not remain at rest since we see from the given differential equation that U <0att=t,,
and so v is decreasing with time. Consequently v passes through zero and becomes negative for ¢t < t,.

d d d d
(b). From the chain rule we have dit) = dfatc Then d—v = vd—v. Substituting this result into the differential
x x

d
equation (1.4.22) yields fud—v = —(1 4+ v?). We now separate the Variaubleszlvi2
x v

obtain In (1 + v2?) = —2x + c¢. Imposing the initial condition v(0) = vg, z(0) = 0 implies that ¢ = In (1 + v3),
so that In (1 +v?) = —2x + In (1 + v3). When the object comes to rest the distance travelled by the object
| 2

is 2 = 5 In(1+vg).

dv = —dx. Integrating we

d
22. (a). dit} = —kv" = v "dv = —kdt.

vp™™, so that

1
n#1:—= . v~ = —kt + ¢. Imposing the initial condition v(0) + vg yields ¢ = 1
n

v =[vg7" + (n — 1)kt]'/(1="). The object comes to rest in a finite time if there is a positive value of ¢ for
which v = 0.

n = 1 := Integratingv "dv = —kdt and imposing the initial conditions yields v = vge™**, and the object
does not come to rest in a finite amount of time.

d
(b). If n # 1,2, then d—f = [vg™™ + (n — Dkt]"/0=") where 2(t) denotes the distanced travelled by the

(c)2017 Pearson Education. Inc.
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object. Consequently, z(t) = — [~ " + (n — 1)kt]2=™/0=1) 1 ¢ Imposing the initial condition

k(2—n)
. 1 —-n 1 —n —-n —-n 1 -n
2(0) = 0 yields ¢ = m’ug , so that z(t) = fm[v}, +n(n —1)kt]G—/0-n) 4 mvg
2 — 1
For 1 < n < 2, we have 1 i < 0, so that lim; . x(t) = m Hence the maximum distance that the
-n -n

object can travel in a finite time is less than ——.
k(2 —n)

v
?0(1 — e~ "), where we have imposed the initial condition

2(0) = 0. Consequently, lim; o, z(t) = 1];—0. Thus in this case the maximum distance that the object can

If n = 1, then we can integrate to obtain z(t)

v
travel in a finite time is less than ?O.

1 1
(C). If n > 2, then Z'(t) = 7@[7)37" + n(n — l)kt](27n)/(17n) + mvg_n iS Stlu Valid. HOWeVer,
9
in this case r > 0, and so lim;_, o, 2(t) = +00. Consequently, there is no limit to the distance that the

-n
object can travel.

d
If n = 2, then we return to v = [vy~" + (n — 1)kt]*/(=") In this case a% = (vy* + kt)~', which can

1
be integrated directly to obtain x(t) = z In (1 + vokt), where we have imposed the initial condition that

2(0) = 0. Once more we see that lim; o, 2(t) = +00, so that there is no limit to the distance that the object
can travel.

23. Solving p = po(ﬁ)l/“’. Consequently the given differential equation can be written as dp = —gpo(ﬁ)l/’ydy,
Po Po

(v=1/~
or equivalently, p~/7dp = f%dy. This can be integrated directly to obtain P T = fgf%/ +c. At
Do 7 Do

the center of the Earth we have p = pg. Imposing this initial condition on the preceding solution gives

(v=1/v
c= %71. Substituting this value of ¢ into the general solution to the differential equation we find,

N —

(=17~
_ -1 -1
after some simplification, p(*=1/7 = pgy D/ [1 — (’Y)POWJ], so that p = po [1 — (’VWI] .
YPo YPo

dr drT dT

24, — = —k(T — T}, — = k(T — —— = —kdt = In|T — 75| = —kt T(t) =
7 ( ):>dt ( 75):>T_75 = In| 5] +c = T(t)

754+ ce ™. T(0) =135 = ¢ =60 s0 T = 75+ 60e=**. T(1) = 95 = 95 = 75 + 60e " = k = In3 —
T(t) =75+ 60e~t"3. Now if T'(t) = 615 then 615 = 75+ 607 t"3 = ¢ = —2h. Thus the object was placed
in the room at 2p.m.

dT
25. — = —k(T — 450) = T(t) = 450 + Ce **.T(0) = 50 = C = —400 so T(t) = 450 — 400e~** and
1
T(20) = 150 = k = % In %; hence, T'(t) = 450 — 400(2)!/20.
(i) T(40) = 450 — 400(2)? = 225°F.
201n4
(ii) T(t) = 350 = 450 — 400(3)/? = (3)1/0 =1 —= ¢ = 1n(41/13) ~ 96.4 minutes.
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dr drT

26. —- = —k(T — 34) = T3~ —kdt = T(t) = 34 + ce . T(0) = 38 = ¢ = 4 so that

T(t) = 34+ 4e . T(1) = 36 = k = In2; hence, T(t) = 34 + 4e~tm2. Now T(t) = 98 = T(t) =
34 +4e M =98 = 27! =16 => t = —4h. Thus T(—4) = 98 and Holmes was right, the time of death was
10 a.m.

27. T(t) = 75+ ce ™. T(10) = 415 = 75 + ce 1% = 415 = 340 = ce 0% and T(20) = 347 =
75 + ce 20k = 347 — 272 = ce~2%%. Solving these two equations yields k = % ln% and ¢ = 425; hence,
T =75+ 425(2)1/10
(a) Furnace temperature: 7(0) = 500°F.

10In1
(b) If T'(t) = 100 then 100 = 75 + 425(2)"/10 —= ¢ = 0ln17

5
ln4

~ 126.96 minutes. Thus the temperature of
the coal was 100°F at 6:07 p.m.

dT dT dT
28. — = k(T — 72 = — T =72 _kt, 1 — = =20, k(T —72) = -2
8 o E( 72) = T—7 kdt = T(t) = 72 + ce Since o 0, —k( 72) 0 or

k=22, Since T(1) = 150 = 150 = 72+ ce~10/3% = ¢ = 78¢10/3%; consequently, T(t) = 72 + 781011 =1)/39,
(i). Initial temperature of the object: t = 0 = T'(t) = 72 + 78¢'9/30 ~ 173°F

(ii). Rate of change of the temperature after 10 minutes: T(10) = 72 + 78¢ 3913 5o after 10 minutes,

dr 10 ar 260
= (72 —30/13 __ 2 o 2
g = o2t T8e )= 13

e30/13  2°F per minute.

29. Substituting a = 0.5, M = 2000 g, and mo = 4 g into the initial-value problem (1.4.17) yields

dm 3/4 m o\ 1/4
0-5m (2000) - m(0)

Separating the variables in the preceding differential equation gives

_ ! —dm = 0.5dt

/s 1_(%)1/4

so that

1

/ - 1 —dm = 0.5t + c.
m \1/4

m/ 1 - (50

2000

To evaluate the integral on the left-hand-side of the preceding equation, we make the change of variable
m \1/4 1 1 m \ —3/4
w:(—) , dw:f-—(—) dm
2000 4 2000 \2000

1
4. (2000)/* / T odw=05t+c

—w

and simplify to obtain

which can be integrated directly to obtain
—4-(2000)"*In(1 — w) = 0.5t + c.
Exponentiating both sides of the preceding equation, and solving for w yields

7 1/4
w=1— cye0-125t/(2000)

(c)2017 Pearson Education. Inc.



41

or equivalently,

( m )1/4 — 1 — ¢, g—0-125t/(2000)"/*
2000 ! '

Consequently,

m(t) = 2000 {1 _ cle_0'125t/(2000)1/4r~ (0.0.3)
Tmposing the initial condition m(0) = 4 yields
4=2000(1—¢;)"
so that

1\ /4
—1-(—) =~o0.7885.
“ (500)

Inserting this expression for ¢; into Equation (0.0.3) gives

m(t) = 2000 |:1 - 0.78856_0.125]&/(2000)1/4i| 4 .

Consequently,

4
m(100) = 2000 [1 — 0.7885¢~125/ <2000>”4} ~ 11905 g.

30. Substituting a = 0.10, M = 0.15 g, and my = 0.008 g into the initial-value problem (1.4.17) yields

dm m o\ 1/4
— =01m®t |1 - (— = 0.008.
0.1m [ (0.15) } m(0) = 0.008

Separating the variables in the preceding differential equation gives

o -1 - (£>1/4- dm = 0.1dt

so that

1

/ = 1/4_clm:0.1t—|—c.
m3/4 |1 — (ﬂ)

0.15

To evaluate the integral on the left-hand-side of the preceding equation, we make the change of variable
m \1/4 1 1 m N —3/4
= _— 5 d == - ( ) d
v <0.15) “=17015 \015 "

1
4. (0.15)1/4/17@) = 0.1t +c

—w

and simplify to obtain

which can be integrated directly to obtain

—4.(0.15)*In(1 — w) = 0.1t + c.
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Exponentiating both sides of the preceding equation, and solving for w yields

_ 1/4
w=1— ¢ e0025t/(0.15)

or equivalently,

m 1/4 14
— 1 — g e—0-025¢/(0.15)1 /%
(0.15) 1€

Consequently,
4

m(t) = 0.15 [1 - cle*0-025t/<°-15>”“} . (0.0.4)
Imposing the initial condition m(0) = 0.008 yields
0.008 = 0.15 (1 — ¢1)*

4\ /4
cp=1-— (75> ~ 0.5194.

Inserting this expression for ¢; into Equation (0.0.4) gives

so that

4

m(t) = 0.15 [1 - 0.5194e—0-025t/<0415>”4]

Consequently,
4
m(30) = 0.15 [1 - 0.51946*075/(015)“4} ~ 0.076 g.

The guppy will have reached 90% of its fully grown mass at time ¢ where
0.9-0.15 = 0.15 [1 - 0.5194@—002“/(0-15)”“]4 .

Solving algebraically for ¢ yields
A5)1/% 11— (0.9)Y/4
__(01) m{ (0.9)

~ T74. 3.
0.025 0.5104 } 745 days

31. Since the chemicals A and B combine in the ratio 2:1, the amounts of A and B that are unconverted at
time ¢ are (20 — %Q) grams and (20 — %Q) grams, respectively. Thus, according to the law of mass action,
the differential equation governing the behavior of Q(t) is

40 2 1 dQ 1
D 20— 20— 30) = 2 <0 - Qo0 -Q) = [ g = [k

1 1 1 dQ 60 —Q\ 60 —Q 5o
:>/30<(30—Q)_60—Q))dt_kt+C:>ln<30—Q>_kt+C:>3O—Q_Cle .

Imposing the initial condition Q(0) = 0 yields ¢; = 2. Further, Q(10) = 15 = 45/15 = 2e3°%% 5o that

1
k= 300 In(3/2). Therefore,

60-Q i@ _ <3>t/10 _ 60 [(3/2)1/10 —1]
50-Q X =23) —O=TggmmoT
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60 [(3/2)2— 1] 150 150

Therefore, Q(20) = 2%;/2))2_1] =~ Hence, - grams of C are produced in 20 minutes.

32. Since the chemicals A and B combine in the ratio 2:3, the amounts of A and B that are unconverted at
time ¢ are (10 — 2Q)) grams and (15 — 2Q)) grams, respectively. Thus, according to the law of mass action,
the differential equation governing the behavior of Q(t) is

%:kl(lo—gQ)(5——Q)=>@— k(25 — Q)2 :>/ dQ /kdt:>

LI kt+c

dt 25—-Q '
1

Hence, Q(t) =25 — . Imposing the initial condition Q(0) = 0 yields ¢ = 1/25, so that

1 625kt
t)y=25(1- = .
Q) ( 2M¢+1) 25kt + 1

Q(5) = 10 = k = 2/375, so that Q(t) = 15 Therefore, Q(30) = 1500/75 = 20 grams. Hence, 20

grams of C are produced in 30 minutes. The reaction will be 50% complete when Q(t) = 12.5 this will occur
50t

2t + 15

t ~ 7.5 minutes.

after ¢ minutes where 12.5 =

33. Since A and B combine in the ratio 3:5 to produce C. Therefore, producing 30 g of C will require

5 150
b fA.
3 30 = =3 go

34. (a).Since the chemicals A and B combine in the ratio a : b to produce chemical C, when @ grams of C

b
Q grams of A and P grams of B. Consequently, the amounts of A and

a b
B that are unconverted at time ¢ are Ay — ?Q grams and By — ?Q grams, respectively. Therefore,
a a

a
are produced , the consist of
a+b

according to the law of mass action, the chemical reaction is governed by the differential equation

aQ a b
i =t (- he) (m-he).

(m.fgzsz%— a Q)(BO—bQ):(‘wkg(“+bA0—Q><aZbBO—Q>,wmmcmnm

a+b a+b a+b) a
witen s G = r(a = Q)f - Q) wherer = 3.0 = £ 10, = £
dq )
35.E:T(o¢— :>/ —Q dQ /rdt+c:> —5/(5 G- —Q)dQ

o — Beer(@=A)t

W. ImpOSlng the
— Ce"‘ o—

rt 4+ c. Hence, iﬂln (5 Q) =rt+c= ﬁ — cerla=Bt — Qt) =
afB [1—erla=At]

initial condition Q(0) = 0 yields ¢ = a/f3, so that Q(t) = 3 CEEIrEE When o > 3, limy_,o Q(t) =
— ae”’ o—
Oéﬁ
— =5
_ : dQ _ 2 0dQ _ -1 _
36. When a = 3, Equation (1.4.24) reduces to i (@ —a) = (a— Q) 3= —(a—Q) ' =
rt + c.
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1 2rt
Hence, Q(t) = o — et Imposing the initial condition Q(0) = 0 yields ¢ = 1/« so that Q(t) = ai[t:— T
Therefore, lim;_, o, Q(t) = «.
37. Separating the variables in the given differential equation yields
/ ! dQ = /kdt
(a=Q)B-Q)(v—-Q)
so that
1 1 1
dQ = kt + c,
/ [(ﬂ —a)y—a)la=Q) (a=B(-8B-Q) (@=1B-N0O-Q)
so that
(- Q)b (8 Q) b e In(y — Q) = i
———— In(a — ———In(f — ———In(y - Q) = -kt —¢,
(B—a)(y—a) (@ =B)(v =5 (@a=7)(6-7)
which can be written as
(B=7)In(e=Q)+(y—a)n(a = Q)+ (a=p)In(y = Q) = (a = H)(B =)y — )kt + &1
or equivalently,
In(e — Q)7 +In(a—Q) “+In(y—-Q)* ? = (a—B)(B—7)(y — @)kt +c1.
Exponentiating both sides and simplifying yields
(= Q)P (B — Q) “(y— Q)P = cpeleABE=N =)kt
Q(0) =0 = ¢y = aP77377 2= 50 that
(1-Q/a)’ (1 —Q/B) (1 — Q)" F = ela=ME=N(y—)kt
Solutions to Section 1.5
True-False Review:
(a): TRUE. The differential equation for such a population growth is % = kP, where P(t) is the population

as a function of time, and this is the Malthusian growth model described at the beginning of this section.

(b): FALSE. The initial population could be greater than the carrying capacity, although in this case the
population will asymptotically decrease towards the value of the carrying capacity.

(c): TRUE. The differential equation governing the logistic model is (1.5.2), which is certainly separable

as
D dP

P(C—P)dat

Likewise, the differential equation governing the Malthusian growth model is % = kP, and this is separable

. 1dP _
as 5 = k.
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(d): TRUE. As (1.5.3) shows, as t — oo, the population does indeed tend to the carrying capacity C

independently of the initial population P,. As it does so, its rate of change 4 slows to zero (this is best

dt
seen from (1.5.2) with P ~ C).

(e): TRUE. Every five minutes, the population doubles (increase 2-fold). Over 30 minutes, this population
will double a total of 6 times, for an overall 26 = 64-fold increase.

(f): TRUE. An 8-fold increase would take 30 years, and a 16-fold increase would take 40 years. Therefore,
a 10-fold increase would take between 30 and 40 years.

(g): FALSE. The growth rate is % = kP, and so as P changes, ‘fi—f changes. Therefore, it is not always
constant.

(h): TRUE. From (1.5.2), the equilibrium solutions are P(t) = 0 and P(t) = C, where C is the carrying
capacity of the population.

(i): FALSE. If the initial population is in the interval (%, (), then although it is less than the carrying
capacity, its concavity does not change. To get a true statement, it should be stated instead that the initial
population is less than half of the carrying capacity.

(j): TRUE. Since P'(t) = kP, then P"(t) = kP'(t) = k*P > 0 for all ¢t. Therefore, the concavity is always
positive, and does not change, regardless of the initial population.

Problems:

ap kt g kt g 3k
1. e kP = P(t) = Pye**. Since P(0) = 10, then P = 10e"". Since P(3) = 20, then 2 = ¢’ —= k =
In2

—~ Thus P(t) = 10e/3) 3 Therefore, P(24) = 10e24/3)3 — 10 . 2% = 2560 bacteria.

2. Using P(t) = Pye** we obtain P(10) = 5000 = 5000 = ppe!®* and P(12) = 6000 = 6000 = Pye'?*
which implies that e** = & — k = {Ing. Hence, P(0) = 5000(2)° = 2009.4. Also, P = 2P, when
1 2In2
t=1n2= 5 ~ 7.6h.
5

3. From P(t) = Pye' and P(0) = 2000 it follows that P(t) = 2000e*’. Since t; = 4,k = 1In2 so
P = 2000¢!2/4, Therefore, P(t) = 106 —> 106 = 2000¢!™2/4 — ¢ ~ 35.86 hours.
dP

4. e kP = P(t) = Pye*t. Since, P(0) = 10000 then P(t) = 10000e*t. Since P(5) = 20000 then

20000 = 10000e¥* = k = £ In2. Hence P(t) = 10000e(*2)/5,

(a). P(20) = 10000e*'2 = 160000.

~ 5In100
)

(b). 1000000 = 10000e*™m2)/> — 100 = et 2)/5 — ¢ ~ 33.22 years.

50C

5. P(t) = 505 (C —50)e—"" In formulas (1.5.5) and (1.5.6) we have Py = 500, P, = 800, P» = 1000, ¢, = 5,
1 [(1000)(300)] 1 800[(800)(1500) — 2(500)(1000)]
dt, =10. H S P R SiiCal R o ~ 1142.86, s
anc k2 ence, =g [ (500)(200) | 5 8002 — (500)(1000) ) 50
1142.86) (500) 571430

that P(t) = 500+ 642.86c 02113 ol 612860 023" Inserting ¢ = 15 into the preceding formula
.8be™ -2t .8be~ et

yields P(15) = 1091.
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6. P(t) = 50T (5(1050)6_” In formulas (1.5.5) and (1.5.6) we have Py = 50, P = 62, P, = 76,t; = 2,
B B 1 (76)(12) 1 ~ 62[(62)(126) — 2(50)(76)]
and to = 2t; = 4. Hence, r = 3 In {(50)(14) ~ 0.132,C = 627 — (50)(76) ~ 298.727, so that

14936.35
P(t) = .
® 50 + 248.727¢—0-132¢

Inserting ¢ = 20 into the preceding formula yields P(20) =~ 221.
Py(P — P) . . . )
————= > 1. Rearranging the terms in this inequality and
Po(Ps — Py) gmg Y

2P, P Pi(Py + Py) — 2P, P
2 JOF ;2. Further, C' > 0 requires that it OP;; 72])30132 072

7. From equation (1.5.5) r > 0 requires

using the fact that P, > Py yields P, > > 0.

2Py P
P+ P

denominator must also be positive. Hence in addition to P, >

From P, > we see that the numerator in the preceding inequality is positive, and therefore the

2P P,
Py+ Py’

we must also have P > PyPs.

d
8. Let y(t) denote the number of passengers who have the flu at time ¢. Then we must solve (% =
ky(1500 — y),y(0) = 5,y(1) = 10, where k is a positive constant. Separating the differential equation

and integrating yields [ dy = k [ dt. Using a partial fraction decomposition on the left-hand

y(1500 — y)
. . 1 1 Y .
d dy = kt that 1 = kt hich
side gives f 1500y + 1500(1500 — y) Y + ¢, so tha 1500 n <1500—y) + ¢, which upon
exponentiation yields ﬁ = 199t Tmposing the initial condition y(0) = 5, we find that ¢; = 299"
1 . 1 1 -
Hence, S A — 1900kt The further condition y(1) = 10 requires 0 = —e!%90k  golving
1500 — y 299 1490 299
299 1
for k gives k = 1500 In 119" Therefore, ﬁ = @et In (209/149) = Qolving algebraically for y we find
1500¢! In (209/149) 1500 1500

Hence, y(14) = 1+ 2990141 (209/149) — 1474.

Y(t) = 90 4 i @90/159) — 1 4 2990 11n @09/119)"

9.(a). Equilibrium solutions: P(¢) =0, P(t) =T.
P P
Slope: P>T —= — >0,0< P<T = — < 0.

dt dt
k 1 [rT? + 4k
Isoclines: r(P—T)=k= P> -TP -~ =0= P = 3 (Ti H) We see that slope of the
T r
— T2
solution curves satisfies k > " .
.. d*P apP 5 )
Concavity: e r(2P — T)E = r*(2P —T)(P — T)P. Hence, the solution curves are concave up for

t
P> ok and are concave down for 0 < P < 7

(b). See accompanying figure.

(¢). For 0 < Py < T, the population dies out with time. For Py > T, there is a population growth. The
term threshold level is appropriate since T' gives the minimum value of P, above which there is a population
growth.
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Figure 0.0.42: Figure for Problem 9(b)

dpP

P T) d— = r, which can be

10. (a). Separating the variables in differential equation (1.5.7) gives

ritten in the equivalent form L t]aP Integrating yields — ln P=T)\ _ t+c, so that
wri i quiv: TP-T) TP| a =r. grating yi T —p ) =rtte
P-T Py—-T P T Py—-T
——— = c1e™. The initial condition P(0) = P, requires 0 = ¢y, so that 0 et
r Py Py
Solving algebraically for P yields P(t) = Th
TPh,

(b). If Py < T, then the denominator in is positive, and increases without bound as

PO — (Po — T)eTTt
t — oco. Consequently lim;_, o, P(t) = 0. In this case the population dies out as ¢ increases.
TP,

Po — (P() — T)eTTt

1 P
t= T In (P 0 T)' This means that within a finite time the population grows without bound. We can
T 0 —

interpret this as a mathematical model of a population explosion.

(c). If Py > T, then the denominator of vanishes when (Py — T)e"* = Py, that is when

dpP
11. % :T(C*P)(P*T)P7P(O) :POaT>O7O<T<C.
Equilibrium solutions: P(t) = 0, P(t) = T,P(t) = C. The slope of the solution curves is negative for

0 < P <T,and for P> C. It is positive for T'< P < C.
2

Concavity: % = r?[(C - P)(P—-T)— (P—-T)P + (C — P)P|(C — P)(P — T)P, which simplifies to

2
P, 5 : . 1
Pkl (=3P* +2PT 4 2CP — CT)(C — P)(P —T). Hence changes in concavity occur when P = 3(C +

T++C? —CT + T?). A representative slope field with some solution curves is shown in the accompanying
figure. We see that for 0 < Py < T the population dies out, whereas for T" < Py < C the population grows
and asymptotes to the equilibrium solution P(¢t) = C. If Py > C, then the solution decays towards the
equilibrium solution P(t) = C.

dP
12. e rP(lnC —InP), P(0) = Py, and r,C, and P, are positive constants.
Equilibrium solutions: P(t) = C. The slope of the solution curves is positive for 0 < P < C, and negative
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Figure 0.0.43: Figure for Problem 11

for P > C. )
d°P C dpP C C
Concavity: o r {ln (P) ] o r2 {ln (P) — 1] Pln P Hence, the solution curves are concave
up for 0 < P < — and P > C. They are concave down for — < P < C. A representative slope field with
e e
some solution curves are shown in the accompanying figure.
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Figure 0.0.44: Figure for Problem 12

1 dP
13. Separating the variables in (1.5.8) yields PnC —P) df

obtain —In(InC —InP) = rt 4 ¢ so that In(%) = c;e~"*. The initial condition P(0) = Py requires that
1n(P%) = ¢;. Hence, In(§) = e ln(P%) so that P(t) = Ce» (Po/B)e™™ " Since limy_,o0 e = 0, it follows
that lim_.c P(t) = C.

= r which can be integrated directly to

dP
14. Using the exponential decay model we have o kP, which is easily integrated to obtain P(t) = Pye*.

The initial condition P(0) = 400 requires that Py = 400, so that P(t) = 400e**. We also know that

1 1
P(30) = 340. This requires that 340 = 400e3°% so that k = 30 In (2;> Consequently,

P(t) = 400e3 (35). (0.0.5)
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17

(a). From (0.0.5), P(60)400¢2™(35) = 289.
(b). From (0.0.5), P(100) = 400¢ % ™(56) ~ 233
(c). From (0.0.5), the half-life, ¢, is determine from

In2

200 = 400e % () — 5 = 30—~
In (37)

~ 128 days.

15. (a). More.

dpP
(b). Using the exponential decay model we have o kP, which is easily integrated to obtain P(t) = Pyet.
The initial condition P(0) = 100,000 requires that Py = 100, 000, so that P(t) = 100, 000e**. We also know

1 4
that P(10) = 80,000. This requires that 100,000 = 80,000e'°* so that k = I In <5> Consequently,

P(t) = 100, 000¢15 2(5). (0.0.6)

Using (0.0.6), the half-life is determined from

In2

n (3)

(c). Using (0.0.6) there will be 15,000 fans left in the stadium at time to, where

50,000 = 100,000¢ 7 2(3) — ¢, = 10 ~ 31.06 min.

Elee

) ~ 85.02 min.

)

. 1
15,000 = 100, 000e1 2(3) — ¢, = 101n§
n

=

dpP
16. Using the exponential decay model we have T kP, which is easily integrated to obtain P(t) = Pye"t.

Since the half-life is 5.2 years, we have

1 In2
—Py =Py’ — k=-——".
gt 0= foe 5.2

Therefore,
t In 2

P(t) = P067 5.2,
Consequently, only 4% of the original amount will remain at time ¢y, where

4 In2 In 25
— Py = Pye l05r — =52—=x~24.1 .
100 0 (1]E 5.2 to 5 o 5 years

17. Maple, or even a TT 92 plus, has no problem in solving these equations.

18. (a). Malthusian model is P(t) = 151.3¢¥*. Since P(1) = 179.4, then 179.4 = 151.3¢!%% — k =

1 179.4 _ tln (179.4/151.1)
75 In 3£73. Hence, P(t) = 151.3¢ 10 ]
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0 10 20 30 40

Figure 0.0.45: Figure for Problem 18(c)

151.3C

(®)- PU) = 55 e tisye

Imposing the initial conditions P(10) = 179.4 and P(20) = 203.3

. . . 101n(179.4/151.1) 201n (179.4/151.1) . .
gives the pair of equations 179.4 = 151.3e 10 and 203.3 = 151.3¢ 10 whose solution is
39935.6

C =~ 263.95,r ~ 0.046. Using these values for C' and r gives P(t) = 1513 © 112,650 00561

(¢). Malthusian model: P(30) ~ 253 million; P(40) ~ 300 million.

Logistics model: P(30) & 222 million; P(40) ~ 236 million.

The logistics model fits the data better than the Malthusian model, but still gives a significant underestimate
of the 1990 population.

19. P(t) = 50+ (CE«)O_C50)€—N' Imposing the conditions P(5) = 100, P(15) = 250 gives the pair of equations
50C 50C
100 = 50T (C — 50)e—5" and 250 = 50T (C — 50)e- 15 whose positive solutions are C' = 370.32,r ~ 0.17.
18500
Using these values for C' and r gives P(t) = From the figure we see that it will take

50 + 18450e 017t
approximately 52 years to reach 95% of the carrying capacity.

Solutions to Section 1.6

True-False Review:

(a): FALSE. Any solution to the differential equation (1.6.7) serves as an integrating factor for the differ-
ential equation. There are infinitely many solutions to (1.6.7), taking the form I(x) = cre P@dr where ¢y
is an arbitrary constant.

(b): TRUE. Any solution to the differential equation (1.6.7) serves as an integrating factor for the differ-
ential equation. There are infinitely many solutions to (1.6.7), taking the form I(z) = cie/ P@)4 where ¢,
is an arbitrary constant. The most natural choice is ¢; = 1, giving the integrating factor I(x) = el p(x)de

(¢): TRUE. Multiplying v’ + p(x)y = q(z) by I(z) yields y'IT + ply = ¢I. Assuming that I’ = pl, the
requirement on the integrating factor, we have y'I + I'y = ¢I, or by the product rule, (I -y) = ¢I, as
requested.
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Figure 0.0.46: Figure for Problem 19

(d): FALSE. Rewriting the differential equation as

dy — 2%y =sinzx,
dx
we have p(z) = —22, and so an integrating factor must have the form I(z) = el P@de — of (—2%)dw e*x3/3,

or any constant multiple of e=="/3. Since e is not of this form, then it is not an integrating factor.

(e): FALSE. Rewriting the differential equation as

dy L 1
Y=
dr 27T
1
we have p(z) = =, and so an integrating factor must have the form I(z) = e/ ?(®)de = ¢J (1/2)dz — 3 or any

constant multiple of z. Since x + 5 is not of this form, then it is not an integrating factor.

Problems:
In this section the function I(z) = el P(@)dz will represent the integrating factor for a differential equation
of the form ¢’ + p(a)y = q(z).

d x
1y +y=4e*. I(z) = e/ % = ¢* — (Cel y) = 4e% = %y = 2% + ¢ = y(x) = e~ ¥(2e** +¢).
x
2 d(z?
2.y + = y=>522 I(z) =ef F/0)de — g2 — (2 y):5x4:>m2y:x5+c:>y(x):x_Q(xS—i—c).
x x
2,1 R T U g - dizy) 4, _
3. 2%y —4dry = x'sinz,x > 0= y' - Jy = a’sinz. [(z) =2 :>T—xsmx:>x Yy =
x

sinz — xcosw + ¢ = y(r) = x*(sinz — zcosx + ¢).

d
4. y + 2y = 223, I(x) = e2J@dr — e’ = d—(ery) = 2713 = Ty = 2fe’32$3dac — Ty =
x

2

(22— +e=ylz)=22—1+ce ™.
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1— 22 1—22 de \ 1 — 22 — 2 1—22
c=y(r)=(1-2?)[-In(1-22)2%+.

2 1 d 4
5.y + ! y=4x,—1<x<1.[($)=:>( . ):1 = =—In(1-2?)*+

2x 4 d

2x d
6. o - CI(z) = Tt — g 42— Y1 4 a2)y] = — (14 22y =
Yy + T a2Y e (r) = e +a da:[( + 2?)y] TEEIE (1+2%)y
d
4[14_79;2 = (1+ 2%y =4tan "tz +c=y(z) = m(éltan_lx—i—c).
5 dy . 4 W , sin2z 9 1
7. 2cos?z—— +ysin2x =4cos’ 2,0 < < § =y + y=2cos*x. I(x) = = —(ysecx) =
dx 2cos? x cos T dx

cosx = y(z) = cosz(2sinz + ¢) = y(x) = sin 2x + ccos x.

. d
y =922 I(z) = e/ 77 =Inz = d—(ylno:) =9 [2*Inzdr = ylnz =32°Inz — 2 + c =
x

d
9.y —ytanz = 8sin® x. I(x) = cosx = d—(ycosx) =8coszsin®z => ycosz = 8 [ coszsin® vdz + c =
x

1
ycosz = 2sin*z + ¢ = y(r) = ——(2sin*z + ¢).
CoS T
d 2 4et ¢ d
10. td—f+2m:4et:>x’+¥x276. Iz)=e2/% =12 = a(tza:):4tet:>t2x:4ftetdt+c:>
det(t —1) + ¢
t?r=4det(t — 1)+ c= z(t) = (7572)
/ . . / . . d
11. ¢ = (sinxsecx)y — 2sinx = y — (sinxsecx)y = —2sinz. I(x) = cosx = d—(ycosx) =
x
1 1 1
—2sinzcosz = ycosz = —2 [sinz coszdr + ¢ = 5cos2x+c:> y(x) = <2 cos?x+c>.
coS T

. d
12. (1—ysinz)dz—coszdy = 0 = '+ (sinzsec x)y = secx. I(x) = ef snesecrdr — goe g — d—(ysec x) =
x

sec’x = ysecx = [sec? zdr+c = ysecx = tanz+c = y(z) = cosz(tanz+c) = y(x) = sinz+ccosz.

1 d
13. ¢ —z 'y =222z I[(z) =e [ 3% =71 — d—(xfly) =2zlne = 2 ly =2 [zlnzdr + c =
x

1 1
iy = §x2(21nx — 1) + ¢. Hence, y(z) = 5953(2 Inz — 1) + cx.

d
14. ¢y +ay =P I(z) = S % = 0% — —(e2%y) = (@A) — e0ty = [el@tB2dy p ¢ Tfa+ B =0,

dx

h Ifa+8+#0, th el -
then e**y =z+c=y(z) =e " *(z+c¢). L a+ , then e**y = +ec=y(z) = +ce” .

y y(@) = e *(a+) Y V= uw) =

m d
15. ¥ + —y = Inz. I(z) = 2™ = —(2™y) = 2"z = 2™y = [2"Inzdr + c. If m = —1, then

x

1 2 1 2 m+1 m—+1

xmy:(n;)—i-c:>y(ac):x[(n;)+c]. Ifm;é—l,thenxmy:erllna:—(meril)Q—i—czy(m):
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z ¢
———Inz — —— + —.
m+1 (m+41)2  am

2 . d
16. y’—l—;y:élx. I(z) =) & =2z — 32 — %(ﬂy) =42® = 2%y =4 [23de + c = 2%y = 2* + ¢,
ot +1

but y(1) =2 so ¢ = 1; thus, y(z) = —
x

d
17. y'sinz — ycosz = sin2x = y’ — ycotx = 2cosz. I(x) = cscx = —(ycescx) = 2cscxcosr =

ycscr = 2In (sinx) + ¢, but y(F§) = 2 so ¢ = 2; thus, y(z) = 2sinz[In (sinx) + 1].

. d
]s.y+4_tx=51uy:8fﬁz:e4m@4%:@—ﬂr2=$g#@fw—%g=5@—w—%=>u—ﬂ”x=

5[ (4—t)2dt+c= (4—t) 2z =5(4—t)"' +¢, but 2(0) = 4 s0 ¢ = —1; thus, z(t) = (4—¢)?[5(4—¢) "1 —1]
or z(t) = (4 —t)(1 + t).

2x

d
19. (y—e ®)dzx+dy=0=y' +y=e". I(m):ew:d—(ewy):ezm:ewy:%—&—q but y(0) =1 so
x

1
¢ = —; thus, y(z) = 5(695 +e 7)) = coshu.

1
2
20. ¥ +y = f(x),y(0) =3,

1, ifz <1,

ﬂ”:{o,ﬁx>L

I(z) = el ¥ = ¢ — %(ezy) =e"f(x) = [e"y]§ = fom e? f(x)dr = ey — y(0) = f(f e’ f(r)dr =
ey —3= [ e"de = y(x) = e " [3+ [ e f(x)dx].
Ifo <1, [ e f(x)de =[] e"dr=e"—1=y(z) = "(2+¢€")

Ifz>1, [ e fa)de = [je"de=c— 1= y(z) =e"(2+e¢).

21. y' =2y = f(2),y(0) = 1,
1—z, ifzx<l,
f(z){o, if 2> 1.

Hw) = e P2 — o0 Loy o) s eyl = [T e fa)de — ey — y(0) =
Jy e f(@)de = e 2y —1= [ e 2 f(z) = y(z) = > [1 + [ e 2" f(x)dz].

Ifx <1, [ e 2 f(x)de = [ e (1 — x)dx = %e‘Qm(Qx—l—FeQx) = y(z) = ** [1 + 36_2”3(23: -1+ eh)] =
1

1(56230 +2z —1).

1 1 1
Ifz>1, [ e f(x)de = [ e 2*(1 — a)dx = Z(1—&—6_2) = y(x) = e** [1 + 1(1 + 6_2):| = i629”(54—6_2).

22. On (—00,1),y —y=1= I(x) = e ® = y(x) = c1¢” — 1. Imposing the initial condition y(0) = 0
requires ¢; = 1, so that y(x) = e* — 1, for z < 1.

d
On[l,o0)y —y=2—z=Ix)=¢c "= —(ey)=2—2)e* = y(x) =2 — 1+ cae ™.

Continuity at = 1 requires that lim, 1 y(z) = y(1). Consequently we must choose ¢y to satisfy coe = e—1,
so that co = 1 — e~ L. Hence, for z > 1,y(z) =2 — 1+ (1 — e~ 1)e®.
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d? 1d d d d? du 1
23. chZ + fﬁ =92,z > 0. Let u = % SO dz = d;vg The ﬁrzt equation becomes . + xu = 92 which is
first-order linear. An integrating factor for this is I(z) = z so d—(xu) =92 = qu= [2%dz+c= 2u=
x
d d
322+ = u=322+ci2, but u = d—y SO d—y =322+l =y= f(3x2 + ez dr + e = y(z) =
x x
23+ lnz + co.
24. The differential equation for Newton’s Law of Cooling is 4&' = —k(T — T;,). We can re-write this

equation in the form of a first-order linear differential equation: df + kT = kT,,. An integrating factor
d

for this differential equation is I = e/ ¥t = ¢kt Thus, a(Tekt) = kT,,e"*. Integrating both sides, we get

Tert = T,,eF + ¢, and hence, T = T}, + ce” ¥, which is the solution to Newton’s Law of Cooling.

dTo, ar ar . .
25. el o= T, = at + c; so = = k(T —at — ;) = e + kT = k(at + ¢1). An integrating
d
factor for this differential equation is I = ¥/ = ¥ Thus, d—( M) = kekt(at + ¢;) = T =
1
ekt(at—%—i—cl)—FcQ :>T:at—%+cl+026_kt = T(t) = at — 7)—|—B—|—Toe kt where 8 = ¢; and
TO = Co.
dTy, dr
26. el 10 = T,, = 10t + ¢; but T,,, = 65 when t = 0 so ¢; = 65 and T,, = 10t + 65. i
dT dT 1
—k(T —T,,) = i —k(T — 10t — 65), but E(l) =580 k= 3 The last differential equation can be
dT d 2 2 13
written —- + kT = k(10t + 65) = %(ektT) = 5ket (2t + 13) = eMT = 5kel (kt —=t k) +c=

2 1 ¢
T = 5(2t — z +13) + ce™, but k = g 50 T(t) = 5(2t — 3) + ce 5. Since T(1) = 35,¢ = 40es. Thus,
T(t) = 10t — 15 + 40e5 (11,

1
27. (a). In this case, Newton’s law of cooling is — = 40( — 80e~%/20). This linear differential equation
ar 1
has standard form ot 40T = 2¢t/?9 with integrating factor I(t) = e*/0. Consequently the differential

d
equation can be written in the integrable form —t(et/‘lOT) = 27140 50 that T(t) = —80e /20 4 ce~t/40,

Then T(0) = 0 = ¢ = 80, so that T(t) = 80(e /40 — ¢~t/20),

(b). We see that lim;,o, = 0. This is a reasonable result since the temperature of the surrounding
medium also approaches zero as t — co. We would expect the temperature of the object to approach to the
temperature of the surrounding medium at late times.

1

dT 1
(c). T(t) = 80(e 140 — =t/20) — = = 80 ( 0° et/40 ¢ 206”20). So T'(t) has only one critical point
1

1
when 80 (—40 —t/40 4 206t/20> =0=1t=40In2. Since T'(0) = 0, and lim;_,~, T'(t) = 0 the function
assumes a maximum value at t,,qp = 4010 2. T(tae) = 80(e ™2 —e721"2) = 20°F, T}, (tmae) = 802102 =
20°F.

(d). The behavior of T'(t) and Ty, (t) is given in the accompanying figure.
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4\

40 —|
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0 20 40 60 80 100 120

Figure 0.0.47: Figure for Problem 27(d)

28. (a). The temperature varies from a minimum of A — B at t = 0 to a maximum of A + B when ¢ = 12.

A+B

Figure 0.0.48: Figure for Problem 28(a)

dar
(b). First write the differential equation in the linear form = + k1T = k1 (A — Bcoswt) + Tp. Multiplying

by the integrating factor I = e*'* reduces this differential equation to the integrable form

d
%(ekltT) = k1eM'(A — Bcoswt) + Tpek1t.

Consequently,

. T
Mty = (Aeklt — Bk /elftcoswtdt + k—oeklt + c)
1
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so that T B
0 (K coswt + wsinwt) + ceFY,

T(t) = A
O = A e

This can be written in the equivalent form

Th Bk

Tt)=A+ — - ————
Q k1 k3 4 w?

cos (wt — ) + ce”F1t

for an approximate phase constant a.

d d d
29. (a). ﬁ—i—p(gﬁ)y =0= ?y = —p(v)dex = fgy =—[px)de = Inly| = — [p(z)dz + ¢ = yg =

Cleffp(w)dw'
d d d
(b). Replace ¢; in part (a) by u(z) and let v = e~ JP@)dr 4 — 4 — d—y = ud—v + vd—u. Substituting this
x x x

d d
last result into the original differential equation, ﬁ +p(z) = q(x), we obtain ué —&—vﬁ +p(z)y = q(x), but

d d
since d—v = —up, the last equation reduces to vd—u =gq(x) = du=v"(2)q(x)dz = u= [v ! (2)q(z)dz +
x x

c. Substituting the values for u and v into y = uv, we obtain y = e~ J P(@)dz [f efp(””)d‘"”q(x)dx + c].

d
30. The associated homogeneous equation is d—y +2~ 1y = 0, with solution yz = cx~!. According to Problem

x

29, we determine the function u(x) such that y(x) = 2~ 1u(z) is a solution to the given differential equation.
d du u 1

We have Y _ x~! == — 2~ 2u. Substituting into el +a7ly = cosx yields 7t — — —u+a~ (z7 u) = cosx,
dx dx dx de  2?

u . . . P
so that oy = eosz. Integrating we obtain u = zsinx + cosx + ¢, so that y(z) = 7 (zsinx 4 cosz + ¢).
x

d
31. The associated homogeneous equation is d—y + y = 0, with solution yg = ce™. According to Problem
x

T

29, we determine the function u(z) such that y(x) = e "u(x) is a solution to the given differential equation.

d d
We have & = So-o _ omzy, Substituting into el +y = e 27 yields Moz _ oy +e %u(z) = e 2%, 50
J de dx dx dx
that d—u = e 7. Integrating we obtain u = —e™ " + ¢, so that y(z) = e " (—e " +¢).
x

d
32. The associated homogeneous equation is el + cotx -y = 0, with solution yg = ¢ cscx. According

to Problem 29, we determine the function w(x) such that y(x) = cscz - u(z) is a solution to the given

U d
differential equation. We have d—y = cscx - e cscx - cot x - u. Substituting into d—y +cotx -y = 2cosx
x x :c

) du du . . .
yields cscx - pr cscx - cotx - u+ cscx - cotx - u = cosx, so that pr 2cosxsinx. Integrating we obtain
x x

u = sin® x + ¢, so that y(z) = cscz(sin® z + c).

d 1
33. The associated homogeneous equation is d—y — —y = 0, with solution yy = cx. We determine the
r T
d d
function u(x) such that y(z) = zu(x) is a solution of the given differential equation. We have d—y = xd—u +u.
x x

d 1 d
Substituting into d—y — —y = x Inz and simplifying yields d—u = Inxz, so that v = zInx —x+¢. Consequently,
T T i
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y(z) =z(zlnz — z +¢).

Problems 34 - 39 are easily solved using a differential equation solver such as the dsolve package in Maple.

Solutions to Section 1.7

True-False Review:

(a): TRUE. Concentration of chemical is defined as the ratio of mass to volume; that is, ¢(t) = %.

Therefore, A(t) = c(t)V (¢).
(b): FALSE. The rate of change of volume is “rate in” — “rate out”, which is r1 — 79, not ro — 7.

(c): TRUE. This is reflected in the fact that ¢; is always assumed to be a constant.

(d): FALSE. The concentration of chemical leaving the tank is co(t) = %, and since both A(t) and V (¢)

can be nonconstant, cs(t) can also be nonconstant.

(e): FALSE. Kirchhoff’s second law states that the sum of the voltage drops around a closed circuit is zero,
not that it is independent of time.

(f): TRUE. This is essentially Ohm’s law, (1.7.10).

(g): TRUE. Due to the negative exponential in the formula for the transient current, i (¢), it decays to
zero as t — oo. Meanwhile, the steady-state current, ig(t), oscillates with the same frequency w as the
alternating current, albeit with a phase shift.

(h): TRUE. The amplitude is given in (1.7.19) as A = \/ﬁ, and so as w gets larger, the amplitude
A gets smaller.
Problems:

. A(60)
1. Given V(0) = 600, A(0) = 1500,¢; = 5,71 = 6, and ro = 3. We need to find V(60)" AV = riAt —

av dA
roAt = i 3 = V(t) = 3(t + 200) since V(0) = 600. AA = 171 At — cora At = i 30 — 3¢y =
A
30 — 3V =30— 73200 = (t +200)A = 15(¢ + 200)? + ¢. Since A(0) = 1500, c = —300000 and therefore
15 A(60) 596
At) = t +200)2 — 20000]. Th = — g/L.
(B) = 700 (¢ +200) - Thus 766y = 169 &

. dVv

2. Given V(0) = 10, A(0) = 20,¢1 = 4,71 = 2, and ro = 1. Then AV = r At —ro At = o 1=V =
dA A A dA 1
10 si =10. AA~ At — A — =8—cy=8—— =8— — A=

t + 10 since V(0) 0 c1r1 At — corg t:>dt 8—cy =28 % 8 t+10:>dt+t+10
8 = (t+10)A = 4(t+10)?+¢;. Since A(0) = 20 = ¢; = —200 s0 A(t) = 110 [(t+10)? —50]. Therefore,
A(40) = 196 g.

. dVv
3. Given V(0) = 100, A(0) = 100,¢; = 0.5,71 = 6, and r9 = 4. Then AV = r At — ro At = i 2 =

dA 4A dA 24 d
V(t) = 2(t + 50) si V(0) =100. Then — + ———= =3 — =3 —[(t +50)24] =
(1) = 2(t + 50) since V(0) T oaas0) 0 @ Tixs0 0 @l OO
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12
3(t+50)? = (t+50)?A = (t+50)3+c but A(0) = 100 so ¢ = 125000 and therefore A(t) = t+50+ %
The tank is full when V' (t) = 200, that is when 2(¢+50) = 200 so that ¢ = 50 min. Therefore the concentration

A
just before the tank overflows is: VE?)% = % g/L.

dv
4. Given V(0) = 20, A(0) = 0,¢1 = 10,71 = 4, and r9 = 2. Then AV = r1 At — roAt = o 2=V =

2(t + 10) since V(0) = 20. Thus V(¢) = 40 for ¢t = 10, so we must find A(10).AA = c;r1 At — cara At =

dA 2A A dA 1 d

— =40—-2¢c =40 - — =40 — —— — 4+ ——A =4 —[(t + 10)A] = 40(t + 10)dt
g~ =A0- =0 e = o T Ojgdt[(+0)] 0(t +10)dt =
(t+10)A = 20(t+10)? +¢. Since A(0) = 0 = ¢ = —2000 so A(t) = 7110 [(t+10)% —100] and A(10) = 300

g.

dv
5. (a). We are given that V(0) =20,¢; = 1,7, = 3, and 5 = 2. Then AV = r At — 1At = o 1=
2 d (20+t)2 + ¢

dA
= t+420 si =20. Then —+—FA = — 20)2A] = 20)2 = A(t) =
V' = t+20 since V(0) = 20. Then 7 +t+20 3= dt[(H_ 0)7A] = 3(t+20) (1) (t + 20)2

t+20)% — 203
and since A(0) = 0,c = —20% which means that A(t) = {t+20)° = 207

(t + 20)2
. A L t A(t)
(b). The concentration of chemical in the tank, ca, is given by co = W or cg = T T 20 so from part (a),
t+20)% — 20° 1 1 t +20)% — 20°
cy = M Therefore ¢y = B g/1 when 5= (24_)20)3 — ¢t = 20(¥/2 — 1)minutes.
A(5
6. We are given that V(0) = 10, A(0) = 0,¢; = 0.5, = 3,79 =, and ‘/25; =0.2.

av
(a). AV = r At — rAt = e 1=V (t) =t+ 10 since V(0) = 10. Then AA = c1r1 At — coro At =

dA A 2A dA 2dt L,
) 675
A(5) = 3 si =1 ———= =0.2. Thus, k= Alt) = ——. 1 icular, A(0) = 6.
(5) = 3 since V(5) 5 and V) 0 us, k = 675 and A(t) 51072 n particular, A(0) = 6.75

g.

. Alt) 675 Alt) 675
(b). Find V(t) when 70 0.1. From part (a) A(t) EST)E and V(t) =t +10 = V) ~ Gr10)

Alt , .
Since Vgti = 0.1 = (t+10)? = 6750 => ¢ + 10 = 15¢/2 s0 V(t) = ¢ + 10 = 15¢/2 L.
7. (a). We are given that V(0) = w,cq = k,ry =r,ro = r, and A(0) = Ag. Then AV = r|Ar — At =
av dA A A
e =0 = 1;(2) =V(0) = w for 2;11 t. Then AA = cir At — corg At —> e zkr—rv zkjr—rv =
kr — — A = -t TA=kr = %(e*”/wA) = kre "W = A(t) = kw + ce """ Since A(0) = Ay so

w w
c=Ag— kw = A(t) = e "/ [kw(e"/* — 1) + Ag).

A(t) efrt/w Ay

(b). hmtﬁoo W = hmtﬁoo w

reasonable since the volume remains constant, and the solution in the tank is gradually mixed with and

[kw(e™™ — 1) + Ag] = limy_oo[k + [ — — k) e "/*] = k. This is
w
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replaced by the solution of concentration k flowing in.

8. (a). For the top tank we have: % = 1] — Corg => % =cr; — rgéll((:)) = % = car; —
(rl_;ﬁfh(t) — dd—/il + mAl =cir1.

For the bottom tank we have: % = Corg — C3r3 = % =Ty = :St—ﬁ— v T3 éj((:)) = % =
o= :;t AN iz()tt)Jr v % ’ (r1 — :23)t +Va A= (r1 T:S; +W

(b). From part (a) % + (rl_:ﬁfh = cr = % + 2t—;4—740A1 =3 = djtl + t+220A =

d
3= a[(t +20)24] = 3(t +20)2 = A} =t +20+ m but A;(0) = 4 so ¢ = —6400. Consequently
6400 dAs 3 6400 dA, 3
A(t) =t +20— Then Ay = t+20 - —— Ay =
() =t + G202 M iy t+20[+ (t+20)2} o T rr207?
2[(t +20)? — 6400]  d 2[(t + 20)? — 6400] t+20 128001
—[(t420)3A3] = (£ 420)3 = A
(t +20)3 gi (207 A2] = (£4-20) (t+20)3 2(t) = —5 (t+20)3
t+20 12800¢ 80000 . .
5207 but A2(0) = 20 so k = 80000. Thus Ax(t) = 5 G+ 207 + T 20)° and in particular
119
di R 1 di d
9. Let E(t) = 20,R = 4 and L = . Then d—z +7i= B0 = d—z + 400 = 200 = () =
200e%" = i(t) = 5 + ce~1%%. But i(0) = 0 = ¢ = —5. Consequently i(t) = 5(1 — e~1%%).
g 1 E  dg d

10. Let R = ==and E(t) =1 Then — 4+ —q = —= —+10qg =2 —(qe!%) = 20e!0

et R =5,C = g5 and E(t) = 100. Then +RC R:>dt+ Og 0:>dt(q6 ) = 20e'" =
q(t) = 2 + ce™ 10, But q0) =0=c=—-250 q(t) 2(1 — e10%),

2 . di R 1 di .

11. Let R = 2,L = 5 and E(t) = 10sin4t. Then o + —i = ZE(t) = + 3i = 15sin4dt =

d 3e3t 3 4
—(e%i) = 15e3tsindt = €3t = %(3 sindt — 4cosdt) +c =i =3 (5 sin 4t — 5 o8 4t> + ce™3t) but

dt
‘ 12 3 L
1(0)—020—3501() (381n4t—4cos4t+4e ).

_FE

dq dq d
— -1 - ok T - 1 _ 4t )
12. Let R =2,C = g and E(t) = 10cos 3t. Then + RC =% - o +4q = 5cos 3t = dt(e q)

4t
(4cos3t + 3sin3t) + ¢ = q(t) = 1(4cos3t + 3sin3t) + ce', but ¢(0) =1 = c=

‘ 9

5e4t cos 3t = eftq =

5
1 d 1
(40053t +3sin3t) + —e 4 and i(t) = a4 _ —(9cos 3t — 12sin 3t — 4e~ ).
5 5° dt 5
. . . L dq 1 E

13. In an RC circuit for ¢ > 0 the differential equation is given by p + @q =5 If E(t) = 0 then
d 1 d
—q—i-ﬁ =0= ﬁ(et/ch) =0 = q = cet/% and if ¢(0) = 5 then q(t) = 5¢7¥/EC. Then lim; o, q(t) =

0. Yes, this is reasonable. As the time increases and E(t) = 0, the charge will dissipate to zero.
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1 E
14. In an RC circuit the differential equation is given by 7 + %q = fo. Differentiating this equation with
1 dgq dq

di di 1 d
respect to ¢ we obtain — + —— % — 0, but P50 D=0 = —(et/RC) = 0 = i(t) = ce /RO,

dt  RC dt t ' dt " RC dt
Since ¢(0) = 0,i(0) = ﬁo and so i(t) = ﬁoe_t/RC — d = Eyk so q(t) = Eok(1 — e t/EC). Then
lim; o0 q(t) = Eok, and lim¢ — ooi(t) = 0.

q(t)

A
Eok
> t
Figure 0.0.49: Figure for Problem 14
di R E(t di R E
1d5. In an RLEcircuit, d—z + fz = 1(;) ang since E(t) = Epsinwt, then dizzf ZZ = fosinwt =
a(eRt/Li) = TOeRt/L sinwt = i(t) = m[}%sinwt — wLcoswt] + Ae= /L. We can write this
EO R wlL
as i(t) = sinwt — ———————coswt| + Ae /L Defining the phase ¢ b
(> \/R2+L2w2 \/R2+L2w2 VRZ + [202 & p ¢ by
R wlL EO
COSp = ——,sinp = ——, we have i(t) = ————|cos ¢ sin wt—sin ¢ cos wt +Ae Bt/L
¢ VR? + L2w? ¢ VR? + L2w? 0 VR? + L%ﬂ[ ¢ ¢ }
Ey
That is, i(t) = ————— sin (wt — ¢) + Ae /L,
W= Vs o @9
Transient part of the solution: ir(t) = Ae~Bt/L,
Ey
Steady state part of the solution: ig(t) = —————sin (wt — ¢).
ystter 0= )
s di . Ey . R
16. We must solve the initial value problem o7 4+ ai = T,Z(O) = 0, where a = ik and FEjy denotes the
constant EMF. An integrating factor for the differential equation is I = %, so that the differential equation
d E E
can be written in the form %(e‘“i) = foe‘“. Integrating yields i(t) = —z + c1e7%. The given initial
a
E E E E
condition requires ¢; + a—g =0, so that ¢; = —a—z. Hence i(t) = ﬁ(l — e ) = fo(l —e7at),
dg 1 E(t) dg 1 Ey d Ey
17. = =" = 1 g = et — t/RC \ _— —Y (1/RC—a)t:>
i "RC'" R @t "RC'T RS a0 = ge
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E E
q(t) = e V/EC [1?;%,6(1/}%0_@” + k} = q(t) = %e‘at + ke~ EC Imposing the initial condition
EoC EoC
¢(0) = 0 (capacitor initially uncharged) requires k = —ﬁ, so that ¢(t) = ﬁ(e‘at — e H/ERC),
) dq EyC 1
Th t) = 2+ = —-t/RC _ ,,—at .
wilh) = 3 = T=qrc \ RO ae
d?q 1 di 1 dq 1 1
18. — —q = j — —q = i ] — —. Th dl = —— ;2 = —— 2
8 dt2+LCq Ozqu—&-ch 0, since ¢ 7 en idi chdq:>z ch + k but
2 2 2 _ 2 2 2
, 9o 2 Loy 9% : Vi —4 dq Vo — 4
4(0) = go and i(0) i LC ! e + LC ! VILC dt VILC
dq dt 1,4 t . < t )
= = sin (L) =d+— + ki = ¢ = qosin | T—=—= + k1 | but ¢(0) = g9 so qo =
e JIC (qo) JIC 1 q =40 JIC 1 (0) = qo s0 qo

1 T t
ink; = k; = T +2 h ' int e g—=ansin [+— =T — o) = b
qo sin k1 1 = & + 2nm where n is an integer q qosm( m+2> q(t) qocos(m)

and i(t) = dg_ % sin <t>
dt Vv LC vLC
d? 1 E d? di d di
19. dtg + mq = TO Since i = — then i d—;d—(j = zd—; Hence the original equation can be written
di 1 E 1 E j2 2 E
as id—;—kﬁq = fo — idi—|—ﬁqdq = fodq or %—l— 2(20 = Toq—l-A. Since i(0) = 0 and ¢(0) = qo
2 2 2 2 71/2
% Eoqo i q Eoq . 2Eoq g ,
then A = 29 — . F — =—+4 t that ¢ = |24 - = =i =
en 5.0 I rom 5 +2LC’ 7 + A we ge at ¢ [ + 7 LC 1
1/2 9 27 1/2
(2E0C)* (¢ — EoC)? (EoC) dgq q— EyC
2A — dwelet D? =24+~ theni— =D |1 — | ——
{ " Ic IC and we e T M DVIC —

. - EyC . . 1 (q9—EyC
VLCsin™* (q 0 ) = t 4+ B. Then since ¢(0) = 0 so B = v/LCsin™! () and therefore
DvLC DvVLC

q— EoC — sin <t+B> = q(t) = DV LC sin (t+B) + Eyc = i = @ = Dcos (tJrB) Since

DV LC 2\/ LC , vV LC dt v LC
24+ (E B - FE
D? = M and A = Jo__ Zodo we can substitute to eliminate A and obtain D = iM.
LC 2LC L vV LC
. (t+ B
Thus ¢(t) = £|g0 — EoC|sin (m) + Eye.

Solutions to Section 1.8

True-False Review:
(a): TRUE. We have
3(yt)?> —5(xt)(yt)  3y*t* —bayt®  3y® —bry

_ 3(yt)
Hety) = S D + Wt~ 22~ 2eg gz V)

so f is homogeneous of degree zero.
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(b): FALSE. We have

(yt)y +at Yt +at  yt+aw vt
(xt)2 +2(yt)2  a2t2 + 222 22t 4+ 2%t T a2 4+ 22’

f(ta, ty) =

so f is not homogeneous of degree zero.

(c): FALSE. Setting f(z,y) = 2 +oy” e have

y3+1 )
(wt)3 + (at)(yt)? 233 + xy?t3
t t = =
so f is not homogeneous of degree zero. Therefore, the differential equation is not homogeneous.
(d): TRUE. Setting f(z,y) = %, we have
ot 4 yt —2 m4y—2t2 $4y_2
fltz,ty) = ) i) _ = = f(z,y).

(xt)2 + (yt)2 o242 + 922 ) + 2
Therefore, f is homogeneous of degree zero, and therefore, the differential equation is homogeneous.
(e): TRUE. This is verified in the calculation leading to Theorem 1.8.5.

(f): TRUE. This is verified in the calculation leading to (1.8.12).

(g): TRUE. We can rewrite the equation as

Y — Vay = Vay'/?,

which is the proper form for a Bernoulli equation, with p(z) = —/z, ¢(z) = /z, and n = 1/2.

: . e presence of an exponential e*¥ involving y prohibits this equation from having the proper

h): FALSE. Th f ial e™¥ involvi hibits thi ion fi havi h
form for a Bernoulli equation.
d
(i): TRUE. After dividing the differential equation through by y, it becomes d—y + zy = 2%y?/3, which is a
T

Bernoulli equation with p(z) =z, q(z) = 22, and n = 2/3.

d d
Unless otherwise indicated in this section v = g, W _ v+ a:—v and t > 0.
x’ dx dx
Problems:
5(xt) + 2(yt t(5 2 5 2
1. f(tx,ty) = (zt) + 2(yt) = (5z +2y) L . f(x,y). Thus, f is homogeneous of degree zero.

9(xt) —4(yt)  t(9r —4y)  9r—4dy
5424 5420
o4t o-a LW

2. f(tx,ty) = 2(xt) — 5(yt) = t(2x — 5y) # f(x,y). Thus, f is not homogeneous of degree zero.

(tz)sin (L) — (ty)cos ()  zsinZ —ycos
3. f(tx,ty) = L — = ) =~ = f(z,y). Thus f is homogeneous of degree
T )
x
sin? —2cos?  sind —wvcosw
zero. f(x,y) = vy F T = v = F(v).

8

v
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Bl +50y)? B 57

4. f(tx,ty) = ) T5ty) . 2wiby f(x,y). Thus f is homogeneous of degree zero. f(x,y) =
V3r2+5y2  /3+5(5)?2  V3+5V2 F(o)
20+5y  2+5(%) 245V '
t 7 7
5. f(tx, ty) = T % T . Thus f is not homogeneous of degree zero.

2ty 2y

tr — 2 t tr — 10t t 1 1 -2
6. flioty) = & Jr5(1/)+?>:(?>w 6)+ (10ty +6)  t(3x+10y) 3x+10y = +5y+3.

2(ty) 3(ty) 6ty 6ty 6y 2y 3y
1 1
Thus, f is homogeneous of degree zero. We have f(z,y) = 3z + 10y S + 5 =—+ 5 = F(v).
6y 2y 3 2v 3

tx)2 ty)2 2 2
7. f(tx,ty) = \/( z)° + (1) = \/m Ty f(x,y). Thus f is homogeneous of degree zero. f(x,y) =

@ ) w% _ _W: VITE = Fl).

(tr)® +4(ty)? — (tr) + (ty) _ Va2 +4y> —x+y

8. f(tx,ty) = () + 30) = T3y = f(x,y). Thus f is homogeneous of
Va+dy? —oz+y  JI+H4E)P2-1+2  V1+402-140

degree zero. f(x,y) =

= F(v).
x4+ 3y 1+3% 14 3v

9. By inspection the differential equation is first-order homogeneous. We therefore let y = V' in which case
y' = 2V’ + V. Substituting these results into the given differential equation yields 2V’ +V = V2 4+ V 41,
or equivalently, V' = V2 + 1. Separating the variables and integrating yields

1 1
/7‘/2 1 dV = / - dxr = arctan (%) =1In|z| + ¢ = y(z) = tan(z Incz).

dy Yy dy Y dv dv 3v
(3z y)dx Y ( x)dx - ( v) vtz v T = g v
3—2 d 3 3 5
[ g = 7 = =gy bl =lnfel +-er = —0 — | = ol + o1 = Iy = 50+ 00 —
y? = ce 37/,
dy (z+y)? dy 1 Y 2 dv 1 d " .
11, =2 = — 2~ 7:7(1 7) v _ 1, ) Cdv_de . .
dx 222 :>d$ 2 er :>U+:Zidx 2( +v) :>f’112+1 . — tan" v

1 1
—In|z| + ¢ =>tan"! (g) =—Inlz|+ec
2 T 2

12. sin (%) (mfli —y) = xcos (%) = sin (;) ((CZ — i) = cos (%) = sinv (U—|—LI,‘;ZZ —v) =

sinv

. dv dx Y
cosv = sinv (z— | = cosv = [ dv:f—:>—ln|cosv|:ln|x\+01:>‘xcos(f)‘:(:2:>
dx cos v T x

c

y(x) = zcos™? (—)

€T
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dy /1622 — 12 d
13. ﬁzwééz 16—(7) + :>U+ch \/16f’02

d
J ?x = sin”}(¥) =ln|z|+c=sin"" (L) =In|z| +c

+v= [ ——— %16

(922 +y%) +y
X

14. We first rewrite the given differential equation in the equivalent form ¢y’ =
ozl + (2 +y

equation on the interval x > 0 we have |z| = z, so that y =9+ (£)? 4+ £, which we recognize as being
homogeneous. We therefore let y = 2V, so that 3y = 2V’ + V. Substltutlon into the preceding differential
equation yields 2V’ +V = 9+ V2 + V, that is 2V’ = /9 + V2. Separating the variables in this equation

1 1
we obtain ——dV = —dz. Integrating we obtain In (V + /9 + V2) = Inc;z. Exponentiating both sides
N ERT . grating (V+v ) 1 p g

yields V + 19+ V2 = ¢jx. Substituting Y — v and multiplying through by z yields the general solution
T
Y+ /922 + 92 = 122

15. The given differential equation can be written in the equivalent form

. Factoring

out an x? from the square root yields gy = . Since we are told to solve the differential

dy _ y(@® —y?)
dv  x(z? +y?2)’

which we recognize as being first order homogeneous. The substitution y = zv yields

. dv (1—112):> dv 203
v =—= T—=——:
dx 1+ v2 dx 1402’
so that ) )
1 d -
/+3v dv:—2/ x:—v—+ln|v| —2In|z| 4 ¢;.
v T 2
Consequently,
22
—2—2+1n\xy|:cl.
d d d d d
16. xﬁ+ylnx:ylny:>£fZlnf:>v+x£:vlnvﬁfﬁv_lffﬁln\lnvfl\:
n¥—1
In|z|+c = —%2— = c= y(z) = ze' .
x
dy y? + 2xy — 222 dv  v?+ 20 -2 dv =03 +2024v -2 v?—v+1
ST S A e e el N e W e N L g vovtl
dx 2 — a2y + 9?2 v+xdx 1—v+0? Tir vZ—v+1 fv3—2v2—v+2 v
vP—v+1 iy 1 1 1 dx
- — = dv = — | — = - dv = — | — =
fm f(v—l)(v—I—Q)(v—i—l) v J x f|:1}—2 2(v—1)+2(v+1)] v J x
1 1 —2)? 1 -2
1n|v—2|—§ln|v—1\+§ln\v+1| =—In|z|4+c; = In (1))(11)4_)‘ = 2lnztc = w =
v— y—x

C.

d 2 d
18. 2zydy — (3526—112/962 +2y?)dr = 0 = 2%d—y (e‘y2/”“'2 +2 (%) ) =0= 2v (v + xdi) — (e‘”2 +
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2

d d
20?%) =0 = 21158% = e = e (2udv) f% — ¢ =In|z|+ ¢ = ¢v/% =In(cx) = 12 =
22 1n (In (cx)).

d d d d
19. xz—y:y2+3xy+x2:>—y:(3)2+33+1:>v+x—v:v2+3v+1:>x—uz(v+1)2
ddx ) dx r f” ) dz dli
Y
f(v—i—l f w41 nlel + e 441 nlel + e x In (cx) y(@)
1
-z |l4+ —7F].
x{ +ln(cx)]
dy  a?+y?— dy 1+(4)? -1 dv V14 02— dv  V1+0%—
00, W M:iy:¢:}v+ v _ Vit-  dv VitvP-w
dx Y dx g dx v dx v
c
— = In|l-u njz|+c; = [zl —u)| = = 1-u=— = u? =
? c? c
——2 +1:>v*—2—272>y =c° —2cx
x
d d d d
21. 2x(y+2x)% :y(4x—y):>2< +2) dgyc =24-%4) = 2(v+2) (v—kxd;) :v(4—v):>2x£
302 2 d
_vj;2:>2qu; dl}:—3f§:>21n|v|—%:—3]n|gg|+01:>y2:cxe4m/y.
dy dv dv
22, xd——wtan( )+y:>v+xd——tanv+v:>wd——tanv:fcotvdv—f—:>1n|smv|
x x x

In|z| 4+ ¢, = sinv = cx = v =sin" ' (cx) = y(z) = rsin~* (cz).

d V2 + 2 42 d 2 d d
23,£:w:>ﬁ: (D*Hy:””dgi: /7(;)24_14_1):?”:

dx dx T

VE2+1I= [ o

$0é2(%)+1:(01‘)2éy2:x

f :>1n|v+\/1+v2|—1n|x|+c:>v—|—\/1+1)2—ca::>y—!—\/ )2 =

2 [(ex)? — 1]
TR

24. The given differential equation can be written as (z—4y)dy = (4dx+y)dz. Converting to polar coordinates
we have © = rcos§ = dx = cos 0dr — rsin0df, and y = rsin 6dr + r cos fdf. Substituting these results into
the preceding differential equation and simplifying yields the separable equation 4r~'dr = df which can be

integrated directly to yield 4Inr = 6 + ¢, so that = ¢,e?/%.

d 2(2y — d y 1
25. Y — M Since z = 0, divide the numerator and denominator by y yields Y v
dx z+y dr 22— )

N dz dv dv v+1 2(2—w) dy
ow let v , SO tha dy v+ydy=>v+ydy 2(2—1}):>f21)2—3v+1 fy —
—1)2

=lnlyl+ ¢ = In (v=1) =1In(e2ly|) = (x — y)? = c(y — 2x)3. Since y(0) = 2

20 —1J°

1 1
then ¢ = 3 Thus, (z — y)2 = i(y —2x)3.
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dy 2x—vy dy 2-4 dv 2—wv dv  2—2v—40? 1 1+4v
= — ptp— = _

26. — = — - = y— = == [ -
dr  x+4y dx 1+4y de 1+ 4v Tix 1+4v 2f2v2+v—1

dv =

d 1 1 1
ff—x:>51n\21)2+1)71|:71n|33|+c:>iln\x2(2v2+v71)| :c:>§1n|2y2+yxfx2\ = ¢, but
x

1 1 1
y(1) = 1so ¢ = §ln2. Thus §In|2y2 +yz —2?| = 51112 and since y(1) = 1 it must be the case that
2% +yr — 2% = 2.

_ &
\/14-2 x

d ~VaZtE d
o7, W _ YT NVTEY WY 1+( )? :>xd—: 1+ = [ ——
x
[ + /22 4+ y? = co. Since y(3) =4 then co = 9. Thentakemzl
x

dx x dx
In(v+v1+0?2) = —ln|x\+clzy |
since we must have y(3) = 4; thus y + \/ac2 +y2=09.

dy -1
28. —
dx
sin™! 2& =Inx + ¢ since x > 0.

2 d d d
f%: 47(%) :>v+x£:v+\/4fv2:>f\/47§7:f%:>sin %:ln\x|+c:>

d d 1

29. (a). Gy _rtay . Substituting y = xzv and simplifying yields + 2 = + o’ . Separating the variables
de  ax—vy dx a—v

and integrating we obtain atan='v — 3 ln (1 +v?) =Inx +Inc or equivalently, atan—! g—3 ln (2% +y?) =

Inc. Substituting for x = rcosf,y = rsinf yields ad — Inr = Inc. Exponentiating then gives r = ke

(b). The initial condition y(1) = 1 corresponds to r(5) = /2. Imposing this condition on the polar form

of the solution obtained in (a) yields k& = v/2e~™/8. Hence, the solution to the initial value problem is
1 d 2
r = /2e0=7/49/2 When q = 2 the differential equation is d—y - +2y. Consequently every solution
r oz -—

x
curve has a vertical tangent line at points of intersection with the line y = 5 The maximum interval of

existence for the solution of the initial value problem can be obtained by determining where y = g intersects
1
the curve r = /2e?=7/4)/2 The line y = g has a polar equation tan 6 = 3 The corresponding values of

1
are 0 = 0; = tan™! 3 ~ 0.464,0 = 0, = 01 + m =~ 3.61. Consequently, the x-coordinates of the intersection

points are z1 = rcosfy = /2e1=T/N/2cos0; ~ 1.08, x5 = rcosly = 2e2=7/D/2 cos0, ~ —5.18. Hence
the maximum interval of existence for the solution is approximately (—5.18,1.08).

(c). See the accompanying figure.

T dy d d
30. Given family of curves satisfies: 22 + y? = 2cy = cx +y . Hence 2z + de = 2c d—y == d—y =
x x
2 d 2 g2 d d
R o Orthogonal trajectories satisfies: W _ Y =T e y = vz so that Yy + e
c—y x2—q2 dx 2xy dx dx
o . . : dv v? +1 1
Substituting these results into the last equation yields T =T = Injv' +1] = —Injz| + 1 =
x v
2
LH1=2 = a2y =2
x
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y(x)
-6 -5
L | - > X
-1
-2
-3
4
Figure 0.0.50: Figure for Problem 29(c)
y(x)
A
/"
> X
Figure 0.0.51: Figure for Problem 30
22 + 92 dy
31. Given family of curves satisfies: (z—c)?+(y—c)? =2 = ¢ = Ty Hence 2(m—c)+2(y—c)£ =
_ 2 _ 2 2 d 2 2 2
0— 2 _ Y o Orthogonal trajectories satisfies: W w Let y = vz so
y—c y2 + 2zy — 22 dx 22 + 22y — y?
d d d 242v—1
that 24 = o + oy Substituting these results into the last equation yields v + + 2 = vl
dx dx dx 1+ 2v—12
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1420 —v? 1 1 2v 1 9 5
- = dv== - == = 2k(z— —k)? k)2 =
U3—v2+v—1dv :de:><v—l v2+1)dv xdx:>:1:—|—y (@=y) = (@=k)"+(y+k)
2k2.

y(x)

A

» X
]

Figure 0.0.52: Figure for Problem 31

32. (a). Let r represent the radius of one of the circles with center at (a.ma) and passing through (0,0).
r=+/(a—0)2+ (ma —0)2 = |a]v/1 + m2. Thus, the circle’s equation can be written as (z—a)?+(y—ma)? =
(la|v/1T+m?2)? or (x —a)? + (y — ma)? = a®(1 + m?).

2, .2
(). (x —a)®>+ (y —ma)? =a*(1+m?) = a = ;T—’_y) Differentiating the first equation with respect
T+ my
d — d 2222
x and solving we obtain _azr Substituting for a and simplifying yields & _ v myy
r  y—ma dr  my? — ma? + 2xy
d 2 —my? -2 dy —m—m(¥)? 2“
Orthogonal trajectories satisfies: Gy _my T my i == Y _ () . Let y = vx so that
x y2 — 22 — 2may dr ()2 —=1-2mZ
d dv d — -2 d
Y v+ x—. Substituting these results into the last equatlon yields v+ J;—v = w = v _
dx dx der  v2—1-2mv dx
(m —v)(1+0?) v? —2mv —1 dx dx
2—2mv—1 f(mfv)(lqtzﬂ) ! f:c f f1+1)2 f:n nfo—m|

1n(1—|—1/2) =lnz|+c = v—m = cz(l +v?) = y — mx = c22”® + c2y® = 2? + y* + emx — cy = 0.
Completing the square we obtain (z + em/2)? + (y — ¢/2)? = ¢2/4(m? + 1). Now letting b = ¢/2, the last
equation becomes (z + bm)? + (y — b)? = b*(m? + 1) which is a family or circles lying on the line y = —my
and passing through the origin.

(c). See the accompanying figure.

d meo — tan (& — —1
33. a:2+y2—c:>—y _§:m2_ my = —2 (473 = z/y :x+y. Let y = vz so that
dx Y 1+ mytan (%) 1—2a/y T —y
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y(x)
// - y \\
/
1 - 1
1 < N/ T TS
\ ! g AN
\ AN >
< < > X
Mo N ! \\
==X/ I
1
\\ ,/
Figure 0.0.53: Figure for Problem 32(c)
d d d 1 1-—
Yy + 2. Substituting these results into the last equation yields v + e = v — Yo =
dx dx dv  1—w 1+ 02
dr = [ 4 1 dv= [ de = 1111(1 +v?)+tan~! v = In |z|+c; = Oblique trajectories:
x 1+0v2 0241 B 2 N ! d ) '

In (2% +y?) — 2tan~! (y/x) = ca.

. dy mg —tan(y)  by/zr—1  6y—=x

34. = — — =6 = . = = = . Let y = that
y=er dx y/w = ma. m L +mgtan () 1+ 6y/x 6y + x ey = v so tha
d d d 6v —1 d
Yo v+ m—v. Substitute these results into the last equation yields v + x—v . == x—v =
d dz 6v+1 dx

(30— )1 - o0
Jv—1)(1 —-2v

6v+1 =/ <3v —1
Oblique trajectories (3y — x)3 = k(2y —x)t

>dv = f—x = 3In|3v—1 —4In|2v — 1| = In|z| + 1 =
T

y? — 22
2 2 d 2 _ .2 me — tan (T o
35. x2+y2:2cx:>c:x+y and 2 = ¥ 7T =My My = — (473 = 2xy2 2 =
2x dz 2xy 1+ mytan (F) N
2xy
2 2
-z =2 d d
u. Let y = vz so that YW + x—v. Substituting these results into the last equa-
y2 — 22 + 2xy T dx
i eld n dv v?—20—1 dv ¥ —v?—v—-1 —v2—2v+1d dx
ion yields v + 2— = ——— = — = = vo= —
Y dx v2+21171 dx v24+20—1 vi4+0v2+ou+1 T
1 2v
f(v—&—l Uz+1>d _f Y — o+ 1)~ In (0 +1) = lnje| + ¢ = Iy + 2| = lnfy? + 22| + ¢, =

Oblique trajectories: x? + y? = 2k(x + y) or, equivalently, (z — k)% + (y — k)? = 2k2.
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dy L, Yy me — tan g —y/x — tan ag

36. (a). =z ' = L = —cx?=-%m = = . Let y = vz so
@)y dx x ! 1+ mq tan ag 1 —y/xtan ag Y
d dv dv tanag + v
that &4 — 4 + x—. Substituting these results into the last equation yields v + z— = tanao v =
de dx dx vtanag — 1
2utan ag — 2 2dx
0 v=—"—" = In|v?tanag — 2v — tanag| = —2In|z| +¢; = (y? — 2?)tang —
v2tan og — 20 — tan ayg x

2xy = k.
(b). See the accompanying figure.

y(x)

X
Figure 0.0.54: Figure for Problem 36(b)
d —t —x/y — d
37. (). P’ +yt =c= > C—_—— my = e — W% z/y—m :$+my.Lety:vxsothat—y:
dx Yy 1+ maotanag 1—(x/y)m ma—y dx

dv dv 1+ mv dv 1+ 0?
v 4+ x—. Substituting these results into the last equation yields v + z— = + — r— = +
dx dx m—uv dr m—v

— d
Tt == = (i~ 1) =~ = 0+ ) —mtano = sl +o1. In polas

coordinates, r = \/22 + y2 and 6 = tan~! y/x, so this result becomes Inr —mf = ¢; = r = ™ where k is
an arbitrary constant.

(b). See the accompanying figure.

d 1 d 1
38. d—y — fy = 422y~ cosz. This is a Bernoulli equation. Multiplying both sides y results in y—y — fy2 =
x
d d d 1d d
422 cosz. Let u = y? so o =2y A ry— — Substituting these results into y—y — fy =4x%cosx
dx d:r de  2dx dx

d 2 d
yields S _ 24 =822 cosa which has an integrating factor I(z) = 272 = — pi (27%u) = 8cosx = 27 %u =
x x

dx
8 [coszdr + ¢ => 7 %u = 8sinz + ¢ = u = 2%(8sinz + ¢) = y* = 2?(8sinz + ¢).

d d d
39. y3 dy + y_2 tanz = 2sinz. This is a Bernoulli equation. Let u = y~2 so d—u = —2y_3d—y or
x x
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y(x)

Figure 0.0.55: Figure for Problem 37(b)

d 1d d
34 _ 2 Substituting these results into the last equation yields M ytanz = —4sinz. An integrating
de  2dx J dx
factor for this equation is I(x) = cosz. Thus, d—(u cosz) = —4cosxsinr = ucosz =4 [ cosxsinzdr =
x
u(z) = (cos?x +¢) =y~ 2 =2cosz + .
cos T cosw
dy 3 1/3,.2 L ody 3 4 2 2/3 dy 2 _4/3dy g
40. e 6y'/32% Inz or W%—%y /3 =622Inz. Letu = y?/3 = i gy / e Substituting
) dy 3 55 9 . du 1 9 . . :
these results into —=— — —y?/3 = 622Inz yields — — —u = 42%Inz. An integrating factor for this
yl/3dr 2x dr =
1 d
equation is I(x) = — so d—(x’lu) =dzlner = 2z 'u=4[zlnadr + c = z7'u = 22°Inz — 2 + c =
x x

u(z) = z(22%Inx — 22 + ¢) = 3?/® = 2(22%Inz — 2% + ¢).

d 2 d 2 d d
41. @Yo Zy = 6V1+a2y/? or y‘l/Q—y + Zyt? = 61+ 22 Let u = y/? = p g y‘l/z—y.
dx T dx x dx dx

d 2 d 1
Substituting these results into y*1/2d£ + Zyl/? = 6v/1 + 22 yields d—u + —u = 3v/1+22. An integrating
r oz r

d
factor for this equation is I(z) = = so d—(xu) =3vVl+a? = zu = [avVl+a22de + ¢ = zu =
x

1
(1+m2)3/2+2.

142232 4= u= z
x x

1
—(1+I2)3/2 + ¢ :>y1/2 =
xr X

d 2 d 2 d d
42. Yy Zy = 6y%x? or y’Z—y + =yl =62t Letu=y ! = S y’Q—y. Substituting these results
dx dw dr = 5 dx dx
into y‘z—y + 2y~ = 62? yields M Zu=_6s' An integrating factor for this equation is I(x) = 272 so
T T T
d 1
%(x’Qu) =62 =1 u=-220%+c=u=-20"+cr? =yl = 200 +cx? = y(x) = (e 227)"

(c)2017 Pearson Education. Inc.



72

d dy 1 1d d
43. 2z el +322 ) +y=0o0ry -3%Y + —y2=—272 Letu=y 2= e y_3—y. Substituting
dx dx 2 dx dx
. _ady 1, —o u 1 2 . . . S
these results into y T + Q—y = —x~ ¢ yields — — —u = 22°. An integrating factor for this equation is
x T
1 d
I(x) = — so d—(m Wwy=2r =2 lu=2>+c=u=23+cxr =y 2 =23+ c.
x x
dy dy 2(b—a) du
44. — —b — — 1/2 :2b— _1/27—7 / :l.Lt = 1/2227:
(@ ate-0) (2 -apory e - 2D, et i

_1pdy  2(b—a) y
de  (z—a)(x—0b)
T —a d(m—a) T —a r—a 1

xfbsoﬁ x—bu

d
y_l/zd—z. Substituting these results into y

An integrating factor for this equation is I(z) =

a)Ilnl|z —bj+c] = y'/? = [x+(b—a)ln|z — b+ = y(z) = = (

x—2b
2(z —a)

dy 6 d 6 du d
45. —|— 2/3@ or y_2/3—y + —y'/% = 3005:5 Let u = y'/3 = 3— =y 2/3-2 Y . Substituting
dx f 6 de x J x 5 dx dx
2/3%Y | —yl/3 = i yields U2y =% A integrating factor for this equation
dr =z T dr =z T

these results into y~

cosr + xsinx + ¢
5 .

is I(x) = 2% so d—(xQu) =rcosr = 2%u = cosz + wsinz + ¢ = y'/? =
T x

d d du d
46. d—y + day = 423y'/? or y‘l/Qdfy + day'/? = 423, Let u = y'/? = 2d =y /2 dy Substituting these
x x x

d du .
results into yil/zd—y +4zy'/? = 423 yields e +2ru = 223. An integrating factor for this equation is I(z) =
x x

2

d
" so d—(ew2u) =2e% 73 = Ty = €% (22 —1)+c=y'/? = =22 1+ce ™ = y(x) = [(mQ—l)—l—ce_”’z]Q.
x

dy 1 dy 1 1du dy o
a7. &Y — 2013 -327 _ 2 =2z. Let u=y"2 = —— =y 3-%. Substituting th
dx 2m1n9(ci mylor Y da 2mlnxd f tu=y odr 7 g U e Hhese
results into y*B—y — y~2 = 2z yields a + u = —4x. An integrating factor for this equation is
dr 2zlnzx dr  zlnz |
I(z) =Inx so %(ulnx) = —drlnr = ulnx =22 - 222Inz +c = y? = pETo ;f;lrf) e
dy 1 3 dy 1 3z 1 du dy
48. = 4 s ylmT = cLetu=y'"" = — =y T
dx (T*l)ﬂfy (177r)xy R (wfl)xy 1o U=y 1-nde  V dzx
d 1 3x du 1
Substituting these results into y‘”—y — gyl ylelds ——|— u = 3z. An integrating factor for
de (m—1)z 1-
d 3 1/(1—m)
this equation is I(x) = = so d—(mu) =3 = qu=2>+tc=y'" " = rte = y(z) = (x i c) .
x x x
d dy d d
49. Qd—y +ycotx = 8y~ ! cos® x or 2yd—+y cotx = 8cos? z. Let u = y?> = d—u =2 cTy Substituting these
x x
d du
results into 2yd—y +y? cot x = 8 cos? x yields . + usecx = secx. An integrating factor for this equation is
x x
—92cost
I(z) =sinx so — (usinz) = 8cos® rsinz = usine = —2cos? v + ¢ = y? = M.
dz sinx
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0. (1— f) +ysecx—y‘fsecxor (1—/3)y fdy+y1 V3seca =secx. Let u=y'~ ‘f:>dz

d du
ﬁ)y‘fﬁ Substltutlng these results into (1— \[)y—fﬁ —l—yl_‘[ secx = secx yields e +usecx = secz.

An integrating factor for this equation is I(x) = sec x+tan z so —[(sec z+tan z)u] = sec z(sec z +tanz) =

dzx
B 1/(1—v/3)
(1 + ) |
secx + tanx
dy 2x 9 1 dy 2z 1 1 du

dy
—_— = — — _92 . .
51. = + 1 Q:Qy = 2 dz + 1 132; =x. Let u =y~ so i —y P Substituting these
dy 2z 1 ) du 2z

1t t ! + 1d An int ti factor for thi ti i
results ln o —F&— — — = Tr vyieldS — — ——m=Uu = —X. n mtegravin, actor 1or 1S equation 1s
vdr 112ty VIS e T 11 22 gratme d

I(z) 1 d u T U f xdx n u 11 (1+ 2)+
= —5 S0 — | ———= = — — = — —_— —_— ——— = ——In —_—
. 1+22  dx \1+a22 1+ 22 1+ 22 1+ 22 ¢ 14 22 2 vTe

(1+2?%) <;1n(1+:c2)+c> =yl =(1+2? <;1n(1+x2)+c>. Since y(0) =1 = c =1 so

= (1—

1
(secx + tanz)u = tanz 4 secx + ¢ = yl—\/g =1+ — = y(x)
secx + tanx

u =
I+ (“tma+a 11
Y 2 '
dy d 1d d
52. — +ycotz = y3sin®z or y -3%Y +y2cotx =sin®z. Let u=y %= e y_?’—y. Substituting
dz dy dz p 2dx dx
these results into y_S% +y 2 cot z = sin® x yields ﬁ —2ucotx = —2sin® 2. An integrating factor for this
d
equation is I(x) = csc?z so d—(ucsc2 r) = —sinz = uesc?z = 2cosx + ¢. Since y(r/2) =1 = c = 1.
x
1
Thus y? = .
Y e x(2cosx + 1)
d d d d d d
?&ddi = F(ax+by+2). Let v = aac—i—by;—cso that £ = a+5di‘/ = bﬁ = é—a = ﬁ =
v v v v
—|——-a|=F — —a=0bF(v) = — =bF ———— =du.
b (dx a) (v) = dz ¢ ) dx (W) +a= bf(v) +a v
dy 9 dy dv dv 9 dv
54. 7 = (92 — y)%. Letv—9:v—ysothat%—9—£:>%:9—v :fm:fdx:

1
3 tanh™" (v/3) = x + ¢; but y(0) = 0 so ¢ = 0. Thus, tanh™" (3z — y/3) = 3z or y(z) = 3(3x — tanh 3z).

dy dv dy dv dv
515. £:(4x+y+2) Letv—4x+y+2sothat%_4+£ 2+4:dm:>fm:fdx:>
§tan_1v/2:x+cl=>tan_1(2x+y/2+1):2x+czy(x):2[tan(2x+c)—2m—1].

d 1d 1d

5;6. ﬁ = sm2(3m—3y+1). Let v = 32 — 3y + 1 so that %1— §£ == 1 - §£ = sin?v =
d—v 3cos?v = [sec’vdv = 3 [dx = tanv = 3z + ¢ = tan(3z -3y +1) = 3z + ¢ = y(z) =
1
§[3m—tan_1 Bx+c¢)+1].
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57. V=aoy = V' =2y +y = ¢y = (V' — y)/x. Substitution into the differential equation yields

(V' —y) o = yF(V)/z = V' = y[F(V) + 1] = V' = V[F(V) + 1]/, so that Xm(?; - %

1 dv
VIF(V) +1] do

1
Inex =V = e = y(z) = —e*.
x

58. Substituting into

1 1
= — for F(V) = InV — 1 yields dV = —dr = InlnV =
x x

VinV

59. (a). y(z) = w(r)—z = y’ = w’ —1. Substituting these results into (1.8.18) yields w’' —1 = 2zw? -1 =
w' = 2zw?.
(b). Separating the variables in the preceding differential equation and integrating yields

1

/7dw—2/$d17+0:>*w71iCC2+C:>w(x):72’
i — X

where ¢; = —c. Hence, the general solution to (1.8.18) is y(z) = 5 — 2. Imposing the initial condition
T — X

1
y(0) = 1 requires that 1 = — = ¢; = 1. Therefore, y(z) = 5~

c1 1—=x

dy dv e . . . . .
60. (a). z=u—-ly=v+1= T du Substitution into the given differential equation yields
x u

dv u+ 2v

du  2u—v

(b). The differential equation obtained in (a) is first order homogeneous. We therefore let W = v/u, and
1+2W 1+ W?
2—’; W = Wu = Qt W Separating the

1
> dW = —du. This can be integrated directly to obtain 2tan='W —
u

substitute into the differential equation to obtain W/'u + W =

2 w
1+W?2  1+W?2

1 _ _
5 In(1+ W2) = Inu+ Inc. Simplifying we obtain cu?(1 4+ W2) = ¢ttan™' W — ¢(y2 4 2) = glan” " (v/u),
Substituting back in for z and y yields c[(z + 1)2 + (y — 1)2] = etan " [(v=D/(=+1)],

variables yields (

61. (a). y = Y(z) +v (z) = v = Y/'(z) — v 2(x)v'(z). Now substitute into the given differential
equation and snnphfy algebraically to obtain Y’ (z ) p(2)Y (z) + q(2)Y?(x) — v~ 2(2)v'(z) + v~ (z)p(z) +
q(z)[2Y (z)vo~1(z) + v72(z)] = r(x). We are told that Y(m) is a particular solution to the given differential
equation, and therefore Y'(z) + p(x )Y( )+ q(x)Y?(z) = r(x). Consequently the transformed differential
equation reduces to —v=2(x)v’(z) + v Ip(x) + q(z)[2Y (x)v~1(z) + v~2(z)] = 0, or equivalently v’ — [p(x) +
2Y (z)q(x)]v = q(x).
(b). The given differential equation can be written as y' — x 71y —y? = 2~ Which is a Riccati differential
equation with p(r) = —271, ¢(z) = —1, and r(z) = x72. Since y(xr) = —a~! is a solution to the given
differential equation, we make a substitution y(z) = —z=! +v=1(x). Accordlng to the result from part (a),
the given differential equation then reduces to v’ —(—z~1+2271)v = —1, or equivalently v'—x~'v = —1. This

d
linear differential equation has an integrating factor I(x) = 1, so that v must satisfy — (z7v) = —27! =

1 1 1 1
v(z) = x(c—Inz). Hence the solution to the original equation is y(z) = _§+x(c ") = (c o 1).

62. (a). If y = ax”, then y/ = arz"~!. Substituting these expressions into the given differential equation
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yields arz™ =1 4 2a2" "' — a?2?" = —2x~2. For this to hold for all z > 0, the powers of  must match up on

either side of the equation. Hence, r = —1. Then a is determined from the quadratic —a+2a —a? = —1 <
a’?—a—2=0+= (a—2)(a+1) = 0. Consequently, a = 2, —1 in order for us to have a solution to the given
differential equation. Therefore, two solutions to the differential equation are y;(z) = 2271, yo(2) = —2~ 1.

(b). Taking Y (z) = 22~ ! and using the result from Problem 61(a), we now substitute y(z) = 22~ +v~!
into the given Riccati equation. The result is (—2272—v 20" )+ 2271 (2071 +o~ ) — (de 2 +4o~ o~ +072) =
—22~2. Simplifying this equation yields the linear equation v’ 4+ 2x~'v = —1. Multiplying by the integrating

factor I(z) = e/ 2" "4 — 22 regults in the integrable differential equation al—(a:2 ) = —22. Integrating this
T
1 1
differential equation we obtain v(r) = z? (3x3 + c> = §x2 (c; — 2®). Consequently, the general solution
to the Riccati equation is y(z) = = +

x  a%(cp —23)
63. (a). y = 27 ' +w(x) = ¢y = —272 + w'. Substituting into the given differential equation yields
(—z7 2 +w) + 7o a7 +w) — 3(x72% + 227w + w?) = 3272 which simplifies to w’ + 271w — 3w? = 0.

(b). The preceding equation can be written in the equivalent form w=2w’ + 2~ w=! = 3. We let u = w1,

so that v/ = —w™2w’. Substitution into the differential equation gives, after simplification, v’ —x~'u = —3.
An integrating factor for this linear differential equation is I(z) = z~!, so that the differential equation
d
can be written in the integrable form d—(x’lu) = —3z~!. Integrating we obtain u(z) = z(—3Inz +
x
1
¢), so that w(z) = Te—3ma) Consequently the solution to the original Riccati equation is y(x) =
z(c—3nz
1 14 1
x c—3nz )
d d 1d d
64. y*1£ +p(x)Iny = q(z). If we let u = Iny, then Y 2% and the given equation becomes L
dx dx ydx dx

p(x)u = g(z) which is a first order linear and has a solution of the form u = e~/ P(z)dz U e/ P@)dz g () dx + ¢
Substituting Iny = e~/ P(#)dz [f el P@)dr g (1) da + c} into u = Iny we obtain y(z) = ¢!/ /(Na®di+d] where

I(z) = e/ Pt and ¢ is an arbitrary constant.

d 2 1-21 d 2
65. y’l—y — —Ilny = 71196. Let u = Iny so using the technique of the preceding problem: o —u =
dr =z x dr =z
121 N 121
I = (B e | = o [ (S ) | = e

and since u = Iny,Iny = Inz + cz®. Now y(1) =esoc=1= y(z) = ze®’.

B du . dy . . , o\ dy B du
66. If u = f(y), then = ' (y) T and the given equation f(y) T + p(x)f(y) = q(x) becomes o +
p(z)u = q(z) which has a solution of the form u(z) = e~ JP®)dz U el P@)dzg(r)dx + ¢|.  Substituting

fly) = e~ [ p(@)de [f efp(w)dwq(x)dx + c} into u = f(y) and using the fact that f is invertible, we obtain
y(z) = fH I~ ([ I(t)q(t)dt) + c] where I(z) = e/ PM4t and ¢ is and arbitrary constant.
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dy 1 1
o fany = ————.
de  2¢/1+zx 4 2V1+x
u 1 1

— + u = which is first order linear. An integrating factor for this equation is
der  2v/1+=x 2v/1+x & & d

d 1+x Vitx
I(z) = eVIH® —= —(eVitoy) = C VTR = fie =
21+ 2

dx 2 /1+z

1+ ce VIH% But u =tany so tany = 1 + ce VI*+® or y(x) = tan™! (1 + ce~ V1),

d d
67. sec’y Let u = tany so that £ = sec? yﬁ and the given equation

becomes

eVItry = eVIte L ¢ — ¢ =

Solutions to Section 1.9

True-False Review:

(a): FALSE. The requirement, as stated in Theorem 1.9.4, is that M, = N,, not M, = N, as stated.

(b): FALSE. A potential function ¢(x,y) is not an equation. The general solution to an exact differential
equation takes the form ¢(x,y,) = ¢, where ¢(x,y) is a potential function.

(c): FALSE. According to Definition 1.9.2, M (z)dz + N(y)dy = 0 is only exact if there exists a function
¢(z,y) such that ¢, = M and ¢, = N for all (z,y) in a region R of the xy-plane.

(d): TRUE. This is the content of part 1 of Theorem 1.9.11.

(e): FALSE. If ¢(x,y) is a potential function for M (z,y)dz + N(z,y)dy = 0, then so is ¢(x,y) + ¢ for any
constant c.

(f): TRUE. We have
M, = 2¢** —cosy and N, = 2e** — cosvy,

and so since M, = N, this equation is exact.

(g): FALSE. We have
(22 + y)*(=22) + day(2® + y)
(2% +y)*

M, =

and
(22 + y)%(22) — 22%(2? + y) (27)

N =
! (22 4 y)*

Thus, M, # N,, and so this equation is not exact.

(h): FALSE. We have
M,=2y and N, = 212,

and since M, # N,, we conclude that this equation is not exact.
(i): FALSE. We have

M, =e”* SNV cosy + ze® ™Y cosy and N, = cosysinye® MY
and since M, # N, we conclude that this equation is not exact.

Problems:

1. ye"¥dr + 2y —xe ™)dy = 0. M = ye™ and N = 2y — ze™ ™ = M, = yze™ + ¢ and N, =
rye™ ™ —e™ ™ = M, # N, = the differential equation is not exact.
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2 2

2. [cos (xy) — aysin (zy)]dx — x*sin (zy)dy = 0 = M = cos (zy) — zysin (zy) and N = —a*sin (xy) =
M, = —2xsin (zy) — 2®y cos (zy) and N, = —2xsin (zy) — 2%y cos (vy) = M, = N, = the differential

equation is exact.

3. (y+32*)dr+axdy =0. M =y+32z>and N =2 = M, =1and N, =1 = M, = N, = the
differential equation is exact.

4. 2ze¥ dx + (3y? + 2%e¥)dy = 0. M = 2ze¥ and N = 3y? + 2%e¥ = M,, = 2ze¥ and N, = 2ze¥ => M, =
N, — the differential equation is exact.

5. 2zydr + (22 + 1)dy = 0. M = 2zy and N = 22 +1 = M, = 2z and N, = 20 = M, = N, =
9¢

the differential equation is exact so there exists a potential function ¢ such that (a)? = 22y and (b)a— =
x x
5 dh(x) dh(x) . dh(x)

7Y+ dx T dzx
potential function, let h(z) = 0. Thus, ¢(z,y) = (2 + 1)y; hence, (2% + 1)y = c.

so from (a), 2zy = 2xy +

=0 = h(z) is a constant. Since we need just one

6. Given (y* — 2z)dz + 2zydy = 0 then M, = N, = 2xy so the differential equation is exact and there exists
a potential function ¢ such that (a) ? = y? — 2z and (b) % = 2zy. From (b) ¢(z,y) = zy* + h(z) =
€ Y

0 dh dh dh

67(;5 =y’ + d(m) so from (a) y*+ d(m) =y’ -2z = (2) _ —2x = h(x) = —2x where the constant of
z T T

integration has been set to zero since we just need one potential function. ¢(z,y) = zy*>—2? = 2y’ —22 = c.

7. Given (4€** + 2xy — y?)dz + (v — y)?dy = 0 then M, = N, = 2y so the differential equation is exact
99

and there exists a potential function ¢ such that (a) % = 4e** + 2zy — y? and (b) T = (x — y)2
€ Y
3 0 dh dh
From (b) ¢(z,y) = UCZZ —zy® + % + h(z) = % =22y —y* + % so from (a) 22y — y* + % =
4e* + 2zy — y* = d(xx) = 4e?* = h(x) = 2¢** where the constant of integration has been set to zero

3 3
since we need just one potential function. ¢(z,y) = 2%y — xy® + % +2e? = 2%y — xy? + % +2e% =

€1 = 6e®* + 322y — 3xy? +vy° =c.

. 1 y x y? — . . .
8. Given ( — — = |dx + ———dy = 0 then M, = N, = ——— so the differential equation
T x2 + y2 1.2 + y2 + y
oo x

and (b) T
y dh(z)

f - =
so from (a) R + e

is exact and there exists a potential function ¢ such that (a)

a9y dh(z)
or a2 492 dz

From (b) ¢(z,y) = tan~!(y/z) + h(z) =
1 Y @

- - 7
22+ 2 dx
need one potential function. ¢(x,y) = tan~1(y/z) + In|z| = tan=1(y/z) + In|z| = c.

= 27! = h(z) = In|z| where the constant of integration is set to zero since we only

9. Given [y cos (zy) — sinz]dx + x cos (zy)dy = 0 then M, = N, = —zysin (zy) + cos (zy) so the differential

equation is exact so there exists a potential function ¢ such that (a) 8—¢ = ycos(zy) — sinz and (b)
x

0 0 dh

99 _ xcos (zy). From (b) ¢(x,y) = sin (ay) + h(zx) = 9% _ ycos (zy) + (z) so from (a) ycos (zy) +

ox ox dz
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dh(x)

dx
since we only need one potential function. ¢(z,y) = sin (zy) + cosz = sin (zy) + cosz = c.

: h : : Lo
= ycos (zy) —sinz = — = —sinaz = h(x) = cosx where the constant of integration is set to zero

10. (2y%€** + 32%)dx + 2ye**dy = 0. M = 2y%e*® + 322 and N = 2ye** — M, = 4ye®* and N, =
4ye** = M, = N, = the differential equation is exact so there exists a potential function ¢ such that
9 ) dh(y)

0
(a)% = 2y%e?® + 322 and (b)a—j = 2ye®*. From (a) ¢(z,y) = y?e** + 2° + h(y) = o = 2ye®® + “dy
dh
so from (b) 2ye?® + # = 2ye?” — = 0 = h(y) = c;. Since we only need one potential function we
Y Y
can set ¢; = 0. Then ¢(z,y) = y?e?® + 23 = y?e?* + 23 = c.
11. (y? + cosz)dz + (2zy + siny)dy = 0. M = y*> + cosz and N = 2zy + siny = M, = 2y and
N, =2y = M, = N, = the differential equation is exact so there exists a potential function ¢ such that

0 0 0 dh
(a)a—f = 9% +cosx and <b)£ = 22y +siny. From (a) ¢(z,y) = 2y +sinz + h(y) = £ =2zy+ d;y) &)
dh dh
from (b) 2zy + d(yy) = 2xy +siny = d—y =siny = h(y) = — cosy where the constant of integration has

been set to zero since we just need one potential function. ¢(z,y) = 2y*+sinx—cosy = xy*>+sinxr—cosy =
c.

12. (siny + ycosz)dx + (xcosy + sinx)dy = 0. M = siny + ycosz and N = zcosy + sinx — M, =
cosy + cosx and N, = cosy + cosx = M, = N, = the differential equation is exact so there exists

a potential function ¢ such that (a)? = siny + ycosz and (b)gﬁ = xcosy + sinz. From (a) ¢(z,y) =
€ Y
dh dh
rsiny + ysinx + h(y) = ? = xzcosy + sinx + d(y) so from (b) xcosy—i—sinx—&—# = xcosy +
Y Y Y

sinx = o = 0 = h(y) = ¢1. Since we only need one potential function we can set ¢; = 0. ¢(x,y) =
Y

rsiny + ysine = xsiny + ysinzx = c.

13. Given [1+In (zy)]dz+ Edy = 0 then M, = N, = y~! so the differential equation is exact and there exists
Y

a potential function ¢ such that (a) % =1+In(zy) and (b) ¢(z,y) =xIny+h(z) = % =lny+ di;;x) &)
dh(x)

dh
from (a) In y—|—W =1ln(zy) = T 1+Inz = h(z) = cIlnz where the constant of integration is set to

zero since we only need one potential function. ¢(z,y) = zlny+axlne = zlny+zlnz = ¢ = zIn(zy) = c.

Ty zy + 1

-1
dr +

14. Given dy = 0 then M, = N, = 1 = then the differential equation is exact so
x
0 -1 0 1
there exists a potential function ¢ such that (a) 6—¢ . and (b) a—(b _ From (a) ¢(x,y) =
€T Y
9¢ dh(y) dh(y) _wy+1 _ dh(y) _
zy—Inlz|+h(y) = — =2+ so from (b), x + = == =y = h(y)=Inly
o] + hla) = 5 o (), 2+ S = 2 o (y) = Inly

where the constant of integration has been set to zero since we need just one potential function. ¢(x,y) =
zy+n|y/z| = zy +Injz/y| = c.

15. Given (2zy + cosy)dx + (22 — zsiny — 2y)dy = 0 then M,, = N, = 2z —siny so the differential equation
0
is exact so there is a potential function ¢ such that (a) 9 _ 2xy + cosy and (b) 9% _ 2?2 — xrsiny — 2y.

Ox Ay
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0 dh dh
From (a) ¢(z,y) = 2%y + zcosy + h(y) = £ = 2% — zsiny + d(yy) so from (b) % — zsiny + d(yy) =
dh
2?2 —xsiny — 2y = — = —2y = h(y) = —y? where the constant of integration has been set to zero since

dy
we only need one potential function. ¢(x,y) = 2%y + zcosy — y? = 2%y + wcosy — y? = c.

d
16. Given 2x2d—z +4zy = 3sinz = (4doy — 3sinz)dz + 222°dy = 0 then M, = N, = 4z so the differential
¢

0
equation is exact so there exists a potential function ¢ such that (a) et 4dxy — 3sinz and (b) i 222,
€ Y
0 dh dh dh
From (b) ¢(z,y) = 22%y + h(z) = a—¢ =4zy+ d(x) so from (a) 4zy + # =4y —3sine = # =
x x x x

—3sinz = h(x) = 3cosx where the constant of integration has been set to zero since we only need one
potential function. ¢(z,y) = 22%y + 3cosz = 22%y + 3cosx = c. Now since y(27) = 0,c = 3; thus,
3—3cosw

222

22%y + 3cosx = 3 or y(x) =

17. Given (3z2Inz + 2% — y)dz — xdy = 0 then M, = N, = —1 so the differential equation is exact so

0 0
there exists a potential function ¢ such that (a) a—j = 32%Inz + 22 — y and (b) 87;(5 = —z. From (b)
0¢ dh(zx) dh(zx) dh(x)
= — _— = — _— f — _— = 21 2 _ _— =
o(z,y) xy + h(z) = o Y+ 5y o from (a) —y + . xflne + 22 —y = .
3z2Inz + 22 = h(z) = 2 Inx where the constant of integration has been set to zero since we only need
one potential function. ¢(z,y) = —2xy + 23 Inx = —zy + 2®Inz = ¢. Now since y(1) = 5,¢ = —5; thus,
3 lnz+5
Inx —axy=—-5ory(r) = —".
x

18. Given (ye™ + cosz)dx + ze™dy = 0 then M, = N, = xzye™ + €™ so the differential equation is

0
exact so there exists a potential function ¢ such that (a) e ye™ + cosz and (b) 8—¢ = ze®. From (b)
x
e} dh dh
o(z,y) = e"4h(z) = a—¢ = ye””y—&—# so from (a) ye*¥+cos v = # = cosx = h(z) = sinx where
x x x

the constant of integration is set to zero since we only need one potential function. ¢(z,y) = €*¥ +sinz =
In (2 — si
e +sinx = ¢. Now since y(w/2) =0, ¢ = 2; thus, e*¥ +sinax = 2 or y(z) = w
x
19. If ¢(z,y) is a potential function for Mdx + Ndy = 0 = d(¢(x,y)) = 0 so d(¢(z,y) + ¢) = d(é(z,y)) +
d(c) =0+0=0= ¢(x,y) + c is also a potential function.

20. M = cos (zy)[tan (zy) + 2y] and N = 2% cos (zy) = M, = 2x cos (zy) — z?ysin (zy) = N, = M, =
N, = Mdz = Ndy = 0 is exact so I(x,y) = cos (zy) is an integrating factor for [tan (zy)+zy|dr+2%dy = 0.

21. M = e /Y(2?y™! — 22) and N = —e */Va3y=2 = M, = e "/¥(23y ™3 — 32%y~2) = N, = Mdzr +
Ndy = 0 is exact so I(z,y) = y~2e~*/¥ is an integrating factor for y[z? — 2zy|dx — z3dy = 0.

22. M =secz[2x — (2 + y?) tanz] and N = 2ysecx = M, = —2ysecz tanz and N, = 2ysecx tanz =
M, # N, => Mdx + Ndy = 0 is not exact so I(x) = secz is not an integrating factor for [2z — (z* +
y?) tan z]dx + 2ydy = 0.

M, — N,
23. Given (y — 2?)dx + 2xdy = 0 then M =y — 2 and N = 2z. Thus M, =1 and N, = 2 so yT =
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1 1
~9z = f(x) is a function of z alone so I(x) = e/ /(@)dr — 7 is an integrating factor for the given equation.

Multiplying the given equation by I(z) results in the exact equation (z~/2y—x3/2)dx+22'/2dy = 0. We find
2I5/2

2 5/2
that ¢(z,y) = 22/%y — ¥ " and hence the general solution of our differential equation is 2z/2y—
¢+ 2x5/2

o y(r) = 5

=C

24. Given (3zy — 2y Ydz + 2(x + y~?)dy = 0 then M = 3zy — 2y ! and N = x(x + y~2). Thus
M, — N, 1 . .
M, =3z+2y~2and N, = 2z+y~ 2 s0 -’!T = — = f(x) is a function of z alone so I(x) = e/ f(@)dz —
x
is an integrating factor for the given equation. Multiplying the given equation by I(x) results in the exact
equation (3z2%y — 2zy~Y)dx + 22 (x +y~2)dy = 0. We find that ¢(z,y) = 23y — 2%y~ ! and hence the general

solution of our differential equation is 23y — 2%y~ ! = c.

25. Given z?ydr + y(23 4+ e *¥siny)dy = 0 then M = z?y and N = y(2® + e *¥siny). Thus M, = z?
M, — N,
and N, = 32%y so % =y ! —3 = g(y) is a function of y alone so I(y) = el 9Wdy — e3Y /y is an
integrating factor for the given equation. Multiplying the equation by I(y) results in the exact equation
3y
22e¥dx + 3 (23 + e ¥ siny)dy = 0. We find that ¢(z,y) = z
x3e3Y

— cosy and hence the general solution

of our differential equation is —cosy = c.
26. Given (zy — 1)dz + 2°dy = 0 then M = zy — 1 and N = z2. Thus M, = z and N, = 2z so
M,— N,

~ =
given equation. Multiplying the given equation by I(x) results in the exact equation (y — 2z~ 1)dx + zdy = 0.
We find that ¢(z,y) = xy—In|z| and hence, the general solution of our differential equation is xy —In |z| = c.

-1

—z~! = f(x) is a function of z alone so I(x) = e/ /(*)dz — z—1

is an integrating factor for the

d 2 1
27. Given d—z—i— 1 j:iz = e = (2zy+ 223y — 1)dz + (1 +22)%dy = 0 then M = 22y + 223y — 1 and
2)2 3 2 My — N, 2z : ;
N = (1+2%)%. Thus M, =2z + 22° and N, = 4z(1 + z*) so ~ =13 5 = f(x) is a function of
x

x alone so I(x) = e f(@)de —

5 is an integrating factor for the given equation. Multiplying the given
x

equation by I(x) yields the exact equation <2zy - ) dz + (1 + 2?)dy = 0. We find that ¢(x,y) =

1+ 22
(1+ 22)y — tan~! = and hence the general solution of our differential equation is (1 + 22?)y —tan~'z = ¢ or
() tan™'z + ¢

)= ——7F—

Y 1+ 2?2

28. Given zy[2In (zy) + 1]dz + 2*dy = 0 then M = zy[2In (zy) + 1] and N +z%. Thus M, = 3z + 2z In (zy)
My — N,
dN, =2 — T =yt
an T S0 i Yy
for the given equation. Multiplying the given equation by I(y) results in the exact equation z[21ln (xy) +
1)dz + 2%y~ 'dy = 0. We find that ¢(z,y) = 22 Iny+ 22 In z and hence the general solution of our differential

1
= ¢(y) is a function of y only so I(y) = el 9W)dy — Z ig an integrating factor

equation is 22 Iny + 22 Inz = ¢ or y(z) = ze®/*".

29. Given ydr — (2 + y*)dy = 0 then M = y and N = —(2z + y*). Thus M, = 1 and N, = —2 so
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M, — N,

—Y % = 3y~ = g(y) is a function of y alone so I(y) = e~ Jowidy — 1/y? is an integrating factor
for the given differential equation. Multiplying the given equation by I(y) results in the exact equation
y~2dx — (2xy=3 + y)dy = 0. We find that ¢(z,y) = zy~2 — y?/2 and hence, the general solution of our
differential equation is xy~=2 — 32/2 = ¢; = 22 — y* = .

30. Given (y ' —a Vdo+ (zy 2 =2y Vdy = 0 = 2"y*(y ' — 2 )do + 2"y*(2y=2 — 2y V)dy = 0 =
(aTy* ="ty )do+ (2" P ys 72 =227y " V)dy = 0. Then M = 2"y* 1 —2"1y® and N = o™ Flys=2 237y~ !
so M, = 2" (s — 1)y*2 — 2" tsy*~! and N, = (r + 1)2"y*"2 — 2ra"~'y*~1. The equation is exact if and
—1 1 2
only if M, = N, = Tyt — S = (r + D2yt 2 = 2ram T = 5 - A r%; _
Y ry Y ry
s—r—2 s—2r . . . .
3 = . From the last equation we require that s —r —2 = 0 and s —2r = 0. Solving this system

Y
yields r = 2 and s = 4.

31. Given 2y(y + 22%)dx + x(4y + 32%)dy = 0 = 2"y*2y(y + 222)dx + 2"y*z(4y + 32%)dy = 0. Then
M = 2z"yst2 4+ 42" T2yst and N = 4"yt 4 3273y so M, = 22" (s + 2)y* T + 42”2 (s + 1)y* and
N, =4(r + 1)az"y*™ + 3(r + 3)2"2y*. The equation is exact if and only if My, = N, = 22" (s + 2) s+l 4
4072 (s + 1)y = 4(r + 1)az"ys + 3( +3)2" T2yt = 2(s+2)y +42%(s+1) = 4(r +1)y+3(r +3)z%. From
this last equation we require that 2(s + 2) = 4( 1) and 4(s + 1) = 3(r + 3). Solving this system yields
r=1and s=2.

32. Given y(bzy? + 4)dz + x(zy? — 1)dy = 0 = 2"y*y(5xy? + 4)dr + 2"y*z(2xy? — 1)dy = 0. Then
M = xry5+1(5:17y2 +4) and N = 2" yS(zy® — 1) so M, = 5(s + 3)a" T y**2 + 4(s + 1)z"y* and N, =
(r+2)z"T1y*=2 — (r + 1)2"y*. The equation is exact if and only if M, = N = 5(s+3)x ”1 2+ 4(s +
1)a"y® (r + 2)2" T lyst2 — (r + 1)2"y® = 5(s + 3)zy? +4(s + 1) = (r + 2)zy® — (r + 1). From the last
equation we require that 5(s+3)=r+2and 4(s+ 1) = —(r + 1). Solving this system yields » = 3 and
5= —2.

M, — N,
33. Suppose that yT = ¢(y) is a function of y only. Then dividing the equation (1.9.21) by M,

it follows that I is an integrating factor for M (z,y)dx + N(z,y)dy = 0 if and only if it is a solution of

N oI oI
Mor oy = Ig(y) (30.1). We must show that this differential equation has a solution I = I(y). However,

dI
if I = I(y), then (30.1) reduces to i —TIg(y), which is a separable equation with solution I(y) = e~/ 9()dt,
Y

d
34. (a). Note &y py = ¢ can be written in the differential form as (py — q)dz + dy = 0 (34.1). This

dx
M, — N.
has M = py — q and N = 1 so that —4——" = p(x). Consequently, an integrating factor for (34.1) is

N
I(z) = el p(t)dt,

(b). Multiplying (34.1) by I(z) = e/ Pt yields the exact equation e/ P (py — q)dax + /" Pt gy — 0.

Hence, there exists a potential function ¢ such that (i) g—(b = e Pt (py — ) and (ii) ? e/ Pt From
T Y
(i), plx)ye! PO + dl;(xx) =/ PO (py — ) = d’ﬁ) = —q(@)e) PO = h(z) = — [q(x)el PO de,

where the constant of integration has been set to zero Since we just need one potential funct;on. Consequently,
¢(x,y) = yel PO — [g(z)el POtdy — y(a V(" Iq(t)dt + c), where I(z) = el p(t)dt,
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Solutions to Section 1.10

True-False Review:
(a): TRUE. This is well-illustrated by the calculations shown in Example 1.10.1.

(b): TRUE. The equation
y1 = yo + f(x0,%0)(x1 — 20)

is the tangent line to the curve % = f(z,y) at the point (zg,yp). Once the point (x1,y1) is determined, the

procedure can be iterated over and over at the new points obtained to carry out Euler’s method.

(¢): FALSE. It is possible, depending on the circumstances, for the errors associated with Euler’s method
to decrease from one step to the next.

(d): TRUE. This is illustrated in Figure 1.10.3.
Problems:

1. Applying Euler’s method with ¢/ = 4y—1,20 = 0,y9 = 1, and h = 0.05 we have y, 11 = ¥, +0.05(4dy, —1).
This generates the sequence of approximants given in the table below.

n Ln Yn

1 ]0.05 | 1.15
2 1010 | 1.33
3 | 0.15 | 1.546
4 10.20 | 1.805
5 | 0.25 | 2.116
6 | 0.30 | 2.489
7 | 0.35 | 2.937
8 | 040 | 3.475
9 | 045 | 4.120
10 | 0.50 | 4.894

Consequently the Euler approximation to y(0.5) is y10 = 4.894. (Actual value: y(.05) = 5.792 rounded
to 3 decimal places).

2. Applying Euler’s method with ' = —ﬂ, zo = 0,y0 = 1, and h = 0.1 we have y,, 41 = y, —0.2 Tndn .
1422 1422

This generates the sequence of approximants given in the table below.

n In Yn

1 ]0.1 1

2 | 0.2 | 0.980

3103|0942

4 104 | 0.891

5 | 0.5 0.829

6 | 0.6 0.763

7 | 0.7 | 0.696

8 | 0.8 0.610

9 | 0.9 | 0.569

10 | 1.0 | 0.512
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Consequently the Euler approximation to y(1) is y190 = 0.512. (Actual value: y(1) = 0.5).

3. Applying Euler’s method with ¢/ = 2 —y% 20 = 0,90 = 2, and h = 0.05 we have y,, 11 = y, +0.05(x, —32).
This generates the sequence of approximants given in the table below.

n Ln Yn

1 | 0.05| 1.80
2 1 0.10 | 1.641
3 | 0.15 | 1.511
4 | 0.20 | 1.404
5 1 0.25 | 1.316
6 | 0.30 | 1.242
7 | 0.35 | 1.180
8 | 0.40 | 1.127
9 | 0.45 | 1.084
10 | 0.50 | 1.048

Consequently the Euler approximation to y(0.5) is y10 = 1.048. (Actual value: y(.05) = 1.0477 rounded
to four decimal places).

4. Applying Euler’s method with y' = —22%y, 79 = 0,90 = 1, and h = 0.2 we have y,, 11 = y,, —0.222y,,. This
generates the sequence of approximants given in the table below.

Ln Yn
0.2 1
0.4 | 0.992
0.6 | 0.960
0.8 | 0.891
1.0 | 0.777

O x| W | —| 3

Consequently the Euler approximation to y(1) is y5 = 0.777. (Actual value: y(1) = 0.717 rounded to 3
decimal places).

5. Applying Euler’s method with y’ = 22y, 29 = 0,99 = 1, and h = 0.1 we have 4,11 = ¥, + 0.1z,,y2. This
generates the sequence of approximants given in the table below.

Ln Yn

0.1 0.5

0.2 | 0.505
0.3 | 0.515
0.4 | 0.531
0.5 | 0.554
0.6 | 0.584
0.7 | 0.625
0.8 | 0.680
0.9 | 0.754
1.0 | 0.858

Sl oot k||| —| 3

Consequently the Euler approximation to y(1) is y10 = 0.856. (Actual value: y(1) = 1).
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6. Applying the modified Euler method with 4 = 4y — 1,29 = 0,50 = 1, and h = 0.05 we have y} | =
Yn + 0.05(4y, — 1)

Ynt1 = Yn +0.025(4y, — 1 4+ 4y}, | — 1). This generates the sequence of approximants given in the table
below.

L Yn
0.05 | 1.165
0.10 | 1.3663
0.15 | 1.6119
0.20 | 1.9115
0.25 | 2.2770
0.30 | 2.7230
0.35 | 3.2670
0.40 | 3.9308
0.45 | 4.7406
0.50 | 5.7285

Slo|wl oo k|w o =3

Consequently the modified Euler approximation to y(0.5) is y10 = 5.7285. (Actual value: y(.05) = 5.7918
rounded to 4 decimal places).

2
7. Applying the modified Euler method with ¢ = —%,xo =0,y0 = 1, and h = 0.1 we have y,, | =
LTnYn
—-0.2

y'!l 1 + x%
TnlYn l‘n+1y;§+1 . . . .

Ynt1 = Yn +0.05 |- 5 — 5 . This generates the sequence of approximants given in the table
142z T+,

below.

L Yn

0.1 | 0.9900
0.2 | 0.9616
0.3 | 09177
0.4 | 0.8625
0.5 | 0.8007
0.6 | 0.7163
0.7 | 0.6721
0.8 | 0.6108
0.9 | 0.5536
1.0 | 0.5012

OO || U x| W N -3

—_
o

Consequently the modified Euler approximation to y(1) is y10 = 0.5012. (Actual value: y(1) = 0.5).

8. Applying the modified Euler method with y' = = — y?,z9 = 0,y = 2, and h = 0.05 we have y},, =
Yn — 0.05(z, — y2)

Ynt1 = Yn + 0.025(z, — y2 + zni1 — (yj41)?). This generates the sequence of approximants given in the
table below.
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n | x, Yn
1 | 0.05 | 1.8203
2 1010 [ 1.6725
3 | 0.15 | 1.5497
4 10.20 | 1.4468
5 10.25 | 1.3600
6 | 0.30 | 1.2866
7 10.35 | 1.2243
8 1040 | 1.1715
9 [ 045 | 1.1269
10 | 0.50 | 1.0895

Consequently the modified Euler approximation to y(0.5) is y10 = 1.0895. (Actual value: y(.05) = 1.0878
rounded to 4 decimal places).

9. Applying the modified Euler method with ¢/ = —x?y,20 = 0,79 = 1, and h = 0.2 we have Yni1 =

Yn — 02%%%
Yn+1l = Yn — 0.1[9:%%, + o:fb 1Y +1]' This generates the sequence of approximants given in the table below.

Ty Un
0.2 | 0.9960
0.4 | 0.9762
0.6 | 0.9266
0.8 | 0.8382
1.0 | 0.7114

Y| W~ 3

Consequently the modified Euler approximation to y(1) is y5 = 0.7114. (Actual value: y(1) = 0.7165
rounded to 4 decimal places).

10. Applying the modified Euler method with y' = 2zy?, 29 = 0,y9 = 1, and h = 0.1 we have y} , =
Yn + 012,97
Yn+1 = Yn+0.05(2,2 + 11 (v} 1)?]. This generates the sequence of approximants given in the table below.

Tn Yn

0.1 | 0.5025
0.2 | 0.5102
0.3 | 0.5235
0.4 | 0.5434
0.5 | 0.5713
0.6 | 0.6095
0.7 | 0.6617
0.8 | 0.7342
0.9 | 0.8379
1.0 | 0.9941

O|oo| | | U x| W o |3

—
o

Consequently the modified Euler approximation to y(1) is y10 = 0.9941. (Actual value: y(1) = 1).

11. Wehave ¢y = 4y—1,20 = 0,yp = 1, and h = 0.05. So, k1 = 0.05(4dy,, —1), ko = 0.05[4(yn+%k1)—1], kg =
005[4(% + %k‘Z) - 1]7 k4 = 005[4(yn + %kg) — 1]7
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Yntl = Yn + %(kl + ko + ks + k4). This generates the sequence of approximants given in the table below

(computations rounded to five decimal places).

Tn

Yn

0.05

1.16605

0.10

1.36886

0.15

1.61658

0.20

1.91914

0.25

2.28868

0.30

2.74005

0.35

3.29135

0.40

3.96471

O| oo~ U x| w3

0.45

4.78714

—
o

0.50

5.79167

Consequently the Runge-Kutta approximation to y(0.5) is y10 = 5.79167. (Actual value: y(.05) = 5.79179

rounded to 5 decimal places).

12. We have y/ = 72@,:0

(20 +005) (W + %) o @nsa(yn + ko)
[1 + (l'n + 005)2] ’ [1 + ($n+1)2]

-0.2

b

0=0,90=1,and h = 0.1. So, k; = —0.2

TnYn
1+ 22’

ko = —0.2

(2n +0.05)(yn + )

[1+ (2, + 0.05)2]

Yntl = Yn + %(kl + ko + ks + k4). This generates the sequence of approximants given in the table below

(computations rounded to seven decimal places).

Tn

Yn

0.1

0.9900990

0.2

0.9615383

0.3

0.9174309

0.4

0.8620686

0.5

0.7999996

0.6

0.7352937

0.7

0.6711406

0.8

0.6097558

OO || U x| W N3

0.9

0.5524860

—
o

1.0

0.4999999

Consequently the Runge-Kutta approximation to y(1) is y10 = 0.4999999. (Actual value: y(.05) = 0.5).

13. We have v/ = 2 — 4%, 190 = 0,90 = 2, and h = 0.05. So, k; = 0.05(x,, — y2), ko = 0.05[z,, + 0.025 — (y,, +
%)2], ks = 0.05[x, + 0.025 — (y,, + %2)2], ks = 0.05[2p11 — (yn + /€3)2]]7
Ynt1 = Yn + é(kl + ko + ks -+ ky4). This generates the sequence of approximants given in the table below

(computations rounded to six decimal places).
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Ln Yn
0.05 | 1.1.81936
0.10 | 1.671135
0.15 | 1.548079
0.20 | 1.445025
0.25 | 1.358189
0.30 | 1.284738
0.35 | 1.222501
0.40 | 1.169789
0.45 | 1.125263
0.50 | 1.087845

S|l oo| | o ot k| wo| po| | 3

Consequently the Runge-Kutta approximation to y(0.5) is y10 = 1.087845. (Actual value: y(0.5) = 1.087845
rounded to 6 decimal places).

14. We have y' = —2%y, 79 = 0,40 = 1, and h = 0.2. So, k; = —0.222y,,, ko = —O.Q(xn—s—O.I)Q(yn—i-%), ks =
—0.2(zy, + 0.1)%(yn + 22), ks = —0.2(25051) (yn + k3),

Ynt+1 = Yn + %(kl + ko + ks + k4). This generates the sequence of approximants given in the table below
(computations rounded to six decimal places).

Ln Yn

0.2 | 0.997337
0.4 | 0.978892
0.6 | 0.930530
0.8 | 0.843102
1.0 | 0.716530

QY | W o —| 3

Consequently the Runge-Kutta approximation to y(1) is y10 = 0.716530. (Actual value: y(1) = 0.716531
rounded to 6 decimal places).

15. We have i/ = 229%, 19 = 0,0 = 1, and h = 0.1. So, k1 = 0.2z, — y2, ko = 0.2(z,, +0.05) (y,, + %1)2, ks =
0.2(z5, + 0.05) (Y + £2)2, ks = 022,41 (yn + k3)?]],

Yn+1 = Yn + %(lﬁ + ko + ks + k4). This generates the sequence of approximants given in the table below
(computations rounded to six decimal places).

In Yn

0.1 | 0.502513
0.2 | 0.510204
0.3 | 0.523560
0.4 | 0.543478
0.5 | 0.571429
0.6 | 0.609756
0.7 | 0.662252
0.8 | 0.735295
0.9 | 0.840336
1.0 | 0.999996

S| o oo ~3| o] oy x| wo| no| = 3

Consequently the Runge-Kutta approximation to y(1) is y10 = 0.999996. (Actual value: y(1) = 1).
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1 1
16. We have y’—&—ﬁy =e "/ 10cosz, 29 = 0,y0 = 0, and h = 0.5 Hence, k1 = 0.5 —myn +e"n/0cosxz, |, ke =

L 1
0.5 [ m (yn + k1> + e(=@nF025)/10 oo (7, 4 0. 25)] ks =0.5 [ m (yn + k2> 4 e(=Ent0:25)/10 o5 (4 4 0. 25)]

1
ks =05 { 10(yn + k3) + e~ %n+1/10 ¢og x,ﬂ_l} s YUnt1l = Yn + %(kl + 2ko + 2ks + k4). This generates the se-

quence of approximants plotted in the accompanying figure. We see that the solution appears to be oscillating
with a diminishing amplitude. Indeed, the exact solution to the initial value problem is y(z) = e~*/' sin z.
The corresponding solution curve is also given in the figure.

y(x)
A
[o]
0.754 %o
0.5—o o .
o O
0.254 " o
o (o) o © o
0o o ©°
T ol 9 To ol %
10 7 159 P20 S5
[o] o [o] °oo
-0.25_ o [o]
%
(o]
-0.54 o
oO
Figure 0.0.56: Figure for Problem 16
Solutions to Section 1.11
Problems:
d? d d d d?
1. ¢y Q—y = 6e3*. Let u = el so that o —y. Substituting these results into the first equation
dx2d dx dx de  dx?
yields d—u —2u = 6e3*. An appropriate integrating factor for this equation is I(z) = e"2[dr — 20—
x
d . d
d—(e*%u) = 6e” = e %y = 6e” + ¢ = u = 6% 4 c1e?* = d—y = 63 + c1e?® = y(z) =
x x
2e3% + ¢1e2® + ¢y, where we have redefined the constant ¢; in the last step.
d? 2d d d d?
2. ¢y _ 2 + 422, Let u = el so that e —y. Substituting these results into the first equation
dz?2 x 62l1; J %x dv  dx?
yields d—u = Zu+ 42 = d—u — Zu = 4. An appropriate integrating factor for this equation is I(z) =
r x T
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d
e v =% = dz %) =4= 2 u=4[dr = 7% =4z + ¢, = u=42® + c12? :>d—y*
x

423 + c12? = y(z) = c12® + 2 + co.

d? 1 d d d d?
T;g = m [dz 1} Let u = % so that ﬁ = d—x‘g Substituting these results into
du 1 du 1 1
¢ first equation yields 5 = T e V= & " G-ne-2"" G-De-2° "
1
S 1DV —9) -1 d -1
appropriate integrating factor for this equation is I(z) = e (z-1D@@-2) _Z% — — m u | =
T —2 dex \x —2
1 x—1 9 1 dy 1
(3672)2 72u:f(x—2) dx:>u__71+01:>%:_71+01:>y()=—1n|.1‘—1|—|—
1T + Ca2.

d? d d d d d d?
&y <y> Y Letu= T oo thag W — 0 _ Ty

. = —. Le = = —=. Substituting these results into the first
dx? dx dx YT e dx udy dgz DUPSHTUHLE e
2 d 2
equation yields u— + 2w =u=u=0or d—u — —u = 1. An appropriate integrating factor for the last
y oy y oy
2
S —dy d 3 d
equationis I(y) = e ¥ =y* = —-(y*u) = y* = y'u = [y*dy = y*u = %Jrcl = d—y % 0—2 —
Y x
In|y3 + co| = 7 + c3 = y(x) = Ycge® + cs.
d?y dy _dy du du d?y
— = | — | tany. Let u = == so that — = u— = —=. Substituting these results into the first
da? (dx v = dx udy g2 DTSRG e
d
equation yields ud—u =wu?tany. If u = 0 then d—u =0=y equals a constant and this is a solution to the
y i
du dy
equation. Now suppose that u # 0. Then = utany =—> f — = [tanydy = u = ¢y secy = —— y
Y x
c1secy = y(x) =sin" ! (c1x + cp).
& d dy\? d du  d?
6. d—z + tanm% = (di) . Let u = ﬁ so that i EZ Substituting these results into the first
d 1 d d
equation yields M tanzu = u? which is a Bernoulli equation. Letting z = u~! gives — = a_F
d J u?  dx dx
Substituting these results into the last equation yields d—z —tanxzz = —1. Then an integrating factor for
x
this equation is I(x) = e~ Jtn2ds — coggp — d—(zcosa:) = —cosz = zcosx = — [cosxdr = z =
x
—sinz + ¢ cosw dy cosx .
T sy = =" y(x) =cg —In|e; —sinz|.
CcoS T c1 —sinx dr ¢ —sinx
d? de\? . d d du 2
. ﬁf = (dgtc) + Qd—j. Let u = d—f so that ditt = ﬁf Substituting these results into the first equation
d d
yields N2 + 2u = ditL — 2u = u? which is a Bernoulli equation. If v = 0 then z is a constant which
dz 1d
satisfies the equation. Now suppose that u # 0. Let z = v~ so that i —Zd—qz Substituting these
u
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dz
results into the last equation yields yr +2z2=-1. An integrating factor for this equation is I(x) = %! =

262t 2t

d 1
ﬁ(eztz):—e2t:>z:ce_2t—§:u:m —f dt:>1'(t)202—1n|61_62t|.

2 2
Q—2@:6x4. Ltu-gsothtd—u—dy

s 7 7 ¥ e Substituting these results into the first equation
T i i T T

d 2 P il
yields d—u — Zu = 62*. An appropriate integrating factor for this equation is I(x) = e ! T =372 =
T T

dy
—(27%u) =622 = r2u =6 [22dr = u =22 + c2? = -~ =225 + c2? = y(z) = 225 + 123 + co.

dx dx

du  d*z
dt — dt?”

APz dx dx
9. tdt2:2<t+dt> Letuzasothat
2

du
yields T TU= 2. An integrating factor for this equation is I(x) = ¢~

dx
—2t + ct? = E =2+ ct? = .Ii(t) = Clt3 — ¢ + Co.

Substituting these results into the first equation

d
2 = a(t”u) =22 = u=

d? d d d d d?
10. d—mz -« (di) — ﬁ = 0. Let u = ﬁ so that ﬁ = Txg Substituting these results into the

U
first equation yields — — Bu = au? which is a Bernoulli equation. If u = 0 then y is a constant and

dx

z du

satisfies the equation. Now suppose that u # 0. Let z = u~' so that T —u_Qd—. Substituting
T x

dz
these results into the last equation yields T + Bz = —a. The an integrating factor for this equation is
x
Bz d Bz
! e e
I(z) = P dr = efr — Py = —a [Py = —— +ce PT = u= 57 & 67
3 ¢ — aefr dr ¢ — aef*

Bef

1
dr = y(x) = —— In|er + eaeP?].
gz de = y(z) = ——Infer + cpe”™]

y*fcﬁ

d’y  2dy dy du  d%y
11. — ———=1 . Let u=—-—"> thtf —_—.
dz? xdx e dx 50 tha der  dx?

d
yields d—u — —u = 18z* which has I(z) = 272 as an integrating factor so d—(a:’Qu) = 1822 = u =
T x T

d
6x° + cx? = 4
dx

Substituting these results into the first equation

=625 + ca? = y(z) = 25 + 123 + co.

d? 2¢ d d d
12. dT:Z = 1 +I$2 di Let u = % so that d—u dfracd®ydx®. If w = 0 then y is a constant and
satisfies the equation. Now suppose that u # 0. Substituting these results into the first equation yields

du 2 1 dy c1
dx 1—|—;v2u nful n(l+a%) +c b 1+ 22 de 14 a2

= y(z) =citan 2 + co.

&? d s (dy\® d d du
13. dTUZ + - (di) = ye 3 (di) . Let u = % so that d—z = UCTZ e z Substituting these results into

u
the first equation yields U + ~u? = ye Yul. If u = 0 then y is a constant and satisfies the equation. Now
Ty
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du u
suppose that u # 0. Substituting these results into the first equation yields e + — = ye Yu? which is a
Ty

Bernoulli equation. Let v = u~! so that d—v = —u’2d—u. Substituting these results into the last equation
Y Y
d d
yields CTU_E = —ye Y. Then I(y) = y~! is an integrating factor for the equation thus d—(y_lv) =—el=
Yy oy Y
(et +c)= ¢ :>dy ¢ = (ye ¥ + cy)dy = dov = e Y(y + 1) + c19/?
v=yle c Uu=— - = e c =dx e 1y — .
y e A T y y)dy Y 1y
d? d d d d?
14. Y tanaz® =1 Let u = ¥ 50 that w2t = Y. Substituting these results into the first equation
dx? dx dx dy  dxz?

du
yields T utanx = 1. An appropriate integrating factor for this equation is I(x) = e~ Jranwde — ¢og 5 —
x

d
d—(ucosx) = cosz = ucosz = sinx + ¢ = u(x) = tanz + csecx = d—y = tanz + csecx = y(z) =
x x

Insecx + ¢1 In (secx + tan ) + ca.

4 dy\® d d du
15. yT;; =2 (;;) +92. Let u = % so that ﬁ = ud—z = d—ag Substituting these results into the first
d 2 d 1d
equation yields u—u — Zu? =y, a Bernoulli equation. Let z = u? so that u—u = f—z. Substituting these
dy y dy  2dy
d 4
results into the last equation yields d—z — —z = 2y which has I(y) = y~* as an integrating factor. Therefore,
Yy oy
d d
d—(y"lz) =y ==yt -y =1C =yt - = u=+Vayt -y = d—y =+ayt —y? =
Y x

1
cos™! < ) = 42 + ¢o. Using the facts that f(0) = 1 and 3/(0) = 0 we find that ¢; = 1 and ¢ = 0; thus
Yyva

y(z) = secz.

d? d d d d?
16. Y = w?y where w > 0. Let u = Y so that 28 = 2% = 2 Substituting these results into the first
dx? dx dz dy  da?
d
equation yields ud—u = w?y = u? = w?y? + cy. Using the given that y(0) = a and y’(0) = 0 we find that
Y

d 1
cs = a’w?. Then A Y2 — a2 = —cosh™ ! (y/a) = £z + ¢ = y(z) = acoshw(c+z)] = ¢/ =
w

+aw sinh [w(e &+ )] and since y'(0) = 0, ¢ = 0; hence, y(x) = a cosh (wx).

17. Let u = % so that uj—z = % Substituting these results into the differential equation yields
uZ—Z = ém . Separating the variables and integrating we obtain v/1 + u2 = éerc. Imposing the initial
conditions y(0) = a, d—y(O) = 0 gives ¢ = 0. Hence, V14 u2 = %y so that 1 4 u? = a—12y2 or equivalently,

dx
dy 1 1
. T I _ . . . o .
u = £4/y?/a?> — 1. Substituting u = e and separating the variables gives 7y2 — = :l:—|a|da: which

can be integrated to obtain cosh™* (y/a) = +x/a + ¢; so that y = acosh (£x/a + ¢;). Imposing the initial
conditions y(0) = a gives ¢; = 0 so that y(x) = acosh (z/a).

d? d d d?
18. &Y +p(x)=— = q(z). Let u= Y g0 that &% = 2 Y Substituting these results into the first equation
da? dx de  dz?
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d .
gives us the equivalent system: — +p(z)u = ¢(x) which has a solution u = e~/ P(®)dz [f e~ P@)dr g (ydy + cl}

dz
S0 Z—y = ¢~ Jp(a)dz [f e~ Jr@de () dg 4 01] Thus y = [ {e‘fp(””)d”” [f e~ JP@)de g (1) da + cldx}} + ¢ is
T

a solution to the original equation.

duq dy dus d?y dus  d>y ) d3y 2y .
19. (a).u1Zy:>u2:Ezazugzﬂzﬁ:ﬂzﬁ,thus$=F x,@ sice
d
the latter equation is equivalent to % = F(x,u3).
x
d? d d
(b). — (24 _q). Replace this equation by the equivalent first order system: o Uo, 2 us,
dm3 x \ dz? dz dx

dus 1 d d du, K
andl —(ug —1) :>f s :f—x:>U3 Kx+1:>—2—Kx+1:>u2 —2? 44y =
dr = x dx 2
%—Eac +r+c=—u ——$3+1m2+cx+cz () =u —cm3+1x2+cx+c
dr 9 2 1= % 5 2 3 Yr) =u =< ) 2 3
d*6 do
19. leenﬁ—l—zsurﬂ—o 0(0) = 6y, and E( )=0.
d*0 do du  d*0  dudf du
(a) e + 9 0. Le tdu dt so that I iz pr i fil z Substituting these results into
the last equation yields u—g + 0 =0 = u? = 7292 + 2, but E(O) = 0 and 0(0) = 6y so ¢} =
0
293 = u? = g(92—92) = u == 0202 = sin”' |~ ) =+ —1?—1—027 but 6(0) = 6y so
L L b0 L

Cy = g — gin~ () Ty / t = 60 = 6 sin ( v/ t) = 0 = 0 cos (, / it) Yes, the predicted

motion is reasonable.

du d?0  dudf  d
4 - Paieg Substituting these results into the last

db -
—_ — == = h a2~ db
(b) + sinf = 0. Let u = dt so that —- dt dt2 de dt =~ d9

du de 2

equation ylelds ud@ 2 sinf =0 = u? = fg cosf+c. Since 0(0) = 0y and E(O) =0, then c = ffg cos b

2g Zg do 2g 2g do 2g

2== - = — =+ 6 — —=cos@ — =4/ — 172,
and so u 7 cos 7 cos by = o L 08 7 cos g = 7 7 [cos O — cos 6]
(¢). From part (b) L a0 £dt. When the pendulum goes from § = 6y to § = 0
. — = . ulu = =

P "V 2g [cos 6 — cos 0] 1/2 P & 0

(which corresponds to one quarter of a period) — is negative; hence, choose the negative sign. Thus,

00
Va2 /90 cosﬁ—cos@o 2 = v / cos@—cos@o]l/z
[T [% de
d). T=,/—
(d) 29/0 [cos 6 — cos 0] 1/2 —

T L/G0 df _1L/‘90 df
29 Jo 0 0 . bo . 0
11

1/2 2\ 29
[2sin2 (920> — 2sin? (2>}
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Let £ = sin (020> so that

%o df
\/>/ k2 - <0)]1/2. (0.0.7)

2k d
Now let sinf/2 = ksinu. When 6§ = 0,u = 0 and when 6 = 6y, u = 7/2; moreover, df = cos(e(;g)u
cos

2k+/1 — sin® (u)du 2k — (k 24 24/ k2 — sin? (0/2)du
o = o= 2V sin (w)Pdu -y — \/ . Making this
\/1 —sin?(6/2) \/1 — Ek2sin? (u) \/1 — Ek2sin? (

change of variables in equation (0.0.7) yields

V-9 Jo /1 —k2sin?(u)

Solutions to Section 1.12

where &k =sinfy/2.

1. The acceleration of gravity is a = 9.8 meters/sec?. Integrating, we find that the vertical component of
the velocity of the rocket is v(t) = 4.9t + ¢;. We are given that v(0) = —10, so that ¢; = —10. Thus,
v(t) = 4.9t — 10. Integrating again, we find the position s(t) = 2.495t> — 10t + co. Setting s = 0 at two
meters above the ground, we have s(0) = 0 so that s(t) = 2.495t% — 10¢.

(a). The highest point above the ground is obtained when v(t) = 0. That is, t = {9 ~ 2.04 seconds. Thus,
the highest point is approximately s(2.04) = 2.495-(2.04)% — 10(2.04) ~ —10.02, which is 12.02 meters above
the ground.

(b). The rocket hits the ground when s(t) = 2. That is 2.495t> — 10t — 2 = 0. Solving for ¢ with the
quadratic formula, we find that ¢ = —0.19 or ¢ = 4.27. Since we must report a positive answer, we conclude
that the rocket hits the ground 4.27 seconds after launch.

2. The acceleration of gravity is a = 32 ft/sec?. Integrating, we find that the vertical component of the

velocity of the ball is v(t) = 16t + ¢;. Since the ball is initially hit horizontally, we have v(0) = 0, so that
c1 = 0. Hence, v(t) = 16t. Integrating again, we find the position s(t) = 8¢% + co. Setting s = 0 at two feet
above the ground, we have s(0) = 0 so that c; = 0. Thus, s(¢) = 8¢2. The ball hits the ground when s(t) = 2,
so that t? = %. Therefore, t = % Since 80 miles per hour equates to over 117 ft/sec. In one-half second, the
horizontal change in position of the ball is therefore more than 17 = 58.5 feet, more than enough to span
the necessary 40 feet for the ball to reach the front wall. Therefore, the ball does reach the front wall before

hitting the ground.

3. We first determine the slope of the given family at the point (x,y). Differentiating

y = ca’® (0.0.8)
with respect to x yields
d
ﬁ = 3cz?. (0.0.9)
From (0.0.8) we have ¢ = 25 which, when substituted into Equation (0.0.9) yields
dy _ 3y
de  z’
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Consequently, the differential equation for the orthogonal trajectories is

dy =
de 3y’
Separating the variables and integrating gives
3 1
52/2 = —5302 +C,
which can be written in the equivalent form
22+ 3y =k.

4. We first determine the slope of the given family at the point (x,y). Differentiating

y = In(cx) (0.0.10)
with respect to z yields
dy _ 1
de

Consequently, the differential equation for the orthogonal trajectories is

dy _
de

which can be integrated directly to obtain

1
Y= —§x2+k.

5. We first determine the slope of the given family at the point (x,y). Differentiating

y? = ca® (0.0.11)
with respect to z yields
Qyj—gyc = 3cx?
so that Q3
i (0.0.12)

From (0.0.11) we have ¢ = z—i which, when substituted into Equation (0.0.12) yields

dy 3y

dz 2z
Consequently, the differential equation for the orthogonal trajectories is

dy = 2z
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Separating the variables and integrating gives

3 9 2

—yt=— C

oY =+ 0,
which can be written in the equivalent form

22% + 3y° = k.

6. We first determine the slope of the given family at the point (x,y). Differentiating

4yt =c (0.0.13)

with respect to x yields
4a3 + 4y3d—y =0
dx

so that 5

dy x

- =——. 0.0.14

i ( )

Consequently, the differential equation for the orthogonal trajectories is

dy _ v
de 3’
Separating the variables and integrating gives
1 5 1,
_ - - C
2Y TR

which can be written in the equivalent form

y? — a? = kay?.

7. (a). We first determine the slope of the given family at the point (z,y). Differentiating
% 4 3y? = 2cy (0.0.15)

with respect to x yields

dy dy
2 — =2c—
e+ by dx cd:r
so that p
Y x
— = . 0.0.16
de  c¢—3y ( )
From (0.0.15) we have ¢ = ﬁ;i;yz which, when substituted into Equation (0.0.16) yields
d 2
. (0.0.17)

dxil’z;ijyz_?)y 22 — 3y2’

as required.
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(b). It follows from Equation(0.0.17) that the differential equation for the orthogonal trajectories is

dy 3y —a®

dx 2y

This differential equation is first-order homogeneous. Substituting y = xV into the preceding differential
equation gives

l’ﬂ + V = E
dx 2V
which simplifies to
v vZ-1
de 2V

Separating the variables and integrating we obtain
In(V2—1)=Inz+C,

or, upon exponentiation,
V2 —1=ka.

Inserting V' = y/x into the preceding equation yields

that is,

8. Slope field.

9. Slope field.

10. Slope field.

11. See accompanying figure.
12. Slope field.

13. (a). If v(t) = 25, then

dv 1
0= 2(25—).
7 0 2( 5—v)
(b). The accompanying figure suggests that
tlirgo v(t) = 25.

14. (a). The equilibrium solutions are any constant values of m that satisfy

am®/* [1 — (E)lﬂ} =0
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Figure 0.0.57: Figure for Problem 11

—Tt——

v(t)

-—

4

AN NN N N O
AN N N .
AN N N N G
D N N
N NN NG NN NN NCNC N
AN N e
AN N N .
AN N N N G
D N N
AN OGN C NN NE NN,
AN N
AN NN NN NN O .
NN NN NN N S C O

>

10

rr-rr-r-r-rrryr T

Figure 0.0.58: Figure for Problem 13

-— /
-— /

=M.

0 and m

Hence, there are two equilibrium solutions, namely, m

(b).This follows since a > 0, and 0 < m(t) < M.
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(c). The given differential equation can be written in the equivalent form
dm 3/4 1
dt_a<m ~ A

d'm _ <3m—1/4_ L )dm

so that

T \4 M4 ) dt

dt?
1 m\ 1/4
_ 2 3/4 3/4 el
=a‘m (m 1/4m> {1 ( ) }

tewn ()] (2)"]

Since 0 < m < M, the expression on the right-hand side of the preceding equation is positive when

3—4(%)1/4 >0,

m\1/4 3 81
M) < Ve or equivalently, m < Q—SGM . Consequently, the solution curves are concave up for

1 1
0<m< ;RM’ and concave down for %M <m< M.

that is, (

81
(d). From the results of (c), there is a change in concavity when m = —— M. Substituting this value of

m into the right-hand side of the given differential equation yields the following value for the slope of the
solutions curves at the point of inflection:

LN s\ ot
“\ 256 256 ~ 256"
(e). Slope field.

15. (a). Separating the variables in Equation (1.12.6) yields

mv  dv
mg — kv2dy
which can be integrated to obtain
_m In(mg — kv?) =y +c¢
2k ’
Multiplying both sides of this equation by —1 and exponentiating gives
mg — kv? = cle_%y.
The initial condition v(0) = 0 requires that ¢; = mg, which, when inserted into the preceding equation yields

2 — 2k,
mg — kv® = mge” mY,

or equivalently,
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v2(y)

A
mg/k—
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Figure 0.0.59: Figure for Problem 15

as required.

(b). See accompanying figure.

16. By inspection the differential equation is separable, but not first-order homogeneous. Further, the
differential equation can be re-written as
@ + 2y = 2?%y?

dx
which reveals that it is also a Bernoulli equation, but is not linear. Finally, a different rearrangement of
terms yields

1
2
r*dr — — = dy =0,
y(y—1)
which is an exact differential equation. Separating the variables in the given differential equation yields
1 1 1
7dy:x2dx:>/7dy: —34c
y(y—1) y(y—1) 3
Using a partial fraction decomposition of the integrand on the left-hand side of the preceding equation we
obtain ) ) ) . ) )
/( _> dy=x3+c=>ln<y_ >:x3+c:>_ =C16w3/3
y—1 'y 3 Y 3 Y
so that
_ 1
y(z) = — PEE
41. Writing the differential equation in the form
d —y
Y _ ze® - ¢
dx 14y
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we see that it is separable, but not homogeneous. It is also neither a linear differential equation nor a
Bernoulli differential equation. Rearranging the differential equation we have

ze®dx —e’(1+y)dy =0

which is exact. Separating the variables in the given differential equation and integrating yields

/ey(l—i—y)dy:/mewdx+c:>yey:e$(x—1)+c.

17. The given differential equation is separable. Separating the variables gives

dy _ gz

dx x

which can be integrated directly to obtain
1 2 1 2
Y = (Inz)* + ¢,

or, equivalently,
y? =2(Inz)* + c1.

18. The given differential equation is first-order linear. We first divide by « to put the differential equation
in standard form:

d 2
% - y= 2z Inx. (0.0.18)

An integrating factor for this equation is I = e (-2/n)de — 5=2 Multiplying Equation (0.0.18) by 2 reduces
it to

d
d—(xfzy) =2z 'z,
x

which can be integrated to obtain
7%y =(Inz)* +¢

so that
y(x) = 2%[(In)? + cl.

19. We first re-write the given differential equation in the differential form
2zy dx + (22 + 2y)dy = 0. (0.0.19)

Then
M, =2z =N,

so that the differential equation is exact. Consequently, there exists a potential function ¢ satisfying

o0 99 _
e 2xy, oy z° + 2y.

Integrating these two equations in the usual manner yields

o(z,y) =2y +y°.
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Therefore Equation (0.0.19) can be written in the equivalent form
dz*y +y*) =0
with general solution
x2y + y2 =c.
20. We first rewrite the given differential equation as

dy _ y* +3zy+a°
de z2 ’

101

which is first order homogeneous. Substituting y = 2V into the preceding equation yields

d
v v v
dx

so that
dV

r—=V24+2V +1=(V+1)%

dx

or, in separable form,
1 av 1

Viiidr
This equation can be integrated to obtain

—~(V+1)t=ha+c

so that 1
V4+l= ———.
ci—Inx
Inserting V' = y/x into the preceding equation yields
1
Y.
x ci—Inx
so that
(2) = —— -
y ci—Inx

21. We first rewrite the given differential equation in the equivalent form

d
il +y-tanz = —y’sin,
dz

which is a Bernoulli equation. Dividing this equation by y? yields

92 dy

y -2 +y 'tanz = —sinx.
dx
. 1 - . du
Now make the change of variables u = y~" in which case pri —y
x
Equation (0.0.20) gives the linear differential equation
du .
—— +u-tanx = —sinx
dx
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or, in standard form,

d
ﬁ —u-tanx = sinx. (0.0.21)

An integrating factor for this differential equation is I = e~ Jtanwdr — coq g, Multiplying Equation (0.0.21)
by cosz reduces it to

%(u-cosx) = sinx cosx

which can be integrated directly to obtain

1
U-CoOST = —5 COSQI+C1,
so that
—0052x+02
U= —"”".
cosT

1

Inserting © =y~ into the preceding equation and rearranging yields

2cosx —2cosx

y(z) = —cos2z + ¢y T otz tc

22. The given differential equation is linear with integrating factor
1o 2 dr _ n(4e®) _ 1 4 2

Multiplying the given differential equation by 1 + e?* yields

d e* 4+ 1 2%
— [(14e2®)y| = =1
da:[( te )y] e2r — 1] +62$—1

which can be integrated directly to obtain
(1+e**)y =—x+In|e* — 1|+,

so that

—z+1In|e*® — 1| +¢
1+ e2 '

y(z) =

23. We first rewrite the given differential equation in the equivalent form
dy _y+a?—y?
dr T ’
which we recognize as being first order homogeneous. Inserting y = zV into the preceding equation yields
dVv T
gcd——l-V:V—i-u\/l—Vz7
i x

that is,
1 av. 1

_— =4,
V1—-V2dx T
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Integrating we obtain
sin™ 'V =+1In|z| + ¢,

so that
V =sin(c £ In|z|).
Inserting V' = y/x into the preceding equation yields

y(z) = zsin(c + In|z|).

24. We first rewrite the given differential equation in the equivalent form
(siny + ycosz + 1)dx — (1 — xzcosy — sinz)dy = 0.

Then
M, = cosy + cosx = N,

so that the differential equation is exact. Consequently, there is a potential function satisfying

% =siny +ycosx + 1, g—j =—(1—xcosy —sinz).

Integrating these two equations in the usual manner yields
d(x,y) =x —y+axsiny + ysinz,
so that the differential equation can be written as
dx —y+xsiny +ysinz) =0,

and therefore has general solution
r—y+xsiny+ysinzr =c.

25. Writing the given differential equation as

dy 1 25 .,
a@y - 20 1
da:+xy g ¥

we see that it is a Bernoulli equation with n = —1. We therefore divide the equation by y~! to obtain

dy 1 5 25,
—~Z + —y*=—z°Inz.
ydm+xy 233 ne

We now make the change of variables u = y2, in which case, ‘;—Z = Qy%. Inserting these results into the

preceding differential equation yields
ldu 1 9
—— 4+ —u=—z"Inuz,
2dx = 2
or, in standard form,

du 2
o 2L =2522Inz.
de =z

An integrating factor for this linear differential equation is I = el @/m)dz — 42, Multiplying the previous
differential equation by x? reduces it to

d
d—(chu) =252 Inx
T
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which can be integrated directly to obtain

1 1
z%u = 25 <5z5 Inx — 25335) +c

so that
u=235ne —1) +cx?

Making the replacement u = y? in this equation gives

y? = 23(5Inz — 1)+ ca 2

26. The given differential equation can be written in the equivalent form

dy er Y
dr — e2r+y

— e—;ce—2y7

which we recognize as being separable. Separating the variables gives

which can be integrated to obtain

so that L
y(x) = 3 In(c; — 2e7%).

27. The given differential equation is linear with integrating factor I = el cotwde — gin g, Multiplying the
given differential equation by sin x reduces it to

(ysinz) sinx
—(ysinz) =
dz Y cos
which can be integrated directly to obtain
ysinz = —In(cosx) + ¢,
so that In )
¢ —In(cosz
ylo) = ————.
sinx
28. Writing the given differential equation as
dy 2e” 1
4 — =22 ¥ ,
dr 1+e® 4 yre

we see that it is a Bernoulli equation with n = 1/2. We therefore divide the equation by y% to obtain

x+1+ew

I
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We now make the change of variables u = y%, in which case, g—g = %y’% %' Inserting these results into the
preceding differential equation yields
2du n 2e” P

— 4+ ——u=2e

dr  1+e* ’
or, in standard form,

du n e e

2 =

de  1+e*

An integrating factor for this linear differential equation is
I — ef li%d:r _ e]n(l—‘,—er) -1 —|—€$.

Multiplying the previous differential equation by 1 4 e* reduces it to

d T -z T\ _ _—T
%[(1+e)u]fe (I+e”)y=e"+1

which can be integrated directly to obtain
1+ )u=—e"+rx+c
so that

r—e T +c

v= 1+e*

Making the replacement u = y% in this equation gives

r—e T +ec
1+e*

1
2

Y

29. We first rewrite the given differential equation in the equivalent form

d
—y:g[ln<g)+1].
de «x x
The function appearing on the right of this equation is homogeneous of degree zero, and therefore the

differential equation itself is first order homogeneous. We therefore insert y = xV into the differential
equation to obtain

av
T~ +V=V(InV+1),
so that v
z— =V InV.
dx
Separating the variables yields
L a1
VinVde =«

which can be integrated to obtain
In(InV) =Inz +c.

Exponentiating both side of this equation gives

InV =cz,
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or equivalently,
V =e4",

Inserting V = y/x in the preceding equation yields

y — ‘,Eeclw

30. For the given differential equation we have
M(z,y) =1+ 2ze’, N(z,y)=—(e" + ),

so that
M, — N, 1+42ze¥
M 14 2xev

Consequently, an integrating factor for the given differential equation is

T=e S =¢v,
Multiplying the given differential equation by e~ ¥ yields the exact differential equation
2z + e Y)dr — (1 +ze ¥)dy = 0. (0.0.22)

Therefore, there exists a potential function ¢ satisfying

99 _ —y 99 _ _ —y
o=t e —(ltae)

Integrating these two equations in the usual manner yields
o(x,y) = 2® —y +xe Y.
Therefore Equation (0.0.22) can be written in the equivalent form
d(z? —y+ae ) =0

with general solution

22 —y+ze ¥ =c

31. The given differential equation is first-order linear. However, it can also e written in the equivalent form

% =(1—-y)sinz

which is separable. Separating the variables and integrating yields

—In|l —y|= —cosz +c,
so that
1—y=ce°®7.
Hence,
y(r) =1 — c1€°°%.
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32. For the given differential equation we have
M(z,y) = 3y* + 2% N(z,y) = —2zy,

so that
My,—-N, 4

N z
Consequently, an integrating factor for the given differential equation is
T=e f3do — p=4,
Multiplying the given differential equation by x~* yields the exact differential equation
(3y*x=4 4+ 27 3)dx — 2yx—3dy = 0. (0.0.23)

Therefore, there exists a potential function ¢ satisfying

0

—¢ =3’z +272, L =2
ox

Integrating these two equations in the usual manner yields

$(a,y) = —y’2 ™% —ah.

Therefore Equation (0.0.23) can be written in the equivalent form

with general solution

or equivalently,

2+ y2 = clx?’.

Notice that the given differential equation can be written in the equivalent form

dy  3y*+4a®
de 22y

which is first-order homogeneous. Another equivalent way of writing the given differential equation is

y 3 _1 -
de 27 72" o

which is a Bernoulli equation.

33. The given differential equation can be written in the equivalent form

dy 1 9253
dz lenxyi 2" Y

which is a Bernoulli equation with n = 3. We therefore divide the equation by 33 to obtain

dy 1 9
—3ay —2__7 2
dx 2:171nxy 25C '
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We now make the change of variables u = y~2, in which case, % = —
the preceding differential equation yields
1d 1 9
Cldu _ 9

2dr  2znz. 20

or, in standard form,

d 1
Y u =922

—+
dr  zlnz
An integrating factor for this linear differential equation is

1
I = ef Tz 4T eln(lnm) =lnz.

Multiplying the previous differential equation by Inx reduces it to

d
%(lnz cu) = 92%Inx
which can be integrated to obtain

Inz-u=2*Bnz—1)+c
so that

3(3lnz —1
u:x( nx )Jrc.

Inx
Making the replacement v = > in this equation gives

3 2?(Blnz—1)+c

y Inz

34. Separating the variables in the given differential equation yields

ldy 2+ 1 1

ydr 14z i

)

which can be integrated to obtain
Inlyl=2+In|l+z+ec

Exponentiating both sides of this equation gives

y(x) =1 (1 + x)e”.

2y

35. The given differential equation can be written in the equivalent form

dy 2
@+x2—1

y=1

which is first-order linear. An integrating factor is

,3@
dx*

Inserting these results into

(0.0.24)

I = ef ﬁdaj _ ef(wilfwil)dz _ e[]n(azfl)fln(a:le)] _ . ]'
z+1

Multiplying (0.0.24) by (z — 1)/(x + 1) reduces it to the integrable form

d [x—1 _a:—l_l
der \z+1 y T r+1 r+1
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Integrating both sides of this differential equation yields

—1
<i+1 y) =z—2In(x+1)+c¢

so that

T —

y(z) = (“1) o — 2In(z + 1) + .

36. The given differential equation can be written in the equivalent form
[y sec? (xy) + 2x]dx + x sec? (zy)dy = 0

Then
M, = sec?(zy) + 2zysec?(z) tan(zy) = N,

so that the differential equation is exact. Consequently, there is a potential function satisfying

99 _ | coc? 09 _ .2
o = Y5 (zy) + 2z, 9y x sec”(xy).

Integrating these two equations in the usual manner yields
o(z,y) = 2? + tan(zy),
so that the differential equation can be written as
d(z? + tan(zy)) = 0,

and therefore has general solution
22 + tan(zy) = ¢,

or equivalently,

37. The given differential equation is first-order homogeneous. Inserting y = zV into the given equation
yields
dv 1

Y T T ireE Y
that is,
av 1
1+ V%)= = =
(1+ )dx T

Integrating we obtain

1
V+ §V3 =In|z|+ec
Inserting V' = y/x into the preceding equation yields

y

y3
I+3?:1n|$|+c7
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or equivalently,
32%y + y = 323 (In |z| + ).

d
38. The differential equation is first-order homogeneous. We therefore let y = zv, in which case d—y =
x

dv
x— + v. Substituting these results into the given differential equation yields

dx

so that

Y T 1-302 1— 302

Separating the variables gives

dv  1+0v?—v+30°  (v+1)(3v* —2v+1)

1 — 302
(v+1)(3v%2 —2v+1)
Decomposing the left-hand side into partial fractions yields

1 2(3v — 2) 1
- - dv = ~d
[ 300+ 1) 3(31}2—311—&—1)} v

1
dv = —dx.
T

or equivalently,

dv = —dx.
T

ERNCES

1 2(3v — 2)
5

This can be integrated to yield

-1 1 1
2{55arctan (31}\/§ )—gln [9(31}—1)24—3}}—31n(v+1)=1n:1:—|—c.

_ 2
2 iarctam M f§ln MJrg flln yrao =Inx +ec.
NG} V2 2 9x2 9 3 x

39. The given differential equation is a Bernoulli equation with n = —1. We therefore divide the equation
by y~! to obtain

Therefore,

dy 1 5 25Inz

Yar T2Y T T8
We now make the change of variables u = y?, in which case, % = Qy%. Inserting these results into the
preceding differential equation yields

ldu 1 _2511196

2dr "z 2pd

or, in standard form,

d 2
a + Zu=25z"2Inx.
der =x

An integrating factor for this linear differential equation is

2
I=el 2dx = 22
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Multiplying the previous differential equation by x2 reduces it to

d
—(2%u) = 252" ' In z,

dx

which can be integrated directly to obtain

25
iy = ?(lngc)2 +ec

so that
25(Inz)% + ¢
222 '

Making the replacement u = 2 in this equation gives

2 _ 25(Inz)% + ¢
Y 222 ’
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d
40. The differential equation is first-order homogeneous. We therefore let y = xv, in which case d—y =
x

dv
xd— + v. Substituting these results into the given differential equation yields
x

so that

Yiz 1—302 1— 302

Separating the variables gives

dv  1+0v*—v+30%  (v+1)(3v* — 20 +1)

1 — 302
(v+1)(3v2 —2v+1)

1
dv = —dx.
T

Decomposing the left-hand side into partial fractions yields

1 2(30 — 2) 1
{3(1}—&—1) 3(31}2—3v—|—1)]dv 4,

or equivalently,

- — 23v—2) dv—ldx.
ORI R R

This can be integrated to yield

3 Jv—1 3 1 2 1
Q{ﬁarctan (1}\/§> — 511’1 |:9(3’U— 1)2+9:|}_ gln(v‘f'l) :h’l.]}'—i-c.

3 3y—x 3 By —x)? 2 1 Y+
2{\/§arctan(\/§x>_21n|:9x2+9 _gln " :1H$L'+C.

Therefore,
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41. The given differential equation can be written in the equivalent form

d .
e’(1+ y)% = ze”

which is separable. Integrating both sides of this equation gives

ye =e"(z—1)+ec.

42. The given differential equation can be written in the equivalent form

dy cosx

—— Y = —COST
dr sinzx

which is first order linear with integrating factor

1

sinz’

[ = e /&3 de — o~ In(sinz) _
Multiplying the preceding differential equation by ﬁ reduces it to

d 1 CcoS X
df -V Y| = ——
T \ sinx sinz

which can be integrated directly to obtain

1

sin x

-y =—In(sinz) + ¢

so that
y(x) = sinzfc — In(sinz)].

43. The given differential equation is linear, and therefore can be solved using an appropriate integrating
factor. However, if we rearrange the terms in the given differential equation then it can be written in the

equivalent form
1 dy

1+y do .
which is separable. Integrating both sides of the preceding differential equation yields

1 .
ln(1+y):§x3+c

so that L
y(r) = cpes® —1.

Imposing the initial condition y(0) = 5 we find ¢; = 6. Therefore the solution to the initial-value problem is

44. The given differential equation can be written in the equivalent form

dy
—6y _ —4dx
e dr &
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which is separable. Integrating both sides of the preceding equation yields

1 1
_66_6y = 16_43'; +c

so that

Hence, ¢; = 2, and so

45. For the given differential equation we have

M, =4zy = N,

so that the differential equation is exact. Consequently, there is a potential function satisfying

B 9
- =322 4 2zy?, — =22%y.
Ox v sy Oy vy

Integrating these two equations in the usual manner yields
¢(z,y) = 2%y* +a°,
so that the differential equation can be written as
d(z?y? +23) =0,

and therefore has general solution

x2y2 +2° =c
Imposing the initial condition y(1) = 3 yields ¢ = 10. Therefore,

z?y? + 23 = 10
so that

y2: 10 — 23

22

Note that the given differential equation can be written in the equivalent form

113

dy 1 3
dx + T Y
which is a Bernoulli equation with n = —1. Consequently, the Bernoulli technique could also have been used

to solve the differential equation.
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46. The given differential equation is linear with integrating factor

I = effsmzdx — CoST_

COos T

Multiplying the given differential equation by e reduces it to the integrable form

d .
dr (ecosw : y) ]-7
which can be integrated directly to obtain

Ccos T

e Yy =T+ cC.
Hence,
y(z) = e (z + o).
1
€

Imposing the given initial condition y(0) = + requires that ¢ = 1. Consequently,

y(z) = e @z +1).

47. (a). For the given differential equation we have

My, =my™ N, = —nz" 1y

We see that the only values for m and n for which M, = N, are m = n0. Consequently, these are the only
values of m and n for which the differential equation is exact.

(b). We rewrite the given differential equation in the equivalent form

dy 25 +y™
v _Z 9 0.0.25
dx any3 ( )

from which we see that the differential equation is separable provided m = 0. In this case there are no
restrictions on n.

(¢). From Equation (0.0.25) we see that the only values of m and n for which the differential equation is
first-order homogeneous are m =5 and n = 2.

(d). We now rewrite the given differential equation in the equivalent form

dy —n,m—3 _ x5—n

-3
A . 0.0.26
oty Yy ( )

Due to the 2 term on the right-hand side of the preceding differential equation, it follows that there are
no values of m and n for which the equation is linear.
(e). From Equation (0.0.26) we see that the differential equation is a Bernoulli equation whenever m = 4.

There are no constraints on n in this case.

48. In Newton’s Law of Cooling we have
T, = 180°F, T(0)=80°F, T(3)=100°F.

We need to determine the time, ¢y when T'(tyg) = 140°F. The temperature of the sandals at time ¢ is governed
by the differential equation
ar

— = —k(T — 180).
— = k(T — 180)
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This separable differential equation is easily integrated to obtain
T(t) = 180 4 ce F*.

Since T'(0) = 80 we have
80 =180+ ¢ = c¢= —100.

Hence,
T(t) = 180 — 100e .

Imposing the condition 7'(3) = 100 requires
100 = 180 — 100e 3",
Solving for k we find k = %ln (%) . Inserting this value for & into the preceding expression for T'(t) yields
T(t) = 180 — 100e~ 5 (%),

We need to find tg such that
140 = 180 — 100~ % (),

Solving for ty we find

49. In Newton’s Law of Cooling we have
T, =70°F, T(0)=150°F, T(10) = 125°F.

We need to determine the time, ¢y when T'(tp) = 100°F. The temperature of the plate at time ¢ is governed

by the differential equation

T
— = —h(T = 170).

This separable differential equation is easily integrated to obtain

T(t) =70 + ce .

Since T'(0) = 150 we have
150=70+c¢ = c¢=280.

Hence,
T(t) = 70 + 80e .

Tmposing the condition T'(10) = 125 requires
125 = 70 + 80~ '%F.
Solving for k£ we find k = % In (%) . Inserting this value for k into the preceding expression for T'(t) yields
T(t) = 70 + 80e ™~ 10 (i),

We need to find ¢y such that
100 = 70 + 80e~ 16 n(19),
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Solving for ty we find

8
ty =102 (136) ~ 26.18 min.
In (1)

50. Let T'(t) denote the temperature of the object at time ¢, and let T, denote the temperature of the
surrounding medium. Then we must solve the initial-value problem

=

ar

where k is a constant. The differential equation can be written in separated form as

__ L dar_,
(T —T,)% dt
Integrating both sides of this differential equation yields
1
— =kt
71, ¢
so that 1
Tt) =T, — .
®) kt+c
Imposing the initial condition T'(0) = Ty we find that
. 1
T, —Tp

which, when substituted back into the preceding expression for 7'(¢) yields

1 Tm - TO

T =Ty — —— =Ty — — -0
(t) =Tm kt+ 7= " k(T —To)t+1

As t — oo, T(t) approaches T,,.

d
51.(a). Since d—:(O) = 2, the velocity is increasing at the rate of 2 m/s? at ¢t = 0.

(b). Evaluating the given differential equation at ¢t = 0, using the given initial conditions yields
1
2420k =80k =k = 3"

kt

(c). An integrating factor for the given differential equation is I = e/ ¥ = ¢* . Multiplying the given

d
differential equation by this integrating factor reduces is to g(ekt-v) = 80k = v(t) = e **(80t+c). Imposing

4 .
the initial condition v(0) = 20 yields ¢ = 20, so that v(t) = 20e %! (4kt + 1) = v(t) = ge’t/so(% +15).

4
(d). v(t) = ge_t/30(2t + 15) = there is no finite ¢ > 0 when v(¢) = 0. Hence the object does not come to

rest in a finite time.

(e). limy_ oo v(t) = 0.
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52. We are given the differential equation

dr
- = —k(T — 5 cos 2t)
together with the initial conditions
dr
T0)=0; —(0)=>5.
=0 ")

(a). Setting t = 0 in (0.0.27) and using (0.0.28) yields
5=—k(0—-05)

so that k = 1.

(b). Substituting k¥ = 1 into the differential equation (0.0.27) and rearranging terms yields

dTl
E + T = b5cost.
An integrating factor for this linear differential equation is I = eldt = et

differential equation by e reduces it to

d
ﬁ(et -T) = 5e' cos 2t

which upon integration yields

e' - T = e'(cos 2t + 2sin 2t) + c,

so that

T(t) = ce™" + cos 2t + 25sin 2t.
Imposing the initial condition T(0) = 0 we find that ¢ = —1. Hence,

T(t) = cos2t +2sin2t — e "

(c). For large values of t we have
T(t) ~ cos 2t + 2sin 2t,

which can be written in phase-amplitude form as

T(t) ~ V5 cos(2t — ¢),

117

(0.0.27)

(0.0.28)

Multiplying the preceding

where tan ¢ = 2. consequently, for large ¢, the temperature is approximately oscillatory with period « and

amplitude V5.

53. If we let C'(t) denote the number of sandhill cranes in the Platte River valley ¢ days after April 1, then

C(t) is governed by the differential equation

dc
= = —kC

together with the auxiliary conditions

C(0) = 500,000; C(15) = 100, 000.
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Separating the variables in the differential equation (0.0.29) yields

1do_
cd
which can be integrated directly to obtain
InC = —kt+ec.
Exponentiation yields
C(t) = coe™ ",

The initial condition C'(0) = 500,000 requires ¢y = 500,000, so that
C(t) = 500,000e %", (0.0.31)
Imposing the auxiliary condition C'(15) = 100,000 yields
100, 000 = 500, 000e 2%,

Taking the natural logarithm of both sides of the preceding equation and simplifying we find that k = % In 5.
Substituting this value for & into (0.0.31) gives

C(t) = 500,000e 15 7. (0.0.32)

(a). C(3) =500,000e~2™5 = 500,000 - 5= = 20,000 sandhile cranes.

(b). C(35) = 500,000e~ 13 5 ~ 11696 sandhile cranes.
(c). We need to determine ¢y such that

1000 = 500, 000e~ 1% 125

that is,
t 1
—12In5 _ el
‘ 500
Taking the natural logarithm of both sides of this equation and simplifying yields
In 500
to=15- IInB ~ 57.9 days after April 1.

54. Substituting Py = 200,000 into Equation (1.5.3) in the text yields

P = 200, 000C
~ 200,000 + (C — 200, 000)e~"t"

(0.0.33)

We are given
P(3) = P(t1) = 230,000, P(6)= P(t2) = 250,000.

Since to = 2t; we can use the formulas (1.5.5) and (1.5.6) of the text to obtain r and C' directly as follows:

1 [25(23-20)] 1. (15
: 3“[20(2523)] 3“(8)
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~230,000((23)(45) — (40)(25)]
- (23)2 — (20)(25)
Substituting these values for r and C' into (0.0.33) yields

= 277586.

Pt) = 55517200000
200,000 + (77586)e0-21¢"
Therefore,

55517200000
P(10) = ~ 264,997
(10) 200,000 + (77586)e—21 T

and 55517200000
P(20) = ~ 275981.

200, 000 + (77586)e 42

55. The differential equation for determining ¢(t) is

dqg 5 3
24 == 2
gt + 4q 2(;05 t,

which has integrating factor I = e/ 1% = ¢1*. Multiplying the preceding differential equation by e1! reduces
it to the integrable form
d 5¢ 3 5¢
— (ex"-q) = e’ cos2t.
dt (¢F-a) 2

Integrating and simplifying we find
6 5
q(t) = @(5 cos 2t + 8sin 2t) + ce” 1. (0.0.34)

The initial condition ¢(0) = 3 requires
3 50 +
=—+4c
89 ’
so that ¢ = 227 Making this replacement in (0.0.34) yields

6 237 _:
q(t) = @(5 cos 2t + 8sin 2t) + @e_gt.

The current in the circuit is

d 12 1185
i(t) = dflz = @(8cos2t —5s8in2t) — %e%t,

56. The current in the circuit is governed by the differential equation

di 100
2 410i = —/
7 + 102 3

which has integrating factor I = el 10dt — (10t Multiplying the preceding differential equation by e'%*

reduces it to the integrable form
d 100
= (elot . z) . 10t
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Integrating and simplifying we find

1
i(t) = 50 + ce™ 101, (0.0.35)

The initial condition i(0) = 3 requires
10
3=—+c,
3 ¢

so that ¢ = —%. Making this replacement in (0.0.35) yields

i(t) = %(10 — e 10%),

57. We are given:
r1 =6 L/min, ¢ =3¢g/L, r2=4L/min, V(0)=30L, A0)=0g,

and we need to determine the amount of salt in the tank when V(¢) = 60L. Consider a small time interval
At. Using the preceding information we have:

AV = 6At — 4At = 2A¢,

and 4
AA ~ 18At — 4VAt'

Dividing both of these equations by At and letting At — 0 yields

av
— =2 (0.0.36)

dA A

i S T 0.

A =18 (0.0.37)

Integrating (0.0.36) and imposing the initial condition V' (0) = 30 yields
V(t) = 2(t + 15). (0.0.38)
We now insert this expression for V'(¢) into (0.0.37) to obtain

dA 2

— 4+ ——A=18.

dt * t+ 15
An integrating factor for this differential equation is I = of wrsdt = (t + 15)2. Multiplying the preceding
differential equation by (¢ + 15)? reduces it to the integrable form

d
i [(t+15)%A] = 18(t + 15)%.
Integrating and simplifying we find
6(t+15)% + ¢
Alt) = —————
®) (t+15)2
Imposing the initial condition A(0) = 0 requires
0= 6(15)3 + ¢
S (152 7
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so that ¢ = —20250. Consequently,
6(t + 15)3 — 20250
(t+ 15)2

We need to determine the time when the solution overflows. Since the tank can hold 60 L of solution, from
(0.0.38) overflow will occur when

A(t) =

60 =2(t+15) = t=15.
The amount of chemical in the tank at this time is

6(30)3 — 20250

AWB) = ==

~ 157.5 g.

58. Applying Euler’s method with 3/ = 22 42y 9 = 0,90 = —3, and h = 0.1 we have y,,+1 = y,, +0.1(22 +
2y2). This generates the sequence of approximants given in the table below.

n In Yn

1 101 —1.2

2 10.2 —0.911
3 103]| —0.74102
4 104 | —0.62219
5 |1 0.5 | —0.52877
6 | 0.6 | —0.44785
7 107 | —0.371736
8 | 0.8 —0.29510
9 |1 09| —0.21368
10 | 1.0 | —0.12355

Consequently the Euler approximation to y(1) is y;0 = —0.12355.

3
59. Applying Euler’s method with 3" = o + 2,29 = 1,y0 = 2, and h = 0.05 we have
Y

3z
yn+1:yn+0.05<;n+2>.

n

This generates the sequence of approximants given in the table below.

L Yn

1.05 | 2.1750
1.10 | 2.34741
1.15 | 2.51770
1.20 | 2.68622
1.25 | 2.85323
1.30 | 3.01894
1.35 | 3.18353
1.40 | 3.34714
1.45 | 3.50988
1.50 | 3.67185

S| o] oo | o ot | wo| po| | 3
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Consequently, the Euler approximation to y(1.5) is y190 = 3.67185.

60. Applying the modified Euler method with 3" = 22 + 232,29 = 0,0 = —3, and h = 0.1 generates the
sequence of approximants given in the table below.

n Ln Yn

1 101 | —1.9555
2 1 0.2 | —1.42906
3 103 | —1.11499
4 1 0.4 | —0.90466
5 | 0.5 | —0.74976
6 | 0.6 | —0.62555
7 | 0.7 | —0.51778
8 | 0.8 | —0.41723
9 |09 | —0.31719
10 | 1.0 | —0.21196

Consequently, the modified Euler approximation to y(1) is y10 = —0.21196. Comparing this to the

corresponding Euler approximation from Problem 58 we have

lyme — yE| = [0.21196 — 0.12355| = 0.8841.

61. Applying the modified Euler method with ¢y = s + 2,29 = 1,y9 = 2, and h = 0.05 generates the
Y

sequence of approximants given in the table below.

Ln Yn

1.05 | 2.17371
1.10 | 2.34510
1.15 | 2.51457
1.20 | 2.68241
1.25 | 2.84886
1.30 | 3.01411
1.35 | 3.17831
1.40 | 3.34159
1.45 | 3.50404
1.50 | 3.66576

O| 0| || U x| W3

—
o

Consequently, the modified Euler approximation to y(1.5) is y10 = 3.66576. Comparing this to the corre-
sponding Euler approximation from Problem 59 we have

lymE — yr| = |3.66576 — 3.67185| = 0.00609.
62. Applying the Runge-Kutta method with 3/ = 22 + 2y%, 29 = 0,y0 = —3, and h = 0.1 generates the

sequence of approximants given in the table below.
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n Ln Yn

1 101 | —1.87392
2 102 | —1.36127
3 | 0.3 | —1.06476
4 |04 | —0.86734
5 |1 0.5 | —0.72143
6 | 0.6 | —0.60353
7 | 0.7 | —0.50028
8 | 0.8 | —0.40303
9 | 0.9 | —0.30541
10 | 1.0 | —0.20195

Consequently the Runge-Kutta approximation to y(1) is y190 = —0.20195. Comparing this to the correspond-
ing Euler approximation from Problem 58 we have

lyrk — yr| = [0.20195 — 0.12355| = 0.07840.

3
63. Applying the Runge-Kutta method with y' = or + 2,29 = 1,90 = 2, and h = 0.05 generates the
Y

sequence of approximants given in the table below.

n Ln Yn

1 | 1.05 | 2.17369
2 | 1.10 | 2.34506
3 | 1.15 | 2.51452
4 | 1.20 | 2.68235
5 | 1.25 | 2.84880
6 | 1.30 | 3.01404
7 | 1.35 | 3.17823
8 | 1.40 | 3.34151
9 | 1.45 | 3.50396
10 | 1.50 | 3.66568

Consequently the Runge-Kutta approximation to y(1.5) is y19 = 3.66568. Comparing this to the correspond-
ing Euler approximation from Problem 59 we have

lyrk — yu| = |3.66568 — 3.67185| = 0.00617.

Chapter 2 Solutions

Solutions to Section 2.1

True-False Review:

(a): TRUE. A diagonal matrix has no entries below the main diagonal, so it is upper triangular. Likewise,
it has no entries above the main diagonal, so it is also lower triangular.

(b): FALSE. An m x n matrix has m row vectors and n column vectors.
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(c): TRUE. This is a square matrix, and all entries off the main diagonal are zero, so it is a diagonal matrix
(the entries on the diagonal also happen to be zero, but this is not required).

(d): FALSE. The main diagonal entries of a skew-symmetric matrix must be zero. In this case, a1; = 4 # 0,
so this matrix is not skew-symmetric.

(e): FALSE. The form presented uses the same number along the entire main diagonal, but a symmetric
matrix need not have identical entries on the main diagonal.

(f): TRUE. Since A is symmetric, A = AT. Thus, (AT)T = A = AT, so AT is symmetric.
(g): FALSE. The trace of a matrix is the sum of the entries along the main diagonal.

(h): TRUE. If A is skew-symmetric, then AT = —A. But A and AT contain the same entries along the
main diagonal, so for AT = —A, both A and —A must have the same main diagonal. This is only possible
if all entries along the main diagonal are 0.

(i): TRUE. If A is both symmetric and skew-symmetric, then A = AT = — A, and A = —A is only possible
if all entries of A are zero.

(j): TRUE. Both matrix functions are defined for values of ¢ such that ¢ > 0.

(k): FALSE. The (3,2)-entry contains a function that is not defined for values of ¢ with ¢ < 3. So for
example, this matrix functions is not defined for ¢ = 2.

(1): TRUE. Each numerical entry of the matrix function is a constant function, which has domain R.

(m): FALSE. For instance, the matrix function A(t) = [t] and B(t) = [t?] satisfy A(0) = B(0), but A and
B are not the same matrix function.

Problems:

1(a). az1 =0,a04 = —1,a14 = 2,a30 = 2,a91 = 7,a34 = 4.

1(b). (1,4) and (3,2).

2(a). by = —1, b3z =4, byy =0, byz =8, bs; = —1, and bse = 9.
2(b). (1,2), (1,3), (2,1), (3,2), and (5, 1).

[ 1 5 .
3. = 3],2><2matrlx.
[2 1 -1 :
4. 0 4 _2}2><3matr1x.
[ -1
1 .
5. 10 4 x 1 matrix.
| —9
1 -3 -2
3 6 0 .
6. 9 7 E 4 x 3 matrix.
| 4 -1 5
[0 -1 2
7. 1 0 3 [; 3 x 3 matrix.
| 2 -3 0
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0 -1 -2 =3
1 0 -1 =2 .
8. 9 1 0 -1 ; 4 X 4 matrix.
| 3 2 1 -0
[2 3 4 5
3 4 5 6 .
9. 45 6 7T ; 4 X 4 matrix.
5 6 7 8
10. tr(A):lJr?) 4.
11. tr(A) =1+2+(-3) =
12. tr(A) =2+2+ (-5) =
13. Col pors: | L], 72
. Column vectors: 3] 5 |
Row vectors: [1 —1],[3 5].
! 3] —4
14. Column vectors: | —1 |, | —2 |, 5
| 2 6 7
Row vectors: [1 3 —4],[-1 —2 5],[2 6 7].

6
[ 2 10 6
15. Column vectors: 5 } ) [ 1 } | g ] Row vectors: [2 10 6],[5 —1 3].
1
3
)

1 2
16. A= | 3 4 |. Column vectors:
5 1

-2 0 4 -1 -1 -2 0 4 -1 -1
17.A—{ 9 4 4 0 8},columnvect0rs.[ 9],{_4},[_4}[ 0],{ 8]'

-2 —4
-6 —6
18. B = 3 0 ;rowvectors:[—? —4],[—6 —6],[3 0]7[—1 0]7[—2 1].
-1 0
| —2 1
2 5 01
19. B=| -1 7 0 2 |. Rowvectors: 250 1],[-1 70 2],4 —6 0 3].
| 4 -6 0 3
20. A = [aj,a9,...,a,] has p columns and each column g-vector has ¢ rows, so the resulting matrix has
dimensions g X p.
[2 0 0
21. One example: | 0 3 0
00 —1
[2 3 1 2
05 6 2
22. One example: 00 3 5
00 0 1
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23. One example:

3 00
24. One example: | 0 2 0
0 0 5

25. The only possibility here is the zero matrix:

o O O
o O O
o O O

26.

o O O
o O O
o O O

27. One example:

T
~
no
OOOl
~
o O OO
S

[ — t+2 0
28. One example: _ %*t ;_ 0 ]

29. One example: | t°+1 ]

30. One example: [ ?24+1 1 1 1 1 ]
31. One example: Let A and B be 1 x 1 matrix functions given by

A(t) = [t] and B(t) = [t?].

32. Let A be a symmetric upper triangular matrix. Then all elements below the main diagonal are zeros.
Consequently, since A is symmetric, all elements above the main diagonal must also be zero. Hence, the
only nonzero entries can occur along the main diagonal. That is, A is a diagonal matrix.

33. Since A is skew-symmetric, we know that a;; = —a;; for all (¢, 7). But since A is symmetric, we know
that a;; = aj; for all (¢,7). Thus, for all (7, 7), we must have —aj; = a;;. That is, a;; = 0 for all (i, 7). That
is, every element of A is zero.

Solutions to Section 2.2

True-False Review:

(a): FALSE. The correct statement is (AB)C' = A(BC), the associative law. A counterexample to the
particular statement given in this review item can be found in Problem 5.

(b): TRUE. Multiplying from left to right, we note that AB is an m x p matrix, and right multiplying AB
by the p x ¢ matrix C', we see that ABC' is an m X ¢ matrix.

(c): TRUE. We have (A + B)T = AT + BT = A+ B, so A+ B is symmetric.
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0 1 0 0 0 3
(d): FALSE. For example, let A = | =1 0 0 |,B = 0 0 0 Then A and B are skew-
0 0 0 -3 0 0
00 O
symmetric, but AB= | 0 0 —3 | is not symmetric.
00 O

(e): FALSE. The correct equation is (A+ B)? = A2+ AB+ BA+ B?. The statement is false since AB+ BA

o o mas=| Qo] mencarmr=| {0 ]

does not necessarily equal 2AB. For instance, if A = [ 0 0 0 0 0 0

and A%+ 2AB + B? — H g}#(A—kB)?.

(f): FALSE. For example, let A = [ 8 (1) } and B = [ (1) 8 ] Then AB = 0 even though A # 0 and
B # 0.

0 0 0 0 . .
(g): FALSE. For example, let A = { 10 } and let B = 00l Then A is not upper triangular,
despite the fact that AB is the zero matrix, hence automatically upper triangular.

1

(h): FALSE. For instance, the matrix A = [ 0 0

and yet A% = A.

} is neither the zero matrix nor the identity matrix,

(i): TRUE. The derivative of each entry of the matrix is zero, since in each entry, we take the derivative
of a constant, thus obtaining zero for each entry of the derivative of the matrix.

(j): FALSE. The correct statement is given in Problem 45. The problem with the statement as given is

that the second term should be %B, not B‘Z—‘?.

¢
(k): FALSE. For instance, the matrix function A = [ 28 32,5 ] satisfies A = 24 but A does not have
cet 0
the form [ 0 cet }

(1): TRUE. This follows by exactly the same proof as given in the text for matrices of numbers (see part
3 of Theorem 2.2.23).

Problems:
—10 30 5
1(a). 5A—{ 5 0 _15]
-6 -3 3
o o= 0 23]
—1+7 —142i
1(c). iC=| —1+3i —1+4
—1+57 —1+4+6¢
-6 11 3
@24 p[ 0 1 2]

1(e) A+30T:[1+3i 15 + 3i 16+3z’]

5+3t 12+31 15+ 3
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8 10 7
1(f). 3D—-2E=|1 4 9
17

—_

2

12 —3-3i —1+i
1(g). D+E+F=|3+i 3-2i 8
6  A+2i 2

1(h). Solving for G and simplifying, we have that

1 —-10 —1/2

3
G=—gA-B= 3/2 —4 17/2 |

1(i). Solving for H and simplifying, we have that H = 4F — D — 2F =

8§ —-20 -8 4 0 1 12 4—-61 2 -8  =24+6i —-9-—2
4 4 122 1-11 2 5| -] 2+2 —41 0 |=|1-2i 244 7
16 -8 —12 3 1 2 -2 10+4: 6 15 —19 — 4 —20

1(j). We have K7 = 2B — 3A, so that K = (2B — 3A)T = 2BT — 3AT. Thus,

2 0 —2 -1 10 3
K=2 1 4 1|-3 6 0|=]-16 8
-1 —4 1 -3 -5 1
-4 0 -1
2(a). -D=| -1 -2 -5
-3 -1 =2
2 0 8 0
2(b). 4BT =4 1 4| = 4 16
-1 -4 -4 -16
-2 -1 144 241 544 441
2(c). 2AT+C=-2| 6 0 |+ |3+i 44i | =] —94+7 4+i
1 -3 5441 641 3+i 12+
10 =25 —10 4 0 1 14 —-25 =9
2(d). 5E4+D=1| 5 5 15 0+]1 2 5|=]6 720
20 —10 -15 31 2 23 -9 -13 |
2(e). We have
-2 -1 2 0 14+i 2417 | —134+i —-5+2i
4AT —2BT +iC =14 6 0| -2 1 4 | +i| 3+ 4440 | = 214+3i —9+4i
1 -3 -1 —4 54+i 641 | 545 —5+6i
2(f). We have
8 —20 -8 12 3 9 —4 —-23 17
AE—-3DT = | 4 4 12 |-]10 6 3|= 4 -2 9
16 -8 —12 3 15 6 13 —23 —18
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2(g). We have (1 —6i)F' +iD =

129

6—-36t —16—15¢ 641 43 0 1 6—-32¢ —16—15¢ 642
7T—95  —12-2 0 + |t 2t 5 | = 7T—4 —12 5%
—14+6:¢ 17—-28 3—1& Ji 1 2 —1+9 17-277 3 —16¢
2(h). Solving for G, we have
_ AT | -2 6 1 a1+ 3+i 54
G=A+U=0C" = 4 ¢ 3| 0D o0y 41 644
-2 6 1 L2 42 64
-1 0 -3 3—1 5—=3t T—5
0 10-2 T—4i
Sl 2-9 5-3i 4-50 |
2(i). Solve for H, we have
3 3
H=_-D-_-F I
5 2 + 313
6 0 3/2 3 -15/2 -3 100
=|3/2 3 152 |-|3/2 32 92 |[+|0 1 0
L 9/2 3/2 3 6 -3 —9/2 00 1
6 15/2 9/2
| o 92 3
| —3/2 9/2 2172
2(j).- We have KT = DT + ET — FT = (D+ E — F)7, so that
0 —7+31 —1—1
K=D+FE-F=|1—-1t 3+ 8
8 —6-2 4
3(a).
[ 5 10 -3
AB=197 2 3
3(b).
9
BC = 8
—6
3(c). C'A cannot be computed.
3(d).
1 3 . . 2—4i T4+13
ATE=| -1 1 [2__.2 zlji']: —2 143
2 4 ! ! 4—6i 10+ 18
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3(e).

3(f).

3(g).

3(h).

3(i).

33J)-

4(a).

4(b).

4(c).

4(d).
4(e).
A(f).
4(g)-

4(h).

2 -2 3
Ch=| -2 2 -3
4 —4 6
1 3]
c'aA"=[1 -1 2]| -1 1|=[6 10]
2 4 |
p2_ [ i 1-3 i 1-3i] [ -1 10—10i
I 0 4+i | 0 15+ 8
2 -1 3 2 15
BDT=1|5 1 2 -2 | = 14
4 6 -2 3 -10
1 3 10 2 14
ATA=1| -1 1 H 12}: 2 2 2
2 4 14 2 20

v 1—3¢ 2—1 144 | | =241 13-4
| 1—4i 4+18i

DC = [10]

DB=1[614 —4]

AD cannot be computed.
BF - 2—1 141 t 1—=3¢ | | 142 2-2¢
o -1 2+ 4 0 4+¢ | 1 1+ 178 |
Since AT is a 3 x 2 matrix and B is a 3 x 3 matrix, the product A7 B cannot be constructed.

Since C is a 3 x 1 matrix, it is impossible to form the product C' - C = C2.

pe_ [2-0 1+i 2@ 14i ] _[4-5 1+7i
T - 244 —i 244i | | 3—4i —11+415i |
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1 1 2 10
. T _ _
4(i). AD —{3 1 4} § _[16}
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2—i —i 1 -1 2 2 -4 -2 4—6i
: T A — —
4(‘])'EA{1+2' 2+4i}{3 1 4]{7—&-131’ 1+3i 10—}—182’]'
5. We have -
-2 8
-3 2 7 -1 8§ =3 -6 1
ABC = (AB)C = { 6 0 -3 —5] -1 -9 [ 1 5}
| 0 2
[ 15 -9 —6 1|
-9 65 15 |
[ —185 —460
B 119 316
and
-2 8
—6 1 -3 2 7 -1 8§ =3
CAB =C(AB) = 1 5} [ 6 0 -3 —5} -1 -9
0 2
| -6 1 15 —95
N 15 -9 65
[ —99 635
| 30 230 |°
6. :
13 6 1 3 0
S ERIE U IR R
7.
3 -1 4 2 3 -1 4 -13
Ac=12 1 5 3| =2(2]|+4+3 1| +(-4) |5 |=|-13 |.
7T —6 3 —4 7 —6 3 —16
8. i
-1 2 5 -1 2 -7
Ac = 4 7 {_1]5 4 | +(-1) T|=1] 13 |.
5 —4 | 5 —4 29
9. We have }
B a b c d| | za+yb+zc+wd
AC_I{e}er[f}jLZ[g_er[h}_{me—i—yf—i—zg—i—wh]'

10(a). The dimensions of B should be n x r in order that ABC' is defined.

10(b). The elements of the ith row of A are a;1, a2, ..., a;, and the elements of the jth column of BC' are

T r r
E blmcmj7 E meij7 R E bnmcmja
m=1 m=1 m=1
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so the element in the ith row and jth column of ABC' = A(BC) is

r s T
a1 E bimCmj + ai2 E bomCmj + -+ + ain E bpmCmj
m=1 m=1

m=1

k=1 m=1 k=1 \m=1
11(a).
2 1 -1 1 —1] [-1 —4
we=aa=|y Sl 5=
s .24 1 —4 1 1] [-9 —11
AT=A474 {8 7 2 3| | 22 13
4 a3, [ -9 —11 1 -1] [ -31 —24
AT=474 22 13“2 3}_[ 48 17
11(b).
0 1 0 0 1 0 -2 0 1
A2=AA=1| -2 0 1 -2 01| = 4 -3 0
4 -1 0 4 -1 0 2 4 -1
-2 0 1 0 1 0 4 -3 0
A% = A%A = 4 -3 0 -2 0 1]|= 6 4 -3
2 4 -1 4 -1 0 —-12 3 4
[ 4 -3 0 0 1 0 6 4 -3
At = A%A = 6 4 -3 -2 0 1]|=]-20 9 4
| -12 3 4 4 -1 0 10 —16 3

12(a). We apply the distributive property of matrix multiplication as follows:
(A+2B)? = (A+2B)(A+2B) = A(A+2B)+(2B)(A+2B) = (A+A(2B))+((2B)A+(2B)?) = A>4+2AB+2BA+4B2,
where scalar factors of 2 are moved in front of the terms since they commute with matrix multiplication.

12(b). We apply the distributive property of matrix multiplication as follows:

(A+B+C)?=(A+B+C)A+B+C)=A(A+B+C)+B(A+B+C)+C(A+B+C)
=A*’+ AB+ AC+BA+ B>+ BC+CA+CB+C?
= A’+B*4+C?+ AB+ BA+ AC + CA+ BC + CB,

as required.

12(c). We can use the formula for (A + B)? found in Example 2.2.20 and substitute —B for B throughout
the expression:

(A—B)> =A%+ A(~B)A+ (—B)A%? + (-B)?A+ A*(-B) + A(-B)* + (-B)A(-B) + (—-B)?
= A3 — ABA— BA?+ B2A— A’B + AB? + BAB — B3,

as needed.
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13. We have }
A2 2 =5 2 =5 _ —-26 20
6 —6||6 —6 24 6 |’
so that .
9 | —26 20 8 =20 8 0 [0 0
A+4A+18]2_[—24 6 | T[2a —2a|T 0 18] ][0 0
14. We have _
-1 0 4 -1 0 4 -7 12 —4
A% = 11 2 11 2|=|-4 7 6
-2 3 0] -2 30 5 3 =2
and
-1 0 4 -1 0 4 -1 0 4 -7 12 —4 -1 0 4 27 0 —4
A3 = 1 1 2 1 1 2 1 1 2 -4 7 6 1 1 2| =] -1 25 =2
-2 3 0 -2 3 0 -2 3 0 5 3 -2 -2 3 0 2 -3 26
Therefore, we have
27 0 —4 -1 0 4 26 0 O 0 0 O
AP+ A-26I3=| -1 25 -2 |4+| 1 1 2|—-]0 2 0 |=]0 00
2 -3 26 -2 3 0 0 0 26 0 0 O
15.
1 0 0 0 -1 0 1 10
A2=10 1 0|-]0 0 -1 |=]0 11
0 0 1 0 0 0 0 0 1
1 =z =z
Substituting A= | 0 1 y | for A, we have
0 0 1
1 = =z 1 = =z 1 1 0
0 1 vy 01 y|{=]011]/],
0 0 1 0 0 1 0 0 1
that is,
1 22 2z+4a2y 1 1 0
0 1 2y =10 1 1
0 0 1 0 0 1

Since corresponding elements of equal matrices are equal, we obtain the following implications:
y=1=y=1/2,
2 =1= a2 =1/2,
2z+2y=0=22+(1/2)(1/2) =0 = 2 = —1/8.

1 1/2 —1/8
Thus, A= 0 1 1/2
0 0 1
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2 _
16.InorderthatA2:A,Werequire[ v 1}{ v 1}:[ v zi},tha’cis,[ v =2 Ty =

-2y -2y -2 —2r—2y —2+y>
v 1 or equivalentl z? —z -2 rty—1 1 _ 0. Since corresponding elements of equal ma-
—92 ) quiv: Y _2$_2y+2 y2_y_2 — V2. Sp g S qu

trices are equal, it follows that

2 —rx—2=0=x2=—1lorz=2, and

yQ_y_2:0:>y:—10ry:2.
Two cases arise from z +y —1=0:

(a): If x = —1, then y = 2.
(b): If x = 2, then y = —1. Thus,

17. ]
fo 1][0 =] _[éi o] [t B
2= 0 ]li o]0 i |0 1]
[0 —i 1 o] [0 4] .Jo 1]_
295= 14 olo -1 |i o] "1 o]
1 0 o 1] [ o1] [0 —i
A= o0 [t o)1 o] T i o]
18.
[A,B] = AB — BA
[ =13 1] [3 1][1 -1
“l2 1|42 4 22 1
I T N O -
10 4 8 -2
—6 1
- 26}#02
19.

[A1, Ag) = A1 Ay — As Ay

1 o0][0 1
| ]10 0
[ 1

0

o]l t]

[A1, Ag] = A1 Az — AsAy

8}0—[?8][32]

} =05, thus A; and A3 commute.
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[Ag, Ag] = A A3 — A3 Ay
Jo 00] [00
B 1 0 1 0
0
1

AR RETRR

Then [Ag,AQ][AQ,Ag]{_é (1)}7&02. Thus, A; and Az do not commute.
20.
[A1, Ao] = Ay Ay — Ap Ay
_Lfo i f[fo —1] 1[0 —1][0 i
T4l 01 0 401 0][i 0
CLfio0] 1] =i o0
T4 0 =i 4| 0 i
1[28 0 1[i 0
410 —Qi]_Q[O —i]_A3'
[A2, A3] = A2 A3 — A3 Az
_lro —=1)[4i o) 1[i o][0 =1
T4 00 —i 400 =1 ][1 0
CLfo i ] 1[0 —i
4]0 4| —i
1[0 2 1o i
T4 2 0}_2{i o]‘Al'
[A3, A1] = A3 Ay — A1 A3
_1[d 0 0 4| 110 4 i 0
4 —1 i 0 411 0 0 —
1[0 -1] 1[0 1
T4 -1 0] 410
110 -2 170 -1
T4 2 0}2{1 O}AQ
21.

[A,[B,C]] + [B,[C, A]] + [C, [A, B]]

—[A,BC — CB| + [B,CA— AC] + [C, AB — BA]

= A(BC — CB) — (BC — CB)A+ B(CA— AC) — (CA— AC)B + C(AB — BA) — (AB — BA)C

= ABC — ACB — BCA+ CBA + BCA — BAC — CAB + ACB + CAB — CBA — ABC + BAC = 0.
22.

Proof that A(BC) = (AB)C: Let A = [a;;] be of size m x n, B = [b;;] be of size n x p, and C' = [cy] be
of size p x ¢q. Consider the (4, j)-element of (AB)C":

[(AB)C;; = Z (i aihbhk> Ckj = iaih (Z bhk@cj) = [A(BC)];;-
h=1 k=1

k=1 \h=1
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Proof that A(B + C) = AB + AC: We have

[AB+C)lij = > ain(bes + cxj)

k=1
n
= (aijb + aier;)
k=1
= Z Qikbrj + Z QikChj
k=1 k=1
= [AB + AC);;.

23.
Proof that (A7)T = A: Let A = [a;;]. Then AT = [a;;], so (AT)T = [a;;]T = a;; = A, as needed.
Proof that (A + C)T = AT + CT: Let A = [a;;] and C = [¢;;]. Then [(A+ C)'];; = [A+ ()i =
[Alji + [Clji = aji + ¢ji = [AT]y; + [CT]5; = [AT + CT];;. Hence, (A+C)T = AT + C7.
24. We have .
(IA)i; = Z dikQkj = 0iiij = Qij,

k=1

for 1 <i<mand 1 <j <p. Thus, Ly,Amxp = Amxp-

25. Let A = [a;;] and B = [b;;] be n x n matrices. Then

Zn: (i @kib k) = Z (Z bzkam> y <Z blkakz> = tr(BA).

k=1 =1 k=1 =1 \k=1
0o -7 —1]| ? 1
T AT _ - - _ —
sow. 5= 0T 1) [S] L] 2]
6
9 1 4 64 6
0 1 0 -7 -1 -4 1 -3
TRT _ —
26(b).- "B = 3 5 [—4 1 —3}_ —20 -16 —18
-2 -2 8 12 8

26(c). Since DT is a 3 x 3 matrix and A is a 1 x 3 matrix, it is not possible to compute the expression DT A.

-2 0 1
27(a). ADT=[ -3 -1 6]| 1 0 -2 |=[35 42 -7 ].
5 7 —1
-9 1 82 1 =22 16
0 1 -9 0 3 =2 1 1 5 =2
; T — —
27(b). First note that C* C = 3 5 115 2171222 5 34 —16 | Therefore,
-2 =2 16 -2 -16 8
82 1 =22 16 82 1 =22 16 7465 —59 —2803 1790
(CTOY = 1 1 5 =2 1 1 5 2| 59 31 185  —82
Tl —22 5 34 —16 —22 5 34 —16 | | —2803 185 1921 —1034
16 -2 -16 8 16 -2 -16 8 1790 —-82 —1034 580
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27(c). DTB = 1 0 =2 -7 1| = 2 2
5 7 -1 -1 -3 —48 —10
28(a). We have
[z —y =z
S = [s1,89,83] = 0 y 2z |,
| -y oz
SO )
2 2 1 - -y =z - -y Tz
AS=1]2 5 2 0 y 2z | = 0 y 14z | = [s1,s92,7s3).
1 2 2 xr -y oz T -y Tz
28(b).
—z 0 T —r -y Tz 222 0 0
STAS =ST(AS)=| —y v —v 0 y 14z | = 0 332 0
z 2z z r —y Tz 0 0 4222

but ST AS = diag(1,1,7), so we have the following

2
20 =1= 1= ig
3
3P =1=sy= i%
62=1= 2= :I:?.
29(a). We have
[ 1 —4 0 0 2z Y
AS=| —4 70 0 = —2y
| 0 0 5 z 0 0
[0 —22
= 0 —x —18y
| 5z
= [5s1, —52,953]-
29(b). We have
0 0 =z 0 —2z 9y 522 0 0
STAS = | 2z z 0 0 —z —18 | =] 0 =522 0 |,
y —2y 0 5z 0 0 0 0 4512
so in order for this to be equal to diag(5,—1,9), we must have
522 =5, —5z% = —1, 45y = 9.

137

Thus, we must have 22 =1, 22 = % and y? = % Therefore, the values of z, y, and z that we are looking for

are r = =+ 5,y—:l: ,and z = +1.
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2 0 0 0
0 2 0 O
30(a). 00 2 0
0 0 0 2
7 0 0
30(b). | 0 7 0
0 0 7

31. Suppose A is an n x n scalar matrix with trace k. If A = al,,, then tr(A) = na = k, so we conclude that
a=k/n. So A= %Im a uniquely determined matrix.

32. We have
1 T 1
BT = {2(A+AT)} = 5(AJrAT)T = 5(AT+A) =B
and
1 T 1
CT=|-(A-AT)| =-AT-A)=——-(A-AT)=-C.
2 2 2
Thus, B is symmetric and C' is skew-symmetric.
33. We have
1 1 1 1 1 1
B = —(A+ AT+ Z(A-ATYy = A4+ AT+ —_A— —AT = A
+C 2( + )+2( ) 2 +2 +2 2
34. We have
1 1 4 -1 0 4 9 2 1 8 8 2] (4 4 1
B:§(A+AT):§ 9 -2 3|+ | -1 -2 5 =5 |8 4 8 |=]4 24
2 5 5 0 3 5 2 8 10 | |1 4 5
and
1 1 4 -1 0 4 9 1 0 —-10 -2 [0 -5 -1
C:§(A—AT): 9 -2 3 |—-| -1 =25 =—1 10 0 -2 |=|5 0 -1
2 5 5 0 3 5 2 2 0 |1 1 0
1 1 =5 3 13 7 1 2 -2 10 1 -1 5
B:§ 3 2 4|+ -5 2 =2 == -2 4 2|=] -1 2 1 |.
7T -2 6 3 4 6 10 2 12 5 1 6
1 1 =5 3 1 3 7 1 0 -8 —4 0 —4 -2
Czi 3 2 41— -5 2 =2 =3 8 0 6 |=]4 0 3/|.
7T -2 6 3 4 6 4 -6 0 2 -3 0

36(a). If A is symmetric, then AT = A, so that

B:%(A+AT):%(A+A)=%(2A):A

and

1 T _1 _1 _
C=35(A=AT) = S(A= 4) = 5(0,) = 0,
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36(b). If A is skew-symmetric, then AT = —A, so that

B %(A+AT) _ %(A+ (—A)) = %(on) ~0,
and 1 1 1
0= 5(A-AT) = {(A~ (-A) = ;24) = A

37. If A = [ai;] and D = diag(dy,ds, ...,d,), then we must show that the (i, j)-entry of DA is d;a;;. In
index notation, we have

(DA)i; = Z didikar; = didiiai; = diaij.
k=1
Hence, DA is the matrix obtained by multiplying the ith row vector of A by d;, where 1 <i < n.

38. If A = [a;;] and D = diag(di,ds,...,d,), then we must show that the (7, j)-entry of AD is d;a;;. In
index notation, we have

(AD)ij =Y aiwd;di; = aijd;dj; = aijd;.
k=1
Hence, AD is the matrix obtained by multiplying the jth column vector of A by d;, where 1 < j <n.

39. Since A and B are symmetric, we have that A7 = A and BT = B. Using properties of the transpose
operation, we therefore have
(AB)T = BT AT = BA = AB,

and this shows that AB is symmetric.
40(a). We have (AAT)T = (AT)TAT = AAT, so that AAT is symmetric.
40(b). We have (ABC)T = [(AB)C|T = CT(AB)T = CT(BTAT) = CTBT AT, as needed.

1 cost
aww= L, )
—2e72t
o w=] 2
cost —sint 0
43. A'(t) = | sint cost 1
0 3 0
et 2e? 2t
a4 A/(t):[zet ge2t 10t]'

45. We show that the (7, j)-entry of both sides of the equation agree. First, recall that the (i, j)-entry of
ABis 3 ) _, aicbyj, and therefore, the (i, j)-entry of % (AB) is (by the product rule)

n n n
! / ! /
k=1 k=1 k=1

The former term is precise the (i, j)-entry of the matrix %B , while the latter term is precise the (7, j)-entry
of the matrix A%Z. Thus, the (i, j)-entry of < (AB) is precisely the sum of the (i, j)-entry of %B and the
(i, j)-entry of A%. Thus, the equation we are proving follows immediately.
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46. We have
et et g — et —et ‘1 e —le| |1 1] _ | e-1 1-1Je
o | 2e" 5e”t T | 2et —Be7t |10 7 | 2 —5/e 2 5| | 2—-2 5-5/e |’
47. We have
/W/2 [ cost } { sint }
. dt =
0 sint —cost
48. We have
1 t 2t 2 t 1.2t 8
e e t et Lle t 1
/0 { 2et 4e* 52 }dt [ 2¢! 2e?t 33 ] o

:[e e?/2 1/3]_[1 1/2 0]_[6_1 = 1/3}

o= e -1 e =16 ]- [ 8-

2¢ 2% 5/3 2 2 0 2e —2 2e%-2 5/3
49. We have
1 e?t sin 2t i éth f% cos 2t
/ t? -5 tet dt = §75t tel — et
0 sec?t 3t —sint | tant 3¢ 4 cost
[ _cos2 1 1 -1 1-cos2
2 2 2 2 2 2
—| —14/3 0 — |0 -1 |=| 143 1
tan 1 %—l—cosl 0 1 tan 1 %—}—cosl

50. [A(t)dt = [ [=5dt [gigdt [e¥dt | =] =5t tan~'(t) $e |.

[ 2t t2
o f[ 2 )am[ 2]
[ sint cost 0 —cost  sint 0
52. / —cost sint t |dt= | —sint —cost t?/2
|0 3t 1 0 3t2/2
[t et o et
53. / | 2 Be! W= 9et et |-
[ 2t sin 2t %th —% cos 2t
54. / t2 -5 tet dt = g — 5t  tet —et
L sec2t 3t —sint tant %tQ + cost

Solutions to Section 2.3

True-False Review:

(a): FALSE. The last column of the augmented matrix corresponds to the constants on the right-hand
side of the linear system, so if the augmented matrix has n columns, there are only n — 1 unknowns under
consideration in the system.
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(b): FALSE. Three distinct planes can intersect in a line (e.g. Figure 2.3.1, lower right picture). For
instance, the zy-plane, the xz-plane, and the plane y = z intersect in the x-axis.

(c): FALSE. The right-hand side vector must have m components, not n components.

(d): TRUE. If a linear system has two distinct solutions x; and x3, then any point on the line containing
x; and X5 is also a solution, giving us infinitely many solutions, not exactly two solutions.

(e): TRUE. The augmented matrix for a linear system has one additional column (containing the constants
on the right-hand side of the equation) beyond the matrix of coefficients.

(f): FALSE. Because the vector (1,22, 3,0,0) has five entries, this vector belongs to R. Vectors in R?
can only have three slots.

(g): FALSE. The two column vectors given have different numbers of components, so they are not the
same vectors.

Problems:
1.
2-1-3(—-1)+4-2=13,
1+ (-1)—2=-2,
5-14+4(-1)+2=3.
2.
24+ (-3)—2-1=-3,
3:2—(-3)—-7-1=2,
24+ (-3)+1=0,
2:242(-3)—4-1=-6
3.
(1—t)+(2+3t)+ (3—2t) =6,
(I1—-t)—(243t)—2(3—-2t)=-T7,
5(1—t)+(2+3t) — (3—2t) =4.
4.

s+ (s—2t)— (2s+3t)+ 5t =0,
2(s —2t) — (28 4+ 3t) + 7t = 0,
As+2(s — 2t) — 3(2s + 3t) + 13t = 0.
5. The two given lines are the same line. Therefore, since this line contains an infinite number of points,

there must be an infinite number of solutions to this linear system.

6. These two lines are parallel and distinct, and therefore, there are no common points on these lines. In
other words, there are no solutions to this linear system.

7. These two lines have different slopes, and therefore, they will intersect in exactly one point. Thus, this
system of equations has exactly one solution.

(c)2017 Pearson Education. Inc.



142

8. The first and third equations describe lines that are parallel and distinct, and therefore, there are no
common points on these lines. In other words, there are no solutions to this linear system.

1 2 -3 1 1 2 -3|1
9.A=[2 4 -5 |, b=|2|,4%*=]2 4 —5]|2
7 2 -1 3 72 -1|3
11 1 -1 3 11 1 —-1]3
_ _ # _
10 4=, 4 _3 7}7 _{2}”4_[24—3 72}
1 2 -1 0 1 2 —-1]0
11. A=[2 3 =2 |, b=|0|,A*=]2 3 —2]|0
5 6 —5 0 5 6 —5/|0

12. It is acceptable to use any variable names. We will use x1, 22, 3, 4:

1 — T2 +2£L’3 +3ZE4 = ].,
1+ w2 —2w3+6xy = —1,
3r1 +x9 Fdx3+2x4 = 2.

13. It is acceptable to use any variable names. We will use x1, 2, x3:

201 + xo +3xz3= 3,
dr1 — x9 +2x3 1,
7%1 + 6%2 +3x3 —5.

14. The system of equations here only contains one equation: 4x, — 2xy — 2z3 — 3x5 = —9.
15. This system of equations has three equations: —3zo = —1, 2x1 — Tz =6, bxy +5xe =7.
16. Given Ax = 0 and Ay = 0, and an arbitrary constant c,

(a). we have
Az =A(x+y)=Ax+Ay=0+0=0

and
Aw = A(cx) = ¢(Ax) = c0 = 0.

(b). No, because
Alx+y)=Ax+ Ay =b+b =2b #b,

and
A(ex) = c(Ax) =cb #Db

in general.

[ 2] [ -4 3 x1 4t
i [ _4sz]+[t2}

[0 ] [ —t 1
18'_x’2___—sint 1}{532}

2017 [ o e?t 1 0
19 xh | | —sint 0 To Tl
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x) 0 —sint 1 X1 t
20. | o | = | —¢€ 0 t2 N e IR

xh —t t2 0 T3 1
21. We have

0= [ _afug ] <[ 5

and
[ 2 ett 0] [ 24+ (-1)(-2e*)+0 ] [ de*
AX+b— |: _9 3 :| |: _26425 :| + |: 0 :| - |: —2€4t+3(—2€4t)—|—0 - —8€4t .
22. We have
x'(t) = 4(—2e7%) 4+ 2cost . —8e¢72! + 2cost
T | 3(—2e72%) +sint | | —6e7% +sint
and

_ 92t . _ .
Ax—i—b:{ 1 4] [4@ +251nt] [ 2(cost+smt)}

-3 2 3e™2 — cost Tsint + 2cost
B 4e~2t 4 2sint — 4(3e72" — cost) — 2(cost + sint) [ —8e7% 4+ 2cost
T | —3(4e7 + 2sint) +2(3e % —cost) + Tsint +2cost | | —6e 2 +sint

23. We compute

o 3e! + 2te
T et 4+ 2tet

and

Ux+b— 2 -1 2te + et L 0o | 2(2te’ +e) — (2te — ') + 0 | 2tet + 3et
X -1 2 2tet — et det | T | —(2tet +eb) +2(2tet —et) +4et | T | 2tet +et |

Therefore, we see from these calculations that x’ = Ax + b.

24. We compute
—tel — et
x' = —09e~t

tet + et —6et

and

1 00 —tet —et —tet —et —tet — et
Ax+b=| 2 -3 2 9e~t +| 6e7t | = | 2(—te') —3(9%et) +2(te! +6e7) | +| 6et | = —9et

1 -2 2 te! +6e~t et —te! —2(9e™t) + 2(tet + 6e7t) et te' 4+ e! — 6e~

Therefore, we see from these calculations that x’ = Ax + b.

Solutions to Section 2.4

True-False Review:

(a): TRUE. The precise row-echelon form obtained for a matrix depends on the particular elementary row
operations (and their order). However, Theorem 2.4.15 states that there is a unique reduced row-echelon
form for a matrix.
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(b): FALSE. Upper triangular matrices could have pivot entries that are not 1. For instance, the following

.. . . 2
matrix is upper triangular, but not in row echelon form: [ 0 8 ] .

(c): TRUE. The pivots in a row-echelon form of an n X n matrix must move down and to the right as
we look from one row to the next beneath it. Thus, the pivots must occur on or to the right of the main
diagonal of the matrix, and thus all entries below the main diagonal of the matrix are zero.

(d): FALSE. This would not be true, for example, if A was a zero matrix with 5 rows and B was a nonzero
matrix with 4 rows.

(e): FALSE. If A is a nonzero matrix and B = —A, then A + B = 0, so rank(A + B) = 0, but rank(A4),
rank(B) > 1 so rank(A)+ rank(B) > 2.

0 1

(f): FALSE. For example, if A = B = [ 0 0

rank(B)=1+1=2.

}, then AB = 0, so rank(AB) = 0, but rank(A)+

(g): TRUE. A matrix of rank zero cannot have any pivots, hence no nonzero rows. It must be the zero
matrix.

(h): TRUE. The matrices A and 2A have the same reduced row-echelon form, since we can move between
the two matrices by multiplying the rows of one of them by 2 or 1/2, a matter of carrying out elementary
row operations. If the two matrices have the same reduced row-echelon form, then they have the same rank.

(i): TRUE. The matrices A and 2A have the same reduced row-echelon form, since we can move between
the two matrices by multiplying the rows of one of them by 2 or 1/2, a matter of carrying out elementary
row operations.

Problems:

. Neither.

. Reduced row-echelon form.
. Neither.

. Row-echelon form.

. Row-echelon form.

. Reduced row-echelon form.
. Reduced row-echelon form.

. Reduced row-echelon form.

© ® X Sk W N

10.
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11.

S O O

2. Ags(—4)

1. A12(—1), Alg(—?))

12.

6. As(5)

|

4. Py; 5. My(—1)
,Rank (A) = 3.

N

3. A1x(—2), A13(-3)

2. Ay (—1)

2. Agi(—1), Agz(—1)

1. P13

13.

2 -5
-1 -2
-5 13
7. Ms(1/23).

1
0
0

R

-5
13
-2

2
-5
-1

1
0
0

) 1 2 —5
31212 -1 3
1 0 -1 -2
3. Apa(—2)

1
-1
-2

3
2
2

-1
1
-2

2
3
2

N — O

6. A23(5)

5. My(—1)

4. P23

1. P12

14.

2.

,Rank (A)

N — O

— O O

1
0
0

3
-7
-1

4. Pog 5. Mg(—l), A23(7).

3. A12(—2), A13(—2)

2. Agi(—1)

1. Py

15.

S~ N

— o MmO

— — O O

— o O O

=

O — N A

— o MmO
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4. M3(1/3)

3. Agy(—1)

2. Alg(—?)), AlS(_2)> A14(_2)

1. Py3

16.

,Rank (A) = 2.

M NS

— =N

oA — O

17.

—
o <t -
I
— O ™M
N — O
I
o — o
— O O
| I |
—
™ LR
/
— —
N>
o~ o <fH —
= |
™ — N m
— AN~ ™M
_I_A [
—
act SO~ ™M
<
N — O O
—~
@] —_
|
[a\]
= ¢
i | —|
<
. ™ A b~
[a\]
— <f 0
a ™ en -
[a W)
. S~ ™M
L
— O AN
L 1
—?
—

2 1 3 4 2
10 2 1 3
2315 7

|

,Rank (A) = 3.

2

-1

0 1

<+

2. A12(~2), A1a(~2), 3. Axs(-3) 4. My(—1)

1. Py

|

18.

2
1
6
—12

2

1

6
—12 0

2 1
-1 0
—6 0

—12 0

2

1

6
—12 0

1
0
0
0

1 2

5 3 )
-2

-2

-2 2

2
-2 5

1
3
2
)

2. A12(—3), A13(_2)7 A14(_5)

1
~

7
5
-2
—2

7T 4
5 3

-2 2
-2 5

4
3
2
)

2.

,Rank (A)

N —H OO
—\ o O O
N — O O

— O O O

2

4. A23(6), A24(12)

3. My(—1)

1. Ay (—1)

19.

2. Ay»(6)

1. My(—1)

20.

2. A1p(—-3) 3. Ma(3) 4. Ay (1)

1. Py
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3.7 10 12 1 1 2 1 121 10 -5
2 3 -1 |A]23 -1|2]0 -1 =3[2]0o13|~A|01 3
12 1 3.7 10 0o 1 7 01 7 00 4
10 -5 100
2101 3|20 1 0]=Is;Rank(A)=3
00 1 00 1
1. Pis 2. Apa(—=2), Ag(=3) 3. My(—1) 4. Apy(—=2), Agg(—1) 5. Mg(d) 6. Agy(5), Aga(—3)
22.
3 -3 6 1 -1 2
2 -2 4|A]0 0 0|, ,Rank(A)=1
6 —6 12 0 00
1. My(3), Ara(=2), Ars(—6)
23.
3 5 —12 1 2 -5 1 2 -5 10 1
2 3 —7]lA|l0o -1 32|01 -3[2]0 1 -3/|, Rank(A)=2.
—2 -1 1 0 3 -9 0 3 -9 00 0
1. Aoi(—1), A1a(=2), A13(2) 2. Ma(=1) 3. Ag(—2), Agz(—3)
24.
1 -1 -1 2 1 -1 -1 2 102 3 100 5
3 -2 07|10 1 3 1|2/013 1|3[010 4
2 -1 2 14 0 1 40 00 1 -1 00 1 -1
4 -2 3 8 0 2 70 00 1 -2 000 —1
100 5 1000
s 010 455|010 0] B
“~loo 1 1|0 o1 o] fwRank(d)=4
000 1 0001
1. Aa(=3), A1s(=2), Arg(—4) 2. Ag(1), Ass(—1), Aos(=2) 3. As1(=2), Asa(—3), Agg(—1)
4. My(=1) 5. A (=5), Aga(—4), Agz(1)
25.
1 -2 1 3 1 -2 1 3 1 -2 1 3 1 -2 0 1
3 62 7|~lo 0 -1 2|20 0o 1 2|2]0 01 2|, Rank(4)=2
4 -8 3 10 0 0 -1 -2 0 0 -1 -2 0 00 0
1. App(=3), Ais(—4) 2. Ma(—1) 3. Asi(—1), Ags(1)
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26.
01 2 1 01 2 1 01 2 1 01 0 1/3
0312|A]00 -6 —2[2loo0o 1132|001 1/3
020 1 00 —4 —1 00 -4 -1 000 1/3
01 0 1/3 0100
L1001 132100 1 0],Rank(A4)=3
000 1 0001

Solutions to Section 2.5

True-False Review:

(a): FALSE. This process is known as Gaussian elimination. Gauss-Jordan elimination is the process by
which a matrix is brought to reduced row echelon form via elementary row operations.

(b): TRUE. A homogeneous linear system always has the trivial solution x = 0, hence it is consistent.

(¢): TRUE. The columns of the row-echelon form that contain leading 1s correspond to leading variables,
while columns of the row-echelon form that do not contain leading 1s correspond to free variables.

(d): TRUE. If the last column of the row-reduced augmented matrix for the system does not contain a
pivot, then the system can be solved by back-substitution. On the other hand, if this column does contain
a pivot, then that row of the row-reduced matrix containing the pivot in the last column corresponds to the
impossible equation 0 = 1.

(e): FALSE. The linear system z = 0, ¥y = 0, z = 0 has a solution in (0,0,0) even though none of the
variables here is free.

(f): FALSE. The columns containing the leading 1s correspond to the leading variables, not the free
variables.

Problems:

For the problems of this section, A will denote the coefficient matrix of the given system, and
A# will denote the augmented matrix of the given system.

1. Converting the given system of equations to an augmented matrix and using Gaussian elimination we
obtain the following equivalent matrices:

I =53 | 1|1 5|3 |2]1 =5
3 —-9]15 0O 616 0 1
By back substitution, we find that x5 = 1, and then x; = 8. Therefore, the solution is (8, 1).

— W

1. Aip(=3) 2. Ma(3)

2. Converting the given system of equations to an augmented matrix and using Gaussian elimination we
obtain the following equivalent matrices:

2121 —é 2|31 —

1 0 51 -3 0

4 =181 —3
2 1)1 2 1

— =
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1 Mi(3) 2. Ap(-2) 3. My(2)

3
By back substitution, we find that 2o = —2, and then x; = 7 Therefore, the solution is (%, —2).

3. Converting the given system of equations to an augmented matrix and using Gaussian elimination we
obtain the following equivalent matrices:

7—35&/7—35’%1—
14 -6 |10 0 010 0

1. App(-2) 2. Ma(2)

o=lw

(@R {19}
—_

Observe that x, is a free variable, so we set x5 = ¢t. Then by back substitution, we have x; = %t +
Therefore, the solution set to this system is

{(re7)ooent

4. Converting the given system of equations to an augmented matrix and using Gaussian elimination we
obtain the following equivalent matrices:

~Jjot

1 2 1)1 1 2 1| 1 12 1] 1] [1 2 1] 1
35 134210 =1 =2 o201 2] 02|01 2| 0
2.6 7|1 0 2 5|-1 0 2 5|1 00 1]-1

1. A1a(=3), Aj3(=2) 2. My(—1) 3. Ayg(—2)

The last augmented matrix results in the system:

T+ 2x9 + x3= 1,
To + 2(E3 = 0,

I3 = —1.

By back substitution we obtain the solution (—2,2, —1).

5. Converting the given system of equations to an augmented matrix and using Gaussian elimination, we
obtain the following equivalent matrices:

3 -1 o0l 1 1 -2 —5]-3 1 -2 —5|-3
2 1 5| 4lAl2 1 5| 4|20 5 15|10
7 -5 —8|-3 7 -5 —8|-3 0 9 27|18

1 -2 —5]|-3 10 11

Slo 1 3] 212101 3|2

0 9 27| 18 00 0|0

Lo Agi(—1) 2. Ap(—2), Aws(=7) 3. Ma(3) 4. Ay(2), Axs(—9)
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The last augmented matrix results in the system:

X1 + Tr3 = 1,
To + 33 = 2.
Let the free variable 3 = t, a real number. By back substitution we find that the system has the solution
set {(1 —¢,2—3t,t): for all real numbers t}.

6. Converting the given system of equations to an augmented matrix and using Gaussian elimination we
obtain the following equivalent matrices:

3 5 —1]14 1 2 113 1 2 1] 3 1 2 1] 3
12 113 A3 5 —1/42]0 -1 45|20 1 4| 5
25 6] 2 25 6|2 0 1 4| -4 0 1 4| -4

12 1] 37 _[1 2 13

1o 1 4] 512101 4|5

00 0]-9 00 01

1. Pis 2. Ap(—3), Ai3(—2) 3. Ma(—1) 4. Agys(—1) 5. My(—3)

This system of equations is inconsistent since 2 = rank(A) < rank(A#) = 3.

7. Converting the given system of equations to an augmented matrix and using Gaussian elimination we
obtain the following equivalent matrices:

6 -3 3|12] 1 -1 -3 2 ) 1 -1 12
2 -1 1| 4|~ 2 -1 1| 4|~|0 0 0]0
-4 2 -2|-8 -4 2 -2|-8 0 0 0]0

LoMy() 20 Aps(—2), Ags(4)

Since x5 and x3 are free variables, let x5 = s and x3 = t. The single equation obtained from the augmented
matrix is given by x; — %372 + %.ﬁg = 2. Thus, the solution set of our system is given by

t
{(2+ % — §7s,t) : s, t any real numbers }.

8. Converting the given system of equations to an augmented matrix and using Gaussian elimination we
obtain the following equivalent matrices:

2 -1 3| 14 3 1 -2 -1 1 2 -5|-15 1 2 —5|-15
3 1 —2|-1|1l2 -1 3|14]2|2 -1 3|-14|3]|0 -5 13| 44
7 02 3| 3|7 |7 2 =3/ 3|77 2 -3 31710 —12 32| 108
5 -1 —-2| 5 5 -1 —-2| 5 5 -1 -2 5 0 —11 23| 80
1 2 —5|-15 1 2 —5|-15 1 2 —5|-15
4|0 —12 32|18 |50 -1 9] 28|60 1 -9|-28
“lo -5 13| 4|7 |0 -5 13| 44|~ |0 -5 13| 44
0 —11 23| 80 0 —11 23| 80 0 —11 23| 80
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1 2 —5| —15 1 2 -5| —15 1 2 —5]-15
101 -9 —28|s|0 1 -9 —28|9]0 1 —9|-28
1o o0 =32 —96 | |0 0 32 9% |~ lo0o o0 1| 3

0 0 —76|—228 0 0 —76|—228 00 0 0

1. P12 2. A21<71) 3. A12(72), A13(77), A14(75) 4. P23
5. App(—1) 6. My(—1) 7. Ays(5), Aps(11) 8. Ms(—1) 9. Ms(55), Asy(76).

The last augmented matrix results in the system of equations:

T — 2$2 - 5£E3 = *15,
To — 9583 = —28,
r3 = 3.

Thus, using back substitution, the solution set for our system is given by {(2,—1,3)}.

9. Converting the given system of equations to an augmented matrix and using Gaussian elimination we
obtain the following equivalent matrices:

2 1 -4 5 1 1 -3]|-3 1 1 -3|-3 1 1 -3] -3
3 2 -5 8|13 2 -5 8|20 -1 4|17|s|0 1 —4]|-17
5 6 —6/2 | |5 6 —-6/21]"]0 1 9[3[7]0o 1 9| 35
1 1 -3|-3 2 -1 —4|-5 0 -3 2| 11 0 -3 2| 11

1 1 =-3| -3 1 1 -=3| -3 1 1 -3| -3

4]0 1 —4|-17|s5]01 —4]|-17|6|0 1 —4|-17

“lo o 13] 52|70 o0 1 41710 0 1 4

0 0 —10|—40 0 0 —10|—40 00 0 0

1. Py 2 Apa(=3), Ars(=5), Aa(=2) 3. My(—=1) 4. Agg(—1), Ass(3) 5. Ma() 6. Agu(10)

The last augmented matrix results in the system of equations:

r1 + 29 — 33 = — 3,
To — 4373 = —17,
I3 = 4.

By back substitution, we obtain the solution set {(10,—1,4)}.

10. Converting the given system of equations to an augmented matrix and using Gaussian elimination we
obtain the following equivalent matrices:

1 2 -1 1|1 12 -1 11
2 4 -2 2/2]1Al00 000
5 10 -5 55 00 0 00

1. Alg(—2)7 Alg(—5)

The last augmented matrix results in the equation x; + 2z3 — x3 + 4 = 1. Now x5, x3, and x4 are free
variables, so we let zo = 7, z3 = s, and x4 = t. It follows that z; = 1 —2r + s —t. Consequently, the solution
set of the system is given by {(1 — 2r +s —t,7,s,t) : r,s,t and real numbers }.
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11. Converting the given system of equations to an augmented matrix and using Gaussian elimination we

obtain the following equivalent matrices:

1 2 -1 1|1 1 2 -1 1| 1 1 2 -1 1] 1
2 3 1 —1|2 |10 -7 3 =3, 020 1 =2 2|0
1 -5 2 2|1 0 -7 3 =3[ 0 0 -7 3 =3| 0
4 1 -1 1]3 0 -7 3 =3|-1 0 -7 3 =3|-1

12 -1 1] 1 12 -1 1] 1 12 -1 11
301 =2 21 04|01 =2 2] 05|01 =2 20
00 00| 0 00 0 0]-1 00 0 01
00 0 0]-1 00 00| 0 00 0 00

1. Ap(=2), Aiz(—1), A(—4) 2. Ma(—2) 3. Ags(7), A2a(7) 4. Py 5. Mz(—1)

The given system of equations is inconsistent since 2 = rank(A) < rank(A#) = 3.

12. Converting the given system of equations to an augmented matrix and using Gauss-Jordan elimination

we obtain the following equivalent matrices:

12 1 1 —-2]3 12 1 1 -2 3
00 1 4 312 |4~Al0 0 1 4 -3 2
29 4 -1 —10 5]0 00 -3 —12 9| -6

1. A3(—2) 2. Ass(3)

w

o O =
O O N
O = =
O = =
o

O N

The last augmented matrix indicates that the first two equations of the initial system completely determine
its solution. We see that x4 and x5 are free variables, so let x4 = s and x5 = t. Then x3 =2 — 4x4 + 325 =
2—4s43t. Moreover, x5 is a free variable, say xo = r, so then z1 = 3—2r—(2—4s+3t)—s+2t = 1—2r+3s—t.

Hence, the solution set for the system is

{(1—=2r+3s—t,r2—4s+ 3t,s,t) : r,s,¢ any real numbers }.

13. Converting the given system of equations to an augmented matrix and using Gauss-Jordan elimination

we obtain the following equivalent matrices:

2 -1 —2| 2 1 4 1] 4 1 4 1
4 3 2| -1 A4 3 —2[-1 |20 —13 —6
1 4 1] 4 2 1 —1| 2 0 -9 -3
1 4 1 4 1 4 1] 4 1 4
2lo 12 4 sl121o 12 4| 8|20 -1
0 —13 —6| —17 0 -1 —2| -9 0 12
10 —7| -32 1 0 —7]-32
Slo 1 2 91210 1 2 9 | L
0 0 —20]|—100 00 1 5
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47 1 4 1| 4
7210 -9 —3| —6
—6 0 —13 —6| 17
1] 4 1 4 14
29| Zlo0o 1 2]9
41 8 0 12 48
1 00| 3
01 0|-1]1.
00 1| 5
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1. P13 2. Alg(—4)7 A13(_2) 3. P23 4. Mg(—%) 5. Agg(l)
6. Py 7. My(—1) 8. Ay(—4), Aps(—12) 9. M3(—55) 10. Agi(7), Asa(—2)

The last augmented matrix results in the solution (3, —1,5).

14. Converting the given system of equations to an augmented matrix and using Gauss-Jordan elimination
we obtain the following equivalent matrices:

31 5]2 11 1|1 1 1 1] 1

11 —1]1]A]31 5220 —2 8|-1

2 1 23 2 213 0 -1 4| 1
1 1 —1]1 11 -1 1
2lo 1 -4} 0 1 —4[1/2
0 -1 4|1 00 0]3/2

We can stop here, since we see from this last augmented matrix that the system is inconsistent. In particular,
2 = rank(A) < rank(A#) = 3.

1. Pip 2. Ap(=3), Ag3(—2) 3. Ma(—1) 4. Ays(1)

15. Converting the given system of equations to an augmented matrix and using Gauss-Jordan elimination
we obtain the following equivalent matrices:

1 0 —-2]-3 1 0 —2]-3 1 0 —2[-37 [10 —2|-3
3 2 4|-9|Alo =2 2/ 0l2l0o 1 1] 0ol2]l0o 1 =1] 0
1 -4 2]-3 0 -4 4| 0 0 -4 4| 0 00 0] 0

1. As(=3), Ais(—1) 2. My(—1) 3. Ay(4)

The last augmented matrix results in the following system of equations:
r1 —2r3=-3 and a9 —1x3=0.

Since x3 is free, let x5 = ¢. Thus, from the system we obtain the solutions {(2¢—3,¢,t) : t any real number }.

16. Converting the given system of equations to an augmented matrix and using Gauss-Jordan elimination
we obtain the following equivalent matrices:

2 -1 3 —1| 3 1 -2 3 1] 6 1 -2 3 1| 6
3 21 5/-6|4A]3 21 5/-6|2l0 8 -8 —8|-2
1 -2 3 1| 6 2 -1 3 —1| 3 0 3 -3 —3| -9

1 -2 3 1] 6 10 1 —-1] o0

Slo 1 -1 —1|=3|~]o0o1 -1 —-1|-3

0 3 -3 —-3|-9 00 0 0| 0
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The last augmented matrix results in the following system of equations:
r1+x3—24=0 and x9—2x3—14=—-3.

Since x3 and x4 are free variables, we can let x3 = s and x4 = t, where s and ¢ are real numbers. It follows
that the solution set of the system is given by {(t — s,s 4+t — 3,s,t) : s,t any real numbers }.

17. Converting the given system of equations to an augmented matrix and using Gauss-Jordan elimination
we obtain the following equivalent matrices:

1 1 1 —1] 4 1 1 1 —1] 4 1 1 1 —1|4

1 -1 -1 -1 2(1]l0 -2 =2 0o 221011 0|1

1 1 -1 1/=21"1o 0 -2 2/ 671001 —-1|3

1 -1 1 1]-8 0 -2 0 2]|-12 010 —-1/6
10 0 —-1]|3 100 —-1] 3 100 —-1] 3 100 0f-1
5101 1 ofl1tla]010 1/-2|s5]010 1/-2|6|010 0| 2
“loo 1 -1(3|7loo1 -1 3|7]oo1 -1 371001 0]|-1
00 -1 —1/5 000 —2| 8 000 1]|-4 000 1|4

1. Aa(—1), Ayz(—1), Aa(—1) 2. Ma(—3), Ma(—3), Ma(—3) 3. Agy(-1)
4. Agp(—1), Aga(1) 5. My(—2) 6. Ayi(1), Aua(—1), Ags(1)

It follows from the last augmented matrix that the solution to the system is given by (—1,2, —1, —4).

18. Converting the given system of equations to an augmented matrix and using Gauss-Jordan elimination
we obtain the following equivalent matrices:

2 -1 3 1 -1|11 1 -3 -2 -1 —2| 2 1 -3 -2 -1 -2 2
1 -3 -2 -1 —2| 2 2 -1 3 1 —-1| 11 o 5 7 3 3| 7
301 -2 -1 1|-2 A3 1 -2 -1 1|-2|R&|0 10 4 2 7[-8
1 2 1 2 3|-3 1 2 1 2 3|-3 0 5 3 3 5|-5
5 -3 -3 1 2| 2 5 -3 -3 1 2| 2 0 12 7 6 12| -8
1 -3 -2 -1 -2 2 1o 4 2 1} 3 1o 4 2 13 3
o 1 I 3 3] I 015Z§3 % 015133 %
3 5 5 5| 5 | 4 5 5 5 5 | 5 5 3 P ]
10 10 4 2 7/-8|~|00 -10 -4 1] -22|*|0 0 1 2 -5 4
0 5 3 3 5|5 00 -4 0 2| —12 00 -4 0 2| —12
49 _ 6 24 124 49 6 @ 24 124
0 12 7 6 12| -8 00 -2 -§ 2|_1n o0 -2 -§ 2|1
100 -2 &| 2 100 -2 & 2 1000 | ¢
ToOon| B ToOon| B ol
s |01 0 H|m |00 | |01 00 g5
~001§_T18€N0015_T10€N0010_53
000§§—L56 000 1 1] -2 0001 1]-2
000 & B|-3 000 £ B 2 0000 H| U
1000%% 1 0000 1
0100 55/ —5 0100 0]-3
Rloo 1o -1 3|%]oo0o10 0| 4
0001 1]-2 0001 0|4
0000 1] 2 0000 1] 2
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1. Pio 2. A1a(—2), A13(=3), A1a(-1), A15(—5) 3. Mg(%) 4. As1(3), Agz(—10), Aos(—5), Ags(—12)

5. M3( 110) 6. Az (—4), A32(*§)7 34(4), Ags (2 ) 7. M4(§)
8. Aui(5%), Aua(—55), Aus(—32), Aus(— Si) 9. Ms(53)  10. Agi(—15), Asa(—15), A (%) Asa(—1)

10
It follows from the last augmented matrix that the solution to the system is given by (1, —4,2).

19. The equation Ax = b reads

1 -3 1 X1 8
5 —4 1 T | =] 15
2 4 -3 T3 —4

Converting the given system of equations to an augmented matrix and using Gauss-Jordan elimination we
obtain the following equivalent matrices:

1 -3 1 8

1 -3 1] 8 1 -3 1| 8
5 —4 1|15 ]~l0o 11 —4/-22l0 1 1| =5
9 4 —3|-4 0 10 —5|-20 0 10 —5|-20
10 4-7 10 4|-7 10 0] 1
210 1 1|5 (~lo 1 1|=5|2]0 1 0]|-3
0 0 —15]| 30 00 1]-2 00 1]-2

L As(=5), Ar3(=2) 2. Aga(—1) 3. Api(3), Agg(—10) 4. Ma(—2) 5. Agy(—4), Aga(—1)

Thus, from the last augmented matrix, we see that 1 = 1, x9 = —3, and x5 = —2.

20. The equation Ax = b reads

1 0 5 T 0
3 -2 11 zo | =] 2
2 -2 6 T3 2

Converting the given system of equations to an augmented matrix and using Gauss-Jordan elimination we
obtain the following equivalent matrices:

1 0 50 1 0 5]0 1 0 5| 0
3 2 112 Ao —2 —4/2]12]0 1 2|-1
2 —2 6|2 0 —2 —4|2 0 —2 —4| 2

10 5] 0

2101 2]-1

00 0| 0

1. Aip(=3), A13(—2) 2. Ma(—1/2) 3. Ass(2)

Hence, we have x1 4+ 53 = 0 and x5 4+ 223 = —1. Since x3 is a free variable, we can let x3 = t, where ¢ is
any real number. It follows that the solution set for the given system is given by {(—5t, =2t — 1,¢) : t € R}.

21. The equation Ax = b reads

0 1 -1 T —2
0 5 1 X9 = 8
02 1 T3 5
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Converting the given system of equations to an augmented matrix using Gauss-Jordan elimination we obtain
the following equivalent matrices:

01 —1]-2 01 —1]-2 01 —1|-2 01 01
05 1| 8|A]loo0o 6|/18|2loo0o 1| 3[2]00 1|3
02 1] 5 00 3| 9 00 3| 9 00 00

1. Aia(=5), A13(—2) 2. Ma(1/6) 3. Agy(1), Asy(—3)

Consequently, from the last augmented matrix it follows that the solution set for the matrix equation is
given by {(¢,1,3) : t € R}.

22. The equation Ax = b reads

1 -1 0 -1 1 2
2 1 3 7 T2 | = | 2
3 =2 1 0 T3 4

Converting the given system of equations to an augmented matrix and using Gauss-Jordan elimination we
obtain the following equivalent matrices:

1 -1 0 —1]2 1 -1 0 1] 2 1 -1 0 1] 2 101 2] 0
2 13 7/20/~A10o 33 9|l—=212]0o 11 3/—212]011 3|-2
3 -2 1 04 0 1 1 3|-2 0 3 3 9|-2 000 0| 4

1. A1a(—2), A15(—3) 2. Pas 3. Aai1(1), Ags(—3)

From the last row of the last augmented matrix, it is clear that the given system is inconsistent.

23. The equation Ax = b reads

11 0 -1 1 2
31 -2 3 | | 8
2 3 1 1 z3 | | 3
-2 3 5 -2 T4 -9

Converting the given system of equations to an augmented matrix and using Gauss-Jordan elimination we
obtain the following equivalent matrices:

1 1 0 1 2 1 1 0 1 2 1 1 0 1 2 1 0 -1 1 3
3 1 =2 3 8 1 0 -2 -2 0 2 2 0 1 1 0] -1 3 0 1 1 0] -1
2 3 1 2 3 0 1 1 0]-1 0 -2 -2 0 2 0 0 0 0
-2 3 5 =2 -9 0 5 5 0] -5 0 5 5 0] -5 0 0 0 0 0
1. A12(=3), A13(—2), A14(2) 2. Pag 3. Ag1(—1), A23(2), Ags(—5)
From the last augmented matrix, we obtain the system of equations: x1 — z3 + x4 = 3, T3 + x3 = —1. Since

both z3 and x4 are free variables, we may let x3 = r and x4 = t, where r and ¢ are real numbers. The
solution set for the system is given by {(3 +r —¢t,—r —1,7,t) : r,t € R}.

24. Converting the given system of equations to an augmented matrix and using Gauss-Jordan elimination
we obtain the following equivalent matrices:

1 2 -1 3 1 2 -1 3 12 -1 3
2 5 1 71~A]o0o 1 3 1 2101 3 1
1 1 —k2| -k 0 -1 1-k2|-3—k% 0 0 4—k2|-2-k
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1. A1p(=2), Ais(—1) 2. Agy(1)

(a). If k = 2, then the last row of the last augmented matrix reveals an inconsistency; hence the system has
no solutions in this case.

(b). If k = —2, then the last row of the last augmented matrix consists entirely of zeros, and hence we have
only two pivots (first two columns) and a free variable x3; hence the system has infinitely many solutions.

(c). If k # £2, then the last augmented matrix above contains a pivot for each variable 1, x5, and x3, and
can be solved for a unique solution by back-substitution.

25. Converting the given system of equations to an augmented matrix and using Gauss-Jordan elimination
we obtain the following equivalent matrices:

2 1 -1 1]o0 1 1 1 —1]0 1 1 1 —1]0
1 1 1 —-1]o]:1l2 1 -1 1/0o|l=2]0 -1 -3 310
4 2 -1 1jo|~ |4 2 -1 1|lo|"T]o0o -2 -5 5[0
3 -1 1 k|0 3 -1 1 ko 0 -4 -2 k+3|0 |
1 1 1 —1]o0 11 1 —110 1 11 —11]0]
310 1 3 -—=3/0la«4]01 3 -31]0|s5|013 =310
1o -2 -5 507100 1 =10l o0 1 =110
0 -4 -2 k+3]0 00 10 k—9/0 000 k+1|0 |

1. P12 2. Alg(—Z), AA13(—4)7 A14(—3) 3. Mg(—l) 4. A23(2), A24(4) 5. A34(—10)

(a). Note that the trivial solution (0,0,0,0) exists under all circumstances, so there are no values of k for
which there is no solution.

(b). From the last row of the last augmented matrix, we see that if Kk = —1, then the variable x4 corresponds
to an unpivoted column, and hence it is a free variable. In this case, therefore, we have infinitely solutions.

(c). Provided that k # —1, then each variable in the system corresponds to a pivoted column of the last
augmented matrix above. Therefore, we can solve the system by back-substitution. The conclusion from
this is that there is a unique solution, (0,0, 0,0).

26. Converting the given system of equations to an augmented matrix and using Gauss-Jordan elimination
we obtain the following equivalent matrices:

11 —2| 4 11 -2 4 11 -2 ] 4 10 -3 2
35 4016 |~]0 2 2 4 2101 1 2 |21lo 1 1 2
2 3 —al| b 01 4-a|b—28 01 4—a|b—28 00 3-—a|b-—10

(a). From the last row of the last augmented matrix above, we see that there is no solution if ¢ = 3 and

b # 10.

(b). From the last row of the augmented matrix above, we see that there are infinitely many solutions
if @ = 3 and b = 10, because in that case, there is no pivot in the column of the last augmented matrix
corresponding to the third variable z3.
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(c). From the last row of the augmented matrix above, we see that if a # 3, then regardless of the value
of b, there is a pivot corresponding to each variable 1, xs, and x3. Therefore, we can uniquely solve the
corresponding system by back-substitution.

27. Converting the given system of equations to an augmented matrix and using Gauss-Jordan elimination
we obtain the following equivalent matrices:

1 —a |3 1 —a 3

2 1 [6|~]|0 142a|0

-3 a+0d|1 0 b—2a |10
From the middle row, we see that if a # —%, then we must have x5 = 0, but this leads to an inconsistency in
solving for x; (the first equation would require x; = 3 while the last equation would require x; = —%. Now
suppose that a = f%. Then the augmented matrix on the right reduces to (1) g_ly/f 130 CIfEb =1,

then once more we have an inconsistency in the last row. However, if b = —1, then the row-echelon form
obtained has full rank, and there is a unique solution. Therefore, we draw the following conclusions:

. . . 1 . o 1 o
(a). There is no solution to the system if a # —5 or if a = —5 and b = —1.
(b). Under no circumstances are there an infinite number of solutions to the linear system.
(c). There is a unique solution if a = —% and b # —1.

28. The corresponding augmented matrix for this linear system can be reduced to row-echelon form via

1 1 1]y 1 1 1 1 1 1 1 U1
23 1|y [Al0 1 —1]w-—20 [R2]0 1 1| w-—2u
3 5 1]us 0 2 =2|ys—3n 00 O0fy1—2y2+ys

1. Aip(=2), A13(—3) 2. Agy(—2)

For consistency, we must have rank(A) = rank(A#), which requires (y1,2,%3) to satisfy y; — 2y2 + y3 = 0.
If this holds, then the system has an infinite number of solutions, because the column of the augmented
matrix corresponding to y3 will be unpivoted, indicating that y3 is a free variable in the solution set.

29. Converting the given system of equations to an augmented matrix and using Gaussian elimination we
obtain the following row-equivalent matrices. Since a1 # 0:

aip b1 aiz | b1
b1 fl, 1 a1 all 21 1 a&l a1l
b 0 @zzaii—aziapp a11ba—az1b1 0o = As :

a1 ail ail ail

a1 a2
a1 a22

1. Ml(l/au), Alg(—agl) 2. Definition of A and AQ

(a). If A # 0, then rank(A) = rank(A#) = 2, so the system has a unique solution (of course, we are assuming

a1 # 0 here). Using the last augmented matrix above, (GAM) To = aA—j, so that o = %. Using this, we can

solve 1 + %332 = a% for x1 to obtain x; = <, where we have used the fact that Ay = ageb; — a12bs.

aiz b1

(b). If A =0 and a11 # 0, then the augmented matrix of the system is [ 0 “61 ? } , so it follows that
2

the system has (i) no solution if Ay # 0, since rank(A) < rank(A#) = 2, and (ii) an infinite number of
solutions if Ay = 0, since rank(A#) < 2.
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(c). An infinite number of solutions would be represented as one line. No solution would be two parallel
lines. A unique solution would be the intersection of two distinct lines at one point.

30. We first use the partial pivoting algorithm to reduce the augmented matrix of the system:

12 1|1 35 113 3 5 1 3
35 103 |A]1 2 1[t|2|0o 13 2/3| 0
2 6 7|1 2 6 7|1 0 8/3 19/3| -1
3 5 1 1 |3
210 8/3 19/3 0 8/3 19/3 | -1
0 1/3 2/3 0 -1/8|1/8
1. Pio 2. Ap(—1/3), Ai3(—2/3) 3. Pas 4. Ass(—1/8)

Using back substitution to solve the equivalent system yields the unique solution (—2,2, —1).

31. We first use the partial pivoting algorithm to reduce the augmented matrix of the system:

2 -1 3| 14 7 2 -3 3 7 2 -3 3
301 —2|-1 |13 1 -2|-1]2|0 1/7 -5/7|-16/7
7 2 -3 3 2 -1 3| 14 0 —-11/7 27/7 | 92/7
5 -1 —2| 5 5 -1 -2 5 0 —17/7 17 | 20/7
7 2 -3 3 7 2 -3 3
s |0 177 17 | 20/7 | 4|0 177 17 | 20/7
0 —11/7 27/7 | 92/7 0 0  64/17 | 192/17
0 1)7 —5/7|—16/7 0 0  —12/17 | —36/17
7 2 -3 3
s |0 177 yT | 2007
0 0  64/17|192/17
0 0 0 0
1. Pis 2. Aa(—3/7), A13(—=2/7), A14(=5/7) 3. Poy
4. Aoz(—11/17), Apy(1/17) 5. A34(3/16)
Using back substitution to solve the equivalent system yields the unique solution (2, —1, 3).

32. We first use the partial pivoting algorithm to reduce the augmented matrix of the system:

2 -1 —4| 5 5 6 —6]—20 5 6 -6 | 20
3 2 5| 8|13 2 5| 8|2|0 -85 —7/5|—4
5 6 —6/2 |~ |2 -1 —4| 5|70 —17/5 —8/5| -3
1 1 -3|-3 1 1 -3| -3 0 —1/5 —9/5|-7
5 6 —6 | 20 5 6 —6 20
3|0 —17/5 —8/5|-3 | 4| 0 —17/5 —8/5 -3
“lo —8/5 —7/5|—-4 |0 0 —11/17| —44/17
0 —1/5 —9/5|-7 0 0  —29/17|—116/17
5 6 -6 20 5 6 -6 20
5 | 0 —17/5  —8/5 -3 6 | 0 —17/5 —8/5 -3
1o 0o —27|-116/17 | T |0 0  —29/17 | —116/17
0 0  —11/17 | —44/17 0 0 0 0
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1. Pi3 2. A1p(=3/5), A13(—2/5), A1a(—1/5) 3. Pa3
4. Apz(—8/17), Ags(—1/17) 5. P34 6. Azy(—11/29)

Using back substitution to solve the equivalent system yields the unique solution (10, —1,4).

33. We first use the partial pivoting algorithm to reduce the augmented matrix of the system:

2 -1 -1 2 4 3 —2]-1 4 3 2| -1
4 3 —2|-1|A|2 -1 -1 22|00 =5/2 0 |5/2
1 4 1| 4 1 4 1| 4 0 13/4 3/2|17/4
4 3 -2 -1 4 3 -2 | -1
10 13/4 3/217/4 | A ] 0 13/4 3/2 | 17/4
0 —5/2 0 |5/2 0 0 15/13|75/13

1. P12 2. Alg(*]./Q), Alg(*]./ll) 3. P23 4. A23(10/13)

Using back substitution to solve the equivalent system yields the unique solution (3, —1,5).

34.

(a). Let
ail 0 0 cee 0 by
az1 azp 0 0 bo
A# = a3l asz2 ass ... 0 bd
ap1  An2  An3 ... App bn

represent the corresponding augmented matrix of the given system. Since ai1x1 = by, we can solve for x;
easily:
b1
r=—, (a11 # 0).
ai1

Now since ag1x1 + agexs = bo, by using the expression for x; we just obtained, we can solve for xo:

a11ba — az1by
rTg = ——M.
11422

In a similar manner, we can solve for z3, x4, ..., T,.

(b). We solve instantly for z1 from the first equation: x; = 2. Substituting this into the middle equation,
we obtain 2 -2 — 3 - zo = 1, from which it quickly follows that xo = 1. Substituting for z; and zs in the
bottom equation yields 3 -2 + 1 — x3 = 8, from which it quickly follows that x3 = —1. Consequently, the
solution of the given system is (2,1, —1).

35. This system of equations is not linear in a1, 2, and x3; however, the system is linear in 3, 3, and x3,
so we can first solve for xi’ , x%, and x3. Converting the given system of equations to an augmented matrix
and using Gauss-Jordan elimination we obtain the following equivalent matrices:

4 2 3|12 1 -1 1] 2 1 -1 1] 2
1 -1 1] 2414 2 3/12/2]0 6 -1 4
3 1 -1 2 3 1 —1] 2 0 4 —4| -4
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1 -1 1] 2 1 -1 1| 2] [1to0 of 1
Slo 4 —4l-4|2]0o 1 <1120 1 —1]-1
0 6 —1| 4 0 6 —1| 4 00 5|10

(1. 0 o] 1 1 0 01

S1o1 =1]=1 <o 1 0l1].

00 1] 2 00 1]2

1. P12 2. Alg(—4), A13(—3) 3. P23 4. M2(1/4)
5. Ag1(1), Agz(—6) 6. Mao(1/5) 7. Asa(1)

Thus, taking only real solutions, we have 3 = 1, 22 = 1, and 23 = 2. Therefore, z; = 1, 75 = 1, and
x3 = 2, leading to the two solutions (1,1,2) and (1,—1,2) to the original system of equations. There is no
contradiction of Theorem 2.5.9 here since, as mentioned above, this system is not linear in x1, x2, and x3.

36. Reduce the augmented matrix of the system:

3 2 =110 1 1 =210 1 1 =210 1 0 310
2 1 1|lol~{0 -1 s5/0|2]0o 1 —5]{0|X|0 1 =5]|0
5 —4 110 0 -9 1110 0 -9 1110 0 0 =3410
1 0 3]0 1 0 010
2101 =5{0|X2|0 1 0]0
0 0 110 0 0 1|0
1. Ao (—1), A12(—2), A13(—=5) 2. Ma(—1) 3. Ag(—1), Aax3(9)
4. M3(—1/34) 5. Az1(—3), Asa(5)
Therefore, the unique solution to this system is z; = 29 = 23 = 0: (0,0,0).
37. Reduce the augmented matrix of the system:
2 1 —1]0] 1 -1 —-1|0 1 -1 —-110 1 -1 —-110
3 -1 21013 -1 2/0]2]10 2 5]0fs |0 3 110
1 -1 =110 2 1 —-1|0 0 3 110 0 2 510
5 2 =20 | 5 2 =210 0O 7 310 0o 7 310
1 -1 —-1]0 1 0 =510 1 0 =510 1 0 010
410 1 4105101 -4/0]6|0 1 —4]0| 7|01 0|0
0 2 5|0 0 0 130 0 0 110 0 0 1|0
0o 7 3|0 0 0 310 0 0 310 0 0 0|0

1. P13 2. Alg(—?)), Alg(—2), A14(—5) 3. P23 4. A32(—1)
5. Aoi(1), Aoz(—2), Asa(=7) 6. M(1/13) 7. As1(5), Asa(4), Asa(—31)

Therefore, the unique solution to this system is x1 = x5 = x3 = 0: (0,0, 0).

38. Reduce the augmented matrix of the system:

9 -1 —1]0 1 1 4]0 1 1 4]0
5 -1 2|0|~]5 -1 2/0|2]0 -6 —18]0
1 1 4]0 2 —1 —1]0 0 -3 9]0
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11
Slo 1
0 -3

410 10 1]0
3102101 3]0
910 00 00

1. Piy 2. Apa(=5), Ais(—2) 3. Mo(—1/6) 4. Agi(—1), Ass(3)

It follows that z1 +x3 = 0 and x2 4+ 3x3 = 0. Setting x3 = ¢, where t is a free variable, we get x5 = —3t and
21 = —t. Thus we have that the solution set of the system is {(—t, —3t,t) : t € R}.

39. Reduce the augmented matrix of the system:

142 1-i 1 |0 i 1+44i  —i |0 1 1-i -1 |0
i 144 —i o L 1+2i 171' 1 o |2 142 1—i 1 |o
2 1 1436 14300 % 1 1430

11— - 1 1—i  —1 10 1 1—i -1 |0
210 —2-9 1+2z 0 —2-2 142|020 0 —5+8|0
0 —1-2 1+5i 0 0 1 3 |0 0 1 3i |0
1 1—i -1 |0 1 1—-i -1]0 10 0]0
Sl1o 1 3 |0 0 1 3ilol 2101 0]lo0
0 0 548 |0 0 110 00 10
(-

1. P12 2. Ml 3. A12 1— QZ Alg( ) 4. Agg(f].) 5. A32(2+22)
6. P23 7 M3( o+81) 8. A21(—1 +Z), A31(1), A32(—3i)

Therefore, the unique solution to this system is 1 = x2 = z3 = 0: (0,0,0).

40. Reduce the augmented matrix of the system:

2 1 2 1
3 2 10 [t 3 g]0o] [t § 3]0
6 —1 2(0 |~ 6 -1 2/0[Z2]0 =5 00
12 6 4|0 12 6 4]0 0 -2 00
2 1 1
L[ 3 30, Lo 3]0
1o 1 0fo|~|010]0
0 -2 00 00 00

L Mi(1/3) 2. Agp(=6), A13(—12) 3. Ma(—1/5) 4. Az (—2/3), Ass(2)

From the last augmented matrix, we have x; + %.’1,'3 =0 and z5 = 0. Since x3 is a free variable, we let 3 = t,
where t is a real number. It follows that the solution set for the given system is given by {(¢,0, —3t) : t € R}.

41. Reduce the augmented matrix of the system:

2 1 -8]0 3 -2 —5]0 1 -3 3]0
3 -2 5/0|1]2 1 =8/0]=21]12 1 =8/0
5 6 -3/0| |5 6 =3[0 |5 -6 =30
3 -5 1]0 3 -5 1]0 3 -5 110
1 -3 3]0 1 -3 3]0 1 0 =310

310 7 —14]0]4]0 1 —-2/0|s5]l01 —2/0

“lo 9 —18lo|" o 9 —-18lo| |0 o0 o]0
0 4 -810 0 4 -810 00 0]0
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1. Po 2. Aoi(=1) 3. A1a(=2), Aus(=5), Ara(=3) 4. Ma(1/7) 5. Asi(3), Aos(—9), Ans(—4)

From the last augmented matrix we have: x1 —3z3 = 0 and x5 — 2x3 = 0. Since z3 is a free variable, we let
xg = t, where ¢ is a real number. It follows that x5 = 2t and x; = 3t. Thus, the solution set for the given
system is given by {(3¢,2t,t) : t € R}.

42. Reduce the augmented matrix of the system:

1 1+i 1-i]o0 1 14i 1-ilo0 1 1+i 1—ilo0
' 1 i lolAlo 2-i —1]o|R2]0 2-i —110
1-2 —1+i 1-3i|0 0 —4+2 2 |0 0 0 0 |o

1 144 1—4|0 1 0 5290

Alo 1 =2=tlo|~lo 1 =20

0 0 0 |0 00 0 |0

1o Aqa(—i), As(—=1+2i) 2. Ap3(2) 3. Ma(5) 4. Ag(—1—14)

From the last augmented matrix we see that x3 is a free variable. We set x3 = 5s, where s € C. Then
x1 = 2(i — 3)s and a2 = (2 +4)s. Thus, the solution set of the system is {(2(i — 3)s, (2 +1i)s,5s) : s € C}.

43. Reduce the augmented matrix of the system:

1 -1 1]o0 1 -1 1]o0 1 -1 1]0
0 3 2/0]1]0 3 2/0fl2]0 1 2/3|0
3 0 —-1/0|~ o 3 —4|0o|~|o0o 3 —-4]o0
5 1 —-1]0 0 6 6|0 0 6 —6|0
10 5/3]0 1 0 5/3]0 1 00]0
510 1 23/0[4]071 230|501 0]0
“loo -6/o|l Joo 11]0o]7]0oo0 1]0
0 0 —10]0 00 —10]0 00 00

1. A13(—3), A14(—5) 2. Mg(l/g) 3. Agl(l), Agg(—?)), A24(—6)
4. M3(—1/6) 5. Ag1(—5/3), Asz2(—2/3), Ag4(10)

Therefore, the unique solution to this system is 1 = 2o = z3 = 0: (0,0, 0).

44. Reduce the augmented matrix of the system:

2 -4 6]0 1 -2 3o 1 -2 3]0
3 =6 9/0|1(3 =6 9/o|=210 000
1 -2 3/0| 712 =4 6/0]7 0o o0o0]0
5 —10 150 5 —10 15|0 0 0 0/0

1. Mi(1/2) 2. Apa(—3), Aus(—2), Aa(—5)

From the last matrix we have that x1 — 2x3 + 3z3 = 0. Since x5 and x3 are free variables, let o = s and
let 23 = t, where s and t are real numbers. The solution set of the given system is therefore {(2s — 3t, s,1) :
s,t € R}
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45. Reduce the augmented matrix of the system:

4 -2 -1 —-1]0 1 -3 1 —4]o0 1 =3 1 —4]|0
3 1 -2 3/o|A|3 1 -2 3/o|[&2|0 10 -5 15|0
5 -1 -2 10 5 -1 -2 10 0 14 -7 21|0
1 -3 1 -4]0 1 -3 1 -4]0 1 -3 1  —4]o0

2lo 2 -1 3/o|<]lo 2 -1 3/o[2|0 1 -1/2 3/2]0
0 2 -1 3|0 0 0 00 0 0 0 0|0

1. Asi(—1) 2. A1a(—3), A13(=5) 3. My(1/5), M3(1/7)
4. Axz(—1) 5. May(1/2)

From the last augmented matrix above we have that xo — %:133 + %x4 =0and 21 —3x2+2x3—4x4 = 0. Since x3
and x4 are free variables, we can set x3 = 2s and x4 = 2t, where s and ¢ are real numbers. Then x5 = s — 3t
and 1 = s — t. It follows that the solution set of the given system is {(s — ¢, s — 3t,2s,2t) : s, € R}.

46. Reduce the augmented matrix of the system:

2 1 -1 1]0 1 1 1 —1]0 1 1 1 -1]0

1 1 1 —-1{o]+l2 1 -1 1/0|l=2]l0 -1 =3 3|0

3 -1 1 —2/0|7 3 -1 1 —2/0|7]0 -4 -2 1]0

4 2 - 10 4 2 -1 11]0 0 -2 -5 5|0

1 1 1 -1]o0 1 0 -2 210 1 0 -2 210

3|0 1 3 -3/0ol4]01 3 =3/0|s]01 3 =30

“lo -4 =2 1j0o|T]o o0 10 -11{o|T]00 =3 3|0

0 -2 -5 5|0 00 -3 300 00 10 —11]0
1 0 -2 210 1 00 0]o 100 00 100 0]0
6|01 3 =3/0o|l7l010 o0/0ls|]0O10 0/0]og]0T10TO0]|0
“loo 1 —-1|lo|lT]loo0o 1 =1|lolT]oo0o 1 —1lolT]lo o0 1 0|0
0 0 10 —11]0 000 —1/0 000 10 000 1]0

1. Piz 2. Ap(=2), A1a(=3), Ara(—4) 3. Ma(=1) 4. Agi(—1), Asz(4), A24(2)
5. Pyt 6. My(—1/3) 7. Ai(2), Asa(—3), Ass(=10) 8. My(=1) 9. As(1)

From the last augmented matrix, it follows that the solution set to the system is given by {(0,0,0,0)}.
47. The equation Ax = 0 is

Reduce the augmented matrix of the system:
2 =1[0]1[1 —3]0]2]1 —% 0]lsf[1 —3
3400 3410 10 0 1

1. My(1/2) 2. Aj(—3) 3. Ma(2/11) 4. Ay (1/2)
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From the last augmented matrix, we see that 1 = xo = 0. Hence, the solution set is {(0,0)}.

48. The equation Ax = 0 is
1—1
1414

Reduce the augmented matrix of the system:

2
-2

I

0
0

T
1)

|-

J.

1—4 2|0 |1 1 1440 |21
1+i —210 1+i -2 |0 0
1 Mi(H) 20 App(—1-14)

-1+

0
0 0

|

Tt follows that 21 + (=1 + é)ze = 0. Since x5 is a free variable, we can let x5 = ¢, where ¢ is a complex
number. The solution set to the system is then given by {(¢(1 —i),¢) : t € C}.

49. The equation Ax =0 is
1—2¢
241

141
—1+1

Reduce the augmented matrix of the system:

Il

x
T2

I=[o]

1+i 1-2i|0] 1 1 =320 2
~1+44i 244 [0 “1+4i 2+4i |0
1 Mi(5Y) 20 Ap(1—i)
It follows that a; — 13

1
0

1430
2

0
0 0

E

ro = 0. Since z9 is a free variable, we can let xo = r, where r is any complex

number. Thus, the solution set to the given system is {(£2r,r) : r € C}.
50. The equation Ax = 0 is
1 2 3 T 0
2 -1 0 zo | =1 0
1 1 1 T3 0
Reduce the augmented matrix of the system:
1 2 3|0 12 3]0 1 2 3]0 12 3]0
2 -1 0[0|~]0 =5 —6/0 |20 -1 —2/0|2]0 1 2|0
1 1 110 0 -1 =210 0 -5 610 0 -5 —610
1 0 —-1]0 1 0 —-1]0 1 0 010
Slo1 2(0|2lo1 2/0|R|0o 100
0 0 410 0 0 110 0 0 1]0
1. Ap(—2), A13(—1) 2. Py 3. Ma(—1) 4. Asi(—2), Axsz(5) 5. M3(1/4) 6. Asi(1), As2(—2)

From the last augmented matrix, we see that the only solution to the given system is x1 = zo2 = x3 = 0:

{(0,0,0)}.
51. The equation Ax = 0 is
1 1 1 -1
-1 0 -1 2
13 2 2

T
T2
T3
T4
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Reduce the augmented matrix of the system:

1. Ajo(1), Ais(—1) 2. Agi(—1), Aaz(—2) 3. As1(—1)

From the last augmented matrix, we see that x4 is a free variable. We set x4 = t, where t is a real number.
The last row of the reduced row echelon form above corresponds to the equation x3 + x4 = 0. Therefore,
x3 = —t. The second row corresponds to the equation zs 4+ x4 = 0, so we likewise find that o = —t. Finally,
from the first equation we have ;1 — 3z4 = 0, so that x; = 3t. Consequently, the solution set of the original
system is given by {(3t,—t,—t,t) : t € R}.

52. The equation Ax = 0 is

2—-31t 141 1—1 1 0
3+2i —1+1 —1-—1 z2 | =10
5—1 24 -2 T3 0

Reduce the augmented matrix of this system:

2-3i 1+i i=1]07 L S il L I I e = el
342 —1+i —1—i|0 |~|3+2 —1+i —1-i|0|~|0 0 0 |0
5—i 2 -2 |0 5—i 2 -2 |0 0 0 0 |0

1. Ml(z%h) 2. A1a(—3 —2i), A13(—5+1)

From the last augmented matrix, we see that x; + 1J3r5ix2 + 715)371.1}3 = 0. Since x5 and x3 are free variables,
we can let xo = 13r and x3 = 13s, where r and s are complex numbers. It follows that the solution set of

the system is {(r(1 — 5i) + s(5+ 1), 13r,13s) : r, s € C}.
53. The equation Ax =0 is

1 30 1 0
-2 =3 0 xo | =10
1 4 0 T3 0
Reduce the augmented matrix of the system:
1 3 010 1 3 010 1 3 010 1 0 00
2 3 0/0|~|030[0[2|01o0/0[2]010]0
1 4 010 0 1 0|0 0 3 0|0 0 0 0|0

1. A12(2), Alg(—l) 2. P23 3. Agl(—3), A23(—3)

From the last augmented matrix we see that the solution set of the system is {(0,0,¢) : t € R}.

54. The equation Ax =0 is

1 0 3
3 -1 7 1 0
2 1 8 X9 = 0
1 1 5 T3 0
1 1 1
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Reduce the augmented matrix of the system:

1 0 3]0 1 0 3o 10 3]0 1 0 3]0
3 -1 710 0 -1 -210 01 2|0 01 2]0
2 1 s8lolAlo 1 2(0|l2]l0o 1 2/0]|2]0 0 0]0
1 1 5]0 0 1 210 01 2|0 0000
1 1 —1]0 0o 1 2|0 01 20 00 0|0

1. Aja(=3), A13(—2), Aia(—1), A5(1) 2. Mao(—1) 3. Agxz(—1), Ags(—1), Aos(—1)

From the last augmented matrix, we obtain the equations x7 + 3z3 = 0 and x5 + 2z3 = 0. Since z3 is a
free variable, we let x3 = t, where t is a real number. The solution set for the given system is then given by
{(—3t,—2t,t) : t € R}.

55. The equation Ax = 0 is

1 -1 0 1 1 0

3 205 (] ®]=|o0

-1 20 1] ™ 0

Ty
Reduce the augmented matrix of the system:

1 -1 0 1]0 1 -1 0 110 1 0 0 3|0
3 -2 05(0[~]0 102[0[2]01 0 20
-1 2 0 110 0 1 0 20 0 0 0 010

1. A1p(=3), Ais(1) 2. Agi(1), Aos(—1)

From the last augmented matrix we obtain the equations x1 + 3z4 = 0 and x2 + 2z4 = 0. Because z3 and
x4 are free, we let x3 =t and x4 = s, where s and t are real numbers. It follows that the solution set of the
system is {(—3s,—2s,t,5) : s,t € R}.

56. The equation Ax = 0 is

Z1

10 -3 0 . 0

30 -9 0 $2 =10

-2 0 6 0 3 0

x4
Reduce the augmented matrix of the system:

1 0 =3 0]0 1 0 =3 0]0
30 -9 0[lol~]0oo0 000
-2 0 6 010 00 000

1. A1o(—3), A13(2)

From the last augmented matrix we obtain x; — 3x3 = 0. Therefore, x5, 3, and x4 are free variables, so
we let xo = r, x3 = s, and x4 = t, where r, s,t are real numbers. The solution set of the given system is
therefore {(3s,7,s,t) : r,s,t € R}.
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57. The equation Ax =0 is

2+1 1 3—2 1 0
v 1—9 4+3¢ 2 | =10
3—1 144 145 T3 0

Reduce the augmented matrix of the system:

24+i i 3-20 i 1—i 443i0 1 —1—-i 3-3i]0
i 1—i 4+3i 0 k9 2+i i 3-2il0 |2 2+i i 3-2l0
3—i 1+i 145 3—i 144 14+5i|0 343 144i 145i|0
I —1—i 3—4 —172 3—4i |0 10 25;522' 0
210 144 -T+30 B8l g | R [0 1 BB |
0 5+3i —4420i 0 5—}—32 44200 |0 00 10i |0

10 25521 0 1 0 00

1o gl llo 1 0]0

00 1 |0 00 1|0

1. Pio 2. My(—i) 3. Aja(=2—1i), Aj3(=3+1i) 4. Mg(l;;“’) 5. Ao (1+1), Agz(—5 — 34)
6. M3(—i/10) 7. As (M), AM%)

From the last augmented matrix above, we see that the only solution to this system is the trivial solution.

Solutions to Section 2.6

True-False Review:

(a): FALSE. An invertible matrix is also known as a nonsingular matrix.
(b): FALSE. For instance, the matrix { ; ; does not contain a row of zeros, but fails to be invertible.
(c): TRUE. If A is invertible, then the unique solution to Ax = b is x = A~ 'b.

1 0 0]
00 1|

1 0
(d): FALSE. For instance, if A = [ and B=| 0 0 |, then AB = I5, but A is not even a
01

square matrix, hence certainly not invertible.

(e): FALSE. For instance, if A = I, and B = —1I,,, then A and B are both invertible, but A + B = 0,, is
not invertible.

(f): TRUE. We have
(AB)B™'A™' =1, and B 'A7Y(AB)=1,,

and therefore, AB is invertible, with inverse B—1A~1!.

(g): TRUE. From A? = A, we subtract to obtain A(A—1TI) = 0. Left multiplying both sides of this equation
by A=! (since A is invertible, A~! exists), we have A—I = A=10 = 0. Therefore, A = I, the identity matrix.

(h): TRUE. From AB = AC, we left-multiply both sides by A~! (since A is invertible, A~! exists) to
obtain A7'AB = A='AC. Since A~'A = I, we obtain IB = IC, or B = C.
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(i): TRUE. Any 5 x 5 invertible matrix must have rank 5, not rank 4 (Theorem 2.6.6).
(j): TRUE. Any 6 x 6 matrix of rank 6 is invertible (Theorem 2.6.6).

Problems:
1. We have
LA 9] 7T 9] [WD+O(=3) @WE9+©@®@ ] [1 0]
Ad ‘[3 7_[3 4}‘[(3)(7”(7)(3) <3><9>+<7>(4>]‘[0 1}‘12
2. We have
L2 -1 1] [ @EDH (D3 @M@ ] (1 0]
Ad ‘[3 1_[3 2]‘[(3)(1”(1)(3) (3)(1)+<1><2>}‘[0 1]‘12

3. We have - . P g ab}{ d—b}
[c d}(adbc[—c a])_adbc c d —c  a
1 ad — be 0
Tad—be| O ad—bc]
_[1 0
0 1|
:123
and
1 d —b a b | 1 d —b a b
(|« WD a] el = ] ]
1 [ ad-be 0 ]
" ad —be 0 ad — be
[1 0]
0 1|
= I.
4. We have
(3 5 1]{ 8 —29 3]
AAT =11 2 1 -5 19 -2
2 6 7 2 -8 1
[ (3)(8) + (5)(=5) + (1)(2)  (3)(=29) + (5)(19) + (1)(=8)  (3)(3) + (5)(—2) + (1)(1)
=1 B+ 2)(=5)+(1)(2) (1)(=29)+(2)(19) + (1)(=8) (1)(3) + (2)(—2) + (1)(1)
L (2)(8) + (6)(=5) +(7)(2) (2)(=29) + (6)(19) + (T)(=8) (2)(3) + (6)(—2) + (7)(1)
1 0 0
=101 0]:13.
| 0 0 1
5. We have
1 211 011 2 1 0 2|1 0 3 2 _1
[A”Z}:{l 310 1}’”[0 1| -1 1]~{0 1] -1 1}:[]2“4 -
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Therefore,
o[ 3 =2
A [—1 1
1. Ap(—1) 2. Ay (—2)
6. We have
AlT] = 1 1+di|l1 0] 1[1 144 1 0]2[1 144 1
A7 0 1-4 1 |o 1 0 —1 |—1+4 1 0 1 [1—34
s [1 0] =1 141 .
N{o 1|1—-i -1 }_WA ]
Thus,
[ -1 1+
A _[1i -1 |-
1. Ap(—1+14) 2. Ma(=1) 3. Agy(—1—14)
7. We have
1 —i|1 0]:1]1 —i ] 1 01201 —i|1 o0
[Auz]_[i—l 2/0 1]”{0 1—i|1—i 1}’”[0 1)1 L
s [ 1 0|1+ 1;1} 1
~ i | =47
[0 1)1 4
Thus,
_ 14+4 ==
o]
2
1. App(1—4) 2. Mo(1/(1—14) 3. Agi(i)
8. Note that AB = 05 for all 2 x 2 matrices B. Therefore, A is not invertible.
9. We have
1 -1 2|1 0 0 1 -1 2] 100 1 -1 2
AL]=]2 1 11]0 1 0|4~ 3 7/-2 10020 1 2|-
4 -3 10|10 0 1 0 1 2|—-4 0 1 0 3 7|-
10 4/-3 0 1 1 0 0|-43 —4 13
2lo 1 2|-4 1{~]0 1 0]-24 —2 7/|=[4".
00 1/10 1 -3 00 1] 10 1 -3
Thus,
—43 -4 13
At=| —24 —2 7
10 1 -3
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1. Alz(—Q), Alg(—4) 2. P23 3. AAgl(].)7 Agg(—?)) 4. Agl(—4), A32(—2)

10. We have
35 1|10 0 1 2 1]0 1 0 1 2 1]lo 1 0
AL]=]1 2 1|0 1 04|35 1|1 00|20 -1 —2[1 =3 0
2 6 7(0 0 1 2 6 7/0 0 1 0 2 5|0 -2 1
12 1] 0 10 10 -3 2 =5 0 (1.0 0] 8 —29 3
2lo12/-1 30201 2/-1 30|01 0[-5 19 —2|=[A".
025/ 0 -2 1 00 1] 2 -8 1 00 1] 2 -8 1
Thus,
8 —29 3]
Al=1] -5 19 -2
2 -8 1|

1. P 2. Apa(=3), Ais(=2) 3. Ma(—1) 4. Aoi(—2), Aos(=2) 5. Asi(3), Asa(—2)

11. This matrix is not invertible, because the column of zeros guarantees that the rank of the matrix is less
than three.

12. We have
4 2 —13|1 0 0 3 2 4]0 0 1 11 11]l0 -1 1
Al]=2 1 —7lo10]|A|21 —7/l01 0|21 -7/0 10
32 4]0 0 1 4 2 —13]1 0 0 4 2 —13|1 0 0
1 1 11]lo -1 1 1 1 11l0o -1 1 10 —18]0 2 -1
210 -1 =290 3 2210 1 20 -3 22101 200 -3 2
0 -2 —57|1 4 —4 0 -2 —57|1 4 —4 00 1|1 -2 o0
1 0 18] -34 —1
101 0[-20 55 2| =[]A7".
00 1 1 -2 0
Thus,
18 —34 —1
A7l =1] =29 55 2
1 -2 0
5. Aoi(—1), As3(2) 6. Asy(18), Asa(—29)
13. We have
1 2 =3/1 00 12 =3/ 10 0 12 =3/ 10 0
AL]=| 26 —2[0 1 0|~|02 4210|201 2/-11L1o0
11 4]0 0 1 03 1] 1 0 1 03 1| 1 0 1
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10 -7] 3 -1 0 10 —-7] 3 -1 0
2012—1§03012—1§0
4 : 1
00 —5| 4 -3 1 oo 1|-¢ & 1
13 11 7
A .
00 1] =5 1w —3
Thus,
_13 u 7
5 10 5}
Al = 3 _L 3
I
5 10 5
1. A1p(=2), Aiz(1) 2. Mao(3) 3. Aai(—2), Ags(—3) 4. Ms(—1) 5. A3i(7), Asa(—2)
14. We have
1 i 2|10 0 1 4 2] 1 00 14 2] 1 00
Al = | 14+i -1 2|0 1 0|~ 0 — —2[-1-i 1 02|01 —2i|1-i i 0
2 2% 5|0 0 1 0 0 1| -2 o0 1 00 1| -2 01
10 o] =i 10 1 00| = 1 0
2 1 —2i|1—d i 0| ~|0 1 0[1-5i i 2 |=][A47").
00 1| -2 01 00 1] -2 0 1
Thus,
—1 1 0
Al = 1-5 i 2
) 1
1. Alg(—l — Z), A13(—2) 2 MQ(Z) 3 A21<—Z> 4 A32(2’L)
15. We have
2 1 3|10 0 1 -1 2/0 1 0 1 -1 2|0 1 0
AL]=|1 -1 2/0 1 0|A]2 1310020 3 -1|1 -2 0
3 3 4]0 0 1 3 3 4|0 0 1 0 6 -2(0 -3 1

1 -1 2 0 1 0
2lo 3 -1 1 -2 0
0 0o o0|-2 11
Since 2 = rank(A4) < rank(A#) = 3, we know that A~! does not exist (we have obtained a row of zeros in
the block matrix on the left.

16. We have
1 -1 2 3|1 00 0 1 -1 2 3/ 1000
[A“.]_z03—40100}v02—1—1o—2100
4713 -1 7 800 1 0 0 2 1 —-1/-3 01 0
1 03 5/0 00 1 0 1 1 2|-1 00 1
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1
1
-2
—2

5 0 00
2|-1 0 0
-5| -1 0 1
—14 01 0

3
1
-1
-3

O —= O
o

0 0

— O

100 0
-1 0 0 1] 3
-3 01 0]~
210 0

3

2
-1
—10

?]

~10]-3 0 3
—3|/-2 0 1
10

1 0 0
01 0

2

-1
-3

5

—14

1. A12(—2), A13(=3), Ara(—1)

-3
4. M3(-1)

0 0

o
|
=
~
=~
I )
1
1
—
O — o0 <A %1B
™M o~ — |
I
D~ 00
I~ o0 <t ™ 2_M
= ,
|
O Mo moorq_u
— I
D~ D~
I~ b~ <f ™ [aN} M
[a\} — |
I
L
o O

0

1
0 01 0
0 0 01

Thus,

ATt =

3. A21(1), A23(_2)> A24(_2)
6. A41(10), Asa(3), Ayz(5)

2. P13

5. A31(73), A32(*]—)a A34(3)

‘We have

17.

2(0 01 0
01 00

1
=311 0 0 O

0/0 0 0 1

0
2
-1
-2

-2

0
-2
-1

o O O

— =D N

O O

AN ;<™

— o O O
| — |
=
| ———
SO O~
— AN O M
I |
o - O O
S o —H O
(2 I apianiNe]
ol
SO AN~ AN

[
T
— o O O
| — |

o

S
S O —H O
7

S o —=H O

S e

| O O |t |

f
coo -

imlla\arliiel i (o]

— oI O

,
o —=H O O

— o O O

| —— |
o oo O

oo o v

| |
2,91,93%1,2

o OO -

O — ~H oo

, ,
S O —=H O
o - O O

— O O O

0

=2

r 1
o o O -

O =l =l

N | <t o | <

f
co—Ho

oo N

— —HNO ol

,
o —=H O O

— o O O

2

r 1
S OO

O oo v

f ,
o[ By

o O O

f f
— - O
o - O O

— O O O

= [I,)A7Y).

ajo—loNo D

o O oy

N DO vl

O ajo—=lomo

1 0 0 0
01 0 0
0 010
0 0 01
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Thus,
o 2 _1 2
25 11
A= T  Ty d
g ? 2 9
-5 9 a8 O
1. P13 2 A12<—2), A14<—3) 3 MQ(%) 4 A21(2), A23(2), A24(—5)
5. Pss 6. M3(—2) 7. Agi(—1), Azp(—2) 8. My(—2) 9. Ap(1), Ags(—3)
18. We have
1 2 0 0|1 0 0 0 1 20 0] 1.0 0 0
|3 40001 00(1]0 -2200|-310 0
“ 10 05 6[0 010 0 01 % 00 o0
|00 7 8|0 0 01 0 0 7 8| 00 0 1
1 2 0 0] 1.0 0 0] 1 00 0]-21 00
2/0 -2 0 0/-31 0O0]|s3|]0 -—20 0/-31 00
001%00%0 0 01 0] 00 -4 3
0 00 —2| 00 —f 1] 0 00 -2, 00 -1 1
10 0 0l-=2 1 0 0]
sl0 100 2 -+ 0 o] 1
~loo0o10] 0 0 —a —g|=HAl
000 1| 0 0 % -3|
Thus,
-2 1 0 0
3 _1 0 0
-1 _ 2 2
A= 0 0 -4 3
7
0 0 3 -3
1. Ap(—=3), M3(3) 2. Aga(=7) 3. Ap(1), Ai3(3) 4. Ma(—3), My(—3)

19. To determine the third column vector of A~ without determining the whole inverse, we solve the

-1 -2 3 T 0]

system | —1 1 1 y | =10
-1 -2 -1 z 1

1 2 -3 0]

can be row-reduced to | 0 1 —% 0
00 1|-1|

Thus, the third column vector of A~' is

. The corresponding augmented matrix

. Thus, back substitution yields z = —3, y = —

—5/12
~1/6
—1/4

—1
-1
-1

1
6

—2 310

1 110
-2 —111
cand z = — 2.

20. To determine the second column vector of A~! without determining the whole inverse, we solve the

2 -1 4 z 0
linear system | 5 1 2 y | =11
1 -1 3 z 0

. The corresponding augmented matrix
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1 -1 3 0
be row-reduced to | 0 1 -2 0 |. Thus, back-substitution yields z = —1, y = —2, and x = 1. Thus,
0 0 1|1
1
the second column vector of A= !is | —2
-1
_ 7 _
21. We have A = [ g 270 }, b = [ S ], and the Gauss-Jordan method yields A~! = [ _21 1g }
Therefore, we have
[ -10 -8 —48
— A1y — 2 _
x=4 b__fl 3“ 2}_[ 14}'
Hence, we have 1 = —48 and x, = 14.
1 3 1] . 1 -5 3
22. We have A = 9 5 | b = 3 | and the Gauss-Jordan method yields A7 = 5 1|
Therefore, we have i
1, | b 3 1] 4
XAb|:2_1 s =1 1 |
So we have 1 = 4 and x5 = —1.
11 -2 -2 7 5 —3
23. Wehave A= | 0 1 1 {,b= 3 |, and the Gauss-Jordan method yields A=' = | —2 -1 1
2 4 -3 1 2 2 —1
Therefore, we have
7 5 -3 —2 -2
x=A""b=| -2 -1 1 3| = 2
2 2 -1 1 1
Hence, we have 1 = —2, 29 = 2, and 23 = 1.
- 1 —2i _ 2 . IR 4q 2i
24. We have A = [ 9 i }, b = [ . ],and the Gauss-Jordan method yields A~ = P [ 94 1 ]
Therefore, we have
_ 1 44 2i 2 1 2481
= A 1 = —_— . . = . .
* b 2+8z{—2+z 1H—z] 2+8i[—4+z}
Hence, we have 1 =1 and x5 = Ei‘gz
3 4 5 1 -79 27 46
25. Wehave A= | 2 10 1 |[,b=| 1 |,andthe Gauss-Jordan method yields A~! = 12 -4 -7
4 1 8 1 38 —13 =22
Therefore, we have
-79 27 46 1 —6
x=A"'b= 12 -4 -7 1| = 1
38 —13 —-22 1 3
Hence, we have x1 = —6, o = 1, and x3 = 3.
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1 1 2 12 -1 3
26. Wehave A= | 1 2 -1 ],b = { 24 ],and the Gauss-Jordan method yields A~! = % |: 3 3
2 -1 1 —36 5 —3
Therefore, we have
1 -1 3 5 12 —10
x=A"b=— 3 3 -3 24 | = 18 |.
1 [ 5 -3 —1] [—36] [ 2]
Hence, 21 = —10, x5 = 18, and x3 = 2.
27. We have
r_| 0 1[0 =1]_| (00)+(1)1) (O)=1)+@1)0) | _|[1 0
A4 = [ -1 0 } [ 1 0 } - [ (—=1)(0) + (0)(1) (=1)(—1) + (0)(0) } - [ 0 1 } =k
so AT = A~
28. We have
[ V32 1)2 V3/2 —1/2
aam= [ 2 )08 )
_ [ (V3/2)(v3/2) + (1/2)(1/2)  (V3/2)(=1/2) + (1/2)(v/3/2) } _ [ 10 } _ 1
(—1/2)(V3/2) + (v3/2)(1/2)  (=1/2)(-1/2) + (v3/2)(v/3/2) 0 1 ’
so AT = A~
29. We have
7 | cosa sina cosa —sina
AAT = { —sina cosa} { sina  cosa ]
_ { cos? a + sin? o (cos a)(—sin ) + (sin )(cos @) } _ [ 10 } _ 1
(—sina)(cos a) + (cos ) (sin «) (—sina)? + cos? 0 1 ’
so AT = A~1.
30. We have
1 1 —2;102 222 1 1 2x ) 222
=) | 0 () 0
] 1+ 422 + 42* (2) \ 0
<1+4m2+4m4) 8 1+4x0+4x 1+4x(2)+4a:4 =l
so AT = A~

31. For part 2, we have
(B'AY)(AB)=B Y (A'AB=B"'I,B=B'B=1,,

and for part 3, we have
(AHTAT = (AA Y =10 =1,.
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32. We prove this by induction on k, with & = 1 trivial and &k = 2 proven in part 2 of Theorem 2.6.10.
Assuming the statement is true for a product involving k — 1 matrices, we may proceed as follows:

(AAg - Ap) "t = (A1 Ay - Ap_1)Ap) "t = A;l(AlAQ...Ak_l)*l
= ANAL AT = AT AL A AT
In the second equality, we have applied part 2 of Theorem 2.6.10 to the two matrices Ay As--- Ap_1 and Ay,
and in the third equality, we have assumed that the desired property is true for products of k — 1 matrices.
33. Since A is skew-symmetric, we know that A7 = —A. We wish to show that (A71)T = —A~!. We have
(A=A = (=47 =A™,
which shows that A~! is skew-symmetric. The first equality follows from part 3 of Theorem 2.6.10, and the
second equality results from the assumption that A~! is skew-symmetric.
34. Since A is symmetric, we know that A7 = A. We wish to show that (A=} = A=1. We have
(A—l)T _ (AT)—l _ A_l,
which shows that A~! is symmetric. The first equality follows from part 3 of Theorem 2.6.10, and the second
equality results from the assumption that A is symmetric.
35. We have
(I, — A®)(I, + A3+ A%+ A%) = I,,(I, + A> + A5 + A%) — A3(I,, + A% + A® + A?)
=1, + A3+ A A% A3 AS A% A=, A2 =T,
where the last equality uses the assumption that A'? = 0. This calculation shows that I,, — A% and I,, +
A3 4+ A5 + A? are inverses of one another.
36. We have
(In—A) I, + A+ A2+ A°)=1,I, + A+ A%+ A%) — A(I, + A+ A% + A%)
=L+ A+ A2+ A3 —A-A2 A At=1,-A' =1,
where the last equality uses the assumption that A* = 0. This calculation shows that I, — A and I,, + A +
A? 4+ A3 are inverses of one another.

37. We claim that the inverse of A'® is BY. To verify this, use the fact that A°B> = I to observe that
ABB? = AP(AS(APB*)B®)B® = A(A°IB®)B® = A°(A°B®)B® = A°IB® = A°B® = 1.
This calculation shows that the inverse of A is BY.
38. We claim that the inverse of A? is B~3. To verify this, use the fact that A>B~! = I to observe that
A°B3 = A3(A3(A*B Y)B )BT = A3(A*IB )BT = A3(A3B )BT ' = A3 IB = A’B7 ' =1.
This calculation shows that the inverse of A% is B~3.

39. We have
B = BI, = B(AC) = (BA)C =1,C =C.

40. YES. Since BA = I,,, we know that A1 = B (see Theorem 2.6.12). Likewise, since CA = I,,, A=t = C.
Since the inverse of A is unique, it must follow that B = C.
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41. We can simply compute

l 22  —a12 air G2 | l Q22011 — Q12G21 22012 — G12022
A | —ax ail a1 Q22 A | —agiain +ai1azr  —agiai12 + ai1ag
_ 1 | aiaz — azax 0 |1 0] _ I
A 0 a11022 — Q12021 0 1
Therefore,

—1
air a2 _ l Q22 —ai2
az1 Q22 A | —an air |’
42. Assume that A is an invertible matrix and that Ax; = b; for i« = 1,2,... p (where each b; is given).

Use elementary row operations on the augmented matrix of the system to obtain the equivalence

[A|b1 b2 b3 . bp} ~ [In|Cl Cy C3 ... Cp].

The solutions to the system can be read from the last matrix: x; = ¢; for each i =1,2,...,p.
43. We have -
1 -1 1 1 -1 2 1 -1 1 1 -1 2
2 -1 4] 1 23|40 1 2|-1 4 -1
1 1 6|-1 5 2 0 2 5| =2 6 0 |
1 0 3 0 3 1 1 0 0 0 9 —5 ]
2lo 1 2[-1 4 -1 01 0[-1 8 —5
0 0 1 0 -2 2 0 0 1 0 -2 2 |
Hence,
X1 = (07 _1?0)7 X2 = (9a87 _2)7 X3 = (_57 _572)
1. Ajo(=2), A1s(—1) 2. Ag1(1), Aos(—2) 3. A31(—3), As2(—2)
44.

(a). Let e; denote the ith column vector of the identity matrix I,,,, and consider the m linear systems of

equations
AXi =€

for i =1,2,...,m. Since rank(A) = m and each e; is a column m-vector, it follows that
rank(A%) = m = rank(A)

and so each of the systems Ax; = e; above has a solution (Note that if m < n, then there will be an infinite
number of solutions). If we let B = [x1,Xa,...,X;,], then

AB = A[x1,X2,...,Xm]| = [AX1, AXa, ..., AXpn] = €1, €2, ..., €] = I,.

a d
(b). A right inverse for A in this case is a 3 x 2 matrix | b e | such that
c f

a+3b+c d+3e+f | _ |1 0
20+ Th+4c 2d+Te+4f | | 0 1 |°
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Thus, we must have
a+3b+c=1, d+3e+f=0, 2a+Tb+4c=0, 2d+Te+4f=1.
1 3 11

9 7 4 O}fora,b,and

The first and third equation comprise a linear system with augmented matrix [

3 1 1
01 2|-2
and a = 7+5t Next, the second and fourth equation above comprise a linear system with augmented matrix
{ 9 7 4 ] for d, e, and f. The row-echelon form of this augmented matrix is [ (1) i1’> ; (1)
f=s, we have e =1—2s and d = —3 4+ 5s. Thus, right inverses of A are precisely the matrices of the form

7+5t —3+45s

—2 -2t 1-—2s

S

c. The row-echelon form of this augmented matrix is {

} . Setting ¢ = t, we have b = —2 — 2t

} . Setting

Solutions to Section 2.7

True-False Review:

(a): TRUE. Since every elementary matrix corresponds to a (reversible) elementary row operation, the
reverse elementary row operation will correspond to an elementary matrix that is the inverse of the original
elementary matrix.

(b): FALSE. For instance, the matrices [ (2) (1) ] and [ Lo } are both elementary matrices, but their

0 2

product, { g (2) ], is not.

(c): FALSE. Every invertible matrix can be expressed as a product of elementary matrices. Since every
elementary matrix is invertible and products of invertible matrices are invertible, any product of elementary
matrices must be an invertible matrix.

(d): TRUE. Performing an elementary row operation on a matrix does not alter its rank, and the matrix
FE A is obtained from A by performing the elementary row operation associated with the elementary matrix
E. Therefore, A and FA have the same rank.

(e): FALSE. If P,;; is a permutation matrix, then Pf] = I,, since permuting the ith and jth rows of I,

twice yields I,,. Alternatively, we can observe that PZQJ = I,, from the fact that Pigl = Py;.

(f): FALSE. For example, consider the elementary matrices F = { (1) (; } and Ey = { é 1 ] Then we
1 1 1 7
haV6E1E2|:O 7]andE2E1{0 7:|
1 30 1 00
(g): FALSE. For example, consider the elementary matrices £y = | 0 1 0 [ and Fo=| 0 1 2
0 0 1 0 0 1

1 3 6 1 3 0
Then we have E1Ey = | 0 1 2 | and EsEh =10 1 2
0 0 1 0 0 1

(h): FALSE. The only matrices we perform an LU factorization for are invertible matrices for which the
reduction to upper triangular form can be accomplished without permuting rows.
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(i): FALSE. The matrix U need not be a unit upper triangular matrix.

(j): FALSE. As can be seen in Example 2.7.8, a 4 x 4 matrix with LU factorization will have 6 multipliers,
not 10 multipliers.

Problems:
1.
0 1 0 0 0 1 1 0 0
Permutation Matrices: P.o=| 1 0 0|, P3=|0 1 0|, Ps3=1]0 0 1
0 0 1 1 0 0 0 1 0
kK 0 0 1 0 O 1 0 0
Scaling Matrices: My(k)=1 0 1 0 |, Myk)=|0 k 0|, Mzk)=|0 1 0
0 0 1 0 0 1 0 0 k
Row Combinations:
1 0 01 1 0 i 1 0 0]
Apk)=1k 1 0|, Aisk)=|0 1 0], As(k)=1]0 1 0 |,
L0 0 1] k0 1] | 0 & 1]
(1 &k 0] (1 0 k] (1 0 0]
Aor(k)=10 1 0|, A3n(k)=]10 1 0|, Asp(k)=]0 1 k
10 0 1] | 0 0 1 ] | 0 0 1 |
2. We have
—4 -1 -1 -8 1 8 1 38 1 8 1 8
1 2 3 4 5
0 3 | ~ 0 3|~ 0 3|~1]0 3 ~ 10 1 ~ 10 1
-3 7 -3 7 -3 7 0 31 0 31 0 0
1. Agi(—1) 2. My(—1) 3. Ay3(3) 4. My(5) 5. Agg(—31)
Elementary Matrices: A23(31), Mz(%)7 A13(3), h/[l(—l)7 Agl(—l).
3. We have
3 5111 -2|2]1 -2 |31 =2
1 -2 3 5 0 11 0 1|
1. P 2. Ajp(—3) 3. Ma(5h)
Elementary Matrices: Mg(ﬁ), A12(=3), Pia.
4. We have
5 8 2 1 1 3 -1 2 1 3 -1 3 1 3 -1
1 3 -1 5 8 2 0o -7 7 01 -1 |°
1. Pis 2. Ajp(—5) 3. Ma(—1)
Elementary Matrices: MQ(*%), Aq2(=5), Pa.
5. We have
3 -1 4 1 3 2 1 3 2 1 3 2 1 3 2
2 1 3|~|2 13[2|0 -5 —1|R|0 -5 —1|~]0 1}
1 3 2 3 -1 4 0 —-10 -2 0 0 0 0 0 0
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1. Plg 2. A12(—2), A13(_3) 3. A23(—2) 4. MQ(_%)

Elementary Matrices: Ma(—1), Ag3(—2), A13(—3), A12(—2), Py3.

6. We have
1 2 3 4 1 2 3 4 1 2 3 4 (1 2 3 4
2345|410 -1 =2 320 1 2 3[2l01 2 3
3 45 6 0 -2 -4 —6 0 -2 —4 —6 000 0

1. Ap(=2), A13(—3) 2. Ma(—1) 3. Ass(2)

Elementary Matrices: A23(2), Mg(—l), Alg(—g), Alg(—2)
7. We reduce A to the identity matrix:

1 2711 272071 0]
1 3 0 1 0 1"

1. App(—1) 2. An(—2)

The elementary matrices corresponding to these row operations are Fy = [ 7} (1) ] and Fy = [ (1) _? } .

We have EoE1 A = I, so that
141|100 1 2
a-ret = V6 1]

which is the desired expression since E;* and E; ' are elementary matrices.

8. We reduce A to the identity matrix:

HE R EE B AR N A N P!

1. A12(2) 2. Plg 3. A12(2) 4. A.Ql(].) 5. Mg(*l)

The elementary matrices corresponding to these row operations are

10 01 10 11 10
e e O e R L PR NS R

We have E5E4E3E2E1A = IQ, SO

I 1 01[0 1 1 0 1 =171 o0
A:E11E21E31E41E51:[—2 1“1 0“—2 1“0 1“0 —1}’

which is the desired expression since each E, lis an elementary matrix.

9. We reduce A to the identity matrix:

IS R R ) e B PR B P A
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1. P12 2. Ml(—].) 3. A12(—3) 4. M

2(3)

5.

The elementary matrices corresponding to these row operations are

B0 1

We have E5E4E3E2E1A = IQ, SO

s (24 2][3 )]

. . . . . -1 .
which is the desired expression since each I " is an elementary ma

10. We reduce A to the identity matrix:

4 -5 |11 4|21 4|31
1 4 4 -5 0 —-21 0

-1 0 1 0
- 10-7 E2_|: 01:|7 E3_|:31:|a E4_|:

trix.

1
0

= O

o T

1. Prp 2. Ajp(—4) 3. Ma(—5;)

The elementary matrices corresponding to these row operations are

0 1 10 1
e R R

We have E4E3E2E1A = 12, SO

T B (| 1 0][1 1 4
A_E1E2E3E4_[1 0H4 1“0 —21”01’
which is the desired expression since each F; !is an elementary matrix.
11. We reduce A to the identity matrix:
1 -1 0 1 -1 0 1 -1 0 1 -1 0
2 2 2(~]0 4 2[2]0 42|20 4 2
3 1 3 3 1 3 0 4 3 0 0 1
I -1 0} _ |1 -10 1 0 0
Slo 1 L (2lo 10010
0 0 1 0 0 1 0 0 1
1. A1p(—2) 2. Ag3(—3) 3. Agg(—1) 4. Ma(3) 5. Asa(—3) 6. Ax(1)
The elementary matrices corresponding to these row operations are
10 0] [ 1.0 0 1 0 0
Eiy=| -2 1 0], E;= 01 0f, E3=1]0 1 01,
0 0 1] | -3 0 1 0 -1 1
1 0 0] (1.0 0 110
Es=10 i 0, Es=1|01 —% , Eg=10 1 0
0 0 1| 10 0 1 0 0 1
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We have E6E5E4E3E2E1A = 137 SO

A=F'E;'E; B ES RS

1 00 1 0 0 1 0 0 1 0 0 1 00 1 -1 0
=12 10 0 1 0 010 0 4 0 0 1 % 0 1 01,
0 0 1 3 01 0 1 1 0 0 1 0 0 1 0 01
which is the desired expression since each E; 1is an elementary matrix.
12. We reduce A to the identity matrix:
0 —4 -2 1 -1 3] 1 -1 3] [1 -1 3
1 -1 3|~| 0 -4 220 -4 —2]2]0 -4 -2
-2 2 2 -2 2 2] 0o 0 8 0 0 1
1 -1 3 1 -1 0] 1 -1 0 1 00
Slo 4020 40|20 1o0o|L]0o 10
0 01 0 0 1| 0 01 0 0 1

1. Py 2. A3(2) 3. Ms(g) 4. Asa(2) 5. Agi(—3) 6. Ma(—5) 7. Axi(1)

The elementary matrices corresponding to these row operations are

01 0 1 00 1 0 0 1 00
Ei=|10 0|, Ey=]|0101|, E3=|01 01|, Es=|01 2],
001 2 0 1 00 3 00 1
1 0 -3 1 00 1 10
Es=|01 0|, EBg=[0 -3 0|, Er=|0 10
00 1 0 0 1 0 0 1
We have E7E6E5E4E3E2E1A = 13, SO
A=FE'E;'E; ' B ES B B!
010 1 0 0 1 0 0 10 0 1 0 3 1 00 1 -1 0
=|1 00 01 0 01 0 01 —2 01 0 0 —4 0 0 10
0 0 1 -2 0 1 0 0 8 00 1 0 0 1 0 0 1 0 0 1

which is the desired expression since each F; 1'is an elementary matrix.

13. We reduce A to the identity matrix:

1 2 3 1 2 3 1 2 3 1 0 3
08 oflAlo1o0]l2]l0o 1 ofl2]lo 1 o
3 4 5 | 3 4 5 0 -2 —4 0 —2 —4
1 0 3 10 3 100
2101 ofl2lo1o0]|2]0o 10
0 0 —4 00 1 00 1
1. Ma(3) 2. Ai3(=3) 3. Aoi(—2) 4. Ag3(2) 5. Ms(—) 6. Aszi(—3)

(c)2017 Pearson Education. Inc.



184

The elementary matrices corresponding to these row operations are

B, =

Ey =

O =

0

N = O S wl= O
S o —_ o

1

We have E6E5E4E3E2E1A = I3, SO

A=F'E;' BB ES RS

100 10
=10 8 0 0 1
0 0 1 3 0

which is the desired expression since each E, !is an elementary matrix.

[t

14. We reduce A to the identity matrix:

K

The elementary matrices corresponding to these row operations are

| o]

0 1
El:[1 0

15. We have

Hence, E1 = Aj5(3). Then Equation (2.7.3) reads L = E; " = App(—1) = [ -

(2.7.2):

16. We have

Then

-1
3

4

1
2

1 00
Ey = 01 0], E;=
-3 0 1|
1 0 0]
Es=|0 1 0|, Esg=
00 -1

3 2 1 3 3 1
-1 0 -7 0

O = O

S =N

1. P12

2. A1a(=2) 3. Ma(—3)

4. Ay (—3)

|

10 10
2i]omefo 4]oac]

Direct multiplication verifies that EyFE3FsFE1 A = Is.

3 —2]1{3 2]
-1 5 0o ¥
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1. Ajp(—2)
17. We have
31113 1 5 10
{5 zHo ;]—U:‘mﬂ—:a:‘“[g 1}
Then
1 0 3 1 31
w=[ V][5 1]=15 2]=4
2110 3 5 2
1. App(—3)
18. We have
3 -1 2 3 -1 2 3 -1 2
6 -1 14210 1 3[2]0 1 -3|=U= mo=2mz =—1,mg =A4.
-3 5 2 0 4 4 0 0 16
Hence,
1 00 10 0 3 -1 2 3 —1 2
L= 10 and LU = 2 1 0 0 1 -3|=| 6 -1 1|=4
1 4 1 1 4 1 0 0 16 -3 5 2
1. Ap(=2), A3(1) 2. Ags(—4)
19. We have
5 2 1 5 2 1 5 2 1
10 =2 3]1Alo 2 51210 2 5| =U= mo=—-2mz =3,mzs = —2.
5 2 -3 0 -4 —6 0 0 4
Hence,
1 0 0 1 00 5 2 1 5 2 1
L=| -2 10 and LU=| -2 1 0 02 5|=|-10 -2 3|=4
3 -2 1 3 -2 1 0 0 4 5 2 -3
1. A12(2), A13(—3) 2. A23(2)
20. We have
1 -1 2 3 1 -1 2 3 1 -1 2 3 1 -1 2 3
2 03 —-4]|1/0 2 -1 10|20 2 -1 -10)3]0 2 -1 —10
3 -1 7 8 0o 2 1 -1 0 0 2 9 0 0 2 9
1 3 4 5 0 4 2 2 0 0 4 22 0 0 0 4
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Hence,
mo1 =2, m3z1 =3, my1 = 1,mzz = 1,m42 = 2,my3 = 2.
Hence,
1 0 0 0 1 0 0 O 1 -1 2 3 1 -1 2 3
2 1 0 0 2 1 0 0 0o 2 -1 -10 2 0 3 —4
E=13 110 and LU=135 17 93 9llo 0o 2 9| |3 -1 7 8|4
1 2 2 1 1 2 2 1 0 0 0 4 1 3 4 5
21. We have
2 =3 1 2 2 -3 1 2 2 =3 1 2 2 =3 1 2
4 -1 1 1 1 0 5 —1 -3 2 0 5 — -3 3 0 5 -1 -3 U
-8 2 2 =5 0 —10 6 3 0 0 4 -3 0 0 4 =3 | 7
6 1 5 2 0 10 2 —4 0 0 4 2 0 0 0 5
1. Ajo(—2), A13(4), A14(—=3) 2. Ao3(2), Ags(—2) 3. Agy(—1)
Hence,
ma1 =2, mz1=-4, mau =3, m3=-2, My =2, nNu3z=
Hence,
1 0 0 O 1 0 0 O 2 -3 1 2 2 -3 1 2
2 1 0 0 2 1 0 0 0 5 —1 =3 4 -1 1 1
L=l _4 o 1 o|™LU=1 _4 5 1 ¢ 0 0 4 3|7 |-=8 22 -5
3 2 1 1 3 2 1 1 0 0 0 5 6 1 5 2
22. We have
1 211 2 1 0
|:23:|N|:0 _1:|U:>m212:>[/|:21:|.
1. Aja(—2)
We now solve the triangular systems Ly = b and Ux = y. From Ly = b, we obtain y = [ _3 ] Then
Ux =y yields x = { _1; }
23. We have
1 -3 5 1 -3 5 1 -3 5
3 2 2 'l‘ 0 11 -13 24 0 11 —-13 =U = mo1 = 3,m31 = 2,m32 =1.
2 5 2 0o 11 -8 0 0 5

1. A1p(=3), A13(—2) 2. Agy(—1)

(c)2017 Pearson Education. Inc.



187

1 0 0
Hence, L= 3 1 0 |. We now solve the triangular systems Ly = b and Ux = y. From Ly = b, we
2 11
1 3
obtain y = 2 |. Then Ux =y yields x = | —1
_ -1
24. We have
2 2 1 2 2 1 2 2 1
6 3 -1 A0 -3 4|20 -3 —4|=U= mo=3,m3 =—2,m3g = 2.
-4 2 2 0o 0 —4 0 0 —4

1. Ap(=3), A3(2) 2. Asy(2)

1 0 0
Hence, L = 3 1 0 [. We now solve the triangular systems Ly = b and Ux = y. From Ly = b, we
-2 -2 1
1 ~1/12
obtainy = | —3 |. Then Ux =y yields x = 1/3
-2 1/2
25. We have
4 3 00 4 3 00 4 3 00 4 3 0 O
8 1 2 01110 =5 2 0120 =5 2 0130 =52 0]_ U
0 5 3 6 0 5 3 6 0 0 5 6 0o 05 6 |
0 0 =5 7 0o 0 -5 7 0 0 -5 7 0 0 0 13

1. Ap(=2) 2. Ags(1) 3. Agy(1)

The only nonzero multipliers are mo; = 2, m3s = —1, and my3 = —1. Hence, L = . We

_= =0 o
=N

1 0
2 1
0 1
0 0
2
now solve the triangular systems Ly = b and Ux = y. From Ly = b, we obtain y = { -1 ] . Then Ux =y

1
4
677/1300
. _ —9/325
yields x = —37/65
4/13
26. We have

2 1|12 —1] 1
|: :|N|:O 1 —U:>m21——4:>L—[_4

s

1. App(4)

(c)2017 Pearson Education. Inc.



188

We now solve the triangular systems
Ly, = b;, Ux; =y

for i =1,2,3. We have

Ly =by =y = 131 . Then Uxy =y = x1 = 7_1411 ;
Lys = by = —:2:ThU— — _[ -85,
y2 = D2 Y2—_15_~ en UXg = Yy2 X2—__15 ;
Lys = b; — Y3 = 151 . Then Ux3 = Y3 — X3 = __1? .
27. We have .
-1 4 2 -1 4 2 -1 4 2
3 14|~ 013 10|2A] 0 13 10|=U.
5 =7 1 0 13 11 | 0 0 1
1. A12(3), A13(5) 2. Ags(—1)
Thus, mo; = —3, m31 = —5, and mss = 1. We now solve the triangular systems
Ly; = by, Ux; =y;
for i =1,2,3. We have _
1 —29/13
Lyiy=e;=y1=1| 3 |. Then Uxy; =y, = x; = | —17/13 |;
L 2 2 =
[0 18/13 ]
Lys =ey = yo = 1 |. Then Uxgs =ys = xo = | 11/13 |;
-1 -1
[0 ~14/13 ]
Lys=e3=y3=| 0 |. Then Ux3 =y3 = x3 = | —10/13
1 1

28. Observe that if P; is an elementary permutation matrix, then Pi_1 = P; = PT. Therefore, we have

Pl=(PP..P) =P P . PP =P, . P] . P = (PPy...P)T = PT.

29.

(a). Let A be an invertible upper triangular matrix with inverse B. Therefore, we have AB = I,,. Write
A = [a;;] and B = [b;;]. We will show that b;; = 0 for all ¢ > j, which shows that B is upper triangular. We

have
n
> airb; = bij.
k=1

Since A is upper triangular, a;; = 0 whenever ¢ > k. Therefore, we can reduce the above summation to

n
E a;pbij = 0.
k=i

Let ¢ = n. Then the above summation reduces to annbn; = ;. If j = n, we have appbp, = 1, so
anpn # 0. For j < mn, we have a,,b,; = 0, and therefore b,; = 0 for all j < n.
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Next let 2 = n — 1. Then we have
p—1m—-1bn—14 + an_1,nbnj = 6n—1,;.

Setting j = n—1 and using the fact that b,, ,_1 = 0 by the above calculation, we obtain a,,—1 ,-1bp—1,,-1 = 1,
SO Gp—1,n—1 7 0. For j <n —1, we have ap—1,n—1b,—1,; = 0 so that b,_1 ; = 0.

Next let i = n—2. Then we have a,—2,—2bn—2j +an—2n—1bn—1,j +an—2nbn; = 62 ;. Setting j =n—2
and using the fact that b,—1,-2 = 0 and b, ,,—2 = 0, we have a,_2 p_2b,_2n—2 =1, so that a,_2,_2 # 0.
For j <n — 2, we have a,_2 ,—2b,—2; = 0 so that b,_5 ; = 0.

Proceeding in this way, we eventually show that b;; = 0 for all i > j.

For an invertible lower triangular matrix A with inverse B, we can either modify the preceding argument,
or we can proceed more briefly as follows: Note that A7 is an invertible upper triangular matrix with inverse
BT. By the preceding argument, BT is upper triangular. Therefore, B is lower triangular, as required.

(b). Let A be an invertible unit upper triangular matrix with inverse B. Use the notations from (a). By
(a), we know that B is upper triangular. We simply must show that b;; = 0 for all j. From a,,bn, =1
(see proof of (a)), we see that if a,,, = 1, then b,, = 1. Moreover, from a,_1,-10p—1,n—1 = 1, the fact
that ap—1,—1 = 1 proves that b,_1,-1 = 1. Likewise, the fact that a,_2,_2b,_2,—2 = 1 implies that if
Gp—2pn—2 = 1, then b,_5 ,_» = 1. Continuing in this fashion, we prove that b;; = 1 for all j.

For the last part, if A is an invertible unit lower triangular matrix with inverse B, then AT is an invertible
unit upper triangular matrix with inverse BT, and by the preceding argument, B” is a unit upper triangular
matrix. This implies that B is a unit lower triangular matrix, as desired.

30.
(a). Since A is invertible, Corollary 2.6.13 implies that both Ly and U; are invertible. Since L1U; = LoUs,
we can left-multiply by L;l and right-multiply by Ufl to obtain L;lLl = UgUfl.

(b). By Problem 29, we know that Ly ' is a unit lower triangular matrix and U; ' is an upper triangular
matrix. Therefore, Ly 'L, is a unit lower triangular matrix and UsU 1 !is an upper triangular matrix. Since
these two matrices are equal, we must have L;lLl =1, and UgUf1 = I,,. Therefore, L1 = Lo and Uy = Us.

31. The system Ax = b can be written as QRx = b. If we can solve Qy = b for y and then solve Rx =y
for x, then QRx = b as desired. Multiplying Qy = b by QT and using the fact that Q7'Q = I,,, we obtain
y = QTb. Therefore, Rx = y can be replaced by Rx = Q”b. Therefore, to solve Ax = b, we first determine
y = QTb and then solve the upper triangular system Rx = QT'b by back-substitution.

Solutions to Section 2.8

True-False Review:

(a): FALSE. According to the given information, part (c) of the Invertible Matrix Theorem fails, while
part (e) holds. This is impossible.

(b): TRUE. This holds by the equivalence of parts (d) and (f) of the Invertible Matrix Theorem.

(c): FALSE. Part (d) of the Invertible Matrix Theorem fails according to the given information, and
therefore part (b) also fails. Hence, the equation Ax = b does not have a unique solution. But it is not
valid to conclude that the equation has infinitely many solutions; it could have no solutions. For instance, if

1 00 0
A=10 1 0 | and b= | 0 [, there are no solutions to Ax = b, although rank(A) = 2.
0 0 O 1

(d): FALSE. An easy counterexample is the matrix 0,,, which fails to be invertible even though it is upper
triangular. Since it fails to be invertible, it cannot e row-equivalent to I,,, by the Invertible Matrix Theorem.
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Problems:

1. Since A is an invertible matrix, the only solution to Ax = 0 is x = 0. However, if we assume that
AB = AC, then A(B — C) = 0. If x; denotes the ith column of B — C, then x; = 0 for each i. That is,
B —-C =0, or B=C, as required.

2. If rank(A) = n, then the augmented matrix A# for the system Ax = 0 can be reduced to REF such
that each column contains a pivot except for the right-most column of all-zeros. Solving the system by
back-substitution, we find that x = 0, as claimed.

3. Since Ax = 0 has only the trivial solution, REF(A) contains a pivot in every column. Therefore, the
linear system Ax = b can be solved by back-substitution for every b in R™. Therefore, Ax = b does have a
solution.
Now suppose there are two solutions y and z to the system Ax = b. That is, Ay = b and Az = b.
Subtracting, we find
Aly —z) =0,

and so by assumption, y —z = 0. That is, y = z. Therefore, there is only one solution to the linear system
Ax =b.

4. If A and B are each invertible matrices, then A and B can each be expressed as a product of elementary
matrices, say
A=FE5...E and B=FE\F)...E].

Then
AB = FE\E;>...ExE\FE) ... E],

so AB can be expressed as a product of elementary matrices. Thus, by the equivalence of (a) and (e) in the
Invertible Matrix Theorem, AB is invertible.

5. We are assuming that the equations Ax = 0 and Bx = 0 each have only the trivial solution x = 0. Now
consider the linear system
(AB)x = 0.

Viewing this equation as
A(Bx) =0,

we conclude that Bx = 0. Thus, x = 0. Hence, the linear equation (AB)x = 0 has only the trivial solution.

Solutions to Section 2.9

Problems:
-2 -1 —15 0 13 -1
4 -1 10 10 -6 —11
T _ _ _
1.4 B 2 5 5 —15 -3 20
6 0 0 5 6 -5
-3 0
T 2 2
2.¢"B=[-5 -6 3 1]| 7 S |=[6 -20]
0 1

3. Since A is not a square matrix, it is not possible to compute A2.

8§ —16 -8 —24}_{—3 2 1 o}

AA_ BT —
4. —4A-B 4 4 -20 0 0 2 -3 1

1 -18 -9 -—-24
4 2 17 -1
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5. We have
-3 0
-2 4 2 6 2 2 16 8
AB[—l —150} 1 -3 [6—17}
0 1
Moreover,
tr(AB) = —1.
6. We have
r_ [ 27 B 4 -52
(AC)(AC) _{ 26}[ 2 26}_[_52 676]
12 0 [ —24 48 24 72
-8 -8 -2 4 2 6 24 —24 —56 —48
7. (-4B)A= —4 12 {1 -1 5 O]_ -4 —-28 52 —24
0 —4 | 4 4 =20 0
8. Using Problem 5, we find that
1-1
1| 16 8 I S B VA
(AB) _[ 6 —17 | 320 -6 16 |°
9. We have
-5
—6
T P _— — =
cle=[-5 -6 3 1]| , [71],
1
and
tr(CTC) = 71.
10.
(a). We have
AB — 1 2 3 _i Z | 3a—5 2a-+4b
12 5 7 ab_7a—l45a+9b'

In order for this product to equal Iy, we require
3a—5=1, 2a+4b=0, 7a—14=0, bHa+9b=1.
We quickly solve this for the unique solution: @ = 2 and b = —1.

(b). We have

3 -1 1 1 2
BA=| —4 2 [ ; ? ? ] =10 2 2
2 -1 0 -1 -1

11. We compute the (i, j)-entry of each side of the equation. We will denote the entries of AT by aiTj, which

equals aj;. On the left side, note that the (i, j)-entry of (ABT)T is the same as the (j,i)-entry of ABT, and

n n n
(j,i)-entry of ABT = Z ajkbgi = Zajkbik = Z bikazj,
k=0 k=0 k=0
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and the latter expression is the (i,j)-entry of BAT. Therefore, the (i, j)-entries of (ABT)T and BAT are
the same, as required.

12.
(a). The (i, j)-entry of A? is

n
E Qi Q-
k=1

(b). Assume that A is symmetric. That means that AT = A. We claim that A? is symmetric. To see this,
note that

(AT = (AA)T = ATAT = A4 = A2
Thus, (42)T = A2, and so A? is symmetric.

13. We are assuming that A is skew-symmetric, so AT = —A. To show that BT AB is skew-symmetric, we
observe that

(BTAB)T = BTAT(BT)T = BT ATB = BT (—A)B = —(BTAB),
as required.

14. We have

so A is nilpotent.

15. We have
[0 0 1
A2=10 0 0
|00 0
and
00 17Jo0o 11 000
A3=A%A=10 0 0 00 1(=|000]/,
00 O0[[0O0O0 00 0
so A is nilpotent.
16. We have
—3e7 3 —2gec?ttant
A(t) = 6t2 —sint
6/t -5
17. We have
Tt t3/3 -7 1/3
/1B(t)dt_ 6t —t2/2 3t4/a+2 ||' | 1172 11/4
0 | t+t?/20 Zsin(xt/2) ||, | 3/2 2/7
et t—tt/4 e—1 3/4

18. Since A(t) is 3 x 2 and B(t) is 4 x 2, it is impossible to perform the indicated subtraction.
19. Since A(t) is 3 x 2 and B(t) is 4 x 2, it is impossible to perform the indicated subtraction.
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20. From the last equation, we see that x3 = 0. Substituting this into the middle equation, we find that
zo = 0.5. Finally, putting the values of x5 and z3 into the first equation, we find xr1 = —6 — 2.5 = —8.5.
Thus, there is a unique solution to the linear system, and the solution set is

{(—8.5,0.5,0)}.

21. To solve this system, we need to reduce the corresponding augmented matrix for the linear system to
row-echelon form. This gives us

5 —1 2 7 1 11 20 7 1 11 20 |7 1 11 20 7
2 6 9| 0|A] -2 6 9] 0|20 28 49|14 |20 1 7/4|1/2
-7 5 =3| -7 -7 5 =3|-7 0 82 13742 0 82 137 | 42
1 11 20 7 1 11 20 7
Alo o1 /4012 |20 1 74 1/2
0 0 -13/2| 1 0 0 1 |-2/13
From the last row, we conclude that x3 = —2/13, and using the middle row, we can solve for xo: we have
z2+£~(71—23) = %, SO Xy = % = %. Finally, from the first row we can get x;: we have x1+11-%+20-(7f—3) =
7, and so x1 = % So there is a unique solution:

21 10 2
137137 13) )~

1. Aoi(2) 2. A1a(2), Ai3(7) 3. Mp(1/28) 4. Agz(—82) 5. M3(—2/13)

22. To solve this system, we need to reduce the corresponding augmented matrix for the linear system to
row-echelon form. This gives us

12 —1]1 1 2 —1]1 1 2 —1] 1 12 —1] 1
10 1/5 |20 =2 2/42l0 1 <1220 1 -1|-2
4 4 012 0 —4 4|8 0 —4 4| 8 00 0] 0

From this row-echelon form, we see that z is a free variable. Set z = ¢t. Then from the middle row of the
matrix, y = ¢t — 2, and from the top row, x + 2(t —2) —¢t = 1 or x = —t + 5. So the solution set is

{(—t+5,t—2,t): t e R} = {(5,—2,0) +t(—1,1,1) : t € R}.

1. App(—1), Aiz(—4) 2. Ma(—1/2) 3. Ags(4)

23. To solve this system, we need to reduce the corresponding augmented matrix for the linear system to
row-echelon form. This gives us

1 -2 -1 3]0 1 -2 -1 3]0 1 -2 -1 3]0 1 -2 -1 3
2 4 5 —5[3|A]l0o o 3 13|20 o 3 1/3|2]0 0 1 1/3
3 -6 —6 8|2 0 0 -3 —1]2 0 0 0 0/5 0 0 0 0

The bottom row of this matrix shows that this system has no solutions.
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1. A1a(2), Ais(—3) 2. Aos(1) 3. Ma(1/3), Ms(1/3)

24. To solve this system, we need to reduce the corresponding augmented matrix for the linear system to
row-echelon form. This gives us

3 0 -1 2 —1 1 1 3 1 -3 2| -1 1 3 1 -3 2| -1
1 3 1 -3 2| —1 1 3 0 -1 2 -1 1 2 | 0 -9 —4 11 -7 4
4 -2 -3 6 —1 5 4 -2 -3 6 —1 5 0 —-14 -7 18 -9 9
0 0 0 1 41 =2 0 0 0 1 41 =2 0 0 0 1 41 =2
1 3 1 -3 2| —1 1 3 1 -3 2| -1
3 | 0 =27 —12 33 —-21 12 [ 4| 0 =27 —12 33 21| 12
0 28 14 —-36 18 | —18 0 1 2 -3 -3|-6
0 0 0 1 4| -2 0 0 0 1 41 -2
1 3 1 -3 2| —1 1 3 1 -3 2 -1 1 3 1 -3 2| -1
5 0 1 2 -3 -3|-6 i3 0 1 2 -3 -3 —6 710 1 2 -3 -=-3| -6
0 —27 —12 33 —21| 12 0 0 42 —48 —102 | —150 001 -3 )%
0 0 0 1 4| =2 0 0 O 1 4 -2 0 0 O 1 41 =2
We see that x5 =t is the only free variable. Back substitution yields the remaining values:
x5 =1, x4=—4t—2 x—f4—17§t m—fgfﬁ x—fg+gt
5— 4 4 — ’ 3 — 7 7 ) 2 — 7 7 ) 1= 7 7 .

So the solution set is

2 16 2 33 41 15
Yy 2 2y 4 94) teR
{( bR T Ty Tt ) © }

16 33 15 2 2 41
(B ) (228 ) ).

1. Pro 2. Apa(=3), Ais(—4) 3. My(3), Ms(—2) 4. Ags(1) 5. Poy 6. Asy(27) 7. M;(1/42)

25. To solve this system, we need to reduce the corresponding augmented matrix for the linear system to
row-echelon form. This gives us

1111 -3]6 11 1 1 -3] 6 11 11 =316
1112 =5/8|1/l00 o 1 -2 22100 01 —2]|2
2314 917~ ]o1 -1 2 -3/ 5| 7]l0o1 -1 2 -3|5
2 2 2 3 -8|14 00 0 -1 2|-2 00 00 00
11 11 -3|6
5101 -1 2 —3|5
“lo o 01 —-2|2
00 00 00

From this row-echelon form, we see that x5 = ¢ and x3 = s are free variables. Furthermore, solving this
system by back-substitution, we see that

r5=1 x4=2t+2, x3=5, x9=5—t+1, x1=2t—25+3.
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So the solution set is

{(2t—2s+3,s —t+1,52t+2,¢):s,t € R} = {#(2,-1,0,2,1) + 5(—2,1,1,0,0) + (3,1,0,2,0) : 5,t € R}.

1. Alg(—].), Alg(—Q), A14(—2) 2. A24(].) 3. P23

26. To solve this system, we need to reduce the corresponding augmented matrix for the linear system to
row-echelon form. This gives us

1111 -3 24
—2 0 6-61 -2

1. A1p(2) 2. Ma(gls)

[1—321‘

1 2 | 1 =3 27
—2i 6 2 1

—2+2

From the last augmented matrix above, we see that x3 is a free variable. Let us set x3 = ¢, where ¢ is
a complex number. Then we can solve for zs using the equation corresponding to the second row of the
row-echelon form: x5 = f% + %(1 +4)t. Finally, using the first row of the row-echelon form, we can determine
that z; = %t(l — 3i). Therefore, the solution set for this linear system of equations is

{(%t(l — 3i), —% + é(l +i)t,t):t e Ch.

27. We reduce the corresponding linear system as follows:

1 k|6 |11 —k 6
2 3|k 0 342k |k—-12 |-

If k # —%, then each column of the row-reduced coefficient matrix will contain a pivot, and hence, the linear
system will have a unique solution. If, on the other hand, k = f%, then the system is inconsistent, because
the last row of the row-echelon form will have a pivot in the right-most column. Under no circumstances
will the linear system have infinitely many solutions.

28. First observe that if £ = 0, then the second equation requires that x3 = 2, and then the first equation
requires xo = 2. However, 1 is a free variable in this case, so there are infinitely many solutions.

Now suppose that & # 0. Then multiplying each row of the corresponding augmented matrix for the
linear system by 1/k yields a row-echelon form with pivots in the first two columns only. Therefore, the
third variable, x3, is free in this case. So once again, there are infinitely many solutions to the system.

We conclude that the system has infinitely many solutions for all values of k.

29. Since this linear system is homogeneous, it already has at least one solution: (0,0,0). Therefore, it only
remains to determine the values of k for which this will be the only solution. We reduce the corresponding
matrix as follows:

10 k& —1]0 10 k2 —k|o 1 1/2 —-1/2]0

E 1 —1]o| Al 10k 10 —10l0 2|10 10 =100

2 1 —1]0 1 1/2 —1/2]0 10 k2 k|0
P ~1/2 |07 Tt 12 —12f0] [1 12 —1/2]0
210 10-5k 5k—10]0 | 2] 0 1 1o 2o 1 -1 o
0 kK2—5k 4k |0 0 kK2—5k 4k |0 0 0 kK —k|oO
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1. My(k), M(10), Ms(1/2) 2. Pis 3. Apo(—10k), Ag(—10k) 4. My(1oter) 5. Ass(5k — k?)

Note that the steps above are not valid if £ = 0 or k = 2 (because Step 1 is not valid with & = 0 and Step
4 is not valid if k = 2). We will discuss those special cases individually in a moment. However if k # 0,2,
then the steps are valid, and we see from the last row of the last matrix that if k¥ = 1, we have infinitely
many solutions. Otherwise, if k& # 0, 1,2, then the matrix has full rank, and so there is a unique solution to
the linear system.

If kK = 2, then the last two rows of the original matrix are the same, and so the matrix of coefficients of
the linear system is not invertible. Therefore, the linear system must have infinitely many solutions.

If k = 0, we reduce the original linear system as follows:

10 0 =10 1 0 —1/10]0 1 0 —1/10]0 1 0 —1/10]0
01 —1lolA]o1 =1 ]ol2]lo1 =1 1]o|2lo1 =1 |o
2 1 —110 21 -1 |0 0 1 —4/510 00 1/5 |0

The last matrix has full rank, so there will be a unique solution in this case.

1. My(1/10) 2. Ai3(—2) 3. Ags(—1)

To summarize: The linear system has infinitely many solutions if and only if £k = 1 or £ = 2. Otherwise,
the system has a unique solution.

30. To solve this system, we need to reduce the corresponding augmented matrix for the linear system to
row-echelon form. This gives us

1 —k k2|0 1 —k kK |0 1 —k k2 o 1 —k k2 0
1 0 klo|A]lo k k—k2|0|2]0 1 -1 |1]|2]0o 1 -1 1
0 1 —1/1 0 1 =1 |1 0 k kE—K21]0 0 0 2k—k>|—k

1. Alg(—l) 2. P23 3. Agg(—k)

Now provided that 2k — k2 # 0, the system can be solved without free variables via back-substitution, and
therefore, there is a unique solution. Consider now what happens if 2k — k2 = 0. Then either k = 0 or k = 2.
If k = 0, then only the first two columns of the last augmented matrix above are pivoted, and we have a free
variable corresponding to x3. Therefore, there are infinitely many solutions in this case. On the other hand,
if & = 2, then the last row of the last matrix above reflects an inconsistency in the linear system, and there
are no solutions.

To summarize, the system has no solutions if k¥ = 2, a unique solution if k£ # 0 and k # 2, and infinitely
many solutions if k = 0.

31. No, there are no common points of intersection. A common point of intersection would be indicated by
a solution to the linear system consisting of the equations of the three planes. However, the corresponding
augmented matrix can be row-reduced as follows:

12 14 12 1| 4 12 1| 4
01 —1l1 Ao 1 =1 1201 =1 1
13 0/0 0 1 —1]|-4 00 0]-=5

The last row of this matrix shows that the linear system is inconsistent, and so there are no points common
to all three planes.
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1. Ai(—1) 2. Ags(—1)

32.
(a). We have

EHEE AR ARAY!

1. My(1/4) 2. Aip(2) 3. M(2/17)

(b). We have: rank(A) = 2, since the row-echelon form of A in (a) consists two nonzero rows.

(c). We have

4 711 011 17/41/40317/41/40317/41/40
-2 5|0 1 -2 5 0 1 0 17/211/2 1 0 1 |1/17 2/17
4110 5/34 —7/34
1| 1/17  2/17 |
1. My(1/4) 2. A19(2) 3. Ma(2/17) 4. Ay (—T7/4)
Thus,
5 i
Al = [ 314 _324 ]
17 17
33.
(a). We have

e )R TR

1. Ap(2) 2. My(1/2)

(b). We have: rank(A) = 1, since the row-echelon form of A in (a) has one nonzero row.

(c). Since rank(A) < 2, A is not invertible.

34.

(a). We have
3 —1 6 1 —1/3 2 1 -1/3 27 [1 —1/3 2 1 —1/3 2
0 23[~]lo0o 2 3210 2 3[2]0o 2 3[A]0 1 3/2].
3 =5 0 1 —5/3 0 0 —4/3 -2 0 0 0 0 0 0

1. My(1/3), My(1/3) 2. Asa(—1) 3. Ax(2/3) 4. My(1/2)
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(b). We have: rank(A) = 2, since the row-echelon form of A in (a) consists of two nonzero rows.

(¢). Since rank(A) < 3, A is not invertible.

35.
(a). We have
21 00 1 2 0 0 1 2 0 0 12 0 0
1200’}#210020—30030—300
0 0 3 4 00 3 4 0o 0 3 4 0 0 1 -1
0 0 4 3 0 0 4 3 0O 01 -1 0 0 3 4
12 0 0 1 2 0 0
i010050100
00 1 -1 00 1 —-11{"°
0 0 0 0 0 0 1

1. Pro 2. App(—2), Asa(—1) 3. Py 4. My(—1/3), Asa(—3) 5. My(1/7)

(b). We have: rank(A) = 4, since the row-echelon form of A in (a) consists of four nonzero rows.

(c). We have
21 0 01 0 0 O 12 0 0/{0 1 0 O 1 2 0 0]0 1 0 0
12000100212 100(100O0}2]0-30 01 -2 00
003 4/0 0 10 003 4/0 010 0O 03 4/0 0 1 0
0 04 3(0 001 0 04 3(00 01 0 01 —-1{0 0 -1 1
1 20 0/0 1 0 0] 120 0] 0 1 0 0
30 =30 01 -2 004010 0/-1/323 0 0
0 01 —-110 0 -1 1 001 -1 0 0 -1 1
0 0 3 410 0 10 | 0 0 O 7 0 0 4 -3
1 0 0 0| 2/3 -=1/3 0 0 10 0 0| 2/3 -1/3 0 0
51010 0/-1/3 2/3 0 0 60 10 0]-1/3 2/3 0 0
001 —-1| O 0 -1 1 001 0] O 0 =3/7 47
000 1| O 0 4/7 -=3/7 000 1] 0 0 4,71 =3/7

1. Pro 2. Apa(—2), Aga(—1) 3. Py 4. Agg(—3), Ma(=1/3) 5. My(1/7), As1(—2) 6. Ag(1)

Thus,

2/3 —1/3 0 0

ST N VE BTk 0 0

0 0 —3/7 47

0 0 47 =37
36.
(a). We have
3 0 0 1 0 o0 1 0 o0 1 0 o0 1 00 10
0 2 —1]/A]lo 2 =1 [2]0o 2 1|20 =1 2(2]0 -1 2|20 1
1 -1 2 1 -1 2 0 -1 2 0 2 -1 0 0 3 0 0
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1. My(1/3) 2. Ajs(—1) 3. Pys 4. Ap3(2) 5. Ma(—1), M3(1/3)

(b). We have: rank(A) = 3, since the row-echelon form of A in (a) has 3 nonzero rows.

(c). We have

3 0 0|10 0 1 0 0[1/3 00 1 0 0]1/3 00
0 2 -1/0 1 0|~|0 2 —-1]0 10|20 2 -1, 0 10
1 -1 2|0 0 1 1 -1 2|0 01 0 -1 2|-1/3 0 1
1 0 0] 1/3 00 1 00]1/3 00
2lo -1 2|-1/3 0 1|~A|0 -1 2|-1/3 0 1
0 2 —-1| 0 10 0 0 3[-2/3 1 2
10 ol1/3 0 0 10013 0 o0
2lo1 —2/1/3 0o -1]2|0 1 0|-1/9 2/3 1/3|.
00 1|-2/9 1/3 2/3 00 1]-2/9 1/3 2/3
1. My(1/3) 2. Ags(=1) 3. Pa3 4. Ass(2) 5. Ma(—1), M3(1/3) 6. Asa(2)
Hence,
1/3 0 0
At = —-1/9 2/3 1/3
—2/9 1/3 2/3
37.
(a). We have
2 -3 1 1 4 2 1427 [14 2 1 4 2
1 4 2|42 3120552005 5[40 11
0 5 3 0 5 3 05 3 00 -2 00 1

1. Pio 2. A1p(2) 3. Ags(—1) 4. My(1/5), M3(—1/2)

(b). We have: rank(A) = 3, since the row-echelon form of A in (a) consists of 3 nonzero rows.

(c). We have

—2 =3 1|1 0 0 1 4 2/0 1 0 14201 0
1 4 2(010|~]-2 -=31[100[2A]055[1 20
0 5 300 1 0 5 300 1 05 300 1

14 2/ 0 10 1420 1 0
2lo5s5 5/ 1 20|~Al0 1 1[1/5 25 0
00 —2|-1 -2 1 00 1/1/2 1 -1/2
1 0 —2|-4/5 =3/5 0 10 0] 1/5 7/5 -1
2lo1 1155 2/5 0 |R]0 1 0|-3/10 -3/5 1/2
00 1|12 1 -—1/2 00 1| 1/2 1 —1)2
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1. Pio 2. Ap(2) 3. Ass(—1) 4. Ma(1/5), Ms(=1/2) 5. Asy(—4) 6. Agy(2), Aga(—1)

Thus,
/5 7/5 -1
A7l =| =3/10 -3/5 1/2 |.
1/2 1 —1/2

38. We use the Gauss-Jordan method to find A~!:

1 -1 3|1 0 0 1 -1 3] 10 0 1 -1 3] 1 0 0
4 -3 13/010A]0 1 1l-4 10|20 1 1|-4 1 0
1 1 4|0 0 1 0 2 1|-1 0 1 0 0 —1| 7 -2 1
1 -1 3] 1.0 0 10 4/-3 1 o0 1 00|25 -7 4
210 1 1]-41 oflAlo1 1l-41 ol|2]0 10| 3 -1 1
0 0 1|-7 2 -1 00 1|-7 2 -1 00 1|-7 2 -1

1. Ap(—4), Aiz(—1) 2. Ass(=2) 3. My(—1) 4. Api(1) 5. Agi(—4), Aga(—1)

Thus,
25 —7 4
At = 3 -1 1
-7 2 -1
Now x; = A~ le; for each i. So
25 -7 4
x; = A"le; = 31, xo=A"tes=| -1 |, x3=Aleg= 1
-7 2 -1

39. We have x; = A~ 'b;, where

Therefore,

and

40.

(a). We have

(A'B)(B7'A) =AY (BB YWA=AT",A=A""A=1,
and

(B'A)(A™'B) =B YAAYB=B"'I,B=B"'B=1,.
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Therefore,
(B~'A)"'=A7'B.

(b). We have
(A'By ' =B"tA Y t=B14,

as required.

41(a). We have B* = (S71AS)(S71AS)(STLAS)(S71AS) = STLA(SS 1 A(SS 1 A(SS 1) AS = STTATATAIAS =
S—1A*S, as required.

41(b). We can prove this by induction on k. For k = 1, the result is B = S~!'AS, which was already
given. Now assume that B¥ = S71AFS. Then B**! = BBF = S=1AS(S~1A*S) = S~1A(SS™1)AFS =
STTATARS = S—1A*1S which completes the induction step.

42.
(a). We reduce A to the identity matrix:

EHEE

LMi(3) 20 A1(2) 3. My(2) 4. Ap(=1)

(G2 R

The elementary matrices corresponding to these row operations are

L9 10 1 0 j —
— 4 — — — 4
I R E Y A F I e g

We have E4E3FEsFE1 A = I, so that

1] e 4 0 10 1 0 1
N P IR S
(b). We can reduce A to upper triangular form by the following elementary row operation:

2
4 T4 7
-2 5 0o &

—

. . . . . 1. . .
which is the desired expression since F; ~ is an elementary matrix for each 1.

1. Ag(3)
Therefore we have the multiplier mq, = —%. Hence, setting
1 0 4 7
L= |: 1 :| and U = |: 17 :| ,
-5 1 0 5

we have the LU factorization A = LU, which can be easily verified by direct multiplication.

43.
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(a). We reduce A to the identity matrix:

SO F ™M

oo o

O~ O O

oo m <

— N O O

N — O O

oS oo~
S o —H O

o - O O

o O = O
o — O O

— O O O

=2

S O <flew=len

oS O —=H O
o — O O

— O O O
IS |

©?
1
O O Fleven

OO -
o — O O

— O O O
S —

0

The elementary matrices corresponding to these row operations are

|

—
SO O - S O v
,
oo~ O
oo~ O
N — OO
, o— oo
— O O O — O O O
L | I | 1
Il I
< 0
S Sy

oo o -
o o +H O

O Hn O O

— o O O

0

1

0
0 0 0

100 0]
210 0
0010
000 1]

0
0
0
1

0
0
1
—4

Ey

)

Es

01 0 0]
1000
0010
000 1]

S o O -

O O HNO

o - O O

— O O O

|

We have

Es

1,

EgE7EeFsEyEsEyEy A

so that

1E81E;1E§1

1E271E;1E471E57

1

A=F

S oo H

oo —H O

N - O O

— O O O

SO O

o O —H O

o Mmoo

— o O O

oo O -

oo —H O

o~ O O

— AN O O

S oo

o O —H O

— O O O

o~ O O

—
O O Flenr

SO —H O
o~ O O

— O O O
S

1

© O O,
I

o O —H O
o - O O

— O O O

o O O
oo —H H
o - O O

— o O O

[l il S
SO MmO
o - O O

— O O O

is an elementary matrix for each 7.

1

7

which is the desired expression since F;

(b). We can reduce A to upper triangular form by the following elementary row operations:

S O <f -l

S O MmO
— o O

N O O O

ol

SO <t M
S o Mm

— mao O
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L App(—3) 2. Asa(—3)

Therefore, the nonzero multipliers are ms = % and mgy = %. Hence, setting

1 0 0 0 21 0 0

L1 0 0 0 20 o0
— | 2 — 2
L=10 01 o0 and U=\ § 3 4|

00 3 1 000 -1

we have the LU factorization A = LU, which can be easily verified by direct multiplication.

44.
(a). We reduce A to the identity matrix:
3 0 0 1 -1 2 1 -1 2 1 -1 2 1 -1 2
02—1i02—1302—1301—%i01—§
1 -1 2 3 0 0 0 3 -6 0 3 -6 0 0 —3
1 -1 2 10 % 10 0 100
2lo 1 =t (&2lo1 =1 fLlo1 =120 1 o0].
0o 0 1 00 1 00 1 00 1
1. Pz 2. Aj3(—=3) 3. Ma(3) 4. Axs(—3) 5. Ms(—32)
6. Ay (1) 7. A31(—%) 8. Agg(%)
The elementary matrices corresponding to these row operations are
00 1 100 1 00 1 00
Et=10 1 0], Ey= 01 0, Es=|0 4 0|, E4=|0 10
100 -3 0 1 0 0 1 0 -3 1
10 0 110 1o -3 100
Es={01 0|, Bg=|0 10|, Ex=[01 0], Es=|01 2
00 -2 00 1 00 1 001
We have
EyE;FEeEsE E3ByFy A = I
so that
A=F'E;'E; B ES VB B ES Y
00 1]t oo0][1To0ooO0][1 00O
=10 10 010 020 01 0]
1 00][301]]001[][0 31
10 ol[1 -1 0710 2 10 0
10 1 0 0 10 010 01 -1,
00 =3[0 01|00 1 00 1

which is the desired expression since F, !'is an elementary matrix for each 1.

(b). We can reduce A to upper triangular form by the following elementary row operations:

3 0 0 3 0 0 30 0
0 2 —1|A~]o 2 —1|2]0 2 -1
1 -1 2 0 -1 2 00 3
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1. Aiz(—3) 2. Ags(3)
Therefore, the nonzero multipliers are mq3 = % and meo3 = f%. Hence, setting
1 0 0 30 0
L=1]20 1 0 and U=|0 2 -1 |,
1 1 3
3 —3 1 00 3

we have the LU factorization A = LU, which can be verified by direct multiplication.
45.
(a). We reduce A to the identity matrix:

-2 -3 1 1 4 2 1 4 2 1 4 2 1 4 2
1 4 2|A] 2 3112105 5(|2]05 5201 =8
0 5 3 0 5 3| | 0 5 -3 |01 -8 05 5
14 2 1 4 27 (1 0 34 ] (1 0 34 1 0 0
S2lo1 8|2lo1 8|L]o1 s|[2]o1 o0 |2|0o10
0 0 45 00 1| 00 1 0 0 1 00 1
1. P12 2. A12(2) 3. A23(—1) 4. P23 5. A23(—5)
6. Ms(55) 7. Asi(—4) 8. Axn(8) 9. Asi(—34)
The elementary matrices corresponding to these row operations are
01 0 100 1 0 0]
Eit=|10 0|, Ey=|2 10|, E3=|0 1 0,
0 0 1 00 1 0 -1 1|
1 0 0 1 00 1 0 0
Ei=1|0 0 1|, Es=|0 1 0], E=|01 0|,
010 0 -5 1 00 4+
1 -4 0 1 00 1 0 —34
Er=]10 1 0|, Eg=|01 8|, Ey=|0 1 0
0 0 1 00 1 0 0 1
We have
EgEsF7EgEsFEyEsFsF A = Iy
so that
A=FE'E;'E; ' B ES B B ES TR
01 0] 100 1 00 100
=110 0 -2 1 0 010 0 0 1
00 1] 0 0 1 01 1 01 0
(1 0 0 10 0 1 4 0 1 0 0 1 0 34
010 01 0 01 0 0 1 -8 01 0 |,
|0 5 1 0 0 45 0 0 1 00 1 00 1
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which is the desired expression since F; 1is an elementary matrix for each i.

(b). We can reduce A to upper triangular form by the following elementary row operations:

-2 =3 1 -2 -3 1 -2 -3 1
1 42|~ 0 3 3|%| 0o 3 3
0 5 3 0 5 3 0o 0 -2
Therefore, the nonzero multipliers are ms = —% and mo3 = 2. Hence, setting
1 00 -2 =3 1
L=| -3 10 and U=| 0 3 31|,
0 2 1 0o 0 -2

we have the LU factorization A = LU, which can be verified by direct multiplication.
46(a). Using the distributive laws of matrix multiplication, first note that
(A+2B)* = (A+2B)(A+2B) = A(A+2B)+2B(A+2B) = A>+A(2B)+(2B)A+(2B)* = A>42AB+2BA+4B.
Thus, we have
(A+2B)* = (A+2B)(A+2B)?

= A(A+2B)* +2B(A+2B)?

= A(A? + 2AB + 2BA + 4B?%) + 2B(A? + 2AB + 2BA + 4B?)

= A3+ 2A°B + 2ABA + 4AB* + 2BA* + ABAB +4B*A + 8B%,

as needed.
46(b). Each occurrence of B in the answer to part (a) must now be accompanied by a minus sign. Therefore,
all terms containing an odd number of Bs will experience a sign change. The answer is

(A—2B)* = A® —2A’B — 2ABA — 2BA? + 4AB* + ABAB + 4B*A — 8B>.

47.The answer is 2, because each term in the expansion of (A + B)* consists of a string of k& matrices,
each of which is either A or B (2 possibilities for each matrix in the string). Multiplying the possibilities
for each position in the string of length k, we get 2% different strings, and hence 2* different terms in
the expansion of (A 4+ B)*. So, for instance, if k¥ = 4, we expect 16 terms, corresponding to the 16 strings
AAAA, AAAB, AABA, ABAA, BAAA, AABB, ABAB, ABBA, BAAB, BABA, BBAA, ABBB, BABB,
BBAB, BBBA, and BBBB. Indeed, one can verify that the expansion of (4 + B)* is precisely the sum of
the 16 terms we just wrote down.

48. We claim that

To see this, simply note that

)
. |

(c)2017 Pearson Education. Inc.



206

49. For a 2 x 4 matrix, the leading ones can occur in 6 different positions:

1 % *x % 1 % % = 1 % x x [0 1 x = 0 1 %= =% 0 0 1 =
01 = x|’l0 0 1 |0 0 0 1 ’_0 01 «=|’l0 0 O 1|0 0 0 1
For a 3 x 4 matrix, the leading ones can occur in 4 different positions:
1 *x * 1 *x % x (1 % * x 0 1 % x
0 1 = ,00 1 % x|[,]0 0 1 x|[,]0 0 1 x
0 0 1 =% 0 0 0 1 L0 0 0 1 0 0 0 1
For a 4 x 6 matrix, the leading ones can occur in 15 different positions:
F1 % % % % x| [ 1 % % % % x| [1 % % % % ] [1 % % x % x|
0 1 * % * x* 0 1 * * * =x 0 1 % x x x 0 1 x * % x
0 01 «x % %« |10 0 1 *« x =[]0 01 % *x =[]0 0 0 1 % x|’
10001 % ] [00O0O01x| [00O0O0O01f [0O0O0O01 %
[ 1 % % % % x| [ 1 % % % % x| [1 % % % % x| [1 % % x % x|
0 1 % % % * 0 1 % x *x % 0 0 1 % *x =x 0 0 1 =x % =%
0001 = = |0 O0O0O0OT1«=|("f0O0O0OT1T x = |710O0O0T1T % x|’
000001 [00O0CO0OO0T1] [00O0O0T1T=xx| [0O0O0O0O01]
1 % % % s =] [ 1 % % * % =] [0 1 % * % =] [0 1 % % % x|
0 0 1 =x % =% 0 0 0 1 % = 0 0 1 % *x =x 0 0 1 =* % =%
00001 «=|(’f00O0O0O0O0OT1T«=|(f0OO0O0T1T x = |71000O0T1T % x|’
000001 ] [00O0O0OO0OT1T] [00O0O0T1Txx| [0O0O0O0O01,]
0 1 % % x x 0 1 % % x =« 0 0 1 % % =*
0 0 1 % *x =x 0 0 0 1 % = 0 0 0 1 % =
00 001 |0 O0O0O0O0OT1T {0 0 O0O0 1 =«
00 0 0 0 1 0O 00 0 01 00 0 0 01

For an m x n matrix with m < n, the answer is the binomial coefficient

o= () = sy

This represents n “choose” m, which is the number of ways to choose m columns from the n columns of the
matrix in which to put the leading ones. This choice then determines the structure of the matrix.

50. We claim that the inverse of A'° is B®. To prove this, use the fact that A2B = I to observe that
ABS = A?A?A?A*(A’B)BBBB = A’A?A?A’IBBBB = A?A%>A*(A*B)BBB
= A2A?A’IBBB = A’A?(A’B)BB = A?A’IBB = A?(A’B)B = A’IB = A’B =1,
as required.

51. We claim that the inverse of A? is BS. To prove this, use the fact that A>B? = I to observe that
A°B® = A3A3(A3B?)B?B? = A3A’IB?B? = A3(A®B?*)B? = A’IB? = A3B* = I,

as required.
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