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Chapter 1 Solutions

Solutions to Section 1.1

True-False Review:

(a): FALSE. A derivative must involve some derivative of the function y = f(x), not necessarily the first
derivative.

(b): FALSE. The order of a differential equation is the order of the highest, not the lowest, derivative
appearing in the differential equation.

(c): FALSE. This differential equation has order two, since the highest order derivative that appears in the
equation is the second order expression y′′.

(d): FALSE. The carrying capacity refers to the maximum population size that the environment can
support in the long run; it is not related to the initial population in any way.

(e): TRUE. The value y(0) is called an initial condition to the differential equation for y(t).

(f): TRUE. According to Newton’s Law of Cooling, the rate of cooling is proportional to the difference
between the object’s temperature and the medium’s temperature. Since that difference is greater for the
object at 100◦F than the object at 90◦F , the object whose temperature is 100◦F has a greater rate of
cooling.

(g): FALSE. The temperature of the object is given by T (t) = Tm + ce−kt, where Tm is the temperature
of the medium, and c and k are constants. Since e−kt �= 0, we see that T (t) �= Tm for all times t. The
temperature of the object approaches the temperature of the surrounding medium, but never equals it.

(h): TRUE. Since the temperature of the coffee is falling, the temperature difference between the coffee
and the room is higher initially, during the first hour, than it is later, when the temperature of the coffee
has already decreased.

(i): FALSE. The slopes of the two curves are negative reciprocals of each other.

(j): TRUE. If the original family of parallel lines have slopes k for k �= 0, then the family of orthogonal tra-
jectories are parallel lines with slope − 1

k . If the original family of parallel lines are vertical (resp. horizontal),
then the family of orthogonal trajectories are horizontal (resp. vertical) parallel lines.

(k): FALSE. The family of orthogonal trajectories for a family of circles centered at the origin is the family
of lines passing through the origin.

(l): TRUE. If v(t) denotes the velocity of the object at time t and a(t) denotes the velocity of the object
at time t, then we have a(t) = v′(t), which is a differential equation for the unknown function v(t).

(m): FALSE. The restoring force is directed in the direction opposite to the displacement from the equi-
librium position.

(n): TRUE. The allometric relationship B = B0m
3/4, where B0 is a constant, relates the metabolic rate

and total body mass for any species.

Problems:

1. The order is 2.

2. The order is 1.
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3. The order is 3.

4. The order is 2.

5. We compute the first three derivatives of y(t) = ln t:

dy

dt
=

1

t
,

d2y

dt2
= − 1

t2
,

d3y

dt3
=

2

t3
.

Therefore,

2

(
dy

dt

)3

=
2

t3
=

d3y

dt3
,

as required.

6. We compute the first two derivatives of y(x) = x/(x+ 1):

dy

dx
=

1

(x+ 1)2
and

d2y

dx2
= − 2

(x+ 1)3
.

Then

y +
d2y

dx2
=

x

x+ 1
− 2

(x+ 1)3
=

x3 + 2x2 + x− 2

(x+ 1)3
=

(x+ 1) + (x3 + 2x2 − 3)

(x+ 1)3
=

1

(x+ 1)2
+

x3 + 2x2 − 3

(1 + x)3
,

as required.

7. We compute the first two derivatives of y(x) = ex sinx:

dy

dx
= ex(sinx+ cosx) and

d2y

dx2
= 2ex cosx.

Then

2y cotx− d2y

dx2
= 2(ex sinx) cotx− 2ex cosx = 0,

as required.

8. (T − Tm)−1 dT

dt
= −k =⇒ d

dt
(ln |T − Tm|) = −k. The preceding equation can be integrated directly to

yield ln |T − Tm| = −kt + c1. Exponentiating both sides of this equation gives |T − Tm| = e−kt+c1 , which
can be written as

T − Tm = ce−kt,

where c = ±ec1 . Rearranging yields T (t) = Tm + ce−kt.

9. After 4 p.m. In the first two hours after noon, the water temperature increased from 50◦ F to 55◦

F, an increase of five degrees. Because the temperature of the water has grown closer to the ambient air
temperature, the temperature difference |T −Tm| is smaller, and thus, the rate of change of the temperature
of the water grows smaller, according to Newton’s Law of Cooling. Thus, it will take longer for the water
temperature to increase another five degrees. Therefore, the water temperature will reach 60◦ F more than
two hours later than 2 p.m., or after 4 p.m.

10. The object temperature cools a total of 40◦ F during the 40 minutes, but according to Newton’s Law of
Cooling, it cools faster in the beginning (since |T −Tm| is greater at first). Thus, the object cooled half-way

(c)2017 Pearson Education. Inc.
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from 70◦ F to 30◦ F in less than half the total cooling time. Therefore, it took less than 20 minutes for the
object to reach 50◦ F.

11. The given family of curves satisfies: x2 + 9y2 = c =⇒ 2x+ 18y
dy

dx
= 0 =⇒ dy

dx
= − x

9y
.

Orthogonal trajectories satisfy:

dy

dx
=

9y

x
=⇒ 1

y

dy

dx
=

9

x
=⇒ d

dx
(ln |y|) = 9

x
=⇒ ln |y| = 9 ln |x|+ c1 =⇒ y = kx9,where k = ±ec1

.

1.5-0.5

-0.4

1.0

x

y(x)

-0.8

0.4

0.5

0.8

-1.0-1.5

Figure 0.0.1: Figure for Problem 11

12. Given family of curves satisfies: y = cx2 =⇒ c =
y

x2
. Hence,

dy

dx
= 2cx = c

( y

x2

)
x =

2y

x
.

Orthogonal trajectories satisfy:

dy

dx
= − x

2y
=⇒ 2y

dy

dx
= −x =⇒ d

dx
(y2) = −x =⇒ y2 = −1

2
x2 + c1 =⇒ 2y2 + x2 = c2,

where c2 = 2c1.

13. Given a family of curves satisfies: y =
c

x
=⇒ x

dy

dx
+ y = 0 =⇒ dy

dx
= −y

x
.

Orthogonal trajectories satisfy:

dy

dx
=

x

y
=⇒ y

dy

dx
= x =⇒ d

dx

(
1

2
y2
)

= x =⇒ 1

2
y2 =

1

2
x2 + c1 =⇒ y2 − x2 = c2,where c2 = 2c1.

14. The given family of curves satisfies: y = cx5 =⇒ c =
y

x5
. Hence,

dy

dx
= 5cx4 = 5

( y

x5

)
x4 =

5y

x
.

(c)2017 Pearson Education. Inc.
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x

1

y(x)
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2

2.0

1.2

0.4

0.8

-1.2

-2
-0.4

-2.0

-1.6

-1

-0.8

Figure 0.0.2: Figure for Problem 12

-2

2

-4

y(x)

2

4

-4

x

-2 4

Figure 0.0.3: Figure for Problem 13

Orthogonal trajectories satisfy:

dy

dx
= − x

5y
=⇒ 5y

dy

dx
= −x =⇒ d

dx

(
5

2
y2
)

= −x =⇒ 5

2
y2 = −1

2
x2 + c1 =⇒ 5y2 + x2 = c2,

where c2 = 2c1.
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1.5

-0.4

1.0

y(x)

x

-0.8

0.4

0.8

-1.0-1.5

Figure 0.0.4: Figure for Problem 14

15. Given family of curves satisfies: y = cex =⇒ dy

dx
= cex = y. Orthogonal trajectories satisfy:

dy

dx
= −1

y
=⇒ y

dy

dx
= −1 =⇒ d

dx

(
1

2
y2
)

= −1 =⇒ 1

2
y2 = −x+ c1 =⇒ y2 = −2x+ c2.

2

1

y(x)

1

x

-1

-2

-1

Figure 0.0.5: Figure for Problem 15

16. Given family of curves satisfies: y2 = 2x+ c =⇒ dy

dx
=

1

y
.Orthogonal trajectories satisfy:

dy

dx
= −y =⇒ y−1 dy

dx
= −1 =⇒ d

dx
(ln |y|) = −1 =⇒ ln |y| = −x+ c1 =⇒ y = c2e

−x.
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1

1

3

-3

-2

2

-4

-1

2-1

4

3

y(x)

x

4

Figure 0.0.6: Figure for Problem 16

17. y = cxm =⇒ dy

dx
= cmxm−1, but c =

y

xm
so

dy

dx
=

my

x
. Orthogonal trajectories satisfy:

dy

dx
= − x

my
=⇒ y

dy

dx
= − x

m
=⇒ d

dx

(
1

2
y2
)

= − x

m
=⇒ 1

2
y2 = − 1

2m
x2 + c1 =⇒ y2 = − 1

m
x2 + c2.

18. y = mx+ c =⇒ dy

dx
= m.

Orthogonal trajectories satisfy:
dy

dx
= − 1

m
=⇒ y = − 1

m
x+ c1.

19. y2 = mx+ c =⇒ 2y
dy

dx
= m =⇒ dy

dx
=

m

2y
.

Orthogonal trajectories satisfy:

dy

dx
= −2y

m
=⇒ y−1 dy

dx
= − 2

m
=⇒ d

dx
(ln |y|) = − 2

m
=⇒ ln |y| = − 2

m
x+ c1 =⇒ y = c2e

− 2x
m .

20. y2 +mx2 = c =⇒ 2y
dy

dx
+ 2mx = 0 =⇒ dy

dx
= −mx

y
.

Orthogonal trajectories satisfy:

dy

dx
=

y

mx
=⇒ y−1 dy

dx
=

1

mx
=⇒ d

dx
(ln |y|) = 1

mx
=⇒ m ln |y| = ln |x|+ c1 =⇒ ym = c2x.

21. The given family of curves satisfies: x2 + y2 = 2cx =⇒ c =
x2 + y2

2x
. Hence,

2x+ 2y
dy

dx
= 2c =

x2 + y2

x
.

(c)2017 Pearson Education. Inc.
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Therefore,

2y
dy

dx
=

x2 + y2

x
− 2x =

y2 − x2

x
,

so that
dy

dx
=

y2 − x2

2xy
.

Orthogonal trajectories satisfy:
dy

dx
= − 2xy

y2 − x2
=

2xy

x2 − y2
.

22. u = x2 + 2y2 =⇒ 0 = 2x+ 4y
dy

dx
=⇒ dy

dx
= − x

2y
.

Orthogonal trajectories satisfy:

dy

dx
=

2y

x
=⇒ y−1 dy

dx
=

2

x
=⇒ d

dx
(ln |y|) = 2

x
=⇒ ln |y| = 2 ln |x|+ c1 =⇒ y = c2x

2.

x

1

y(x)

1.6

2

2.0

1.2

0.4

0.8

-1.2

-2
-0.4

-2.0

-1.6

-1

-0.8

Figure 0.0.7: Figure for Problem 22

23. m1 = tan (a1) = tan (a2 − a) =
tan (a2)− tan (a)

1 + tan (a2) tan (a)
=

m2 − tan (a)

1 +m2 tan (a)
.

24. d2y
dt2 = g =⇒ dy

dt = gt + c1 =⇒ y(t) = gt2

2 + c1t + c2. Now impose the initial conditions. y(0) = 0 =⇒
c2 = 0.dydt (0) =⇒ c1 = 0. Hence, the solution to the initial-value problem is: y(t) = gt2

2 . The object hits the

ground at time, t0, when y(t0) = 100. Hence 100 =
gt20
2 , so that t0 =

√
200
g ≈ 4.52 s, where we have taken

g = 9.8 ms−2.

(c)2017 Pearson Education. Inc.
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25. From
d2y

dt2
= g, we integrate twice to obtain the general equations for the velocity and the position of

the ball, respectively:
dy

dt
= gt+ c and y(t) =

1

2
gt2 + ct+ d, where c, d are constants of integration. Setting

y = 0 to be at the top of the boy’s head (and positive direction downward), we know that y(0) = 0. Since the
object hits the ground 8 seconds later, we have that y(8) = 5 (since the ground lies at the position y = 5).

From the values of y(0) and y(8), we find that d = 0 and 5 = 32g + 8c. Therefore, c =
5− 32g

8
.

(a). The ball reaches its maximum height at the moment when y′(t) = 0. That is, gt+ c = 0. Therefore,

t = − c

g
=

32g − 5

8g
≈ 3.98 s.

(b). To find the maximum height of the tennis ball, we compute

y(3.98) ≈ −253.51 feet.

So the ball is 253.51 feet above the top of the boy’s head, which is 258.51 feet above the ground.

26. From
d2y

dt2
= g, we integrate twice to obtain the general equations for the velocity and the position of

the rocket, respectively:
dy

dt
= gt+c and y(t) =

1

2
gt2+ct+d, where c, d are constants of integration. Setting

y = 0 to be at ground level, we know that y(0) = 0. Thus, d = 0.

(a). The rocket reaches maximum height at the moment when y′(t) = 0. That is, gt+ c = 0. Therefore, the

time that the rocket achieves its maximum height is t = − c

g
. At this time, y(t) = −90 (the negative sign

accounts for the fact that the positive direction is chosen to be downward). Hence,

−90 = y

(
− c

g

)
=

1

2
g

(
− c

g

)2

+ c

(
− c

g

)
=

c2

2g
− c2

g
= − c2

2g
.

Solving this for c, we find that c = ±√
180g. However, since c represents the initial velocity of the rocket,

and the initial velocity is negative (relative to the fact that the positive direction is downward), we choose
c = −√

180g ≈ −42.02 ms−1, and thus the initial speed at which the rocket must be launched for optimal
viewing is approximately 42.02 ms−1.

(b). The time that the rocket reaches its maximum height is t = − c

g
≈ −−42.02

9.81
= 4.28 s.

27. From
d2y

dt2
= g, we integrate twice to obtain the general equations for the velocity and the position of

the rocket, respectively:
dy

dt
= gt+c and y(t) =

1

2
gt2+ct+d, where c, d are constants of integration. Setting

y = 0 to be at the level of the platform (with positive direction downward), we know that y(0) = 0. Thus,
d = 0.

(a). The rocket reaches maximum height at the moment when y′(t) = 0. That is, gt+ c = 0. Therefore, the

time that the rocket achieves its maximum height is t = − c

g
. At this time, y(t) = −85 (this is 85 m above

the platform, or 90 m above the ground). Hence,

−85 = y

(
− c

g

)
=

1

2
g

(
− c

g

)2

+ c

(
− c

g

)
=

c2

2g
− c2

g
= − c2

2g
.

(c)2017 Pearson Education. Inc.
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Solving this for c, we find that c = ±√
170g. However, since c represents the initial velocity of the rocket,

and the initial velocity is negative (relative to the fact that the positive direction is downward), we choose
c = −√

170g ≈ −40.84 ms−1, and thus the initial speed at which the rocket must be launched for optimal
viewing is approximately 40.84 ms−1.

(b). The time that the rocket reaches its maximum height is t = − c

g
≈ −−40.84

9.81
= 4.16 s.

28. If y(t) denotes the displacement of the object from its initial position at time t, the motion of the object
can be described by the initial-value problem

d2y

dt2
= g, y(0) = 0,

dy

dt
(0) = −2.

We first integrate this differential equation:
d2y

dt2
= g =⇒ dy

dt
= gt + c1 =⇒ y(t) =

gt2

2
+ c1t + c2. Now

impose the initial conditions. y(0) = 0 =⇒ c2 = 0.
dy

dt
(0) = −2 =⇒ c1 = −2. Hence the solution to the

initial-value problem is y(t) =
gt2

2
− 2t. We are given that y(10) = h. Consequently, h =

g(10)2

2
− 2 · 10 =⇒

h = 10(5g − 2) ≈ 470 m where we have taken g = 9.8 ms−2.

29. If y(t) denotes the displacement of the object from its initial position at time t, the motion of the object
can be described by the initial-value problem

d2y

dt2
= g, y(0) = 0,

dy

dt
(0) = v0.

We first integrate the differential equation:
d2y

dt2
= g =⇒ dy

dt
= gt+ c1 =⇒ y(t) =

gt2

2
+ c1t+ c2. Now impose

the initial conditions. y(0) = 0 =⇒ c2 = 0.
dy

dt
(0) = v0 =⇒ c1 = v0. Hence the solution to the initial-value

problem is y(t) =
gt2

2
+v0t. We are given that y(t0) = h. Consequently, h = gt20+v0t0. Solving for v0 yields

v0 =
2h− gt20

2t0
.

30. From y(t) = A cos (ωt− φ), we obtain

dy

dt
= −Aω sin (ωt− φ) and

d2y

dt2
= −Aω2 cos (ωt− φ).

Hence,
d2y

dt2
+ ω2y = −Aω2 cos (ωt− φ) +Aω2 cos (ωt− φ) = 0.

Substituting y(0) = a, we obtain a = A cos(−φ) = A cos(φ). Also, from dy
dt (0) = 0, we obtain 0 =

−Aω sin(−φ) = Aω sin(φ). Since A �= 0 and ω �= 0 and |φ| < π, we have φ = 0. It follows that a = A.

31. y(t) = c1 cos (ωt) + c2 sin (ωt) =⇒ dy

dt
= −c1ω sin (ωt) + c2ω cos (ωt) =⇒ d2y

dt2
= −c1ω

2 cos (ωt) −

c2ω
2 sin (ωt) = −ω2[c1 cos (ωt) + c2 cos (ωt)] = −ω2y. Consequently,

d2y

dt2
+ ω2y = 0. To determine the

(c)2017 Pearson Education. Inc.
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amplitude of the motion we write the solution to the differential equation in the equivalent form:

y(t) =
√
c21 + c22

[
c1√

c21 + c22
cos (ωt) +

c2√
c21 + c22

sin (ωt)

]
.

We can now define an angle φ by

cosφ =
c1√

c21 + c22
and sinφ =

c2√
c21 + c22

.

Then the expression for the solution to the differential equation is

y(t) =
√

c21 + c22[cos (ωt) cosφ+ sin (ωt) sinφ] =
√

c21 + c22 cos (ωt+ φ).

Consequently the motion corresponds to an oscillation with amplitude A =
√
c21 + c22.

32. In this problem we have m0 = 3g, M = 2700g, a = 1.5. Substituting these values into Equation (1.1.26)
yields

m(t) = 2700

{
1−

[
1−

(
1

900

)1/4
]
e−1.5t/(4(2700)1/4)

}4

.

Therefore the mass of the heron after 30 days is

m(30) = 2700

{
1−

[
1−

(
1

900

)1/4
]
e−45/(4(2700)1/4)

}4

≈ 1271.18 g.

33. In this problem we have m0 = 8g, M = 280g, a = 0.25. Substituting these values into Equation (1.1.26)
yields

m(t) = 280

{
1−

[
1−

(
1

35

)1/4
]
e−t/(16(280)1/4)

}4

.

We need to find the time, t when the mass of the rat reaches 75% of its fully grown size. Therefore we need
to find t such that

75

100
· 280 = 280

{
1−

[
1−

(
1

35

)1/4
]
e−t/(16(280)1/4)

}4

.

Solving algebraically for t yields

t = 16 · (280)1/4 · ln
[

1− (1/35)
1/4

1− (75/100))
1/4

]
≈ 140 days.

Solutions to Section 1.2

True-False Review:

(a): TRUE. This is condition 1 in Definition 1.2.8.

(c)2017 Pearson Education. Inc.
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(b): TRUE. This is the content of Theorem 1.2.12.

(c): FALSE. There are solutions to y′′ + y = 0 that do not have the form c1 cosx + 5c2 cosx, such as
y(x) = sinx. Therefore, c1 cosx + 5c2 cosx does not meet the second requirement set forth in Definition
1.2.8 for the general solution.

(d): FALSE. There are solutions to y′′ + y = 0 that do not have the form c1 cosx + 5c1 sinx, such
as y(x) = cosx + sinx. Therefore, c1 cosx + 5c1 sinx does not meet the second requirement set form in
Definition 1.2.8 for the general solution.

(e): TRUE. Since the right-hand side of the differential equation is a function of x only, we can integrate
both sides n times to obtain the formula for the solution y(x).

Problems:

1. Linear.

2. Non-linear, because of the y2 expression on the right side of the equation.

3. Non-linear, because of the term yy′′ on tthe left side of the equation.

4. Non-linear, because of the expression tan y appearing on the left side of the equation.

5. Linear.

6. Non-linear, because of the expression
1

y′
on the left side of the equation.

7. y(x) = c1e
−5x + c2e

5x =⇒ y′ = −5c1e
−5x + 5c2e

5x =⇒ y′′ = 25c1e
−5x + 25c2e

5x =⇒ y′′ − 25y =
(25c1e

−5x + 25c2e
5x) − 25(c1e

−5x + c2e
5x) = 0. Thus y(x) = c1e

−5x + c2e
5x is a solution of the given

differential equation for all x ∈ R.

8. y(x) = c1 cos 2x + c2 sin 2x =⇒ y′ = −2c1 sin 2x + 2c2 cos 2x =⇒ y′′ = −4c1 cos 2x − 4c2 sin 2x =⇒
y′′ + 4y = (−4c1 cos 2x − 4c2 sin 2x) + 4(c1 cos 2x + c2 sin 2x) = 0. Thus y(x) = c1 cos 2x + c2 sin 2x is a
solution of the given differential equation for all x ∈ R.

9. y(x) = c1e
x + c2e

−2x =⇒ y′ = c1e
x − 2c2e

−2x =⇒ y′′ = c1e
x + 4c2e

−2x =⇒ y′′ + y′ − 2y = (c1e
x +

4c2e
−2x) + (c1e

x − 2c2e
−2x) − 2(c1e

x + c2e
−2x) = 0. Thus y(x) = c1e

x + c2e
−2x is a solution of the given

differential equation for all x ∈ R.

10. y(x) =
1

x+ 4
=⇒ y′ = − 1

(x+ 4)2
= −y2. Thus y(x) =

1

x+ 4
is a solution of the given differential

equation for x ∈ (−∞,−4) or x ∈ (−4,∞).

11. y(x) = c1
√
x =⇒ y′ =

c1
2
√
x
=

y

2x
. Thus y(x) = c1

√
x is a solution of the given differential equation for

all x ∈ {x : x > 0}.

12. y(x) = c1e
−x sin (2x) =⇒ y′ = 2c1e

−x cos (2x)−c1e
−x sin (2x) =⇒ y′′ = −3c1e

−x sin (2x)−4c1e
−x cos (2x) =⇒

y′′+2y′+5y = −3c1e
−x sin (2x)−4c1e

−x cos (2x)+2[2c1e
−x cos (2x)−c1e

−x sin (2x)]+5[c1e
−x sin (2x)] = 0.

Thus y(x) = c1e
−x sin (2x) is a solution to the given differential equation for all x ∈ R.

13. y(x) = c1 cosh (3x) + c2 sinh (3x) =⇒ y′ = 3c1 sinh (3x) + 3c2 cosh (3x) =⇒ y′′ = 9c1 cosh (3x) +
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9c2 sinh (3x) =⇒ y′′ − 9y = [9c1 cosh (3x) + 9c2 sinh (3x)] − 9[c1 cosh (3x) + c2 sinh (3x)] = 0. Thus y(x) =
c1 cosh (3x) + c2 sinh (3x) is a solution to the given differential equation for all x ∈ R.

14. y(x) =
c1
x3

+
c2
x

=⇒ y′ = −3c1
x4

− c2
x2

=⇒ y′′ =
12c1
x5

+
2c2
x3

=⇒ x2y′′ + 5xy′ + 3y = x2

(
12c1
x5

+
2c2
x3

)
+

5x

(
−3c1

x4
− c2

x2

)
+ 3

( c1
x3

+
c2
x

)
= 0. Thus y(x) =

c1
x3

+
c2
x

is a solution to the given differential equation

for all x ∈ (−∞, 0) or x ∈ (0,∞).

15. y(x) = c1x
2 lnx =⇒ y′ = c1(2x lnx+ x) =⇒ y′′ = c1(2 lnx+ 3) =⇒ x2y′′ − 3xy′ + 4y = x2 · c1(2 lnx+

3) − 3x · c1(2x lnx + x) + 4c1x
2 lnx = c1x

2 [(2 lnx+ 3)− 3(2x lnx+ 1) + 4 lnx] = 0. Thus y(x) = c1x
2 lnx

is a solution of the given differential equation for all x > 0.

16. y(x) = c1x
2 cos(3 lnx) =⇒ y′ = c1[2x cos(3 lnx)−3x sin(3 lnx)] =⇒ y′′ = c1[−7 cos(3 lnx)−6 sin(3 lnx)] =⇒

x2y′′−3xy′+13y = x2·c1[−7 cos(3 lnx)−9 sin(3 lnx)]−3x·c1[2x cos(3 lnx)−3x sin(3 lnx)]+13c1x
2 cos(3 lnx) =

c1x
2 {[−7 cos(3 lnx)− 9 sin(3 lnx)]− 3[2 cos(3 lnx)− 3 sin(3 lnx)] + 13 cos(3 lnx)} = 0. Thus y(x) = c1x

2 cos(3 lnx)
is a solution of the given differential equation for all x > 0.

17. y(x) = c1
√
x+3x2 =⇒ y′ =

c1
2
√
x
+6x =⇒ y′′ = − c1

4
√
x3

+6 =⇒ 2x2y′′−xy′+y = 2x2

(
− c1

4
√
x3

+ 6

)
−

x

(
c1

2
√
x
+ 6x

)
+(c1

√
x+3x2) = 9x2. Thus y(x) = c1

√
x+3x2 is a solution to the given differential equation

for all x ∈ {x : x > 0}.

18. y(x) = c1x
2 + c2x

3 −x2 sinx =⇒ y′ = 2c1x+3c2x
2 −x2 cosx− 2x sinx =⇒ y′′ = 2c1 +6c2x+x2 sinx−

2x cosx− 2x cos−2 sinx. Substituting these results into the given differential equation yields
x2y′′ − 4xy′ + 6y = x2(2c1 + 6c2x+ x2 sinx− 4x cosx− 2 sinx)− 4x(2c1x+ 3c2x

2 − x2 cosx− 2x sinx)

+ 6(c1x
2 + c2x

3 − x2 sinx)

= 2c1x
2 + 6c2x

3 + x4 sinx− 4x3 cosx− 2x2 sinx− 8c1x
2 − 12c2x

3 + 4x3 cosx+ 8x2 sinx

+ 6c1x
2 + 6c2x

3 − 6x2 sinx

= x4 sinx.

Hence, y(x) = c1x
2 + c2x

3 − x2 sinx is a solution to the differential equation for all x ∈ R.

19. y(x) = c1e
ax + c2e

bx =⇒ y′ = ac1e
ax + bc2e

bx =⇒ y′′ = a2c1e
ax + b2c2e

bx. Substituting these results
into the differential equation yields
y′′ − (a+ b)y′ + aby = a2c1e

ax + b2c2e
bx − (a+ b)(ac1e

ax + bc2e
bx) + ab(c1e

ax + c2e
bx)

= (a2c1 − a2c1 − abc1 + abc1)e
ax + (b2c2 − abc2 − b2c2 + abc2)e

bx

= 0.

Hence, y(x) = c1e
ax + c2e

bx is a solution to the given differential equation for all x ∈ R.

20. y(x) = eax(c1 + c2x) =⇒ y′ = eax(c2) + aeax(c1 + c2x) = eax(c2 + ac1 + ac2x) =⇒ y′′ = eaax(ac2) +
aeax(c2 + ac1 + ac2x) = aeax(2c2 + ac1 + ac2x). Substituting these into the differential equation yields
y′′ − 2ay′ + a2y = aeax(2c2 + ac1 + ac2x)− 2aeax(c2 + ac1 + ac2x) + a2eax(c1 + c2x)

= aeax(2c2 + ac1 + ac2x− 2c2 − 2ac1 − 2ac2x+ ac1 + ac2x)

= 0.
Thus, y(x) = eax(c1 + c2x) is a solution to the given differential eqaution for all x ∈ R.
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21. y(x) = eax(c1 cos bx+ c2 sin bx) so,
y′ = eax(−bc1 sin bx+ bc2 cos bx) + aeax(c1 cos bx+ c2 sin bx)

= eax[(bc2 + ac1) cos bx+ (ac2 − bc1) sin bx] so,

y′′ = eax[−b(bc2 + ac1) sin bx+ b(ac2 + bc1) cos bx] + aeax[(bc2 + ac1) cos bx+ (ac2 + bc1) sin bx]

= eax[(a2c1 − b2c1 + 2abc2) cos bx+ (a2c2 − b2c2 − abc1) sin bx].
Substituting these results into the differential equation yields
y′′ − 2ay′ + (a2 + b2)y = (eax[(a2c1 − b2c1 + 2abc2) cos bx+ (a2c2 − b2c2 − abc1) sin bx])

− 2a(eax[(bc2 + ac1) cos bx+ (ac2 − bc1) sin bx]) + (a2 + b2)(eax(c1 cos bx+ c2 sin bx))

= eax[(a2c1 − b2c1 + 2abc2 − 2abc2 − 2a2c1 + a2c1 + b2c1) cos bx

+ (a2c2 − b2c2 − 2abc1 + 2abc1 − 2a2c2 + a2c2 + b2c2) sin bx]

= 0

.

Thus, y(x) = eax(c1 cos bx+ c2 sin bx) is a solution to the given differential equation for all x ∈ R.

22. y(x) = erx =⇒ y′ = rerx =⇒ y′′ = r2erx. Substituting these results into the given differential equation
yields erx(r2 − r − 6) = 0, so that r must satisfy r2 − r − 6 = 0, or (r − 3)(r + 2) = 0. Consequently r = 3
and r = −2 are the only values of r for which y(x) = erx is a solution to the given differential equation. The
corresponding solutions are y(x) = e3x and y(x) = e−2x.

23. y(x) = erx =⇒ y′ = rerx =⇒ y′′ = r2erx. Substituting these results into the given differential equation
yields erx(r2 + 6r + 9) = 0, so that r must satisfy r2 + 6r + 9 = 0, or (r + 3)2 = 0. Consequently r = −3 is
the only value of r for which y(x) = erx is a solution to the given differential equation. The corresponding
solution are y(x) = e−3x.

24. y(x) = xr =⇒ y′ = rxr−1 =⇒ y′′ = r(r−1)xr−2. Substitution into the given differential equation yields
xr[r(r − 1) + r − 1] = 0, so that r must satisfy r2 − 1 = 0. Consequently r = −1 and r = 1 are the only
values of r for which y(x) = xr is a solution to the given differential equation. The corresponding solutions
are y(x) = x−1 and y(x) = x.

25. y(x) = xr =⇒ y′ = rxr−1 =⇒ y′′ = r(r−1)xr−2. Substitution into the given differential equation yields
xr[r(r − 1) + 5r + 4] = 0, so that r must satisfy r2 + 4r + 4 = 0, or equivalently (r + 2)2 = 0. Consequently
r = −2 is the only value of r for which y(x) = xr is a solution to the given differential equation. The
corresponding solution is y(x) = x−2.

26. y(x) = 1
2x(5x

2 − 3) = 1
2 (5x

3 − 3x) =⇒ y′ = 1
2 (15x

2 − 3) =⇒ y′′ = 15x. Substitution into the Legendre
equation with N = 3 yields (1 − x2)y′′ − 2xy′ + 12y = (1 − x2)(15x) + x(15x2 − 3) + 6x(5x2 − 3) = 0.
Consequently the given function is a solution to the Legendre equation with N = 3.

27. y(x) = a0+a1x+a2x
2 =⇒ y′ = a1+2a2x =⇒ y′′ = 4a2. Substitution into the given differential equation

yields (1−x2)(2a2)−x(a1+2a2x)+4(a0+a1x+a2x
2) = 0 =⇒ 3a1x+2a2+4a0 = 0. For this equation to hold

for all x we require 3a1 = 0, and 2a2 + 4a0 = 0. Consequently a1 = 0, and a2 = −2a0. The corresponding
solution to the differential equation is y(x) = a0(1 − 2x2). Imposing the normalization condition y(1) = 1
requires that a0 = −1. Hence, the required solution to the differential equation is y(x) = 2x2 − 1.

28. x sin y − ex = c =⇒ x cos y
dy

dx
+ sin y − ex = 0 =⇒ dy

dx
=

ex − sin y

x cos y
.
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29. xy2 + 2y − x = c =⇒ 2xy
dy

dx
+ y2 + 2

dy

dx
− 1 = 0 =⇒ dy

dx
=

1− y2

2(xy + 1)
.

30. exy + x = c =⇒ exy[x
dy

dx
+ y] − 1 = 0 =⇒ xexy

dy

dx
+ yexy = 1 =⇒ 1− yexy

xexy
. Given y(1) = 0 =⇒

e0(1) − 1 = c =⇒ c = 0. Therefore, exy − x = 0, so that y =
lnx

x
.

31. ey/x + xy2 − x = c =⇒ ey/x
x
dy

dx
− y

x2
+ 2xy

dy

dx
+ y2 − 1 = 0 =⇒ dy

dx
=

x2(1− y2) + yey/x

x(ey/x + 2x2y)
.

32. x2y2 − sinx = c =⇒ 2x2y
dy

dx
+ 2xy2 − cosx = 0 =⇒ dy

dx
=

cosx− 2xy2

2x2y
. Since y(π) =

1

π
, then

π2

(
1

π

)2

− sinπ = c =⇒ c = 1. Hence, x2y2 − sinx = 1 so that y2 =
1 + sinx

x2
. Since y(π) =

1

π
, take the

branch of y where x < 0 so y(x) =

√
1 + sinx

x
.

33.
dy

dx
= sinx =⇒ y(x) = − cosx+ c for all x ∈ R.

34.
dy

dx
= x−2/3 =⇒ y(x) = 3x1/3 + c for all x �= 0.

35.
d2y

dx2
= xex =⇒ dy

dx
= xex − ex + c1 =⇒ y(x) = xex − 2ex + c1x+ c2 for all x ∈ R.

36.
d2y

dx2
= xn, where n is an integer.

If n = −1 then
dy

dx
= ln |x|+ c1 =⇒ y(x) = x ln |x|+ c1x+ c2 for all x ∈ (−∞, 0) or x ∈ (0,∞).

If n = −2 then
dy

dx
= −x−1 + c1 =⇒ y(x) = c1x+ c2 − ln |x| for all x ∈ (−∞, 0) or x ∈ (0,∞).

If n �= −1 and n �= −2 then
dy

dx
=

xn+1

n+ 1
+ c1 =⇒ y =

xn+2

(n+ 1)(n+ 2)
+ c1x+ c2 for all x ∈ R.

37.
dy

dx
= x2 lnx =⇒ y(x) =

1

3
x3 lnx− 1

9
x3 + c1 =

1

9
x3(3 lnx− 1) + c1. y(1) = 2 =⇒ 2 =

1

9
(0− 1) + c1 =⇒

c1 =
19

9
. Therefore, y(x) =

1

9
x3(3 lnx− 1) +

19

9
=

1

9

[
x3(3 lnx− 1) + 19

]
.

38.
d2y

dx2
= cosx =⇒ dy

dx
= sinx+ c1 =⇒ y(x) = − cosx+ c1x+ c2.

Thus, y′(0) = 1 =⇒ c1 = 1, and y(0) = 2 =⇒ c2 = 3. Thus, y(x) = 3 + x− cosx.

39.
d3y

dx3
= 6x =⇒ d2y

dx2
= 3x2 + c1 =⇒ dy

dx
= x3 + c1x+ c2 =⇒ y = 1

4x
4 + 1

2c1x
2 + c2x+ c3.

Thus, y′′(0) = 4 =⇒ c1 = 4, and y′(0) = −1 =⇒ c2 = −1, and y(0) = 1 =⇒ c3 = 1. Thus, y(x) =
1
4x

4 + 2x2 − x+ 1.

40. y′′ = xex =⇒ y′ = xex − ex + c1 =⇒ y = xex − 2ex + c1x+ c2.
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Thus, y′(0) = 4 =⇒ c1 = 5, and y(0) = 3 =⇒ c2 = 5. Thus, y(x) = xex − 2ex + 5x+ 5.

41. Starting with y(x) = c1e
x + c2e

−x, we find that y′(x) = c1e
x − c2e

−x and y′′(x) = c1e
x + c2e

−x. Thus,
y′′ − y = 0, so y(x) = c1e

x + c2e
−x is a solution to the differential equation on (−∞,∞). Next we establish

that every solution to the differential equation has the form c1e
x + c2e

−x. Suppose that y = f(x) is any
solution to the differential equation. Then according to Theorem 1.2.12, y = f(x) is the unique solution to
the initial-value problem

y′′ − y = 0, y(0) = f(0), y′(0) = f ′(0).

However, consider the function

y(x) =
f(0) + f ′(0)

2
ex +

f(0)− f ′(0)
2

e−x.

This is of the form y(x) = c1e
x + c2e

−x, where c1 = f(0)+f ′(0)
2 and c2 = f(0)−f ′(0)

2 , and therefore solves the
differential equation y′′ − y = 0. Furthermore, evaluation this function at x = 0 yields

y(0) = f(0) and y′(0) = f ′(0).

Consequently, this function solves the initial-value problem above. However, by assumption, y(x) = f(x)
solves the same initial-value problem. Owing to the uniqueness of the solution to this initial-value problem,
it follows that these two solutions are the same:

f(x) = c1e
x + c2e

−x.

Consequently, every solution to the differential equation has the form y(x) = c1e
x + c2e

−x, and therefore
this is the general solution on any interval I.

42.
d2y

dx2
= e−x =⇒ dy

dx
= −e−x + c1 =⇒ y(x) = e−x + c1x + c2. Thus, y(0) = 1 =⇒ c2 = 0, and

y(1) = 0 =⇒ c1 = − 1
e . Hence, y(x) = e−x − 1

ex.

43.
d2y

dx2
= −6 − 4 lnx =⇒ dy

dx
= −2x − 4x lnx + c1 =⇒ y(x) = −2x2 lnx + c1x + c2. Since, y(1) = 0 =⇒

c1 + c2 = 0, and since, y(e) = 0 =⇒ ec1 + c2 = 2e2. Solving this system yields c1 =
2e2

e− 1
, c2 = − 2e2

e− 1
.

Thus, y(x) =
2e2

e− 1
(x− 1)− 2x2 lnx.

44. y(x) = c1 cosx+ c2 sinx

(a). y(0) = 0 =⇒ 0 = c1(1) + c2(0) =⇒ c1 = 0. y(π) = 1 =⇒ 1 = c2(0), which is impossible. No solutions.

(b). y(0) = 0 =⇒ 0 = c1(1) + c2(0) =⇒ c1 = 0. y(π) = 0 =⇒ 0 = c2(0), so c2 can be anything. Infinitely
many solutions.

45-50. Use some kind of technology to define each of the given functions. Then use the technology to
simplify the expression given on the left-hand side of each differential equation and verify that the result
corresponds to the expression on the right-hand side.

51. (a). Use some form of technology to substitute y(x) = a+ bx+ cx2+dx3+ex4+fx5 where a, b, c, d, e, f
are constants, into the given Legendre equation and set the coefficients of each power of x in the resulting
equation to zero. The result is:

e = 0, 20f + 18d = 0, e+ 2c = 0, 3d+ 14b = 0, c+ 15a = 0.

(c)2017 Pearson Education. Inc.



16

Now solve for the constants to find: a = c = e = 0, d = − 14
3 b, f = − 9

10d = 21
5 b. Consequently the

corresponding solution to the Legendre equation is:

y(x) = bx

(
1− 14

3
x2 +

21

5
x4

)
.

Imposing the normalization condition y(1) = 1 requires 1 = b(1 − 14
3 + 21

5 ) =⇒ b = 15
8 . Consequently the

required solution is y(x) = 1
8x(15− 70x2 + 63x4).

52. (a). J0(x) =
∞∑
k=0

(−1)k

(k!)2

(x
2

)2k
= 1− 1

4x
2 + 1

64x
4 + ...

(b). A Maple plot of J(0, x, 4) is given in the accompanying figure.
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0.4

0.6

0.8

1

1 2 3 4
x

J(0, x, 4)

Approximation to the first 
positive zero of J0(x)

Figure 0.0.8: Figure for Problem 52(b)

(c). From this graph, an approximation to the first positive zero of J0(x) is 2.4. Using the Maple internal
function BesselJZeros gives the approximation 2.404825558.

(c) A Maple plot of the functions J0(x) and J(0, x, 4) on the interval [0,2] is given in the accompanying
figure. We see that to the printer resolution, these graphs are indistinguishable. On a larger interval, for
example, [0,3], the two graphs would begin to differ dramatically from one another.

(d). By trial and error, we find the smallest value of m to be m = 11. A plot of the functions J(0, x) and
J(0, x, 11) is given in the accompanying figure.

Solutions to Section 1.3

True-False Review:

(a): TRUE. This is precisely the remark after Theorem 1.3.2.

(b): FALSE. For instance, the differential equation in Example 1.3.7 has no equilibrium solutions.

(c): FALSE. This differential equation has equilibrium solutions y(x) = 2 and y(x) = −2.

(d): TRUE. For this differential equation, we have f(x, y) = x2 + y2. Therefore, any equation of the form
x2 + y2 = k is an isocline, by definition.
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J0(x), J(0, x, 4)

Figure 0.0.9: Figure for Problem 52(c)
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Figure 0.0.10: Figure for Problem 52(d)

(e): TRUE. Equilibrium solutions are always horizontal lines. These are always parallel to each other.

(f): TRUE. The isoclines have the form x2+y2

2y = k, or x2+y2 = 2ky, or x2+(y−k)2 = k2, so the statement
is valid.

(g): TRUE. An equilibrium solution is a solution, and two solution curves to the differential equation
dy
dx = f(x, y) do not intersect.

Problems:

1. y = ce2x =⇒ c = ye−2x. Hence,
dy

dx
= 2ce2x = 2y.

2. y = ecx =⇒ ln y = cx =⇒ c =
ln y

x
, x �= 0. Hence,

dy

dx
= cecx =

y

x
ln y, x �= 0.
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3. y = cx2 =⇒ c =
y

x2
. Hence,

dy

dx
= 2cx = 2

y

x2
x =

2y

x
.

4. y = cx−1 =⇒ c = xy. Hence,
dy

dx
= −cx−2 = −(xy)x−2 = −y

x
.

5. y2 = cx =⇒ c =
y2

x
. Hence, 2y

dy

dx
= c, so that,

dy

dx
=

c

2y
=

y

2x
.

6. x2 + y2 = 2cx =⇒ x2 + y2

2x
= c. Hence, 2x + 2y

dy

dx
= 2c =

x2 + y2

x
, so that, y

dy

dx
=

x2 + y2

2x
− x.

Consequently,
dy

dx
=

y2 − x2

2xy
.

7. (x − c)2 + (y − c)2 = 2c2 =⇒ x2 − 2cx + y2 − 2cy = 0 =⇒ c =
x2 + y2

2(x+ y)
. Differentiating the given

equation yields 2(x − c) + 2(y − c)
dy

dx
= 0, so that 2

[
x− x2 + y2

2(x+ y)

]
+ 2

[
y − x2 + y2

2(x+ y)

]
dy

dx
= 0, that is

dy

dx
= −x2 + 2xy − y2

y2 + 2xy − x2
.

8. 2cy = x2 − c2 =⇒ c2 + 2cy − x2 = 0 =⇒ c =
−2y ±

√
4y2 + 4x2

2
= −y ±

√
x2 + y2. Hence, 2c dy

dx = 2x,

so that dy
dx = x

c = x

−y±
√

x2+y2
.

9. x2 + y2 = c =⇒ 2x+ 2y
dy

dx
= 0 =⇒ dy

dx
= −x

y
.

2.0

1

-1.2

2-2

1.2

-1

-0.8

-2.0

0.8

x

1.6

0.4

-1.6

-0.4

y(x)

Figure 0.0.11: Figure for Problem 9

10. y = cx3 =⇒ dy

dx
= 3cx2 = 3

y

x3
x2 =

3y

x
. The initial condition y(2) = 8 =⇒ 8 = c(2)3 =⇒ c = 1. Thus

the unique solution to the initial value problem is y = x3.
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(2, 8)

Figure 0.0.12: Figure for Problem 10

11. y2 = cx =⇒ 2y
dy

dx
= c =⇒ 2y

dy

dx
=

y2

x
=⇒ dy

dx
= y2x =⇒ 2x · dy − y · dx = 0. The initial condition

y(1) = 2 =⇒ c = 4, so that the unique solution to the initial value problem is y2 = 4x.

3

3

1

3 -1

-3

-1

y(x)

-2 21
x

(1, 2)

-

Figure 0.0.13: Figure for Problem 11
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12. (x− c)2 + y2 = c2 =⇒ x2 − 2cx+ c2 + y2 = c2, so that

x2 − 2cx+ y2 = 0. (0.0.1)

Differentiating with respect to x yields

2x− 2c+ 2y
dy

dx
= 0. (0.0.2)

But from (0.0.1), c =
x2 + y2

2x
which, when substituted into (0.0.2), yields 2x −

(
x2 + y2

x

)
+ 2y

dy

dx
= 0,

that is,
dy

dx
=

y2 − x2

2xy
. Imposing the initial condition y(2) = 2 =⇒ from (0.0.1) c = 2, so that the unique

solution to the initial value problem is y = +
√

x(4− x).

-2

y(x)

2

x
5

1

3

6

-1

2

-3

31 4

(2, 2)

Figure 0.0.14: Figure for Problem 12

13. Let f(x, y) = x sin (x+ y), which is continuous for all x, y ∈ R.
∂f

∂y
= x cos (x+ y), which is continuous for all x, y ∈ R.

By Theorem 1.3.2,
dy

dx
= x sin (x+ y), y(x0) = y0 has a unique solution for some interval I ∈ R.

14.
dy

dx
=

x

x2 + 1
(y2 − 9), y(0) = 3.

f(x, y) =
x

x2 + 1
(y2 − 9), which is continuous for all x, y ∈ R.

∂f

∂y
=

2xy

x2 + 1
, which is continuous for all x, y ∈ R.

So the initial value problem stated above has a unique solution on any interval containing (0, 3). By inspection
we see that y(x) = 3 is the unique solution.
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15. The initial-value problem does not necessarily have a unique solution since the hypothesis of the existence

and uniqueness theorem are not satisfied at (0,0). This follows since f(x, y) = xy1/2, so that
∂f

∂y
= 1

2xy
−1/2

which is not continuous at (0, 0).

16. (a). f(x, y) = −2xy2 =⇒ ∂f

∂y
= −4xy. Both of these functions are continuous for all (x, y), and

therefore the hypothesis of the uniqueness and existence theorem are satisfied for any (x0, y0).

(b). y(x) =
1

x2 + c
=⇒ y′ = − 2x

(x2 + c)2
= −2xy2.

(c). y(x) =
1

x2 + c
.

(i). y(0) = 1 =⇒ 1 =
1

c
=⇒ c = 1. Hence, y(x) =

1

x2 + 1
. The solution is valid on the interval (−∞,∞).

2

0.4

0.8

1.2

x
-2

y(x)

Figure 0.0.15: Figure for Problem 16c(i)

(ii). y(1) = 1 =⇒ 1 =
1

1 + c
=⇒ c = 0. Hence, y(x) =

1

x2
. This solution is valid on the interval (0,∞).

(iii). y(0) = −1 =⇒ −1 =
1

c
=⇒ c = −1. Hence, y(x) =

1

x2 − 1
. This solution is valid on the interval

(−1, 1).

(d). Since, by inspection, y(x) = 0 satisfies the given initial-value problem, it must be the unique solution
to the initial-value problem.

17. (a). Both f(x, y) = y(y − 1) and
∂f

∂y
= 2y − 1 are continuous at all points (x, y). Consequently, the

hypothesis of the existence and uniqueness theorem are satisfied by the given initial-value problem for any
x0, y0.

(b). Equilibrium solutions: y(x) = 0, y(x) = 1.

(c). Differentiating the given differential equation yields
d2y

dx2
= (2y − 1)

dy

dx
= (2y − 1)y(y − 1). Hence the

solution curves are concave up for 0 < y < 1
2 , and y > 1, and concave down for y < 0, and 1

2 < y < 1.

(d). The solutions will be bounded provided 0 ≤ y0 ≤ 1.

18. (a). Equilibrium solutions: y(x) = −2, y(x) = 1.
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5

y(x)

x

2
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6
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3
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41
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Figure 0.0.16: Figure for Problem 16c(ii)

x

y(x)

1.0-1.0

-3

-0.5 0.5

-1

-2

Figure 0.0.17: Figure for Problem 16c(iii)

(b).
dy

dx
= (y + 2)(y − 1) =⇒ the solutions are increasing when y < −2 and y > 1, and the solutions are
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–2

–1

0

1

2

y(x)

–2 –1 1 2
x

Figure 0.0.18: Figure for Problem 17(d)

decreasing when −2 < y < 1.

(c). Differentiating the given differential equation yields
d2y

dx2
= (2y+ 1)

dy

dx
= (2y+ 1)(y+ 2)(y− 1). Hence

the solution curves are concave up for −2 < y < − 1
2 , and y > 1, and concave down for y < −2, and

− 1
2 < y < 1.

19. (a). Equilibrium solution: y(x) = 2.

(b).
dy

dx
= (y − 2)2 =⇒ the solutions are increasing when y < 2 and y > 2.

(c). Differentiating the given differential equation yields
d2y

dx2
= 2(y− 2)

dy

dx
= 2(y− 2)3. Hence the solution

curves are concave up for y > 2, and concave down for y < 2.

20. (a). Equilibrium solutions: y(x) = 0, y(x) = 1.

(b).
dy

dx
= y2(y − 1) =⇒ the solutions are increasing when y < 1, and the solutions are decreasing when

y < 1.

(c). Differentiating the given differential equation yields
d2y

dx2
= (3y2−2y)

dy

dx
= y3(3y−2)(y−1). Hence the

solution curves are concave up for 0 < y < − 2
3 , and y > 1, and concave down for y < 0, and 2/3 < y < 1.

21. (a). Equilibrium solutions: y(x) = 0, y(x) = 1, y(x) = −1.

(b).
dy

dx
= (y+2)(y− 1) =⇒ the solutions are increasing when −1 < y < 0 and y > 1, and the solutions are

decreasing when y < −1, and 0 < y < 1.

(c). Differentiating the given differential equation yields
d2y

dx2
= (3y2 − 1)

dy

dx
= (3y2 − 1)y(y − 1)(y + 1).

Hence the solution curves are concave up for −1 < y < − 1√
3
, and 0 < y < 1√

3
, and y > 1, and concave down

for y < −1, and − 1√
3
< y < 0, and 1√

3
< y < 1.

22. y′ = 4x. There are no equilibrium solutions. The slope of the solution curves is positive for x > 0 and
is negative for x < 0. The isoclines are the lines x = k

4 .
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Slope of Solution Curve Equation of Isocline
-4 x = −1
-2 x = −1/2
0 x = 0
2 x = 1/2
4 x = 1

–1.5

–1

–0.5

0

0.5

1

1.5

y(x)

–1.5 –1 –0.5 0.5 1 1.5
x

Figure 0.0.19: Figure for Problem 22

23. y′ = 1
x . There are no equilibrium solutions. The slope of the solution curves is positive for x > 0 and

increases without bound as x → 0+. The slope of the curve is negative for x < 0 and decreases without
bound as x → 0−. The isoclines are the lines 1

x = k.

Slope of Solution Curve Equation of Isocline
±4 x = ±1/4
±2 x = ±1/2
±1/2 x = ±2
±1/4 x = ±4
±1/10 x = ±10

24. y′ = x+ y. There are no equilibrium solutions. The slope of the solution curves is positive for y > −x,
and negative for y < −x. The isoclines are the lines y + x = k.

Slope of Solution Curve Equation of Isocline
−2 y = −x− 2
−1 y = −x− 1
0 y = −x
1 y = −x+ 1
2 y = −x+ 2

Since the slope of the solution curve along the isocline y = −x − 1 coincides with the slope of the isocline,
it follows that y = −x − 1 is a solution to the differential equation. Differentiating the given differential
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Figure 0.0.20: Figure for Problem 23

equation yields: y′′ = 1 + y′ = 1 + x + y. Hence the solution curves are concave up for y > −x − 1, and
concave down for y < −x−1. Putting this information together leads to the slope field in the accompanying
figure.

y(x)

x
1 2 3

1

2

3

-1

-1

-2

-2

-3

-3

Figure 0.0.21: Figure for Problem 24

25. y′ = x
y . There are no equilibrium solutions. The slope of the solution curves is zero when x = 0. The

solution has a vertical tangent line at all points along the x-axis (except the origin). Differentiating the

differential equation yields: y′ =
1

y
− x

y2
y′ =

1

y
− x2

y3
=

1

y3
(y2 − x2). Hence the solution curves are concave

up for y > 0 and y2 > x2; y < 0 and y2 < x2 and concave down for y > 0 and y2 < x2; y < 0 and y2 > x2.
The isoclines are the lines x

y = k.
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Slope of Solution Curve Equation of Isocline
±2 y = ±x/2
±1 y = ±x
±1/2 y = ±2x
±1/4 y = ±4x
±1/10 y = ±10x

Note that y = ±x are solutions to the differential equation.

–2

–1

0

1

2

y(x)

–2 –1 1 2
x

Figure 0.0.22: Figure for Problem 25

26. y′ = − 4x
y . Slope is zero when x = 0 (y �= 0). The solutions have a vertical tangent line at all points

along the x-axis(except the origin). The isoclines are the lines − 4x
y = k. Some values are given in the table

below.

Slope of Solution Curve Equation of Isocline
±1 y = ±4x
±2 y = ±2x
±3 y = ±4x/3

Differentiating the given differential equation yields: y′ = −4

y
+

4xy′

y2
= −4

y
− 16x2

y3
= −4(y2 + 4x2)

y
.

Consequently the solution curves are concave up for y < 0, and concave down for y > 0. Putting this
information together leads to the slope field in the accompanying figure.

27. y′ = x2y. Equilibrium solution: y(x) = 0 =⇒ no solution curve can cross the x-axis. Slope: zero
when x = 0 or y = 0. Positive when y > 0 (x �= 0), negative when y < 0 (x �= 0). Differentiating the given

differential equation yields:
d2y

dx2
= 2xy+x2 dy

dx
= 2xy+x4y = xy(2+x3). So, when y > 0, the solution curves

are concave up for x ∈ (−∞, (−2)1/3), and for x > 0, and are concave down for x ∈ ((−2)1/3, 0). When
y < 0, the solution curves are concave up for x ∈ ((−2)1/3, 0), and concave down for x ∈ (−∞, (−2)1/3) and
for x > 0. The isoclines are the hyperbolas x2y = k.
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1 2-1-2

1

2

3

4

y(x)

x

Figure 0.0.23: Figure for Problem 26

Slope of Solution Curve Equation of Isocline
±2 y = ±2/x2

±1 y = ±1/x2

±1/2 y = ±1/(2x)2

±1/4 y = ±1/(4x)2

±1/10 y = ±1/(10x)2

0 y = 0

28. y′ = x2 cos y. The slope is zero when x = 0. There are equilibrium solutions when y = (2k + 1)π2 . The
slope field is best sketched using technology. The accompanying figure gives the slope field for −π

2 < y < 3π
2 .

29. y′ = x2 + y2. The slope of the solution curves is zero at the origin, and positive at all the other points.
There are no equilibrium solutions. The isoclines are the circles x2 + y2 = k.

Slope of Solution Curve Equation of Isocline
1 x = ±1/4
2 x = ±1/2
3 x = ±2
4 x = ±4
5 x = ±10

30. dT
dt = − 1

80 (T − 70). Equilibrium solution: T (t) = 70. The slope of the solution curves is positive for
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Figure 0.0.24: Figure for Problem 27
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Figure 0.0.25: Figure for Problem 28

T > 70, and negative for T < 70.
d2T

dt2
= − 1

80

dT

dt
=

1

6400
(T − 70). Hence the solution curves are concave

up for T > 70, and concave down for T < 70. The isoclines are the horizontal lines − 1
80 (T − 70) = k.

Slope of Solution Curve Equation of Isocline
−1/4 T = 90
1/5 T = 86
0 T = 70

1/5 T = 54
1/4 T = 50

31. y′ = −2xy.

32. y′ =
x sinx

1 + y2
.
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Figure 0.0.26: Figure for Problem 29

0
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T(t)
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t

Figure 0.0.27: Figure for Problem 30

33. y′ = 3x− y.

34. y′ = 2x2 sin y.

35. y′ =
2 + y2

3 + 0.5x2
.

36. y′ =
1− y2

2 + 0.5x2
.

37. (a). Slope field for the differential equation y′ = x−1(3 sinx− y).

(b). Slope field with solution curves included.

The figure suggests that the solution to the differential equation are unbounded as x → 0+.

(c). Slope field with solution curve corresponding to the initial condition y(π2 ) =
6
π .
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Figure 0.0.28: Figure for Problem 31
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Figure 0.0.29: Figure for Problem 32
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Figure 0.0.30: Figure for Problem 33

This solution curve is bounded as x → 0+.
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Figure 0.0.31: Figure for Problem 34
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Figure 0.0.32: Figure for Problem 35
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Figure 0.0.33: Figure for Problem 36

(d). In the accompanying figure we have sketched several solution curves on the interval (0,15].
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Figure 0.0.34: Figure for Problem 37(a)
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Figure 0.0.35: Figure for Problem 37(b)
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Figure 0.0.36: Figure for Problem 37(c)

The figure suggests that the solution curves approach the x-axis as x → ∞.
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Figure 0.0.37: Figure for Problem 37(d)

38. (a). Differentiating the given equation gives
dy

dx
= 2kx = 2

y

x
. Hence the differential equation of the

orthogonal trajectories is
dy

dx
= − x

2y
.

–4
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0
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4

y(x)

–4 –2 2 4
x

Figure 0.0.38: Figure for Problem 38(a)

(b). The orthogonal trajectories appear to be ellipses. This can be verified by integrating the differential
equation derived in (a).

39. If a > 0, then as illustrated in the following slope field (a = 0.5, b = 1), it appears that limt→∞ i(t) = b
a .

If a < 0, then as illustrated in the following slope field (a = −0.5, b = 1) it appears that i(t) diverges as
t → ∞.

If a = 0 and b �= 0, then once more i(t) diverges as t → ∞. The accompanying figure shows a represen-
tative case when b > 0. Here we see that limt→∞ i(t) = +∞. If b < 0, then limt→∞ i(t) = −∞.

If a = b = 0, then the general solution to the differential equation is i(t) = i0 where i0 is a constant.
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Figure 0.0.39: Figure for Problem 39 when a > 0
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Figure 0.0.40: Figure for Problem 39 when a < 0
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Figure 0.0.41: Figure for Problem 39 when a = 0

Solutions to Section 1.4

(c)2017 Pearson Education. Inc.



35

True-False Review:

(a): TRUE. The differential equation dy
dx = f(x)g(y) can be written 1

g(y)
dy
dx = f(x), which is the proper

form, according to Definition 1.4.1, for a separable differential equation.

(b): TRUE. A separable differential equation is a first-order differential equation, so the general solution
contains one constant. The value of that constant can be determined from an initial condition, as usual.

(c): TRUE. Newton’s Law of Cooling is usually expressed as dT
dt = −k(T − Tm), and this can be rewritten

as
1

T − Tm

dT

dt
= −k,

and this form shows that the equation is separable.

(d): FALSE. The expression x2 + y2 cannot be separated in the form f(x)g(y), so the equation is not
separable.

(e): FALSE. The expression x sin(xy) cannot be separated in the form f(x)g(y), so the equation is not
separable.

(f): TRUE. We can write the given equation as e−y dy
dx = ex, which is the proper form for a separable

equation.

(g): TRUE. We can write the given equation as (1 + y2) dydx = 1
x2 , which is the proper form for a separable

equation.

(h): FALSE. The expression x+4y
4x+y cannot be separated in the form f(x)g(y), so the equation is not

separable.

(i): TRUE. We can write x3y+x2y2

x2+xy = xy, so we can write the given differential equation as 1
y
dy
dx = x, which

is the proper form for a separable equation.

Problems:

1. Separating the variables and integrating yields∫
dy

y
= 2

∫
xdx =⇒ ln |y| = x2 + c1 =⇒ y(x) = cex

2

.

2. Separating the variables and integrating yields∫
y−2dy =

∫
dx

x2 + 1
=⇒ y(x) = − 1

tan−1 x+ c
.

3. Separating the variables and integrating yields∫
eydy =

∫
e−xdx = 0 =⇒ ey + e−x = c =⇒ y(x) = ln (c− e−x).

4. Separating the variables and integrating yields∫
dy

y
=

∫
(lnx)−1

x
dx =⇒ y(x) = c lnx.
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5. Separating the variables and integrating yields∫
dx

x− 2
=

∫
dy

y
=⇒ ln |x− 2| − ln |y| = c1 =⇒ y(x) = c(x− 2).

6. Separating the variables and integrating yields∫
dy

y − 1
=

∫
2x

x2 + 3
dx =⇒ ln |y − 1| = ln |x2 + 3|+ c1 =⇒ y(x) = c(x2 + 3) + 1.

7. y − x
dy

dx
= 3− 2x2 dy

dx
=⇒ x(2x− 1)

dy

dx
= (3− y). Separating the variables and integrating yields

−
∫

dy

y − 3
=

∫
dx

x(2x− 1)
=⇒ − ln |y − 3| = −

∫
dx

x
+

∫
2

2x− 1
dx

=⇒ − ln |y − 3| = − ln |x|+ ln |2x− 1|+ c1

=⇒ x

(y − 3)(2x− 1)
= c2 =⇒ y(x) =

cx− 3

2x− 1
.

8.
dy

dx
=

cos (x− y)

sinx sin y
−1 =⇒ dy

dx
=

cosx cos y

sinx sin y
=⇒ ∫ sin y

cos y
dy =

∫ cosx

cos y
dx =⇒ − ln | cos y| = ln | sinx|+c1 =⇒

cos y = c cscx.

9.
dy

dx
=

x(y2 − 1)

2(x− 2)(x− 1)
=⇒ ∫ dy

(y + 1)(y − 1)
=

1

2

∫ xdx

(x− 2)(x− 1)
, y �= ±1. Thus,

−1

2

∫
dy

y + 1
+
1

2

∫
dy

y − 1
=

1

2

(
2

∫
dx

x− 2
−
∫

dx

x− 1

)
=⇒ − ln |y + 1|+ln |y − 1| = 2 ln |x− 2|−ln |x− 1|+c1

=⇒ y − 1

y + 1
= c

(x− 2)2

x− 1
=⇒ y(x) =

(x− 1) + c(x− 2)2

(x− 1)− c(x− 2)2
. By inspection we see that y(x) = 1, and y(x) = −1

are solutions of the given differential equation. The former is included in the above solution when c = 0.

10.
dy

dx
=

x2y − 32

16− x2
+ 2 =⇒ ∫ dy

y − 2
=
∫ x2

16− x2
dx =⇒ ln |y − 2| = − ∫ (1 + 16

x2 − 16

)
dx =⇒ ln |y − 2| =

−x − 16
∫ dx

x2 − 16
=⇒ ln |y − 2| = −x − 16

(
− 1

8

∫ dx

x+ 4
+ 1

8

∫ dx

x− 4

)
=⇒ ln |y − 2| = −x + 2 ln |x+ 4| −

2 ln |x− 4|+ c1 =⇒ y(x) = 2 + c

(
x+ 4

x− 4

)2

e−x.

11. (x−a)(x−b)
dy

dx
−(y−c) = 0 =⇒ ∫ dy

y − c
=
∫ dx

(x− a)(x− b)
=⇒ ∫ dy

y − c
=

1

a− b

∫ ( 1

x− a
− 1

x− b

)
dx =⇒

ln |y − c| = ln

[
c1

∣∣∣∣x− a

x− b

∣∣∣∣1/(a−b)
]

=⇒
∣∣∣∣∣(y − c)

(
x− b

x− a

)1/(a−b)
∣∣∣∣∣ = c1 =⇒ y − c = c2

(
x− a

x− b

)1/(a−b)

=⇒

y(x) = c+ c2

(
x− a

x− b

)1/(a−b)

.
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12. (x2 + 1)
dy

dx
+ y2 = −1 =⇒ ∫ dy

1 + y2
= − ∫ dx

1 + x2
=⇒ tan−1 y = tan−1 x+ c, but y(0) = 1 so c =

π

4
.

Thus, tan−1 y = tan−1 x+
π

4
or y(x) =

1− x

1 + x
.

13. (1− x2)
dy

dx
+ xy = ax =⇒ ∫ dy

a− y
= − 1

2

∫ − 2x

1− x2
dx =⇒ − ln |a− y| = − 1

2 ln |1− x2|+ c1 =⇒ y(x) =

a+ c
√
1− x2, but y(0) = 2a so c = a and therefore, y(x) = a(1 +

√
1− x2).

14.
dy

dx
= 1− sin (x+ y)

sinx sin y
=⇒ dy

dx
= − tanx cot y =⇒ − ∫ sin y

cos y
dy =

∫ sinx

cosx
dx =⇒ − ln | cosx cos y| = c, but

y(
π

4
) =

π

4
so c = ln (2). Hence, − ln | cosx cos y| = ln (2) =⇒ y(x) = cos−1

(
1
2 secx

)
.

15.
dy

dx
= y3 sinx =⇒ ∫ dy

y3
=
∫
sinxdx for y �= 0. Thus − 1

2y2
= − cosx+c. However, we cannot impose the

initial condition y(0) = 0 on the last equation since it is not defined at y = 0. But, by inspection, y(x) = 0
is a solution to the given differential equation and further, y(0) = 0; thus, the unique solution to the initial
value problem is y(x) = 0.

16.
dy

dx
= 2

3 (y − 1)1/2 =⇒ ∫ dy

(y − 1)1/2
= 2

3

∫
dx if y �= 1 =⇒ 2(y − 1)1/2 = 2

3x + c but y(1) = 1 so

c = − 2
3 =⇒ 2

√
y − 1 = 2

3x − 2
3 =⇒ √

y − 1 = 1
3 (x − 1). This does not contradict the Existence-Uniqueness

theorem because the hypothesis of the theorem is not satisfied when x = 1.

17. (a). m
dv

dt
= mg− kv2 =⇒ m

k [(mg/k)− v2]
dv = dt. If we let a =

√
mg
k then the preceding equation can

be written as
m

k

∫ 1

a2 − v2
dv =

∫
dt which can be integrated directly to obtain

m

2ak
ln

(
a+ v

a− v

)
= t+ c,

that is, upon exponentiating both sides,
a+ v

a− v
= c1e

2ak
m t.

Imposing the initial condition v(0) = 0, yields c = 0 so that

a+ v

a− v
= e

2ak
m t.

Therefore,

v(t) = a

(
e

2akt
m − 1

e
2akt
m + 1

)
which can be written in the equivalent form

v(t) = a tanh

(
gt

a

)
.

(b). No. As t → ∞, v → a and as t → 0+, v → 0.
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(c). v(t) = a tanh
(
gt
a

)
=⇒ dy

dt
= a tanh

(
gt
a

)
=⇒ a

∫
tanh

(
gt
a

)
dt =⇒ y(t) =

a2

g
ln(cosh ( gta )) + c1 and if

y(0) = 0 then y(t) =
a2

g
ln
[
cosh ( gta )

]
.

18. The required curve is the solution curve to the initial-value problem
dy

dx
= − x

4y
, y(0) = 1

2 . Separating

the variables in the differential equation yields 4y−1dy = −1dx, which can be integrated directly to obtain

2y2 = −x2

2
+ c. Imposing the initial condition we obtain c = 1

2 , so that the solution curve has the equation

2y2 = −x2 + 1
2 , or equivalently, 4y

2 + 2x2 = 1.

19. The required curve is the solution curve to the initial-value problem
dy

dx
= ex−y, y(3) = 1. Separating

the variables in the differential equation yields eydy = exdx, which can be integrated directly to obtain
ey = ex + c. Imposing the initial condition we obtain c = e− e3, so that the solution curve has the equation
ey = ex + e− e3, or equivalently, y = ln(ex + e− e3).

20. The required curve is the solution curve to the initial-value problem
dy

dx
= x2y2, y(−1) = 1. Separating

the variables in the differential equation yields 1
y2 dy = x2dx, which can be integrated directly to obtain

− 1
y = 1

3x
3 + c. Imposing the initial condition we obtain c = − 2

3 , so that the solution curve has the equation

y = − 1
1
3x

3− 2
3

, or equivalently, y = 3
2−x3 .

21. (a). Separating the variables in the given differential equation yields
1

1 + v2
dv = −dt. Integrating we

obtain tan−1 (v) = −t + c. The initial condition v(0) = v0 implies that c = tan−1 (v0), so that tan−1 (v) =
−t+tan−1 (v0). The object will come to rest if there is time t, at which the velocity is zero. To determine tr,
we set v = 0 in the previous equation which yields tan−1 (0) = tr+tan−1 (v0). Consequently, tr = tan−1 (v0).

The object does not remain at rest since we see from the given differential equation that
dv

dt
< 0 at t = tr,

and so v is decreasing with time. Consequently v passes through zero and becomes negative for t < tr.

(b). From the chain rule we have
dv

dt
=

dx

dt
. Then

dv

dx
= v

dv

dx
. Substituting this result into the differential

equation (1.4.22) yields v
dv

dx
= −(1 + v2). We now separate the variables:

v

1 + v2
dv = −dx. Integrating we

obtain ln (1 + v2) = −2x+ c. Imposing the initial condition v(0) = v0, x(0) = 0 implies that c = ln (1 + v20),
so that ln (1 + v2) = −2x+ ln (1 + v20). When the object comes to rest the distance travelled by the object
is x = 1

2 ln (1 + v20).

22. (a).
dv

dt
= −kvn =⇒ v−ndv = −kdt.

n �= 1 :=⇒ 1

1− n
v1−n = −kt + c. Imposing the initial condition v(0) + v0 yields c =

1

1− n
v1−n
0 , so that

v = [v1−n
0 + (n − 1)kt]1/(1−n). The object comes to rest in a finite time if there is a positive value of t for

which v = 0.
n = 1 :=⇒ Integratingv−ndv = −kdt and imposing the initial conditions yields v = v0e

−kt, and the object
does not come to rest in a finite amount of time.

(b). If n �= 1, 2, then
dx

dt
= [v1−n

0 + (n − 1)kt]1/(1−n), where x(t) denotes the distanced travelled by the
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object. Consequently, x(t) = − 1

k(2− n)
[v1−n

0 + (n − 1)kt](2−n)/(1−n) + c. Imposing the initial condition

x(0) = 0 yields c =
1

k(2− n)
v2−n
0 , so that x(t) = − 1

k(2− n)
[v1−n

o + n(n− 1)kt](2−n)/(1−n) +
1

k(2− n)
v2−n
0 .

For 1 < n < 2, we have
2− n

1− n
< 0, so that limt→∞ x(t) =

1

k(2− n)
. Hence the maximum distance that the

object can travel in a finite time is less than
1

k(2− n)
.

If n = 1, then we can integrate to obtain x(t) =
v0
k
(1− e−kt), where we have imposed the initial condition

x(0) = 0. Consequently, limt→∞ x(t) =
v0
k
. Thus in this case the maximum distance that the object can

travel in a finite time is less than
v0
k
.

(c). If n > 2, then x(t) = − 1

k(2− n)
[v1−n

o + n(n− 1)kt](2−n)/(1−n) +
1

k(2− n)
v2−n
0 is still valid. However,

in this case
2− n

1− n
> 0, and so limt→∞ x(t) = +∞. Consequently, there is no limit to the distance that the

object can travel.

If n = 2, then we return to v = [v1−n
0 + (n − 1)kt]1/(1−n). In this case

dx

dt
= (v−1

0 + kt)−1, which can

be integrated directly to obtain x(t) =
1

k
ln (1 + v0kt), where we have imposed the initial condition that

x(0) = 0. Once more we see that limt→∞ x(t) = +∞, so that there is no limit to the distance that the object
can travel.

23. Solving p = p0(
ρ

ρ0
)1/γ . Consequently the given differential equation can be written as dp = −gρ0(

p

p0
)1/γdy,

or equivalently, p−1/γdp = − gρ0

p
1/γ
0

dy. This can be integrated directly to obtain
γp(γ−1)/γ

γ − 1
= −gρ0y

p
1/γ
0

+ c. At

the center of the Earth we have p = p0. Imposing this initial condition on the preceding solution gives

c =
γp

(γ−1)/γ
0

γ − 1
. Substituting this value of c into the general solution to the differential equation we find,

after some simplification, p(γ−1)/γ = p
(γ−1)/γ
0

[
1− (γ − 1)ρ0gy

γp0

]
, so that p = p0

[
1− (γ − 1)ρ0gy

γp0

](γ−1)/γ

.

24.
dT

dt
= −k(T − Tm) =⇒ dT

dt
= −k(T − 75) =⇒ dT

T − 75
= −kdt =⇒ ln |T − 75| = −kt + c1 =⇒ T (t) =

75 + ce−kt. T (0) = 135 =⇒ c = 60 so T = 75 + 60e−kt. T (1) = 95 =⇒ 95 = 75 + 60e−k =⇒ k = ln 3 =⇒
T (t) = 75 + 60e−t ln 3. Now if T (t) = 615 then 615 = 75+ 60−t ln 3 =⇒ t = −2h. Thus the object was placed
in the room at 2p.m.

25.
dT

dt
= −k(T − 450) =⇒ T (t) = 450 + Ce−kt.T (0) = 50 =⇒ C = −400 so T (t) = 450 − 400e−kt and

T (20) = 150 =⇒ k =
1

20
ln 4

3 ; hence, T (t) = 450− 400( 34 )
t/20.

(i) T (40) = 450− 400( 34 )
2 = 225◦F.

(ii) T (t) = 350 = 450− 400( 34 )
t/20 =⇒ ( 34 )

t/20 = 1
4 =⇒ t =

20 ln 4

ln(4/3)
≈ 96.4 minutes.
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26.
dT

dt
= −k(T − 34) =⇒ dT

T − 34
= −kdt =⇒ T (t) = 34 + ce−kt. T (0) = 38 =⇒ c = 4 so that

T (t) = 34 + 4e−kt.T (1) = 36 =⇒ k = ln 2; hence, T (t) = 34 + 4e−t ln 2. Now T (t) = 98 =⇒ T (t) =
34 + 4e−kt = 98 =⇒ 2−t = 16 =⇒ t = −4h. Thus T (−4) = 98 and Holmes was right, the time of death was
10 a.m.

27. T (t) = 75 + ce−kt. T (10) = 415 =⇒ 75 + ce−10k = 415 =⇒ 340 = ce−10k and T (20) = 347 =⇒
75 + ce−20k = 347 =⇒ 272 = ce−20k. Solving these two equations yields k = 1

10 ln
5
4 and c = 425; hence,

T = 75 + 425( 45 )
t/10

(a) Furnace temperature: T (0) = 500◦F.

(b) If T (t) = 100 then 100 = 75 + 425( 45 )
t/10 =⇒ t =

10 ln 17

ln 5
4

≈ 126.96 minutes. Thus the temperature of

the coal was 100◦F at 6:07 p.m.

28.
dT

dt
= −k(T − 72) =⇒ dT

T − 72
= −kdt =⇒ T (t) = 72 + ce−kt. Since

dT

dt
= −20,−k(T − 72) = −20 or

k = 10
39 . Since T (1) = 150 =⇒ 150 = 72+ ce−10/39 =⇒ c = 78e10/39; consequently, T (t) = 72+ 78e10(1−t)/39.

(i). Initial temperature of the object: t = 0 =⇒ T (t) = 72 + 78e10/30 ≈ 173◦F

(ii). Rate of change of the temperature after 10 minutes: T (10) = 72 + 78e−30/13 so after 10 minutes,
dT

dt
= −10

39
(72 + 78e−30/13 − 72) =⇒ dT

dt
= −260

13
e−30/13 ≈ 2◦F per minute.

29. Substituting a = 0.5, M = 2000 g, and m0 = 4 g into the initial-value problem (1.4.17) yields

dm

dt
= 0.5m3/4

[
1−

( m

2000

)1/4]
, m(0) = 4.

Separating the variables in the preceding differential equation gives

1

m3/4

[
1−

( m

2000

)1/4]dm = 0.5 dt

so that ∫
1

m3/4

[
1−

( m

2000

)1/4]dm = 0.5t+ c.

To evaluate the integral on the left-hand-side of the preceding equation, we make the change of variable

w =
( m

2000

)1/4
, dw =

1

4
· 1

2000

( m

2000

)−3/4

dm

and simplify to obtain

4 · (2000)1/4
∫

1

1− w
dw = 0.5t+ c

which can be integrated directly to obtain

−4 · (2000)1/4 ln(1− w) = 0.5t+ c.

Exponentiating both sides of the preceding equation, and solving for w yields

w = 1− c1e
−0.125t/(2000)1/4
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or equivalently, ( m

2000

)1/4
= 1− c1e

−0.125t/(2000)1/4 .

Consequently,

m(t) = 2000
[
1− c1e

−0.125t/(2000)1/4
]4

. (0.0.3)

Imposing the initial condition m(0) = 4 yields

4 = 2000 (1− c1)
4

so that

c1 = 1−
(

1

500

)1/4

≈ 0.7885.

Inserting this expression for c1 into Equation (0.0.3) gives

m(t) = 2000
[
1− 0.7885e−0.125t/(2000)1/4

]4
.

Consequently,

m(100) = 2000
[
1− 0.7885e−12.5/(2000)1/4

]4
≈ 1190.5 g.

30. Substituting a = 0.10, M = 0.15 g, and m0 = 0.008 g into the initial-value problem (1.4.17) yields

dm

dt
= 0.1m3/4

[
1−

( m

0.15

)1/4]
, m(0) = 0.008.

Separating the variables in the preceding differential equation gives

1

m3/4

[
1−

( m

0.15

)1/4]dm = 0.1 dt

so that ∫
1

m3/4

[
1−

( m

0.15

)1/4]dm = 0.1t+ c.

To evaluate the integral on the left-hand-side of the preceding equation, we make the change of variable

w =
( m

0.15

)1/4
, dw =

1

4
· 1

0.15

( m

0.15

)−3/4

dm

and simplify to obtain

4 · (0.15)1/4
∫

1

1− w
dw = 0.1t+ c

which can be integrated directly to obtain

−4 · (0.15)1/4 ln(1− w) = 0.1t+ c.
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Exponentiating both sides of the preceding equation, and solving for w yields

w = 1− c1e
−0.025t/(0.15)1/4

or equivalently, ( m

0.15

)1/4
= 1− c1e

−0.025t/(0.15)1/4 .

Consequently,

m(t) = 0.15
[
1− c1e

−0.025t/(0.15)1/4
]4

. (0.0.4)

Imposing the initial condition m(0) = 0.008 yields

0.008 = 0.15 (1− c1)
4

so that

c1 = 1−
(

4

75

)1/4

≈ 0.5194.

Inserting this expression for c1 into Equation (0.0.4) gives

m(t) = 0.15
[
1− 0.5194e−0.025t/(0.15)1/4

]4
.

Consequently,

m(30) = 0.15
[
1− 0.5194e−0.75/(0.15)1/4

]4
≈ 0.076 g.

The guppy will have reached 90% of its fully grown mass at time t where

0.9 · 0.15 = 0.15
[
1− 0.5194e−0.025t/(0.15)1/4

]4
.

Solving algebraically for t yields

t = − (0.15)1/4

0.025
ln

[
1− (0.9)1/4

0.5194

]
≈ 74.5 days.

31. Since the chemicals A and B combine in the ratio 2:1, the amounts of A and B that are unconverted at
time t are (20− 2

3Q) grams and (20− 1
3Q) grams, respectively. Thus, according to the law of mass action,

the differential equation governing the behavior of Q(t) is

dQ

dt
= k1(20− 2

3
Q)(20− 1

3
Q) =⇒ dQ

dt
= k(30−Q)(60−Q) =⇒

∫
1

(30−Q)(60−Q)
dQ =

∫
k dt

=⇒
∫

1

30

(
1

(30−Q)
− 1

60−Q)

)
dQ

dt
= kt+ c =⇒ ln

(
60−Q

30−Q

)
= kt+ c =⇒ 60−Q

30−Q
= c1e

30kt.

Imposing the initial condition Q(0) = 0 yields c1 = 2. Further, Q(10) = 15 =⇒ 45/15 = 2e300k, so that

k =
1

300
ln(3/2). Therefore,

60−Q

30−Q
= 2e

t
10 ln(3/2) = 2

(
3

2

)t/10

=⇒ Q(t) =
60
[
(3/2)t/10 − 1

]
2(3/2)t/10 − 1

.
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Therefore, Q(20) =
60
[
(3/2)2 − 1

]
2(3/2)2 − 1

=
150

7
. Hence,

150

7
grams of C are produced in 20 minutes.

32. Since the chemicals A and B combine in the ratio 2:3, the amounts of A and B that are unconverted at
time t are (10− 2

5Q) grams and (15− 3
5Q) grams, respectively. Thus, according to the law of mass action,

the differential equation governing the behavior of Q(t) is

dQ

dt
= k1(10− 2

5
Q)(15− 3

5
Q) =⇒ dQ

dt
= k(25−Q)2 =⇒

∫
1

(25−Q)2
dQ =

∫
k dt =⇒ 1

25−Q
= kt+ c.

Hence, Q(t) = 25− 1

kt+ c
. Imposing the initial condition Q(0) = 0 yields c = 1/25, so that

Q(t) = 25

(
1− 1

25kt+ 1

)
=

625kt

25kt+ 1
.

Q(5) = 10 =⇒ k = 2/375, so that Q(t) =
50t

2t+ 15
. Therefore, Q(30) = 1500/75 = 20 grams. Hence, 20

grams of C are produced in 30 minutes. The reaction will be 50% complete when Q(t) = 12.5 this will occur

after t minutes where 12.5 =
50t

2t+ 15
=⇒ t ≈ 7.5 minutes.

33. Since A and B combine in the ratio 3:5 to produce C. Therefore, producing 30 g of C will require
5

8
· 30 =

150

8
g of A.

34. (a).Since the chemicals A and B combine in the ratio a : b to produce chemical C, when Q grams of C

are produced , the consist of
a

a+ b
Q grams of A and

b

a+ b
grams of B. Consequently, the amounts of A and

B that are unconverted at time t are A0 − a

a+ b
Q grams and B0 − b

a+ b
Q grams, respectively. Therefore,

according to the law of mass action, the chemical reaction is governed by the differential equation

dQ

dt
= k

(
A0 − a

a+ b
Q

)(
B0 − b

a+ b
Q

)
.

(b).
dQ

dt
= k

(
A0 − a

a+ b
Q

)(
B0 − b

a+ b
Q

)
=

abk

(a+ b)2

(
a+ b

a
A0 −Q

)(
a+ b

b
B0 −Q

)
, which can be

written as
dQ

dt
= r(α−Q)(β −Q), where r =

abk

(a+ b)2
, α =

a+ b

a
A0, β =

a+ b

b
B0.

35.
dQ

dt
= r(α−Q)(β −Q) =⇒

∫
1

(α−Q)(β −Q)
dQ =

∫
r dt+ c =⇒ 1

α− β

∫ (
1

β −Q
− 1

α−Q

)
dQ =

rt+ c. Hence,
1

α− β
ln

(
α−Q

β −Q

)
= rt+ c =⇒ α−Q

β −Q
= cer(α−β)t =⇒ Q(t) =

α− βcer(α−β)t

1− cer(α−β)t
. Imposing the

initial condition Q(0) = 0 yields c = α/β, so that Q(t) =
αβ

[
1− er(α−β)t

]
β − αer(α−β)t

. When α > β, limt→∞ Q(t) =

αβ

α
= β.

36. When α = β, Equation (1.4.24) reduces to
dQ

dt
= r(Q− α)2 =⇒ (α −Q)−2 dQ

dt
= r =⇒ −(α −Q)−1 =

rt+ c.
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Hence, Q(t) = α − 1

rt+ c
. Imposing the initial condition Q(0) = 0 yields c = 1/α so that Q(t) =

α2rt

αrt+ 1
.

Therefore, limt→∞ Q(t) = α.

37. Separating the variables in the given differential equation yields∫
1

(α−Q)(β −Q)(γ −Q)
dQ =

∫
kdt

so that∫ [
1

(β − α)(γ − α)(α−Q)
+

1

(α− β)(γ − β)(β −Q)
+

1

(α− γ)(β − γ)(γ −Q)

]
dQ = kt+ c,

so that

1

(β − α)(γ − α)
ln(α−Q) +

1

(α− β)(γ − β)
ln(β −Q) +

1

(α− γ)(β − γ)
ln(γ −Q) = −kt− c,

which can be written as

(β − γ) ln(α−Q) + (γ − α) ln(α−Q) + (α− β) ln(γ −Q) = (α− β)(β − γ)(γ − α)kt+ c1

or equivalently,

ln(α−Q)β−γ + ln(α−Q)γ−α + ln(γ −Q)α−β = (α− β)(β − γ)(γ − α)kt+ c1.

Exponentiating both sides and simplifying yields

(α−Q)β−γ(β −Q)γ−α(γ −Q)α−β = c2e
(α−β)(β−γ)(γ−α)kt.

Q(0) = 0 =⇒ c2 = αβ−γβγ−αγα−β , so that

(1−Q/α)β−γ(1−Q/β)γ−α(1−Q/γ)α−β = e(α−β)(β−γ)(γ−α)kt.

Solutions to Section 1.5

True-False Review:

(a): TRUE. The differential equation for such a population growth is dP
dt = kP , where P (t) is the population

as a function of time, and this is the Malthusian growth model described at the beginning of this section.

(b): FALSE. The initial population could be greater than the carrying capacity, although in this case the
population will asymptotically decrease towards the value of the carrying capacity.

(c): TRUE. The differential equation governing the logistic model is (1.5.2), which is certainly separable
as

D

P (C − P )

dP

dt
= r.

Likewise, the differential equation governing the Malthusian growth model is dP
dt = kP , and this is separable

as 1
P

dP
dt = k.
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(d): TRUE. As (1.5.3) shows, as t → ∞, the population does indeed tend to the carrying capacity C
independently of the initial population P0. As it does so, its rate of change dP

dt slows to zero (this is best
seen from (1.5.2) with P ≈ C).

(e): TRUE. Every five minutes, the population doubles (increase 2-fold). Over 30 minutes, this population
will double a total of 6 times, for an overall 26 = 64-fold increase.

(f): TRUE. An 8-fold increase would take 30 years, and a 16-fold increase would take 40 years. Therefore,
a 10-fold increase would take between 30 and 40 years.

(g): FALSE. The growth rate is dP
dt = kP , and so as P changes, dP

dt changes. Therefore, it is not always
constant.

(h): TRUE. From (1.5.2), the equilibrium solutions are P (t) = 0 and P (t) = C, where C is the carrying
capacity of the population.

(i): FALSE. If the initial population is in the interval (C2 , C), then although it is less than the carrying
capacity, its concavity does not change. To get a true statement, it should be stated instead that the initial
population is less than half of the carrying capacity.

(j): TRUE. Since P ′(t) = kP , then P ′′(t) = kP ′(t) = k2P > 0 for all t. Therefore, the concavity is always
positive, and does not change, regardless of the initial population.

Problems:

1.
dP

dt
= kP =⇒ P (t) = P0e

kt. Since P (0) = 10, then P = 10ekt. Since P (3) = 20, then 2 = e3k =⇒ k =

ln 2

3
. Thus P (t) = 10e(t/3) ln 3. Therefore, P (24) = 10e(24/3) ln 3 = 10 · 28 = 2560 bacteria.

2. Using P (t) = P0e
kt we obtain P (10) = 5000 =⇒ 5000 = p0e

10k and P (12) = 6000 =⇒ 6000 = P0e
12k

which implies that e2k = 6
5 =⇒ k = 1

2 ln
6
5 . Hence, P (0) = 5000( 56 )

5 = 2009.4. Also, P = 2P0 when

t = 1
2 ln 2 =

2 ln 2

ln 6
5

≈ 7.6h.

3. From P (t) = P0e
kt and P (0) = 2000 it follows that P (t) = 2000ekt. Since td = 4, k = 1

4 ln 2 so

P = 2000et ln 2/4. Therefore, P (t) = 106 =⇒ 106 = 2000et ln 2/4 =⇒ t ≈ 35.86 hours.

4.
dP

dt
= kP =⇒ P (t) = P0e

kt. Since, P (0) = 10000 then P (t) = 10000ekt. Since P (5) = 20000 then

20000 = 10000ekt =⇒ k = 1
5 ln 2. Hence P (t) = 10000e(t ln 2)/5.

(a). P (20) = 10000e4 ln 2 = 160000.

(b). 1000000 = 10000e(t ln 2)/5 =⇒ 100 = e(t ln 2)/5 =⇒ t =
5 ln 100

ln 2
≈ 33.22 years.

5. P (t) =
50C

50 + (C − 50)e−rt
. In formulas (1.5.5) and (1.5.6) we have P0 = 500, P1 = 800, P2 = 1000, t1 = 5,

and t2 = 10. Hence, r =
1

5
ln

[
(1000)(300)

(500)(200)

]
=

1

5
ln 3, C =

800[(800)(1500)− 2(500)(1000)]

8002 − (500)(1000)
≈ 1142.86, so

that P (t) =
1142.86)(500)

500 + 642.86e−0.2t ln 3
≈ 571430

500 + 642.86e−0.2t ln 3
. Inserting t = 15 into the preceding formula

yields P (15) = 1091.
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6. P (t) =
50C

50 + (C − 50)e−rt
In formulas (1.5.5) and (1.5.6) we have P0 = 50, P1 = 62, P2 = 76, t1 = 2,

and t2 = 2t1 = 4. Hence, r =
1

2
ln

[
(76)(12)

(50)(14)

]
≈ 0.132, C =

62[(62)(126)− 2(50)(76)]

622 − (50)(76)
≈ 298.727, so that

P (t) =
14936.35

50 + 248.727e−0.132t
. Inserting t = 20 into the preceding formula yields P (20) ≈ 221.

7. From equation (1.5.5) r > 0 requires
P2(P1 − P0)

P0(P2 − P1)
> 1. Rearranging the terms in this inequality and

using the fact that P2 > P1 yields P1 >
2P0P2

P0 + P2
. Further, C > 0 requires that

P1(P0 + P2)− 2P0P2

P 2
1 − P0P2

> 0.

From P1 >
2P0P2

P0 + P2
we see that the numerator in the preceding inequality is positive, and therefore the

denominator must also be positive. Hence in addition to P1 >
2P0P2

P0 + P2
, we must also have P 2

1 > P0P2.

8. Let y(t) denote the number of passengers who have the flu at time t. Then we must solve
dy

dt
=

ky(1500 − y), y(0) = 5, y(1) = 10, where k is a positive constant. Separating the differential equation

and integrating yields
∫ 1

y(1500− y)
dy = k

∫
dt. Using a partial fraction decomposition on the left-hand

side gives
∫ [ 1

1500y
+

1

1500(1500− y)

]
dy = kt + c, so that

1

1500
ln

(
y

1500− y

)
= kt + c, which upon

exponentiation yields
y

1500− y
= c1e

1500kt. Imposing the initial condition y(0) = 5, we find that c1 =
1

299
.

Hence,
y

1500− y
=

1

299
e1500kt. The further condition y(1) = 10 requires

10

1490
=

1

299
e1500k. solving

for k gives k =
1

1500
ln

299

149
. Therefore,

y

1500− y
=

1

299
et ln (299/149). Solving algebraically for y we find

y(t) =
1500et ln (299/149)

299 + et ln (299/149)
=

1500

1 + 299e−t ln (299/149)
. Hence, y(14) =

1500

1 + 299e−14 ln (299/149)
= 1474.

9.(a). Equilibrium solutions: P (t) = 0, P (t) = T .

Slope: P > T =⇒ dP

dt
> 0, 0 < P < T =⇒ dP

dt
< 0.

Isoclines: r(P − T ) = k =⇒ P 2 − TP − k

r
= 0 =⇒ P =

1

2

(
T ±

√
rT 2 + 4k

r

)
. We see that slope of the

solution curves satisfies k ≥ −rT 2

4
.

Concavity:
d2P

dt2
= r(2P − T )

dP

dt
= r2(2P − T )(P − T )P . Hence, the solution curves are concave up for

P >
t

2
, and are concave down for 0 < P <

T

2
.

(b). See accompanying figure.

(c). For 0 < P0 < T , the population dies out with time. For P0 > T , there is a population growth. The
term threshold level is appropriate since T gives the minimum value of P0 above which there is a population
growth.
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Figure 0.0.42: Figure for Problem 9(b)

10. (a). Separating the variables in differential equation (1.5.7) gives
1

P (P − T )

dP

dt
= r, which can be

written in the equivalent form

[
1

T (P − T )
− 1

TP

]
dP

dt
= r. Integrating yields

1

T
ln

(
P − T

P

)
= rt+c, so that

P − T

P
= c1e

Trt. The initial condition P (0) = P0 requires
P0 − T

P0
= c1, so that

P − T

P
=

(
P0 − T

P0

)
erTt.

Solving algebraically for P yields P (t) =
TP0

P0 − (P0 − T )erTt
.

(b). If P0 < T , then the denominator in
TP0

P0 − (P0 − T )erTt
is positive, and increases without bound as

t → ∞. Consequently limt→∞ P (t) = 0. In this case the population dies out as t increases.

(c). If P0 > T , then the denominator of
TP0

P0 − (P0 − T )erTt
vanishes when (P0 − T )erTt = P0, that is when

t =
1

rT
ln

(
P0

P0 − T

)
. This means that within a finite time the population grows without bound. We can

interpret this as a mathematical model of a population explosion.

11.
dP

dt
= r(C − P )(P − T )P, P (0) = P0, r > 0, 0 < T < C.

Equilibrium solutions: P (t) = 0, P (t) = T, P (t) = C. The slope of the solution curves is negative for
0 < P < T , and for P > C. It is positive for T < P < C.

Concavity:
d2P

dt2
= r2[(C − P )(P − T ) − (P − T )P + (C − P )P ](C − P )(P − T )P , which simplifies to

d2P

dt2
= r2(−3P 2 + 2PT + 2CP − CT )(C − P )(P − T ). Hence changes in concavity occur when P = 1

3 (C +

T ±√
C2 − CT + T 2). A representative slope field with some solution curves is shown in the accompanying

figure. We see that for 0 < P0 < T the population dies out, whereas for T < P0 < C the population grows
and asymptotes to the equilibrium solution P (t) = C. If P0 > C, then the solution decays towards the
equilibrium solution P (t) = C.

12.
dP

dt
= rP (lnC − lnP ), P (0) = P0, and r, C, and P0 are positive constants.

Equilibrium solutions: P (t) = C. The slope of the solution curves is positive for 0 < P < C, and negative
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Figure 0.0.43: Figure for Problem 11

for P > C.

Concavity:
d2P

dt2
= r

[
ln

(
C

P

)
− 1

]
dP

dt
= r2

[
ln

(
C

P

)
− 1

]
P ln

C

P
. Hence, the solution curves are concave

up for 0 < P <
C

e
and P > C. They are concave down for

C

e
< P < C. A representative slope field with

some solution curves are shown in the accompanying figure.
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Figure 0.0.44: Figure for Problem 12

13. Separating the variables in (1.5.8) yields
1

P (lnC − lnP )

dP

dt
= r which can be integrated directly to

obtain − ln (lnC − lnP ) = rt + c so that ln (CP ) = c1e
−rt. The initial condition P (0) = P0 requires that

ln ( C
P0

) = c1. Hence, ln (CP ) = e−rt ln ( C
P0

) so that P (t) = Celn (P0/k)e
−rt

. Since limt→∞ e−rt = 0, it follows
that limt→∞ P (t) = C.

14. Using the exponential decay model we have
dP

dt
= kP , which is easily integrated to obtain P (t) = P0e

kt.

The initial condition P (0) = 400 requires that P0 = 400, so that P (t) = 400ekt. We also know that

P (30) = 340. This requires that 340 = 400e30k so that k =
1

30
ln

(
17

20

)
. Consequently,

P (t) = 400e
t
30 ln( 17

20 ). (0.0.5)
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(a). From (0.0.5), P (60)400e2 ln( 17
20 ) = 289.

(b). From (0.0.5), P (100) = 400e
10
3 ln( 17

20 ) ≈ 233

(c). From (0.0.5), the half-life, tH , is determine from

200 = 400e
tH
30 ln( 17

20 ) =⇒ tH = 30
ln 2

ln
(
20
17

) ≈ 128 days.

15. (a). More.

(b). Using the exponential decay model we have
dP

dt
= kP , which is easily integrated to obtain P (t) = P0e

kt.

The initial condition P (0) = 100, 000 requires that P0 = 100, 000, so that P (t) = 100, 000ekt. We also know

that P (10) = 80, 000. This requires that 100, 000 = 80, 000e10k so that k =
1

10
ln

(
4

5

)
. Consequently,

P (t) = 100, 000e
t
10 ln( 4

5 ). (0.0.6)

Using (0.0.6), the half-life is determined from

50, 000 = 100, 000e
tH
10 ln( 4

5 ) =⇒ tH = 10
ln 2

ln
(
5
4

) ≈ 31.06 min.

(c). Using (0.0.6) there will be 15,000 fans left in the stadium at time t0, where

15, 000 = 100, 000e
t0
10 ln( 4

5 ) =⇒ t0 = 10
ln
(

3
20

)
ln
(

4
15

) ≈ 85.02 min.

16. Using the exponential decay model we have
dP

dt
= kP , which is easily integrated to obtain P (t) = P0e

kt.

Since the half-life is 5.2 years, we have

1

2
P0 = P0e

5.2k =⇒ k = − ln 2

5.2
.

Therefore,

P (t) = P0e
−t ln 2

5.2 .

Consequently, only 4% of the original amount will remain at time t0 where

4

100
P0 = P0e

−t0
ln 2
5.2 =⇒ t0 = 5.2

ln 25

ln 2
≈ 24.15 years.

17. Maple, or even a TI 92 plus, has no problem in solving these equations.

18. (a). Malthusian model is P (t) = 151.3ekt. Since P (1) = 179.4, then 179.4 = 151.3e10k =⇒ k =
1
10 ln

179.4
151.3 . Hence, P (t) = 151.3e

t ln (179.4/151.1)
10 .
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Figure 0.0.45: Figure for Problem 18(c)

(b). P (t) =
151.3C

151.3 + (C − 151.3)e−rt
. Imposing the initial conditions P (10) = 179.4 and P (20) = 203.3

gives the pair of equations 179.4 = 151.3e
10 ln (179.4/151.1)

10 and 203.3 = 151.3e
20 ln (179.4/151.1)

10 whose solution is

C ≈ 263.95, r ≈ 0.046. Using these values for C and r gives P (t) =
39935.6

151.3 + 112.65e−0.046t
.

(c). Malthusian model: P (30) ≈ 253 million; P (40) ≈ 300 million.
Logistics model: P (30) ≈ 222 million; P (40) ≈ 236 million.
The logistics model fits the data better than the Malthusian model, but still gives a significant underestimate
of the 1990 population.

19. P (t) =
50C

50 + (C − 50)e−rt
. Imposing the conditions P (5) = 100, P (15) = 250 gives the pair of equations

100 =
50C

50 + (C − 50)e−5r
and 250 =

50C

50 + (C − 50)e−15r
whose positive solutions are C ≈ 370.32, r ≈ 0.17.

Using these values for C and r gives P (t) =
18500

50 + 18450e−0.17t
. From the figure we see that it will take

approximately 52 years to reach 95% of the carrying capacity.

Solutions to Section 1.6

True-False Review:

(a): FALSE. Any solution to the differential equation (1.6.7) serves as an integrating factor for the differ-
ential equation. There are infinitely many solutions to (1.6.7), taking the form I(x) = c1e

∫
p(x)dx, where c1

is an arbitrary constant.

(b): TRUE. Any solution to the differential equation (1.6.7) serves as an integrating factor for the differ-
ential equation. There are infinitely many solutions to (1.6.7), taking the form I(x) = c1e

∫
p(x)dx, where c1

is an arbitrary constant. The most natural choice is c1 = 1, giving the integrating factor I(x) = e
∫
p(x)dx.

(c): TRUE. Multiplying y′ + p(x)y = q(x) by I(x) yields y′I + pIy = qI. Assuming that I ′ = pI, the
requirement on the integrating factor, we have y′I + I ′y = qI, or by the product rule, (I · y)′ = qI, as
requested.
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Figure 0.0.46: Figure for Problem 19

(d): FALSE. Rewriting the differential equation as

dy

dx
− x2y = sinx,

we have p(x) = −x2, and so an integrating factor must have the form I(x) = e
∫
p(x)dx = e

∫
(−x2)dx = e−x3/3,

or any constant multiple of e−x3/3. Since ex
2

is not of this form, then it is not an integrating factor.

(e): FALSE. Rewriting the differential equation as

dy

dx
+

1

x
y = x,

we have p(x) =
1

x
, and so an integrating factor must have the form I(x) = e

∫
p(x)dx = e

∫
(1/x)dx = x, or any

constant multiple of x. Since x+ 5 is not of this form, then it is not an integrating factor.

Problems:

In this section the function I(x) = e
∫
p(x)dx will represent the integrating factor for a differential equation

of the form y′ + p(x)y = q(x).

1. y′ + y = 4ex. I(x) = e
∫
dx = ex =⇒ d(exy)

dx
= 4e2x =⇒ exy = 2e2x + c =⇒ y(x) = e−x(2e2x + c).

2. y′ +
2

x
y = 5x2. I(x) = e

∫
(2/x) dx = x2 =⇒ d(x2y)

dx
= 5x4 =⇒ x2y = x5 + c =⇒ y(x) = x−2(x5 + c).

3. x2y′ − 4xy = x7 sinx, x > 0 =⇒ y′ − 4
xy = x5 sinx. I(x) = x−4 =⇒ d(x−4y)

dx
= x sinx =⇒ x−4y =

sinx− x cosx+ c =⇒ y(x) = x4(sinx− x cosx+ c).

4. y′ + 2xy = 2x3. I(x) = e2
∫
xdx = ex

2

=⇒ d

dx
(ex

2

y) = 2ex
2

x3 =⇒ ex
2

y = 2
∫
ex

2

x3dx =⇒ ex
2

y =

ex
2

(x2 − 1) + c =⇒ y(x) = x2 − 1 + ce−x2

.
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5. y′ +
2x

1− x2
y = 4x,−1 < x < 1. I(x) =

1

1− x2
=⇒ d

dx

(
y

1− x2

)
=

4x

1− x2
=⇒ y

1− x2
= − ln(1− x2)2 +

c =⇒ y(x) = (1− x2)[− ln (1− x2)2 + c].

6. y′ +
2x

1 + x2
y =

4

(1 + x2)2
. I(x) = e

∫
2x

1+x2 dx
= 1 + x2 =⇒ d

dx
[(1 + x2)y] =

4

(1 + x2)2
=⇒ (1 + x2)y =

4
∫ dx

1 + x2
=⇒ (1 + x2)y = 4 tan−1 x+ c =⇒ y(x) =

1

1 + x2
(4 tan−1 x+ c).

7. 2 cos2 x
dy

dx
+ y sin 2x = 4 cos4 x, 0 ≤ x ≤ π

2 =⇒ y′ +
sin 2x

2 cos2 x
y = 2 cos2 x. I(x) =

1

cosx
=⇒ d

dx
(y secx) =

cosx =⇒ y(x) = cosx(2 sinx+ c) =⇒ y(x) = sin 2x+ c cosx.

8. y′ +
1

x lnx
y = 9x2. I(x) = e

∫
dx

x ln x = lnx =⇒ d

dx
(y lnx) = 9

∫
x2 lnxdx =⇒ y lnx = 3x3 lnx− x3 + c =⇒

y(x) =
3x3 lnx− x3 + c

lnx
.

9. y′− y tanx = 8 sin3 x. I(x) = cosx =⇒ d

dx
(y cosx) = 8 cosx sin3 x =⇒ y cosx = 8

∫
cosx sin3 xdx+ c =⇒

y cosx = 2 sin4 x+ c =⇒ y(x) =
1

cosx
(2 sin4 x+ c).

10. t
dx

dt
+ 2x = 4et =⇒ x′ +

2

t
x =

4et

t
. I(x) = e2

∫
dt
t = t2 =⇒ d

dt
(t2x) = 4tet =⇒ t2x = 4

∫
tetdt + c =⇒

t2x = 4et(t− 1) + c =⇒ x(t) =
4et(t− 1) + c

t2
.

11. y′ = (sinx secx)y − 2 sinx =⇒ y′ − (sinx secx)y = −2 sinx. I(x) = cosx =⇒ d

dx
(y cosx) =

−2 sinx cosx =⇒ y cosx = −2
∫
sinx cosxdx+ c =

1

2
cos 2x+ c =⇒ y(x) =

1

cosx

(
1

2
cos 2x+ c

)
.

12. (1−y sinx)dx−cosxdy = 0 =⇒ y′+(sinx secx)y = secx. I(x) = e
∫
sin x sec xdx = secx =⇒ d

dx
(y secx) =

sec2 x =⇒ y secx =
∫
sec2 xdx+c =⇒ y secx = tanx+c =⇒ y(x) = cosx(tanx+c) =⇒ y(x) = sinx+c cosx.

13. y′ − x−1y = 2x2 lnx. I(x) = e−
∫

1
xdx = x−1 =⇒ d

dx
(x−1y) = 2x lnx =⇒ x−1y = 2

∫
x lnxdx + c =⇒

x−1y =
1

2
x2(2 lnx− 1) + c. Hence, y(x) =

1

2
x3(2 lnx− 1) + cx.

14. y′ + αy = eβx. I(x) = eα
∫
dx = eαx =⇒ d

dx
(eαxy) = e(α+β)x =⇒ eαxy =

∫
e(α+β)xdx+ c. If α+ β = 0,

then eαxy = x+ c =⇒ y(x) = e−αx(x+ c). If α+β �= 0, then eαxy =
e(α+β)x

α+ β
+ c =⇒ y(x) =

eβx

α+ β
+ ce−αx.

15. y′ +
m

x
y = lnx. I(x) = xm =⇒ d

dx
(xmy) = xm lnx =⇒ xmy =

∫
xm lnxdx + c. If m = −1, then

xmy =
(lnx)2

2
+ c =⇒ y(x) = x

[
(lnx)2

2
+ c

]
. If m �= −1, then xmy =

xm+1

m+ 1
lnx− xm+1

(m+ 1)2
+ c =⇒ y(x) =
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x

m+ 1
lnx− x

(m+ 1)2
+

c

xm
.

16. y′ +
2

x
y = 4x. I(x) = e2

∫
dx
x = e2 ln x = x2 =⇒ d

dx
(x2y) = 4x3 =⇒ x2y = 4

∫
x3dx+ c =⇒ x2y = x4 + c,

but y(1) = 2 so c = 1; thus, y(x) =
x4 + 1

x2
.

17. y′ sinx − y cosx = sin 2x =⇒ y′ − y cotx = 2 cosx. I(x) = cscx =⇒ d

dx
(y cscx) = 2 cscx cosx =⇒

y cscx = 2 ln (sinx) + c, but y(π2 ) = 2 so c = 2; thus, y(x) = 2 sinx[ln (sinx) + 1].

18. x′+
2

4− t
x = 5. I(t) = e2

∫
dt

4−t = e−2 ln(4−t) = (4−t)t−2 =⇒ d

dt
((4−t)−2x) = 5(4−t)−2 =⇒ (4−t)−2x =

5
∫
(4− t)−2dt+c =⇒ (4−t)−2x = 5(4−t)−1+c, but x(0) = 4 so c = −1; thus, x(t) = (4−t)2[5(4−t)−1−1]

or x(t) = (4− t)(1 + t).

19. (y − e−x)dx+ dy = 0 =⇒ y′ + y = ex. I(x) = ex =⇒ d

dx
(exy) = e2x =⇒ exy =

e2x

2
+ c, but y(0) = 1 so

c =
1

2
; thus, y(x) =

1

2
(ex + e−x) = coshx.

20. y′ + y = f(x), y(0) = 3,

f(x) =

{
1, if x ≤ 1,
0, if x > 1.

I(x) = e
∫
dx = ex =⇒ d

dx
(exy) = exf(x) =⇒ [exy]x0 =

∫ x

0
exf(x)dx =⇒ exy − y(0) =

∫ x

0
exf(x)dx =⇒

exy − 3 =
∫ x

0
exdx =⇒ y(x) = e−x

[
3 +

∫ x

0
exf(x)dx

]
.

If x ≤ 1,
∫ x

0
exf(x)dx =

∫ x

0
exdx = ex − 1 =⇒ y(x) = e−x(2 + ex)

If x > 1,
∫ x

0
exf(x)dx =

∫ x

0
exdx = e− 1 =⇒ y(x) = e−x(2 + e).

21. y′ − 2y = f(x), y(0) = 1,

f(x) =

{
1− x, if x < 1,
0, if x ≥ 1.

I(x) = e−
∫
2dx = e−2x =⇒ d

dx
(e−2xy) = e−2xf(x) =⇒ [e−2xy]x0 =

∫ x

0
e−2xf(x)dx =⇒ e−2xy − y(0) =∫ x

0
e−2xf(x)dx =⇒ e−2xy − 1 =

∫ x

0
e−2xf(x) =⇒ y(x) = e2x

[
1 +

∫ x

0
e−2xf(x)dx

]
.

If x < 1,
∫ x

0
e−2xf(x)dx =

∫ x

0
e−2x(1− x)dx =

1

4
e−2x(2x−1+e2x) =⇒ y(x) = e2x

[
1 +

1

4
e−2x(2x− 1 + e2x)

]
=

1

4
(5e2x + 2x− 1).

If x ≥ 1,
∫ x

0
e−2xf(x)dx =

∫ x

0
e−2x(1− x)dx =

1

4
(1+e−2) =⇒ y(x) = e2x

[
1 +

1

4
(1 + e−2)

]
=

1

4
e2x(5+e−2).

22. On (−∞, 1), y′ − y = 1 =⇒ I(x) = e−x =⇒ y(x) = c1e
x − 1. Imposing the initial condition y(0) = 0

requires c1 = 1, so that y(x) = ex − 1, for x < 1.

On [1,∞), y′ − y = 2− x =⇒ I(x) = e−x =⇒ d

dx
(e−xy) = (2− x)e−x =⇒ y(x) = x− 1 + c2e

−x.

Continuity at x = 1 requires that limx→1 y(x) = y(1). Consequently we must choose c2 to satisfy c2e = e−1,
so that c2 = 1− e−1. Hence, for x ≥ 1, y(x) = x− 1 + (1− e−1)ex.
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23.
d2y

dx2
+

1

x

dy

dx
= 9x, x > 0. Let u =

dy

dx
so

du

dx
=

d2y

dx2
. The first equation becomes

du

dx
+

1

x
u = 9x which is

first-order linear. An integrating factor for this is I(x) = x so
d

dx
(xu) = 9x2 =⇒ xu =

∫
x2dx+ c =⇒ xu =

3x3 + c1 =⇒ u = 3x2 + c1x
−1, but u =

dy

dx
so

dy

dx
= 3x2 + c1x

−1 =⇒ y =
∫
(3x2 + c1x

−1)dx+ c2 =⇒ y(x) =

x3 + c1 lnx+ c2.

24. The differential equation for Newton’s Law of Cooling is dT
dt = −k(T − Tm). We can re-write this

equation in the form of a first-order linear differential equation: dT
dt + kT = kTm. An integrating factor

for this differential equation is I = e
∫
k dt = ekt. Thus,

d

dt
(Tekt) = kTmekt. Integrating both sides, we get

Tekt = Tmekt + c, and hence, T = Tm + ce−kt, which is the solution to Newton’s Law of Cooling.

25.
dTm

dt
= α =⇒ Tm = αt + c1 so

dT

dt
= −k(T − αt − c1) =⇒ dT

dt
+ kT = k(αt + c1). An integrating

factor for this differential equation is I = ek
∫
dt = ekt. Thus,

d

dt
(ektT ) = kekt(αt + c1) =⇒ ektT =

ekt(αt − α

k
+ c1) + c2 =⇒ T = αt − α

k
+ c1 + c2e

−kt =⇒ T (t) = α(t − 1

k
) + β + T0e

−kt where β = c1 and

T0 = c2.

26.
dTm

dt
= 10 =⇒ Tm = 10t + c1 but Tm = 65 when t = 0 so c1 = 65 and Tm = 10t + 65.

dT

dt
=

−k(T − Tm) =⇒ dT

dt
= −k(T − 10t − 65), but

dT

dt
(1) = 5, so k =

1

8
. The last differential equation can be

written
dT

dt
+ kT = k(10t + 65) =⇒ d

dt
(ektT ) = 5kekt(2t + 13) =⇒ ektT = 5kekt

(
2

k
t− 2

k2
+

13

k

)
+ c =⇒

T = 5(2t − 2

k
+ 13) + ce−kt, but k =

1

8
so T (t) = 5(2t − 3) + ce−

t
8 . Since T (1) = 35, c = 40e

1
8 . Thus,

T (t) = 10t− 15 + 40e
1
8 (1−t).

27. (a). In this case, Newton’s law of cooling is
dT

dt
= − 1

40
(t− 80e−t/20). This linear differential equation

has standard form
dT

dt
+

1

40
T = 2e−t/20, with integrating factor I(t) = et/40. Consequently the differential

equation can be written in the integrable form
d

dt
(et/40T ) = 2e−t/40, so that T (t) = −80e−t/20 + ce−t/40.

Then T (0) = 0 =⇒ c = 80, so that T (t) = 80(e−t/40 − e−t/20).

(b). We see that limt→∞ = 0. This is a reasonable result since the temperature of the surrounding
medium also approaches zero as t → ∞. We would expect the temperature of the object to approach to the
temperature of the surrounding medium at late times.

(c). T (t) = 80(e−t/40 − e−t/20) =⇒ dT

dt
= 80

(
− 1

40
e−t/40 +

1

20
e−t/20

)
. So T (t) has only one critical point

when 80

(
− 1

40
e−t/40 +

1

20
e−t/20

)
= 0 =⇒ t = 40 ln 2. Since T (0) = 0, and limt→∞ T (t) = 0 the function

assumes a maximum value at tmax = 40 ln 2. T (tmax) = 80(e− ln 2− e−2 ln 2) = 20◦F, Tm(tmax) = 80e−2 ln 2 =
20◦F.

(d). The behavior of T (t) and Tm(t) is given in the accompanying figure.
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Figure 0.0.47: Figure for Problem 27(d)

28. (a). The temperature varies from a minimum of A−B at t = 0 to a maximum of A+B when t = 12.

T

5 10 15 20
t

A - B

A + B

Figure 0.0.48: Figure for Problem 28(a)

(b). First write the differential equation in the linear form
dT

dt
+ k1T = k1(A−B cosωt) + T0. Multiplying

by the integrating factor I = ek1t reduces this differential equation to the integrable form

d

dt
(ek1tT ) = k1e

k1t(A−B cosωt) + T0e
k1t.

Consequently,

ek1tT (t) =

(
Aek1t −Bk1

∫
ek1t cosωtdt+

T0

k1
ek1t + c

)
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so that

T (t) = A+
T0

k1
− Bk1

k21 + ω2
(k1 cosωt+ ω sinωt) + ce−k1t.

This can be written in the equivalent form

T (t) = A+
T0

k1
− Bk1√

k21 + ω2
cos (ωt− α) + ce−k1t

for an approximate phase constant α.

29. (a).
dy

dx
+ p(x)y = 0 =⇒ dy

y
= −p(x)dx =⇒ ∫ dy

y
= − ∫ p(x)dx =⇒ ln |y| = − ∫ p(x)dx + c =⇒ yH =

c1e
− ∫

p(x)dx.

(b). Replace c1 in part (a) by u(x) and let v = e−
∫
p(x)dx. y = uv =⇒ dy

dx
= u

dv

dx
+ v

du

dx
. Substituting this

last result into the original differential equation,
dy

dx
+p(x) = q(x), we obtain u

dv

dx
+v

du

dx
+p(x)y = q(x), but

since
dv

dx
= −vp, the last equation reduces to v

du

dx
= q(x) =⇒ du = v−1(x)q(x)dx =⇒ u =

∫
v−1(x)q(x)dx+

c. Substituting the values for u and v into y = uv, we obtain y = e−
∫
p(x)dx

[∫
e
∫
p(x)dxq(x)dx+ c

]
.

30. The associated homogeneous equation is
dy

dx
+x−1y = 0, with solution yH = cx−1. According to Problem

29, we determine the function u(x) such that y(x) = x−1u(x) is a solution to the given differential equation.

We have
dy

dx
= x−1 du

dx
−x−2u. Substituting into

dy

dx
+x−1y = cosx yields x−1 du

dx
− 1

x2
u+x−1(x−1u) = cosx,

so that
du

dx
= x cosx. Integrating we obtain u = x sinx+ cosx+ c, so that y(x) = x−1(x sinx+ cosx+ c).

31. The associated homogeneous equation is
dy

dx
+ y = 0, with solution yH = ce−x. According to Problem

29, we determine the function u(x) such that y(x) = e−xu(x) is a solution to the given differential equation.

We have
dy

dx
=

du

dx
e−x − e−xu. Substituting into

dy

dx
+ y = e−2x yields

du

dx
e−x − e−xu+ e−xu(x) = e−2x, so

that
du

dx
= e−x. Integrating we obtain u = −e−x + c, so that y(x) = e−x(−e−x + c).

32. The associated homogeneous equation is
dy

dx
+ cotx · y = 0, with solution yH = c · cscx. According

to Problem 29, we determine the function u(x) such that y(x) = cscx · u(x) is a solution to the given

differential equation. We have
dy

dx
= cscx · du

dx
− cscx · cotx · u. Substituting into

dy

dx
+ cotx · y = 2 cosx

yields cscx · du
dx

− cscx · cotx · u+ cscx · cotx · u = cosx, so that
du

dx
= 2 cosx sinx. Integrating we obtain

u = sin2 x+ c, so that y(x) = cscx(sin2 x+ c).

33. The associated homogeneous equation is
dy

dx
− 1

x
y = 0, with solution yH = cx. We determine the

function u(x) such that y(x) = xu(x) is a solution of the given differential equation. We have
dy

dx
= x

du

dx
+u.

Substituting into
dy

dx
− 1

x
y = x lnx and simplifying yields

du

dx
= lnx, so that u = x lnx−x+c. Consequently,
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y(x) = x(x lnx− x+ c).

Problems 34 - 39 are easily solved using a differential equation solver such as the dsolve package in Maple.

Solutions to Section 1.7

True-False Review:

(a): TRUE. Concentration of chemical is defined as the ratio of mass to volume; that is, c(t) = A(t)
V (t) .

Therefore, A(t) = c(t)V (t).

(b): FALSE. The rate of change of volume is “rate in” − “rate out”, which is r1 − r2, not r2 − r1.

(c): TRUE. This is reflected in the fact that c1 is always assumed to be a constant.

(d): FALSE. The concentration of chemical leaving the tank is c2(t) =
A(t)
V (t) , and since both A(t) and V (t)

can be nonconstant, c2(t) can also be nonconstant.

(e): FALSE. Kirchhoff’s second law states that the sum of the voltage drops around a closed circuit is zero,
not that it is independent of time.

(f): TRUE. This is essentially Ohm’s law, (1.7.10).

(g): TRUE. Due to the negative exponential in the formula for the transient current, iT (t), it decays to
zero as t → ∞. Meanwhile, the steady-state current, iS(t), oscillates with the same frequency ω as the
alternating current, albeit with a phase shift.

(h): TRUE. The amplitude is given in (1.7.19) as A = E0√
R2+ω2L2

, and so as ω gets larger, the amplitude

A gets smaller.

Problems:

1. Given V (0) = 600, A(0) = 1500, c1 = 5, r1 = 6, and r2 = 3. We need to find
A(60)

V (60)
. ΔV = r1Δt −

r2Δt =⇒ dV

dt
= 3 =⇒ V (t) = 3(t + 200) since V (0) = 600. ΔA ≈ c1r1Δt − c2r2Δt =⇒ dA

dt
= 30 − 3c2 =

30− 3
A

V
= 30− A

t+ 200
=⇒ (t+ 200)A = 15(t+ 200)2 + c. Since A(0) = 1500, c = −300000 and therefore

A(t) =
15

t+ 200
[(t+ 200)2 − 20000]. Thus

A(60)

V (60)
=

596

169
g/L.

2. Given V (0) = 10, A(0) = 20, c1 = 4, r1 = 2, and r2 = 1. Then ΔV = r1Δt−r2Δt =⇒ dV

dt
= 1 =⇒ V (t) =

t+10 since V (0) = 10. ΔA ≈ c1r1Δt− c2r2Δt =⇒ dA

dt
= 8− c2 = 8− A

V
= 8− A

t+ 10
=⇒ dA

dt
+

1

t+ 10
A =

8 =⇒ (t+10)A = 4(t+10)2+c1. Since A(0) = 20 =⇒ c1 = −200 so A(t) =
4

t+ 10
[(t+10)2−50]. Therefore,

A(40) = 196 g.

3. Given V (0) = 100, A(0) = 100, c1 = 0.5, r1 = 6, and r2 = 4. Then ΔV = r1Δt − r2Δt =⇒ dV

dt
= 2 =⇒

V (t) = 2(t + 50) since V (0) = 100. Then
dA

dt
+

4A

2(t+ 50)
= 3 =⇒ dA

dt
+

2A

t+ 50
= 3 =⇒ d

dt
[(t + 50)2A] =
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3(t+50)2 =⇒ (t+50)2A = (t+50)3+c but A(0) = 100 so c = 125000 and therefore A(t) = t+50+
125000

(t+ 50)2
.

The tank is full when V (t) = 200, that is when 2(t+50) = 200 so that t = 50 min. Therefore the concentration

just before the tank overflows is:
A(50)

V (50)
=

9

16
g/L.

4. Given V (0) = 20, A(0) = 0, c1 = 10, r1 = 4, and r2 = 2. Then ΔV = r1Δt− r2Δt =⇒ dV

dt
= 2 =⇒ V =

2(t + 10) since V (0) = 20. Thus V (t) = 40 for t = 10, so we must find A(10).ΔA ≈ c1r1Δt − c2r2Δt =⇒
dA

dt
= 40 − 2c2 = 40 − 2A

V
= 40 − A

t+ 10
=⇒ dA

dt
+

1

t+ 10
A = 40 =⇒ d

dt
[(t + 10)A] = 40(t + 10)dt =⇒

(t+10)A = 20(t+10)2+ c. Since A(0) = 0 =⇒ c = −2000 so A(t) =
20

t+ 10
[(t+10)2−100] and A(10) = 300

g.

5. (a). We are given that V (0) = 20, c1 = 1, r1 = 3, and r2 = 2. Then ΔV = r1Δt− r2Δt =⇒ dV

dt
= 1 =⇒

V = t+20 since V (0) = 20. Then
dA

dt
+

2

t+ 20
A = 3 =⇒ d

dt
[(t+20)2A] = 3(t+20)2 =⇒ A(t) =

(20 + t)3 + c

(t+ 20)2

and since A(0) = 0, c = −203 which means that A(t) =
(t+ 20)3 − 203

(t+ 20)2
.

(b). The concentration of chemical in the tank, c2, is given by c2 =
A(t)

V (t)
or c2 =

A(t)

t+ 20
so from part (a),

c2 =
(t+ 20)3 − 203

(t+ 20)3
. Therefore c2 =

1

2
g/l when

1

2
=

(t+ 20)3 − 203

(t+ 20)3
=⇒ t = 20( 3

√
2− 1)minutes.

6. We are given that V (0) = 10, A(0) = 0, c1 = 0.5, r1 = 3, r2 =, and
A(5)

V (5)
= 0.2.

(a). ΔV = r1Δt− r2Δt =⇒ dV

dt
= 1 =⇒ V (t) = t+ 10 since V (0) = 10. Then ΔA ≈ c1r1Δt− c2r2Δt =⇒

dA

dt
= −2c2 = −2

A

V
= − 2A

t+ 10
=⇒ dA

A
= − 2dt

t+ 10
=⇒ ln |A| = −2 ln |t+ 10|+c =⇒ A = k(t+10)−2. Then

A(5) = 3 since V (5) = 15 and
A(5)

V (5)
= 0.2. Thus, k = 675 and A(t) =

675

(t+ 10)2
. In particular, A(0) = 6.75

g.

(b). Find V (t) when
A(t)

V (t)
= 0.1. From part (a) A(t) =

675

(t+ 10)2
and V (t) = t+ 10 =⇒ A(t)

V (t)
=

675

(t+ 10)3
.

Since
A(t)

V (t)
= 0.1 =⇒ (t+ 10)3 = 6750 =⇒ t+ 10 = 15 3

√
2 so V (t) = t+ 10 = 15 3

√
2 L.

7. (a). We are given that V (0) = w, c1 = k, r1 = r, r2 = r, and A(0) = A0. Then ΔV = r1Δr − r2Δt =⇒
dV

dt
= 0 =⇒ V (t) = V (0) = w for all t. Then ΔA = c1r1Δt − c2r2Δt =⇒ dA

dt
= kr − r

A

V
= kr − r

A

V
=

kr − r

w
A =⇒ dA

dt
+

r

w
A = kr =⇒ d

dt
(e−rt/wA) = kre−rt/w =⇒ A(t) = kw + ce−rt/w. Since A(0) = A0 so

c = A0 − kw =⇒ A(t) = e−rt/w[kw(ert/w − 1) +A0].

(b). limt→∞
A(t)

V (t)
= limt→∞

e−rt/w

w
[kw(ert/w − 1) + A0] = limt→∞[k +

(
A0

w
− k

)
e−rt/w] = k. This is

reasonable since the volume remains constant, and the solution in the tank is gradually mixed with and
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replaced by the solution of concentration k flowing in.

8. (a). For the top tank we have:
dA1

dt
= c1r1 − c2r2 =⇒ dA1

dt
= c1r1 − r2

A1(t)

V1(t)
=⇒ dA1

dt
= c1r1 −

r2
(r1 − r2)t+ V1

A1(t) =⇒ dA1

dt
+

r2
(r1 − r2)t+ v1

A1 = c1r1.

For the bottom tank we have:
dA2

dt
= c2r2 − c3r3 =⇒ dA2

dt
= r2

A1

(r1 − r2)t+ V1
− r3

A2(t)

V2(t)
=⇒ dA2

dt
=

r2
A1

(r1 − r2)t+ V1
− r3

A2(t)

(r2 − r3)t+ V2
=⇒ dA2

dt
+

r3
(r1 − r2)t+ V2

A2 =
r2A1

(r1 − r2)t+ V1
.

(b). From part (a)
dA1

dt
+

r2
(r1 − r2)t+ v1

A1 = c1r1 =⇒ dA1

dt
+

4

2t+ 40
A1 = 3 =⇒ dA1

dt
+

2

t+ 20
A1 =

3 =⇒ d

dt
[(t + 20)2A] = 3(t + 20)2 =⇒ A1 = t + 20 +

c

(t+ 20)2
but A1(0) = 4 so c = −6400. Consequently

A1(t) = t + 20 − 6400

(t+ 20)2
. Then

dA2

dt
+

3

t+ 20
A2 =

2

t+ 20

[
t+ 20− 6400

(t+ 20)2

]
=⇒ dA2

dt
+

3

t+ 20
A2 =

2[(t+ 20)3 − 6400]

(t+ 20)3
=⇒ d

dt
[(t+20)3A2] = (t+20)3

{
2[(t+ 20)3 − 6400]

(t+ 20)3

}
=⇒ A2(t) =

t+ 20

2
− 12800t

(t+ 20)3
+

k

(t+ 20)3
but A2(0) = 20 so k = 80000. Thus A2(t) =

t+ 20

2
− 12800t

(t+ 20)3
+

80000

(t+ 20)3
and in particular

A2(10) =
119

9
≈ 13.2 g.

9. Let E(t) = 20, R = 4 and L = 1
10 . Then

di

dt
+

R

L
i =

1

L
E(t) =⇒ di

dt
+ 40i = 200 =⇒ d

dt
(e40ti) =

200e40t =⇒ i(t) = 5 + ce−40t. But i(0) = 0 =⇒ c = −5. Consequently i(t) = 5(1− e−40t).

10. Let R = 5, C = 1
50 and E(t) = 100. Then

dq

dt
+

1

RC
q =

E

R
=⇒ dq

dt
+10q = 20 =⇒ d

dt
(qe10t) = 20e10t =⇒

q(t) = 2 + ce−10t. But q(0) = 0 =⇒ c = −2 so q(t) = 2(1− e−40t).

11. Let R = 2, L = 2
3 and E(t) = 10 sin 4t. Then

di

dt
+

R

L
i =

1

L
E(t) =⇒ di

dt
+ 3i = 15 sin 4t =⇒

d

dt
(e3ti) = 15e3t sin 4t =⇒ e3ti =

3e3t

5
(3 sin 4t − 4 cos 4t) + c =⇒ i = 3

(
3

5
sin 4t− 4

5
cos 4t

)
+ ce−3t, but

i(0) = 0 =⇒ c =
12

5
so i(t) =

3

5
(3 sin 4t− 4 cos 4t+ 4e−3t).

12. Let R = 2, C = 1
8 and E(t) = 10 cos 3t. Then

dq

dt
+

1

RC
q =

E

R
=⇒ dq

dt
+ 4q = 5 cos 3t =⇒ d

dt
(e4tq) =

5e4t cos 3t =⇒ e4tq =
e4t

5
(4 cos 3t+ 3 sin 3t) + c =⇒ q(t) = 1

5 (4 cos 3t+ 3 sin 3t) + ce4t, but q(0) = 1 =⇒ c =

1

5
(4 cos 3t+ 3 sin 3t) +

1

5
e−4t and i(t) =

dq

dt
=

1

5
(9 cos 3t− 12 sin 3t− 4e−4t).

13. In an RC circuit for t > 0 the differential equation is given by
dq

dt
+

1

RC
q =

E

R
. If E(t) = 0 then

dq

dt
+

1

RC
q = 0 =⇒ d

dt
(et/RCq) = 0 =⇒ q = cet/RC and if q(0) = 5 then q(t) = 5e−t/RC . Then limt→∞ q(t) =

0. Yes, this is reasonable. As the time increases and E(t) = 0, the charge will dissipate to zero.
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14. In an RC circuit the differential equation is given by i+
1

RC
q =

E0

R
. Differentiating this equation with

respect to t we obtain
di

dt
+

1

RC

dq

dt
= 0, but

dq

dt
= i so

di

dt
+

1

RC
i = 0 =⇒ d

dt
(et/RCi) = 0 =⇒ i(t) = ce−t/RC .

Since q(0) = 0, i(0) =
E0

R
and so i(t) =

E0

R
e−t/RC =⇒ d = E0k so q(t) = E0k(1 − e−t/RC). Then

limt→∞ q(t) = E0k, and lim t → ∞i(t) = 0.

t

E0k

q(t)

Figure 0.0.49: Figure for Problem 14

15. In an RL circuit,
di

dt
+

R

L
i =

E(t)

L
and since E(t) = E0 sinωt, then

di

dt
+

R

L
i =

E0

L
sinωt =⇒

d

dt
(eRt/Li) =

E0

L
eRt/L sinωt =⇒ i(t) =

E0

R2 + L2ω2
[R sinωt − ωL cosωt] + Ae−Rt/L. We can write this

as i(t) =
E0√

R2 + L2ω2

[
R√

R2 + L2ω2
sinωt− ωL√

R2 + L2ω2
cosωt

]
+ Ae−Rt/L. Defining the phase φ by

cosφ =
R√

R2 + L2ω2
, sinφ =

ωL√
R2 + L2ω2

, we have i(t) =
E0√

R2 + L2ω2
[cosφ sinωt−sinφ cosωt]+Ae−Rt/L.

That is, i(t) =
E0√

R2 + L2ω2
sin (ωt− φ) +Ae−Rt/L.

Transient part of the solution: iT (t) = Ae−Rt/L.

Steady state part of the solution: iS(t) =
E0√

R2 + L2ω2
sin (ωt− φ).

16. We must solve the initial value problem
di

dt
+ ai =

E0

L
, i(0) = 0, where a =

R

L
, and E0 denotes the

constant EMF. An integrating factor for the differential equation is I = eat, so that the differential equation

can be written in the form
d

dt
(eati) =

E0

L
eat. Integrating yields i(t) =

E0

aL
+ c1e

−at. The given initial

condition requires c1 +
E0

aL
= 0, so that c1 = −E0

aL
. Hence i(t) =

E0

aL
(1− e−at) =

E0

R
(1− e−at).

17.
dq

dt
+

1

RC
q =

E(t)

R
=⇒ dq

dt
+

1

RC
q =

E0

R
e−at =⇒ d

dt
(et/RCq) =

E0

R
e(1/RC−a)t =⇒
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q(t) = e−t/RC

[
E0C

1− aRC
e(1/RC−a)t + k

]
=⇒ q(t) =

E0C

1− aRC
e−at+ke−t/RC . Imposing the initial condition

q(0) = 0 (capacitor initially uncharged) requires k = − E0C

1− aRC
, so that q(t) =

E0C

1− aRC
(e−at − e−t/RC).

Thus i(t) =
dq

dt
=

E0C

1− aRC

(
1

RC
e−t/RC − ae−at

)
.

18.
d2q

dt2
+

1

LC
q = 0 =⇒ i

di

dq
+

1

LC
q = 0, since i =

dq

dt
. Then idi = − 1

LC
qdq =⇒ i2 = − 1

LC
q2 + k but

q(0) = q0 and i(0) = 0 so k =
q20
LC

=⇒ i2 = − 1

LC
q2 +

q20
LC

=⇒ i = ±
√

q20 − q2√
LC

=⇒ dq

dt
= ±

√
q20 − q2√
LC

=⇒
dq√

q2o − q2
= ± dt√

LC
=⇒ sin−1 ( q

q0
) = ± t√

LC
+ k1 =⇒ q = q0 sin

(
± t√

LC
+ k1

)
but q(0) = q0 so q0 =

q0 sin k1 =⇒ k1 = π
2 + 2nπ where n is an integer =⇒ q = q0 sin

(
± 1√

LC
+

π

2

)
=⇒ q(t) = q0 cos

(
t√
LC

)
and i(t) =

dq

dt
= − q0√

LC
sin

(
t√
LC

)
.

19.
d2q

dt2
+

1

LC
q =

E0

L
. Since i =

dq

dt
then

d2

dt2
=

di

dq

dq

dt
= i

di

dq
. Hence the original equation can be written

as i
di

dq
+

1

LC
q =

E0

L
=⇒ idi +

1

LC
qdq =

E0

L
dq or

i2

2
+

q2

2LC
=

E0q

L
+ A. Since i(0) = 0 and q(0) = q0

then A =
q20

2LC
− E0q0

L
. From

i2

2
+

q2

2LC
=

E0q

L
+ A we get that i =

[
2A+

2E0q

L
− q2

LC

]1/2
=⇒ i =[

2A+
(2E0C)2

LC
− (q − E0C)2

LC

]1/2
and we let D2 = 2A+

(E0C)2

LC
then i

dq

dt
= D

[
1−

(
q − E0C

D
√
LC

)2
]1/2

=⇒
√
LC sin−1

(
q − E0C

D
√
LC

)
= t + B. Then since q(0) = 0 so B =

√
LC sin−1

(
q − E0C

D
√
LC

)
and therefore

q − E0C

D
√
LC

= sin

(
t+B√
LC

)
=⇒ q(t) = D

√
LC sin

(
t+B√
LC

)
+ E0c =⇒ i =

dq

dt
= D cos

(
t+B√
LC

)
. Since

D2 =
2A+ (E0C)2

LC
and A =

q20
2LC

− E0q0
L

we can substitute to eliminate A and obtain D = ±|q0 − E0C|√
LC

.

Thus q(t) = ±|q0 − E0C| sin
(
t+B√
LC

)
+ E0c.

Solutions to Section 1.8

True-False Review:

(a): TRUE. We have

f(tx, ty) =
3(yt)2 − 5(xt)(yt)

2(xt)(yt) + (yt)2
=

3y2t2 − 5xyt2

2xyt2 + y2t2
=

3y2 − 5xy

2xy + y2
= f(x, y),

so f is homogeneous of degree zero.
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(b): FALSE. We have

f(tx, ty) =
(yt)2 + xt

(xt)2 + 2(yt)2
=

y2t2 + xt

x2t2 + 2y2t2
=

y2t+ x

x2t+ 2y2t
�= y2 + x

x2 + 2y2
,

so f is not homogeneous of degree zero.

(c): FALSE. Setting f(x, y) = x3+xy2

y3+1 , we have

f(tx, ty) =
(xt)3 + (xt)(yt)2

(yt)3 + 1
=

x3t3 + xy2t3

y3t3 + 1
�= f(x, y),

so f is not homogeneous of degree zero. Therefore, the differential equation is not homogeneous.

(d): TRUE. Setting f(x, y) = x4y−2

x2+y2 , we have

f(tx, ty) =
(xt)4(yt)−2

(xt)2 + (yt)2
=

x4y−2t2

x2t2 + y2t2
=

x4y−2

x2 + y2
= f(x, y).

Therefore, f is homogeneous of degree zero, and therefore, the differential equation is homogeneous.

(e): TRUE. This is verified in the calculation leading to Theorem 1.8.5.

(f): TRUE. This is verified in the calculation leading to (1.8.12).

(g): TRUE. We can rewrite the equation as

y′ −√
xy =

√
xy1/2,

which is the proper form for a Bernoulli equation, with p(x) = −√
x, q(x) =

√
x, and n = 1/2.

(h): FALSE. The presence of an exponential exy involving y prohibits this equation from having the proper
form for a Bernoulli equation.

(i): TRUE. After dividing the differential equation through by y, it becomes
dy

dx
+ xy = x2y2/3, which is a

Bernoulli equation with p(x) = x, q(x) = x2, and n = 2/3.

Unless otherwise indicated in this section v =
y

x
,
dy

dx
= v + x

dv

dx
and t > 0.

Problems:

1. f(tx, ty) =
5(xt) + 2(yt)

9(xt)− 4(yt)
=

t(5x+ 2y)

t(9x− 4y)
=

5x+ 2y

9x− 4y
= f(x, y). Thus, f is homogeneous of degree zero.

f(x, y) =
5 + 2 y

x

9− 4 y
x

=
5 + 2v

9− 4v
= F (v).

2. f(tx, ty) = 2(xt)− 5(yt) = t(2x− 5y) �= f(x, y). Thus, f is not homogeneous of degree zero.

3. f(tx, ty) =
(tx) sin ( txty )− (ty) cos ( tytx )

y
x

=
x sin x

y − y cos y
x

y
= f(x, y). Thus f is homogeneous of degree

zero. f(x, y) =
sin x

y − y
x cos y

x
y
x

=
sin 1

v − v cos v

v
= F (v).
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4. f(tx, ty) =

√
3(tx)2 + 5(ty)2

2(tx) + 5(ty)
=

√
3x2 + 5y2

2x+ 5y
= f(x, y). Thus f is homogeneous of degree zero. f(x, y) =√

3x2 + 5y2

2x+ 5y
=

√
3 + 5( yx )

2

2 + 5( yx )
=

√
3 + 5V 2

2 + 5V
= F (v).

5. f(tx, ty) =
tx+ 7

2ty
�= x+ 7

2y
. Thus f is not homogeneous of degree zero.

6. f(tx, ty) =
tx− 2

2(ty)
+

5(ty) + 3

3(ty)
=

(3tx− 6) + (10ty + 6)

6ty
=

t(3x+ 10y)

6ty
=

3x+ 10y

6y
=

x− 2

2y
+

5y + 3

3y
.

Thus, f is homogeneous of degree zero. We have f(x, y) =
3x+ 10y

6y
=

x

2y
+

5

3
=

1

2v
+

5

3
= F (v).

7. f(tx, ty) =

√
(tx)2 + (ty)2

tx
=

√
x2 + y2

x
= f(x, y). Thus f is homogeneous of degree zero. f(x, y) =√

x2 + y2

x
=

|x|√1 + ( yx )
2

x
= −

√
1 +

(y
x

)2
= −√

1 + v2 = F (v).

8. f(tx, ty) =

√
(tx)2 + 4(ty)2 − (tx) + (ty)

(tx) + 3(ty)
=

√
x2 + 4y2 − x+ y

x+ 3y
= f(x, y). Thus f is homogeneous of

degree zero. f(x, y) =

√
x2 + 4y2 − x+ y

x+ 3y
=

√
1 + 4( yx )

2 − 1 + y
x

1 + 3 y
x

=

√
1 + 4v2 − 1 + v

1 + 3v
= F (v).

9. By inspection the differential equation is first-order homogeneous. We therefore let y = xV in which case
y′ = xV ′ + V . Substituting these results into the given differential equation yields xV ′ + V = V 2 + V + 1,
or equivalently, xV ′ = V 2 + 1. Separating the variables and integrating yields∫

1

V 2 + 1
dV =

∫
1

x
dx =⇒ arctan

(y
x

)
= ln |x|+ c1 =⇒ y(x) = tan(x ln cx).

10. (3x − 2y)
dy

dx
= 3y =⇒ (3 − 2

y

x
)
dy

dx
= 3

y

x
=⇒ (3 − 2v)

(
v + x

dv

dx

)
= 3v =⇒ x

dv

dx
=

3v

3− 2v
− v =⇒∫ 3− 2v

2v2
dv =

∫ dx

x
=⇒ − 3

2v
− ln |v| = ln |x| + c1 =⇒ −3x

2y
− ln |y

x
| = ln |x| + c1 =⇒ ln y = −3x

2y
+ c2 =⇒

y2 = ce−3x/y.

11.
dy

dx
=

(x+ y)2

2x2
=⇒ dy

dx
=

1

2

(
1 +

y

x

)2
=⇒ v + x

dv

dx
=

1

2
(1 + v)2 =⇒ ∫ dv

v2 + 1
=
∫ dx

x
=⇒ tan−1 v =

1

2
ln |x|+ c =⇒ tan−1

(y
x

)
=

1

2
ln |x|+ c.

12. sin
(y
x

)(
x
dy

dx
− y

)
= x cos

(y
x

)
=⇒ sin

(
x

y

)(
dy

dx
− y

x

)
= cos

(y
x

)
=⇒ sin v

(
v + x

dv

dx
− v

)
=

cos v =⇒ sin v

(
x
dv

dx

)
= cos v =⇒ ∫ sin v

cos v
dv =

∫ dx

x
=⇒ − ln | cos v| = ln |x| + c1 =⇒

∣∣∣x cos(y
x

)∣∣∣ = c2 =⇒

y(x) = x cos−1
( c
x

)
.
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13.
dy

dx
=

√
16x2 − y2 + y

x
=⇒ dy

dx
=
√

16− ( yx )
2 + y

x =⇒ v + x
dv

dx
=

√
16− v2 + v =⇒ ∫ dv√

16− v2
=∫ dx

x
=⇒ sin−1( v4 ) = ln |x|+ c =⇒ sin−1 ( y

4x ) = ln |x|+ c.

14. We first rewrite the given differential equation in the equivalent form y′ =

√
(9x2 + y2) + y

x
. Factoring

out an x2 from the square root yields y′ =
|x|√9 + ( yx )

2 + y

x
. Since we are told to solve the differential

equation on the interval x > 0 we have |x| = x, so that y′ = 9 + ( yx )
2 + y

x , which we recognize as being
homogeneous. We therefore let y = xV , so that y′ = xV ′ + V . Substitution into the preceding differential
equation yields xV ′ + V =

√
9 + V 2 + V , that is xV ′ =

√
9 + V 2. Separating the variables in this equation

we obtain
1√

9 + V 2
dV =

1

x
dx. Integrating we obtain ln (V +

√
9 + V 2) = ln c1x. Exponentiating both sides

yields V +
√
9 + V 2 = c1x. Substituting

y

x
= V and multiplying through by x yields the general solution

y +
√
9x2 + y2 = c1x

2.

15. The given differential equation can be written in the equivalent form

dy

dx
=

y(x2 − y2)

x(x2 + y2)
,

which we recognize as being first order homogeneous. The substitution y = xv yields

v + x
dv

dx
=

v(1− v2)

1 + v2
=⇒ x

dv

dx
= − 2v3

1 + v2
,

so that ∫
1 + v2

v3
dv = −2

∫
dx

x
=⇒ −v−2

2
+ ln |v| = −2 ln |x|+ c1.

Consequently,

− x2

2y2
+ ln |xy| = c1.

16. x
dy

dx
+ y lnx = y ln y =⇒ dy

dx
=

y

x
ln

y

x
=⇒ v + x

dv

dx
= v ln v =⇒ ∫ dv

v(ln v − 1)

∫ dx

x
=⇒ ln | ln v − 1| =

ln |x|+ c1 =⇒ ln y
x − 1

x
= c =⇒ y(x) = xe1+cx.

17.
dy

dx
=

y2 + 2xy − 2x2

x2 − xy + y2
=⇒ v+x

dv

dx
=

v2 + 2v − 2

1− v + v2
=⇒ x

dv

dx
=

−v3 + 2v2 + v − 2

v2 − v + 1
=⇒ ∫ v2 − v + 1

v3 − 2v2 − v + 2
dv =

− ∫ dx

x
=⇒ ∫ v2 − v + 1

(v − 1)(v + 2)(v + 1)
dv = − ∫ dx

x
=⇒ ∫ [ 1

v − 2
− 1

2(v − 1)
+

1

2(v + 1)

]
dv = − ∫ dx

x
=⇒

ln |v − 2|−1

2
ln |v − 1|+1

2
ln |v + 1| = − ln |x|+c1 =⇒ ln

∣∣∣∣ (v − 2)2(v + 1)

v − 1

∣∣∣∣ = −2 lnx+c2 =⇒ (y − 2x)2(y + x)

y − x
=

c.

18. 2xydy − (x2e−y2/x2

+ 2y2)dx = 0 =⇒ 2
y

x

dy

dx
−
(
e−y2/x2

+ 2
(y
x

)2)
= 0 =⇒ 2v

(
v + x

dv

dx

)
− (e−v2

+
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2v2) = 0 =⇒ 2vx
dv

dx
= e−v2

=⇒ ∫
ev

2

(2vdv) =
∫ dx

x
=⇒ ev

2

= ln |x| + c1 =⇒ ey
2/x2

= ln (cx) =⇒ y2 =

x2 ln (ln (cx)).

19. x2 dy

dx
= y2 + 3xy + x2 =⇒ dy

dx
= ( yx )

2 + 3 y
x + 1 =⇒ v + x

dv

dx
= v2 + 3v + 1 =⇒ x

dv

dx
= (v + 1)2 =⇒∫ dv

(v + 1)2
=
∫ dx

x
=⇒ − 1

v + 1
= ln |x| + c1 =⇒ − 1

y
x + 1

= ln |x| + c1 =⇒ y

x
= − 1

ln (cx)
=⇒ y(x) =

−x

[
1 +

1

ln (cx)

]
.

20.
dy

dx
=

√
x2 + y2 − x

y
=⇒ dy

dx
=

√
1 + ( yx )

2 − 1
y
x

=⇒ v + x
dv

dx
=

√
1 + v2−

v
=⇒ x

dv

dx
=

√
1 + v2 − x

v
=⇒∫ v√

1 + v2 − 1− v2
dv =

∫ dx

x
=⇒ ln |1− u| = ln |x| + c1 =⇒ |x(1 − u)| = c2 =⇒ 1 − u =

c

x
=⇒ u2 =

c2

x2
− 2

c

x
+ 1 =⇒ v2 =

c2

x2
− 2

c

x
=⇒ y2 = c2 − 2cx.

21. 2x(y+2x)
dy

dx
= y(4x−y) =⇒ 2

(y
x
+ 2

) dy

dx
= y

x (4− y
x ) =⇒ 2(v+2)

(
v + x

dv

dx

)
= v(4−v) =⇒ 2x

dv

dx
=

− 3v2

v + 2
=⇒ 2

∫ v + 2

v2
dv = −3

∫ dx

x
=⇒ 2 ln |v| − 4

v = −3 ln |x|+ c1 =⇒ y2 = cxe4x/y.

22. x
dy

dx
= x tan ( yx ) + y =⇒ v + x

dv

dx
= tan v + v =⇒ x

dv

dx
= tan v =⇒ ∫

cot vdv =
∫ dx

x
=⇒ ln | sin v| =

ln |x|+ c1 =⇒ sin v = cx =⇒ v = sin−1 (cx) =⇒ y(x) = x sin−1 (cx).

23.
dy

dx
=

x
√

x2 + y2 + y2

xy
=⇒ dy

dx
=

√(
x

y

)2

+ 1 +
y

x
=⇒ v + x

dv

dx
=

√
( 1v )

2 + 1 + v =⇒ dv

dx
=√

( 1v )
2 + 1 =⇒ ∫ dv√

( 1v )
2
=
∫ dx

x
=⇒ ln |v +√

1 + v2| = ln |x|+c =⇒ v+
√
1 + v2 = cx =⇒ y

x+
√
1 + ( yx )

2 =

xc =⇒ 2( yx ) + 1 = (cx)2 =⇒ y2 = x2 [(cx)
2 − 1]

2
.

24. The given differential equation can be written as (x−4y)dy = (4x+y)dx. Converting to polar coordinates
we have x = r cos θ =⇒ dx = cos θdr− r sin θdθ, and y = r sin θdr+ r cos θdθ. Substituting these results into
the preceding differential equation and simplifying yields the separable equation 4r−1dr = dθ which can be
integrated directly to yield 4 ln r = θ + c, so that r = c1e

θ/4.

25.
dy

dx
=

2(2y − x)

x+ y
. Since x = 0, divide the numerator and denominator by y yields

dy

dx
=

x
y + 1

2(2− x
y )

.

Now let v = x
y so that

dx

dy
= v + y

dv

dy
=⇒ v + y

dv

dy
=

v + 1

2(2− v)
=⇒ ∫ 2(2− v)

2v2 − 3v + 1
dv =

∫ dy

y
=⇒

−6
∫ dv

2v − 1
+ 2

∫ dv

v − 1
= ln |y|+ c1 =⇒ ln

(v − 1)2

|2v − 1|3 = ln (c2|y|) =⇒ (x− y)2 = c(y − 2x)3. Since y(0) = 2

then c =
1

2
. Thus, (x− y)2 =

1

2
(y − 2x)3.
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26.
dy

dx
=

2x− y

x+ 4y
=⇒ dy

dx
=

2− y
x

1 + 4 y
x

=⇒ v+x
dv

dx
=

2− v

1 + 4v
=⇒ x

dv

dx
=

2− 2v − 4v2

1 + 4v
=⇒ 1

2

∫ 1 + 4v

2v2 + v − 1
dv =

− ∫ dx

x
=⇒ 1

2
ln |2v2 + v − 1| = − ln |x| + c =⇒ 1

2
ln |x2(2v2 + v − 1)| = c =⇒ 1

2
ln |2y2 + yx− x2| = c, but

y(1) = 1 so c =
1

2
ln 2. Thus

1

2
ln |2y2 + yx− x2| = 1

2
ln 2 and since y(1) = 1 it must be the case that

2y2 + yx− x2 = 2.

27.
dy

dx
=

y −
√
x2 + y2

x
=⇒ dy

dx
=

y

x
−
√

1 + (
y

x
)2 =⇒ x

dv

dx
= −√

1 + v2 =⇒ ∫ dv√
1 + v2

= − ∫ dx

x
=⇒

ln (v +
√
1 + v2) = − ln |x| + c1 =⇒ y

|x|
x

+
√

x2 + y2 = c2. Since y(3) = 4 then c2 = 9. Then take
|x|
x

= 1

since we must have y(3) = 4; thus y +
√
x2 + y2 = 9.

28.
dy

dx
− y

x
=

√
4−

(y
x

)2
=⇒ v + x

dv

dx
= v +

√
4− v2 =⇒ ∫ dv√

4− v2
=
∫ dx

x
=⇒ sin−1 v

2
= ln |x|+ c =⇒

sin−1 y

2x
= lnx+ c since x > 0.

29. (a).
dy

dx
=

x+ ay

ax− y
. Substituting y = xv and simplifying yields x

dv

dx
=

1 + v2

a− v
. Separating the variables

and integrating we obtain a tan−1 v − 1

2
ln (1 + v2) = lnx+ ln c or equivalently, a tan−1 y

x − 1
2 ln (x

2 + y2) =

ln c. Substituting for x = r cos θ, y = r sin θ yields aθ − ln r = ln c. Exponentiating then gives r = keaθ.

(b). The initial condition y(1) = 1 corresponds to r(π4 ) =
√
2. Imposing this condition on the polar form

of the solution obtained in (a) yields k =
√
2e−π/8. Hence, the solution to the initial value problem is

r =
√
2e(θ−π/4)/2. When a =

1

2
, the differential equation is

dy

dx
=

2x+ y

x− 2y
. Consequently every solution

curve has a vertical tangent line at points of intersection with the line y =
x

2
. The maximum interval of

existence for the solution of the initial value problem can be obtained by determining where y =
x

2
intersects

the curve r =
√
2e(θ−π/4)/2. The line y =

x

2
has a polar equation tan θ =

1

2
. The corresponding values of θ

are θ = θ1 = tan−1 1

2
≈ 0.464, θ = θ2 = θ1 + π ≈ 3.61. Consequently, the x-coordinates of the intersection

points are x1 = r cos θ1 =
√
2e(θ1−π/4)/2 cos θ1 ≈ 1.08, x2 = r cos θ2 =

√
2e(θ2−π/4)/2 cos θ2 ≈ −5.18. Hence

the maximum interval of existence for the solution is approximately (−5.18, 1.08).

(c). See the accompanying figure.

30. Given family of curves satisfies: x2 + y2 = 2cy =⇒ c
x2 + y2

2y
. Hence 2x + 2y

dy

dx
= 2c

dy

dx
=⇒ dy

dx
=

x

c− y
=

2xy

x2 − y2
. Orthogonal trajectories satisfies:

dy

dx
=

y2 − x2

2xy
. Let y = vx so that

dy

dx
= v + x

dv

dx
.

Substituting these results into the last equation yields x
dv

dx
= −v2 + 1

2v
=⇒ ln |v1 + 1| = − ln |x| + c1 =⇒

y2

x2
+ 1 =

c2
x

=⇒ x2 + y2 = 2kx.
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Figure 0.0.50: Figure for Problem 29(c)

x

y(x)

Figure 0.0.51: Figure for Problem 30

31. Given family of curves satisfies: (x−c)2+(y−c)2 = 2c2 =⇒ c =
x2 + y2

2(x+ y)
. Hence 2(x−c)+2(y−c)

dy

dx
=

0 =⇒ c− x

y − c
=

y2 − 2xy − x2

y2 + 2xy − x2
. Orthogonal trajectories satisfies:

dy

dx
=

y2 + 2xy − x2

x2 + 2xy − y2
. Let y = vx so

that
dy

dx
= v + x

dv

dx
. Substituting these results into the last equation yields v + x

dv

dx
=

v2 + 2v − 1

1 + 2v − v2
=⇒
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1 + 2v − v2

v3 − v2 + v − 1
dv =

1

x
dx =⇒

(
1

v − 1
− 2v

v2 + 1

)
dv =

1

x
dx =⇒ x2+y2 = 2k(x−y) =⇒ (x−k)2+(y+k)2 =

2k2.

x

y(x)

Figure 0.0.52: Figure for Problem 31

32. (a). Let r represent the radius of one of the circles with center at (a.ma) and passing through (0, 0).
r =

√
(a− 0)2 + (ma− 0)2 = |a|√1 +m2. Thus, the circle’s equation can be written as (x−a)2+(y−ma)2 =

(|a|√1 +m2)2 or (x− a)2 + (y −ma)2 = a2(1 +m2).

(b). (x− a)2 + (y −ma)2 = a2(1 +m2) =⇒ a =
x2 + y2

2(x+my)
. Differentiating the first equation with respect

x and solving we obtain
dy

dx
=

a− x

y −ma
. Substituting for a and simplifying yields

dy

dx
=

y2 − x2 − 2mxy

my2 −mx2 + 2xy
.

Orthogonal trajectories satisfies:
dy

dx
=

mx2 −my2 − 2xy

y2 − x2 − 2mxy
=⇒ dy

dx
=

m−m( yx )
2 − 2 y

x

( yx )
2 − 1− 2m y

x

. Let y = vx so that

dy

dx
= v+x

dv

dx
. Substituting these results into the last equation yields v+x

dv

dx
=

m−mv2 − 2v

v2 − 1− 2mv
=⇒ xdv

dx
=

(m− v)(1 + v2)

v2 − 2mv − 1
=⇒ ∫ v2 − 2mv − 1

(m− v)(1 + v2)
dv =

∫ dx

x
=⇒ ∫ dv

v −m
− ∫ 2v

1 + v2
dv =

∫ dx

x
=⇒ ln |v −m| −

ln (1 + v2) = ln |x| + c1 =⇒ v − m = c2x(1 + v2) =⇒ y − mx = c2x
2 + c2y

2 =⇒ x2 + y2 + cmx − cy = 0.
Completing the square we obtain (x + cm/2)2 + (y − c/2)2 = c2/4(m2 + 1). Now letting b = c/2, the last
equation becomes (x+ bm)2 + (y − b)2 = b2(m2 + 1) which is a family or circles lying on the line y = −my
and passing through the origin.

(c). See the accompanying figure.

33. x2 + y2 = c =⇒ dy

dx
= −x

y
= m2. m1 =

m2 − tan (π4 )

1 +m2 tan (
π
4 )

=
−x/y − 1

1− x/y
=

x+ y

x− y
. Let y = vx so that
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x

y(x)

Figure 0.0.53: Figure for Problem 32(c)

dy

dx
= v + x

dv

dx
. Substituting these results into the last equation yields v + x

dv

dx
=

1 + v

1− v
=⇒ 1− v

1 + v2
dv =

dx

x
=⇒ ∫ (− v

1 + v2
+

1

v2 + 1

)
dv =

∫ dx

x
=⇒ −1

2
ln (1 + v2)+tan−1 v = ln |x|+c1 =⇒ Oblique trajectories:

ln (x2 + y2)− 2 tan−1 (y/x) = c2.

34. y = cx6 =⇒ dy

dx
= 6y/x = m2. m1 =

m2 − tan (π4 )

1 +m2 tan (
π
4 )

=
6y/x− 1

1 + 6y/x
=

6y − x

6y + x
. Let y = vx so that

dy

dx
= v + x

dv

dx
. Substitute these results into the last equation yields v + x

dv

dx
=

6v − 1

6v + 1
=⇒ x

dv

dx
=

(3v − 1)(1− 2v)

6v + 1
=⇒ ∫ ( 9

3v − 1
− 8

2v − 1

)
dv =

∫ dx

x
=⇒ 3 ln |3v − 1| − 4 ln |2v − 1| = ln |x| + c1 =⇒

Oblique trajectories (3y − x)3 = k(2y − x)4.

35. x2 + y2 = 2cx =⇒ c =
x2 + y2

2x
and

dy

dx
=

y2 − x2

2xy
= m2. m1 =

m2 − tan (π4 )

1 +m2 tan (
π
4 )

=

y2 − x2

2xy
− 1

1 +
y2 − x2

2xy

=

y2 − x2 − 2xy

y2 − x2 + 2xy
. Let y = vx so that

dy

dx
= v + x

dv

dx
. Substituting these results into the last equa-

tion yields v + x
dv

dx
=

v2 − 2v − 1

v2 + 2v − 1
=⇒ x

dv

dx
=

−v3 − v2 − v − 1

v2 + 2v − 1
=⇒ −v2 − 2v + 1

v3 + v2 + v + 1
dv =

dx

x
=⇒∫ ( 1

v + 1
− 2v

v2 + 1

)
dv =

∫ dx

x
=⇒ ln |v + 1| − ln (v2 + 1) = ln |x|+ c1 =⇒ ln |y + x| = ln |y2 + x2|+ c1 =⇒

Oblique trajectories: x2 + y2 = 2k(x+ y) or, equivalently, (x− k)2 + (y − k)2 = 2k2.
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36. (a). y = cx−1 =⇒ dy

dx
= −cx−2 = −y

x
. m1 =

m2 − tanα0

1 +m2 tanα0
=

−y/x− tanα0

1− y/x tanα0
. Let y = vx so

that
dy

dx
= v + x

dv

dx
. Substituting these results into the last equation yields v + x

dv

dx
=

tanα0 + v

v tanα0 − 1
=⇒

2v tanα0 − 2

v2 tanα0 − 2v − tanα0
dv = −2dx

x
=⇒ ln |v2 tanα0 − 2v − tanα0| = −2 ln |x| + c1 =⇒ (y2 − x2) tanα0 −

2xy = k.

(b). See the accompanying figure.

y(x)

x

Figure 0.0.54: Figure for Problem 36(b)

37. (a). x2+y2 = c =⇒ dy

dx
= −x

y
. m1 =

m2 − tanα0

1 +m2 tanα0
=

−x/y −m

1− (x/y)m
=

x+my

mx− y
. Let y = vx so that

dy

dx
=

v + x
dv

dx
. Substituting these results into the last equation yields v + x

dv

dx
=

1 +mv

m− v
=⇒ x

dv

dx
=

1 + v2

m− v
=⇒

v −m

1 + v2
dv = −dx

x
=⇒ ∫ ( v

1 + v2
− m

1 + v2

)
dv = − ∫ dx

x
=⇒ 1

2
ln (1 + v2)−m tan v = − ln |x|+ c1. In polar

coordinates, r =
√
x2 + y2 and θ = tan−1 y/x, so this result becomes ln r−mθ = c1 =⇒ r = emθ where k is

an arbitrary constant.

(b). See the accompanying figure.

38.
dy

dx
− 1

x
y = 4x2y−1 cosx. This is a Bernoulli equation. Multiplying both sides y results in y

dy

dx
− 1

x
y2 =

4x2 cosx. Let u = y2 so
du

dx
= 2y

dy

dx
or y

dy

dx
=

1

2

du

dx
. Substituting these results into y

dy

dx
− 1

x
y2 = 4x2 cosx

yields
du

dx
− 2

x
u = 8x2 cosx which has an integrating factor I(x) = x−2 =⇒ d

dx
(x−2u) = 8 cosx =⇒ x−2u =

8
∫
cosxdx+ c =⇒ x−2u = 8 sinx+ c =⇒ u = x2(8 sinx+ c) =⇒ y2 = x2(8 sinx+ c).

39. y−3 dy

dx
+

1

2
y−2 tanx = 2 sinx. This is a Bernoulli equation. Let u = y−2 so

du

dx
= −2y−3 dy

dx
or
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x

y(x)

Figure 0.0.55: Figure for Problem 37(b)

y−3 dy

dx
=

1

2

du

dx
. Substituting these results into the last equation yields

du

dx
−u tanx = −4 sinx. An integrating

factor for this equation is I(x) = cosx. Thus,
d

dx
(u cosx) = −4 cosx sinx =⇒ u cosx = 4

∫
cosx sinxdx =⇒

u(x) =
1

cosx
(cos2 x+ c) =⇒ y−2 = 2 cosx+

c

cosx
.

40.
dy

dx
− 3

2x
y = 6y1/3x2 lnx or

1

y1/3
dy

dx
− 3

2x
y2/3 = 6x2 lnx. Let u = y2/3 =⇒ dy

dx
=

2

3
y−1/3 dy

dx
. Substituting

these results into
1

y1/3
dy

dx
− 3

2x
y2/3 = 6x2 lnx yields

du

dx
− 1

x
u = 4x2 lnx. An integrating factor for this

equation is I(x) =
1

x
so

d

dx
(x−1u) = 4x lnx =⇒ x−1u = 4

∫
x lnxdx + c =⇒ x−1u = 2x2 lnx − x2 + c =⇒

u(x) = x(2x2 lnx− x2 + c) =⇒ y2/3 = x(2x2 lnx− x2 + c).

41.
dy

dx
+

2

x
y = 6

√
1 + x2y1/2 or y−1/2 dy

dx
+

2

x
y1/2 = 6

√
1 + x2. Let u = y1/2 =⇒ 2

du

dx
= y−1/2 dy

dx
.

Substituting these results into y−1/2 dy

dx
+

2

x
y1/2 = 6

√
1 + x2 yields

du

dx
+

1

x
u = 3

√
1 + x2. An integrating

factor for this equation is I(x) = x so
d

dx
(xu) = 3x

√
1 + x2 =⇒ xu =

∫
x
√
1 + x2dx + c =⇒ xu =

(1 + x2)3/2 + c =⇒ u =
1

x
(1 + x2)3/2 +

c

x
=⇒ y1/2 =

1

x
(1 + x2)3/2 +

c

x
.

42.
dy

dx
+

2

x
y = 6y2x4 or y−2 dy

dx
+

2

x
y−1 = 6x4. Let u = y−1 =⇒ −du

dx
= y−2 dy

dx
. Substituting these results

into y−2 dy

dx
+

2

x
y−1 = 6x4 yields

du

dx
− 2

x
u = −6x4. An integrating factor for this equation is I(x) = x−2 so

d

dx
(x−2u) = −6x2 =⇒ x−2u = −2x3+c =⇒ u = −2x5+cx2 =⇒ y−1 = −2x5+cx2 =⇒ y(x) =

1

x2(c− 2x3)
.
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43. 2x

(
dy

dx
+ y3x2

)
+ y = 0 or y−3 dy

dx
+

1

2x
y−2 = −x−2. Let u = y−2 =⇒ −1

2

du

dx
= y−3 dy

dx
. Substituting

these results into y−3 dy

dx
+

1

2x
y−2 = −x−2 yields

du

dx
− 1

x
u = 2x2. An integrating factor for this equation is

I(x) =
1

x
so

d

dx
(x−1u) = 2x =⇒ x−1u = x2 + c =⇒ u = x3 + cx =⇒ y−2 = x3 + cx.

44. (x− a)(x− b)

(
dy

dx
− y1/2

)
= 2(b− a)y or y−1/2 dy

dx
− 2(b− a)

(x− a)(x− b)
y1/2 = 1. Let u = y1/2 =⇒ 2

du

dx
=

y−1/2 dy

dx
. Substituting these results into y−1/2 dy

dx
− 2(b− a)

(x− a)(x− b)
y1/2 = 1 yields

du

dx
− (b− a)

(x− 1)(x− b)
u =

1

2
.

An integrating factor for this equation is I(x) =
x− a

x− b
so

d

dx

(
x− a

x− b
u

)
=

x− a

2(x− b)
=⇒ x− a

x− b
u =

1

2
[x+(b−

a) ln |x− b|+c] =⇒ y1/2 =
x− b

2(x− a)
[x+(b−a) ln |x− b|+c] =⇒ y(x) =

1

4

(
x− b

x− a

)2

[x+(b−a) ln |x− b|+c]2.

45.
dy

dx
+

6

x
y = 3y2/3

cosx

x
or y−2/3 dy

dx
+

6

x
y1/3 = 3

cosx

x
. Let u = y1/3 =⇒ 3

du

dx
= y−2/3 dy

dx
. Substituting

these results into y−2/3 dy

dx
+

6

x
y1/3 = 3

cosx

x
yields

du

dx
+

2

x
u =

cosx

x
. An integrating factor for this equation

is I(x) = x2 so
d

dx
(x2u) = x cosx =⇒ x2u = cosx+ x sinx+ c =⇒ y1/3 =

cosx+ x sinx+ c

x2
.

46.
dy

dx
+ 4xy = 4x3y1/2 or y−1/2 dy

dx
+ 4xy1/2 = 4x3. Let u = y1/2 =⇒ 2

du

dx
= y−1/2 dy

dx
. Substituting these

results into y−1/2 dy

dx
+4xy1/2 = 4x3 yields

du

dx
+2xu = 2x3. An integrating factor for this equation is I(x) =

ex
2

so
d

dx
(ex

2

u) = 2ex
2

x3 =⇒ ex
2

u = ex
2

(x2−1)+c =⇒ y1/2 = x2−1+ce−x2

=⇒ y(x) = [(x2−1)+ce−x2

]2.

47.
dy

dx
− 1

2x lnx
= 2xy3 or y−3 dy

dx
− 1

2x lnx
y−2 = 2x. Let u = y−2 =⇒ 1

2

du

dx
= y−3 dy

dx
. Substituting these

results into y−3 dy

dx
− 1

2x lnx
y−2 = 2x yields

du

dx
+

1

x lnx
u = −4x. An integrating factor for this equation is

I(x) = lnx so
d

dx
(u lnx) = −4x lnx =⇒ u lnx = x2 − 2x2 lnx+ c =⇒ y2 =

lnx

x2(1− 2 lnx) + c
.

48.
dy

dx
− 1

(π − 1)x
y =

3

(1− π)
xyπ or y−π dy

dx
− 1

(π − 1)x
y1−π =

3x

1− π
. Let u = y1−π =⇒ 1

1− π

du

dx
= y−π dy

dx
.

Substituting these results into y−π dy

dx
− 1

(π − 1)x
y1−π =

3x

1− π
yields

du

dx
+
1

x
u = 3x. An integrating factor for

this equation is I(x) = x so
d

dx
(xu) = 3x2 =⇒ xu = x3+ c =⇒ y1−π =

x3 + c

x
=⇒ y(x) =

(
x3 + c

x

)1/(1−π)

.

49. 2
dy

dx
+y cotx = 8y−1 cos3 x or 2y

dy

dx
+y2 cotx = 8 cos2 x. Let u = y2 =⇒ du

dx
= 2y

dy

dx
. Substituting these

results into 2y
dy

dx
+ y2 cotx = 8 cos2 x yields

du

dx
+ u secx = secx. An integrating factor for this equation is

I(x) = sinx so
d

dx
(u sinx) = 8 cos3 x sinx =⇒ u sinx = −2 cos4 x+ c =⇒ y2 =

−2 cos4 x+ c

sinx
.
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50. (1−√
3)

dy

dx
+y secx = y

√
3 secx or (1−√

3)y−
√
3 dy

dx
+y1−

√
3 secx = secx. Let u = y1−

√
3 =⇒ du

dx
= (1−

√
3)y−

√
3 dy

dx
. Substituting these results into (1−√

3)y−
√
3 dy

dx
+y1−

√
3 secx = secx yields

du

dx
+u secx = secx.

An integrating factor for this equation is I(x) = secx+tanx so
d

dx
[(secx+tanx)u] = secx(secx+tanx) =⇒

(secx+ tanx)u = tanx+ secx+ c =⇒ y1−
√
3 = 1 +

1

secx+ tanx
=⇒ y(x) =

(
1 +

c

secx+ tanx

)1/(1−√
3)

.

51.
dy

dx
+

2x

1 + x2
y = xy2 or

1

y2
dy

dx
+

2x

1 + x2

1

y
= x. Let u = y−1 so

du

dx
= −y−2 dy

dx
. Substituting these

results into
1

y2
dy

dx
+

2x

1 + x2

1

y
= x yields

du

dx
− 2x

1 + x2
u = −x. An integrating factor for this equation is

I(x) =
1

1 + x2
so

d

dx

(
u

1 + x2

)
= − x

1 + x2
=⇒ u

1 + x2
= − ∫ xdx

1 + x2
+c =⇒ u

1 + x2
= −1

2
ln (1 + x2)+c =⇒

u = (1 + x2)

(
−1

2
ln (1 + x2) + c

)
=⇒ y−1 = (1 + x2)

(
−1

2
ln (1 + x2) + c

)
. Since y(0) = 1 =⇒ c = 1 so

1

y
= (1 + x2)

(
−1

2
ln (1 + x2) + 1

)
.

52.
dy

dx
+ y cotx = y3 sin3 x or y−3 dy

dx
+ y−2 cotx = sin3 x. Let u = y−2 =⇒ −1

2

du

dx
= y−3 dy

dx
. Substituting

these results into y−3 dy

dx
+ y−2 cotx = sin3 x yields

du

dx
− 2u cotx = −2 sin3 x. An integrating factor for this

equation is I(x) = csc2 x so
d

dx
(u csc2 x) = − sinx =⇒ u csc2 x = 2 cosx + c. Since y(π/2) = 1 =⇒ c = 1.

Thus y2 =
1

sin2 x(2 cosx+ 1)
.

53.
dy

dx
= F (ax + by + c). Let v = ax + by + c so that

dv

dx
= a + b

dy

dx
=⇒ b

dy

dx
=

dv

dx
− a =⇒ dy

dx
=

1

b

(
dv

dx
− a

)
= F (v) =⇒ dv

dx
− a = bF (v) =⇒ dv

dx
= bF (v) + a =⇒ dv

bf(v) + a
= dx.

54.
dy

dx
= (9x − y)2. Let v = 9x − y so that

dy

dx
= 9 − dv

dx
=⇒ dv

dx
= 9 − v2 =⇒ ∫ dv

9− v2
=
∫
dx =⇒

1

3
tanh−1 (v/3) = x+ c1 but y(0) = 0 so c = 0. Thus, tanh−1 (3x− y/3) = 3x or y(x) = 3(3x− tanh 3x).

55.
dy

dx
= (4x+ y+ 2)2. Let v = 4x+ y+ 2 so that

dv

dx
= 4+

dy

dx
=⇒ dv

v2 + 4
= dx =⇒ ∫ dv

v2 + 4
=
∫
dx =⇒

1

2
tan−1 v/2 = x+ c1 =⇒ tan−1 (2x+ y/2 + 1) = 2x+ c =⇒ y(x) = 2[tan (2x+ c)− 2x− 1].

56.
dy

dx
= sin2 (3x− 3y + 1). Let v = 3x − 3y + 1 so that

dy

dx
1 − 1

3

dv

dx
=⇒ 1 − 1

3

dv

dx
= sin2 v =⇒

dv

dx
= 3 cos2 v =⇒ ∫

sec2 vdv = 3
∫
dx =⇒ tan v = 3x + c =⇒ tan (3x− 3y + 1) = 3x + c =⇒ y(x) =

1

3
[3x− tan−1 (3x+ c) + 1].
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57. V = xy =⇒ V ′ = xy′ + y =⇒ y′ = (V ′ − y)/x. Substitution into the differential equation yields

(V ′ − y)/x = yF (V )/x =⇒ V ′ = y[F (V ) + 1] =⇒ V ′ = V [F (V ) + 1]/x, so that
1

V [F (V ) + 1]

dV

dx
=

1

x
.

58. Substituting into
1

V [F (V ) + 1]

dV

dx
=

1

x
for F (V ) = lnV − 1 yields

1

V lnV
dV =

1

x
dx =⇒ ln lnV =

ln cx =⇒ V = ecx =⇒ y(x) =
1

x
ecx.

59. (a). y(x) = w(x)−x =⇒ y′ = w′−1. Substituting these results into (1.8.18) yields w′−1 = 2xw2−1 =⇒
w′ = 2xw2.

(b). Separating the variables in the preceding differential equation and integrating yields∫
1

w2
dw = 2

∫
x dx+ c =⇒ −w−1 = x2 + c =⇒ w(x) =

1

c1 − x2
,

where c1 = −c. Hence, the general solution to (1.8.18) is y(x) =
1

c1 − x2
− x. Imposing the initial condition

y(0) = 1 requires that 1 =
1

c1
=⇒ c1 = 1. Therefore, y(x) =

1

1− x2
− x.

60. (a). x = u − 1, y = v + 1 =⇒ dy

dx
=

dv

du
. Substitution into the given differential equation yields

dv

du
=

u+ 2v

2u− v
.

(b). The differential equation obtained in (a) is first order homogeneous. We therefore let W = v/u, and

substitute into the differential equation to obtain W ′u+W =
1 + 2W

2−W
=⇒ W ′u =

1 +W 2

2−W
. Separating the

variables yields

(
2

1 +W 2
− W

1 +W 2

)
dW =

1

u
du. This can be integrated directly to obtain 2 tan−1 W −

1

2
ln (1 +W 2) = lnu + ln c. Simplifying we obtain cu2(1 + W 2) = e4 tan−1 W =⇒ c(u2 + v2) = etan

−1 (v/u).

Substituting back in for x and y yields c[(x+ 1)2 + (y − 1)2] = etan
−1 [(y−1)/(x+1)].

61. (a). y = Y (x) + v−1(x) =⇒ y′ = Y ′(x) − v−2(x)v′(x). Now substitute into the given differential
equation and simplify algebraically to obtain Y ′(x) + p(x)Y (x) + q(x)Y 2(x) − v−2(x)v′(x) + v−1(x)p(x) +
q(x)[2Y (x)v−1(x) + v−2(x)] = r(x). We are told that Y (x) is a particular solution to the given differential
equation, and therefore Y ′(x) + p(x)Y (x) + q(x)Y 2(x) = r(x). Consequently the transformed differential
equation reduces to −v−2(x)v′(x) + v−1p(x) + q(x)[2Y (x)v−1(x) + v−2(x)] = 0, or equivalently v′ − [p(x) +
2Y (x)q(x)]v = q(x).

(b). The given differential equation can be written as y′ − x−1y − y2 = x−2, which is a Riccati differential
equation with p(x) = −x−1, q(x) = −1, and r(x) = x−2. Since y(x) = −x−1 is a solution to the given
differential equation, we make a substitution y(x) = −x−1 + v−1(x). According to the result from part (a),
the given differential equation then reduces to v′−(−x−1+2x−1)v = −1, or equivalently v′−x−1v = −1. This

linear differential equation has an integrating factor I(x) = x−1, so that v must satisfy
d

dx
(x−1v) = −x−1 =⇒

v(x) = x(c−lnx). Hence the solution to the original equation is y(x) = − 1

x
+

1

x(c− lnx)
=

1

x

(
1

c− lnx
− 1

)
.

62. (a). If y = axr, then y′ = arxr−1. Substituting these expressions into the given differential equation
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yields arxr−1 + 2axr−1 − a2x2r = −2x−2. For this to hold for all x > 0, the powers of x must match up on
either side of the equation. Hence, r = −1. Then a is determined from the quadratic −a+2a−a2 = −1 ⇐⇒
a2−a−2 = 0 ⇐⇒ (a−2)(a+1) = 0. Consequently, a = 2,−1 in order for us to have a solution to the given
differential equation. Therefore, two solutions to the differential equation are y1(x) = 2x−1, y2(x) = −x−1.

(b). Taking Y (x) = 2x−1 and using the result from Problem 61(a), we now substitute y(x) = 2x−1 + v−1

into the given Riccati equation. The result is (−2x−2−v−2v′)+2x−1(2x−1+v−1)−(4x−2+4x−1v−1+v−2) =
−2x−2. Simplifying this equation yields the linear equation v′+2x−1v = −1. Multiplying by the integrating

factor I(x) = e
∫
2x−1dx = x2 results in the integrable differential equation

d

dx
(x2v) = −x2. Integrating this

differential equation we obtain v(x) = x2

(
−1

3
x3 + c

)
=

1

3
x2(c1 − x3). Consequently, the general solution

to the Riccati equation is y(x) =
2

x
+

3

x2(c1 − x3)
.

63. (a). y = x−1 + w(x) =⇒ y′ = −x−2 + w′. Substituting into the given differential equation yields
(−x−2 + w′) + 7x−1(x−1 + w)− 3(x−2 + 2x−1w + w2) = 3x−2 which simplifies to w′ + x−1w − 3w2 = 0.

(b). The preceding equation can be written in the equivalent form w−2w′ + x−1w−1 = 3. We let u = w−1,
so that u′ = −w−2w′. Substitution into the differential equation gives, after simplification, u′ − x−1u = −3.
An integrating factor for this linear differential equation is I(x) = x−1, so that the differential equation

can be written in the integrable form
d

dx
(x−1u) = −3x−1. Integrating we obtain u(x) = x(−3 lnx +

c), so that w(x) =
1

x(c− 3 lnx)
. Consequently the solution to the original Riccati equation is y(x) =

1

x

(
1 +

1

c− 3 lnx

)
.

64. y−1 dy

dx
+ p(x) ln y = q(x). If we let u = ln y, then

du

dx
=

1

y

dy

dx
and the given equation becomes

du

dx
+

p(x)u = q(x) which is a first order linear and has a solution of the form u = e−
∫
p(x)dx

[∫
e
∫
p(x)dxq(x)dx+ c

]
.

Substituting ln y = e−
∫
p(x)dx

[∫
e
∫
p(x)dxq(x)dx+ c

]
into u = ln y we obtain y(x) = eI

−1[
∫
I(t)q(t)dt+c] where

I(x) = e
∫
p(t)dt and c is an arbitrary constant.

65. y−1 dy

dx
− 2

x
ln y =

1− 2 lnx

x
. Let u = ln y so using the technique of the preceding problem:

du

dx
− 2

x
u =

1− 2 lnx

x
and u = e

2
∫ dx

x

⎡⎣∫ e
−2

∫ dx

x

(
1− 2 lnx

x

)
dx+ c1

⎤⎦ = x2

[∫ (1− 2 lnx

x3
dx

)
+ c1

]
= lnx + cx2,

and since u = ln y, ln y = lnx+ cx2. Now y(1) = e so c = 1 =⇒ y(x) = xex
2

.

66. If u = f(y), then
du

dx
= f ′(y)

dy

dx
and the given equation f ′(y)

dy

dx
+ p(x)f(y) = q(x) becomes

du

dx
+

p(x)u = q(x) which has a solution of the form u(x) = e−
∫
p(x)dx

[∫
e
∫
p(x)dxq(x)dx+ c

]
. Substituting

f(y) = e−
∫
p(x)dx

[∫
e
∫
p(x)dxq(x)dx+ c

]
into u = f(y) and using the fact that f is invertible, we obtain

y(x) = f−1
[
I−1

(∫
I(t)q(t)dt

)
+ c

]
where I(x) = e

∫
p(t)dt and c is and arbitrary constant.
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67. sec2 y
dy

dx
+

1

2
√
1 + x

tan y =
1

2
√
1 + x

. Let u = tan y so that
du

dx
= sec2 y

dy

dx
and the given equation

becomes
du

dx
+

1

2
√
1 + x

u =
1

2
√
1 + x

which is first order linear. An integrating factor for this equation is

I(x) = e
√
1+x =⇒ d

dx
(e

√
1+xu) =

e
√
1+x

2
√
1 + x

=⇒ e
√
1+xu =

∫ e
√
1+x

2
√
1 + x

=⇒ e
√
1+xu = e

√
1+x + c =⇒ u =

1 + ce−
√
1+x. But u = tan y so tan y = 1 + ce−

√
1+x or y(x) = tan−1 (1 + ce−

√
1+x).

Solutions to Section 1.9

True-False Review:

(a): FALSE. The requirement, as stated in Theorem 1.9.4, is that My = Nx, not Mx = Ny, as stated.

(b): FALSE. A potential function φ(x, y) is not an equation. The general solution to an exact differential
equation takes the form φ(x, y, ) = c, where φ(x, y) is a potential function.

(c): FALSE. According to Definition 1.9.2, M(x)dx + N(y)dy = 0 is only exact if there exists a function
φ(x, y) such that φx = M and φy = N for all (x, y) in a region R of the xy-plane.

(d): TRUE. This is the content of part 1 of Theorem 1.9.11.

(e): FALSE. If φ(x, y) is a potential function for M(x, y)dx+N(x, y)dy = 0, then so is φ(x, y) + c for any
constant c.

(f): TRUE. We have
My = 2e2x − cos y and Nx = 2e2x − cos y,

and so since My = Nx, this equation is exact.

(g): FALSE. We have

My =
(x2 + y)2(−2x) + 4xy(x2 + y)

(x2 + y)4

and

Nx =
(x2 + y)2(2x)− 2x2(x2 + y)(2x)

(x2 + y)4
.

Thus, My �= Nx, and so this equation is not exact.

(h): FALSE. We have
My = 2y and Nx = 2y2,

and since My �= Nx, we conclude that this equation is not exact.

(i): FALSE. We have

My = ex sin y cos y + xex sin y cos y and Nx = cos y sin yex sin y,

and since My �= Nx, we conclude that this equation is not exact.

Problems:

1. yexydx + (2y − xe−xy)dy = 0. M = yexy and N = 2y − xe−xy =⇒ My = yxexy + exy and Nx =
xye−xy − e−xy =⇒ My �= Nx =⇒ the differential equation is not exact.
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2. [cos (xy) − xy sin (xy)]dx − x2 sin (xy)dy = 0 =⇒ M = cos (xy) − xy sin (xy) and N = −x2 sin (xy) =⇒
My = −2x sin (xy) − x2y cos (xy) and Nx = −2x sin (xy) − x2y cos (xy) =⇒ My = Nx =⇒ the differential
equation is exact.

3. (y + 3x2)dx + xdy = 0. M = y + 3x2 and N = x =⇒ My = 1 and Nx = 1 =⇒ My = Nx =⇒ the
differential equation is exact.

4. 2xey dx+ (3y2 + x2ey)dy = 0. M = 2xey and N = 3y2 + x2ey =⇒ My = 2xey and Nx = 2xey =⇒ My =
Nx =⇒ the differential equation is exact.

5. 2xydx + (x2 + 1)dy = 0. M = 2xy and N = x2 + 1 =⇒ My = 2x and Nx = 2x =⇒ My = Nx =⇒
the differential equation is exact so there exists a potential function φ such that (a)

∂φ

∂x
= 2xy and (b)

∂φ

∂x
=

2xy +
dh(x)

dx
so from (a), 2xy = 2xy +

dh(x)

dx
=⇒ dh(x)

dx
= 0 =⇒ h(x) is a constant. Since we need just one

potential function, let h(x) = 0. Thus, φ(x, y) = (x2 + 1)y; hence, (x2 + 1)y = c.

6. Given (y2− 2x)dx+2xydy = 0 then My = Nx = 2xy so the differential equation is exact and there exists

a potential function φ such that (a)
∂φ

∂x
= y2 − 2x and (b)

∂φ

∂y
= 2xy. From (b) φ(x, y) = xy2 + h(x) =⇒

∂φ

∂x
= y2+

dh(x)

dx
so from (a) y2+

dh(x)

dx
= y2−2x =⇒ dh(x)

dx
= −2x =⇒ h(x) = −2x where the constant of

integration has been set to zero since we just need one potential function. φ(x, y) = xy2−x2 =⇒ xy2−x2 = c.

7. Given (4e2x + 2xy − y2)dx + (x − y)2dy = 0 then My = Nx = 2y so the differential equation is exact

and there exists a potential function φ such that (a)
∂φ

∂x
= 4e2x + 2xy − y2 and (b)

∂φ

∂y
= (x − y)2.

From (b) φ(x, y) = x2y − xy2 +
y3

3
+ h(x) =⇒ ∂φ

∂x
= 2xy − y2 +

dh(x)

dx
so from (a) 2xy − y2 +

dh(x)

dx
=

4e2x + 2xy − y2 =⇒ dh(x)

dx
= 4e2x =⇒ h(x) = 2e2x where the constant of integration has been set to zero

since we need just one potential function. φ(x, y) = x2y − xy2 +
y3

3
+ 2e2x =⇒ x2y − xy2 +

y3

3
+ 2e2x =

c1 =⇒ 6e2x + 3x2y − 3xy2 + y3 = c.

8. Given

(
1

x
− y

x2 + y2

)
dx +

x

x2 + y2
dy = 0 then My = Nx =

y2 − x2

(x2 + y2)2
so the differential equation

is exact and there exists a potential function φ such that (a)
∂φ

∂x
=

1

x
− y

x2 + y2
and (b)

∂φ

∂y
=

x

x2 + y2
.

From (b) φ(x, y) = tan−1(y/x) + h(x) =⇒ ∂φ

∂x
= − y

x2 + y2
+

dh(x)

dx
so from (a) − y

x2 + y2
+

dh(x)

dx
=

1

x
− y

x2 + y2
=⇒ dh

dx
= x−1 =⇒ h(x) = ln |x| where the constant of integration is set to zero since we only

need one potential function. φ(x, y) = tan−1(y/x) + ln |x| =⇒ tan−1(y/x) + ln |x| = c.

9. Given [y cos (xy)− sinx]dx+ x cos (xy)dy = 0 then My = Nx = −xy sin (xy) + cos (xy) so the differential

equation is exact so there exists a potential function φ such that (a)
∂φ

∂x
= y cos (xy) − sinx and (b)

∂φ

∂x
= x cos (xy). From (b) φ(x, y) = sin (xy) + h(x) =⇒ ∂φ

∂x
= y cos (xy) +

dh(x)

dx
so from (a) y cos (xy) +
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dh(x)

dx
= y cos (xy)− sinx =⇒ dh

dx
= − sinx =⇒ h(x) = cosx where the constant of integration is set to zero

since we only need one potential function. φ(x, y) = sin (xy) + cosx =⇒ sin (xy) + cosx = c.

10. (2y2e2x + 3x2)dx + 2ye2xdy = 0. M = 2y2e2x + 3x2 and N = 2ye2x =⇒ My = 4ye2x and Nx =
4ye2x =⇒ My = Nx =⇒ the differential equation is exact so there exists a potential function φ such that

(a)
∂φ

∂x
= 2y2e2x + 3x2 and (b)

∂φ

∂y
= 2ye2x. From (a) φ(x, y) = y2e2x + x3 + h(y) =⇒ ∂φ

∂y
= 2ye2x +

dh(y)

dy

so from (b) 2ye2x +
dh(y)

dy
= 2ye2x =⇒ dh

dy
= 0 =⇒ h(y) = c1. Since we only need one potential function we

can set c1 = 0. Then φ(x, y) = y2e2x + x3 =⇒ y2e2x + x3 = c.

11. (y2 + cosx)dx + (2xy + sin y)dy = 0. M = y2 + cosx and N = 2xy + sin y =⇒ My = 2y and
Nx = 2y =⇒ My = Nx =⇒ the differential equation is exact so there exists a potential function φ such that

(a)
∂φ

∂x
= y2+cosx and (b)

∂φ

∂y
= 2xy+sin y. From (a) φ(x, y) = xy2+sinx+h(y) =⇒ ∂φ

∂y
= 2xy+

dh(y)

dy
so

from (b) 2xy+
dh(y)

dy
= 2xy+ sin y =⇒ dh

dy
= sin y =⇒ h(y) = − cos y where the constant of integration has

been set to zero since we just need one potential function. φ(x, y) = xy2+sinx−cos y =⇒ xy2+sinx−cos y =
c.

12. (sin y + y cosx)dx + (x cos y + sinx)dy = 0. M = sin y + y cosx and N = x cos y + sinx =⇒ My =
cos y + cosx and Nx = cos y + cosx =⇒ My = Nx =⇒ the differential equation is exact so there exists

a potential function φ such that (a)
∂φ

∂x
= sin y + y cosx and (b)

∂φ

∂y
= x cos y + sinx. From (a) φ(x, y) =

x sin y + y sinx + h(y) =⇒ ∂φ

∂y
= x cos y + sinx +

dh(y)

dy
so from (b) x cos y + sinx +

dh(y)

dy
= x cos y +

sinx =⇒ dh

dy
= 0 =⇒ h(y) = c1. Since we only need one potential function we can set c1 = 0. φ(x, y) =

x sin y + y sinx =⇒ x sin y + y sinx = c.

13. Given [1+ln (xy)]dx+
x

y
dy = 0 then My = Nx = y−1 so the differential equation is exact and there exists

a potential function φ such that (a)
∂φ

∂x
= 1+ln (xy) and (b) φ(x, y) = x ln y+h(x) =⇒ ∂φ

∂x
= ln y+

dh(x)

dx
so

from (a) ln y+
dh(x)

dx
= 1 ln (xy) =⇒ dh

dx
= 1+lnx =⇒ h(x) = c lnx where the constant of integration is set to

zero since we only need one potential function. φ(x, y) = x ln y+x lnx =⇒ x ln y+x lnx = c =⇒ x ln (xy) = c.

14. Given
xy − 1

x
dx +

xy + 1

y
dy = 0 then My = Nx = 1 =⇒ then the differential equation is exact so

there exists a potential function φ such that (a)
∂φ

∂x
=

xy − 1

x
and (b)

∂φ

∂y
=

xy + 1

y
. From (a) φ(x, y) =

xy − ln |x|+ h(y) =⇒ ∂φ

∂y
= x+

dh(y)

dy
so from (b), x+

dh(y)

dy
=

xy + 1

y
=⇒ dh(y)

dy
= y−1 =⇒ h(y) = ln |y|

where the constant of integration has been set to zero since we need just one potential function. φ(x, y) =
xy + ln |y/x| =⇒ xy + ln |x/y| = c.

15. Given (2xy+cos y)dx+(x2−x sin y− 2y)dy = 0 then My = Nx = 2x− sin y so the differential equation

is exact so there is a potential function φ such that (a)
∂φ

∂x
= 2xy + cos y and (b)

∂φ

∂y
= x2 − x sin y − 2y.
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From (a) φ(x, y) = x2y + x cos y + h(y) =⇒ ∂φ

∂y
= x2 − x sin y +

dh(y)

dy
so from (b) x2 − x sin y +

dh(y)

dy
=

x2 − x sin y− 2y =⇒ dh

dy
= −2y =⇒ h(y) = −y2 where the constant of integration has been set to zero since

we only need one potential function. φ(x, y) = x2y + x cos y − y2 =⇒ x2y + x cos y − y2 = c.

16. Given 2x2 dx

dy
+ 4xy = 3 sinx =⇒ (4xy − 3 sinx)dx+ 2x2dy = 0 then My = Nx = 4x so the differential

equation is exact so there exists a potential function φ such that (a)
∂φ

∂x
= 4xy − 3 sinx and (b)

∂φ

∂y
= 2x2.

From (b) φ(x, y) = 2x2y+h(x) =⇒ ∂φ

∂x
= 4xy+

dh(x)

dx
so from (a) 4xy+

dh(x)

dx
= 4xy−3 sinx =⇒ dh(x)

dx
=

−3 sinx =⇒ h(x) = 3 cosx where the constant of integration has been set to zero since we only need one
potential function. φ(x, y) = 2x2y + 3 cosx =⇒ 2x2y + 3 cosx = c. Now since y(2π) = 0, c = 3; thus,

2x2y + 3 cosx = 3 or y(x) =
3− 3 cosx

2x2
.

17. Given (3x2 lnx + x2 − y)dx − xdy = 0 then My = Nx = −1 so the differential equation is exact so

there exists a potential function φ such that (a)
∂φ

∂x
= 3x2 lnx + x2 − y and (b)

∂φ

∂y
= −x. From (b)

φ(x, y) = −xy + h(x) =⇒ ∂φ

∂x
= −y +

dh(x)

dx
so from (a) −y +

dh(x)

dx
= 3x2 lnx + x2 − y =⇒ dh(x)

dx
=

3x2 lnx + x2 =⇒ h(x) = x3 lnx where the constant of integration has been set to zero since we only need
one potential function. φ(x, y) = −xy + x3 lnx =⇒ −xy + x3 lnx = c. Now since y(1) = 5, c = −5; thus,

x3 lnx− xy = −5 or y(x) =
x3 lnx+ 5

x
.

18. Given (yexy + cosx)dx + xexydy = 0 then My = Nx = xyexy + exy so the differential equation is

exact so there exists a potential function φ such that (a)
∂φ

∂x
= yexy + cosx and (b)

∂φ

∂y
= xexy. From (b)

φ(x, y) = exy+h(x) =⇒ ∂φ

∂x
= yexy+

dh(x)

dx
so from (a) yexy+cosx =⇒ dh(x)

dx
= cosx =⇒ h(x) = sinx where

the constant of integration is set to zero since we only need one potential function. φ(x, y) = exy +sinx =⇒
exy + sinx = c. Now since y(π/2) = 0, c = 2; thus, exy + sinx = 2 or y(x) =

ln (2− sinx)

x
.

19. If φ(x, y) is a potential function for Mdx+Ndy = 0 =⇒ d(φ(x, y)) = 0 so d(φ(x, y) + c) = d(φ(x, y)) +
d(c) = 0 + 0 = 0 =⇒ φ(x, y) + c is also a potential function.

20. M = cos (xy)[tan (xy) + xy] and N = x2 cos (xy) =⇒ My = 2x cos (xy) − x2y sin (xy) = Nx =⇒ My =
Nx =⇒ Mdx = Ndy = 0 is exact so I(x, y) = cos (xy) is an integrating factor for [tan (xy)+xy]dx+x2dy = 0.

21. M = e−x/y(x2y−1 − 2x) and N = −e−x/yx3y−2 =⇒ My = e−x/y(x3y−3 − 3x2y−2) = Nx =⇒ Mdx +
Ndy = 0 is exact so I(x, y) = y−2e−x/y is an integrating factor for y[x2 − 2xy]dx− x3dy = 0.

22. M = secx[2x− (x2 + y2) tanx] and N = 2y secx =⇒ My = −2y secx tanx and Nx = 2y secx tanx =⇒
My �= Nx =⇒ Mdx + Ndy = 0 is not exact so I(x) = secx is not an integrating factor for [2x − (x2 +
y2) tanx]dx+ 2ydy = 0.

23. Given (y − x2)dx+ 2xdy = 0 then M = y − x2 and N = 2x. Thus My = 1 and Nx = 2 so
My −Nx

N
=
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− 1

2x
= f(x) is a function of x alone so I(x) = e

∫
f(x)dx =

1√
x
is an integrating factor for the given equation.

Multiplying the given equation by I(x) results in the exact equation (x−1/2y−x3/2)dx+2x1/2dy = 0. We find

that φ(x, y) = 2x1/2y− 2x5/2

5
and hence the general solution of our differential equation is 2x1/2y− 2x5/2

5
= c

or y(x) =
c+ 2x5/2

10
√
x

.

24. Given (3xy − 2y−1)dx + x(x + y−2)dy = 0 then M = 3xy − 2y−1 and N = x(x + y−2). Thus

My = 3x+2y−2 and Nx = 2x+y−2 so
My −Nx

N
=

1

x
= f(x) is a function of x alone so I(x) = e

∫
f(x)dx = x

is an integrating factor for the given equation. Multiplying the given equation by I(x) results in the exact
equation (3x2y− 2xy−1)dx+ x2(x+ y−2)dy = 0. We find that φ(x, y) = x3y− x2y−1 and hence the general
solution of our differential equation is x3y − x2y−1 = c.

25. Given x2ydx + y(x3 + e−3y sin y)dy = 0 then M = x2y and N = y(x3 + e−3y sin y). Thus My = x2

and Nx = 3x2y so
My −Nx

M
= y−1 − 3 = g(y) is a function of y alone so I(y) = e

∫
g(y)dy = e3y/y is an

integrating factor for the given equation. Multiplying the equation by I(y) results in the exact equation

x2e3ydx + e3y(x3 + e−3y sin y)dy = 0. We find that φ(x, y) =
x3e3y

3
− cos y and hence the general solution

of our differential equation is
x3e3y

3
− cos y = c.

26. Given (xy − 1)dx + x2dy = 0 then M = xy − 1 and N = x2. Thus My = x and Nx = 2x so
My −Nx

N
= −x−1 = f(x) is a function of x alone so I(x) = e

∫
f(x)dx = x−1 is an integrating factor for the

given equation. Multiplying the given equation by I(x) results in the exact equation (y−x−1)dx+xdy = 0.
We find that φ(x, y) = xy− ln |x| and hence, the general solution of our differential equation is xy− ln |x| = c.

27. Given
dy

dx
+

2xy

1 + x2
=

1

(1 + x2)2
=⇒ (2xy+2x3y− 1)dx+(1+x2)2dy = 0 then M = 2xy+2x3y− 1 and

N = (1 + x2)2. Thus My = 2x+ 2x3 and Nx = 4x(1 + x2) so
My −Nx

N
= − 2x

1 + x2
= f(x) is a function of

x alone so I(x) = e
∫
f(x)dx =

1

1 + x2
is an integrating factor for the given equation. Multiplying the given

equation by I(x) yields the exact equation

(
2xy − 1

1 + x2

)
dx + (1 + x2)dy = 0. We find that φ(x, y) =

(1 + x2)y − tan−1 x and hence the general solution of our differential equation is (1 + x2)y − tan−1 x = c or

y(x) =
tan−1 x+ c

1 + x2
.

28. Given xy[2 ln (xy)+ 1]dx+x2dy = 0 then M = xy[2 ln (xy)+ 1] and N +x2. Thus My = 3x+2x ln (xy)

and Nx = 2x so
MY −Nx

M
= y−1 = g(y) is a function of y only so I(y) = e

∫
g(y)dy =

1

y
is an integrating factor

for the given equation. Multiplying the given equation by I(y) results in the exact equation x[2 ln (xy) +
1]dx+x2y−1dy = 0. We find that φ(x, y) = x2 ln y+x2 lnx and hence the general solution of our differential

equation is x2 ln y + x2 lnx = c or y(x) = xec/x
2

.

29. Given ydx − (2x + y4)dy = 0 then M = y and N = −(2x + y4). Thus My = 1 and Nx = −2 so
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My −Nx

M
= 3y−1 = g(y) is a function of y alone so I(y) = e−

∫
g(y)dy = 1/y3 is an integrating factor

for the given differential equation. Multiplying the given equation by I(y) results in the exact equation
y−2dx − (2xy−3 + y)dy = 0. We find that φ(x, y) = xy−2 − y2/2 and hence, the general solution of our
differential equation is xy−2 − y2/2 = c1 =⇒ 2x− y4 = cy2.

30. Given (y−1 − x−1)dx + (xy−2 − 2y−1)dy = 0 =⇒ xrys(y−1 − x−1)dx + xrys(xy−2 − 2y−1)dy = 0 =⇒
(xrys−1−xr−1ys)dx+(xr+1ys−2−2xrys−1)dy = 0. Then M = xrys−1−xr−1ys and N = xr+1ys−2−2xrys−1

so My = xr(s − 1)ys−2 − xr−1sys−1 and Nx = (r + 1)xrys−2 − 2rxr−1ys−1. The equation is exact if and

only if My = Nx =⇒ xrys−1 − xr−1ys = (r + 1)xrys−2 − 2rxr−1ys−1 =⇒ s− 1

y2
− s

xy
=

r + 1

y2
− 2r

xy
=⇒

s− r − 2

y2
=

s− 2r

xy
. From the last equation we require that s−r−2 = 0 and s−2r = 0. Solving this system

yields r = 2 and s = 4.

31. Given 2y(y + 2x2)dx + x(4y + 3x2)dy = 0 =⇒ xrys2y(y + 2x2)dx + xrysx(4y + 3x2)dy = 0. Then
M = 2xrys+2 + 4xr+2ys+1 and N = 4xr+1ys+1 + 3xr+3ys so My = 2xr(s + 2)ys+1 + 4xr+2(s + 1)ys and
Nx = 4(r + 1)xrys+1 + 3(r + 3)xr+2ys. The equation is exact if and only if My = Nx =⇒ 2xr(s+ 2)ys+1 +
4xr+2(s+1)ys = 4(r+1)xrys+1 +3(r+3)xr+2ys =⇒ 2(s+2)y+4x2(s+1) = 4(r+1)y+3(r+3)x2. From
this last equation we require that 2(s + 2) = 4(r + 1) and 4(s + 1) = 3(r + 3). Solving this system yields
r = 1 and s = 2.

32. Given y(5xy2 + 4)dx + x(xy2 − 1)dy = 0 =⇒ xrysy(5xy2 + 4)dx + xrysx(xy2 − 1)dy = 0. Then
M = xrys+1(5xy2 + 4) and N = xr+1ys(xy2 − 1) so My = 5(s + 3)xr+1ys+2 + 4(s + 1)xrys and Nx =
(r + 2)xr+1ys−2 − (r + 1)xrys. The equation is exact if and only if My = Nx =⇒ 5(s+ 3)xr+1ys+2 + 4(s+
1)xrys = (r + 2)xr+1ys+2 − (r + 1)xrys =⇒ 5(s + 3)xy2 + 4(s + 1) = (r + 2)xy2 − (r + 1). From the last
equation we require that 5(s + 3) = r + 2 and 4(s + 1) = −(r + 1). Solving this system yields r = 3 and
s = −2.

33. Suppose that
My −Nx

M
= g(y) is a function of y only. Then dividing the equation (1.9.21) by M ,

it follows that I is an integrating factor for M(x, y)dx + N(x, y)dy = 0 if and only if it is a solution of
N

M

∂I

∂x
− ∂I

∂y
= Ig(y) (30.1). We must show that this differential equation has a solution I = I(y). However,

if I = I(y), then (30.1) reduces to
dI

dy
= −Ig(y), which is a separable equation with solution I(y) = e−

∫
g(t)dt.

34. (a). Note
dy

dx
+ py = q can be written in the differential form as (py − q)dx + dy = 0 (34.1). This

has M = py − q and N = 1 so that
My −Nx

N
= p(x). Consequently, an integrating factor for (34.1) is

I(x) = e
∫ x p(t)dt.

(b). Multiplying (34.1) by I(x) = e
∫ x p(t)dt yields the exact equation e

∫ x p(t)dt(py − q)dx+ e
∫ x p(t)dtdy = 0.

Hence, there exists a potential function φ such that (i)
∂φ

∂x
= e

∫ x p(t)dt(py− q) and (ii)
∂φ

∂y
= e

∫ x p(t)dt. From

(i), p(x)ye
∫ x p(t)dt +

dh(x)

dx
= e

∫ x p(t)dt(py − q) =⇒ dh(x)

dx
= −q(x)e

∫ x p(t)dt =⇒ h(x) = − ∫ q(x)e
∫ x p(t)dtdx,

where the constant of integration has been set to zero since we just need one potential function. Consequently,
φ(x, y) = ye

∫ x p(t)dt − ∫
q(x)e

∫ x p(t)dtdx =⇒ y(x) = I−1
(∫ x

Iq(t)dt+ c
)
, where I(x) = e

∫ x p(t)dt.
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Solutions to Section 1.10

True-False Review:

(a): TRUE. This is well-illustrated by the calculations shown in Example 1.10.1.

(b): TRUE. The equation
y1 = y0 + f(x0, y0)(x1 − x0)

is the tangent line to the curve dy
dx = f(x, y) at the point (x0, y0). Once the point (x1, y1) is determined, the

procedure can be iterated over and over at the new points obtained to carry out Euler’s method.

(c): FALSE. It is possible, depending on the circumstances, for the errors associated with Euler’s method
to decrease from one step to the next.

(d): TRUE. This is illustrated in Figure 1.10.3.

Problems:

1. Applying Euler’s method with y′ = 4y−1, x0 = 0, y0 = 1, and h = 0.05 we have yn+1 = yn+0.05(4yn−1).
This generates the sequence of approximants given in the table below.

n xn yn
1 0.05 1.15
2 0.10 1.33
3 0.15 1.546
4 0.20 1.805
5 0.25 2.116
6 0.30 2.489
7 0.35 2.937
8 0.40 3.475
9 0.45 4.120
10 0.50 4.894

Consequently the Euler approximation to y(0.5) is y10 = 4.894. (Actual value: y(.05) = 5.792 rounded
to 3 decimal places).

2. Applying Euler’s method with y′ = − 2xy

1 + x2
, x0 = 0, y0 = 1, and h = 0.1 we have yn+1 = yn−0.2

xnyn
1 + x2

n

.

This generates the sequence of approximants given in the table below.

n xn yn
1 0.1 1
2 0.2 0.980
3 0.3 0.942
4 0.4 0.891
5 0.5 0.829
6 0.6 0.763
7 0.7 0.696
8 0.8 0.610
9 0.9 0.569
10 1.0 0.512
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Consequently the Euler approximation to y(1) is y10 = 0.512. (Actual value: y(1) = 0.5).

3. Applying Euler’s method with y′ = x−y2, x0 = 0, y0 = 2, and h = 0.05 we have yn+1 = yn+0.05(xn−y2n).
This generates the sequence of approximants given in the table below.

n xn yn
1 0.05 1.80
2 0.10 1.641
3 0.15 1.511
4 0.20 1.404
5 0.25 1.316
6 0.30 1.242
7 0.35 1.180
8 0.40 1.127
9 0.45 1.084
10 0.50 1.048

Consequently the Euler approximation to y(0.5) is y10 = 1.048. (Actual value: y(.05) = 1.0477 rounded
to four decimal places).

4. Applying Euler’s method with y′ = −x2y, x0 = 0, y0 = 1, and h = 0.2 we have yn+1 = yn−0.2x2
nyn. This

generates the sequence of approximants given in the table below.

n xn yn
1 0.2 1
2 0.4 0.992
3 0.6 0.960
4 0.8 0.891
5 1.0 0.777

Consequently the Euler approximation to y(1) is y5 = 0.777. (Actual value: y(1) = 0.717 rounded to 3
decimal places).

5. Applying Euler’s method with y′ = 2xy2, x0 = 0, y0 = 1, and h = 0.1 we have yn+1 = yn +0.1xny
2
n. This

generates the sequence of approximants given in the table below.

n xn yn
1 0.1 0.5
2 0.2 0.505
3 0.3 0.515
4 0.4 0.531
5 0.5 0.554
6 0.6 0.584
7 0.7 0.625
8 0.8 0.680
9 0.9 0.754
10 1.0 0.858

Consequently the Euler approximation to y(1) is y10 = 0.856. (Actual value: y(1) = 1).
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6. Applying the modified Euler method with y′ = 4y − 1, x0 = 0, y0 = 1, and h = 0.05 we have y∗n+1 =
yn + 0.05(4yn − 1)
yn+1 = yn + 0.025(4yn − 1 + 4y∗n+1 − 1). This generates the sequence of approximants given in the table
below.

n xn yn
1 0.05 1.165
2 0.10 1.3663
3 0.15 1.6119
4 0.20 1.9115
5 0.25 2.2770
6 0.30 2.7230
7 0.35 3.2670
8 0.40 3.9308
9 0.45 4.7406
10 0.50 5.7285

Consequently the modified Euler approximation to y(0.5) is y10 = 5.7285. (Actual value: y(.05) = 5.7918
rounded to 4 decimal places).

7. Applying the modified Euler method with y′ = − 2xy

1 + x2
, x0 = 0, y0 = 1, and h = 0.1 we have y∗n+1 =

yn − 0.2
xnyn
1 + x2

n

yn+1 = yn + 0.05

[
− xnyn
1 + x2

n

− 2
xn+1y

∗
n+1

1 + x2
n+1

]
. This generates the sequence of approximants given in the table

below.

n xn yn
1 0.1 0.9900
2 0.2 0.9616
3 0.3 0.9177
4 0.4 0.8625
5 0.5 0.8007
6 0.6 0.7163
7 0.7 0.6721
8 0.8 0.6108
9 0.9 0.5536
10 1.0 0.5012

Consequently the modified Euler approximation to y(1) is y10 = 0.5012. (Actual value: y(1) = 0.5).

8. Applying the modified Euler method with y′ = x − y2, x0 = 0, y0 = 2, and h = 0.05 we have y∗n+1 =
yn − 0.05(xn − y2n)
yn+1 = yn + 0.025(xn − y2n + xn+1 − (y∗n+1)

2). This generates the sequence of approximants given in the
table below.
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n xn yn
1 0.05 1.8203
2 0.10 1.6725
3 0.15 1.5497
4 0.20 1.4468
5 0.25 1.3600
6 0.30 1.2866
7 0.35 1.2243
8 0.40 1.1715
9 0.45 1.1269
10 0.50 1.0895

Consequently the modified Euler approximation to y(0.5) is y10 = 1.0895. (Actual value: y(.05) = 1.0878
rounded to 4 decimal places).

9. Applying the modified Euler method with y′ = −x2y, x0 = 0, y0 = 1, and h = 0.2 we have y∗n+1 =
yn − 0.2x2

nyn
yn+1 = yn − 0.1[x2

nyn + x2
n+1y

∗
n+1]. This generates the sequence of approximants given in the table below.

n xn yn
1 0.2 0.9960
2 0.4 0.9762
3 0.6 0.9266
4 0.8 0.8382
5 1.0 0.7114

Consequently the modified Euler approximation to y(1) is y5 = 0.7114. (Actual value: y(1) = 0.7165
rounded to 4 decimal places).

10. Applying the modified Euler method with y′ = 2xy2, x0 = 0, y0 = 1, and h = 0.1 we have y∗n+1 =
yn + 0.1xny

2
n

yn+1 = yn+0.05[xny
2
n+xn+1(y

∗
n+1)

2]. This generates the sequence of approximants given in the table below.

n xn yn
1 0.1 0.5025
2 0.2 0.5102
3 0.3 0.5235
4 0.4 0.5434
5 0.5 0.5713
6 0.6 0.6095
7 0.7 0.6617
8 0.8 0.7342
9 0.9 0.8379
10 1.0 0.9941

Consequently the modified Euler approximation to y(1) is y10 = 0.9941. (Actual value: y(1) = 1).

11. We have y′ = 4y−1, x0 = 0, y0 = 1, and h = 0.05. So, k1 = 0.05(4yn−1), k2 = 0.05[4(yn+
1
2k1)−1], k3 =

0.05[4(yn + 1
2k2)− 1], k4 = 0.05[4(yn + 1

2k3)− 1],
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yn+1 = yn + 1
6 (k1 + k2 + k3 + k4). This generates the sequence of approximants given in the table below

(computations rounded to five decimal places).

n xn yn
1 0.05 1.16605
2 0.10 1.36886
3 0.15 1.61658
4 0.20 1.91914
5 0.25 2.28868
6 0.30 2.74005
7 0.35 3.29135
8 0.40 3.96471
9 0.45 4.78714
10 0.50 5.79167

Consequently the Runge-Kutta approximation to y(0.5) is y10 = 5.79167. (Actual value: y(.05) = 5.79179
rounded to 5 decimal places).

12. We have y′ = −2
xy

1 + x2
, x0 = 0, y0 = 1, and h = 0.1. So, k1 = −0.2

xnyn
1 + x2

n

, k2 = −0.2
(xn + 0.05)(yn + k1

2 )

[1 + (xn + 0.05)2]
), k3 =

−0.2
(xn + 0.05)(yn + k2

2 )

[1 + (xn + 0.05)2]
, k4 = −0.2

xn+1(yn + k3)

[1 + (xn+1)2]
,

yn+1 = yn + 1
6 (k1 + k2 + k3 + k4). This generates the sequence of approximants given in the table below

(computations rounded to seven decimal places).

n xn yn
1 0.1 0.9900990
2 0.2 0.9615383
3 0.3 0.9174309
4 0.4 0.8620686
5 0.5 0.7999996
6 0.6 0.7352937
7 0.7 0.6711406
8 0.8 0.6097558
9 0.9 0.5524860
10 1.0 0.4999999

Consequently the Runge-Kutta approximation to y(1) is y10 = 0.4999999. (Actual value: y(.05) = 0.5).

13. We have y′ = x− y2, x0 = 0, y0 = 2, and h = 0.05. So, k1 = 0.05(xn − y2n), k2 = 0.05[xn + 0.025− (yn +
k1

2 )2], k3 = 0.05[xn + 0.025− (yn + k2

2 )2], k4 = 0.05[xn+1 − (yn + k3)
2]],

yn+1 = yn + 1
6 (k1 + k2 + k3 + k4). This generates the sequence of approximants given in the table below

(computations rounded to six decimal places).
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n xn yn
1 0.05 1.1.81936
2 0.10 1.671135
3 0.15 1.548079
4 0.20 1.445025
5 0.25 1.358189
6 0.30 1.284738
7 0.35 1.222501
8 0.40 1.169789
9 0.45 1.125263
10 0.50 1.087845

Consequently the Runge-Kutta approximation to y(0.5) is y10 = 1.087845. (Actual value: y(0.5) = 1.087845
rounded to 6 decimal places).

14. We have y′ = −x2y, x0 = 0, y0 = 1, and h = 0.2. So, k1 = −0.2x2
nyn, k2 = −0.2(xn+0.1)2(yn+

k1

2 ), k3 =

−0.2(xn + 0.1)2(yn + k2

2 ), k4 = −0.2(xn+1)
2(yn + k3),

yn+1 = yn + 1
6 (k1 + k2 + k3 + k4). This generates the sequence of approximants given in the table below

(computations rounded to six decimal places).

n xn yn
1 0.2 0.997337
2 0.4 0.978892
3 0.6 0.930530
4 0.8 0.843102
5 1.0 0.716530

Consequently the Runge-Kutta approximation to y(1) is y10 = 0.716530. (Actual value: y(1) = 0.716531
rounded to 6 decimal places).

15. We have y′ = 2xy2, x0 = 0, y0 = 1, and h = 0.1. So, k1 = 0.2xn−y2n, k2 = 0.2(xn+0.05)(yn+
k1

2 )2, k3 =

0.2(xn + 0.05)(yn + k2

2 )2, k4 = 0.2xn+1(yn + k3)
2]],

yn+1 = yn + 1
6 (k1 + k2 + k3 + k4). This generates the sequence of approximants given in the table below

(computations rounded to six decimal places).

n xn yn
1 0.1 0.502513
2 0.2 0.510204
3 0.3 0.523560
4 0.4 0.543478
5 0.5 0.571429
6 0.6 0.609756
7 0.7 0.662252
8 0.8 0.735295
9 0.9 0.840336
10 1.0 0.999996

Consequently the Runge-Kutta approximation to y(1) is y10 = 0.999996. (Actual value: y(1) = 1).
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16. We have y′+
1

10
y = e−x/10 cosx, x0 = 0, y0 = 0, and h = 0.5 Hence, k1 = 0.5

(
− 1

10
yn + exn/10 cosxn

)
, k2 =

0.5

[
− 1

10

(
yn +

1

2
k1

)
+ e(−xn+0.25)/10 cos (xn + 0.25)

]
, k3 = 0.5

[
− 1

10

(
yn +

1

2
k2

)
+ e(−xn+0.25)/10 cos (xn + 0.25)

]
,

k4 = 0.5

[
− 1

10
(yn + k3) + e−xn+1/10 cosxn+1

]
, yn+1 = yn + 1

6 (k1 + 2k2 + 2k3 + k4). This generates the se-

quence of approximants plotted in the accompanying figure. We see that the solution appears to be oscillating
with a diminishing amplitude. Indeed, the exact solution to the initial value problem is y(x) = e−x/10 sinx.
The corresponding solution curve is also given in the figure.

5 251510 20

0.25

0.5

0.75

-0.25

-0.5

y(x)

x

Figure 0.0.56: Figure for Problem 16

Solutions to Section 1.11

Problems:

1.
d2y

dx2
− 2

dy

dx
= 6e3x. Let u =

dy

dx
so that

du

dx
=

d2y

dx2
. Substituting these results into the first equation

yields
du

dx
− 2u = 6e3x. An appropriate integrating factor for this equation is I(x) = e−2

∫
dx = e−2x =⇒

d

dx
(e−2xu) = 6ex =⇒ e−2xu = 6ex + c1 =⇒ u = 6e3x + c1e

2x =⇒ dy

dx
= 6e3x + c1e

2x =⇒ y(x) =

2e3x + c1e
2x + c2, where we have redefined the constant c1 in the last step.

2.
d2y

dx2
=

2

x

dy

dx
+ 4x2. Let u =

dy

dx
so that

du

dx
=

d2y

dx2
. Substituting these results into the first equation

yields
du

dx
=

2

x
u + 4x2 =⇒ du

dx
− 2

x
u = 4x2. An appropriate integrating factor for this equation is I(x) =
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e
−2

∫ dx

x = x−2 =⇒ d(x−2u) = 4 =⇒ x−2u = 4
∫
dx =⇒ x−2u = 4x + c1 =⇒ u = 4x3 + c1x

2 =⇒ dy

dx
=

4x3 + c1x
2 =⇒ y(x) = c1x

3 + x4 + c2.

3.
d2y

dx2
=

1

(x− 1)(x− 2)

[
dy

dx
− 1

]
. Let u =

dy

dx
so that

du

dx
=

d2y

dx2
. Substituting these results into

the first equation yields
du

dx
=

1

(x− 1)(x− 2)
(u − 1) =⇒ du

dx
− 1

(x− 1)(x− 2)
u = − 1

(x− 1)(x− 2)
. An

appropriate integrating factor for this equation is I(x) = e
− ∫ 1

(x− 1)(x− 2)
dx

=
x− 1

x− 2
=⇒ d

dx

(
x− 1

x− 2
u

)
=

1

(x− 2)2
=⇒ x− 1

x− 2
u =

∫
(x− 2)−2dx =⇒ u = − 1

x− 1
+ c1 =⇒ dy

dx
= − 1

x− 1
+ c1 =⇒ y(x) = − ln |x− 1|+

c1x+ c2.

4.
d2y

dx2
+

2

y

(
dy

dx

)2

=
dy

dx
. Let u =

dy

dx
so that

du

dx
= u

du

dy
=

d2y

dx2
. Substituting these results into the first

equation yields u
du

dy
+

2

y
u2 = u =⇒ u = 0 or

du

dy
− 2

y
u = 1. An appropriate integrating factor for the last

equation is I(y) = e

∫ 2

y
dy

= y2 =⇒ d

dy
(y2u) = y2 =⇒ y2u =

∫
y2dy =⇒ y2u =

y3

3
+c1 =⇒ dy

dx
=

y

3
+

c1
y2

=⇒
ln |y3 + c2| = x+ c3 =⇒ y(x) = 3

√
c4ex + c5.

5.
d2y

dx2
=

(
dy

dx

)2

tan y. Let u =
dy

dx
so that

du

dx
= u

du

dy
=

d2y

dx2
. Substituting these results into the first

equation yields u
du

dy
= u2 tan y. If u = 0 then

du

dx
= 0 =⇒ y equals a constant and this is a solution to the

equation. Now suppose that u �= 0. Then
du

dy
= u tan y =⇒ ∫ du

u
=
∫
tan ydy =⇒ u = c1 sec y =⇒ dy

dx
=

c1 sec y =⇒ y(x) = sin−1 (c1x+ c2).

6.
d2y

dx2
+ tanx

dy

dx
=

(
dy

dx

)2

. Let u =
dy

dx
so that

du

dx
=

d2y

dx2
. Substituting these results into the first

equation yields
du

dx
+ tanxu = u2 which is a Bernoulli equation. Letting z = u−1 gives

1

u2
=

du

dx
= −dz

dx
.

Substituting these results into the last equation yields
dz

dx
− tanxz = −1. Then an integrating factor for

this equation is I(x) = e−
∫
tan xdx = cosx =⇒ d

dx
(z cosx) = − cosx =⇒ z cosx = − ∫ cosxdx =⇒ z =

− sinx+ c1
cosx

=⇒ u =
cosx

c1 − sinx
=⇒ dy

dx
=

cosx

c1 − sinx
=⇒ y(x) = c2 − ln |c1 − sinx|.

7.
d2x

dt2
=

(
dx

dt

)2

+ 2
dx

dt
. Let u =

dx

dt
so that

du

dt
=

d2x

dt2
. Substituting these results into the first equation

yields
du

dt
= u2 + 2u =⇒ du

dt
− 2u = u2 which is a Bernoulli equation. If u = 0 then x is a constant which

satisfies the equation. Now suppose that u �= 0. Let z = u−1 so that
dz

dt
= − 1

u2

du

dt
. Substituting these
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results into the last equation yields
dz

dt
+ 2z = −1. An integrating factor for this equation is I(x) = e2t =⇒

d

dt
(e2tz) = −e2t =⇒ z = ce−2t − 1

2
=⇒ u =

2e2t

2c− e2t
=⇒ x =

∫ 2e2t

2c− e2t
dt =⇒ x(t) = c2 − ln |c1 − e2t|.

8.
d2y

dx2
− 2

dy

dx
= 6x4. Let u =

dy

dx
so that

du

dx
=

d2y

dx2
. Substituting these results into the first equation

yields
du

dx
− 2

x
u = 6x4. An appropriate integrating factor for this equation is I(x) = e

−2
∫ dx

x = x−2 =⇒
d

dx
(x−2u) = 6x2 =⇒ x−2u = 6

∫
x2dx =⇒ u = 2x5 + cx2 =⇒ dy

dx
= 2x5 + cx2 =⇒ y(x) =

1

3
x6 + c1x

3 + c2.

9. t
d2x

dt2
= 2

(
t+

dx

dt

)
. Let u =

dx

dt
so that

du

dt
=

d2x

dt2
. Substituting these results into the first equation

yields
du

dt
− 2

t
u = 2. An integrating factor for this equation is I(x) = t−2 =⇒ d

dt
(t−2u) = 2t−2 =⇒ u =

−2t+ ct2 =⇒ dx

dt
= −2t+ ct2 =⇒ x(t) = c1t

3 − t2 + c2.

10.
d2y

dx2
− α

(
dy

dx

)2

− β
dy

dx
= 0. Let u =

dy

dx
so that

du

dx
=

d2y

dx2
. Substituting these results into the

first equation yields
du

dx
− βu = αu2 which is a Bernoulli equation. If u = 0 then y is a constant and

satisfies the equation. Now suppose that u �= 0. Let z = u−1 so that
dz

dx
= −u−2 du

dx
. Substituting

these results into the last equation yields
dz

dx
+ βz = −α. The an integrating factor for this equation is

I(x) = eβ
∫
dx = eβx =⇒ eβxz = −α

∫
eβxdx =⇒ −α

β
+ ce−βx =⇒ u =

βeβx

cβ − αeβx
=⇒ dy

dx
=

βeβx

cβ − αeβx
=⇒

y =
∫ βeβx

cβ − αeβx
dx =⇒ y(x) = − 1

α
ln |c1 + c2e

βx|.

11.
d2y

dx2
− 2

x

dy

dx
= 18x4. Let u =

dy

dx
so that

du

dx
=

d2y

dx2
. Substituting these results into the first equation

yields
du

dx
− 2

x
u = 18x4 which has I(x) = x−2 as an integrating factor so

d

dx
(x−2u) = 18x2 =⇒ u =

6x5 + cx2 =⇒ dy

dx
= 6x5 + cx2 =⇒ y(x) = x6 + c1x

3 + c2.

12.
d2y

dx2
= − 2x

1 + x2

dy

dx
. Let u =

dy

dx
so that

du

dx
= dfracd2ydx2. If u = 0 then y is a constant and

satisfies the equation. Now suppose that u �= 0. Substituting these results into the first equation yields
du

dx
= − 2x

1 + x2
u =⇒ ln |u| = − ln (1 + x2) + c =⇒ u =

c1
1 + x2

=⇒ dy

dx
=

c1
1 + x2

=⇒ y(x) = c1 tan
−1 x+ c2.

13.
d2y

dx2
+

1

y

(
dy

dx

)2

= ye−3

(
dy

dx

)3

. Let u =
dy

dx
so that

du

dx
= u

du

dy
=

d2y

dx2
. Substituting these results into

the first equation yields u
du

dx
+

1

y
u2 = ye−yu3. If u = 0 then y is a constant and satisfies the equation. Now
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suppose that u �= 0. Substituting these results into the first equation yields
du

dx
+

u

y
= ye−yu2 which is a

Bernoulli equation. Let v = u−1 so that
dv

dy
= −u−2 du

dy
. Substituting these results into the last equation

yields
dv

dy
− v

y
= −ye−y. Then I(y) = y−1 is an integrating factor for the equation thus

d

dy
(y−1v) = −e−1 =⇒

v = y(e−1 + c) =⇒ u =
ey

y + cyey
=⇒ dy

dx
=

ey

y + cyey
=⇒ (ye−y + cy)dy = dx =⇒ e−y(y + 1) + c1y

2 − x.

14.
d2y

dx2
− tanx

dy

dx
= 1. Let u =

dy

dx
so that u

du

dy
=

d2y

dx2
. Substituting these results into the first equation

yields
du

dx
−u tanx = 1. An appropriate integrating factor for this equation is I(x) = e−

∫
tan xdx = cosx =⇒

d

dx
(u cosx) = cosx =⇒ u cosx = sinx + c =⇒ u(x) = tanx + c secx =⇒ dy

dx
= tanx + c secx =⇒ y(x) =

ln secx+ c1 ln (secx+ tanx) + c2.

15. y
d2y

dx2
= 2

(
dy

dx

)2

+ y2. Let u =
dy

dx
so that

du

dx
= u

du

dy
=

d2y

dx2
. Substituting these results into the first

equation yields u
du

dy
− 2

y
u2 = y, a Bernoulli equation. Let z = u2 so that u

du

dy
=

1

2

dz

dy
. Substituting these

results into the last equation yields
dz

dy
− 4

y
z = 2y which has I(y) = y−4 as an integrating factor. Therefore,

d

dy
(y−4z) = 2y−3 =⇒ z = c1y

4 − y2 =⇒ u2 = c1y
4 − y2 =⇒ u = ±

√
c1y4 − y2 =⇒ dy

dx
= ±

√
c1y4 − y2 =⇒

cos−1

(
1

y
√
c1

)
= ±x+ c2. Using the facts that f(0) = 1 and y′(0) = 0 we find that c1 = 1 and c2 = 0; thus

y(x) = secx.

16.
d2y

dx2
= ω2y where ω > 0. Let u =

dy

dx
so that

du

dx
= u

du

dy
=

d2y

dx2
. Substituting these results into the first

equation yields u
du

dy
= ω2y =⇒ u2 = ω2y2 + c2. Using the given that y(0) = a and y′(0) = 0 we find that

c2 = a2ω2. Then
dy

dx
= ±ω

√
y2 − a2 =⇒ 1

ω
cosh−1 (y/a) = ±x + c =⇒ y(x) = a cosh [ω(c± x)] =⇒ y′ =

±aω sinh [ω(c± x)] and since y′(0) = 0, c = 0; hence, y(x) = a cosh (ωx).

17. Let u =
dy

dx
so that u

du

dx
=

d2y

dx2
. Substituting these results into the differential equation yields

u
du

dy
=

1

a

√
1 + u2. Separating the variables and integrating we obtain

√
1 + u2 =

1

a
y+c. Imposing the initial

conditions y(0) = a,
dy

dx
(0) = 0 gives c = 0. Hence,

√
1 + u2 =

1

a
y so that 1 + u2 =

1

a2
y2 or equivalently,

u = ±√y2/a2 − 1. Substituting u =
dy

dx
and separating the variables gives

1√
y2 − a2

= ± 1

|a|dx which

can be integrated to obtain cosh−1 (y/a) = ±x/a + c1 so that y = a cosh (±x/a+ c1). Imposing the initial
conditions y(0) = a gives c1 = 0 so that y(x) = a cosh (x/a).

18.
d2y

dx2
+ p(x)

dy

dx
= q(x). Let u =

dy

dx
so that

du

dx
=

d2y

dx2
. Substituting these results into the first equation
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gives us the equivalent system:
du

dx
+p(x)u = q(x) which has a solution u = e−

∫
p(x)dx

[∫
e−

∫
p(x)dxq(x)dx+ c1

]
so

dy

dx
= e−

∫
p(x)dx

[∫
e−

∫
p(x)dxq(x)dx+ c1

]
. Thus y =

∫ {
e−

∫
p(x)dx

[∫
e−

∫
p(x)dxq(x)dx+ c1dx

]}
+ c2 is

a solution to the original equation.

19. (a). u1 = y =⇒ u2 =
du1

dx
=

dy

dx
=⇒ u3 =

du2

dx
=

d2y

dx2
=⇒ du3

dx
=

d3y

dx3
; thus

d3y

dx3
= F

(
x,

d2y

dx2

)
since

the latter equation is equivalent to
du3

dx
= F (x, u3).

(b).
d3y

dx3
=

1

x

(
d2y

dx2
− 1

)
. Replace this equation by the equivalent first order system:

du1

dx
= u2,

du2

dx
= u3,

and
du3

dx
=

1

x
(u3 − 1) =⇒ ∫ du3

u3 − 1
=
∫ dx

x
=⇒ u3 = Kx+1 =⇒ du2

dx
= Kx+1 =⇒ u2 =

K

2
x2 +x+ c2 =⇒

du1

dx
=

K

2
x2 + x+ c2 =⇒ u1 =

K

6
x3 +

1

2
x2 + c2x+ c3 =⇒ y(x) = u1 = c1x

3 +
1

2
x2 + c2x+ c3.

19. Given
d2θ

dt2
+

g

L
sin θ = 0, θ(0) = θ0, and

dθ

dt
(0) = 0.

(a).
d2θ

dt2
+

g

L
θ = 0. Let u =

dθ

dt
so that

du

dt
=

d2θ

dt2
=

du

dθ

dθ

dt
= u

du

dθ
. Substituting these results into

the last equation yields u
du

dθ
+

g

L
θ = 0 =⇒ u2 = − g

L
θ2 + c21, but

dθ

dt
(0) = 0 and θ(0) = θ0 so c21 =

g

L
θ20 =⇒ u2 =

g

L
(θ20 − θ2) =⇒ u = ±

√
g

L

√
θ20 − θ2 =⇒ sin−1

(
θ

θ0

)
= ±

√
g

L
t + c2, but θ(0) = θ0 so

c2 =
π

2
=⇒ sin−1

(
θ

θ0

)
=

π

2
±
√

g

L
t =⇒ θ = θ0 sin

(
π

2
±
√

g

L
t

)
=⇒ θ = θ0 cos

(√
g

L
t

)
. Yes, the predicted

motion is reasonable.

(b).
d2θ

dt2
+
g

L
sin θ = 0. Let u =

dθ

dt
so that

du

dt
=

d2θ

dt2
=

du

dθ

dθ

dt
= u

du

dθ
. Substituting these results into the last

equation yields u
du

dθ
+

g

L
sin θ = 0 =⇒ u2 =

2g

L
cos θ+c. Since θ(0) = θ0 and

dθ

dt
(0) = 0, then c = −2g

L
cos θ0

and so u2 =
2g

L
cos θ − 2g

L
cos θ0 =⇒ dθ

dt
= ±

√
2g

L
cos θ − 2g

L
cos θ0 =⇒ dθ

dt
= ±

√
2g

L
[cos θ − cos θ0]

1/2.

(c). From part (b),

√
L

2g

dθ

[cos θ − cos θ0]1/2
= ±dt. When the pendulum goes from θ = θ0 to θ = 0

(which corresponds to one quarter of a period)
dθ

dt
is negative; hence, choose the negative sign. Thus,

T = −
√

L

2g

∫ 0

θ0

dθ

[cos θ − cos θ0]1/2
=⇒ T =

√
L

2g

∫ θ0

0

dθ

[cos θ − cos θ0]1/2
.

(d). T =

√
L

2g

∫ θ0

0

dθ

[cos θ − cos θ0]1/2
=⇒

T =

√
L

2g

∫ θ0

0

dθ[
2 sin2

(
θ0
2

)
− 2 sin2

(
θ

2

)]1/2 =
1

2

√
L

2g

∫ θ0

0

dθ[
sin2

(
θ0
2

)
− sin2

(
θ

2

)]1/2 .
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Let k = sin

(
θ0
2

)
so that

T =
1

2

√
L

2g

∫ θ0

0

dθ[
k2 − sin2

(
θ

2

)]1/2 . (0.0.7)

Now let sin θ/2 = k sinu. When θ = 0, u = 0 and when θ = θ0, u = π/2; moreover, dθ =
2k cos (u)du

cos (θ/2)
=⇒

dθ =
2k
√
1− sin2 (u)du√
1− sin2 (θ/2)

=⇒ dθ =
2
√

k2 − (k sin (u))2du√
1− k2 sin2 (u)

=⇒ dθ =
2
√

k2 − sin2 (θ/2)du√
1− k2 sin2 (u)

. Making this

change of variables in equation (0.0.7) yields

T =

√
L

g

∫ π/2

0

du√
1− k2 sin2 (u)

where k = sin θ0/2.

Solutions to Section 1.12

1. The acceleration of gravity is a = 9.8 meters/sec2. Integrating, we find that the vertical component of
the velocity of the rocket is v(t) = 4.9t + c1. We are given that v(0) = −10, so that c1 = −10. Thus,
v(t) = 4.9t − 10. Integrating again, we find the position s(t) = 2.495t2 − 10t + c2. Setting s = 0 at two
meters above the ground, we have s(0) = 0 so that s(t) = 2.495t2 − 10t.

(a). The highest point above the ground is obtained when v(t) = 0. That is, t = 10
4.9 ≈ 2.04 seconds. Thus,

the highest point is approximately s(2.04) = 2.495 · (2.04)2−10(2.04) ≈ −10.02, which is 12.02 meters above
the ground.

(b). The rocket hits the ground when s(t) = 2. That is 2.495t2 − 10t − 2 = 0. Solving for t with the
quadratic formula, we find that t = −0.19 or t = 4.27. Since we must report a positive answer, we conclude
that the rocket hits the ground 4.27 seconds after launch.

2. The acceleration of gravity is a = 32 ft/sec2. Integrating, we find that the vertical component of the
velocity of the ball is v(t) = 16t + c1. Since the ball is initially hit horizontally, we have v(0) = 0, so that
c1 = 0. Hence, v(t) = 16t. Integrating again, we find the position s(t) = 8t2 + c2. Setting s = 0 at two feet
above the ground, we have s(0) = 0 so that c2 = 0. Thus, s(t) = 8t2. The ball hits the ground when s(t) = 2,
so that t2 = 1

4 . Therefore, t =
1
2 . Since 80 miles per hour equates to over 117 ft/sec. In one-half second, the

horizontal change in position of the ball is therefore more than 117
2 = 58.5 feet, more than enough to span

the necessary 40 feet for the ball to reach the front wall. Therefore, the ball does reach the front wall before
hitting the ground.

3. We first determine the slope of the given family at the point (x, y). Differentiating

y = cx3 (0.0.8)

with respect to x yields
dy

dx
= 3cx2. (0.0.9)

From (0.0.8) we have c = y
x3 which, when substituted into Equation (0.0.9) yields

dy

dx
=

3y

x
.
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Consequently, the differential equation for the orthogonal trajectories is

dy

dx
= − x

3y
.

Separating the variables and integrating gives

3

2
y2 = −1

2
x2 + C,

which can be written in the equivalent form

x2 + 3y2 = k.

4. We first determine the slope of the given family at the point (x, y). Differentiating

y = ln(cx) (0.0.10)

with respect to x yields
dy

dx
=

1

x
.

Consequently, the differential equation for the orthogonal trajectories is

dy

dx
= −x.

which can be integrated directly to obtain

y = −1

2
x2 + k.

5. We first determine the slope of the given family at the point (x, y). Differentiating

y2 = cx3 (0.0.11)

with respect to x yields

2y
dy

dx
= 3cx2

so that
dy

dx
=

3cx2

2y
. (0.0.12)

From (0.0.11) we have c = y2

x3 which, when substituted into Equation (0.0.12) yields

dy

dx
=

3y

2x
.

Consequently, the differential equation for the orthogonal trajectories is

dy

dx
= −2x

3y
.

(c)2017 Pearson Education. Inc.



95

Separating the variables and integrating gives

3

2
y2 = −x2 + C,

which can be written in the equivalent form

2x2 + 3y2 = k.

6. We first determine the slope of the given family at the point (x, y). Differentiating

x4 + y4 = c (0.0.13)

with respect to x yields

4x3 + 4y3
dy

dx
= 0

so that
dy

dx
= −x3

y3
. (0.0.14)

Consequently, the differential equation for the orthogonal trajectories is

dy

dx
=

y3

x3
.

Separating the variables and integrating gives

−1

2
y−2 = −1

2
x−2 + C,

which can be written in the equivalent form

y2 − x2 = kx2y2.

7. (a). We first determine the slope of the given family at the point (x, y). Differentiating

x2 + 3y2 = 2cy (0.0.15)

with respect to x yields

2x+ 6y
dy

dx
= 2c

dy

dx

so that
dy

dx
=

x

c− 3y
. (0.0.16)

From (0.0.15) we have c = x2+3y2

2y which, when substituted into Equation (0.0.16) yields

dy

dx
=

x
x2+3y2

2y − 3y
=

2xy

x2 − 3y2
, (0.0.17)

as required.
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(b). It follows from Equation(0.0.17) that the differential equation for the orthogonal trajectories is

dy

dx
= −3y2 − x2

2xy
.

This differential equation is first-order homogeneous. Substituting y = xV into the preceding differential
equation gives

x
dV

dx
+ V =

3V 2 − 1

2V

which simplifies to
dV

dx
=

V 2 − 1

2V
.

Separating the variables and integrating we obtain

ln(V 2 − 1) = lnx+ C,

or, upon exponentiation,
V 2 − 1 = kx.

Inserting V = y/x into the preceding equation yields

y2

x2
− 1 = kx,

that is,
y2 − x2 = kx3.

8. Slope field.

9. Slope field.

10. Slope field.

11. See accompanying figure.

12. Slope field.

13. (a). If v(t) = 25, then
dv

dt
= 0 =

1

2
(25− v).

(b). The accompanying figure suggests that

lim
t→∞ v(t) = 25.

14. (a). The equilibrium solutions are any constant values of m that satisfy

am3/4

[
1−

(m

M

)1/4]
= 0.
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y(x)

x

Figure 0.0.57: Figure for Problem 11

5

10

10

15

20

25

5

v(t)

t

Figure 0.0.58: Figure for Problem 13

Hence, there are two equilibrium solutions, namely, m = 0 and m = M .

(b).This follows since a > 0, and 0 < m(t) < M .

(c)2017 Pearson Education. Inc.



98

(c). The given differential equation can be written in the equivalent form

dm

dt
= a

(
m3/4 − 1

M1/4
m

)
,

so that
d2m

dt2
= a

(
3

4
m−1/4 − 1

M1/4

)
dm

dt

= a2m3/4

(
m3/4 − 1

M1/4
m

)[
1−

(m

M

)1/4]
=

1

4
a2m1/2

[
3− 4

(m

M

)1/4] [
1−

(m

M

)1/4]
.

Since 0 < m < M , the expression on the right-hand side of the preceding equation is positive when

3− 4
(m

M

)1/4
> 0,

that is,
(m

M

)1/4
<

3

4
, or equivalently, m <

81

256
M . Consequently, the solution curves are concave up for

0 < m <
81

256
M , and concave down for

81

256
M < m < M .

(d). From the results of (c), there is a change in concavity when m =
81

256
M . Substituting this value of

m into the right-hand side of the given differential equation yields the following value for the slope of the
solutions curves at the point of inflection:

a

(
81

256

)3/4
[
1−

(
81

256

)1/4
]
=

27

256
a.

(e). Slope field.

15. (a). Separating the variables in Equation (1.12.6) yields

mv

mg − kv2
dv

dy
= 1

which can be integrated to obtain

−m

2k
ln(mg − kv2) = y + c.

Multiplying both sides of this equation by −1 and exponentiating gives

mg − kv2 = c1e
− 2k

m y.

The initial condition v(0) = 0 requires that c1 = mg, which, when inserted into the preceding equation yields

mg − kv2 = mge−
2k
m y,

or equivalently,

v2 =
mg

k

(
1− e−

2k
m y
)
,
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mg/k

v2(y)

y

Figure 0.0.59: Figure for Problem 15

as required.

(b). See accompanying figure.

16. By inspection the differential equation is separable, but not first-order homogeneous. Further, the
differential equation can be re-written as

dy

dx
+ x2y = x2y2

which reveals that it is also a Bernoulli equation, but is not linear. Finally, a different rearrangement of
terms yields

x2 dx− 1

y(y − 1)
dy = 0,

which is an exact differential equation. Separating the variables in the given differential equation yields

1

y(y − 1)
dy = x2 dx =⇒

∫
1

y(y − 1)
dy =

1

3
x3 + c

Using a partial fraction decomposition of the integrand on the left-hand side of the preceding equation we
obtain ∫ (

1

y − 1
− 1

y

)
dy =

1

3
x3 + c =⇒ ln

(
y − 1

y

)
=

1

3
x3 + c =⇒ y − 1

y
= c1e

x3/3

so that

y(x) =
1

1− c1ex
3/3

.

41. Writing the differential equation in the form

dy

dx
= xex · e−y

1 + y
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we see that it is separable, but not homogeneous. It is also neither a linear differential equation nor a
Bernoulli differential equation. Rearranging the differential equation we have

xex dx− ey(1 + y)dy = 0

which is exact. Separating the variables in the given differential equation and integrating yields∫
ey(1 + y)dy =

∫
xex dx+ c =⇒ yey = ex(x− 1) + c.

17. The given differential equation is separable. Separating the variables gives

y
dy

dx
= 2

lnx

x
,

which can be integrated directly to obtain

1

2
y2 = (lnx)2 + c,

or, equivalently,
y2 = 2(lnx)2 + c1.

18. The given differential equation is first-order linear. We first divide by x to put the differential equation
in standard form:

dy

dx
− 2

x
y = 2x lnx. (0.0.18)

An integrating factor for this equation is I = e
∫
(−2/x)dx = x−2. Multiplying Equation (0.0.18) by x−2 reduces

it to
d

dx
(x−2y) = 2x−1 lnx,

which can be integrated to obtain
x−2y = (lnx)2 + c

so that
y(x) = x2[(lnx)2 + c].

19. We first re-write the given differential equation in the differential form

2xy dx+ (x2 + 2y)dy = 0. (0.0.19)

Then
My = 2x = Nx

so that the differential equation is exact. Consequently, there exists a potential function φ satisfying

∂φ

∂x
= 2xy,

∂φ

∂y
= x2 + 2y.

Integrating these two equations in the usual manner yields

φ(x, y) = x2y + y2.
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Therefore Equation (0.0.19) can be written in the equivalent form

d(x2y + y2) = 0

with general solution
x2y + y2 = c.

20. We first rewrite the given differential equation as

dy

dx
=

y2 + 3xy + x2

x2
,

which is first order homogeneous. Substituting y = xV into the preceding equation yields

x
dV

dx
+ V = V 2 + 3V + 1

so that

x
dV

dx
= V 2 + 2V + 1 = (V + 1)2,

or, in separable form,
1

(V + 1)2
dV

dx
=

1

x
.

This equation can be integrated to obtain

−(V + 1)−1 = lnx+ c

so that

V + 1 =
1

c1 − lnx
.

Inserting V = y/x into the preceding equation yields

y

x
+ 1 =

1

c1 − lnx
,

so that
y(x) =

x

c1 − lnx
− x.

21. We first rewrite the given differential equation in the equivalent form

dy

dx
+ y · tanx = −y2 sinx,

which is a Bernoulli equation. Dividing this equation by y2 yields

y−2 dy

dx
+ y−1 tanx = − sinx. (0.0.20)

Now make the change of variables u = y−1 in which case
du

dx
= −y−2 dy

dx
. Substituting these results into

Equation (0.0.20) gives the linear differential equation

−du

dx
+ u · tanx = − sinx
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or, in standard form,
du

dx
− u · tanx = sinx. (0.0.21)

An integrating factor for this differential equation is I = e−
∫
tan x dx = cosx. Multiplying Equation (0.0.21)

by cosx reduces it to
d

dx
(u · cosx) = sinx cosx

which can be integrated directly to obtain

u · cosx = −1

2
cos2 x+ c1,

so that

u =
− cos2 x+ c2

cosx
.

Inserting u = y−1 into the preceding equation and rearranging yields

y(x) =
2 cosx

− cos2 x+ c2
=

−2 cosx

cos2 x+ c
.

22. The given differential equation is linear with integrating factor

I = e
∫

2e2x

1+e2x
dx

= eln(1+e2x) = 1 + e2x.

Multiplying the given differential equation by 1 + e2x yields

d

dx

[
(1 + e2x)y

]
=

e2x + 1

e2x − 1
= −1 +

2e2x

e2x − 1

which can be integrated directly to obtain

(1 + e2x)y = −x+ ln |e2x − 1|+ c,

so that

y(x) =
−x+ ln |e2x − 1|+ c

1 + e2x
.

23. We first rewrite the given differential equation in the equivalent form

dy

dx
=

y +
√
x2 − y2

x
,

which we recognize as being first order homogeneous. Inserting y = xV into the preceding equation yields

x
dV

dx
+ V = V +

|x|
x

√
1− V 2,

that is,
1√

1− V 2

dV

dx
= ± 1

x
.
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Integrating we obtain
sin−1 V = ± ln |x|+ c,

so that
V = sin(c± ln |x|).

Inserting V = y/x into the preceding equation yields

y(x) = x sin(c± ln |x|).

24. We first rewrite the given differential equation in the equivalent form

(sin y + y cosx+ 1)dx− (1− x cos y − sinx)dy = 0.

Then
My = cos y + cosx = Nx

so that the differential equation is exact. Consequently, there is a potential function satisfying

∂φ

∂x
= sin y + y cosx+ 1,

∂φ

∂y
= −(1− x cos y − sinx).

Integrating these two equations in the usual manner yields

φ(x, y) = x− y + x sin y + y sinx,

so that the differential equation can be written as

d(x− y + x sin y + y sinx) = 0,

and therefore has general solution
x− y + x sin y + y sinx = c.

25. Writing the given differential equation as

dy

dx
+

1

x
y =

25

2
y−1x2 lnx,

we see that it is a Bernoulli equation with n = −1. We therefore divide the equation by y−1 to obtain

y
dy

dx
+

1

x
y2 =

25

2
x2 lnx.

We now make the change of variables u = y2, in which case, du
dx = 2y dy

dx . Inserting these results into the
preceding differential equation yields

1

2

du

dx
+

1

x
u =

25

2
x2 lnx,

or, in standard form,
du

dx
+

2

x
u = 25x2 lnx.

An integrating factor for this linear differential equation is I = e
∫
(2/x)dx = x2. Multiplying the previous

differential equation by x2 reduces it to

d

dx
(x2u) = 25x4 lnx
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which can be integrated directly to obtain

x2u = 25

(
1

5
x5 lnx− 1

25
x5

)
+ c

so that
u = x3(5 lnx− 1) + cx−2.

Making the replacement u = y2 in this equation gives

y2 = x3(5 lnx− 1) + cx−2.

26. The given differential equation can be written in the equivalent form

dy

dx
=

ex−y

e2x+y
= e−xe−2y,

which we recognize as being separable. Separating the variables gives

e2y
dy

dx
= e−x

which can be integrated to obtain
1

2
e2y = −e−x + c

so that

y(x) =
1

2
ln(c1 − 2e−x).

27. The given differential equation is linear with integrating factor I = e
∫
cot x dx = sinx. Multiplying the

given differential equation by sinx reduces it to

d

dx
(y sinx) =

sinx

cosx

which can be integrated directly to obtain

y sinx = − ln(cosx) + c,

so that

y(x) =
c− ln(cosx)

sinx
.

28. Writing the given differential equation as

dy

dx
+

2ex

1 + ex
y = 2y

1
2 e−x,

we see that it is a Bernoulli equation with n = 1/2. We therefore divide the equation by y
1
2 to obtain

y−
1
2
dy

dx
+

2ex

1 + ex
y

1
2 = 2e−x.

(c)2017 Pearson Education. Inc.



105

We now make the change of variables u = y
1
2 , in which case, du

dx = 1
2y

− 1
2
dy
dx . Inserting these results into the

preceding differential equation yields

2
du

dx
+

2ex

1 + ex
u = 2e−x,

or, in standard form,
du

dx
+

ex

1 + ex
u = e−x.

An integrating factor for this linear differential equation is

I = e
∫

ex

1+ex dx = eln(1+ex) = 1 + ex.

Multiplying the previous differential equation by 1 + ex reduces it to

d

dx
[(1 + ex)u] = e−x(1 + ex) = e−x + 1

which can be integrated directly to obtain

(1 + ex)u = −e−x + x+ c

so that

u =
x− e−x + c

1 + ex
.

Making the replacement u = y
1
2 in this equation gives

y
1
2 =

x− e−x + c

1 + ex
.

29. We first rewrite the given differential equation in the equivalent form

dy

dx
=

y

x

[
ln
(y
x

)
+ 1

]
.

The function appearing on the right of this equation is homogeneous of degree zero, and therefore the
differential equation itself is first order homogeneous. We therefore insert y = xV into the differential
equation to obtain

x
dV

x
+ V = V (lnV + 1),

so that

x
dV

dx
= V lnV.

Separating the variables yields
1

V lnV

dV

dx
=

1

x

which can be integrated to obtain
ln(lnV ) = lnx+ c.

Exponentiating both side of this equation gives

lnV = c1x,
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or equivalently,
V = ec1x.

Inserting V = y/x in the preceding equation yields

y = xec1x.

30. For the given differential equation we have

M(x, y) = 1 + 2xey, N(x, y) = −(ey + x),

so that
My −Nx

M
=

1 + 2xey

1 + 2xey
= 1.

Consequently, an integrating factor for the given differential equation is

I = e−
∫
dy = e−y.

Multiplying the given differential equation by e−y yields the exact differential equation

(2x+ e−y)dx− (1 + xe−y)dy = 0. (0.0.22)

Therefore, there exists a potential function φ satisfying

∂φ

∂x
= 2x+ e−y,

∂φ

∂y
= −(1 + xe−y).

Integrating these two equations in the usual manner yields

φ(x, y) = x2 − y + xe−y.

Therefore Equation (0.0.22) can be written in the equivalent form

d(x2 − y + xe−y) = 0

with general solution
x2 − y + xe−y = c.

31. The given differential equation is first-order linear. However, it can also e written in the equivalent form

dy

dx
= (1− y) sinx

which is separable. Separating the variables and integrating yields

− ln |1− y| = − cosx+ c,

so that
1− y = c1e

cos x.

Hence,
y(x) = 1− c1e

cos x.
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32. For the given differential equation we have

M(x, y) = 3y2 + x2, N(x, y) = −2xy,

so that
My −Nx

N
= − 4

x
.

Consequently, an integrating factor for the given differential equation is

I = e−
∫

4
xdx = x−4.

Multiplying the given differential equation by x−4 yields the exact differential equation

(3y2x−4 + x−2)dx− 2yx−3dy = 0. (0.0.23)

Therefore, there exists a potential function φ satisfying

∂φ

∂x
= 3y2x−4 + x−2,

∂φ

∂y
= −2yx−3.

Integrating these two equations in the usual manner yields

φ(x, y) = −y2x−3 − x−1.

Therefore Equation (0.0.23) can be written in the equivalent form

d(−y2x−3 − x−1) = 0

with general solution
−y2x−3 − x−1 = c,

or equivalently,
x2 + y2 = c1x

3.

Notice that the given differential equation can be written in the equivalent form

dy

dx
=

3y2 + x2

2xy
,

which is first-order homogeneous. Another equivalent way of writing the given differential equation is

dy

dx
− 3

2x
y =

1

2
xy−1,

which is a Bernoulli equation.

33. The given differential equation can be written in the equivalent form

dy

dx
− 1

2x lnx
y = −9

2
x2y3,

which is a Bernoulli equation with n = 3. We therefore divide the equation by y3 to obtain

y−3 dy

dx
− 1

2x lnx
y−2 = −9

2
x2.
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We now make the change of variables u = y−2, in which case, du
dx = −2y−3 dy

dx . Inserting these results into
the preceding differential equation yields

−1

2

du

dx
− 1

2x lnx
u = −9

2
x2,

or, in standard form,
du

dx
+

1

x lnx
u = 9x2.

An integrating factor for this linear differential equation is

I = e
∫

1
x ln xdx = eln(ln x) = lnx.

Multiplying the previous differential equation by lnx reduces it to

d

dx
(lnx · u) = 9x2 lnx

which can be integrated to obtain
lnx · u = x3(3 lnx− 1) + c

so that

u =
x3(3 lnx− 1) + c

lnx
.

Making the replacement u = y3 in this equation gives

y3 =
x3(3 lnx− 1) + c

lnx
.

34. Separating the variables in the given differential equation yields

1

y

dy

dx
=

2 + x

1 + x
= 1 +

1

1 + x
,

which can be integrated to obtain
ln |y| = x+ ln |1 + x|+ c.

Exponentiating both sides of this equation gives

y(x) = c1(1 + x)ex.

35. The given differential equation can be written in the equivalent form

dy

dx
+

2

x2 − 1
y = 1 (0.0.24)

which is first-order linear. An integrating factor is

I = e
∫

2
x2−1

dx
= e

∫
( 1

x−1− 1
x+1 )dx = e[ln(x−1)−ln(x+1)] =

x− 1

x+ 1
.

Multiplying (0.0.24) by (x− 1)/(x+ 1) reduces it to the integrable form

d

dx

(
x− 1

x+ 1
· y
)

=
x− 1

x+ 1
= 1− 2

x+ 1
.
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Integrating both sides of this differential equation yields(
x− 1

x+ 1
· y
)

= x− 2 ln(x+ 1) + c

so that

y(x) =

(
x+ 1

x− 1

)
[x− 2 ln(x+ 1) + c].

36. The given differential equation can be written in the equivalent form

[y sec2(xy) + 2x]dx+ x sec2(xy)dy = 0

Then

My = sec2(xy) + 2xy sec2(x) tan(xy) = Nx

so that the differential equation is exact. Consequently, there is a potential function satisfying

∂φ

∂x
= y sec2(xy) + 2x,

∂φ

∂y
= x sec2(xy).

Integrating these two equations in the usual manner yields

φ(x, y) = x2 + tan(xy),

so that the differential equation can be written as

d(x2 + tan(xy)) = 0,

and therefore has general solution

x2 + tan(xy) = c,

or equivalently,

y(x) =
tan−1(c− x2)

x
.

37. The given differential equation is first-order homogeneous. Inserting y = xV into the given equation
yields

x
dV

dx
+ V =

1

1 + V 2
+ V,

that is,

(1 + V 2)
dV

dx
=

1

x
.

Integrating we obtain

V +
1

3
V 3 = ln |x|+ c.

Inserting V = y/x into the preceding equation yields

y

x
+

y3

3x3
= ln |x|+ c,
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or equivalently,
3x2y + y3 = 3x3(ln |x|+ c).

38. The differential equation is first-order homogeneous. We therefore let y = xv, in which case
dy

dx
=

x
dv

dx
+ v. Substituting these results into the given differential equation yields

x
dv

dx
+ v =

1 + v2

1− 3v2
,

so that

x
dv

dx
=

1 + v2 − v + 3v3

1− 3v2
=

(v + 1)(3v2 − 2v + 1)

1− 3v2
.

Separating the variables gives
1− 3v2

(v + 1)(3v2 − 2v + 1)
dv =

1

x
dx.

Decomposing the left-hand side into partial fractions yields[
− 1

3(v + 1)
− 2(3v − 2)

3(3v2 − 3v + 1)

]
dv =

1

x
dx,

or equivalently, [
− 1

3(v + 1)
− 2(3v − 2)(

v − 1
3

)2
+ 2

9

]
dv =

1

x
dx.

This can be integrated to yield

2

{
3√
2
arctan

(
3v − 1√

2

)
− 3

2
ln

[
1

9
(3v − 1)2 +

2

9

]}
− 1

3
ln(v + 1) = lnx+ c.

Therefore,

2

{
3√
2
arctan

(
3y − x√

2x

)
− 3

2
ln

[
(3y − x)2

9x2
+

2

9

]}
− 1

3
ln

(
y + x

x

)
= lnx+ c.

39. The given differential equation is a Bernoulli equation with n = −1. We therefore divide the equation
by y−1 to obtain

y
dy

dx
+

1

x
y2 =

25 lnx

2x3
.

We now make the change of variables u = y2, in which case, du
dx = 2y dy

dx . Inserting these results into the
preceding differential equation yields

1

2

du

dx
+

1

x
u =

25 lnx

2x3
,

or, in standard form,
du

dx
+

2

x
u = 25x−3 lnx.

An integrating factor for this linear differential equation is

I = e
∫

2
x dx = x2.
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Multiplying the previous differential equation by x2 reduces it to

d

dx
(x2u) = 25x−1 lnx,

which can be integrated directly to obtain

x2u =
25

2
(lnx)2 + c

so that

u =
25(lnx)2 + c

2x2
.

Making the replacement u = y2 in this equation gives

y2 =
25(lnx)2 + c

2x2
.

40. The differential equation is first-order homogeneous. We therefore let y = xv, in which case
dy

dx
=

x
dv

dx
+ v. Substituting these results into the given differential equation yields

x
dv

dx
+ v =

1 + v2

1− 3v2
,

so that

x
dv

dx
=

1 + v2 − v + 3v3

1− 3v2
=

(v + 1)(3v2 − 2v + 1)

1− 3v2
.

Separating the variables gives
1− 3v2

(v + 1)(3v2 − 2v + 1)
dv =

1

x
dx.

Decomposing the left-hand side into partial fractions yields[
− 1

3(v + 1)
− 2(3v − 2)

3(3v2 − 3v + 1)

]
dv =

1

x
dx,

or equivalently, [
− 1

3(v + 1)
− 2(3v − 2)(

v − 1
3

)2
+ 2

9

]
dv =

1

x
dx.

This can be integrated to yield

2

{
3√
2
arctan

(
3v − 1√

2

)
− 3

2
ln

[
1

9
(3v − 1)2 +

2

9

]}
− 1

3
ln(v + 1) = lnx+ c.

Therefore,

2

{
3√
2
arctan

(
3y − x√

2x

)
− 3

2
ln

[
(3y − x)2

9x2
+

2

9

]}
− 1

3
ln

(
y + x

x

)
= lnx+ c.
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41. The given differential equation can be written in the equivalent form

ey(1 + y)
dy

dx
= xex

which is separable. Integrating both sides of this equation gives

yey = ex(x− 1) + c.

42. The given differential equation can be written in the equivalent form

dy

dx
− cosx

sinx
y = − cosx

which is first order linear with integrating factor

I = e−
∫

cos x
sin x dx = e− ln(sin x) =

1

sinx
.

Multiplying the preceding differential equation by 1
sin x reduces it to

d

dx

(
1

sinx
· y
)

= −cosx

sinx

which can be integrated directly to obtain

1

sinx
· y = − ln(sinx) + c

so that
y(x) = sinx[c− ln(sinx)].

43. The given differential equation is linear, and therefore can be solved using an appropriate integrating
factor. However, if we rearrange the terms in the given differential equation then it can be written in the
equivalent form

1

1 + y

dy

dx
= x2

which is separable. Integrating both sides of the preceding differential equation yields

ln(1 + y) =
1

3
x3 + c

so that
y(x) = c1e

1
3x

3 − 1.

Imposing the initial condition y(0) = 5 we find c1 = 6. Therefore the solution to the initial-value problem is

y(x) = 6e
1
3x

3 − 1.

44. The given differential equation can be written in the equivalent form

e−6y dy

dx
= −e−4x
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which is separable. Integrating both sides of the preceding equation yields

−1

6
e−6y =

1

4
e−4x + c

so that

y(x) = −1

6
ln

(
c1 − 3

2
e−4x

)
.

Imposing the initial condition y(0) = 0 requires that

0 = ln

(
c1 − 3

2

)
.

Hence, c1 = 5
2 , and so

y(x) = −1

6
ln

(
5− 3e−4x

2

)
.

45. For the given differential equation we have

My = 4xy = Nx

so that the differential equation is exact. Consequently, there is a potential function satisfying

∂φ

∂x
= 3x2 + 2xy2,

∂φ

∂y
= 2x2y.

Integrating these two equations in the usual manner yields

φ(x, y) = x2y2 + x3,

so that the differential equation can be written as

d(x2y2 + x3) = 0,

and therefore has general solution
x2y2 + x3 = c.

Imposing the initial condition y(1) = 3 yields c = 10. Therefore,

x2y2 + x3 = 10

so that

y2 =
10− x3

x2
.

Note that the given differential equation can be written in the equivalent form

dy

dx
+

1

x
y = −3

2
y−1,

which is a Bernoulli equation with n = −1. Consequently, the Bernoulli technique could also have been used
to solve the differential equation.
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46. The given differential equation is linear with integrating factor

I = e−
∫
sin x dx = ecos x.

Multiplying the given differential equation by ecos x reduces it to the integrable form

d

dx
(ecos x · y) = 1,

which can be integrated directly to obtain

ecos x · y = x+ c..

Hence,
y(x) = e− cos x(x+ c).

Imposing the given initial condition y(0) = 1
e requires that c = 1. Consequently,

y(x) = e− cos x(x+ 1).

47. (a). For the given differential equation we have

My = mym−1, Nx = −nxn−1y3.

We see that the only values for m and n for which My = Nx are m = n0. Consequently, these are the only
values of m and n for which the differential equation is exact.

(b). We rewrite the given differential equation in the equivalent form

dy

dx
=

x5 + ym

xny3
, (0.0.25)

from which we see that the differential equation is separable provided m = 0. In this case there are no
restrictions on n.

(c). From Equation (0.0.25) we see that the only values of m and n for which the differential equation is
first-order homogeneous are m = 5 and n = 2.

(d). We now rewrite the given differential equation in the equivalent form

dy

dx
− x−nym−3 = x5−ny−3. (0.0.26)

Due to the y−3 term on the right-hand side of the preceding differential equation, it follows that there are
no values of m and n for which the equation is linear.

(e). From Equation (0.0.26) we see that the differential equation is a Bernoulli equation whenever m = 4.
There are no constraints on n in this case.

48. In Newton’s Law of Cooling we have

Tm = 180◦F, T (0) = 80◦F, T (3) = 100◦F.

We need to determine the time, t0 when T (t0) = 140◦F. The temperature of the sandals at time t is governed
by the differential equation

dT

dt
= −k(T − 180).
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This separable differential equation is easily integrated to obtain

T (t) = 180 + ce−kt.

Since T (0) = 80 we have
80 = 180 + c =⇒ c = −100.

Hence,
T (t) = 180− 100e−kt.

Imposing the condition T (3) = 100 requires

100 = 180− 100e−3k.

Solving for k we find k = 1
3 ln

(
5
4

)
. Inserting this value for k into the preceding expression for T (t) yields

T (t) = 180− 100e−
t
3 ln( 5

4 ).

We need to find t0 such that

140 = 180− 100e−
t0
3 ln( 5

4 ).

Solving for t0 we find

t0 = 3
ln
(
5
2

)
ln
(
5
4

) ≈ 12.32 min.

49. In Newton’s Law of Cooling we have

Tm = 70◦F, T (0) = 150◦F, T (10) = 125◦F.

We need to determine the time, t0 when T (t0) = 100◦F. The temperature of the plate at time t is governed
by the differential equation

dT

dt
= −k(T − 70).

This separable differential equation is easily integrated to obtain

T (t) = 70 + ce−kt.

Since T (0) = 150 we have
150 = 70 + c =⇒ c = 80.

Hence,
T (t) = 70 + 80e−kt.

Imposing the condition T (10) = 125 requires

125 = 70 + 80e−10k.

Solving for k we find k = 1
10 ln

(
16
11

)
. Inserting this value for k into the preceding expression for T (t) yields

T (t) = 70 + 80e−
t
10 ln( 16

11 ).

We need to find t0 such that

100 = 70 + 80e−
t0
10 ln( 16

11 ).
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Solving for t0 we find

t0 = 10
ln
(
8
3

)
ln
(
16
11

) ≈ 26.18 min.

50. Let T (t) denote the temperature of the object at time t, and let Tm denote the temperature of the
surrounding medium. Then we must solve the initial-value problem

dT

dt
= k(T − Tm)2, T (0) = T0,

where k is a constant. The differential equation can be written in separated form as

1

(T − Tm)2
dT

dt
= k.

Integrating both sides of this differential equation yields

− 1

T − Tm
= kt+ c

so that

T (t) = Tm − 1

kt+ c
.

Imposing the initial condition T (0) = T0 we find that

c =
1

Tm − T0

which, when substituted back into the preceding expression for T (t) yields

T (t) = Tm − 1

kt+ 1
Tm−T0

= Tm − Tm − T0

k(Tm − T0)t+ 1
.

As t → ∞, T (t) approaches Tm.

51.(a). Since
dv

dt
(0) = 2, the velocity is increasing at the rate of 2 m/s2 at t = 0.

(b). Evaluating the given differential equation at t = 0, using the given initial conditions yields

2 + 20k = 80k =⇒ k =
1

3
.

(c). An integrating factor for the given differential equation is I = e
∫
k dt = ekt. Multiplying the given

differential equation by this integrating factor reduces is to
d

dt
(ekt·v) = 80k =⇒ v(t) = e−kt(80t+c). Imposing

the initial condition v(0) = 20 yields c = 20, so that v(t) = 20e−kt(4kt+ 1) =⇒ v(t) =
4

3
e−t/30(2t+ 15).

(d). v(t) =
4

3
e−t/30(2t+ 15) =⇒ there is no finite t > 0 when v(t) = 0. Hence the object does not come to

rest in a finite time.

(e). limt→∞ v(t) = 0.
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52. We are given the differential equation

dT

dt
= −k(T − 5 cos 2t) (0.0.27)

together with the initial conditions

T (0) = 0;
dT

dt
(0) = 5. (0.0.28)

(a). Setting t = 0 in (0.0.27) and using (0.0.28) yields

5 = −k(0− 5)

so that k = 1.

(b). Substituting k = 1 into the differential equation (0.0.27) and rearranging terms yields

dT

dt
+ T = 5 cos t.

An integrating factor for this linear differential equation is I = e
∫
dt = et. Multiplying the preceding

differential equation by et reduces it to

d

dt
(et · T ) = 5et cos 2t

which upon integration yields
et · T = et(cos 2t+ 2 sin 2t) + c,

so that
T (t) = ce−t + cos 2t+ 2 sin 2t.

Imposing the initial condition T (0) = 0 we find that c = −1. Hence,

T (t) = cos 2t+ 2 sin 2t− e−t.

(c). For large values of t we have
T (t) ≈ cos 2t+ 2 sin 2t,

which can be written in phase-amplitude form as

T (t) ≈
√
5 cos(2t− φ),

where tanφ = 2. consequently, for large t, the temperature is approximately oscillatory with period π and
amplitude

√
5.

53. If we let C(t) denote the number of sandhill cranes in the Platte River valley t days after April 1, then
C(t) is governed by the differential equation

dC

dt
= −kC (0.0.29)

together with the auxiliary conditions

C(0) = 500, 000; C(15) = 100, 000. (0.0.30)
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Separating the variables in the differential equation (0.0.29) yields

1

C

dC

dt
= −k,

which can be integrated directly to obtain

lnC = −kt+ c.

Exponentiation yields
C(t) = c0e

−kt.

The initial condition C(0) = 500, 000 requires c0 = 500, 000, so that

C(t) = 500, 000e−kt. (0.0.31)

Imposing the auxiliary condition C(15) = 100, 000 yields

100, 000 = 500, 000e−15k.

Taking the natural logarithm of both sides of the preceding equation and simplifying we find that k = 1
15 ln 5.

Substituting this value for k into (0.0.31) gives

C(t) = 500, 000e−
t
15 ln 5. (0.0.32)

(a). C(3) = 500, 000e−2 ln 5 = 500, 000 · 1
25 = 20, 000 sandhile cranes.

(b). C(35) = 500, 000e−
35
15 ln 5 ≈ 11696 sandhile cranes.

(c). We need to determine t0 such that

1000 = 500, 000e−
t0
15 ln 5

that is,

e−
t0
15 ln 5 =

1

500
.

Taking the natural logarithm of both sides of this equation and simplifying yields

t0 = 15 · ln 500
ln 5

≈ 57.9 days after April 1.

54. Substituting P0 = 200, 000 into Equation (1.5.3) in the text yields

P (t) =
200, 000C

200, 000 + (C − 200, 000)e−rt
. (0.0.33)

We are given
P (3) = P (t1) = 230, 000, P (6) = P (t2) = 250, 000.

Since t2 = 2t1 we can use the formulas (1.5.5) and (1.5.6) of the text to obtain r and C directly as follows:

r =
1

3
ln

[
25(23− 20)

20(25− 23)

]
=

1

3
ln

(
15

8

)
≈ 0.21.

(c)2017 Pearson Education. Inc.



119

C =
230, 000[(23)(45)− (40)(25)]

(23)2 − (20)(25)
= 277586.

Substituting these values for r and C into (0.0.33) yields

P (t) =
55517200000

200, 000 + (77586)e−0.21t
.

Therefore,

P (10) =
55517200000

200, 000 + (77586)e−2.1
≈ 264, 997,

and

P (20) =
55517200000

200, 000 + (77586)e−4.2
≈ 275981.

55. The differential equation for determining q(t) is

dq

dt
+

5

4
q =

3

2
cos 2t,

which has integrating factor I = e
∫

5
4dt = e

5
4 t. Multiplying the preceding differential equation by e

5
4 t reduces

it to the integrable form
d

dt

(
e

5
4 t · q

)
=

3

2
e

5
4 t cos 2t.

Integrating and simplifying we find

q(t) =
6

89
(5 cos 2t+ 8 sin 2t) + ce−

5
4 t. (0.0.34)

The initial condition q(0) = 3 requires

3 =
30

89
+ c,

so that c = 237
89 . Making this replacement in (0.0.34) yields

q(t) =
6

89
(5 cos 2t+ 8 sin 2t) +

237

89
e−

5
4 t.

The current in the circuit is

i(t) =
dq

dt
=

12

89
(8 cos 2t− 5 sin 2t)− 1185

356
e−

5
4 t.

56. The current in the circuit is governed by the differential equation

di

dt
+ 10i =

100

3
,

which has integrating factor I = e
∫
10 dt = e10t. Multiplying the preceding differential equation by e10t

reduces it to the integrable form
d

dt

(
e10t · i) = 100

3
e10t.
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Integrating and simplifying we find

i(t) =
10

3
+ ce−10t. (0.0.35)

The initial condition i(0) = 3 requires

3 =
10

3
+ c,

so that c = − 1
3 . Making this replacement in (0.0.35) yields

i(t) =
1

3
(10− e−10t).

57. We are given:

r1 = 6 L/min, c1 = 3 g/L, r2 = 4 L/min, V (0) = 30 L, A(0) = 0 g,

and we need to determine the amount of salt in the tank when V (t) = 60L. Consider a small time interval
Δt. Using the preceding information we have:

ΔV = 6Δt− 4Δt = 2Δt,

and

ΔA ≈ 18Δt− 4
A

V
Δt.

Dividing both of these equations by Δt and letting Δt → 0 yields

dV

dt
= 2. (0.0.36)

dA

dt
+ 4

A

V
= 18. (0.0.37)

Integrating (0.0.36) and imposing the initial condition V (0) = 30 yields

V (t) = 2(t+ 15). (0.0.38)

We now insert this expression for V (t) into (0.0.37) to obtain

dA

dt
+

2

t+ 15
A = 18.

An integrating factor for this differential equation is I = e
∫

2
t+15dt = (t + 15)2. Multiplying the preceding

differential equation by (t+ 15)2 reduces it to the integrable form

d

dt

[
(t+ 15)2A

]
= 18(t+ 15)2.

Integrating and simplifying we find

A(t) =
6(t+ 15)3 + c

(t+ 15)2
.

Imposing the initial condition A(0) = 0 requires

0 =
6(15)3 + c

(15)2
,
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so that c = −20250. Consequently,

A(t) =
6(t+ 15)3 − 20250

(t+ 15)2
.

We need to determine the time when the solution overflows. Since the tank can hold 60 L of solution, from
(0.0.38) overflow will occur when

60 = 2(t+ 15) =⇒ t = 15.

The amount of chemical in the tank at this time is

A(15) =
6(30)3 − 20250

(30)2
≈ 157.5 g.

58. Applying Euler’s method with y′ = x2+2y2, x0 = 0, y0 = −3, and h = 0.1 we have yn+1 = yn+0.1(x2
n+

2y2n). This generates the sequence of approximants given in the table below.

n xn yn
1 0.1 −1.2
2 0.2 −0.911
3 0.3 −0.74102
4 0.4 −0.62219
5 0.5 −0.52877
6 0.6 −0.44785
7 0.7 −0.371736
8 0.8 −0.29510
9 0.9 −0.21368
10 1.0 −0.12355

Consequently the Euler approximation to y(1) is y10 = −0.12355.

59. Applying Euler’s method with y′ =
3x

y
+ 2, x0 = 1, y0 = 2, and h = 0.05 we have

yn+1 = yn + 0.05

(
3xn

yn
+ 2

)
.

This generates the sequence of approximants given in the table below.

n xn yn
1 1.05 2.1750
2 1.10 2.34741
3 1.15 2.51770
4 1.20 2.68622
5 1.25 2.85323
6 1.30 3.01894
7 1.35 3.18353
8 1.40 3.34714
9 1.45 3.50988
10 1.50 3.67185
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Consequently, the Euler approximation to y(1.5) is y10 = 3.67185.

60. Applying the modified Euler method with y′ = x2 + 2y2, x0 = 0, y0 = −3, and h = 0.1 generates the
sequence of approximants given in the table below.

n xn yn
1 0.1 −1.9555
2 0.2 −1.42906
3 0.3 −1.11499
4 0.4 −0.90466
5 0.5 −0.74976
6 0.6 −0.62555
7 0.7 −0.51778
8 0.8 −0.41723
9 0.9 −0.31719
10 1.0 −0.21196

Consequently, the modified Euler approximation to y(1) is y10 = −0.21196. Comparing this to the
corresponding Euler approximation from Problem 58 we have

|yME − yE| = |0.21196− 0.12355| = 0.8841.

61. Applying the modified Euler method with y′ =
3x

y
+ 2, x0 = 1, y0 = 2, and h = 0.05 generates the

sequence of approximants given in the table below.

n xn yn
1 1.05 2.17371
2 1.10 2.34510
3 1.15 2.51457
4 1.20 2.68241
5 1.25 2.84886
6 1.30 3.01411
7 1.35 3.17831
8 1.40 3.34159
9 1.45 3.50404
10 1.50 3.66576

Consequently, the modified Euler approximation to y(1.5) is y10 = 3.66576. Comparing this to the corre-
sponding Euler approximation from Problem 59 we have

|yME − yE| = |3.66576− 3.67185| = 0.00609.

62. Applying the Runge-Kutta method with y′ = x2 + 2y2, x0 = 0, y0 = −3, and h = 0.1 generates the
sequence of approximants given in the table below.
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n xn yn
1 0.1 −1.87392
2 0.2 −1.36127
3 0.3 −1.06476
4 0.4 −0.86734
5 0.5 −0.72143
6 0.6 −0.60353
7 0.7 −0.50028
8 0.8 −0.40303
9 0.9 −0.30541
10 1.0 −0.20195

Consequently the Runge-Kutta approximation to y(1) is y10 = −0.20195. Comparing this to the correspond-
ing Euler approximation from Problem 58 we have

|yRK − yE| = |0.20195− 0.12355| = 0.07840.

63. Applying the Runge-Kutta method with y′ =
3x

y
+ 2, x0 = 1, y0 = 2, and h = 0.05 generates the

sequence of approximants given in the table below.

n xn yn
1 1.05 2.17369
2 1.10 2.34506
3 1.15 2.51452
4 1.20 2.68235
5 1.25 2.84880
6 1.30 3.01404
7 1.35 3.17823
8 1.40 3.34151
9 1.45 3.50396
10 1.50 3.66568

Consequently the Runge-Kutta approximation to y(1.5) is y10 = 3.66568. Comparing this to the correspond-
ing Euler approximation from Problem 59 we have

|yRK − yE| = |3.66568− 3.67185| = 0.00617.

Chapter 2 Solutions

Solutions to Section 2.1

True-False Review:

(a): TRUE. A diagonal matrix has no entries below the main diagonal, so it is upper triangular. Likewise,
it has no entries above the main diagonal, so it is also lower triangular.

(b): FALSE. An m× n matrix has m row vectors and n column vectors.
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(c): TRUE. This is a square matrix, and all entries off the main diagonal are zero, so it is a diagonal matrix
(the entries on the diagonal also happen to be zero, but this is not required).

(d): FALSE. The main diagonal entries of a skew-symmetric matrix must be zero. In this case, a11 = 4 �= 0,
so this matrix is not skew-symmetric.

(e): FALSE. The form presented uses the same number along the entire main diagonal, but a symmetric
matrix need not have identical entries on the main diagonal.

(f): TRUE. Since A is symmetric, A = AT . Thus, (AT )T = A = AT , so AT is symmetric.

(g): FALSE. The trace of a matrix is the sum of the entries along the main diagonal.

(h): TRUE. If A is skew-symmetric, then AT = −A. But A and AT contain the same entries along the
main diagonal, so for AT = −A, both A and −A must have the same main diagonal. This is only possible
if all entries along the main diagonal are 0.

(i): TRUE. If A is both symmetric and skew-symmetric, then A = AT = −A, and A = −A is only possible
if all entries of A are zero.

(j): TRUE. Both matrix functions are defined for values of t such that t > 0.

(k): FALSE. The (3, 2)-entry contains a function that is not defined for values of t with t ≤ 3. So for
example, this matrix functions is not defined for t = 2.

(l): TRUE. Each numerical entry of the matrix function is a constant function, which has domain R.

(m): FALSE. For instance, the matrix function A(t) = [t] and B(t) = [t2] satisfy A(0) = B(0), but A and
B are not the same matrix function.

Problems:

1(a). a31 = 0, a24 = −1, a14 = 2, a32 = 2, a21 = 7, a34 = 4.

1(b). (1, 4) and (3, 2).

2(a). b12 = −1, b33 = 4, b41 = 0, b43 = 8, b51 = −1, and b52 = 9.

2(b). (1, 2), (1, 3), (2, 1), (3, 2), and (5, 1).

3.

[
1 5

−1 3

]
; 2× 2 matrix.

4.

[
2 1 −1
0 4 −2

]
; 2× 3 matrix.

5.

⎡⎢⎢⎣
−1
1
1

−5

⎤⎥⎥⎦; 4× 1 matrix.

6.

⎡⎢⎢⎣
1 −3 −2
3 6 0
2 7 4

−4 −1 5

⎤⎥⎥⎦; 4× 3 matrix.

7.

⎡⎣ 0 −1 2
1 0 3

−2 −3 0

⎤⎦; 3× 3 matrix.
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8.

⎡⎢⎢⎣
0 −1 −2 −3
1 0 −1 −2
2 1 0 −1
3 2 1 −0

⎤⎥⎥⎦; 4× 4 matrix.

9.

⎡⎢⎢⎣
2 3 4 5
3 4 5 6
4 5 6 7
5 6 7 8

⎤⎥⎥⎦; 4× 4 matrix.

10. tr(A) = 1 + 3 = 4.

11. tr(A) = 1 + 2 + (−3) = 0.

12. tr(A) = 2 + 2 + (−5) = −1.

13. Column vectors:

[
1
3

]
,

[ −1
5

]
.

Row vectors: [1 − 1], [3 5].

14. Column vectors:

⎡⎣ 1
−1
2

⎤⎦ ,

⎡⎣ 3
−2
6

⎤⎦ ,

⎡⎣ −4
5
7

⎤⎦.
Row vectors: [1 3 − 4], [−1 − 2 5], [2 6 7].

15. Column vectors:

[
2
5

]
,

[
10
−1

]
,

[
6
3

]
. Row vectors: [2 10 6], [5 − 1 3].

16. A =

⎡⎣ 1 2
3 4
5 1

⎤⎦. Column vectors:

⎡⎣ 1
3
5

⎤⎦ ,

⎡⎣ 2
4
1

⎤⎦.
17. A =

[ −2 0 4 −1 −1
9 −4 −4 0 8

]
; column vectors:

[ −2
9

]
,

[
0

−4

]
,

[
4

−4

]
,

[ −1
0

]
,

[ −1
8

]
.

18. B =

⎡⎢⎢⎢⎢⎣
−2 −4
−6 −6
3 0

−1 0
−2 1

⎤⎥⎥⎥⎥⎦; row vectors:
[ −2 −4

]
,
[ −6 −6

]
,
[
3 0

]
,
[ −1 0

]
,
[ −2 1

]
.

19. B =

⎡⎣ 2 5 0 1
−1 7 0 2
4 −6 0 3

⎤⎦. Row vectors: [2 5 0 1], [−1 7 0 2], [4 − 6 0 3].

20. A = [a1,a2, . . . ,ap] has p columns and each column q-vector has q rows, so the resulting matrix has
dimensions q × p.

21. One example:

⎡⎣ 2 0 0
0 3 0
0 0 −1

⎤⎦.

22. One example:

⎡⎢⎢⎣
2 3 1 2
0 5 6 2
0 0 3 5
0 0 0 1

⎤⎥⎥⎦.

(c)2017 Pearson Education. Inc.



126

23. One example:

⎡⎢⎢⎣
1 3 −1 2

−3 0 4 −3
1 −4 0 1

−2 3 −1 0

⎤⎥⎥⎦.

24. One example:

⎡⎣ 3 0 0
0 2 0
0 0 5

⎤⎦.
25. The only possibility here is the zero matrix:

⎡⎣ 0 0 0
0 0 0
0 0 0

⎤⎦.
26.

⎡⎣ 0 0 0
0 0 0
0 0 0

⎤⎦.

27. One example:

⎡⎢⎢⎣
t2 − t 0
0 0
0 0
0 0

⎤⎥⎥⎦.
28. One example:

[ 1√
3−t

√
t+ 2 0

0 0 0

]
.

29. One example:

[
1

t2+1

0

]
.

30. One example:
[
t2 + 1 1 1 1 1

]
.

31. One example: Let A and B be 1× 1 matrix functions given by

A(t) = [t] and B(t) = [t2].

32. Let A be a symmetric upper triangular matrix. Then all elements below the main diagonal are zeros.
Consequently, since A is symmetric, all elements above the main diagonal must also be zero. Hence, the
only nonzero entries can occur along the main diagonal. That is, A is a diagonal matrix.

33. Since A is skew-symmetric, we know that aij = −aji for all (i, j). But since A is symmetric, we know
that aij = aji for all (i, j). Thus, for all (i, j), we must have −aji = aji. That is, aji = 0 for all (i, j). That
is, every element of A is zero.

Solutions to Section 2.2

True-False Review:

(a): FALSE. The correct statement is (AB)C = A(BC), the associative law. A counterexample to the
particular statement given in this review item can be found in Problem 5.

(b): TRUE. Multiplying from left to right, we note that AB is an m× p matrix, and right multiplying AB
by the p× q matrix C, we see that ABC is an m× q matrix.

(c): TRUE. We have (A+B)T = AT +BT = A+B, so A+B is symmetric.
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(d): FALSE. For example, let A =

⎡⎣ 0 1 0
−1 0 0
0 0 0

⎤⎦ , B =

⎡⎣ 0 0 3
0 0 0

−3 0 0

⎤⎦. Then A and B are skew-

symmetric, but AB =

⎡⎣ 0 0 0
0 0 −3
0 0 0

⎤⎦ is not symmetric.

(e): FALSE. The correct equation is (A+B)2 = A2+AB+BA+B2. The statement is false since AB+BA

does not necessarily equal 2AB. For instance, if A =

[
1 0
0 0

]
and B =

[
0 1
0 0

]
, then (A+B)2 =

[
1 1
0 0

]
and A2 + 2AB +B2 =

[
1 2
0 0

]
�= (A+B)2.

(f): FALSE. For example, let A =

[
0 1
0 0

]
and B =

[
1 0
0 0

]
. Then AB = 0 even though A �= 0 and

B �= 0.

(g): FALSE. For example, let A =

[
0 0
1 0

]
and let B =

[
0 0
0 0

]
. Then A is not upper triangular,

despite the fact that AB is the zero matrix, hence automatically upper triangular.

(h): FALSE. For instance, the matrix A =

[
1 0
0 0

]
is neither the zero matrix nor the identity matrix,

and yet A2 = A.

(i): TRUE. The derivative of each entry of the matrix is zero, since in each entry, we take the derivative
of a constant, thus obtaining zero for each entry of the derivative of the matrix.

(j): FALSE. The correct statement is given in Problem 45. The problem with the statement as given is
that the second term should be dA

dt B, not B dA
dt .

(k): FALSE. For instance, the matrix function A =

[
2et 0
0 3et

]
satisfies A = dA

dt , but A does not have

the form

[
cet 0
0 cet

]
.

(l): TRUE. This follows by exactly the same proof as given in the text for matrices of numbers (see part
3 of Theorem 2.2.23).

Problems:

1(a). 5A =

[ −10 30 5
−5 0 −15

]
.

1(b). −3B =

[ −6 −3 3
0 −12 12

]
.

1(c). iC =

⎡⎣ −1 + i −1 + 2i
−1 + 3i −1 + 4i
−1 + 5i −1 + 6i

⎤⎦.
1(d). 2A−B =

[ −6 11 3
−2 −4 −2

]
.

1(e). A+ 3CT =

[
1 + 3i 15 + 3i 16 + 3i
5 + 3i 12 + 3i 15 + 3i

]
.
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1(f). 3D − 2E =

⎡⎣ 8 10 7
1 4 9
1 7 12

⎤⎦.
1(g). D + E + F =

⎡⎣ 12 −3− 3i −1 + i
3 + i 3− 2i 8
6 4 + 2i 2

⎤⎦.
1(h). Solving for G and simplifying, we have that

G = −3

2
A−B =

[
1 −10 −1/2
3/2 −4 17/2

]
.

1(i). Solving for H and simplifying, we have that H = 4E −D − 2F =⎡⎣ 8 −20 −8
4 4 12
16 −8 −12

⎤⎦−
⎡⎣ 4 0 1

1 2 5
3 1 2

⎤⎦−
⎡⎣ 12 4− 6i 2i

2 + 2i −4i 0
−2 10 + 4i 6

⎤⎦ =

⎡⎣ −8 −24 + 6i −9− 2i
1− 2i 2 + 4i 7
15 −19− 4i −20

⎤⎦ .

1(j). We have KT = 2B − 3A, so that K = (2B − 3A)T = 2BT − 3AT . Thus,

K = 2

⎡⎣ 2 0
1 4

−1 −4

⎤⎦− 3

⎡⎣ −2 −1
6 0
1 −3

⎤⎦ =

⎡⎣ 10 3
−16 8
−5 1

⎤⎦ .

2(a). −D =

⎡⎣ −4 0 −1
−1 −2 −5
−3 −1 −2

⎤⎦.
2(b). 4BT = 4

⎡⎣ 2 0
1 4

−1 −4

⎤⎦ =

⎡⎣ 8 0
4 16

−4 −16

⎤⎦.
2(c). −2AT + C = −2

⎡⎣ −2 −1
6 0
1 −3

⎤⎦+

⎡⎣ 1 + i 2 + i
3 + i 4 + i
5 + i 6 + i

⎤⎦ =

⎡⎣ 5 + i 4 + i
−9 + i 4 + i
3 + i 12 + i

⎤⎦.
2(d). 5E +D =

⎡⎣ 10 −25 −10
5 5 15
20 −10 −15

⎤⎦+

⎡⎣ 4 0 1
1 2 5
3 1 2

⎤⎦ =

⎡⎣ 14 −25 −9
6 7 20
23 −9 −13

⎤⎦.
2(e). We have

4AT − 2BT + iC = 4

⎡⎣ −2 −1
6 0
1 −3

⎤⎦− 2

⎡⎣ 2 0
1 4

−1 −4

⎤⎦+ i

⎡⎣ 1 + i 2 + i
3 + i 4 + i
5 + i 6 + i

⎤⎦ =

⎡⎣ −13 + i −5 + 2i
21 + 3i −9 + 4i
5 + 5i −5 + 6i

⎤⎦ .

2(f). We have

4E − 3DT =

⎡⎣ 8 −20 −8
4 4 12
16 −8 −12

⎤⎦−
⎡⎣ 12 3 9

0 6 3
3 15 6

⎤⎦ =

⎡⎣ −4 −23 −17
4 −2 9
13 −23 −18

⎤⎦ .
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2(g). We have (1− 6i)F + iD =⎡⎣ 6− 36i −16− 15i 6 + i
7− 5i −12− 2i 0
−1 + 6i 17− 28i 3− 18i

⎤⎦+

⎡⎣ 4i 0 i
i 2i 5i
3i i 2i

⎤⎦ =

⎡⎣ 6− 32i −16− 15i 6 + 2i
7− 4i −12 5i
−1 + 9i 17− 27i 3− 16i

⎤⎦ .

2(h). Solving for G, we have

G = A+ (1− i)CT =

[ −2 6 1
−1 0 −3

]
+ (1− i)

[
1 + i 3 + i 5 + i
2 + i 4 + i 6 + i

]
=

[ −2 6 1
−1 0 −3

]
+

[
2 4− 2i 6− 4i

3− i 5− 3i 7− 5i

]
=

[
0 10− 2i 7− 4i

2− i 5− 3i 4− 5i

]
.

2(i). Solve for H, we have

H =
3

2
D − 3

2
E + 3I3

=

⎡⎣ 6 0 3/2
3/2 3 15/2
9/2 3/2 3

⎤⎦−
⎡⎣ 3 −15/2 −3

3/2 3/2 9/2
6 −3 −9/2

⎤⎦+

⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦
=

⎡⎣ 6 15/2 9/2
0 9/2 3

−3/2 9/2 21/2

⎤⎦ .

2(j). We have KT = DT + ET − FT = (D + E − F )T , so that

K = D + E − F =

⎡⎣ 0 −7 + 3i −1− i
1− i 3 + 2i 8
8 −6− 2i −4

⎤⎦ .

3(a).

AB =

[
5 10 −3

27 22 3

]
3(b).

BC =

⎡⎣ 9
8

−6

⎤⎦
3(c). CA cannot be computed.

3(d).

ATE =

⎡⎣ 1 3
−1 1
2 4

⎤⎦[ 2− i 1 + i
−i 2 + 4i

]
=

⎡⎣ 2− 4i 7 + 13i
−2 1 + 3i

4− 6i 10 + 18i

⎤⎦
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3(e).

CD =

⎡⎣ 2 −2 3
−2 2 −3
4 −4 6

⎤⎦ .

3(f).

CTAT =
[
1 −1 2

] ⎡⎣ 1 3
−1 1
2 4

⎤⎦ =
[
6 10

]
3(g).

F 2 =

[
i 1− 3i
0 4 + i

] [
i 1− 3i
0 4 + i

]
=

[ −1 10− 10i
0 15 + 8i

]
3(h).

BDT =

⎡⎣ 2 −1 3
5 1 2
4 6 −2

⎤⎦⎡⎣ 2
−2
3

⎤⎦ =

⎡⎣ 15
14

−10

⎤⎦
3(i).

ATA =

⎡⎣ 1 3
−1 1
2 4

⎤⎦[ 1 −1 2
3 1 4

]
=

⎡⎣ 10 2 14
2 2 2
14 2 20

⎤⎦
3(j).

FE =

[
i 1− 3i
0 4 + i

] [
2− i 1 + i
−i 2 + 4i

]
=

[ −2 + i 13− i
1− 4i 4 + 18i

]
4(a).

AC =

[
1 −1 2
3 1 4

]⎡⎣ 1
−1
2

⎤⎦ =

[
6
10

]

4(b).

DC = [10]

4(c).

DB = [6 14 − 4]

4(d). AD cannot be computed.

4(e). EF =

[
2− i 1 + i
−i 2 + 4i

] [
i 1− 3i
0 4 + i

]
=

[
1 + 2i 2− 2i

1 1 + 17i

]
.

4(f). Since AT is a 3× 2 matrix and B is a 3× 3 matrix, the product ATB cannot be constructed.

4(g). Since C is a 3× 1 matrix, it is impossible to form the product C · C = C2.

4(h). E2 =

[
2− i 1 + i
−i 2 + 4i

] [
2− i 1 + i
−i 2 + 4i

]
=

[
4− 5i 1 + 7i
3− 4i −11 + 15i

]
.

(c)2017 Pearson Education. Inc.



131

4(i). ADT =

[
1 −1 2
3 1 4

]⎡⎣ 2
−2
3

⎤⎦ =

[
10
16

]
.

4(j). ETA =

[
2− i −i
1 + i 2 + 4i

] [
1 −1 2
3 1 4

]
=

[
2− 4i −2 4− 6i
7 + 13i 1 + 3i 10 + 18i

]
.

5. We have

ABC = (AB)C =

⎛⎜⎜⎝[ −3 2 7 −1
6 0 −3 −5

]⎡⎢⎢⎣
−2 8
8 −3

−1 −9
0 2

⎤⎥⎥⎦
⎞⎟⎟⎠[ −6 1

1 5

]

=

[
15 −95
−9 65

] [ −6 1
1 5

]
=

[ −185 −460
119 316

]
and

CAB = C(AB) =

[ −6 1
1 5

]⎛⎜⎜⎝[ −3 2 7 −1
6 0 −3 −5

]⎡⎢⎢⎣
−2 8
8 −3

−1 −9
0 2

⎤⎥⎥⎦
⎞⎟⎟⎠

=

[ −6 1
1 5

] [
15 −95
−9 65

]
=

[ −99 635
−30 230

]
.

6.

Ac =

[
1 3

−5 4

] [
6

−2

]
= 6

[
1

−5

]
+ (−2)

[
3
4

]
=

[
0

−38

]
.

7.

Ac =

⎡⎣ 3 −1 4
2 1 5
7 −6 3

⎤⎦⎡⎣ 2
3

−4

⎤⎦ = 2

⎡⎣ 3
2
7

⎤⎦+ 3

⎡⎣ −1
1

−6

⎤⎦+ (−4)

⎡⎣ 4
5
3

⎤⎦ =

⎡⎣ −13
−13
−16

⎤⎦ .

8.

Ac =

⎡⎣ −1 2
4 7
5 −4

⎤⎦[ 5
−1

]
= 5

⎡⎣ −1
4
5

⎤⎦+ (−1)

⎡⎣ 2
7

−4

⎤⎦ =

⎡⎣ −7
13
29

⎤⎦ .

9. We have

Ac = x

[
a
e

]
+ y

[
b
f

]
+ z

[
c
g

]
+ w

[
d
h

]
=

[
xa+ yb+ zc+ wd
xe+ yf + zg + wh

]
.

10(a). The dimensions of B should be n× r in order that ABC is defined.

10(b). The elements of the ith row of A are ai1, ai2, . . . , ain and the elements of the jth column of BC are

r∑
m=1

b1mcmj ,
r∑

m=1

b2mcmj , . . . ,
r∑

m=1

bnmcmj ,
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so the element in the ith row and jth column of ABC = A(BC) is

ai1

r∑
m=1

b1mcmj + ai2

r∑
m=1

b2mcmj + · · ·+ ain

r∑
m=1

bnmcmj

=
n∑

k=1

aik

(
r∑

m=1

bkmcmj

)
=

n∑
k=1

(
r∑

m=1

aikbkm

)
cmj .

11(a).

A2 = AA =

[
1 −1
2 3

] [
1 −1
2 3

]
=

[ −1 −4
8 7

]
.

A3 = A2A =

[ −1 −4
8 7

] [
1 −1
2 3

]
=

[ −9 −11
22 13

]
.

A4 = A3A =

[ −9 −11
22 13

] [
1 −1
2 3

]
=

[ −31 −24
48 17

]
.

11(b).

A2 = AA =

⎡⎣ 0 1 0
−2 0 1
4 −1 0

⎤⎦⎡⎣ 0 1 0
−2 0 1
4 −1 0

⎤⎦ =

⎡⎣ −2 0 1
4 −3 0
2 4 −1

⎤⎦ .

A3 = A2A =

⎡⎣ −2 0 1
4 −3 0
2 4 −1

⎤⎦⎡⎣ 0 1 0
−2 0 1
4 −1 0

⎤⎦ =

⎡⎣ 4 −3 0
6 4 −3

−12 3 4

⎤⎦ .

A4 = A3A =

⎡⎣ 4 −3 0
6 4 −3

−12 3 4

⎤⎦⎡⎣ 0 1 0
−2 0 1
4 −1 0

⎤⎦ =

⎡⎣ 6 4 −3
−20 9 4
10 −16 3

⎤⎦ .

12(a). We apply the distributive property of matrix multiplication as follows:

(A+2B)2 = (A+2B)(A+2B) = A(A+2B)+(2B)(A+2B) = (A2+A(2B))+((2B)A+(2B)2) = A2+2AB+2BA+4B2,

where scalar factors of 2 are moved in front of the terms since they commute with matrix multiplication.

12(b). We apply the distributive property of matrix multiplication as follows:

(A+B + C)2 = (A+B + C)(A+B + C) = A(A+B + C) +B(A+B + C) + C(A+B + C)

= A2 +AB +AC +BA+B2 +BC + CA+ CB + C2

= A2 +B2 + C2 +AB +BA+AC + CA+BC + CB,

as required.

12(c). We can use the formula for (A+B)3 found in Example 2.2.20 and substitute −B for B throughout
the expression:

(A−B)3 = A3 +A(−B)A+ (−B)A2 + (−B)2A+A2(−B) +A(−B)2 + (−B)A(−B) + (−B)3

= A3 −ABA−BA2 +B2A−A2B +AB2 +BAB −B3,

as needed.
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13. We have

A2 =

[
2 −5
6 −6

] [
2 −5
6 −6

]
=

[ −26 20
−24 6

]
,

so that

A2 + 4A+ 18I2 =

[ −26 20
−24 6

]
+

[
8 −20
24 −24

]
+

[
18 0
0 18

]
=

[
0 0
0 0

]
.

14. We have

A2 =

⎡⎣ −1 0 4
1 1 2

−2 3 0

⎤⎦⎡⎣ −1 0 4
1 1 2

−2 3 0

⎤⎦ =

⎡⎣ −7 12 −4
−4 7 6
5 3 −2

⎤⎦
and

A3 =

⎡⎣ −1 0 4
1 1 2

−2 3 0

⎤⎦⎡⎣ −1 0 4
1 1 2

−2 3 0

⎤⎦⎡⎣ −1 0 4
1 1 2

−2 3 0

⎤⎦ =

⎡⎣ −7 12 −4
−4 7 6
5 3 −2

⎤⎦⎡⎣ −1 0 4
1 1 2

−2 3 0

⎤⎦ =

⎡⎣ 27 0 −4
−1 25 −2
2 −3 26

⎤⎦ .

Therefore, we have

A3 +A− 26I3 =

⎡⎣ 27 0 −4
−1 25 −2
2 −3 26

⎤⎦+

⎡⎣ −1 0 4
1 1 2

−2 3 0

⎤⎦−
⎡⎣ 26 0 0

0 26 0
0 0 26

⎤⎦ =

⎡⎣ 0 0 0
0 0 0
0 0 0

⎤⎦ .

15.

A2 =

⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦−
⎡⎣ 0 −1 0

0 0 −1
0 0 0

⎤⎦ =

⎡⎣ 1 1 0
0 1 1
0 0 1

⎤⎦ .

Substituting A =

⎡⎣ 1 x z
0 1 y
0 0 1

⎤⎦ for A, we have

⎡⎣ 1 x z
0 1 y
0 0 1

⎤⎦⎡⎣ 1 x z
0 1 y
0 0 1

⎤⎦ =

⎡⎣ 1 1 0
0 1 1
0 0 1

⎤⎦ ,

that is, ⎡⎣ 1 2x 2z + xy
0 1 2y
0 0 1

⎤⎦ =

⎡⎣ 1 1 0
0 1 1
0 0 1

⎤⎦ .

Since corresponding elements of equal matrices are equal, we obtain the following implications:

2y = 1 =⇒ y = 1/2,

2x = 1 =⇒ x = 1/2,

2z + xy = 0 =⇒ 2z + (1/2)(1/2) = 0 =⇒ z = −1/8.

Thus, A =

⎡⎣ 1 1/2 −1/8
0 1 1/2
0 0 1

⎤⎦.
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16. In order thatA2 = A, we require

[
x 1

−2 y

] [
x 1

−2 y

]
=

[
x 1

−2 y

]
, that is,

[
x2 − 2 x+ y

−2x− 2y −2 + y2

]
=[

x 1
−2 y

]
, or equivalently,

[
x2 − x− 2 x+ y − 1

−2x− 2y + 2 y2 − y − 2

]
= 02. Since corresponding elements of equal ma-

trices are equal, it follows that

x2 − x− 2 = 0 =⇒ x = −1 or x = 2, and

y2 − y − 2 = 0 =⇒ y = −1 or y = 2.

Two cases arise from x+ y − 1 = 0:

(a): If x = −1, then y = 2.

(b): If x = 2, then y = −1. Thus,

A =

[ −1 1
−2 2

]
or A =

[
2 1

−2 −1

]
.

17.

σ1σ2 =

[
0 1
1 0

] [
0 −i
i 0

]
=

[
i 0
0 −i

]
= i

[
1 0
0 −1

]
= iσ3.

σ2σ3 =

[
0 −i
i 0

] [
1 0
0 −1

]
=

[
0 i
i 0

]
= i

[
0 1
1 0

]
= iσ1.

σ3σ1 =

[
1 0
0 −1

] [
0 1
1 0

]
=

[
0 1

−1 0

]
= i

[
0 −i
i 0

]
= iσ2.

18.
[A,B] = AB −BA

=

[
1 −1
2 1

] [
3 1
4 2

]
−
[

3 1
4 2

] [
1 −1
2 1

]
=

[ −1 −1
10 4

]
−
[

5 −2
8 −2

]
=

[ −6 1
2 6

]
�= 02.

19.
[A1, A2] = A1A2 −A2A1

=

[
1 0
0 1

] [
0 1
0 0

]
−
[

0 1
0 0

] [
1 0
0 1

]
=

[
0 1
0 0

]
−
[

0 1
0 0

]
= 02, thus A1 and A2 commute.

[A1, A3] = A1A3 −A3A1

=

[
1 0
0 1

] [
0 0
1 0

]
−
[

0 0
1 0

] [
1 0
0 1

]
=

[
0 0
1 0

]
−
[

0 0
1 0

]
= 02, thus A1 and A3 commute.
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[A2, A3] = A2A3 −A3A2

=

[
0 1
0 0

] [
0 0
1 0

]
−
[

0 0
1 0

] [
0 1
0 0

]
=

[
1 0
0 0

]
−
[

0 0
0 1

]
=

[
1 0
0 −1

]
�= 02.

Then [A3, A2] = −[A2, A3] =

[ −1 0
0 1

]
�= 02. Thus, A2 and A3 do not commute.

20.
[A1, A2] = A1A2 −A2A1

=
1

4

[
0 i
i 0

] [
0 −1
1 0

]
− 1

4

[
0 −1
1 0

] [
0 i
i 0

]
=

1

4

[
i 0
0 −i

]
− 1

4

[ −i 0
0 i

]
=

1

4

[
2i 0
0 −2i

]
=

1

2

[
i 0
0 −i

]
= A3.

[A2, A3] = A2A3 −A3A2

=
1

4

[
0 −1
1 0

] [
i 0
0 −i

]
− 1

4

[
i 0
0 −1

] [
0 −1
1 0

]
=

1

4

[
0 i
i 0

]
− 1

4

[
0 −i

−i 0

]
=

1

4

[
0 2i
2i 0

]
=

1

2

[
0 i
i 0

]
= A1.

[A3, A1] = A3A1 −A1A3

=
1

4

[
i 0
0 −i

] [
0 i
i 0

]
− 1

4

[
0 i
i 0

] [
i 0
0 −i

]
=

1

4

[
0 −1

−1 0

]
− 1

4

[
0 1
1 0

]
=

1

4

[
0 −2
2 0

]
=

1

2

[
0 −1
1 0

]
= A2.

21.

[A, [B,C]] + [B, [C,A]] + [C, [A,B]]

= [A,BC − CB] + [B,CA−AC] + [C,AB −BA]

= A(BC − CB)− (BC − CB)A+B(CA−AC)− (CA−AC)B + C(AB −BA)− (AB −BA)C

= ABC −ACB −BCA+ CBA+BCA−BAC − CAB +ACB + CAB − CBA−ABC +BAC = 0.

22.
Proof that A(BC) = (AB)C: Let A = [aij ] be of size m× n, B = [bjk] be of size n× p, and C = [ckl] be
of size p× q. Consider the (i, j)-element of (AB)C:

[(AB)C]ij =

p∑
k=1

(
n∑

h=1

aihbhk

)
ckj =

n∑
h=1

aih

(
p∑

k=1

bhkckj

)
= [A(BC)]ij .
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Proof that A(B + C) = AB +AC: We have

[A(B + C)]ij =

n∑
k=1

aik(bkj + ckj)

=
n∑

k=1

(aijbkj + aikckj)

=
n∑

k=1

aikbkj +
n∑

k=1

aikckj

= [AB +AC]ij .

23.
Proof that (AT )T = A: Let A = [aij ]. Then AT = [aji], so (AT )T = [aji]

T = aij = A, as needed.
Proof that (A + C)T = AT + CT : Let A = [aij ] and C = [cij ]. Then [(A + C)T ]ij = [A + C]ji =
[A]ji + [C]ji = aji + cji = [AT ]ij + [CT ]ij = [AT + CT ]ij . Hence, (A+ C)T = AT + CT .

24. We have

(IA)ij =
m∑

k=1

δikakj = δiiaij = aij ,

for 1 ≤ i ≤ m and 1 ≤ j ≤ p. Thus, ImAm×p = Am×p.

25. Let A = [aij ] and B = [bij ] be n× n matrices. Then

tr(AB) =
n∑

k=1

(
n∑

i=1

akibik

)
=

n∑
k=1

(
n∑

i=1

bikaki

)
=

n∑
i=1

(
n∑

k=1

bikaki

)
= tr(BA).

26(a). BTAT =

[
0 −7 −1

−4 1 −3

]⎡⎣ −3
−1
6

⎤⎦ =

[
1

−7

]
.

26(b). CTBT =

⎡⎢⎢⎣
−9 1
0 1
3 5

−2 −2

⎤⎥⎥⎦[ 0 −7 −1
−4 1 −3

]
=

⎡⎢⎢⎣
−4 64 6
−4 1 −3

−20 −16 −18
8 12 8

⎤⎥⎥⎦.
26(c). Since DT is a 3×3 matrix and A is a 1×3 matrix, it is not possible to compute the expression DTA.

27(a). ADT =
[ −3 −1 6

] ⎡⎣ −2 0 1
1 0 −2
5 7 −1

⎤⎦ =
[
35 42 −7

]
.

27(b). First note that CTC =

⎡⎢⎢⎣
−9 1
0 1
3 5

−2 −2

⎤⎥⎥⎦[ −9 0 3 −2
1 1 5 −2

]
=

⎡⎢⎢⎣
82 1 −22 16
1 1 5 −2

−22 5 34 −16
16 −2 −16 8

⎤⎥⎥⎦. Therefore,

(CTC)2 =

⎡⎢⎢⎣
82 1 −22 16
1 1 5 −2

−22 5 34 −16
16 −2 −16 8

⎤⎥⎥⎦
⎡⎢⎢⎣

82 1 −22 16
1 1 5 −2

−22 5 34 −16
16 −2 −16 8

⎤⎥⎥⎦ =

⎡⎢⎢⎣
7465 −59 −2803 1790
−59 31 185 −82

−2803 185 1921 −1034
1790 −82 −1034 580

⎤⎥⎥⎦ .
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27(c). DTB =

⎡⎣ −2 0 1
1 0 −2
5 7 −1

⎤⎦⎡⎣ 0 −4
−7 1
−1 −3

⎤⎦ =

⎡⎣ −1 5
2 2

−48 −10

⎤⎦.
28(a). We have

S = [s1, s2, s3] =

⎡⎣ −x −y z
0 y 2z
x −y z

⎤⎦ ,

so

AS =

⎡⎣ 2 2 1
2 5 2
1 2 2

⎤⎦⎡⎣ −x −y z
0 y 2z
x −y z

⎤⎦ =

⎡⎣ −x −y 7z
0 y 14z
x −y 7z

⎤⎦ = [s1, s2, 7s3].

28(b).

STAS = ST (AS) =

⎡⎣ −x 0 x
−y y −y
z 2z z

⎤⎦⎡⎣ −x −y 7z
0 y 14z
x −y 7z

⎤⎦ =

⎡⎣ 2x2 0 0
0 3y2 0
0 0 42z2

⎤⎦ ,

but STAS = diag(1, 1, 7), so we have the following

2x2 = 1 =⇒ x = ±
√
2

2

3y2 = 1 =⇒ y = ±
√
3

3

6z2 = 1 =⇒ z = ±
√
6

6
.

29(a). We have

AS =

⎡⎣ 1 −4 0
−4 7 0
0 0 5

⎤⎦⎡⎣ 0 2x y
0 x −2y
z 0 0

⎤⎦
=

⎡⎣ 0 −2x 9y
0 −x −18y
5z 0 0

⎤⎦
= [5s1,−s2, 9s3].

29(b). We have

STAS =

⎡⎣ 0 0 z
2x x 0
y −2y 0

⎤⎦⎡⎣ 0 −2x 9y
0 −x −18y
5z 0 0

⎤⎦ =

⎡⎣ 5z2 0 0
0 −5x2 0
0 0 45y2

⎤⎦ ,

so in order for this to be equal to diag(5,−1, 9), we must have

5z2 = 5, −5x2 = −1, 45y2 = 9.

Thus, we must have z2 = 1, x2 = 1
5 , and y2 = 1

5 . Therefore, the values of x, y, and z that we are looking for

are x = ±
√

1
5 , y = ±

√
1
5 , and z = ±1.
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30(a).

⎡⎢⎢⎣
2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2

⎤⎥⎥⎦.

30(b).

⎡⎣ 7 0 0
0 7 0
0 0 7

⎤⎦.
31. Suppose A is an n×n scalar matrix with trace k. If A = aIn, then tr(A) = na = k, so we conclude that
a = k/n. So A = k

nIn, a uniquely determined matrix.

32. We have

BT =

[
1

2
(A+AT )

]T
=

1

2
(A+AT )T =

1

2
(AT +A) = B

and

CT =

[
1

2
(A−AT )

]T
=

1

2
(AT −A) = −1

2
(A−AT ) = −C.

Thus, B is symmetric and C is skew-symmetric.
33. We have

B + C =
1

2
(A+AT ) +

1

2
(A−AT ) =

1

2
A+

1

2
AT +

1

2
A− 1

2
AT = A.

34. We have

B =
1

2
(A+AT ) =

1

2

⎛⎝⎡⎣ 4 −1 0
9 −2 3
2 5 5

⎤⎦+

⎡⎣ 4 9 2
−1 −2 5
0 3 5

⎤⎦⎞⎠ =
1

2

⎡⎣ 8 8 2
8 −4 8
2 8 10

⎤⎦ =

⎡⎣ 4 4 1
4 −2 4
1 4 5

⎤⎦
and

C =
1

2
(A−AT ) =

1

2

⎛⎝⎡⎣ 4 −1 0
9 −2 3
2 5 5

⎤⎦−
⎡⎣ 4 9 2

−1 −2 5
0 3 5

⎤⎦⎞⎠ =
1

2

⎡⎣ 0 −10 −2
10 0 −2
2 2 0

⎤⎦ =

⎡⎣ 0 −5 −1
5 0 −1
1 1 0

⎤⎦ .

35.

B =
1

2

⎛⎝⎡⎣ 1 −5 3
3 2 4
7 −2 6

⎤⎦+

⎡⎣ 1 3 7
−5 2 −2
3 4 6

⎤⎦⎞⎠ =
1

2

⎡⎣ 2 −2 10
−2 4 2
10 2 12

⎤⎦ =

⎡⎣ 1 −1 5
−1 2 1
5 1 6

⎤⎦ .

C =
1

2

⎛⎝⎡⎣ 1 −5 3
3 2 4
7 −2 6

⎤⎦−
⎡⎣ 1 3 7

−5 2 −2
3 4 6

⎤⎦⎞⎠ =
1

2

⎡⎣ 0 −8 −4
8 0 6
4 −6 0

⎤⎦ =

⎡⎣ 0 −4 −2
4 0 3
2 −3 0

⎤⎦ .

36(a). If A is symmetric, then AT = A, so that

B =
1

2
(A+AT ) =

1

2
(A+A) =

1

2
(2A) = A

and

C =
1

2
(A−AT ) =

1

2
(A−A) =

1

2
(0n) = 0n.
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36(b). If A is skew-symmetric, then AT = −A, so that

B =
1

2
(A+AT ) =

1

2
(A+ (−A)) =

1

2
(0n) = 0n

and

C =
1

2
(A−AT ) =

1

2
(A− (−A)) =

1

2
(2A) = A.

37. If A = [aij ] and D = diag(d1, d2, . . . , dn), then we must show that the (i, j)-entry of DA is diaij . In
index notation, we have

(DA)ij =
n∑

k=1

diδikakj = diδiiaij = diaij .

Hence, DA is the matrix obtained by multiplying the ith row vector of A by di, where 1 ≤ i ≤ n.

38. If A = [aij ] and D = diag(d1, d2, . . . , dn), then we must show that the (i, j)-entry of AD is djaij . In
index notation, we have

(AD)ij =
n∑

k=1

aikdjδkj = aijdjδjj = aijdj .

Hence, AD is the matrix obtained by multiplying the jth column vector of A by dj , where 1 ≤ j ≤ n.

39. Since A and B are symmetric, we have that AT = A and BT = B. Using properties of the transpose
operation, we therefore have

(AB)T = BTAT = BA = AB,

and this shows that AB is symmetric.

40(a). We have (AAT )T = (AT )TAT = AAT , so that AAT is symmetric.

40(b). We have (ABC)T = [(AB)C]T = CT (AB)T = CT (BTAT ) = CTBTAT , as needed.

41. A′(t) =
[

1 cos t
− sin t 4

]
.

42. A′(t) =
[ −2e−2t

cos t

]
.

43. A′(t) =

⎡⎣ cos t − sin t 0
sin t cos t 1
0 3 0

⎤⎦.
44. A′(t) =

[
et 2e2t 2t
2et 8e2t 10t

]
.

45. We show that the (i, j)-entry of both sides of the equation agree. First, recall that the (i, j)-entry of
AB is

∑n
k=1 aikbkj , and therefore, the (i, j)-entry of d

dt (AB) is (by the product rule)

n∑
k=1

a′ikbkj + aikb
′
kj =

n∑
k=1

a′ikbkj +
n∑

k=1

aikb
′
kj .

The former term is precise the (i, j)-entry of the matrix dA
dt B, while the latter term is precise the (i, j)-entry

of the matrix AdB
dt . Thus, the (i, j)-entry of d

dt (AB) is precisely the sum of the (i, j)-entry of dA
dt B and the

(i, j)-entry of AdB
dt . Thus, the equation we are proving follows immediately.
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46. We have∫ 1

0

[
et e−t

2et 5e−t

]
dt =

[
et −e−t

2et −5e−t

] ∣∣1
0 =

[
e −1/e
2e −5/e

]
−
[

1 −1
2 −5

]
=

[
e− 1 1− 1/e
2e− 2 5− 5/e

]
.

47. We have∫ π/2

0

[
cos t
sin t

]
dt =

[
sin t

− cos t

] ∣∣∣π/20 =

[
sin(π/2)

− cos(π/2)

]
−
[

sin 0
− cos 0

]
=

[
1
0

]
−
[

0
−1

]
=

[
1
1

]
.

48. We have∫ 1

0

[
et e2t t2

2et 4e2t 5t2

]
dt = =

[
et 1

2e
2t t3

3
2et 2e2t 5

3 t
3

] ∣∣1
0

=

[
e e2/2 1/3
2e 2e2 5/3

]
−
[

1 1/2 0
2 2 0

]
=

[
e− 1 e2−1

2 1/3
2e− 2 2e2 − 2 5/3

]
.

49. We have

∫ 1

0

⎡⎣ e2t sin 2t
t2 − 5 tet

sec2 t 3t− sin t

⎤⎦ dt =

⎡⎣ 1
2e

2t − 1
2 cos 2t

t3

3 − 5t tet − et

tan t 3
2 t

2 + cos t

⎤⎦ ∣∣1
0

=

⎡⎣ e2

2 − cos 2
2−14/3 0

tan 1 3
2 + cos 1

⎤⎦−
⎡⎣ 1

2 − 1
2

0 −1
0 1

⎤⎦ =

⎡⎣ e2−1
2

1−cos 2
2−14/3 1

tan 1 1
2 + cos 1

⎤⎦ .

50.
∫
A(t)dt =

[ ∫ −5dt
∫

1
t2+1dt

∫
e3tdt

]
=
[ −5t tan−1(t) 1

3e
3t
]
.

51.

∫ [
2t
3t2

]
dt =

[
t2

t3

]
.

52.

∫ ⎡⎣ sin t cos t 0
− cos t sin t t

0 3t 1

⎤⎦ dt =

⎡⎣ − cos t sin t 0
− sin t − cos t t2/2

0 3t2/2 t

⎤⎦.
53.

∫ [
et e−t

2et 5e−t

]
dt =

[
et −e−t

2et −5e−t

]
.

54.

∫ ⎡⎣ e2t sin 2t
t2 − 5 tet

sec2 t 3t− sin t

⎤⎦ dt =

⎡⎣ 1
2e

2t − 1
2 cos 2t

t3

3 − 5t tet − et

tan t 3
2 t

2 + cos t

⎤⎦.
Solutions to Section 2.3

True-False Review:

(a): FALSE. The last column of the augmented matrix corresponds to the constants on the right-hand
side of the linear system, so if the augmented matrix has n columns, there are only n − 1 unknowns under
consideration in the system.
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(b): FALSE. Three distinct planes can intersect in a line (e.g. Figure 2.3.1, lower right picture). For
instance, the xy-plane, the xz-plane, and the plane y = z intersect in the x-axis.

(c): FALSE. The right-hand side vector must have m components, not n components.

(d): TRUE. If a linear system has two distinct solutions x1 and x2, then any point on the line containing
x1 and x2 is also a solution, giving us infinitely many solutions, not exactly two solutions.

(e): TRUE. The augmented matrix for a linear system has one additional column (containing the constants
on the right-hand side of the equation) beyond the matrix of coefficients.

(f): FALSE. Because the vector (x1, x2, x3, 0, 0) has five entries, this vector belongs to R
5. Vectors in R

3

can only have three slots.

(g): FALSE. The two column vectors given have different numbers of components, so they are not the
same vectors.

Problems:

1.

2 · 1− 3(−1) + 4 · 2 = 13,

1 + (−1)− 2 = −2,

5 · 1 + 4(−1) + 2 = 3.

2.

2 + (−3)− 2 · 1 = −3,

3 · 2− (−3)− 7 · 1 = 2,

2 + (−3) + 1 = 0,

2 · 2 + 2(−3)− 4 · 1 = −6.

3.

(1− t) + (2 + 3t) + (3− 2t) = 6,

(1− t)− (2 + 3t)− 2(3− 2t) = −7,

5(1− t) + (2 + 3t)− (3− 2t) = 4.

4.

s+ (s− 2t)− (2s+ 3t) + 5t = 0,

2(s− 2t)− (2s+ 3t) + 7t = 0,

4s+ 2(s− 2t)− 3(2s+ 3t) + 13t = 0.

5. The two given lines are the same line. Therefore, since this line contains an infinite number of points,
there must be an infinite number of solutions to this linear system.

6. These two lines are parallel and distinct, and therefore, there are no common points on these lines. In
other words, there are no solutions to this linear system.

7. These two lines have different slopes, and therefore, they will intersect in exactly one point. Thus, this
system of equations has exactly one solution.
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8. The first and third equations describe lines that are parallel and distinct, and therefore, there are no
common points on these lines. In other words, there are no solutions to this linear system.

9. A =

⎡⎣ 1 2 −3
2 4 −5
7 2 −1

⎤⎦ ,b =

⎡⎣ 1
2
3

⎤⎦ , A# =

⎡⎣ 1 2 −3 1
2 4 −5 2
7 2 −1 3

⎤⎦.
10. A =

[
1 1 1 −1
2 4 −3 7

]
,b =

[
3
2

]
, A# =

[
1 1 1 −1 3
2 4 −3 7 2

]
.

11. A =

⎡⎣ 1 2 −1
2 3 −2
5 6 −5

⎤⎦ ,b =

⎡⎣ 0
0
0

⎤⎦ , A# =

⎡⎣ 1 2 −1 0
2 3 −2 0
5 6 −5 0

⎤⎦.
12. It is acceptable to use any variable names. We will use x1, x2, x3, x4:

x1 − x2 +2x3 + 3x4 = 1,

x1 + x2 −2x3 + 6x4 = −1,

3x1 + x2 +4x3 + 2x4 = 2.

13. It is acceptable to use any variable names. We will use x1, x2, x3:

2x1 + x2 +3x3 = 3,

4x1 − x2 +2x3 = 1,

7x1 + 6x2 +3x3 = −5.

14. The system of equations here only contains one equation: 4x1 − 2x2 − 2x3 − 3x5 = −9.

15. This system of equations has three equations: −3x2 = −1, 2x1 − 7x2 = 6, 5x1 + 5x2 = 7.

16. Given Ax = 0 and Ay = 0, and an arbitrary constant c,

(a). we have

Az = A(x+ y) = Ax+Ay = 0+ 0 = 0

and

Aw = A(cx) = c(Ax) = c0 = 0.

(b). No, because

A(x+ y) = Ax+Ay = b+ b = 2b �= b,

and

A(cx) = c(Ax) = cb �= b

in general.

17.

[
x′
1

x′
2

]
=

[ −4 3
6 −4

] [
x1

x2

]
+

[
4t
t2

]
.

18.

[
x′
1

x′
2

]
=

[
t2 −t

− sin t 1

] [
x1

x2

]
.

19.

[
x′
1

x′
2

]
=

[
0 e2t

− sin t 0

] [
x1

x2

]
+

[
0
1

]
.
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20.

⎡⎣ x′
1

x′
2

x′
3

⎤⎦ =

⎡⎣ 0 − sin t 1
−et 0 t2

−t t2 0

⎤⎦⎡⎣ x1

x2

x3

⎤⎦+

⎡⎣ t
t3

1

⎤⎦.
21. We have

x′(t) =
[

4e4t

−2(4e4t)

]
=

[
4e4t

−8e4t

]
and

Ax+ b =

[
2 −1

−2 3

] [
e4t

−2e4t

]
+

[
0
0

]
=

[
2e4t + (−1)(−2e4t) + 0
−2e4t + 3(−2e4t) + 0

]
=

[
4e4t

−8e4t

]
.

22. We have

x′(t) =
[

4(−2e−2t) + 2 cos t
3(−2e−2t) + sin t

]
=

[ −8e−2t + 2 cos t
−6e−2t + sin t

]
and

Ax+ b =

[
1 −4

−3 2

] [
4e−2t + 2 sin t
3e−2t − cos t

]
+

[ −2(cos t+ sin t)
7 sin t+ 2 cos t

]
=

[
4e−2t + 2 sin t− 4(3e−2t − cos t)− 2(cos t+ sin t)

−3(4e−2t + 2 sin t) + 2(3e−2t − cos t) + 7 sin t+ 2 cos t

]
=

[ −8e−2t + 2 cos t
−6e−2t + sin t

]
.

23. We compute

x′ =
[

3et + 2tet

et + 2tet

]
and

Ax+ b =

[
2 −1

−1 2

] [
2tet + et

2tet − et

]
+

[
0
4et

]
=

[
2(2tet + et)− (2tet − et) + 0

−(2tet + et) + 2(2tet − et) + 4et

]
=

[
2tet + 3et

2tet + et

]
.

Therefore, we see from these calculations that x′ = Ax+ b.

24. We compute

x′ =

⎡⎣ −tet − et

−9e−t

tet + et − 6e−t

⎤⎦
and

Ax+b =

⎡⎣ 1 0 0
2 −3 2
1 −2 2

⎤⎦⎡⎣ −tet

9e−t

tet + 6e−t

⎤⎦+
⎡⎣ −et

6e−t

et

⎤⎦ =

⎡⎣ −tet

2(−tet)− 3(9e−t) + 2(tet + 6e−t)
−tet − 2(9e−t) + 2(tet + 6e−t)

⎤⎦+
⎡⎣ −et

6e−t

et

⎤⎦ =

⎡⎣ −tet − et

−9e−t

tet + et − 6e−

Therefore, we see from these calculations that x′ = Ax+ b.

Solutions to Section 2.4

True-False Review:

(a): TRUE. The precise row-echelon form obtained for a matrix depends on the particular elementary row
operations (and their order). However, Theorem 2.4.15 states that there is a unique reduced row-echelon
form for a matrix.
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(b): FALSE. Upper triangular matrices could have pivot entries that are not 1. For instance, the following

matrix is upper triangular, but not in row echelon form:

[
2 0
0 0

]
.

(c): TRUE. The pivots in a row-echelon form of an n × n matrix must move down and to the right as
we look from one row to the next beneath it. Thus, the pivots must occur on or to the right of the main
diagonal of the matrix, and thus all entries below the main diagonal of the matrix are zero.

(d): FALSE. This would not be true, for example, if A was a zero matrix with 5 rows and B was a nonzero
matrix with 4 rows.

(e): FALSE. If A is a nonzero matrix and B = −A, then A + B = 0, so rank(A + B) = 0, but rank(A),
rank(B) ≥ 1 so rank(A)+ rank(B) ≥ 2.

(f): FALSE. For example, if A = B =

[
0 1
0 0

]
, then AB = 0, so rank(AB) = 0, but rank(A)+

rank(B) = 1 + 1 = 2.

(g): TRUE. A matrix of rank zero cannot have any pivots, hence no nonzero rows. It must be the zero
matrix.

(h): TRUE. The matrices A and 2A have the same reduced row-echelon form, since we can move between
the two matrices by multiplying the rows of one of them by 2 or 1/2, a matter of carrying out elementary
row operations. If the two matrices have the same reduced row-echelon form, then they have the same rank.

(i): TRUE. The matrices A and 2A have the same reduced row-echelon form, since we can move between
the two matrices by multiplying the rows of one of them by 2 or 1/2, a matter of carrying out elementary
row operations.

Problems:

1. Neither.

2. Reduced row-echelon form.

3. Neither.

4. Row-echelon form.

5. Row-echelon form.

6. Reduced row-echelon form.

7. Reduced row-echelon form.

8. Reduced row-echelon form.

9. [
2 −4

−4 8

]
1
∼

[
1 −2

−4 8

]
2
∼

[
1 −2
0 0

]
,Rank (A) = 1.

1. M1(
1
2 ) 2. A12(4)

10. [
2 1
1 −3

]
1
∼

[
1 −3
2 1

]
2
∼

[
1 −3
0 7

]
3
∼

[
1 −3
0 1

]
,Rank (A) = 2.

1. P12 2. A12(−2) 3. M2(
1
7 )
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11. ⎡⎣ 0 1 3
0 1 4
0 3 5

⎤⎦ 1
∼

⎡⎣ 0 1 3
0 0 1
0 0 4

⎤⎦ 2
∼

⎡⎣ 0 1 3
0 0 1
0 0 0

⎤⎦ ,Rank (A) = 2.

1. A12(−1), A13(−3) 2. A23(−4)

12. ⎡⎣ 2 1 4
2 −3 4
3 −2 6

⎤⎦ 1
∼

⎡⎣ 3 −2 6
2 −3 4
2 1 4

⎤⎦ 2
∼

⎡⎣ 1 1 2
2 −3 4
2 1 4

⎤⎦ 3
∼

⎡⎣ 1 1 2
0 −5 0
0 −1 0

⎤⎦ 4
∼

⎡⎣ 1 1 2
0 −1 0
0 −5 0

⎤⎦
5
∼

⎡⎣ 1 1 2
0 1 0
0 −5 0

⎤⎦ 6
∼

⎡⎣ 1 1 2
0 1 0
0 0 0

⎤⎦ ,Rank (A) = 2.

1. P13 2. A21(−1) 3. A12(−2), A13(−3) 4. P23 5. M2(−1) 6. A32(5)

13. ⎡⎣ 2 −1 3
3 1 −2
2 −2 1

⎤⎦ 1
∼

⎡⎣ 3 1 −2
2 −1 3
2 −2 1

⎤⎦ 2
∼

⎡⎣ 1 2 −5
2 −1 3
0 −1 −2

⎤⎦ 3
∼

⎡⎣ 1 2 −5
0 −5 13
0 −1 −2

⎤⎦ 4
∼

⎡⎣ 1 2 −5
0 −1 −2
0 −5 13

⎤⎦
5
∼

⎡⎣ 1 2 −5
0 1 2
0 −5 13

⎤⎦ 6
∼

⎡⎣ 1 2 −5
0 1 2
0 0 23

⎤⎦ 7
∼

⎡⎣ 1 2 −5
0 1 2
0 0 1

⎤⎦ ,Rank (A) = 3.

1. P12 2. A21(−1), A23(−1) 3. A12(−2) 4. P23 5. M2(−1) 6. A23(5) 7. M3(1/23).

14. ⎡⎣ 2 −1
3 2
2 5

⎤⎦ 1
∼

⎡⎣ 3 2
2 −1
2 5

⎤⎦ 2
∼

⎡⎣ 1 3
2 −1
2 5

⎤⎦ 3
∼

⎡⎣ 1 3
0 −7
0 −1

⎤⎦ 4
∼

⎡⎣ 1 3
0 −1
0 −7

⎤⎦ 5
∼

⎡⎣ 1 3
0 1
0 0

⎤⎦ ,Rank (A) = 2.

1. P12 2. A21(−1) 3. A12(−2), A13(−2) 4. P23 5. M2(−1), A23(7).

15. ⎡⎢⎢⎣
2 −2 −1 3
3 −2 3 1
1 −1 1 0
2 −1 2 2

⎤⎥⎥⎦ 1
∼

⎡⎢⎢⎣
1 −1 1 0
3 −2 3 1
2 −2 −1 3
2 −1 2 2

⎤⎥⎥⎦ 2
∼

⎡⎢⎢⎣
1 −1 1 0
0 1 0 1
0 0 −3 3
0 1 0 2

⎤⎥⎥⎦ 3
∼

⎡⎢⎢⎣
1 −1 1 0
0 1 0 1
0 0 −3 3
0 0 0 1

⎤⎥⎥⎦
4
∼

⎡⎢⎢⎣
1 −1 1 0
0 1 0 1
0 0 1 −1
0 0 0 1

⎤⎥⎥⎦ ,Rank (A) = 4.
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1. P13 2. A12(−3), A13(−2), A14(−2) 3. A24(−1) 4. M3(1/3)

16.⎡⎣ 2 −1 3 4
1 −2 1 3
1 −5 0 5

⎤⎦ 1
∼

⎡⎣ 1 −2 1 3
2 −1 3 4
1 −5 0 5

⎤⎦ 2
∼

⎡⎣ 1 −2 1 3
0 3 1 −2
0 0 0 0

⎤⎦ 3
∼

⎡⎣ 1 −2 1 3
0 1 1

3 − 2
3

0 0 0 0

⎤⎦ ,Rank (A) = 2.

1. P12 2. A12(−2), A13(−1) 3. M2(1/3)

17. ⎡⎣ 2 1 3 4 2
1 0 2 1 3
2 3 1 5 7

⎤⎦ 1
∼

⎡⎣ 1 0 2 1 3
2 1 3 4 2
2 3 1 5 7

⎤⎦ 2
∼

⎡⎣ 1 0 2 1 3
0 1 −1 2 −4
0 3 −3 3 1

⎤⎦ 3
∼

⎡⎣ 1 0 2 1 3
0 1 −1 2 −4
0 0 0 −3 1

⎤⎦
4
∼

⎡⎣ 1 0 2 1 3
0 1 −1 2 −4
0 0 0 1 − 1

3

⎤⎦ ,Rank (A) = 3.

1. P12 2. A12(−2), A13(−2), 3. A23(−3) 4. M3(− 1
3 )

18. ⎡⎢⎢⎣
4 7 4 7
3 5 3 5
2 −2 2 −2
5 −2 5 −2

⎤⎥⎥⎦ 1
∼

⎡⎢⎢⎣
1 2 1 2
3 5 3 5
2 −2 2 −2
5 −2 5 −2

⎤⎥⎥⎦ 2
∼

⎡⎢⎢⎣
1 2 1 2
0 −1 0 −1
0 −6 0 −6
0 −12 0 −12

⎤⎥⎥⎦ 3
∼

⎡⎢⎢⎣
1 2 1 2
0 1 0 1
0 −6 0 −6
0 −12 0 −12

⎤⎥⎥⎦

4
∼

⎡⎢⎢⎣
1 2 1 2
0 1 0 1
0 0 0 0
0 0 0 0

⎤⎥⎥⎦ ,Rank (A) = 2.

1. A21(−1) 2. A12(−3), A13(−2), A14(−5) 3. M2(−1) 4. A23(6), A24(12)

19. [ −4 2
−6 3

]
1
∼

[
1 −1/2

−6 3

]
2
∼

[
1 −1/2
0 0

]
, Rank(A) = 1.

1. M1(− 1
4 ) 2. A12(6)

20. [
3 2
1 −1

]
1
∼

[
1 −1
3 2

]
2
∼

[
1 −1
0 5

]
3
∼

[
1 −1
0 1

]
4
∼

[
1 0
0 1

]
= I2,Rank (A) = 2.

1. P12 2. A12(−3) 3. M2(
1
5 ) 4. A21(1)
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21. ⎡⎣ 3 7 10
2 3 −1
1 2 1

⎤⎦ 1
∼

⎡⎣ 1 2 1
2 3 −1
3 7 10

⎤⎦ 2
∼

⎡⎣ 1 2 1
0 −1 −3
0 1 7

⎤⎦ 3
∼

⎡⎣ 1 2 1
0 1 3
0 1 7

⎤⎦ 4
∼

⎡⎣ 1 0 −5
0 1 3
0 0 4

⎤⎦
5
∼

⎡⎣ 1 0 −5
0 1 3
0 0 1

⎤⎦ 6
∼

⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦ = I3,Rank (A) = 3.

1. P13 2. A12(−2), A13(−3) 3. M2(−1) 4. A21(−2), A23(−1) 5. M3(
1
4 ) 6. A31(5), A32(−3)

22. ⎡⎣ 3 −3 6
2 −2 4
6 −6 12

⎤⎦ 1
∼

⎡⎣ 1 −1 2
0 0 0
0 0 0

⎤⎦ ,Rank (A) = 1.

1. M1(
1
3 ), A12(−2), A13(−6)

23. ⎡⎣ 3 5 −12
2 3 −7

−2 −1 1

⎤⎦ 1
∼

⎡⎣ 1 2 −5
0 −1 3
0 3 −9

⎤⎦ 2
∼

⎡⎣ 1 2 −5
0 1 −3
0 3 −9

⎤⎦ 3
∼

⎡⎣ 1 0 1
0 1 −3
0 0 0

⎤⎦ ,Rank (A) = 2.

1. A21(−1), A12(−2), A13(2) 2. M2(−1) 3. A21(−2), A23(−3)

24. ⎡⎢⎢⎣
1 −1 −1 2
3 −2 0 7
2 −1 2 4
4 −2 3 8

⎤⎥⎥⎦ 1
∼

⎡⎢⎢⎣
1 −1 −1 2
0 1 3 1
0 1 4 0
0 2 7 0

⎤⎥⎥⎦ 2
∼

⎡⎢⎢⎣
1 0 2 3
0 1 3 1
0 0 1 −1
0 0 1 −2

⎤⎥⎥⎦ 3
∼

⎡⎢⎢⎣
1 0 0 5
0 1 0 4
0 0 1 −1
0 0 0 −1

⎤⎥⎥⎦
4
∼

⎡⎢⎢⎣
1 0 0 5
0 1 0 4
0 0 1 −1
0 0 0 1

⎤⎥⎥⎦ 5
∼

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ = I4,Rank (A) = 4.

1. A12(−3), A13(−2), A14(−4) 2. A21(1), A23(−1), A24(−2) 3. A31(−2), A32(−3), A34(−1)

4. M4(−1) 5. A41(−5), A42(−4), A43(1)

25.⎡⎣ 1 −2 1 3
3 −6 2 7
4 −8 3 10

⎤⎦ 1
∼

⎡⎣ 1 −2 1 3
0 0 −1 −2
0 0 −1 −2

⎤⎦ 2
∼

⎡⎣ 1 −2 1 3
0 0 1 2
0 0 −1 −2

⎤⎦ 3
∼

⎡⎣ 1 −2 0 1
0 0 1 2
0 0 0 0

⎤⎦ ,Rank (A) = 2.

1. A12(−3), A13(−4) 2. M2(−1) 3. A21(−1), A23(1)
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26. ⎡⎣ 0 1 2 1
0 3 1 2
0 2 0 1

⎤⎦ 1
∼

⎡⎣ 0 1 2 1
0 0 −6 −2
0 0 −4 −1

⎤⎦ 2
∼

⎡⎣ 0 1 2 1
0 0 1 1/3
0 0 −4 −1

⎤⎦ 3
∼

⎡⎣ 0 1 0 1/3
0 0 1 1/3
0 0 0 1/3

⎤⎦
4
∼

⎡⎣ 0 1 0 1/3
0 0 1 1/3
0 0 0 1

⎤⎦ 5
∼

⎡⎣ 0 1 0 0
0 0 1 0
0 0 0 1

⎤⎦ ,Rank (A) = 3.

1. A12(−3), A13(−2) 2. M2(− 1
6 ) 3. A21(−2), A23(4) 4. M3(3) 5. A32(− 1

3 ), A31(− 1
3 )

Solutions to Section 2.5

True-False Review:

(a): FALSE. This process is known as Gaussian elimination. Gauss-Jordan elimination is the process by
which a matrix is brought to reduced row echelon form via elementary row operations.

(b): TRUE. A homogeneous linear system always has the trivial solution x = 0, hence it is consistent.

(c): TRUE. The columns of the row-echelon form that contain leading 1s correspond to leading variables,
while columns of the row-echelon form that do not contain leading 1s correspond to free variables.

(d): TRUE. If the last column of the row-reduced augmented matrix for the system does not contain a
pivot, then the system can be solved by back-substitution. On the other hand, if this column does contain
a pivot, then that row of the row-reduced matrix containing the pivot in the last column corresponds to the
impossible equation 0 = 1.

(e): FALSE. The linear system x = 0, y = 0, z = 0 has a solution in (0, 0, 0) even though none of the
variables here is free.

(f): FALSE. The columns containing the leading 1s correspond to the leading variables, not the free
variables.

Problems:

For the problems of this section, A will denote the coefficient matrix of the given system, and
A# will denote the augmented matrix of the given system.

1. Converting the given system of equations to an augmented matrix and using Gaussian elimination we
obtain the following equivalent matrices:[

1 −5 3
3 −9 15

]
1
∼

[
1 −5 3
0 6 6

]
2
∼

[
1 −5 3
0 1 1

]
.

1. A12(−3) 2. M2(
1
6 )

By back substitution, we find that x2 = 1, and then x1 = 8. Therefore, the solution is (8, 1).

2. Converting the given system of equations to an augmented matrix and using Gaussian elimination we
obtain the following equivalent matrices:[

4 −1 8
2 1 1

]
1
∼

[
1 − 1

4 2
2 1 1

]
2
∼

[
1 − 1

4 2
0 3

2 −3

]
3
∼

[
1 − 1

4 2
0 1 −2

]
.
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1. M1(
1
4 ) 2. A12(−2) 3. M2(

2
3 )

By back substitution, we find that x2 = −2, and then x1 =
3

2
. Therefore, the solution is ( 32 ,−2).

3. Converting the given system of equations to an augmented matrix and using Gaussian elimination we
obtain the following equivalent matrices:[

7 −3 5
14 −6 10

]
1
∼

[
7 −3 5
0 0 0

]
2
∼

[
1 − 3

7
5
7

0 0 0

]
.

1. A12(−2) 2. M2(
1
7 )

Observe that x2 is a free variable, so we set x2 = t. Then by back substitution, we have x1 = 3
7 t +

5
7 .

Therefore, the solution set to this system is{(
3

7
t+

5

7
, t

)
: t ∈ R

}
.

4. Converting the given system of equations to an augmented matrix and using Gaussian elimination we
obtain the following equivalent matrices:⎡⎣ 1 2 1 1

3 5 1 3
2 6 7 1

⎤⎦ 1
∼

⎡⎣ 1 2 1 1
0 −1 −2 0
0 2 5 −1

⎤⎦ 2
∼

⎡⎣ 1 2 1 1
0 1 2 0
0 2 5 −1

⎤⎦ 3
∼

⎡⎣ 1 2 1 1
0 1 2 0
0 0 1 −1

⎤⎦ .

1. A12(−3), A13(−2) 2. M2(−1) 3. A23(−2)

The last augmented matrix results in the system:

x1 + 2x2 + x3 = 1,

x2 + 2x3 = 0,

x3 = −1.

By back substitution we obtain the solution (−2, 2,−1).

5. Converting the given system of equations to an augmented matrix and using Gaussian elimination, we
obtain the following equivalent matrices:⎡⎣ 3 −1 0 1

2 1 5 4
7 −5 −8 −3

⎤⎦ 1
∼

⎡⎣ 1 −2 −5 −3
2 1 5 4
7 −5 −8 −3

⎤⎦ 2
∼

⎡⎣ 1 −2 −5 −3
0 5 15 10
0 9 27 18

⎤⎦
3
∼

⎡⎣ 1 −2 −5 −3
0 1 3 2
0 9 27 18

⎤⎦ 4
∼

⎡⎣ 1 0 1 1
0 1 3 2
0 0 0 0

⎤⎦ .

1. A21(−1) 2. A12(−2), A13(−7) 3. M2(
1
5 ) 4. A21(2), A23(−9)

(c)2017 Pearson Education. Inc.



150

The last augmented matrix results in the system:

x1 + x3 = 1,

x2 + 3x3 = 2.

Let the free variable x3 = t, a real number. By back substitution we find that the system has the solution
set {(1− t, 2− 3t, t) : for all real numbers t}.
6. Converting the given system of equations to an augmented matrix and using Gaussian elimination we
obtain the following equivalent matrices:⎡⎣ 3 5 −1 14

1 2 1 3
2 5 6 2

⎤⎦ 1
∼

⎡⎣ 1 2 1 3
3 5 −1 4
2 5 6 2

⎤⎦ 2
∼

⎡⎣ 1 2 1 3
0 −1 −4 −5
0 1 4 −4

⎤⎦ 3
∼

⎡⎣ 1 2 1 3
0 1 4 5
0 1 4 −4

⎤⎦
4
∼

⎡⎣ 1 2 1 3
0 1 4 5
0 0 0 −9

⎤⎦ 5
∼

⎡⎣ 1 2 1 3
0 1 4 5
0 0 0 1

⎤⎦ .

1. P12 2. A12(−3), A13(−2) 3. M2(−1) 4. A23(−1) 5. M4(− 1
9 )

This system of equations is inconsistent since 2 = rank(A) < rank(A#) = 3.

7. Converting the given system of equations to an augmented matrix and using Gaussian elimination we
obtain the following equivalent matrices:⎡⎣ 6 −3 3 12

2 −1 1 4
−4 2 −2 −8

⎤⎦ 1
∼

⎡⎣ 1 − 1
2 − 1

2 2
2 −1 1 4

−4 2 −2 −8

⎤⎦ 1
∼

⎡⎣ 1 − 1
2

1
2 2

0 0 0 0
0 0 0 0

⎤⎦ .

1. M1(
1
6 ) 2. A12(−2), A13(4)

Since x2 and x3 are free variables, let x2 = s and x3 = t. The single equation obtained from the augmented
matrix is given by x1 − 1

2x2 +
1
2x3 = 2. Thus, the solution set of our system is given by

{(2 + s

2
− t

2
, s, t) : s, t any real numbers }.

8. Converting the given system of equations to an augmented matrix and using Gaussian elimination we
obtain the following equivalent matrices:

⎡⎢⎢⎣
2 −1 3 14
3 1 −2 −1
7 2 −3 3
5 −1 −2 5

⎤⎥⎥⎦ 1
∼

⎡⎢⎢⎣
3 1 −2 −1
2 −1 3 14
7 2 −3 3
5 −1 −2 5

⎤⎥⎥⎦ 2
∼

⎡⎢⎢⎣
1 2 −5 −15
2 −1 3 −14
7 2 −3 3
5 −1 −2 5

⎤⎥⎥⎦ 3
∼

⎡⎢⎢⎣
1 2 −5 −15
0 −5 13 44
0 −12 32 108
0 −11 23 80

⎤⎥⎥⎦

4
∼

⎡⎢⎢⎣
1 2 −5 −15
0 −12 32 108
0 −5 13 44
0 −11 23 80

⎤⎥⎥⎦ 5
∼

⎡⎢⎢⎣
1 2 −5 −15
0 −1 9 28
0 −5 13 44
0 −11 23 80

⎤⎥⎥⎦ 6
∼

⎡⎢⎢⎣
1 2 −5 −15
0 1 −9 −28
0 −5 13 44
0 −11 23 80

⎤⎥⎥⎦
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7
∼

⎡⎢⎢⎣
1 2 −5 −15
0 1 −9 −28
0 0 −32 −96
0 0 −76 −228

⎤⎥⎥⎦ 8
∼

⎡⎢⎢⎣
1 2 −5 −15
0 1 −9 −28
0 0 32 96
0 0 −76 −228

⎤⎥⎥⎦ 9
∼

⎡⎢⎢⎣
1 2 −5 −15
0 1 −9 −28
0 0 1 3
0 0 0 0

⎤⎥⎥⎦ .

1. P12 2. A21(−1) 3. A12(−2), A13(−7), A14(−5) 4. P23

5. A42(−1) 6. M2(−1) 7. A23(5), A24(11) 8. M3(−1) 9. M3(
1
32 ), A34(76).

The last augmented matrix results in the system of equations:

x1 − 2x2 − 5x3 = −15,

x2 − 9x3 = −28,

x3 = 3.

Thus, using back substitution, the solution set for our system is given by {(2,−1, 3)}.
9. Converting the given system of equations to an augmented matrix and using Gaussian elimination we
obtain the following equivalent matrices:⎡⎢⎢⎣

2 −1 −4 5
3 2 −5 8
5 6 −6 20
1 1 −3 −3

⎤⎥⎥⎦ 1
∼

⎡⎢⎢⎣
1 1 −3 −3
3 2 −5 8
5 6 −6 20
2 −1 −4 −5

⎤⎥⎥⎦ 2
∼

⎡⎢⎢⎣
1 1 −3 −3
0 −1 4 17
0 1 9 35
0 −3 2 11

⎤⎥⎥⎦ 3
∼

⎡⎢⎢⎣
1 1 −3 −3
0 1 −4 −17
0 1 9 35
0 −3 2 11

⎤⎥⎥⎦

4
∼

⎡⎢⎢⎣
1 1 −3 −3
0 1 −4 −17
0 0 13 52
0 0 −10 −40

⎤⎥⎥⎦ 5
∼

⎡⎢⎢⎣
1 1 −3 −3
0 1 −4 −17
0 0 1 4
0 0 −10 −40

⎤⎥⎥⎦ 6
∼

⎡⎢⎢⎣
1 1 −3 −3
0 1 −4 −17
0 0 1 4
0 0 0 0

⎤⎥⎥⎦ .

1. P14 2. A12(−3), A13(−5), A14(−2) 3. M2(−1) 4. A23(−1), A24(3) 5. M3(
1
13 ) 6. A34(10)

The last augmented matrix results in the system of equations:

x1 + x2 − 3x3 = − 3,

x2 − 4x3 = −17,

x3 = 4.

By back substitution, we obtain the solution set {(10,−1, 4)}.
10. Converting the given system of equations to an augmented matrix and using Gaussian elimination we
obtain the following equivalent matrices:⎡⎣ 1 2 −1 1 1

2 4 −2 2 2
5 10 −5 5 5

⎤⎦ 1
∼

⎡⎣ 1 2 −1 1 1
0 0 0 0 0
0 0 0 0 0

⎤⎦ .

1. A12(−2), A13(−5)

The last augmented matrix results in the equation x1 + 2x3 − x3 + x4 = 1. Now x2, x3, and x4 are free
variables, so we let x2 = r, x3 = s, and x4 = t. It follows that x1 = 1−2r+s− t. Consequently, the solution
set of the system is given by {(1− 2r + s− t, r, s, t) : r, s, t and real numbers }.
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11. Converting the given system of equations to an augmented matrix and using Gaussian elimination we
obtain the following equivalent matrices:⎡⎢⎢⎣

1 2 −1 1 1
2 −3 1 −1 2
1 −5 2 −2 1
4 1 −1 1 3

⎤⎥⎥⎦ 1
∼

⎡⎢⎢⎣
1 2 −1 1 1
0 −7 3 −3 0
0 −7 3 −3 0
0 −7 3 −3 −1

⎤⎥⎥⎦ 2
∼

⎡⎢⎢⎣
1 2 −1 1 1
0 1 − 3

7
3
7 0

0 −7 3 −3 0
0 −7 3 −3 −1

⎤⎥⎥⎦

3
∼

⎡⎢⎢⎣
1 2 −1 1 1
0 1 − 3

7
3
7 0

0 0 0 0 0
0 0 0 0 −1

⎤⎥⎥⎦ 4
∼

⎡⎢⎢⎣
1 2 −1 1 1
0 1 − 3

7
3
7 0

0 0 0 0 −1
0 0 0 0 0

⎤⎥⎥⎦ 5
∼

⎡⎢⎢⎣
1 2 −1 1 1
0 1 − 3

7
3
7 0

0 0 0 0 1
0 0 0 0 0

⎤⎥⎥⎦ .

1. A12(−2), A13(−1), A14(−4) 2. M2(− 1
7 ) 3. A23(7), A24(7) 4. P34 5. M3(−1)

The given system of equations is inconsistent since 2 = rank(A) < rank(A#) = 3.

12. Converting the given system of equations to an augmented matrix and using Gauss-Jordan elimination
we obtain the following equivalent matrices:

⎡⎣ 1 2 1 1 −2 3
0 0 1 4 −3 2
2 4 −1 −10 5 0

⎤⎦ 1
∼

⎡⎣ 1 2 1 1 −2 3
0 0 1 4 −3 2
0 0 −3 −12 9 −6

⎤⎦ 2
∼

⎡⎣ 1 2 1 1 −2 3
0 0 1 4 −3 2
0 0 0 0 0 0

⎤⎦ .

1. A13(−2) 2. A23(3)

The last augmented matrix indicates that the first two equations of the initial system completely determine
its solution. We see that x4 and x5 are free variables, so let x4 = s and x5 = t. Then x3 = 2− 4x4 + 3x5 =
2−4s+3t. Moreover, x2 is a free variable, say x2 = r, so then x1 = 3−2r−(2−4s+3t)−s+2t = 1−2r+3s−t.
Hence, the solution set for the system is

{(1− 2r + 3s− t, r, 2− 4s+ 3t, s, t) : r, s, t any real numbers }.

13. Converting the given system of equations to an augmented matrix and using Gauss-Jordan elimination
we obtain the following equivalent matrices:

⎡⎣ 2 −1 −2 2
4 3 −2 −1
1 4 1 4

⎤⎦ 1
∼

⎡⎣ 1 4 1 4
4 3 −2 −1
2 −1 −1 2

⎤⎦ 2
∼

⎡⎣ 1 4 1 4
0 −13 −6 −17
0 −9 −3 −6

⎤⎦ 3
∼

⎡⎣ 1 4 1 4
0 −9 −3 −6
0 −13 −6 −17

⎤⎦
4
∼

⎡⎣ 1 4 1 4
0 12 4 8
0 −13 −6 −17

⎤⎦ 5
∼

⎡⎣ 1 4 1 4
0 12 4 8
0 −1 −2 −9

⎤⎦ 6
∼

⎡⎣ 1 4 1 4
0 −1 −2 −9
0 12 4 8

⎤⎦ 7
∼

⎡⎣ 1 4 1 4
0 1 2 9
0 12 4 8

⎤⎦
8
∼

⎡⎣ 1 0 −7 −32
0 1 2 9
0 0 −20 −100

⎤⎦ 9
∼

⎡⎣ 1 0 −7 −32
0 1 2 9
0 0 1 5

⎤⎦ 10
∼

⎡⎣ 1 0 0 3
0 1 0 −1
0 0 1 5

⎤⎦ .
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1. P13 2. A12(−4), A13(−2) 3. P23 4. M2(− 4
3 ) 5. A23(1)

6. P23 7. M2(−1) 8. A21(−4), A23(−12) 9. M3(− 1
20 ) 10. A31(7), A32(−2)

The last augmented matrix results in the solution (3,−1, 5).

14. Converting the given system of equations to an augmented matrix and using Gauss-Jordan elimination
we obtain the following equivalent matrices:⎡⎣ 3 1 5 2

1 1 −1 1
2 1 2 3

⎤⎦ 1
∼

⎡⎣ 1 1 −1 1
3 1 5 2
2 1 2 3

⎤⎦ 2
∼

⎡⎣ 1 1 −1 1
0 −2 8 −1
0 −1 4 1

⎤⎦
3
∼

⎡⎣ 1 1 −1 1
0 1 −4 1

2
0 −1 4 1

⎤⎦ 4
∼

⎡⎣ 1 1 −1 1
0 1 −4 1/2
0 0 0 3/2

⎤⎦ .

We can stop here, since we see from this last augmented matrix that the system is inconsistent. In particular,
2 = rank(A) < rank(A#) = 3.

1. P12 2. A12(−3), A13(−2) 3. M2(− 1
2 ) 4. A23(1)

15. Converting the given system of equations to an augmented matrix and using Gauss-Jordan elimination
we obtain the following equivalent matrices:⎡⎣ 1 0 −2 −3

3 −2 4 −9
1 −4 2 −3

⎤⎦ 1
∼

⎡⎣ 1 0 −2 −3
0 −2 2 0
0 −4 4 0

⎤⎦ 2
∼

⎡⎣ 1 0 −2 −3
0 1 −1 0
0 −4 4 0

⎤⎦ 3
∼

⎡⎣ 1 0 −2 −3
0 1 −1 0
0 0 0 0

⎤⎦
.

1. A12(−3), A13(−1) 2. M2(− 1
2 ) 3. A23(4)

The last augmented matrix results in the following system of equations:

x1 − 2x3 = −3 and x2 − x3 = 0.

Since x3 is free, let x3 = t. Thus, from the system we obtain the solutions {(2t−3, t, t) : t any real number }.
16. Converting the given system of equations to an augmented matrix and using Gauss-Jordan elimination
we obtain the following equivalent matrices:⎡⎣ 2 −1 3 −1 3

3 2 1 −5 −6
1 −2 3 1 6

⎤⎦ 1
∼

⎡⎣ 1 −2 3 1 6
3 2 1 −5 −6
2 −1 3 −1 3

⎤⎦ 2
∼

⎡⎣ 1 −2 3 1 6
0 8 −8 −8 −24
0 3 −3 −3 −9

⎤⎦
3
∼

⎡⎣ 1 −2 3 1 6
0 1 −1 −1 −3
0 3 −3 −3 −9

⎤⎦ 4
∼

⎡⎣ 1 0 1 −1 0
0 1 −1 −1 −3
0 0 0 0 0

⎤⎦ .

1. P13 2. A12(−3), A13(−2) 3. M2(
1
8 ) 4. A21(2), A23(−3)
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The last augmented matrix results in the following system of equations:

x1 + x3 − x4 = 0 and x2 − x3 − x4 = −3.

Since x3 and x4 are free variables, we can let x3 = s and x4 = t, where s and t are real numbers. It follows
that the solution set of the system is given by {(t− s, s+ t− 3, s, t) : s, t any real numbers }.
17. Converting the given system of equations to an augmented matrix and using Gauss-Jordan elimination
we obtain the following equivalent matrices:⎡⎢⎢⎣

1 1 1 −1 4
1 −1 −1 −1 2
1 1 −1 1 −2
1 −1 1 1 −8

⎤⎥⎥⎦ 1
∼

⎡⎢⎢⎣
1 1 1 −1 4
0 −2 −2 0 −2
0 0 −2 2 −6
0 −2 0 2 −12

⎤⎥⎥⎦ 2
∼

⎡⎢⎢⎣
1 1 1 −1 4
0 1 1 0 1
0 0 1 −1 3
0 1 0 −1 6

⎤⎥⎥⎦

3
∼

⎡⎢⎢⎣
1 0 0 −1 3
0 1 1 0 1
0 0 1 −1 3
0 0 −1 −1 5

⎤⎥⎥⎦ 4
∼

⎡⎢⎢⎣
1 0 0 −1 3
0 1 0 1 −2
0 0 1 −1 3
0 0 0 −2 8

⎤⎥⎥⎦ 5
∼

⎡⎢⎢⎣
1 0 0 −1 3
0 1 0 1 −2
0 0 1 −1 3
0 0 0 1 −4

⎤⎥⎥⎦ 6
∼

⎡⎢⎢⎣
1 0 0 0 −1
0 1 0 0 2
0 0 1 0 −1
0 0 0 1 −4

⎤⎥⎥⎦ .

1. A12(−1), A13(−1), A14(−1) 2. M2(− 1
2 ), M3(− 1

2 ), M4(− 1
2 ) 3. A24(−1)

4. A32(−1), A34(1) 5. M4(− 1
2 ) 6. A41(1), A42(−1), A43(1)

It follows from the last augmented matrix that the solution to the system is given by (−1, 2,−1,−4).

18. Converting the given system of equations to an augmented matrix and using Gauss-Jordan elimination
we obtain the following equivalent matrices:⎡⎢⎢⎢⎢⎣

2 −1 3 1 −1 11
1 −3 −2 −1 −2 2
3 1 −2 −1 1 −2
1 2 1 2 3 −3
5 −3 −3 1 2 2

⎤⎥⎥⎥⎥⎦ 1
∼

⎡⎢⎢⎢⎢⎣
1 −3 −2 −1 −2 2
2 −1 3 1 −1 11
3 1 −2 −1 1 −2
1 2 1 2 3 −3
5 −3 −3 1 2 2

⎤⎥⎥⎥⎥⎦ 2
∼

⎡⎢⎢⎢⎢⎣
1 −3 −2 −1 −2 2
0 5 7 3 3 7
0 10 4 2 7 −8
0 5 3 3 5 −5
0 12 7 6 12 −8

⎤⎥⎥⎥⎥⎦

3
∼

⎡⎢⎢⎢⎢⎣
1 −3 −2 −1 −2 2
0 1 7

5
3
5

3
5

7
5

0 10 4 2 7 −8
0 5 3 3 5 −5
0 12 7 6 12 −8

⎤⎥⎥⎥⎥⎦ 4
∼

⎡⎢⎢⎢⎢⎣
1 0 11

5
4
5 − 1

5
31
5

0 1 7
5

3
5

3
5

7
5

0 0 −10 −4 1 −22
0 0 −4 0 2 −12
0 0 − 49

5 − 6
5

24
5 − 124

5

⎤⎥⎥⎥⎥⎦ 5
∼

⎡⎢⎢⎢⎢⎣
1 0 11

5
4
5 − 1

5
31
5

0 1 7
5

3
5

3
5

7
5

0 0 1 2
5 − 1

10
11
5

0 0 −4 0 2 −12
0 0 − 49

5 − 6
5

24
5 − 124

5

⎤⎥⎥⎥⎥⎦

6
∼

⎡⎢⎢⎢⎢⎣
1 0 0 − 2

25
1
50

34
25

0 1 0 1
25

37
50 − 42

25
0 0 1 2

5 − 1
10

11
5

0 0 0 8
5

8
5 − 16

5
0 0 0 68

25
191
50 − 81

25

⎤⎥⎥⎥⎥⎦ 7
∼

⎡⎢⎢⎢⎢⎣
1 0 0 − 2

25
1
50

34
25

0 1 0 1
25

37
50 − 42

25
0 0 1 2

5 − 1
10

11
5

0 0 0 1 1 −2
0 0 0 68

25
191
50 − 81

25

⎤⎥⎥⎥⎥⎦ 8
∼

⎡⎢⎢⎢⎢⎣
1 0 0 0 1

10
6
5

0 1 0 0 7
10 − 8

5
0 0 1 0 − 1

2 3
0 0 0 1 1 −2
0 0 0 0 11

10
11
5

⎤⎥⎥⎥⎥⎦

9
∼

⎡⎢⎢⎢⎢⎣
1 0 0 0 1

10
6
5

0 1 0 0 7
10 − 8

5
0 0 1 0 − 1

2 3
0 0 0 1 1 −2
0 0 0 0 1 2

⎤⎥⎥⎥⎥⎦ 10
∼

⎡⎢⎢⎢⎢⎣
1 0 0 0 0 1
0 1 0 0 0 −3
0 0 1 0 0 4
0 0 0 1 0 −4
0 0 0 0 1 2

⎤⎥⎥⎥⎥⎦
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1. P12 2. A12(−2), A13(−3), A14(−1), A15(−5) 3. M2(
1
5 ) 4. A21(3), A23(−10), A24(−5), A25(−12)

5. M3(− 1
10 ) 6. A31(− 11

5 ), A32(− 7
5 ), A34(4), A35(

49
5 ) 7. M4(

5
8 )

8. A41(
2
25 ), A42(− 1

25 ), A43(− 2
5 ), A45(− 68

25 ) 9. M5(
10
11 ) 10. A51(− 1

10 ), A52(− 7
10 ), A53(

1
2 ), A54(−1)

It follows from the last augmented matrix that the solution to the system is given by (1,−3, 4,−4, 2).

19. The equation Ax = b reads ⎡⎣ 1 −3 1
5 −4 1
2 4 −3

⎤⎦⎡⎣ x1

x2

x3

⎤⎦ =

⎡⎣ 8
15
−4

⎤⎦ .

Converting the given system of equations to an augmented matrix and using Gauss-Jordan elimination we
obtain the following equivalent matrices:⎡⎣ 1 −3 1 8

5 −4 1 15
2 4 −3 −4

⎤⎦ 1
∼

⎡⎣ 1 −3 1 8
0 11 −4 −25
0 10 −5 −20

⎤⎦ 2
∼

⎡⎣ 1 −3 1 8
0 1 1 −5
0 10 −5 −20

⎤⎦
3
∼

⎡⎣ 1 0 4 −7
0 1 1 −5
0 0 −15 30

⎤⎦ 4
∼

⎡⎣ 1 0 4 −7
0 1 1 −5
0 0 1 −2

⎤⎦ 5
∼

⎡⎣ 1 0 0 1
0 1 0 −3
0 0 1 −2

⎤⎦ .

1. A12(−5), A13(−2) 2. A32(−1) 3. A21(3), A23(−10) 4. M3(− 1
15 ) 5. A31(−4), A32(−1)

Thus, from the last augmented matrix, we see that x1 = 1, x2 = −3, and x3 = −2.

20. The equation Ax = b reads ⎡⎣ 1 0 5
3 −2 11
2 −2 6

⎤⎦⎡⎣ x1

x2

x3

⎤⎦ =

⎡⎣ 0
2
2

⎤⎦ .

Converting the given system of equations to an augmented matrix and using Gauss-Jordan elimination we
obtain the following equivalent matrices:⎡⎣ 1 0 5 0

3 −2 11 2
2 −2 6 2

⎤⎦ 1
∼

⎡⎣ 1 0 5 0
0 −2 −4 2
0 −2 −4 2

⎤⎦ 2
∼

⎡⎣ 1 0 5 0
0 1 2 −1
0 −2 −4 2

⎤⎦
3
∼

⎡⎣ 1 0 5 0
0 1 2 −1
0 0 0 0

⎤⎦ .

1. A12(−3), A13(−2) 2. M2(−1/2) 3. A23(2)

Hence, we have x1 + 5x3 = 0 and x2 + 2x3 = −1. Since x3 is a free variable, we can let x3 = t, where t is
any real number. It follows that the solution set for the given system is given by {(−5t,−2t− 1, t) : t ∈ R}.
21. The equation Ax = b reads ⎡⎣ 0 1 −1

0 5 1
0 2 1

⎤⎦⎡⎣ x1

x2

x3

⎤⎦ =

⎡⎣ −2
8
5

⎤⎦ .
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Converting the given system of equations to an augmented matrix using Gauss-Jordan elimination we obtain
the following equivalent matrices:⎡⎣ 0 1 −1 −2

0 5 1 8
0 2 1 5

⎤⎦ 1
∼

⎡⎣ 0 1 −1 −2
0 0 6 18
0 0 3 9

⎤⎦ 2
∼

⎡⎣ 0 1 −1 −2
0 0 1 3
0 0 3 9

⎤⎦ 3
∼

⎡⎣ 0 1 0 1
0 0 1 3
0 0 0 0

⎤⎦ .

1. A12(−5), A13(−2) 2. M2(1/6) 3. A21(1), A23(−3)

Consequently, from the last augmented matrix it follows that the solution set for the matrix equation is
given by {(t, 1, 3) : t ∈ R}.
22. The equation Ax = b reads ⎡⎣ 1 −1 0 −1

2 1 3 7
3 −2 1 0

⎤⎦⎡⎣ x1

x2

x3

⎤⎦ =

⎡⎣ 2
2
4

⎤⎦ .

Converting the given system of equations to an augmented matrix and using Gauss-Jordan elimination we
obtain the following equivalent matrices:⎡⎣ 1 −1 0 −1 2

2 1 3 7 2
3 −2 1 0 4

⎤⎦ 1
∼

⎡⎣ 1 −1 0 −1 2
0 3 3 9 −2
0 1 1 3 −2

⎤⎦ 2
∼

⎡⎣ 1 −1 0 −1 2
0 1 1 3 −2
0 3 3 9 −2

⎤⎦ 3
∼

⎡⎣ 1 0 1 2 0
0 1 1 3 −2
0 0 0 0 4

⎤⎦ .

1. A12(−2), A13(−3) 2. P23 3. A21(1), A23(−3)

From the last row of the last augmented matrix, it is clear that the given system is inconsistent.

23. The equation Ax = b reads⎡⎢⎢⎣
1 1 0 −1
3 1 −2 3
2 3 1 1

−2 3 5 −2

⎤⎥⎥⎦
⎡⎢⎢⎣

x1

x2

x3

x4

⎤⎥⎥⎦ =

⎡⎢⎢⎣
2
8
3

−9

⎤⎥⎥⎦ .

Converting the given system of equations to an augmented matrix and using Gauss-Jordan elimination we
obtain the following equivalent matrices:⎡⎢⎢⎣

1 1 0 1 2
3 1 −2 3 8
2 3 1 2 3

−2 3 5 −2 −9

⎤⎥⎥⎦ 1
∼

⎡⎢⎢⎣
1 1 0 1 2
0 −2 −2 0 2
0 1 1 0 −1
0 5 5 0 −5

⎤⎥⎥⎦ 2
∼

⎡⎢⎢⎣
1 1 0 1 2
0 1 1 0 −1
0 −2 −2 0 2
0 5 5 0 −5

⎤⎥⎥⎦ 3
∼

⎡⎢⎢⎣
1 0 −1 1 3
0 1 1 0 −1
0 0 0 0
0 0 0 0 0

⎤⎥⎥⎦ .

1. A12(−3), A13(−2), A14(2) 2. P23 3. A21(−1), A23(2), A24(−5)

From the last augmented matrix, we obtain the system of equations: x1 − x3 + x4 = 3, x2 + x3 = −1. Since
both x3 and x4 are free variables, we may let x3 = r and x4 = t, where r and t are real numbers. The
solution set for the system is given by {(3 + r − t,−r − 1, r, t) : r, t ∈ R}.
24. Converting the given system of equations to an augmented matrix and using Gauss-Jordan elimination
we obtain the following equivalent matrices:⎡⎣ 1 2 −1 3

2 5 1 7
1 1 −k2 −k

⎤⎦ 1
∼

⎡⎣ 1 2 −1 3
0 1 3 1
0 −1 1− k2 −3− k

⎤⎦ 2
∼

⎡⎣ 1 2 −1 3
0 1 3 1
0 0 4− k2 −2− k

⎤⎦ .
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1. A12(−2), A13(−1) 2. A23(1)

(a). If k = 2, then the last row of the last augmented matrix reveals an inconsistency; hence the system has
no solutions in this case.

(b). If k = −2, then the last row of the last augmented matrix consists entirely of zeros, and hence we have
only two pivots (first two columns) and a free variable x3; hence the system has infinitely many solutions.

(c). If k �= ±2, then the last augmented matrix above contains a pivot for each variable x1, x2, and x3, and
can be solved for a unique solution by back-substitution.

25. Converting the given system of equations to an augmented matrix and using Gauss-Jordan elimination
we obtain the following equivalent matrices:⎡⎢⎢⎣

2 1 −1 1 0
1 1 1 −1 0
4 2 −1 1 0
3 −1 1 k 0

⎤⎥⎥⎦ 1
∼

⎡⎢⎢⎣
1 1 1 −1 0
2 1 −1 1 0
4 2 −1 1 0
3 −1 1 k 0

⎤⎥⎥⎦ 2
∼

⎡⎢⎢⎣
1 1 1 −1 0
0 −1 −3 3 0
0 −2 −5 5 0
0 −4 −2 k + 3 0

⎤⎥⎥⎦

3
∼

⎡⎢⎢⎣
1 1 1 −1 0
0 1 3 −3 0
0 −2 −5 5 0
0 −4 −2 k + 3 0

⎤⎥⎥⎦ 4
∼

⎡⎢⎢⎣
1 1 1 −1 0
0 1 3 −3 0
0 0 1 −1 0
0 0 10 k − 9 0

⎤⎥⎥⎦ 5
∼

⎡⎢⎢⎣
1 1 1 −1 0
0 1 3 −3 0
0 0 1 −1 0
0 0 0 k + 1 0

⎤⎥⎥⎦ .

1. P12 2. A12(−2), A13(−4), A14(−3) 3. M2(−1) 4. A23(2), A24(4) 5. A34(−10)

(a). Note that the trivial solution (0, 0, 0, 0) exists under all circumstances, so there are no values of k for
which there is no solution.

(b). From the last row of the last augmented matrix, we see that if k = −1, then the variable x4 corresponds
to an unpivoted column, and hence it is a free variable. In this case, therefore, we have infinitely solutions.

(c). Provided that k �= −1, then each variable in the system corresponds to a pivoted column of the last
augmented matrix above. Therefore, we can solve the system by back-substitution. The conclusion from
this is that there is a unique solution, (0, 0, 0, 0).

26. Converting the given system of equations to an augmented matrix and using Gauss-Jordan elimination
we obtain the following equivalent matrices:⎡⎣ 1 1 −2 4

3 5 −4 16
2 3 −a b

⎤⎦ 1
∼

⎡⎣ 1 1 −2 4
0 2 2 4
0 1 4− a b− 8

⎤⎦ 2
∼

⎡⎣ 1 1 −2 4
0 1 1 2
0 1 4− a b− 8

⎤⎦ 3
∼

⎡⎣ 1 0 −3 2
0 1 1 2
0 0 3− a b− 10

⎤⎦ .

1. A12(−3), A13(−2) 2. M2(
1
2 ) 3. A21(−1), A23(−1)

(a). From the last row of the last augmented matrix above, we see that there is no solution if a = 3 and
b �= 10.

(b). From the last row of the augmented matrix above, we see that there are infinitely many solutions
if a = 3 and b = 10, because in that case, there is no pivot in the column of the last augmented matrix
corresponding to the third variable x3.
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(c). From the last row of the augmented matrix above, we see that if a �= 3, then regardless of the value
of b, there is a pivot corresponding to each variable x1, x2, and x3. Therefore, we can uniquely solve the
corresponding system by back-substitution.

27. Converting the given system of equations to an augmented matrix and using Gauss-Jordan elimination
we obtain the following equivalent matrices:⎡⎣ 1 −a 3

2 1 6
−3 a+ b 1

⎤⎦ 1
∼

⎡⎣ 1 −a 3
0 1 + 2a 0
0 b− 2a 10

⎤⎦ .

From the middle row, we see that if a �= − 1
2 , then we must have x2 = 0, but this leads to an inconsistency in

solving for x1 (the first equation would require x1 = 3 while the last equation would require x1 = − 1
3 . Now

suppose that a = − 1
2 . Then the augmented matrix on the right reduces to

[
1 −1/2 3
0 b+ 1 10

]
. If b = −1,

then once more we have an inconsistency in the last row. However, if b �= −1, then the row-echelon form
obtained has full rank, and there is a unique solution. Therefore, we draw the following conclusions:

(a). There is no solution to the system if a �= − 1
2 or if a = − 1

2 and b = −1.

(b). Under no circumstances are there an infinite number of solutions to the linear system.

(c). There is a unique solution if a = − 1
2 and b �= −1.

28. The corresponding augmented matrix for this linear system can be reduced to row-echelon form via⎡⎣ 1 1 1 y1
2 3 1 y2
3 5 1 y3

⎤⎦ 1
∼

⎡⎣ 1 1 1 y1
0 1 −1 y2 − 2y1
0 2 −2 y3 − 3y1

⎤⎦ 2
∼

⎡⎣ 1 1 1 y1
0 1 −1 y2 − 2y1
0 0 0 y1 − 2y2 + y3

⎤⎦ .

1. A12(−2), A13(−3) 2. A23(−2)

For consistency, we must have rank(A) = rank(A#), which requires (y1, y2, y3) to satisfy y1 − 2y2 + y3 = 0.
If this holds, then the system has an infinite number of solutions, because the column of the augmented
matrix corresponding to y3 will be unpivoted, indicating that y3 is a free variable in the solution set.

29. Converting the given system of equations to an augmented matrix and using Gaussian elimination we
obtain the following row-equivalent matrices. Since a11 �= 0:[

a11 a12 b1
a21 a22 b2

]
1
∼

[
1 a12

a11

b1
a11

0 a22a11−a21a12

a11

a11b2−a21b1
a11

]
2
∼

[
1 a12

a11

b1
a11

0 Δ
a11

Δ2

a11

]
.

1. M1(1/a11), A12(−a21) 2. Definition of Δ and Δ2

(a). If Δ �= 0, then rank(A) = rank(A#) = 2, so the system has a unique solution (of course, we are assuming

a11 �= 0 here). Using the last augmented matrix above,
(

Δ
a11

)
x2 = Δ2

a11
, so that x2 = Δ2

Δ . Using this, we can

solve x1 +
a12

a11
x2 = b1

a11
for x1 to obtain x1 = Δ1

Δ , where we have used the fact that Δ1 = a22b1 − a12b2.

(b). If Δ = 0 and a11 �= 0, then the augmented matrix of the system is

[
1 a12

a11

b1
a11

0 0 Δ2

]
, so it follows that

the system has (i) no solution if Δ2 �= 0, since rank(A) < rank(A#) = 2, and (ii) an infinite number of
solutions if Δ2 = 0, since rank(A#) < 2.
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(c). An infinite number of solutions would be represented as one line. No solution would be two parallel
lines. A unique solution would be the intersection of two distinct lines at one point.

30. We first use the partial pivoting algorithm to reduce the augmented matrix of the system:⎡⎣ 1 2 1 1
3 5 1 3
2 6 7 1

⎤⎦ 1
∼

⎡⎣ 3 5 1 3
1 2 1 1
2 6 7 1

⎤⎦ 2
∼

⎡⎣ 3 5 1 3
0 1/3 2/3 0
0 8/3 19/3 −1

⎤⎦
3
∼

⎡⎣ 3 5 1 3
0 8/3 19/3 −1
0 1/3 2/3 0

⎤⎦ 4
∼

⎡⎣ 3 5 1 3
0 8/3 19/3 −1
0 0 −1/8 1/8

⎤⎦ .

1. P12 2. A12(−1/3), A13(−2/3) 3. P23 4. A23(−1/8)

Using back substitution to solve the equivalent system yields the unique solution (−2, 2,−1).

31. We first use the partial pivoting algorithm to reduce the augmented matrix of the system:⎡⎢⎢⎣
2 −1 3 14
3 1 −2 −1
7 2 −3 3
5 −1 −2 5

⎤⎥⎥⎦ 1
∼

⎡⎢⎢⎣
7 2 −3 3
3 1 −2 −1
2 −1 3 14
5 −1 −2 5

⎤⎥⎥⎦ 2
∼

⎡⎢⎢⎣
7 2 −3 3
0 1/7 −5/7 −16/7
0 −11/7 27/7 92/7
0 −17/7 1/7 20/7

⎤⎥⎥⎦
3
∼

⎡⎢⎢⎣
7 2 −3 3
0 −17/7 1/7 20/7
0 −11/7 27/7 92/7
0 1/7 −5/7 −16/7

⎤⎥⎥⎦ 4
∼

⎡⎢⎢⎣
7 2 −3 3
0 −17/7 1/7 20/7
0 0 64/17 192/17
0 0 −12/17 −36/17

⎤⎥⎥⎦
5
∼

⎡⎢⎢⎣
7 2 −3 3
0 −17/7 1/7 20/7
0 0 64/17 192/17
0 0 0 0

⎤⎥⎥⎦ .

1. P13 2. A12(−3/7), A13(−2/7), A14(−5/7) 3. P24

4. A23(−11/17), A24(1/17) 5. A34(3/16)

Using back substitution to solve the equivalent system yields the unique solution (2,−1, 3).

32. We first use the partial pivoting algorithm to reduce the augmented matrix of the system:⎡⎢⎢⎣
2 −1 −4 5
3 2 −5 8
5 6 −6 20
1 1 −3 −3

⎤⎥⎥⎦ 1
∼

⎡⎢⎢⎣
5 6 −6 −20
3 2 −5 8
2 −1 −4 5
1 1 −3 −3

⎤⎥⎥⎦ 2
∼

⎡⎢⎢⎣
5 6 −6 20
0 −8/5 −7/5 −4
0 −17/5 −8/5 −3
0 −1/5 −9/5 −7

⎤⎥⎥⎦
3
∼

⎡⎢⎢⎣
5 6 −6 20
0 −17/5 −8/5 −3
0 −8/5 −7/5 −4
0 −1/5 −9/5 −7

⎤⎥⎥⎦ 4
∼

⎡⎢⎢⎣
5 6 −6 20
0 −17/5 −8/5 −3
0 0 −11/17 −44/17
0 0 −29/17 −116/17

⎤⎥⎥⎦
5
∼

⎡⎢⎢⎣
5 6 −6 20
0 −17/5 −8/5 −3
0 0 −29/17 −116/17
0 0 −11/17 −44/17

⎤⎥⎥⎦ 6
∼

⎡⎢⎢⎣
5 6 −6 20
0 −17/5 −8/5 −3
0 0 −29/17 −116/17
0 0 0 0

⎤⎥⎥⎦ .
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1. P13 2. A12(−3/5), A13(−2/5), A14(−1/5) 3. P23

4. A23(−8/17), A24(−1/17) 5. P34 6. A34(−11/29)

Using back substitution to solve the equivalent system yields the unique solution (10,−1, 4).

33. We first use the partial pivoting algorithm to reduce the augmented matrix of the system:⎡⎣ 2 −1 −1 2
4 3 −2 −1
1 4 1 4

⎤⎦ 1
∼

⎡⎣ 4 3 −2 −1
2 −1 −1 2
1 4 1 4

⎤⎦ 2
∼

⎡⎣ 4 3 −2 −1
0 −5/2 0 5/2
0 13/4 3/2 17/4

⎤⎦
3
∼

⎡⎣ 4 3 −2 −1
0 13/4 3/2 17/4
0 −5/2 0 5/2

⎤⎦ 4
∼

⎡⎣ 4 3 −2 −1
0 13/4 3/2 17/4
0 0 15/13 75/13

⎤⎦ .

1. P12 2. A12(−1/2), A13(−1/4) 3. P23 4. A23(10/13)

Using back substitution to solve the equivalent system yields the unique solution (3,−1, 5).

34.

(a). Let

A# =

⎡⎢⎢⎢⎢⎣
a11 0 0 . . . 0 b1
a21 a22 0 . . . 0 b2
a31 a32 a33 . . . 0 b3
. . . . . . . . . . . . . . . . . .
an1 an2 an3 . . . ann bn

⎤⎥⎥⎥⎥⎦
represent the corresponding augmented matrix of the given system. Since a11x1 = b1, we can solve for x1

easily:

x1 =
b1
a11

, (a11 �= 0).

Now since a21x1 + a22x2 = b2, by using the expression for x1 we just obtained, we can solve for x2:

x2 =
a11b2 − a21b1

a11a22
.

In a similar manner, we can solve for x3, x4, . . . , xn.

(b). We solve instantly for x1 from the first equation: x1 = 2. Substituting this into the middle equation,
we obtain 2 · 2 − 3 · x2 = 1, from which it quickly follows that x2 = 1. Substituting for x1 and x2 in the
bottom equation yields 3 · 2 + 1 − x3 = 8, from which it quickly follows that x3 = −1. Consequently, the
solution of the given system is (2, 1,−1).

35. This system of equations is not linear in x1, x2, and x3; however, the system is linear in x3
1, x

2
2, and x3,

so we can first solve for x3
1, x

2
2, and x3. Converting the given system of equations to an augmented matrix

and using Gauss-Jordan elimination we obtain the following equivalent matrices:⎡⎣ 4 2 3 12
1 −1 1 2
3 1 −1 2

⎤⎦ 1
∼

⎡⎣ 1 −1 1 2
4 2 3 12
3 1 −1 2

⎤⎦ 2
∼

⎡⎣ 1 −1 1 2
0 6 −1 4
0 4 −4 −4

⎤⎦
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3
∼

⎡⎣ 1 −1 1 2
0 4 −4 −4
0 6 −1 4

⎤⎦ 4
∼

⎡⎣ 1 −1 1 2
0 1 −1 −1
0 6 −1 4

⎤⎦ 5
∼

⎡⎣ 1 0 0 1
0 1 −1 −1
0 0 5 10

⎤⎦
6
∼

⎡⎣ 1 0 0 1
0 1 −1 −1
0 0 1 2

⎤⎦ 7
∼

⎡⎣ 1 0 0 1
0 1 0 1
0 0 1 2

⎤⎦ .

1. P12 2. A12(−4), A13(−3) 3. P23 4. M2(1/4)

5. A21(1), A23(−6) 6. M2(1/5) 7. A32(1)

Thus, taking only real solutions, we have x3
1 = 1, x2

2 = 1, and x3 = 2. Therefore, x1 = 1, x2 = ±1, and
x3 = 2, leading to the two solutions (1, 1, 2) and (1,−1, 2) to the original system of equations. There is no
contradiction of Theorem 2.5.9 here since, as mentioned above, this system is not linear in x1, x2, and x3.

36. Reduce the augmented matrix of the system:⎡⎣ 3 2 −1 0
2 1 1 0
5 −4 1 0

⎤⎦ 1
∼

⎡⎣ 1 1 −2 0
0 −1 5 0
0 −9 11 0

⎤⎦ 2
∼

⎡⎣ 1 1 −2 0
0 1 −5 0
0 −9 11 0

⎤⎦ 3
∼

⎡⎣ 1 0 3 0
0 1 −5 0
0 0 −34 0

⎤⎦
4
∼

⎡⎣ 1 0 3 0
0 1 −5 0
0 0 1 0

⎤⎦ 5
∼

⎡⎣ 1 0 0 0
0 1 0 0
0 0 1 0

⎤⎦ .

1. A21(−1), A12(−2), A13(−5) 2. M2(−1) 3. A21(−1), A23(9)

4. M3(−1/34) 5. A31(−3), A32(5)

Therefore, the unique solution to this system is x1 = x2 = x3 = 0: (0, 0, 0).

37. Reduce the augmented matrix of the system:⎡⎢⎢⎣
2 1 −1 0
3 −1 2 0
1 −1 −1 0
5 2 −2 0

⎤⎥⎥⎦ 1
∼

⎡⎢⎢⎣
1 −1 −1 0
3 −1 2 0
2 1 −1 0
5 2 −2 0

⎤⎥⎥⎦ 2
∼

⎡⎢⎢⎣
1 −1 −1 0
0 2 5 0
0 3 1 0
0 7 3 0

⎤⎥⎥⎦ 3
∼

⎡⎢⎢⎣
1 −1 −1 0
0 3 1 0
0 2 5 0
0 7 3 0

⎤⎥⎥⎦

4
∼

⎡⎢⎢⎣
1 −1 −1 0
0 1 −4 0
0 2 5 0
0 7 3 0

⎤⎥⎥⎦ 5
∼

⎡⎢⎢⎣
1 0 −5 0
0 1 −4 0
0 0 13 0
0 0 31 0

⎤⎥⎥⎦ 6
∼

⎡⎢⎢⎣
1 0 −5 0
0 1 −4 0
0 0 1 0
0 0 31 0

⎤⎥⎥⎦ 7
∼

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

⎤⎥⎥⎦ .

1. P13 2. A12(−3), A13(−2), A14(−5) 3. P23 4. A32(−1)

5. A21(1), A23(−2), A24(−7) 6. M3(1/13) 7. A31(5), A32(4), A34(−31)

Therefore, the unique solution to this system is x1 = x2 = x3 = 0: (0, 0, 0).

38. Reduce the augmented matrix of the system:⎡⎣ 2 −1 −1 0
5 −1 2 0
1 1 4 0

⎤⎦ 1
∼

⎡⎣ 1 1 4 0
5 −1 2 0
2 −1 −1 0

⎤⎦ 2
∼

⎡⎣ 1 1 4 0
0 −6 −18 0
0 −3 −9 0

⎤⎦
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3
∼

⎡⎣ 1 1 4 0
0 1 3 0
0 −3 −9 0

⎤⎦ 4
∼

⎡⎣ 1 0 1 0
0 1 3 0
0 0 0 0

⎤⎦ .

1. P13 2. A12(−5), A13(−2) 3. M2(−1/6) 4. A21(−1), A23(3)

It follows that x1 + x3 = 0 and x2 +3x3 = 0. Setting x3 = t, where t is a free variable, we get x2 = −3t and
x1 = −t. Thus we have that the solution set of the system is {(−t,−3t, t) : t ∈ R}.
39. Reduce the augmented matrix of the system:⎡⎣ 1 + 2i 1− i 1 0

i 1 + i −i 0
2i 1 1 + 3i 0

⎤⎦ 1
∼

⎡⎣ i 1 + i −i 0
1 + 2i 1− i 1 0
2i 1 1 + 3i 0

⎤⎦ 2
∼

⎡⎣ 1 1− i −1 0
1 + 2i 1− i 1 0
2i 1 1 + 3i 0

⎤⎦
3
∼

⎡⎣ 1 1− i −1 0
0 −2− 2i 1 + 2i 0
0 −1− 2i 1 + 5i 0

⎤⎦ 4
∼

⎡⎣ 1 1− i −1 0
0 −2− 2i 1 + 2i 0
0 1 3i 0

⎤⎦ 5
∼

⎡⎣ 1 1− i −1 0
0 0 −5 + 8i 0
0 1 3i 0

⎤⎦
6
∼

⎡⎣ 1 1− i −1 0
0 1 3i 0
0 0 −5 + 8i 0

⎤⎦ 7
∼

⎡⎣ 1 1− i −1 0
0 1 3i 0
0 0 1 0

⎤⎦ 8
∼

⎡⎣ 1 0 0 0
0 1 0 0
0 0 1 0

⎤⎦ .

1. P12 2. M1(−i) 3. A12(−1− 2i), A13(−2i) 4. A23(−1) 5. A32(2 + 2i)

6. P23 7. M3(
1

−5+8i ) 8. A21(−1 + i), A31(1), A32(−3i)

Therefore, the unique solution to this system is x1 = x2 = x3 = 0: (0, 0, 0).

40. Reduce the augmented matrix of the system:⎡⎣ 3 2 1 0
6 −1 2 0

12 6 4 0

⎤⎦ 1
∼

⎡⎣ 1 2
3

1
3 0

6 −1 2 0
12 6 4 0

⎤⎦ 2
∼

⎡⎣ 1 2
3

1
3 0

0 −5 0 0
0 −2 0 0

⎤⎦
3
∼

⎡⎣ 1 2
3

1
3 0

0 1 0 0
0 −2 0 0

⎤⎦ 4
∼

⎡⎣ 1 0 1
3 0

0 1 0 0
0 0 0 0

⎤⎦ .

1. M1(1/3) 2. A12(−6), A13(−12) 3. M2(−1/5) 4. A21(−2/3), A23(2)

From the last augmented matrix, we have x1+
1
3x3 = 0 and x2 = 0. Since x3 is a free variable, we let x3 = t,

where t is a real number. It follows that the solution set for the given system is given by {(t, 0,−3t) : t ∈ R}.
41. Reduce the augmented matrix of the system:⎡⎢⎢⎣

2 1 −8 0
3 −2 −5 0
5 −6 −3 0
3 −5 1 0

⎤⎥⎥⎦ 1
∼

⎡⎢⎢⎣
3 −2 −5 0
2 1 −8 0
5 −6 −3 0
3 −5 1 0

⎤⎥⎥⎦ 2
∼

⎡⎢⎢⎣
1 −3 3 0
2 1 −8 0
5 −6 −3 0
3 −5 1 0

⎤⎥⎥⎦

3
∼

⎡⎢⎢⎣
1 −3 3 0
0 7 −14 0
0 9 −18 0
0 4 −8 0

⎤⎥⎥⎦ 4
∼

⎡⎢⎢⎣
1 −3 3 0
0 1 −2 0
0 9 −18 0
0 4 −8 0

⎤⎥⎥⎦ 5
∼

⎡⎢⎢⎣
1 0 −3 0
0 1 −2 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎦ .
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1. P12 2. A21(−1) 3. A12(−2), A13(−5), A14(−3) 4. M2(1/7) 5. A21(3), A23(−9), A24(−4)

From the last augmented matrix we have: x1 − 3x3 = 0 and x2 − 2x3 = 0. Since x3 is a free variable, we let
x3 = t, where t is a real number. It follows that x2 = 2t and x1 = 3t. Thus, the solution set for the given
system is given by {(3t, 2t, t) : t ∈ R}.
42. Reduce the augmented matrix of the system:⎡⎣ 1 1 + i 1− i 0

i 1 i 0
1− 2i −1 + i 1− 3i 0

⎤⎦ 1
∼

⎡⎣ 1 1 + i 1− i 0
0 2− i −1 0
0 −4 + 2i 2 0

⎤⎦ 2
∼

⎡⎣ 1 1 + i 1− i 0
0 2− i −1 0
0 0 0 0

⎤⎦
3
∼

⎡⎣ 1 1 + i 1− i 0
0 1 −2−i

5 0
0 0 0 0

⎤⎦ 4
∼

⎡⎣ 1 0 6−2i
5 0

0 1 −2−i
5 0

0 0 0 0

⎤⎦ .

1. A12(−i), A13(−1 + 2i) 2. A23(2) 3. M2(
1

2−i ) 4. A21(−1− i)

From the last augmented matrix we see that x3 is a free variable. We set x3 = 5s, where s ∈ C. Then
x1 = 2(i− 3)s and x2 = (2 + i)s. Thus, the solution set of the system is {(2(i− 3)s, (2 + i)s, 5s) : s ∈ C}.
43. Reduce the augmented matrix of the system:⎡⎢⎢⎣

1 −1 1 0
0 3 2 0
3 0 −1 0
5 1 −1 0

⎤⎥⎥⎦ 1
∼

⎡⎢⎢⎣
1 −1 1 0
0 3 2 0
0 3 −4 0
0 6 −6 0

⎤⎥⎥⎦ 2
∼

⎡⎢⎢⎣
1 −1 1 0
0 1 2/3 0
0 3 −4 0
0 6 −6 0

⎤⎥⎥⎦

3
∼

⎡⎢⎢⎣
1 0 5/3 0
0 1 2/3 0
0 0 −6 0
0 0 −10 0

⎤⎥⎥⎦ 4
∼

⎡⎢⎢⎣
1 0 5/3 0
0 1 2/3 0
0 0 1 0
0 0 −10 0

⎤⎥⎥⎦ 5
∼

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

⎤⎥⎥⎦ .

1. A13(−3), A14(−5) 2. M2(1/3) 3. A21(1), A23(−3), A24(−6)

4. M3(−1/6) 5. A31(−5/3), A32(−2/3), A34(10)

Therefore, the unique solution to this system is x1 = x2 = x3 = 0: (0, 0, 0).

44. Reduce the augmented matrix of the system:⎡⎢⎢⎣
2 −4 6 0
3 −6 9 0
1 −2 3 0
5 −10 15 0

⎤⎥⎥⎦ 1
∼

⎡⎢⎢⎣
1 −2 3 0
3 −6 9 0
2 −4 6 0
5 −10 15 0

⎤⎥⎥⎦ 2
∼

⎡⎢⎢⎣
1 −2 3 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎦ .

1. M1(1/2) 2. A12(−3), A13(−2), A14(−5)

From the last matrix we have that x1 − 2x3 + 3x3 = 0. Since x2 and x3 are free variables, let x2 = s and
let x3 = t, where s and t are real numbers. The solution set of the given system is therefore {(2s− 3t, s, t) :
s, t ∈ R}.
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45. Reduce the augmented matrix of the system:⎡⎣ 4 −2 −1 −1 0
3 1 −2 3 0
5 −1 −2 1 0

⎤⎦ 1
∼

⎡⎣ 1 −3 1 −4 0
3 1 −2 3 0
5 −1 −2 1 0

⎤⎦ 2
∼

⎡⎣ 1 −3 1 −4 0
0 10 −5 15 0
0 14 −7 21 0

⎤⎦
3
∼

⎡⎣ 1 −3 1 −4 0
0 2 −1 3 0
0 2 −1 3 0

⎤⎦ 4
∼

⎡⎣ 1 −3 1 −4 0
0 2 −1 3 0
0 0 0 0 0

⎤⎦ 5
∼

⎡⎣ 1 −3 1 −4 0
0 1 −1/2 3/2 0
0 0 0 0 0

⎤⎦ .

1. A21(−1) 2. A12(−3), A13(−5) 3. M2(1/5), M3(1/7)

4. A23(−1) 5. M2(1/2)

From the last augmented matrix above we have that x2− 1
2x3+

3
2x4 = 0 and x1−3x2+x3−4x4 = 0. Since x3

and x4 are free variables, we can set x3 = 2s and x4 = 2t, where s and t are real numbers. Then x2 = s− 3t
and x1 = s− t. It follows that the solution set of the given system is {(s− t, s− 3t, 2s, 2t) : s, t ∈ R}.
46. Reduce the augmented matrix of the system:⎡⎢⎢⎣

2 1 −1 1 0
1 1 1 −1 0
3 −1 1 −2 0
4 2 −1 1 0

⎤⎥⎥⎦ 1
∼

⎡⎢⎢⎣
1 1 1 −1 0
2 1 −1 1 0
3 −1 1 −2 0
4 2 −1 1 0

⎤⎥⎥⎦ 2
∼

⎡⎢⎢⎣
1 1 1 −1 0
0 −1 −3 3 0
0 −4 −2 1 0
0 −2 −5 5 0

⎤⎥⎥⎦

3
∼

⎡⎢⎢⎣
1 1 1 −1 0
0 1 3 −3 0
0 −4 −2 1 0
0 −2 −5 5 0

⎤⎥⎥⎦ 4
∼

⎡⎢⎢⎣
1 0 −2 2 0
0 1 3 −3 0
0 0 10 −11 0
0 0 −3 3 0

⎤⎥⎥⎦ 5
∼

⎡⎢⎢⎣
1 0 −2 2 0
0 1 3 −3 0
0 0 −3 3 0
0 0 10 −11 0

⎤⎥⎥⎦

6
∼

⎡⎢⎢⎣
1 0 −2 2 0
0 1 3 −3 0
0 0 1 −1 0
0 0 10 −11 0

⎤⎥⎥⎦ 7
∼

⎡⎢⎢⎣
1 0 0 0 0
0 1 0 0 0
0 0 1 −1 0
0 0 0 −1 0

⎤⎥⎥⎦ 8
∼

⎡⎢⎢⎣
1 0 0 0 0
0 1 0 0 0
0 0 1 −1 0
0 0 0 1 0

⎤⎥⎥⎦ 9
∼

⎡⎢⎢⎣
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

⎤⎥⎥⎦ .

1. P12 2. A12(−2), A13(−3), A14(−4) 3. M2(−1) 4. A21(−1), A23(4), A24(2)

5. P34 6. M3(−1/3) 7. A31(2), A32(−3), A34(−10) 8. M4(−1) 9. A43(1)

From the last augmented matrix, it follows that the solution set to the system is given by {(0, 0, 0, 0)}.
47. The equation Ax = 0 is [

2 −1
3 4

] [
x1

x2

]
=

[
0
0

]
.

Reduce the augmented matrix of the system:[
2 −1 0
3 4 0

]
1
∼

[
1 − 1

2 0
3 4 0

]
2
∼

[
1 − 1

2 0
0 11

2 0

]
3
∼

[
1 − 1

2 0
0 1 0

]
4
∼

[
1 0 0
0 1 0

]
.

1. M1(1/2) 2. A12(−3) 3. M2(2/11) 4. A21(1/2)
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From the last augmented matrix, we see that x1 = x2 = 0. Hence, the solution set is {(0, 0)}.
48. The equation Ax = 0 is [

1− i 2i
1 + i −2

] [
x1

x2

]
=

[
0
0

]
.

Reduce the augmented matrix of the system:[
1− i 2i 0
1 + i −2 0

]
1
∼

[
1 −1 + i 0

1 + i −2 0

]
2
∼

[
1 −1 + i 0
0 0 0

]
.

1. M1(
1+i
2 ) 2. A12(−1− i)

It follows that x1 + (−1 + i)x2 = 0. Since x2 is a free variable, we can let x2 = t, where t is a complex
number. The solution set to the system is then given by {(t(1− i), t) : t ∈ C}.
49. The equation Ax = 0 is [

1 + i 1− 2i
−1 + i 2 + i

] [
x1

x2

]
=

[
0
0

]
.

Reduce the augmented matrix of the system:[
1 + i 1− 2i 0
−1 + i 2 + i 0

]
1
∼

[
1 − 1+3i

2 0
−1 + i 2 + i 0

]
2
∼

[
1 − 1+3i

2 0
0 0 0

]
.

1. M1(
1−i
2 ) 2. A12(1− i)

It follows that x1 − 1+3i
2 x2 = 0. Since x2 is a free variable, we can let x2 = r, where r is any complex

number. Thus, the solution set to the given system is {( 1+3i
2 r, r) : r ∈ C}.

50. The equation Ax = 0 is ⎡⎣ 1 2 3
2 −1 0
1 1 1

⎤⎦⎡⎣ x1

x2

x3

⎤⎦ =

⎡⎣ 0
0
0

⎤⎦ .

Reduce the augmented matrix of the system:⎡⎣ 1 2 3 0
2 −1 0 0
1 1 1 0

⎤⎦ 1
∼

⎡⎣ 1 2 3 0
0 −5 −6 0
0 −1 −2 0

⎤⎦ 2
∼

⎡⎣ 1 2 3 0
0 −1 −2 0
0 −5 −6 0

⎤⎦ 3
∼

⎡⎣ 1 2 3 0
0 1 2 0
0 −5 −6 0

⎤⎦
4
∼

⎡⎣ 1 0 −1 0
0 1 2 0
0 0 4 0

⎤⎦ 5
∼

⎡⎣ 1 0 −1 0
0 1 2 0
0 0 1 0

⎤⎦ 6
∼

⎡⎣ 1 0 0 0
0 1 0 0
0 0 1 0

⎤⎦ .

1. A12(−2), A13(−1) 2. P23 3. M2(−1) 4. A21(−2), A23(5) 5. M3(1/4) 6. A31(1), A32(−2)

From the last augmented matrix, we see that the only solution to the given system is x1 = x2 = x3 = 0:
{(0, 0, 0)}.
51. The equation Ax = 0 is ⎡⎣ 1 1 1 −1

−1 0 −1 2
1 3 2 2

⎤⎦
⎡⎢⎢⎣

x1

x2

x3

x4

⎤⎥⎥⎦ =

⎡⎢⎢⎣
0
0
0
0

⎤⎥⎥⎦ .
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Reduce the augmented matrix of the system:⎡⎣ 1 1 1 −1 0
−1 0 −1 2 0
1 3 2 2 0

⎤⎦ 1
∼

⎡⎣ 1 1 1 −1 0
0 1 0 1 0
0 2 1 3 0

⎤⎦ 2
∼

⎡⎣ 1 0 1 −2 0
0 1 0 1 0
0 0 1 1 0

⎤⎦ 3
∼

⎡⎣ 1 0 0 −3 0
0 1 0 1 0
0 0 1 1 0

⎤⎦ .

1. A12(1), A13(−1) 2. A21(−1), A23(−2) 3. A31(−1)

From the last augmented matrix, we see that x4 is a free variable. We set x4 = t, where t is a real number.
The last row of the reduced row echelon form above corresponds to the equation x3 + x4 = 0. Therefore,
x3 = −t. The second row corresponds to the equation x2+x4 = 0, so we likewise find that x2 = −t. Finally,
from the first equation we have x1 − 3x4 = 0, so that x1 = 3t. Consequently, the solution set of the original
system is given by {(3t,−t,−t, t) : t ∈ R}.
52. The equation Ax = 0 is ⎡⎣ 2− 3i 1 + i i− 1

3 + 2i −1 + i −1− i
5− i 2i −2

⎤⎦⎡⎣ x1

x2

x3

⎤⎦ =

⎡⎣ 0
0
0

⎤⎦ .

Reduce the augmented matrix of this system:⎡⎣ 2− 3i 1 + i i− 1 0
3 + 2i −1 + i −1− i 0
5− i 2i −2 0

⎤⎦ 1
∼

⎡⎣ 1 −1+5i
13

−5−i
13 0

3 + 2i −1 + i −1− i 0
5− i 2i −2 0

⎤⎦ 2
∼

⎡⎣ 1 −1+5i
13

−5−i
13 0

0 0 0 0
0 0 0 0

⎤⎦ .

1. M1(
2+3i
13 ) 2. A12(−3− 2i), A13(−5 + i)

From the last augmented matrix, we see that x1+
−1+5i

13 x2+
−5−i
13 x3 = 0. Since x2 and x3 are free variables,

we can let x2 = 13r and x3 = 13s, where r and s are complex numbers. It follows that the solution set of
the system is {(r(1− 5i) + s(5 + i), 13r, 13s) : r, s ∈ C}.
53. The equation Ax = 0 is ⎡⎣ 1 3 0

−2 −3 0
1 4 0

⎤⎦⎡⎣ x1

x2

x3

⎤⎦ =

⎡⎣ 0
0
0

⎤⎦ .

Reduce the augmented matrix of the system:⎡⎣ 1 3 0 0
−2 −3 0 0
1 4 0 0

⎤⎦ 1
∼

⎡⎣ 1 3 0 0
0 3 0 0
0 1 0 0

⎤⎦ 2
∼

⎡⎣ 1 3 0 0
0 1 0 0
0 3 0 0

⎤⎦ 3
∼

⎡⎣ 1 0 0 0
0 1 0 0
0 0 0 0

⎤⎦ .

1. A12(2), A13(−1) 2. P23 3. A21(−3), A23(−3)

From the last augmented matrix we see that the solution set of the system is {(0, 0, t) : t ∈ R}.
54. The equation Ax = 0 is ⎡⎢⎢⎢⎢⎣

1 0 3
3 −1 7
2 1 8
1 1 5

−1 1 −1

⎤⎥⎥⎥⎥⎦
⎡⎣ x1

x2

x3

⎤⎦ =

⎡⎣ 0
0
0

⎤⎦ .
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Reduce the augmented matrix of the system:⎡⎢⎢⎢⎢⎣
1 0 3 0
3 −1 7 0
2 1 8 0
1 1 5 0

−1 1 −1 0

⎤⎥⎥⎥⎥⎦ 1
∼

⎡⎢⎢⎢⎢⎣
1 0 3 0
0 −1 −2 0
0 1 2 0
0 1 2 0
0 1 2 0

⎤⎥⎥⎥⎥⎦ 2
∼

⎡⎢⎢⎢⎢⎣
1 0 3 0
0 1 2 0
0 1 2 0
0 1 2 0
0 1 2 0

⎤⎥⎥⎥⎥⎦ 3
∼

⎡⎢⎢⎢⎢⎣
1 0 3 0
0 1 2 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎥⎦ .

1. A12(−3), A13(−2), A14(−1), A15(1) 2. M2(−1) 3. A23(−1), A24(−1), A25(−1)

From the last augmented matrix, we obtain the equations x1 + 3x3 = 0 and x2 + 2x3 = 0. Since x3 is a
free variable, we let x3 = t, where t is a real number. The solution set for the given system is then given by
{(−3t,−2t, t) : t ∈ R}.
55. The equation Ax = 0 is ⎡⎣ 1 −1 0 1

3 −2 0 5
−1 2 0 1

⎤⎦
⎡⎢⎢⎣

x1

x2

x3

x4

⎤⎥⎥⎦ =

⎡⎣ 0
0
0

⎤⎦ .

Reduce the augmented matrix of the system:⎡⎣ 1 −1 0 1 0
3 −2 0 5 0

−1 2 0 1 0

⎤⎦ 1
∼

⎡⎣ 1 −1 0 1 0
0 1 0 2 0
0 1 0 2 0

⎤⎦ 2
∼

⎡⎣ 1 0 0 3 0
0 1 0 2 0
0 0 0 0 0

⎤⎦ .

1. A12(−3), A13(1) 2. A21(1), A23(−1)

From the last augmented matrix we obtain the equations x1 + 3x4 = 0 and x2 + 2x4 = 0. Because x3 and
x4 are free, we let x3 = t and x4 = s, where s and t are real numbers. It follows that the solution set of the
system is {(−3s,−2s, t, s) : s, t ∈ R}.
56. The equation Ax = 0 is ⎡⎣ 1 0 −3 0

3 0 −9 0
−2 0 6 0

⎤⎦
⎡⎢⎢⎣

x1

x2

x3

x4

⎤⎥⎥⎦ =

⎡⎣ 0
0
0

⎤⎦ .

Reduce the augmented matrix of the system:⎡⎣ 1 0 −3 0 0
3 0 −9 0 0

−2 0 6 0 0

⎤⎦ 1
∼

⎡⎣ 1 0 −3 0 0
0 0 0 0 0
0 0 0 0 0

⎤⎦ .

1. A12(−3), A13(2)

From the last augmented matrix we obtain x1 − 3x3 = 0. Therefore, x2, x3, and x4 are free variables, so
we let x2 = r, x3 = s, and x4 = t, where r, s, t are real numbers. The solution set of the given system is
therefore {(3s, r, s, t) : r, s, t ∈ R}.
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57. The equation Ax = 0 is ⎡⎣ 2 + i i 3− 2i
i 1− i 4 + 3i

3− i 1 + i 1 + 5i

⎤⎦⎡⎣ x1

x2

x3

⎤⎦ =

⎡⎣ 0
0
0

⎤⎦ .

Reduce the augmented matrix of the system:⎡⎣ 2 + i i 3− 2i 0
i 1− i 4 + 3i 0

3− i 1 + i 1 + 5i 0

⎤⎦ 1
∼

⎡⎣ i 1− i 4 + 3i 0
2 + i i 3− 2i 0
3− i 1 + i 1 + 5i 0

⎤⎦ 2
∼

⎡⎣ 1 −1− i 3− 3i 0
2 + i i 3− 2i 0
3− i 1 + i 1 + 5i 0

⎤⎦
3
∼

⎡⎣ 1 −1− i 3− 4i 0
0 1 + 4i −7 + 3i 0
0 5 + 3i −4 + 20i 0

⎤⎦ 4
∼

⎡⎣ 1 −1− i 3− 4i 0
0 1 5+31i

17 0
0 5 + 3i −4 + 20i 0

⎤⎦ 5
∼

⎡⎣ 1 0 25−32i
17 0

0 1 5+31i
17 0

0 0 10i 0

⎤⎦
6
∼

⎡⎣ 1 0 25−32i
17 0

0 1 5+31i
17 0

0 0 1 0

⎤⎦ 7
∼

⎡⎣ 1 0 0 0
0 1 0 0
0 0 1 0

⎤⎦ .

1. P12 2. M1(−i) 3. A12(−2− i), A13(−3 + i) 4. M2(
1−4i
17 ) 5. A21(1 + i), A23(−5− 3i)

6. M3(−i/10) 7. A31(
−25+32i

17 ), A32(
−5−31i

17 )

From the last augmented matrix above, we see that the only solution to this system is the trivial solution.

Solutions to Section 2.6

True-False Review:

(a): FALSE. An invertible matrix is also known as a nonsingular matrix.

(b): FALSE. For instance, the matrix

[
1 1
2 2

]
does not contain a row of zeros, but fails to be invertible.

(c): TRUE. If A is invertible, then the unique solution to Ax = b is x = A−1b.

(d): FALSE. For instance, if A =

[
1 0 0
0 0 1

]
and B =

⎡⎣ 1 0
0 0
0 1

⎤⎦, then AB = I2, but A is not even a

square matrix, hence certainly not invertible.

(e): FALSE. For instance, if A = In and B = −In, then A and B are both invertible, but A + B = 0n is
not invertible.

(f): TRUE. We have
(AB)B−1A−1 = In and B−1A−1(AB) = In,

and therefore, AB is invertible, with inverse B−1A−1.

(g): TRUE. From A2 = A, we subtract to obtain A(A−I) = 0. Left multiplying both sides of this equation
by A−1 (since A is invertible, A−1 exists), we have A−I = A−10 = 0. Therefore, A = I, the identity matrix.

(h): TRUE. From AB = AC, we left-multiply both sides by A−1 (since A is invertible, A−1 exists) to
obtain A−1AB = A−1AC. Since A−1A = I, we obtain IB = IC, or B = C.
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(i): TRUE. Any 5× 5 invertible matrix must have rank 5, not rank 4 (Theorem 2.6.6).

(j): TRUE. Any 6× 6 matrix of rank 6 is invertible (Theorem 2.6.6).

Problems:

1. We have

AA−1 =

[
4 9
3 7

] [
7 −9

−3 4

]
=

[
(4)(7) + (9)(−3) (4)(−9) + (9)(4)
(3)(7) + (7)(−3) (3)(−9) + (7)(4)

]
=

[
1 0
0 1

]
= I2.

2. We have

AA−1 =

[
2 −1
3 −1

] [ −1 1
−3 2

]
=

[
(2)(−1) + (−1)(−3) (2)(1) + (−1)(2)
(3)(−1) + (−1)(−3) (3)(1) + (−1)(2)

]
=

[
1 0
0 1

]
= I2.

3. We have [
a b
c d

](
1

ad− bc

[
d −b

−c a

])
=

1

ad− bc

[
a b
c d

] [
d −b

−c a

]
=

1

ad− bc

[
ad− bc 0

0 ad− bc

]
=

[
1 0
0 1

]
= I2,

and (
1

ad− bc

[
d −b

−c a

])[
a b
c d

]
=

1

ad− bc

[
d −b

−c a

] [
a b
c d

]
=

1

ad− bc

[
ad− bc 0

0 ad− bc

]
=

[
1 0
0 1

]
= I2.

4. We have

AA−1 =

⎡⎣ 3 5 1
1 2 1
2 6 7

⎤⎦⎡⎣ 8 −29 3
−5 19 −2
2 −8 1

⎤⎦
=

⎡⎣ (3)(8) + (5)(−5) + (1)(2) (3)(−29) + (5)(19) + (1)(−8) (3)(3) + (5)(−2) + (1)(1)
(1)(8) + (2)(−5) + (1)(2) (1)(−29) + (2)(19) + (1)(−8) (1)(3) + (2)(−2) + (1)(1)
(2)(8) + (6)(−5) + (7)(2) (2)(−29) + (6)(19) + (7)(−8) (2)(3) + (6)(−2) + (7)(1)

⎤⎦
=

⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦ = I3.

5. We have

[A|I2] =
[

1 2 1 0
1 3 0 1

]
1
∼

[
1 2 1 0
0 1 −1 1

]
2
∼

[
1 0 3 −2
0 1 −1 1

]
= [I2|A−1].
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Therefore,

A−1 =

[
3 −2

−1 1

]
.

1. A12(−1) 2. A21(−2)

6. We have

[A|I2] =
[

1 1 + i 1 0
1− i 1 0 1

]
1
∼

[
1 1 + i 1 0
0 −1 −1 + i 1

]
2
∼

[
1 1 + i 1 0
0 1 1− i −1

]
3
∼

[
1 0 −1 1 + i
0 1 1− i −1

]
= [I2|A−1].

Thus,

A−1 =

[ −1 1 + i
1− i −1

]
.

1. A12(−1 + i) 2. M2(−1) 3. A21(−1− i)

7. We have

[A|I2] =
[

1 −i 1 0
i− 1 2 0 1

]
1
∼

[
1 −i 1 0
0 1− i 1− i 1

]
2
∼

[
1 −i 1 0
0 1 1 1+i

2

]
3
∼

[
1 0 1 + i −1+i

2
0 1 1 1+i

2

]
= [I2|A−1].

Thus,

A−1 =

[
1 + i −1+i

2
1 1+i

2

]
.

1. A12(1− i) 2. M2(1/(1− i)) 3. A21(i)

8. Note that AB = 02 for all 2× 2 matrices B. Therefore, A is not invertible.

9. We have

[A|I3] =
⎡⎣ 1 −1 2 1 0 0

2 1 11 0 1 0
4 −3 10 0 0 1

⎤⎦ 1
∼

⎡⎣ 1 −1 2 1 0 0
0 3 7 −2 1 0
0 1 2 −4 0 1

⎤⎦ 2
∼

⎡⎣ 1 −1 2 1 0 0
0 1 2 −4 0 1
0 3 7 −2 1 0

⎤⎦
3
∼

⎡⎣ 1 0 4 −3 0 1
0 1 2 −4 0 1
0 0 1 10 1 −3

⎤⎦ 4
∼

⎡⎣ 1 0 0 −43 −4 13
0 1 0 −24 −2 7
0 0 1 10 1 −3

⎤⎦ = [I3|A−1].

Thus,

A−1 =

⎡⎣ −43 −4 13
−24 −2 7
10 1 −3

⎤⎦ .
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1. A12(−2), A13(−4) 2. P23 3. A21(1), A23(−3) 4. A31(−4), A32(−2)

10. We have

[A|I3] =
⎡⎣ 3 5 1 1 0 0

1 2 1 0 1 0
2 6 7 0 0 1

⎤⎦ 1
∼

⎡⎣ 1 2 1 0 1 0
3 5 1 1 0 0
2 6 7 0 0 1

⎤⎦ 2
∼

⎡⎣ 1 2 1 0 1 0
0 −1 −2 1 −3 0
0 2 5 0 −2 1

⎤⎦
3
∼

⎡⎣ 1 2 1 0 1 0
0 1 2 −1 3 0
0 2 5 0 −2 1

⎤⎦ 4
∼

⎡⎣ 1 0 −3 2 −5 0
0 1 2 −1 3 0
0 0 1 2 −8 1

⎤⎦ 5
∼

⎡⎣ 1 0 0 8 −29 3
0 1 0 −5 19 −2
0 0 1 2 −8 1

⎤⎦ = [I3|A−1].

Thus,

A−1 =

⎡⎣ 8 −29 3
−5 19 −2
2 −8 1

⎤⎦ .

1. P12 2. A12(−3), A13(−2) 3. M2(−1) 4. A21(−2), A23(−2) 5. A31(3), A32(−2)

11. This matrix is not invertible, because the column of zeros guarantees that the rank of the matrix is less
than three.

12. We have

[A|I3] =
⎡⎣ 4 2 −13 1 0 0

2 1 −7 0 1 0
3 2 4 0 0 1

⎤⎦ 1
∼

⎡⎣ 3 2 4 0 0 1
2 1 −7 0 1 0
4 2 −13 1 0 0

⎤⎦ 2
∼

⎡⎣ 1 1 11 0 −1 1
2 1 −7 0 1 0
4 2 −13 1 0 0

⎤⎦
3
∼

⎡⎣ 1 1 11 0 −1 1
0 −1 −29 0 3 −2
0 −2 −57 1 4 −4

⎤⎦ 4
∼

⎡⎣ 1 1 11 0 −1 1
0 1 29 0 −3 2
0 −2 −57 1 4 −4

⎤⎦ 5
∼

⎡⎣ 1 0 −18 0 2 −1
0 1 29 0 −3 2
0 0 1 1 −2 0

⎤⎦
6
∼

⎡⎣ 1 0 18 −34 −1
0 1 0 −29 55 2
0 0 1 1 −2 0

⎤⎦ = [I3|A−1].

Thus,

A−1 =

⎡⎣ 18 −34 −1
−29 55 2

1 −2 0

⎤⎦ .

1. P13 2. A21(−1) 3. A12(−2), A13(−4) 4. M2(−1)

5. A21(−1), A23(2) 6. A31(18), A32(−29)

13. We have

[A|I3] =
⎡⎣ 1 2 −3 1 0 0

2 6 −2 0 1 0
−1 1 4 0 0 1

⎤⎦ 1
∼

⎡⎣ 1 2 −3 1 0 0
0 2 4 −2 1 0
0 3 1 1 0 1

⎤⎦ 2
∼

⎡⎣ 1 2 −3 1 0 0
0 1 2 −1 1

2 0
0 3 1 1 0 1

⎤⎦
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3
∼

⎡⎣ 1 0 −7 3 −1 0
0 1 2 −1 1

2 0
0 0 −5 4 − 3

2 1

⎤⎦ 4
∼

⎡⎣ 1 0 −7 3 −1 0
0 1 2 −1 1

2 0
0 0 1 − 4

5
3
10 − 1

5

⎤⎦
5
∼

⎡⎣ 1 0 0 − 13
5

11
10 − 7

5
0 1 0 3

5 − 1
10

2
5

0 0 1 − 4
5

3
10 − 1

5

⎤⎦ = [I3|A−1].

Thus,

A−1 =

⎡⎣ − 13
5

11
10 − 7

5
3
5 − 1

10
2
5− 4

5
3
10 − 1

5

⎤⎦ .

1. A12(−2), A13(1) 2. M2(
1
2 ) 3. A21(−2), A23(−3) 4. M3(− 1

5 ) 5. A31(7), A32(−2)

14. We have

[A|I3] =
⎡⎣ 1 i 2 1 0 0

1 + i −1 2i 0 1 0
2 2i 5 0 0 1

⎤⎦ 1
∼

⎡⎣ 1 i 2 1 0 0
0 −i −2 −1− i 1 0
0 0 1 −2 0 1

⎤⎦ 2
∼

⎡⎣ 1 i 2 1 0 0
0 1 −2i 1− i i 0
0 0 1 −2 0 1

⎤⎦
3
∼

⎡⎣ 1 0 0 −i 1 0
0 1 −2i 1− i i 0
0 0 1 −2 0 1

⎤⎦ 4
∼

⎡⎣ 1 0 0 −i 1 0
0 1 0 1− 5i i 2i
0 0 1 −2 0 1

⎤⎦ = [I3|A−1].

Thus,

A−1 =

⎡⎣ −i 1 0
1− 5i i 2i
−2 0 1

⎤⎦ .

1. A12(−1− i), A13(−2) 2. M2(i) 3. A21(−i) 4. A32(2i)

15. We have

[A|I3] =
⎡⎣ 2 1 3 1 0 0

1 −1 2 0 1 0
3 3 4 0 0 1

⎤⎦ 1
∼

⎡⎣ 1 −1 2 0 1 0
2 1 3 1 0 0
3 3 4 0 0 1

⎤⎦ 2
∼

⎡⎣ 1 −1 2 0 1 0
0 3 −1 1 −2 0
0 6 −2 0 −3 1

⎤⎦
3
∼

⎡⎣ 1 −1 2 0 1 0
0 3 −1 1 −2 0
0 0 0 −2 1 1

⎤⎦
Since 2 = rank(A) < rank(A#) = 3, we know that A−1 does not exist (we have obtained a row of zeros in
the block matrix on the left.

1. P12 2. A12(−2), A13(−3) 3. A23(−2)

16. We have

[A|I4] =

⎡⎢⎢⎣
1 −1 2 3 1 0 0 0
2 0 3 −4 0 1 0 0
3 −1 7 8 0 0 1 0
1 0 3 5 0 0 0 1

⎤⎥⎥⎦ 1
∼

⎡⎢⎢⎣
1 −1 2 3 1 0 0 0
0 2 −1 −10 −2 1 0 0
0 2 1 −1 −3 0 1 0
0 1 1 2 −1 0 0 1

⎤⎥⎥⎦
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2
∼

⎡⎢⎢⎣
1 −1 2 3 1 0 0 0
0 1 1 2 −1 0 0 1
0 2 1 −1 −3 0 1 0
0 2 −1 −10 −2 1 0 0

⎤⎥⎥⎦ 3
∼

⎡⎢⎢⎣
1 0 3 5 0 0 0 1
0 1 1 2 −1 0 0 1
0 0 −1 −5 −1 0 1 −2
0 0 −3 −14 0 1 0 −2

⎤⎥⎥⎦

4
∼

⎡⎢⎢⎣
1 0 3 5 0 0 0 1
0 1 1 2 −1 0 0 1
0 0 1 5 1 0 −1 2
0 0 −3 −14 0 1 0 −2

⎤⎥⎥⎦ 5
∼

⎡⎢⎢⎣
1 0 0 −10 −3 0 3 −5
0 1 0 −3 −2 0 1 −1
0 0 1 5 1 0 −1 2
0 0 0 1 3 1 −3 4

⎤⎥⎥⎦

6
∼

⎡⎢⎢⎣
1 0 0 0 27 10 −27 35
0 1 0 0 7 3 −8 11
0 0 1 0 −14 −5 14 −18
0 0 0 1 3 1 −3 4

⎤⎥⎥⎦ = [I4|A−1].

Thus,

A−1 =

⎡⎢⎢⎣
27 10 −27 35
7 3 −8 11

−14 −5 14 −18
3 1 −3 4

⎤⎥⎥⎦ .

1. A12(−2), A13(−3), A14(−1) 2. P13 3. A21(1), A23(−2), A24(−2)

4. M3(−1) 5. A31(−3), A32(−1), A34(3) 6. A41(10), A42(3), A43(5)

17. We have

[A|I4] =

⎡⎢⎢⎣
0 −2 −1 −3 1 0 0 0
2 0 2 1 0 1 0 0
1 −2 0 2 0 0 1 0
3 −1 −2 0 0 0 0 1

⎤⎥⎥⎦ 1
∼

⎡⎢⎢⎣
1 −2 0 2 0 0 1 0
2 0 2 1 0 1 0 0
0 −2 −1 −3 1 0 0 0
3 −1 −2 0 0 0 0 1

⎤⎥⎥⎦

2
∼

⎡⎢⎢⎣
1 −2 0 2 0 0 1 0
0 4 2 −3 0 1 −2 0
0 −2 −1 −3 1 0 0 0
0 5 −2 −6 0 0 −3 1

⎤⎥⎥⎦ 3
∼

⎡⎢⎢⎣
1 −2 0 2 0 0 1 0
0 1 1

2 − 3
4 0 1

4 − 1
2 0

0 −2 −1 −3 1 0 0 0
0 5 −2 −6 0 0 −3 1

⎤⎥⎥⎦

4
∼

⎡⎢⎢⎣
1 0 1 1

2 0 1
2 0 0

0 1 1
2 − 3

4 0 1
4 − 1

2 0
0 0 0 − 9

2 1 1
2 −1 0

0 0 − 9
2 − 9

4 0 − 5
4 − 1

2 1

⎤⎥⎥⎦ 5
∼

⎡⎢⎢⎣
1 0 1 1

2 0 1
2 0 0

0 1 1
2 − 3

4 0 1
4 − 1

2 0
0 0 − 9

2 − 9
4 0 − 5

4 − 1
2 1

0 0 0 − 9
2 1 1

2 −1 0

⎤⎥⎥⎦

6
∼

⎡⎢⎢⎣
1 0 1 1

2 0 1
2 0 0

0 1 1
2 − 3

4 0 1
4 − 1

2 0
0 0 1 1

2 0 5
18

1
9 − 2

9
0 0 0 − 9

2 1 1
2 −1 0

⎤⎥⎥⎦ 7
∼

⎡⎢⎢⎣
1 0 0 0 0 2

9 − 1
9

2
9

0 1 0 −1 0 1
9 − 5

9
1
9

0 0 1 1
2 0 5

18
1
9 − 2

9
0 0 0 − 9

2 1 1
2 −1 0

⎤⎥⎥⎦

8
∼

⎡⎢⎢⎣
1 0 0 0 0 2

9 − 1
9

2
9

0 1 0 −1 0 1
9 − 5

9
1
9

0 0 1 1
2 0 5

18
1
9 − 2

9
0 0 0 1 − 2

9 − 1
9

2
9 0

⎤⎥⎥⎦ 9
∼

⎡⎢⎢⎣
1 0 0 0 0 2

9 − 1
9

2
9

0 1 0 0 − 2
9 0 − 1

3
1
9

0 0 1 0 1
9

1
3 0 − 2

9
0 0 0 1 − 2

9 − 1
9

2
9 0

⎤⎥⎥⎦ = [I4|A−1].
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Thus,

A−1 =

⎡⎢⎢⎣
0 2

9 − 1
9

2
9− 2

9 0 − 1
3

1
9

1
9

1
3 0 − 2

9− 2
9 − 1

9
2
9 0

⎤⎥⎥⎦ .

1. P13 2. A12(−2), A14(−3) 3. M2(
1
4 ) 4. A21(2), A23(2), A24(−5)

5. P34 6. M3(− 2
9 ) 7. A31(−1), A32(− 1

2 ) 8. M4(− 2
9 ) 9. A42(1), A43(− 1

2 )

18. We have

=

⎡⎢⎢⎣
1 2 0 0 1 0 0 0
3 4 0 0 0 1 0 0
0 0 5 6 0 0 1 0
0 0 7 8 0 0 0 1

⎤⎥⎥⎦ 1
∼

⎡⎢⎢⎣
1 2 0 0 1 0 0 0
0 −2 0 0 −3 1 0 0
0 0 1 6

5 0 0 1
5 0

0 0 7 8 0 0 0 1

⎤⎥⎥⎦
2
∼

⎡⎢⎢⎣
1 2 0 0 1 0 0 0
0 −2 0 0 −3 1 0 0
0 0 1 6

5 0 0 1
5 0

0 0 0 − 2
5 0 0 − 7

5 1

⎤⎥⎥⎦ 3
∼

⎡⎢⎢⎣
1 0 0 0 −2 1 0 0
0 −2 0 0 −3 1 0 0
0 0 1 0 0 0 −4 3
0 0 0 − 2

5 0 0 − 7
5 1

⎤⎥⎥⎦
4
∼

⎡⎢⎢⎣
1 0 0 0 −2 1 0 0
0 1 0 0 3

2 − 1
2 0 0

0 0 1 0 0 0 −4 −3
0 0 0 1 0 0 7

2 − 5
2

⎤⎥⎥⎦ = [I4|A−1].

Thus,

A−1 =

⎡⎢⎢⎣
−2 1 0 0

3
2 − 1

2 0 0
0 0 −4 3
0 0 7

2 − 5
2

⎤⎥⎥⎦ .

1. A12(−3), M3(
1
5 ) 2. A34(−7) 3. A21(1), A13(3) 4. M2(− 1

2 ), M4(− 5
2 )

19. To determine the third column vector of A−1 without determining the whole inverse, we solve the

system

⎡⎣ −1 −2 3
−1 1 1
−1 −2 −1

⎤⎦⎡⎣ x
y
z

⎤⎦ =

⎡⎣ 0
0
1

⎤⎦. The corresponding augmented matrix

⎡⎣ −1 −2 3 0
−1 1 1 0
−1 −2 −1 1

⎤⎦
can be row-reduced to

⎡⎣ 1 2 −3 0
0 1 − 2

3 0
0 0 1 − 1

4

⎤⎦. Thus, back substitution yields z = − 1
4 , y = − 1

6 , and x = − 5
12 .

Thus, the third column vector of A−1 is

⎡⎣ −5/12
−1/6
−1/4

⎤⎦.
20. To determine the second column vector of A−1 without determining the whole inverse, we solve the

linear system

⎡⎣ 2 −1 4
5 1 2
1 −1 3

⎤⎦⎡⎣ x
y
z

⎤⎦ =

⎡⎣ 0
1
0

⎤⎦. The corresponding augmented matrix

⎡⎣ 2 −1 4 0
5 1 2 1
1 −1 3 0

⎤⎦ can
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be row-reduced to

⎡⎣ 1 −1 3 0
0 1 −2 0
0 0 1 −1

⎤⎦. Thus, back-substitution yields z = −1, y = −2, and x = 1. Thus,

the second column vector of A−1 is

⎡⎣ 1
−2
−1

⎤⎦.
21. We have A =

[
6 20
2 7

]
, b =

[ −8
2

]
, and the Gauss-Jordan method yields A−1 =

[
7
2 −10

−1 3

]
.

Therefore, we have

x = A−1b =

[
7
2 −10

−1 3

] [ −8
2

]
=

[ −48
14

]
.

Hence, we have x1 = −48 and x2 = 14.

22. We have A =

[
1 3
2 5

]
, b =

[
1
3

]
, and the Gauss-Jordan method yields A−1 =

[ −5 3
2 −1

]
.

Therefore, we have

x = A−1b =

[ −5 3
2 −1

] [
1
3

]
=

[
4

−1

]
.

So we have x1 = 4 and x2 = −1.

23. We haveA =

⎡⎣ 1 1 −2
0 1 1
2 4 −3

⎤⎦, b =

⎡⎣ −2
3
1

⎤⎦, and the Gauss-Jordan method yieldsA−1 =

⎡⎣ 7 5 −3
−2 −1 1
2 2 −1

⎤⎦.
Therefore, we have

x = A−1b =

⎡⎣ 7 5 −3
−2 −1 1
2 2 −1

⎤⎦⎡⎣ −2
3
1

⎤⎦ =

⎡⎣ −2
2
1

⎤⎦ .

Hence, we have x1 = −2, x2 = 2, and x3 = 1.

24. We haveA =

[
1 −2i

2− i 4i

]
, b =

[
2

−i

]
, and the Gauss-Jordan method yieldsA−1 = 1

2+8i

[
4i 2i

−2 + i 1

]
.

Therefore, we have

x = A−1b =
1

2 + 8i

[
4i 2i

−2 + i 1

] [
2

−i

]
=

1

2 + 8i

[
2 + 8i
−4 + i

]
.

Hence, we have x1 = 1 and x2 = −4+i
2+8i .

25. We haveA =

⎡⎣ 3 4 5
2 10 1
4 1 8

⎤⎦, b =

⎡⎣ 1
1
1

⎤⎦, and the Gauss-Jordan method yieldsA−1 =

⎡⎣ −79 27 46
12 −4 −7
38 −13 −22

⎤⎦.
Therefore, we have

x = A−1b =

⎡⎣ −79 27 46
12 −4 −7
38 −13 −22

⎤⎦⎡⎣ 1
1
1

⎤⎦ =

⎡⎣ −6
1
3

⎤⎦ .

Hence, we have x1 = −6, x2 = 1, and x3 = 3.
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26. We haveA =

⎡⎣ 1 1 2
1 2 −1
2 −1 1

⎤⎦, b =

⎡⎣ 12
24

−36

⎤⎦, and the Gauss-Jordan method yieldsA−1 = 1
12

⎡⎣ −1 3 5
3 3 −3
5 −3 −1

⎤⎦.
Therefore, we have

x = A−1b =
1

12

⎡⎣ −1 3 5
3 3 −3
5 −3 −1

⎤⎦⎡⎣ 12
24

−36

⎤⎦ =

⎡⎣ −10
18
2

⎤⎦ .

Hence, x1 = −10, x2 = 18, and x3 = 2.

27. We have

AAT =

[
0 1

−1 0

] [
0 −1
1 0

]
=

[
(0)(0) + (1)(1) (0)(−1) + (1)(0)
(−1)(0) + (0)(1) (−1)(−1) + (0)(0)

]
=

[
1 0
0 1

]
= I2,

so AT = A−1.

28. We have

AAT =

[ √
3/2 1/2

−1/2
√
3/2

] [ √
3/2 −1/2

1/2
√
3/2

]
=

[
(
√
3/2)(

√
3/2) + (1/2)(1/2) (

√
3/2)(−1/2) + (1/2)(

√
3/2)

(−1/2)(
√
3/2) + (

√
3/2)(1/2) (−1/2)(−1/2) + (

√
3/2)(

√
3/2)

]
=

[
1 0
0 1

]
= I2,

so AT = A−1.

29. We have

AAT =

[
cosα sinα
− sinα cosα

] [
cosα − sinα
sinα cosα

]
=

[
cos2 α+ sin2 α (cosα)(− sinα) + (sinα)(cosα)

(− sinα)(cosα) + (cosα)(sinα) (− sinα)2 + cos2 α

]
=

[
1 0
0 1

]
= I2,

so AT = A−1.

30. We have

AAT =

(
1

1 + 2x2

)⎡⎣ 1 −2x 2x2

2x 1− 2x2 −2x
2x2 2x 1

⎤⎦( 1

1 + 2x2

)⎡⎣ 1 2x 2x2

−2x 1− 2x2 2x
2x2 −2x 1

⎤⎦
=

(
1

1 + 4x2 + 4x4

)⎡⎣ 1 + 4x2 + 4x4 0 0
0 1 + 4x2 + 4x4 0
0 0 1 + 4x2 + 4x4

⎤⎦ = I3,

so AT = A−1.

31. For part 2, we have

(B−1A−1)(AB) = B−1(A−1A)B = B−1InB = B−1B = In,

and for part 3, we have

(A−1)TAT = (AA−1)T = ITn = In.
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32. We prove this by induction on k, with k = 1 trivial and k = 2 proven in part 2 of Theorem 2.6.10.
Assuming the statement is true for a product involving k − 1 matrices, we may proceed as follows:

(A1A2 · · ·Ak)
−1 = ((A1A2 · · ·Ak−1)Ak)

−1 = A−1
k (A1A2 · · ·Ak−1)

−1

= A−1
k (A−1

k−1 · · ·A−1
2 A−1

1 ) = A−1
k A−1

k−1 · · ·A−1
2 A−1

1 .

In the second equality, we have applied part 2 of Theorem 2.6.10 to the two matrices A1A2 · · ·Ak−1 and Ak,
and in the third equality, we have assumed that the desired property is true for products of k − 1 matrices.

33. Since A is skew-symmetric, we know that AT = −A. We wish to show that (A−1)T = −A−1. We have

(A−1)T = (AT )−1 = (−A)−1 = −(A−1),

which shows that A−1 is skew-symmetric. The first equality follows from part 3 of Theorem 2.6.10, and the
second equality results from the assumption that A−1 is skew-symmetric.

34. Since A is symmetric, we know that AT = A. We wish to show that (A−1)T = A−1. We have

(A−1)T = (AT )−1 = A−1,

which shows that A−1 is symmetric. The first equality follows from part 3 of Theorem 2.6.10, and the second
equality results from the assumption that A is symmetric.

35. We have

(In −A3)(In +A3 +A6 +A9) = In(In +A3 +A6 +A9)−A3(In +A3 +A6 +A9)

= In +A3 +A6 +A9 −A3 −A6 −A9 −A12 = In −A12 = In,

where the last equality uses the assumption that A12 = 0. This calculation shows that In − A3 and In +
A3 +A6 +A9 are inverses of one another.

36. We have

(In −A)(In +A+A2 +A3) = In(In +A+A2 +A3)−A(In +A+A2 +A3)

= In +A+A2 +A3 −A−A2 −A3 −A4 = In −A4 = In,

where the last equality uses the assumption that A4 = 0. This calculation shows that In −A and In +A+
A2 +A3 are inverses of one another.

37. We claim that the inverse of A15 is B9. To verify this, use the fact that A5B3 = I to observe that

A15B9 = A5(A5(A5B3)B3)B3 = A5(A5IB3)B3 = A5(A5B3)B3 = A5IB3 = A5B3 = I.

This calculation shows that the inverse of A15 is B9.

38. We claim that the inverse of A9 is B−3. To verify this, use the fact that A3B−1 = I to observe that

A9B−3 = A3(A3(A3B−1)B−1)B−1 = A3(A3IB−1)B−1 = A3(A3B−1)B−1 = A3IB−1 = A3B−1 = I.

This calculation shows that the inverse of A9 is B−3.

39. We have
B = BIn = B(AC) = (BA)C = InC = C.

40. YES. Since BA = In, we know that A−1 = B (see Theorem 2.6.12). Likewise, since CA = In, A
−1 = C.

Since the inverse of A is unique, it must follow that B = C.
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41. We can simply compute

1

Δ

[
a22 −a12

−a21 a11

] [
a11 a12
a21 a22

]
=

1

Δ

[
a22a11 − a12a21 a22a12 − a12a22
−a21a11 + a11a21 −a21a12 + a11a22

]
=

1

Δ

[
a11a22 − a12a21 0

0 a11a22 − a12a21

]
=

[
1 0
0 1

]
= I2.

Therefore, [
a11 a12
a21 a22

]−1

=
1

Δ

[
a22 −a12

−a21 a11

]
.

42. Assume that A is an invertible matrix and that Axi = bi for i = 1, 2, . . . , p (where each bi is given).
Use elementary row operations on the augmented matrix of the system to obtain the equivalence

[A|b1 b2 b3 . . . bp] ∼ [In|c1 c2 c3 . . . cp].

The solutions to the system can be read from the last matrix: xi = ci for each i = 1, 2, . . . , p.

43. We have ⎡⎣ 1 −1 1 1 −1 2
2 −1 4 1 2 3
1 1 6 −1 5 2

⎤⎦ 1
∼

⎡⎣ 1 −1 1 1 −1 2
0 1 2 −1 4 −1
0 2 5 −2 6 0

⎤⎦
2
∼

⎡⎣ 1 0 3 0 3 1
0 1 2 −1 4 −1
0 0 1 0 −2 2

⎤⎦ 3
∼

⎡⎣ 1 0 0 0 9 −5
0 1 0 −1 8 −5
0 0 1 0 −2 2

⎤⎦ .

Hence,
x1 = (0,−1, 0), x2 = (9, 8,−2), x3 = (−5,−5, 2).

1. A12(−2), A13(−1) 2. A21(1), A23(−2) 3. A31(−3), A32(−2)

44.

(a). Let ei denote the ith column vector of the identity matrix Im, and consider the m linear systems of
equations

Axi = ei

for i = 1, 2, . . . ,m. Since rank(A) = m and each ei is a column m-vector, it follows that

rank(A#) = m = rank(A)

and so each of the systems Axi = ei above has a solution (Note that if m < n, then there will be an infinite
number of solutions). If we let B = [x1,x2, . . . ,xm], then

AB = A [x1,x2, . . . ,xm] = [Ax1, Ax2, . . . , Axm] = [e1, e2, . . . , em] = In.

(b). A right inverse for A in this case is a 3× 2 matrix

⎡⎣ a d
b e
c f

⎤⎦ such that

[
a+ 3b+ c d+ 3e+ f
2a+ 7b+ 4c 2d+ 7e+ 4f

]
=

[
1 0
0 1

]
.
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Thus, we must have

a+ 3b+ c = 1, d+ 3e+ f = 0, 2a+ 7b+ 4c = 0, 2d+ 7e+ 4f = 1.

The first and third equation comprise a linear system with augmented matrix

[
1 3 1 1
2 7 4 0

]
for a, b, and

c. The row-echelon form of this augmented matrix is

[
1 3 1 1
0 1 2 −2

]
. Setting c = t, we have b = −2− 2t

and a = 7+5t. Next, the second and fourth equation above comprise a linear system with augmented matrix[
1 3 1 0
2 7 4 1

]
for d, e, and f . The row-echelon form of this augmented matrix is

[
1 3 1 0
0 1 2 1

]
. Setting

f = s, we have e = 1− 2s and d = −3 + 5s. Thus, right inverses of A are precisely the matrices of the form⎡⎣ 7 + 5t −3 + 5s
−2− 2t 1− 2s

t s

⎤⎦.
Solutions to Section 2.7

True-False Review:

(a): TRUE. Since every elementary matrix corresponds to a (reversible) elementary row operation, the
reverse elementary row operation will correspond to an elementary matrix that is the inverse of the original
elementary matrix.

(b): FALSE. For instance, the matrices

[
2 0
0 1

]
and

[
1 0
0 2

]
are both elementary matrices, but their

product,

[
2 0
0 2

]
, is not.

(c): FALSE. Every invertible matrix can be expressed as a product of elementary matrices. Since every
elementary matrix is invertible and products of invertible matrices are invertible, any product of elementary
matrices must be an invertible matrix.

(d): TRUE. Performing an elementary row operation on a matrix does not alter its rank, and the matrix
EA is obtained from A by performing the elementary row operation associated with the elementary matrix
E. Therefore, A and EA have the same rank.

(e): FALSE. If Pij is a permutation matrix, then P 2
ij = In, since permuting the ith and jth rows of In

twice yields In. Alternatively, we can observe that P 2
ij = In from the fact that P−1

ij = Pij .

(f): FALSE. For example, consider the elementary matrices E1 =

[
1 0
0 7

]
and E2 =

[
1 1
0 1

]
. Then we

have E1E2 =

[
1 1
0 7

]
and E2E1 =

[
1 7
0 7

]
.

(g): FALSE. For example, consider the elementary matrices E1 =

⎡⎣ 1 3 0
0 1 0
0 0 1

⎤⎦ and E2 =

⎡⎣ 1 0 0
0 1 2
0 0 1

⎤⎦.
Then we have E1E2 =

⎡⎣ 1 3 6
0 1 2
0 0 1

⎤⎦ and E2E1 =

⎡⎣ 1 3 0
0 1 2
0 0 1

⎤⎦.
(h): FALSE. The only matrices we perform an LU factorization for are invertible matrices for which the
reduction to upper triangular form can be accomplished without permuting rows.
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(i): FALSE. The matrix U need not be a unit upper triangular matrix.

(j): FALSE. As can be seen in Example 2.7.8, a 4× 4 matrix with LU factorization will have 6 multipliers,
not 10 multipliers.

Problems:

1.

Permutation Matrices: P12 =

⎡⎣ 0 1 0
1 0 0
0 0 1

⎤⎦ , P13 =

⎡⎣ 0 0 1
0 1 0
1 0 0

⎤⎦ , P23 =

⎡⎣ 1 0 0
0 0 1
0 1 0

⎤⎦ .

Scaling Matrices: M1(k) =

⎡⎣ k 0 0
0 1 0
0 0 1

⎤⎦ , M2(k) =

⎡⎣ 1 0 0
0 k 0
0 0 1

⎤⎦ , M3(k) =

⎡⎣ 1 0 0
0 1 0
0 0 k

⎤⎦.
Row Combinations:

A12(k) =

⎡⎣ 1 0 0
k 1 0
0 0 1

⎤⎦ , A13(k) =

⎡⎣ 1 0 0
0 1 0
k 0 1

⎤⎦ , A23(k) =

⎡⎣ 1 0 0
0 1 0
0 k 1

⎤⎦ ,

A21(k) =

⎡⎣ 1 k 0
0 1 0
0 0 1

⎤⎦ , A31(k) =

⎡⎣ 1 0 k
0 1 0
0 0 1

⎤⎦ , A32(k) =

⎡⎣ 1 0 0
0 1 k
0 0 1

⎤⎦ .

2. We have⎡⎣ −4 −1
0 3

−3 7

⎤⎦ 1
∼

⎡⎣ −1 −8
0 3

−3 7

⎤⎦ 2
∼

⎡⎣ 1 8
0 3

−3 7

⎤⎦ 3
∼

⎡⎣ 1 8
0 3
0 31

⎤⎦ 4
∼

⎡⎣ 1 8
0 1
0 31

⎤⎦ 5
∼

⎡⎣ 1 8
0 1
0 0

⎤⎦ .

1. A31(−1) 2. M1(−1) 3. A13(3) 4. M2(
1
3 ) 5. A23(−31)

Elementary Matrices: A23(31), M2(
1
3 ), A13(3), M1(−1), A31(−1).

3. We have [
3 5
1 −2

]
1
∼

[
1 −2
3 5

]
2
∼

[
1 −2
0 11

]
3
∼

[
1 −2
0 1

]
.

1. P12 2. A12(−3) 3. M2(
1
11 )

Elementary Matrices: M2(
1
11 ), A12(−3), P12.

4. We have [
5 8 2
1 3 −1

]
1
∼

[
1 3 −1
5 8 2

]
2
∼

[
1 3 −1
0 −7 7

]
3
∼

[
1 3 −1
0 1 −1

]
.

1. P12 2. A12(−5) 3. M2(− 1
7 )

Elementary Matrices: M2(− 1
7 ), A12(−5), P12.

5. We have⎡⎣ 3 −1 4
2 1 3
1 3 2

⎤⎦ 1
∼

⎡⎣ 1 3 2
2 1 3
3 −1 4

⎤⎦ 2
∼

⎡⎣ 1 3 2
0 −5 −1
0 −10 −2

⎤⎦ 3
∼

⎡⎣ 1 3 2
0 −5 −1
0 0 0

⎤⎦ 4
∼

⎡⎣ 1 3 2
0 1 1

5
0 0 0

⎤⎦ .
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1. P13 2. A12(−2), A13(−3) 3. A23(−2) 4. M2(− 1
5 )

Elementary Matrices: M2(− 1
5 ), A23(−2), A13(−3), A12(−2), P13.

6. We have⎡⎣ 1 2 3 4
2 3 4 5
3 4 5 6

⎤⎦ 1
∼

⎡⎣ 1 2 3 4
0 −1 −2 −3
0 −2 −4 −6

⎤⎦ 2
∼

⎡⎣ 1 2 3 4
0 1 2 3
0 −2 −4 −6

⎤⎦ 3
∼

⎡⎣ 1 2 3 4
0 1 2 3
0 0 0 0

⎤⎦ .

1. A12(−2), A13(−3) 2. M2(−1) 3. A23(2)

Elementary Matrices: A23(2), M2(−1), A13(−3), A12(−2).

7. We reduce A to the identity matrix:[
1 2
1 3

]
1
∼

[
1 2
0 1

]
2
∼

[
1 0
0 1

]
.

1. A12(−1) 2. A21(−2)

The elementary matrices corresponding to these row operations are E1 =

[
1 0

−1 1

]
and E2 =

[
1 −2
0 1

]
.

We have E2E1A = I2, so that

A = E−1
1 E−1

2 =

[
1 0
1 1

] [
1 2
0 1

]
,

which is the desired expression since E−1
1 and E−1

2 are elementary matrices.

8. We reduce A to the identity matrix:[ −2 −3
5 7

]
1
∼

[ −2 −3
1 1

]
2
∼

[
1 1

−2 −3

]
3
∼

[
1 1
0 −1

]
4
∼

[
1 0
0 −1

]
5
∼

[
1 0
0 1

]
.

1. A12(2) 2. P12 3. A12(2) 4. A21(1) 5. M2(−1)

The elementary matrices corresponding to these row operations are

E1 =

[
1 0
2 1

]
, E2 =

[
0 1
1 0

]
, E3 =

[
1 0
2 1

]
, E4 =

[
1 1
0 1

]
, E5 =

[
1 0
0 −1

]
.

We have E5E4E3E2E1A = I2, so

A = E−1
1 E−1

2 E−1
3 E−1

4 E−1
5 =

[
1 0

−2 1

] [
0 1
1 0

] [
1 0

−2 1

] [
1 −1
0 1

] [
1 0
0 −1

]
,

which is the desired expression since each E−1
i is an elementary matrix.

9. We reduce A to the identity matrix:[
3 −4

−1 2

]
1
∼

[ −1 2
3 −4

]
2
∼

[
1 −2
3 −4

]
3
∼

[
1 −2
0 2

]
4
∼

[
1 −2
0 1

]
5
∼

[
1 0
0 1

]
.
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1. P12 2. M1(−1) 3. A12(−3) 4. M2(
1
2 ) 5. A21(2)

The elementary matrices corresponding to these row operations are

E1 =

[
0 1
1 0

]
, E2 =

[ −1 0
0 1

]
, E3 =

[
1 0

−3 1

]
, E4 =

[
1 0
0 1

2

]
, E5 =

[
1 2
0 1

]
.

We have E5E4E3E2E1A = I2, so

A = E−1
1 E−1

2 E−1
3 E−1

4 E−1
5 =

[
0 1
1 0

] [ −1 0
0 1

] [
1 0
3 1

] [
1 0
0 2

] [
1 −2
0 1

]
,

which is the desired expression since each E−1
i is an elementary matrix.

10. We reduce A to the identity matrix:[
4 −5
1 4

]
1
∼

[
1 4
4 −5

]
2
∼

[
1 4
0 −21

]
3
∼

[
1 4
0 1

]
4
∼

[
1 0
0 1

]
.

1. P12 2. A12(−4) 3. M2(− 1
21 ) 4. A21(−4)

The elementary matrices corresponding to these row operations are

E1 =

[
0 1
1 0

]
, E2 =

[
1 0

−4 1

]
, E3 =

[
1 0
0 − 1

21

]
, E4 =

[
1 −4
0 1

]
.

We have E4E3E2E1A = I2, so

A = E−1
1 E−1

2 E−1
3 E−1

4 =

[
0 1
1 0

] [
1 0
4 1

] [
1 0
0 −21

] [
1 4
0 1

]
,

which is the desired expression since each E−1
i is an elementary matrix.

11. We reduce A to the identity matrix:⎡⎣ 1 −1 0
2 2 2
3 1 3

⎤⎦ 1
∼

⎡⎣ 1 −1 0
0 4 2
3 1 3

⎤⎦ 2
∼

⎡⎣ 1 −1 0
0 4 2
0 4 3

⎤⎦ 3
∼

⎡⎣ 1 −1 0
0 4 2
0 0 1

⎤⎦
4
∼

⎡⎣ 1 −1 0
0 1 1

2
0 0 1

⎤⎦ 5
∼

⎡⎣ 1 −1 0
0 1 0
0 0 1

⎤⎦ 6
∼

⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦ .

1. A12(−2) 2. A13(−3) 3. A23(−1) 4. M2(
1
4 ) 5. A32(− 1

2 ) 6. A21(1)

The elementary matrices corresponding to these row operations are

E1 =

⎡⎣ 1 0 0
−2 1 0
0 0 1

⎤⎦ , E2 =

⎡⎣ 1 0 0
0 1 0

−3 0 1

⎤⎦ , E3 =

⎡⎣ 1 0 0
0 1 0
0 −1 1

⎤⎦ ,

E4 =

⎡⎣ 1 0 0
0 1

4 0
0 0 1

⎤⎦ , E5 =

⎡⎣ 1 0 0
0 1 − 1

2
0 0 1

⎤⎦ , E6 =

⎡⎣ 1 1 0
0 1 0
0 0 1

⎤⎦ .
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We have E6E5E4E3E2E1A = I3, so

A = E−1
1 E−1

2 E−1
3 E−1

4 E−1
5 E−1

6

=

⎡⎣ 1 0 0
2 1 0
0 0 1

⎤⎦⎡⎣ 1 0 0
0 1 0
3 0 1

⎤⎦⎡⎣ 1 0 0
0 1 0
0 1 1

⎤⎦⎡⎣ 1 0 0
0 4 0
0 0 1

⎤⎦⎡⎣ 1 0 0
0 1 1

2
0 0 1

⎤⎦⎡⎣ 1 −1 0
0 1 0
0 0 1

⎤⎦ ,

which is the desired expression since each E−1
i is an elementary matrix.

12. We reduce A to the identity matrix:⎡⎣ 0 −4 −2
1 −1 3

−2 2 2

⎤⎦ 1
∼

⎡⎣ 1 −1 3
0 −4 −2

−2 2 2

⎤⎦ 2
∼

⎡⎣ 1 −1 3
0 −4 −2
0 0 8

⎤⎦ 3
∼

⎡⎣ 1 −1 3
0 −4 −2
0 0 1

⎤⎦
4
∼

⎡⎣ 1 −1 3
0 −4 0
0 0 1

⎤⎦ 5
∼

⎡⎣ 1 −1 0
0 −4 0
0 0 1

⎤⎦ 6
∼

⎡⎣ 1 −1 0
0 1 0
0 0 1

⎤⎦ 7
∼

⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦ .

1. P12 2. A13(2) 3. M3(
1
8 ) 4. A32(2) 5. A31(−3) 6. M2(− 1

4 ) 7. A21(1)

The elementary matrices corresponding to these row operations are

E1 =

⎡⎣ 0 1 0
1 0 0
0 0 1

⎤⎦ , E2 =

⎡⎣ 1 0 0
0 1 0
2 0 1

⎤⎦ , E3 =

⎡⎣ 1 0 0
0 1 0
0 0 1

8

⎤⎦ , E4 =

⎡⎣ 1 0 0
0 1 2
0 0 1

⎤⎦ ,

E5 =

⎡⎣ 1 0 −3
0 1 0
0 0 1

⎤⎦ , E6 =

⎡⎣ 1 0 0
0 − 1

4 0
0 0 1

⎤⎦ , E7 =

⎡⎣ 1 1 0
0 1 0
0 0 1

⎤⎦ .

We have E7E6E5E4E3E2E1A = I3, so

A = E−1
1 E−1

2 E−1
3 E−1

4 E−1
5 E−1

6 E−1
7

=

⎡⎣ 0 1 0
1 0 0
0 0 1

⎤⎦⎡⎣ 1 0 0
0 1 0

−2 0 1

⎤⎦⎡⎣ 1 0 0
0 1 0
0 0 8

⎤⎦⎡⎣ 1 0 0
0 1 −2
0 0 1

⎤⎦⎡⎣ 1 0 3
0 1 0
0 0 1

⎤⎦⎡⎣ 1 0 0
0 −4 0
0 0 1

⎤⎦⎡⎣ 1 −1 0
0 1 0
0 0 1

⎤⎦ ,

which is the desired expression since each E−1
i is an elementary matrix.

13. We reduce A to the identity matrix:⎡⎣ 1 2 3
0 8 0
3 4 5

⎤⎦ 1
∼

⎡⎣ 1 2 3
0 1 0
3 4 5

⎤⎦ 2
∼

⎡⎣ 1 2 3
0 1 0
0 −2 −4

⎤⎦ 3
∼

⎡⎣ 1 0 3
0 1 0
0 −2 −4

⎤⎦
4
∼

⎡⎣ 1 0 3
0 1 0
0 0 −4

⎤⎦ 5
∼

⎡⎣ 1 0 3
0 1 0
0 0 1

⎤⎦ 6
∼

⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦ .

1. M2(
1
8 ) 2. A13(−3) 3. A21(−2) 4. A23(2) 5. M3(− 1

4 ) 6. A31(−3)
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The elementary matrices corresponding to these row operations are

E1 =

⎡⎣ 1 0 0
0 1

8 0
0 0 1

⎤⎦ , E2 =

⎡⎣ 1 0 0
0 1 0

−3 0 1

⎤⎦ , E3 =

⎡⎣ 1 −2 0
0 1 0
0 0 1

⎤⎦ ,

E4 =

⎡⎣ 1 0 0
0 1 0
0 2 1

⎤⎦ , E5 =

⎡⎣ 1 0 0
0 1 0
0 0 − 1

4

⎤⎦ , E6 =

⎡⎣ 1 0 −3
0 1 0
0 0 1

⎤⎦ .

We have E6E5E4E3E2E1A = I3, so

A = E−1
1 E−1

2 E−1
3 E−1

4 E−1
5 E−1

6

=

⎡⎣ 1 0 0
0 8 0
0 0 1

⎤⎦⎡⎣ 1 0 0
0 1 0
3 0 1

⎤⎦⎡⎣ 1 2 0
0 1 0
0 0 1

⎤⎦⎡⎣ 1 0 0
0 1 0
0 −2 1

⎤⎦⎡⎣ 1 0 0
0 1 0
0 0 −4

⎤⎦⎡⎣ 1 0 3
0 1 0
0 0 1

⎤⎦ ,

which is the desired expression since each E−1
i is an elementary matrix.

14. We reduce A to the identity matrix:[
2 −1
1 3

]
1
∼

[
1 3
2 −1

]
2
∼

[
1 3
0 −7

]
3
∼

[
1 3
0 1

]
4
∼

[
1 0
0 1

]
.

1. P12 2. A12(−2) 3. M2(− 1
7 ) 4. A21(−3)

The elementary matrices corresponding to these row operations are

E1 =

[
0 1
1 0

]
, E2 =

[
1 0

−2 1

]
, E3 =

[
1 0
0 − 1

7

]
, E4 =

[
1 −3
0 1

]
.

Direct multiplication verifies that E4E3E2E1A = I2.

15. We have [
3 −2

−1 5

]
1
∼

[
3 −2
0 13

3

]
= U.

1. A12(
1
3 )

Hence, E1 = A12(
1
3 ). Then Equation (2.7.3) reads L = E−1

1 = A12(− 1
3 ) =

[
1 0

− 1
3 1

]
. Verifying Equation

(2.7.2):

LU =

[
1 0

− 1
3 1

] [
3 −2
0 13

3

]
=

[
3 −2

−1 5

]
= A.

16. We have [
2 3
5 1

]
1
∼

[
2 3
0 − 13

2

]
= U =⇒ m21 =

5

2
=⇒ L =

[
1 0
5
2 1

]
.

Then

LU =

[
1 0
5
2 1

] [
2 3
0 − 13

2

]
=

[
2 3
5 1

]
= A.
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1. A12(− 5
2 )

17. We have [
3 1
5 2

]
1
∼

[
3 1
0 1

3

]
= U =⇒ m21 =

5

3
=⇒ L =

[
1 0
5
3 1

]
.

Then

LU =

[
1 0
5
3 1

] [
3 1
0 1

3

]
=

[
3 1
5 2

]
= A.

1. A12(− 5
3 )

18. We have⎡⎣ 3 −1 2
6 −1 1

−3 5 2

⎤⎦ 1
∼

⎡⎣ 3 −1 2
0 1 −3
0 4 4

⎤⎦ 2
∼

⎡⎣ 3 −1 2
0 1 −3
0 0 16

⎤⎦ = U =⇒ m21 = 2,m31 = −1,m32 = 4.

Hence,

L =

⎡⎣ 1 0 0
2 1 0

−1 4 1

⎤⎦ and LU =

⎡⎣ 1 0 0
2 1 0

−1 4 1

⎤⎦⎡⎣ 3 −1 2
0 1 −3
0 0 16

⎤⎦ =

⎡⎣ 3 −1 2
6 −1 1

−3 5 2

⎤⎦ = A.

1. A12(−2), A13(1) 2. A23(−4)

19. We have⎡⎣ 5 2 1
−10 −2 3
15 2 −3

⎤⎦ 1
∼

⎡⎣ 5 2 1
0 2 5
0 −4 −6

⎤⎦ 2
∼

⎡⎣ 5 2 1
0 2 5
0 0 4

⎤⎦ = U =⇒ m21 = −2,m31 = 3,m32 = −2.

Hence,

L =

⎡⎣ 1 0 0
−2 1 0
3 −2 1

⎤⎦ and LU =

⎡⎣ 1 0 0
−2 1 0
3 −2 1

⎤⎦⎡⎣ 5 2 1
0 2 5
0 0 4

⎤⎦ =

⎡⎣ 5 2 1
−10 −2 3
15 2 −3

⎤⎦ = A.

1. A12(2), A13(−3) 2. A23(2)

20. We have⎡⎢⎢⎣
1 −1 2 3
2 0 3 −4
3 −1 7 8
1 3 4 5

⎤⎥⎥⎦ 1
∼

⎡⎢⎢⎣
1 −1 2 3
0 2 −1 −10
0 2 1 −1
0 4 2 2

⎤⎥⎥⎦ 2
∼

⎡⎢⎢⎣
1 −1 2 3
0 2 −1 −10
0 0 2 9
0 0 4 22

⎤⎥⎥⎦ 3
∼

⎡⎢⎢⎣
1 −1 2 3
0 2 −1 −10
0 0 2 9
0 0 0 4

⎤⎥⎥⎦ = U.

1. A12(−2), A13(−3), A14(−1) 2. A23(−1), A24(−2) 3. A34(−2)
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Hence,

m21 = 2, m31 = 3,m41 = 1,m32 = 1,m42 = 2,m43 = 2.

Hence,

L =

⎡⎢⎢⎣
1 0 0 0
2 1 0 0
3 1 1 0
1 2 2 1

⎤⎥⎥⎦ and LU =

⎡⎢⎢⎣
1 0 0 0
2 1 0 0
3 1 1 0
1 2 2 1

⎤⎥⎥⎦
⎡⎢⎢⎣

1 −1 2 3
0 2 −1 −10
0 0 2 9
0 0 0 4

⎤⎥⎥⎦ =

⎡⎢⎢⎣
1 −1 2 3
2 0 3 −4
3 −1 7 8
1 3 4 5

⎤⎥⎥⎦ = A.

21. We have⎡⎢⎢⎣
2 −3 1 2
4 −1 1 1

−8 2 2 −5
6 1 5 2

⎤⎥⎥⎦ 1
∼

⎡⎢⎢⎣
2 −3 1 2
0 5 −1 −3
0 −10 6 3
0 10 2 −4

⎤⎥⎥⎦ 2
∼

⎡⎢⎢⎣
2 −3 1 2
0 5 −1 −3
0 0 4 −3
0 0 4 2

⎤⎥⎥⎦ 3
∼

⎡⎢⎢⎣
2 −3 1 2
0 5 −1 −3
0 0 4 −3
0 0 0 5

⎤⎥⎥⎦ = U.

1. A12(−2), A13(4), A14(−3) 2. A23(2), A24(−2) 3. A34(−1)

Hence,

m21 = 2, m31 = −4, m41 = 3, m32 = −2, m42 = 2, m43 = 1.

Hence,

L =

⎡⎢⎢⎣
1 0 0 0
2 1 0 0

−4 −2 1 0
3 2 1 1

⎤⎥⎥⎦ and LU =

⎡⎢⎢⎣
1 0 0 0
2 1 0 0

−4 −2 1 0
3 2 1 1

⎤⎥⎥⎦
⎡⎢⎢⎣

2 −3 1 2
0 5 −1 −3
0 0 4 −3
0 0 0 5

⎤⎥⎥⎦ =

⎡⎢⎢⎣
2 −3 1 2
4 −1 1 1

−8 2 2 −5
6 1 5 2

⎤⎥⎥⎦ = A.

22. We have [
1 2
2 3

]
1
∼

[
1 2
0 −1

]
= U =⇒ m21 = 2 =⇒ L =

[
1 0
2 1

]
.

1. A12(−2)

We now solve the triangular systems Ly = b and Ux = y. From Ly = b, we obtain y =

[
3

−7

]
. Then

Ux = y yields x =

[ −11
7

]
.

23. We have⎡⎣ 1 −3 5
3 2 2
2 5 2

⎤⎦ 1
∼

⎡⎣ 1 −3 5
0 11 −13
0 11 −8

⎤⎦ 2
∼

⎡⎣ 1 −3 5
0 11 −13
0 0 5

⎤⎦ = U =⇒ m21 = 3,m31 = 2,m32 = 1.

1. A12(−3), A13(−2) 2. A23(−1)
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Hence, L =

⎡⎣ 1 0 0
3 1 0
2 1 1

⎤⎦. We now solve the triangular systems Ly = b and Ux = y. From Ly = b, we

obtain y =

⎡⎣ 1
2

−5

⎤⎦. Then Ux = y yields x =

⎡⎣ 3
−1
−1

⎤⎦.
24. We have⎡⎣ 2 2 1

6 3 −1
−4 2 2

⎤⎦ 1
∼

⎡⎣ 2 2 1
0 −3 −4
0 0 −4

⎤⎦ 2
∼

⎡⎣ 2 2 1
0 −3 −4
0 0 −4

⎤⎦ = U =⇒ m21 = 3,m31 = −2,m32 = −2.

1. A12(−3), A13(2) 2. A23(2)

Hence, L =

⎡⎣ 1 0 0
3 1 0

−2 −2 1

⎤⎦. We now solve the triangular systems Ly = b and Ux = y. From Ly = b, we

obtain y =

⎡⎣ 1
−3
−2

⎤⎦. Then Ux = y yields x =

⎡⎣ −1/12
1/3
1/2

⎤⎦.
25. We have⎡⎢⎢⎣

4 3 0 0
8 1 2 0
0 5 3 6
0 0 −5 7

⎤⎥⎥⎦ 1
∼

⎡⎢⎢⎣
4 3 0 0
0 −5 2 0
0 5 3 6
0 0 −5 7

⎤⎥⎥⎦ 2
∼

⎡⎢⎢⎣
4 3 0 0
0 −5 2 0
0 0 5 6
0 0 −5 7

⎤⎥⎥⎦ 3
∼

⎡⎢⎢⎣
4 3 0 0
0 −5 2 0
0 0 5 6
0 0 0 13

⎤⎥⎥⎦ = U.

1. A12(−2) 2. A23(1) 3. A34(1)

The only nonzero multipliers are m21 = 2,m32 = −1, and m43 = −1. Hence, L =

⎡⎢⎢⎣
1 0 0 0
2 1 0 0
0 −1 1 0
0 0 −1 1

⎤⎥⎥⎦. We

now solve the triangular systems Ly = b and Ux = y. From Ly = b, we obtain y =

⎡⎢⎢⎣
2

−1
−1
4

⎤⎥⎥⎦. Then Ux = y

yields x =

⎡⎢⎢⎣
677/1300
−9/325
−37/65
4/13

⎤⎥⎥⎦.
26. We have [

2 −1
−8 3

]
1
∼

[
2 −1
0 −1

]
= U =⇒ m21 = −4 =⇒ L =

[
1 0

−4 1

]
.

1. A12(4)
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We now solve the triangular systems
Lyi = bi, Uxi = yi

for i = 1, 2, 3. We have

Ly1 = b1 =⇒ y1 =

[
3
11

]
. Then Ux1 = y1 =⇒ x1 =

[ −4
−11

]
;

Ly2 = b2 =⇒ y2 =

[
2
15

]
. Then Ux2 = y2 =⇒ x2 =

[ −6.5
−15

]
;

Ly3 = b3 =⇒ y3 =

[
5
11

]
. Then Ux3 = y3 =⇒ x3 =

[ −3
−11

]
.

27. We have ⎡⎣ −1 4 2
3 1 4
5 −7 1

⎤⎦ 1
∼

⎡⎣ −1 4 2
0 13 10
0 13 11

⎤⎦ 2
∼

⎡⎣ −1 4 2
0 13 10
0 0 1

⎤⎦ = U.

1. A12(3), A13(5) 2. A23(−1)

Thus, m21 = −3, m31 = −5, and m32 = 1. We now solve the triangular systems

Lyi = bi, Uxi = yi

for i = 1, 2, 3. We have

Ly1 = e1 =⇒ y1 =

⎡⎣ 1
3
2

⎤⎦. Then Ux1 = y1 =⇒ x1 =

⎡⎣ −29/13
−17/13

2

⎤⎦;
Ly2 = e2 =⇒ y2 =

⎡⎣ 0
1

−1

⎤⎦. Then Ux2 = y2 =⇒ x2 =

⎡⎣ 18/13
11/13

−1

⎤⎦;
Ly3 = e3 =⇒ y3 =

⎡⎣ 0
0
1

⎤⎦. Then Ux3 = y3 =⇒ x3 =

⎡⎣ −14/13
−10/13

1

⎤⎦.
28. Observe that if Pi is an elementary permutation matrix, then P−1

i = Pi = PT
i . Therefore, we have

P−1 = (P1P2 . . . Pk)
−1 = P−1

k P−1
k−1 . . . P

−1
2 P−1

1 = PT
k PT

k−1 . . . P
T
2 . . . PT

1 = (P1P2 . . . Pk)
T = PT .

29.

(a). Let A be an invertible upper triangular matrix with inverse B. Therefore, we have AB = In. Write
A = [aij ] and B = [bij ]. We will show that bij = 0 for all i > j, which shows that B is upper triangular. We
have

n∑
k=1

aikbkj = δij .

Since A is upper triangular, aik = 0 whenever i > k. Therefore, we can reduce the above summation to

n∑
k=i

aikbij = δij .

Let i = n. Then the above summation reduces to annbnj = δnj . If j = n, we have annbnn = 1, so
ann �= 0. For j < n, we have annbnj = 0, and therefore bnj = 0 for all j < n.
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Next let i = n− 1. Then we have

an−1,n−1bn−1,j + an−1,nbnj = δn−1,j .

Setting j = n−1 and using the fact that bn,n−1 = 0 by the above calculation, we obtain an−1,n−1bn−1,n−1 = 1,
so an−1,n−1 �= 0. For j < n− 1, we have an−1,n−1bn−1,j = 0 so that bn−1,j = 0.

Next let i = n−2. Then we have an−2,n−2bn−2,j+an−2,n−1bn−1,j+an−2,nbnj = δn−2,j . Setting j = n−2
and using the fact that bn−1,n−2 = 0 and bn,n−2 = 0, we have an−2,n−2bn−2,n−2 = 1, so that an−2,n−2 �= 0.
For j < n− 2, we have an−2,n−2bn−2,j = 0 so that bn−2,j = 0.

Proceeding in this way, we eventually show that bij = 0 for all i > j.
For an invertible lower triangular matrix A with inverse B, we can either modify the preceding argument,

or we can proceed more briefly as follows: Note that AT is an invertible upper triangular matrix with inverse
BT . By the preceding argument, BT is upper triangular. Therefore, B is lower triangular, as required.

(b). Let A be an invertible unit upper triangular matrix with inverse B. Use the notations from (a). By
(a), we know that B is upper triangular. We simply must show that bjj = 0 for all j. From annbnn = 1
(see proof of (a)), we see that if ann = 1, then bnn = 1. Moreover, from an−1,n−1bn−1,n−1 = 1, the fact
that an−1,n−1 = 1 proves that bn−1,n−1 = 1. Likewise, the fact that an−2,n−2bn−2,n−2 = 1 implies that if
an−2,n−2 = 1, then bn−2,n−2 = 1. Continuing in this fashion, we prove that bjj = 1 for all j.

For the last part, if A is an invertible unit lower triangular matrix with inverse B, then AT is an invertible
unit upper triangular matrix with inverse BT , and by the preceding argument, BT is a unit upper triangular
matrix. This implies that B is a unit lower triangular matrix, as desired.

30.

(a). Since A is invertible, Corollary 2.6.13 implies that both L2 and U1 are invertible. Since L1U1 = L2U2,
we can left-multiply by L−1

2 and right-multiply by U−1
1 to obtain L−1

2 L1 = U2U
−1
1 .

(b). By Problem 29, we know that L−1
2 is a unit lower triangular matrix and U−1

1 is an upper triangular
matrix. Therefore, L−1

2 L1 is a unit lower triangular matrix and U2U
−1
1 is an upper triangular matrix. Since

these two matrices are equal, we must have L−1
2 L1 = In and U2U

−1
1 = In. Therefore, L1 = L2 and U1 = U2.

31. The system Ax = b can be written as QRx = b. If we can solve Qy = b for y and then solve Rx = y
for x, then QRx = b as desired. Multiplying Qy = b by QT and using the fact that QTQ = In, we obtain
y = QTb. Therefore, Rx = y can be replaced by Rx = QTb. Therefore, to solve Ax = b, we first determine
y = QTb and then solve the upper triangular system Rx = QTb by back-substitution.

Solutions to Section 2.8

True-False Review:

(a): FALSE. According to the given information, part (c) of the Invertible Matrix Theorem fails, while
part (e) holds. This is impossible.

(b): TRUE. This holds by the equivalence of parts (d) and (f) of the Invertible Matrix Theorem.

(c): FALSE. Part (d) of the Invertible Matrix Theorem fails according to the given information, and
therefore part (b) also fails. Hence, the equation Ax = b does not have a unique solution. But it is not
valid to conclude that the equation has infinitely many solutions; it could have no solutions. For instance, if

A =

⎡⎣ 1 0 0
0 1 0
0 0 0

⎤⎦ and b =

⎡⎣ 0
0
1

⎤⎦, there are no solutions to Ax = b, although rank(A) = 2.

(d): FALSE. An easy counterexample is the matrix 0n, which fails to be invertible even though it is upper
triangular. Since it fails to be invertible, it cannot e row-equivalent to In, by the Invertible Matrix Theorem.
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Problems:

1. Since A is an invertible matrix, the only solution to Ax = 0 is x = 0. However, if we assume that
AB = AC, then A(B − C) = 0. If xi denotes the ith column of B − C, then xi = 0 for each i. That is,
B − C = 0, or B = C, as required.

2. If rank(A) = n, then the augmented matrix A# for the system Ax = 0 can be reduced to REF such
that each column contains a pivot except for the right-most column of all-zeros. Solving the system by
back-substitution, we find that x = 0, as claimed.

3. Since Ax = 0 has only the trivial solution, REF(A) contains a pivot in every column. Therefore, the
linear system Ax = b can be solved by back-substitution for every b in R

n. Therefore, Ax = b does have a
solution.

Now suppose there are two solutions y and z to the system Ax = b. That is, Ay = b and Az = b.
Subtracting, we find

A(y − z) = 0,

and so by assumption, y − z = 0. That is, y = z. Therefore, there is only one solution to the linear system
Ax = b.

4. If A and B are each invertible matrices, then A and B can each be expressed as a product of elementary
matrices, say

A = E1E2 . . . Ek and B = E′
1E

′
2 . . . E

′
l .

Then
AB = E1E2 . . . EkE

′
1E

′
2 . . . E

′
l ,

so AB can be expressed as a product of elementary matrices. Thus, by the equivalence of (a) and (e) in the
Invertible Matrix Theorem, AB is invertible.

5. We are assuming that the equations Ax = 0 and Bx = 0 each have only the trivial solution x = 0. Now
consider the linear system

(AB)x = 0.

Viewing this equation as
A(Bx) = 0,

we conclude that Bx = 0. Thus, x = 0. Hence, the linear equation (AB)x = 0 has only the trivial solution.

Solutions to Section 2.9

Problems:

1. AT − 5B =

⎡⎢⎢⎣
−2 −1
4 −1
2 5
6 0

⎤⎥⎥⎦−

⎡⎢⎢⎣
−15 0
10 10
5 −15
0 5

⎤⎥⎥⎦ =

⎡⎢⎢⎣
13 −1
−6 −11
−3 20
6 −5

⎤⎥⎥⎦.

2. CTB =
[ −5 −6 3 1

] ⎡⎢⎢⎣
−3 0
2 2
1 −3
0 1

⎤⎥⎥⎦ =
[
6 −20

]
.

3. Since A is not a square matrix, it is not possible to compute A2.

4. −4A−BT =

[
8 −16 −8 −24
4 4 −20 0

]
−
[ −3 2 1 0

0 2 −3 1

]
=

[
11 −18 −9 −24
4 2 −17 −1

]
.
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5. We have

AB =

[ −2 4 2 6
−1 −1 5 0

]⎡⎢⎢⎣
−3 0
2 2
1 −3
0 1

⎤⎥⎥⎦ =

[
16 8
6 −17

]
.

Moreover,
tr(AB) = −1.

6. We have

(AC)(AC)T =

[ −2
26

] [ −2 26
]
=

[
4 −52

−52 676

]
.

7. (−4B)A =

⎡⎢⎢⎣
12 0
−8 −8
−4 12
0 −4

⎤⎥⎥⎦[ −2 4 2 6
−1 −1 5 0

]
=

⎡⎢⎢⎣
−24 48 24 72
24 −24 −56 −48
−4 −28 52 −24
4 4 −20 0

⎤⎥⎥⎦.
8. Using Problem 5, we find that

(AB)−1 =

[
16 8
6 −17

]−1

= − 1

320

[ −17 −8
−6 16

]
.

9. We have

CTC =
[ −5 −6 3 1

] ⎡⎢⎢⎣
−5
−6
3
1

⎤⎥⎥⎦ = [71],

and
tr(CTC) = 71.

10.

(a). We have

AB =

[
1 2 3
2 5 7

]⎡⎣ 3 b
−4 a
a b

⎤⎦ =

[
3a− 5 2a+ 4b
7a− 14 5a+ 9b

]
.

In order for this product to equal I2, we require

3a− 5 = 1, 2a+ 4b = 0, 7a− 14 = 0, 5a+ 9b = 1.

We quickly solve this for the unique solution: a = 2 and b = −1.

(b). We have

BA =

⎡⎣ 3 −1
−4 2
2 −1

⎤⎦[ 1 2 3
2 5 7

]
=

⎡⎣ 1 1 2
0 2 2
0 −1 −1

⎤⎦ .

11. We compute the (i, j)-entry of each side of the equation. We will denote the entries of AT by aTij , which

equals aji. On the left side, note that the (i, j)-entry of (ABT )T is the same as the (j, i)-entry of ABT , and

(j, i)-entry of ABT =
n∑

k=0

ajkb
T
ki =

n∑
k=0

ajkbik =
n∑

k=0

bika
T
kj ,
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and the latter expression is the (i, j)-entry of BAT . Therefore, the (i, j)-entries of (ABT )T and BAT are
the same, as required.

12.

(a). The (i, j)-entry of A2 is
n∑

k=1

aikakj .

(b). Assume that A is symmetric. That means that AT = A. We claim that A2 is symmetric. To see this,
note that

(A2)T = (AA)T = ATAT = AA = A2.

Thus, (A2)T = A2, and so A2 is symmetric.

13. We are assuming that A is skew-symmetric, so AT = −A. To show that BTAB is skew-symmetric, we
observe that

(BTAB)T = BTAT (BT )T = BTATB = BT (−A)B = −(BTAB),

as required.

14. We have

A2 =

[
3 9

−1 −3

]2
=

[
0 0
0 0

]
,

so A is nilpotent.

15. We have

A2 =

⎡⎣ 0 0 1
0 0 0
0 0 0

⎤⎦
and

A3 = A2A =

⎡⎣ 0 0 1
0 0 0
0 0 0

⎤⎦⎡⎣ 0 1 1
0 0 1
0 0 0

⎤⎦ =

⎡⎣ 0 0 0
0 0 0
0 0 0

⎤⎦ ,

so A is nilpotent.

16. We have

A′(t) =

⎡⎣ −3e−3t −2 sec2 t tan t
6t2 − sin t
6/t −5

⎤⎦ .

17. We have ∫ 1

0

B(t) dt =

⎡⎢⎢⎣
−7t t3/3

6t− t2/2 3t4/4 + 2t3

t+ t2/2 2
π sin(πt/2)

et t− t4/4

⎤⎥⎥⎦ ∣∣∣∣1
0

=

⎡⎢⎢⎣
−7 1/3
11/2 11/4
3/2 2/π
e− 1 3/4

⎤⎥⎥⎦ .

18. Since A(t) is 3× 2 and B(t) is 4× 2, it is impossible to perform the indicated subtraction.

19. Since A(t) is 3× 2 and B(t) is 4× 2, it is impossible to perform the indicated subtraction.
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20. From the last equation, we see that x3 = 0. Substituting this into the middle equation, we find that
x2 = 0.5. Finally, putting the values of x2 and x3 into the first equation, we find x1 = −6 − 2.5 = −8.5.
Thus, there is a unique solution to the linear system, and the solution set is

{(−8.5, 0.5, 0)}.

21. To solve this system, we need to reduce the corresponding augmented matrix for the linear system to
row-echelon form. This gives us

⎡⎣ 5 −1 2 7
−2 6 9 0
−7 5 −3 −7

⎤⎦ 1
∼

⎡⎣ 1 11 20 7
−2 6 9 0
−7 5 −3 −7

⎤⎦ 2
∼

⎡⎣ 1 11 20 7
0 28 49 14
0 82 137 42

⎤⎦ 3
∼

⎡⎣ 1 11 20 7
0 1 7/4 1/2
0 82 137 42

⎤⎦
4
∼

⎡⎣ 1 11 20 7
0 1 7/4 1/2
0 0 −13/2 1

⎤⎦ 5
∼

⎡⎣ 1 11 20 7
0 1 7/4 1/2
0 0 1 −2/13

⎤⎦ .

From the last row, we conclude that x3 = −2/13, and using the middle row, we can solve for x2: we have
x2+

7
4 ·
(− 2

13

)
= 1

2 , so x2 = 20
26 = 10

13 . Finally, from the first row we can get x1: we have x1+11· 1013+20·(− 2
13

)
=

7, and so x1 = 21
13 . So there is a unique solution:{(

21

13
,
10

13
,− 2

13

)}
.

1. A21(2) 2. A12(2), A13(7) 3. M2(1/28) 4. A23(−82) 5. M3(−2/13)

22. To solve this system, we need to reduce the corresponding augmented matrix for the linear system to
row-echelon form. This gives us

⎡⎣ 1 2 −1 1
1 0 1 5
4 4 0 12

⎤⎦ 1
∼

⎡⎣ 1 2 −1 1
0 −2 2 4
0 −4 4 8

⎤⎦ 2
∼

⎡⎣ 1 2 −1 1
0 1 −1 −2
0 −4 4 8

⎤⎦ 3
∼

⎡⎣ 1 2 −1 1
0 1 −1 −2
0 0 0 0

⎤⎦ .

From this row-echelon form, we see that z is a free variable. Set z = t. Then from the middle row of the
matrix, y = t− 2, and from the top row, x+ 2(t− 2)− t = 1 or x = −t+ 5. So the solution set is

{(−t+ 5, t− 2, t) : t ∈ R} = {(5,−2, 0) + t(−1, 1, 1) : t ∈ R}.

1. A12(−1), A13(−4) 2. M2(−1/2) 3. A23(4)

23. To solve this system, we need to reduce the corresponding augmented matrix for the linear system to
row-echelon form. This gives us

⎡⎣ 1 −2 −1 3 0
−2 4 5 −5 3
3 −6 −6 8 2

⎤⎦ 1
∼

⎡⎣ 1 −2 −1 3 0
0 0 3 1 3
0 0 −3 −1 2

⎤⎦ 2
∼

⎡⎣ 1 −2 −1 3 0
0 0 3 1 3
0 0 0 0 5

⎤⎦ 3
∼

⎡⎣ 1 −2 −1 3 0
0 0 1 1/3 1
0 0 0 0 1

⎤⎦ .

The bottom row of this matrix shows that this system has no solutions.
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1. A12(2), A13(−3) 2. A23(1) 3. M2(1/3), M3(1/3)

24. To solve this system, we need to reduce the corresponding augmented matrix for the linear system to
row-echelon form. This gives us

⎡⎢⎢⎣
3 0 −1 2 −1 1
1 3 1 −3 2 −1
4 −2 −3 6 −1 5
0 0 0 1 4 −2

⎤⎥⎥⎦ 1
∼

⎡⎢⎢⎣
1 3 1 −3 2 −1
3 0 −1 2 −1 1
4 −2 −3 6 −1 5
0 0 0 1 4 −2

⎤⎥⎥⎦ 2
∼

⎡⎢⎢⎣
1 3 1 −3 2 −1
0 −9 −4 11 −7 4
0 −14 −7 18 −9 9
0 0 0 1 4 −2

⎤⎥⎥⎦

3
∼

⎡⎢⎢⎣
1 3 1 −3 2 −1
0 −27 −12 33 −21 12
0 28 14 −36 18 −18
0 0 0 1 4 −2

⎤⎥⎥⎦ 4
∼

⎡⎢⎢⎣
1 3 1 −3 2 −1
0 −27 −12 33 −21 12
0 1 2 −3 −3 −6
0 0 0 1 4 −2

⎤⎥⎥⎦
5
∼

⎡⎢⎢⎣
1 3 1 −3 2 −1
0 1 2 −3 −3 −6
0 −27 −12 33 −21 12
0 0 0 1 4 −2

⎤⎥⎥⎦ 6
∼

⎡⎢⎢⎣
1 3 1 −3 2 −1
0 1 2 −3 −3 −6
0 0 42 −48 −102 −150
0 0 0 1 4 −2

⎤⎥⎥⎦ 7
∼

⎡⎢⎢⎣
1 3 1 −3 2 −1
0 1 2 −3 −3 −6
0 0 1 − 8

7 − 17
7 − 25

7
0 0 0 1 4 −2

⎤⎥⎥⎦ .

We see that x5 = t is the only free variable. Back substitution yields the remaining values:

x5 = t, x4 = −4t− 2, x3 = −41

7
− 15

7
t, x2 = −2

7
− 33

7
t, x1 = −2

7
+

16

7
t.

So the solution set is {(
−2

7
+

16

7
t,−2

7
− 33

7
t,−41

7
− 15

7
t,−4t− 2, t

)
: t ∈ R

}

=

{
t

(
16

7
,−33

7
,−15

7
,−4, 1

)
+

(
−2

7
,−2

7
,−41

7
,−2, 0

)
: t ∈ R

}
.

1. P12 2. A12(−3), A13(−4) 3. M2(3), M3(−2) 4. A23(1) 5. P23 6. A23(27) 7. M3(1/42)

25. To solve this system, we need to reduce the corresponding augmented matrix for the linear system to
row-echelon form. This gives us⎡⎢⎢⎣

1 1 1 1 −3 6
1 1 1 2 −5 8
2 3 1 4 −9 17
2 2 2 3 −8 14

⎤⎥⎥⎦ 1
∼

⎡⎢⎢⎣
1 1 1 1 −3 6
0 0 0 1 −2 2
0 1 −1 2 −3 5
0 0 0 −1 2 −2

⎤⎥⎥⎦ 2
∼

⎡⎢⎢⎣
1 1 1 1 −3 6
0 0 0 1 −2 2
0 1 −1 2 −3 5
0 0 0 0 0 0

⎤⎥⎥⎦
3
∼

⎡⎢⎢⎣
1 1 1 1 −3 6
0 1 −1 2 −3 5
0 0 0 1 −2 2
0 0 0 0 0 0

⎤⎥⎥⎦ .

From this row-echelon form, we see that x5 = t and x3 = s are free variables. Furthermore, solving this
system by back-substitution, we see that

x5 = t, x4 = 2t+ 2, x3 = s, x2 = s− t+ 1, x1 = 2t− 2s+ 3.
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So the solution set is

{(2t− 2s+ 3, s− t+ 1, s, 2t+ 2, t) : s, t ∈ R} = {t(2,−1, 0, 2, 1) + s(−2, 1, 1, 0, 0) + (3, 1, 0, 2, 0) : s, t ∈ R}.

1. A12(−1), A13(−2), A14(−2) 2. A24(1) 3. P23

26. To solve this system, we need to reduce the corresponding augmented matrix for the linear system to
row-echelon form. This gives us[

1 −3 2i 1
−2i 6 2 −2

]
1
∼

[
1 −3 2i 1
0 6− 6i −2 −2 + 2i

]
2
∼

[
1 −3 2i 1
0 1 − 1

6 (1 + i) − 1
3

]
.

1. A12(2i) 2. M2(
1

6−6i )

From the last augmented matrix above, we see that x3 is a free variable. Let us set x3 = t, where t is
a complex number. Then we can solve for x2 using the equation corresponding to the second row of the
row-echelon form: x2 = − 1

3 +
1
6 (1+i)t. Finally, using the first row of the row-echelon form, we can determine

that x1 = 1
2 t(1− 3i). Therefore, the solution set for this linear system of equations is

{(1
2
t(1− 3i),−1

3
+

1

6
(1 + i)t, t) : t ∈ C}.

27. We reduce the corresponding linear system as follows:[
1 −k 6
2 3 k

]
1
∼

[
1 −k 6
0 3 + 2k k − 12

]
.

If k �= − 3
2 , then each column of the row-reduced coefficient matrix will contain a pivot, and hence, the linear

system will have a unique solution. If, on the other hand, k = − 3
2 , then the system is inconsistent, because

the last row of the row-echelon form will have a pivot in the right-most column. Under no circumstances
will the linear system have infinitely many solutions.

28. First observe that if k = 0, then the second equation requires that x3 = 2, and then the first equation
requires x2 = 2. However, x1 is a free variable in this case, so there are infinitely many solutions.

Now suppose that k �= 0. Then multiplying each row of the corresponding augmented matrix for the
linear system by 1/k yields a row-echelon form with pivots in the first two columns only. Therefore, the
third variable, x3, is free in this case. So once again, there are infinitely many solutions to the system.

We conclude that the system has infinitely many solutions for all values of k.

29. Since this linear system is homogeneous, it already has at least one solution: (0, 0, 0). Therefore, it only
remains to determine the values of k for which this will be the only solution. We reduce the corresponding
matrix as follows:⎡⎣ 10 k −1 0

k 1 −1 0
2 1 −1 0

⎤⎦ 1
∼

⎡⎣ 10k k2 −k 0
10k 10 −10 0
1 1/2 −1/2 0

⎤⎦ 2
∼

⎡⎣ 1 1/2 −1/2 0
10k 10 −10 0
10k k2 −k 0

⎤⎦
3
∼

⎡⎣ 1 1/2 −1/2 0
0 10− 5k 5k − 10 0
0 k2 − 5k 4k 0

⎤⎦ 4
∼

⎡⎣ 1 1/2 −1/2 0
0 1 −1 0
0 k2 − 5k 4k 0

⎤⎦ 5
∼

⎡⎣ 1 1/2 −1/2 0
0 1 −1 0
0 0 k2 − k 0

⎤⎦ .
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1. M1(k), M2(10), M3(1/2) 2. P13 3. A12(−10k), A13(−10k) 4. M2(
1

10−5k ) 5. A23(5k − k2)

Note that the steps above are not valid if k = 0 or k = 2 (because Step 1 is not valid with k = 0 and Step
4 is not valid if k = 2). We will discuss those special cases individually in a moment. However if k �= 0, 2,
then the steps are valid, and we see from the last row of the last matrix that if k = 1, we have infinitely
many solutions. Otherwise, if k �= 0, 1, 2, then the matrix has full rank, and so there is a unique solution to
the linear system.

If k = 2, then the last two rows of the original matrix are the same, and so the matrix of coefficients of
the linear system is not invertible. Therefore, the linear system must have infinitely many solutions.

If k = 0, we reduce the original linear system as follows:

⎡⎣ 10 0 −1 0
0 1 −1 0
2 1 −1 0

⎤⎦ 1
∼

⎡⎣ 1 0 −1/10 0
0 1 −1 0
2 1 −1 0

⎤⎦ 2
∼

⎡⎣ 1 0 −1/10 0
0 1 −1 0
0 1 −4/5 0

⎤⎦ 3
∼

⎡⎣ 1 0 −1/10 0
0 1 −1 0
0 0 1/5 0

⎤⎦ .

The last matrix has full rank, so there will be a unique solution in this case.

1. M1(1/10) 2. A13(−2) 3. A23(−1)

To summarize: The linear system has infinitely many solutions if and only if k = 1 or k = 2. Otherwise,
the system has a unique solution.

30. To solve this system, we need to reduce the corresponding augmented matrix for the linear system to
row-echelon form. This gives us⎡⎣ 1 −k k2 0

1 0 k 0
0 1 −1 1

⎤⎦ 1
∼

⎡⎣ 1 −k k2 0
0 k k − k2 0
0 1 −1 1

⎤⎦ 2
∼

⎡⎣ 1 −k k2 0
0 1 −1 1
0 k k − k2 0

⎤⎦ 3
∼

⎡⎣ 1 −k k2 0
0 1 −1 1
0 0 2k − k2 −k

⎤⎦ .

1. A12(−1) 2. P23 3. A23(−k)

Now provided that 2k − k2 �= 0, the system can be solved without free variables via back-substitution, and
therefore, there is a unique solution. Consider now what happens if 2k−k2 = 0. Then either k = 0 or k = 2.
If k = 0, then only the first two columns of the last augmented matrix above are pivoted, and we have a free
variable corresponding to x3. Therefore, there are infinitely many solutions in this case. On the other hand,
if k = 2, then the last row of the last matrix above reflects an inconsistency in the linear system, and there
are no solutions.

To summarize, the system has no solutions if k = 2, a unique solution if k �= 0 and k �= 2, and infinitely
many solutions if k = 0.

31. No, there are no common points of intersection. A common point of intersection would be indicated by
a solution to the linear system consisting of the equations of the three planes. However, the corresponding
augmented matrix can be row-reduced as follows:⎡⎣ 1 2 1 4

0 1 −1 1
1 3 0 0

⎤⎦ 1
∼

⎡⎣ 1 2 1 4
0 1 −1 1
0 1 −1 −4

⎤⎦ 2
∼

⎡⎣ 1 2 1 4
0 1 −1 1
0 0 0 −5

⎤⎦ .

The last row of this matrix shows that the linear system is inconsistent, and so there are no points common
to all three planes.
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1. A13(−1) 2. A23(−1)

32.

(a). We have [
4 7

−2 5

]
1
∼

[
1 7/4

−2 5

]
2
∼

[
1 7/4
0 17/2

]
3
∼

[
1 7/4
0 1

]
.

1. M1(1/4) 2. A12(2) 3. M2(2/17)

(b). We have: rank(A) = 2, since the row-echelon form of A in (a) consists two nonzero rows.

(c). We have

[
4 7 1 0

−2 5 0 1

]
1
∼

[
1 7/4 1/4 0

−2 5 0 1

]
2
∼

[
1 7/4 1/4 0
0 17/2 1/2 1

]
3
∼

[
1 7/4 1/4 0
0 1 1/17 2/17

]
4
∼

[
1 0 5/34 −7/34
0 1 1/17 2/17

]
.

1. M1(1/4) 2. A12(2) 3. M2(2/17) 4. A21(−7/4)

Thus,

A−1 =

[
5
34 − 7

34
1
17

2
17

]
.

33.

(a). We have [
2 −7

−4 14

]
1
∼

[
2 −7
0 0

]
2
∼

[
1 −7/2
0 0

]
.

1. A12(2) 2. M1(1/2)

(b). We have: rank(A) = 1, since the row-echelon form of A in (a) has one nonzero row.

(c). Since rank(A) < 2, A is not invertible.

34.

(a). We have⎡⎣ 3 −1 6
0 2 3
3 −5 0

⎤⎦ 1
∼

⎡⎣ 1 −1/3 2
0 2 3
1 −5/3 0

⎤⎦ 2
∼

⎡⎣ 1 −1/3 2
0 2 3
0 −4/3 −2

⎤⎦ 3
∼

⎡⎣ 1 −1/3 2
0 2 3
0 0 0

⎤⎦ 4
∼

⎡⎣ 1 −1/3 2
0 1 3/2
0 0 0

⎤⎦ .

1. M1(1/3), M3(1/3) 2. A13(−1) 3. A23(2/3) 4. M2(1/2)
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(b). We have: rank(A) = 2, since the row-echelon form of A in (a) consists of two nonzero rows.

(c). Since rank(A) < 3, A is not invertible.

35.

(a). We have⎡⎢⎢⎣
2 1 0 0
1 2 0 0
0 0 3 4
0 0 4 3

⎤⎥⎥⎦ 1
∼

⎡⎢⎢⎣
1 2 0 0
2 1 0 0
0 0 3 4
0 0 4 3

⎤⎥⎥⎦ 2
∼

⎡⎢⎢⎣
1 2 0 0
0 −3 0 0
0 0 3 4
0 0 1 −1

⎤⎥⎥⎦ 3
∼

⎡⎢⎢⎣
1 2 0 0
0 −3 0 0
0 0 1 −1
0 0 3 4

⎤⎥⎥⎦
4
∼

⎡⎢⎢⎣
1 2 0 0
0 1 0 0
0 0 1 −1
0 0 0 7

⎤⎥⎥⎦ 5
∼

⎡⎢⎢⎣
1 2 0 0
0 1 0 0
0 0 1 −1
0 0 0 1

⎤⎥⎥⎦ .

1. P12 2. A12(−2), A34(−1) 3. P34 4. M2(−1/3), A34(−3) 5. M4(1/7)

(b). We have: rank(A) = 4, since the row-echelon form of A in (a) consists of four nonzero rows.

(c). We have⎡⎢⎢⎣
2 1 0 0 1 0 0 0
1 2 0 0 0 1 0 0
0 0 3 4 0 0 1 0
0 0 4 3 0 0 0 1

⎤⎥⎥⎦ 1
∼

⎡⎢⎢⎣
1 2 0 0 0 1 0 0
2 1 0 0 1 0 0 0
0 0 3 4 0 0 1 0
0 0 4 3 0 0 0 1

⎤⎥⎥⎦ 2
∼

⎡⎢⎢⎣
1 2 0 0 0 1 0 0
0 −3 0 0 1 −2 0 0
0 0 3 4 0 0 1 0
0 0 1 −1 0 0 −1 1

⎤⎥⎥⎦
3
∼

⎡⎢⎢⎣
1 2 0 0 0 1 0 0
0 −3 0 0 1 −2 0 0
0 0 1 −1 0 0 −1 1
0 0 3 4 0 0 1 0

⎤⎥⎥⎦ 4
∼

⎡⎢⎢⎣
1 2 0 0 0 1 0 0
0 1 0 0 −1/3 2/3 0 0
0 0 1 −1 0 0 −1 1
0 0 0 7 0 0 4 −3

⎤⎥⎥⎦
5
∼

⎡⎢⎢⎣
1 0 0 0 2/3 −1/3 0 0
0 1 0 0 −1/3 2/3 0 0
0 0 1 −1 0 0 −1 1
0 0 0 1 0 0 4/7 −3/7

⎤⎥⎥⎦ 6
∼

⎡⎢⎢⎣
1 0 0 0 2/3 −1/3 0 0
0 1 0 0 −1/3 2/3 0 0
0 0 1 0 0 0 −3/7 4/7
0 0 0 1 0 0 4/7 −3/7

⎤⎥⎥⎦ .

1. P12 2. A12(−2), A34(−1) 3. P34 4. A34(−3), M2(−1/3) 5. M4(1/7), A21(−2) 6. A43(1)

Thus,

A−1 =

⎡⎢⎢⎣
2/3 −1/3 0 0
−1/3 2/3 0 0
0 0 −3/7 4/7
0 0 4/7 −3/7

⎤⎥⎥⎦ .

36.

(a). We have⎡⎣ 3 0 0
0 2 −1
1 −1 2

⎤⎦ 1
∼

⎡⎣ 1 0 0
0 2 −1
1 −1 2

⎤⎦ 2
∼

⎡⎣ 1 0 0
0 2 −1
0 −1 2

⎤⎦ 3
∼

⎡⎣ 1 0 0
0 −1 2
0 2 −1

⎤⎦ 4
∼

⎡⎣ 1 0 0
0 −1 2
0 0 3

⎤⎦ 5
∼

⎡⎣ 1 0 0
0 1 −2
0 0 1

⎤⎦ .
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1. M1(1/3) 2. A13(−1) 3. P23 4. A23(2) 5. M2(−1), M3(1/3)

(b). We have: rank(A) = 3, since the row-echelon form of A in (a) has 3 nonzero rows.

(c). We have⎡⎣ 3 0 0 1 0 0
0 2 −1 0 1 0
1 −1 2 0 0 1

⎤⎦ 1
∼

⎡⎣ 1 0 0 1/3 0 0
0 2 −1 0 1 0
1 −1 2 0 0 1

⎤⎦ 2
∼

⎡⎣ 1 0 0 1/3 0 0
0 2 −1 0 1 0
0 −1 2 −1/3 0 1

⎤⎦
3
∼

⎡⎣ 1 0 0 1/3 0 0
0 −1 2 −1/3 0 1
0 2 −1 0 1 0

⎤⎦ 4
∼

⎡⎣ 1 0 0 1/3 0 0
0 −1 2 −1/3 0 1
0 0 3 −2/3 1 2

⎤⎦
5
∼

⎡⎣ 1 0 0 1/3 0 0
0 1 −2 1/3 0 −1
0 0 1 −2/9 1/3 2/3

⎤⎦ 6
∼

⎡⎣ 1 0 0 1/3 0 0
0 1 0 −1/9 2/3 1/3
0 0 1 −2/9 1/3 2/3

⎤⎦ .

1. M1(1/3) 2. A13(−1) 3. P23 4. A23(2) 5. M2(−1), M3(1/3) 6. A32(2)

Hence,

A−1 =

⎡⎣ 1/3 0 0
−1/9 2/3 1/3
−2/9 1/3 2/3

⎤⎦ .

37.

(a). We have⎡⎣ −2 −3 1
1 4 2
0 5 3

⎤⎦ 1
∼

⎡⎣ 1 4 2
−2 −3 1
0 5 3

⎤⎦ 2
∼

⎡⎣ 1 4 2
0 5 5
0 5 3

⎤⎦ 3
∼

⎡⎣ 1 4 2
0 5 5
0 0 −2

⎤⎦ 4
∼

⎡⎣ 1 4 2
0 1 1
0 0 1

⎤⎦ .

1. P12 2. A12(2) 3. A23(−1) 4. M2(1/5), M3(−1/2)

(b). We have: rank(A) = 3, since the row-echelon form of A in (a) consists of 3 nonzero rows.

(c). We have⎡⎣ −2 −3 1 1 0 0
1 4 2 0 1 0
0 5 3 0 0 1

⎤⎦ 1
∼

⎡⎣ 1 4 2 0 1 0
−2 −3 1 1 0 0
0 5 3 0 0 1

⎤⎦ 2
∼

⎡⎣ 1 4 2 0 1 0
0 5 5 1 2 0
0 5 3 0 0 1

⎤⎦
3
∼

⎡⎣ 1 4 2 0 1 0
0 5 5 1 2 0
0 0 −2 −1 −2 1

⎤⎦ 4
∼

⎡⎣ 1 4 2 0 1 0
0 1 1 1/5 2/5 0
0 0 1 1/2 1 −1/2

⎤⎦
5
∼

⎡⎣ 1 0 −2 −4/5 −3/5 0
0 1 1 1/5 2/5 0
0 0 1 1/2 1 −1/2

⎤⎦ 6
∼

⎡⎣ 1 0 0 1/5 7/5 −1
0 1 0 −3/10 −3/5 1/2
0 0 1 1/2 1 −1/2

⎤⎦ .
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1. P12 2. A12(2) 3. A23(−1) 4. M2(1/5), M3(−1/2) 5. A21(−4) 6. A31(2), A32(−1)

Thus,

A−1 =

⎡⎣ 1/5 7/5 −1
−3/10 −3/5 1/2
1/2 1 −1/2

⎤⎦ .

38. We use the Gauss-Jordan method to find A−1:⎡⎣ 1 −1 3 1 0 0
4 −3 13 0 1 0
1 1 4 0 0 1

⎤⎦ 1
∼

⎡⎣ 1 −1 3 1 0 0
0 1 1 −4 1 0
0 2 1 −1 0 1

⎤⎦ 2
∼

⎡⎣ 1 −1 3 1 0 0
0 1 1 −4 1 0
0 0 −1 7 −2 1

⎤⎦
3
∼

⎡⎣ 1 −1 3 1 0 0
0 1 1 −4 1 0
0 0 1 −7 2 −1

⎤⎦ 4
∼

⎡⎣ 1 0 4 −3 1 0
0 1 1 −4 1 0
0 0 1 −7 2 −1

⎤⎦ 5
∼

⎡⎣ 1 0 0 25 −7 4
0 1 0 3 −1 1
0 0 1 −7 2 −1

⎤⎦ .

1. A12(−4), A13(−1) 2. A23(−2) 3. M3(−1) 4. A21(1) 5. A31(−4), A32(−1)

Thus,

A−1 =

⎡⎣ 25 −7 4
3 −1 1

−7 2 −1

⎤⎦ .

Now xi = A−1ei for each i. So

x1 = A−1e1 =

⎡⎣ 25
3

−7

⎤⎦ , x2 = A−1e2 =

⎡⎣ −7
−1
2

⎤⎦ , x3 = A−1e3 =

⎡⎣ 4
1

−1

⎤⎦ .

39. We have xi = A−1bi, where

A−1 = − 1

39

[ −2 −5
−7 2

]
.

Therefore,

x1 = A−1b1 = − 1

39

[ −2 −5
−7 2

] [
1
2

]
= − 1

39

[ −12
−3

]
=

1

39

[
12
3

]
=

1

13

[
4
1

]
,

x2 = A−1b2 = − 1

39

[ −2 −5
−7 2

] [
4
3

]
= − 1

39

[ −23
−22

]
=

1

39

[
23
22

]
,

and

x3 = A−1b3 = − 1

39

[ −2 −5
−7 2

] [ −2
5

]
= − 1

39

[ −21
24

]
=

1

39

[
21

−24

]
=

1

13

[
7

−8

]
.

40.

(a). We have
(A−1B)(B−1A) = A−1(BB−1)A = A−1InA = A−1A = In

and
(B−1A)(A−1B) = B−1(AA−1)B = B−1InB = B−1B = In.
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Therefore,

(B−1A)−1 = A−1B.

(b). We have

(A−1B)−1 = B−1(A−1)−1 = B−1A,

as required.

41(a). We haveB4 = (S−1AS)(S−1AS)(S−1AS)(S−1AS) = S−1A(SS−1)A(SS−1)A(SS−1)AS = S−1AIAIAIAS =
S−1A4S, as required.

41(b). We can prove this by induction on k. For k = 1, the result is B = S−1AS, which was already
given. Now assume that Bk = S−1AkS. Then Bk+1 = BBk = S−1AS(S−1AkS) = S−1A(SS−1)AkS =
S−1AIAkS = S−1Ak+1S, which completes the induction step.

42.

(a). We reduce A to the identity matrix:[
4 7

−2 5

]
1
∼

[
1 7

4−2 5

]
2
∼

[
1 7

4
0 17

2

]
3
∼

[
1 7

4
0 1

]
4
∼

[
1 0
0 1

]
.

1. M1(
1
4 ) 2. A12(2) 3. M2(

2
17 ) 4. A21(− 7

4 )

The elementary matrices corresponding to these row operations are

E1 =

[
1
4 0
0 1

]
, E2 =

[
1 0
2 1

]
, E3 =

[
1 0
0 2

17

]
, E4 =

[
1 − 7

4
0 1

]
.

We have E4E3E2E1A = I2, so that

A = E−1
1 E−1

2 E−1
3 E−1

4 =

[
4 0
0 1

] [
1 0

−2 1

] [
1 0
0 17

2

] [
1 7

4
0 1

]
,

which is the desired expression since E−1
i is an elementary matrix for each i.

(b). We can reduce A to upper triangular form by the following elementary row operation:[
4 7

−2 5

]
1
∼

[
4 7
0 17

2

]
.

1. A12(
1
2 )

Therefore we have the multiplier m12 = − 1
2 . Hence, setting

L =

[
1 0

− 1
2 1

]
and U =

[
4 7
0 17

2

]
,

we have the LU factorization A = LU , which can be easily verified by direct multiplication.

43.
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(a). We reduce A to the identity matrix:⎡⎢⎢⎣
2 1 0 0
1 2 0 0
0 0 3 4
0 0 4 3

⎤⎥⎥⎦ 1
∼

⎡⎢⎢⎣
1 2 0 0
2 1 0 0
0 0 3 4
0 0 4 3

⎤⎥⎥⎦ 2
∼

⎡⎢⎢⎣
1 2 0 0
0 −3 0 0
0 0 3 4
0 0 4 3

⎤⎥⎥⎦ 3
∼

⎡⎢⎢⎣
1 2 0 0
0 1 0 0
0 0 3 4
0 0 4 3

⎤⎥⎥⎦ 4
∼

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 3 4
0 0 4 3

⎤⎥⎥⎦

5
∼

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 4

3
0 0 4 3

⎤⎥⎥⎦ 6
∼

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 4

3
0 0 0 − 7

3

⎤⎥⎥⎦ 7
∼

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 4

3
0 0 0 1

⎤⎥⎥⎦ 8
∼

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ .

1. P12 2. A12(−2) 3. M2(− 1
3 ) 4. A21(−2) 5. M3(

1
3 )

6. A34(−4) 7. M4(− 3
7 ) 8. A43(− 4

3 )

The elementary matrices corresponding to these row operations are

E1 =

⎡⎢⎢⎣
0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ , E2 =

⎡⎢⎢⎣
1 0 0 0

−2 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ , E3 =

⎡⎢⎢⎣
1 0 0 0
0 − 1

3 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ , E4 =

⎡⎢⎢⎣
1 −2 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦

E5 =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1

3 0
0 0 0 1

⎤⎥⎥⎦ , E6 =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 −4 1

⎤⎥⎥⎦ , E7 =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 − 3

7

⎤⎥⎥⎦ , E8 =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 − 4

3
0 0 0 1

⎤⎥⎥⎦ .

We have
E8E7E6E5E4E3E2E1A = I4

so that

A = E−1
1 E−1

2 E−1
3 E−1

4 E−1
5 E−1

6 E−1
7 E−1

8

=

⎡⎢⎢⎣
0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣

1 0 0 0
2 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣

1 0 0 0
0 −3 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣

1 2 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ · · ·

· · ·

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 3 0
0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 4 1

⎤⎥⎥⎦
⎡⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 − 7

3

⎤⎥⎥⎦
⎡⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 4

3
0 0 0 1

⎤⎥⎥⎦ ,

which is the desired expression since E−1
i is an elementary matrix for each i.

(b). We can reduce A to upper triangular form by the following elementary row operations:⎡⎢⎢⎣
2 1 0 0
1 2 0 0
0 0 3 4
0 0 4 3

⎤⎥⎥⎦ 1
∼

⎡⎢⎢⎣
2 1 0 0
0 3

2 0 0
0 0 3 4
0 0 4 3

⎤⎥⎥⎦ 2
∼

⎡⎢⎢⎣
2 1 0 0
0 3

2 0 0
0 0 3 4
0 0 0 − 7

3

⎤⎥⎥⎦ .
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1. A12(− 1
2 ) 2. A34(− 4

3 )

Therefore, the nonzero multipliers are m12 = 1
2 and m34 = 4

3 . Hence, setting

L =

⎡⎢⎢⎣
1 0 0 0
1
2 1 0 0
0 0 1 0
0 0 4

3 1

⎤⎥⎥⎦ and U =

⎡⎢⎢⎣
2 1 0 0
0 3

2 0 0
0 0 3 4
0 0 0 − 7

3

⎤⎥⎥⎦ ,

we have the LU factorization A = LU , which can be easily verified by direct multiplication.

44.

(a). We reduce A to the identity matrix:⎡⎣ 3 0 0
0 2 −1
1 −1 2

⎤⎦ 1
∼

⎡⎣ 1 −1 2
0 2 −1
3 0 0

⎤⎦ 2
∼

⎡⎣ 1 −1 2
0 2 −1
0 3 −6

⎤⎦ 3
∼

⎡⎣ 1 −1 2
0 1 − 1

2
0 3 −6

⎤⎦ 4
∼

⎡⎣ 1 −1 2
0 1 − 1

2
0 0 − 9

2

⎤⎦
5
∼

⎡⎣ 1 −1 2
0 1 − 1

2
0 0 1

⎤⎦ 6
∼

⎡⎣ 1 0 3
2

0 1 − 1
2

0 0 1

⎤⎦ 7
∼

⎡⎣ 1 0 0
0 1 − 1

2
0 0 1

⎤⎦ 8
∼

⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦ .

1. P13 2. A13(−3) 3. M2(
1
2 ) 4. A23(−3) 5. M3(− 2

9 )

6. A21(1) 7. A31(− 3
2 ) 8. A32(

1
2 )

The elementary matrices corresponding to these row operations are

E1 =

⎡⎣ 0 0 1
0 1 0
1 0 0

⎤⎦ , E2 =

⎡⎣ 1 0 0
0 1 0

−3 0 1

⎤⎦ , E3 =

⎡⎣ 1 0 0
0 1

2 0
0 0 1

⎤⎦ , E4 =

⎡⎣ 1 0 0
0 1 0
0 −3 1

⎤⎦
E5 =

⎡⎣ 1 0 0
0 1 0
0 0 − 2

9

⎤⎦ , E6 =

⎡⎣ 1 1 0
0 1 0
0 0 1

⎤⎦ , E7 =

⎡⎣ 1 0 − 3
2

0 1 0
0 0 1

⎤⎦ , E8 =

⎡⎣ 1 0 0
0 1 1

2
0 0 1

⎤⎦ .

We have
E8E7E6E5E4E3E2E1A = I3

so that
A = E−1

1 E−1
2 E−1

3 E−1
4 E−1

5 E−1
6 E−1

7 E−1
8

=

⎡⎣ 0 0 1
0 1 0
1 0 0

⎤⎦⎡⎣ 1 0 0
0 1 0
3 0 1

⎤⎦⎡⎣ 1 0 0
0 2 0
0 0 1

⎤⎦⎡⎣ 1 0 0
0 1 0
0 3 1

⎤⎦ · · ·

· · ·
⎡⎣ 1 0 0

0 1 0
0 0 − 9

2

⎤⎦⎡⎣ 1 −1 0
0 1 0
0 0 1

⎤⎦⎡⎣ 1 0 3
2

0 1 0
0 0 1

⎤⎦⎡⎣ 1 0 0
0 1 − 1

2
0 0 1

⎤⎦ ,

which is the desired expression since E−1
i is an elementary matrix for each i.

(b). We can reduce A to upper triangular form by the following elementary row operations:⎡⎣ 3 0 0
0 2 −1
1 −1 2

⎤⎦ 1
∼

⎡⎣ 3 0 0
0 2 −1
0 −1 2

⎤⎦ 2
∼

⎡⎣ 3 0 0
0 2 −1
0 0 3

2

⎤⎦ .
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1. A13(− 1
3 ) 2. A23(

1
2 )

Therefore, the nonzero multipliers are m13 = 1
3 and m23 = − 1

2 . Hence, setting

L =

⎡⎣ 1 0 0
0 1 0
1
3 − 1

2 1

⎤⎦ and U =

⎡⎣ 3 0 0
0 2 −1
0 0 3

2

⎤⎦ ,

we have the LU factorization A = LU , which can be verified by direct multiplication.

45.

(a). We reduce A to the identity matrix:⎡⎣ −2 −3 1
1 4 2
0 5 3

⎤⎦ 1
∼

⎡⎣ 1 4 2
−2 −3 1
0 5 3

⎤⎦ 2
∼

⎡⎣ 1 4 2
0 5 5
0 5 −3

⎤⎦ 3
∼

⎡⎣ 1 4 2
0 5 5
0 1 −8

⎤⎦ 4
∼

⎡⎣ 1 4 2
0 1 −8
0 5 5

⎤⎦
5
∼

⎡⎣ 1 4 2
0 1 −8
0 0 45

⎤⎦ 6
∼

⎡⎣ 1 4 2
0 1 −8
0 0 1

⎤⎦ 7
∼

⎡⎣ 1 0 34
0 1 −8
0 0 1

⎤⎦ 8
∼

⎡⎣ 1 0 34
0 1 0
0 0 1

⎤⎦ 9
∼

⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦ .

1. P12 2. A12(2) 3. A23(−1) 4. P23 5. A23(−5)

6. M3(
1
45 ) 7. A21(−4) 8. A32(8) 9. A31(−34)

The elementary matrices corresponding to these row operations are

E1 =

⎡⎣ 0 1 0
1 0 0
0 0 1

⎤⎦ , E2 =

⎡⎣ 1 0 0
2 1 0
0 0 1

⎤⎦ , E3 =

⎡⎣ 1 0 0
0 1 0
0 −1 1

⎤⎦ ,

E4 =

⎡⎣ 1 0 0
0 0 1
0 1 0

⎤⎦ , E5 =

⎡⎣ 1 0 0
0 1 0
0 −5 1

⎤⎦ , E6 =

⎡⎣ 1 0 0
0 1 0
0 0 1

45

⎤⎦ ,

E7 =

⎡⎣ 1 −4 0
0 1 0
0 0 1

⎤⎦ , E8 =

⎡⎣ 1 0 0
0 1 8
0 0 1

⎤⎦ , E9 =

⎡⎣ 1 0 −34
0 1 0
0 0 1

⎤⎦ .

We have
E9E8E7E6E5E4E3E2E1A = I3

so that

A = E−1
1 E−1

2 E−1
3 E−1

4 E−1
5 E−1

6 E−1
7 E−1

8 E−1
9

=

⎡⎣ 0 1 0
1 0 0
0 0 1

⎤⎦⎡⎣ 1 0 0
−2 1 0
0 0 1

⎤⎦⎡⎣ 1 0 0
0 1 0
0 1 1

⎤⎦⎡⎣ 1 0 0
0 0 1
0 1 0

⎤⎦ · · ·

· · ·
⎡⎣ 1 0 0

0 1 0
0 5 1

⎤⎦⎡⎣ 1 0 0
0 1 0
0 0 45

⎤⎦⎡⎣ 1 4 0
0 1 0
0 0 1

⎤⎦⎡⎣ 1 0 0
0 1 −8
0 0 1

⎤⎦⎡⎣ 1 0 34
0 1 0
0 0 1

⎤⎦ ,
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which is the desired expression since E−1
i is an elementary matrix for each i.

(b). We can reduce A to upper triangular form by the following elementary row operations:⎡⎣ −2 −3 1
1 4 2
0 5 3

⎤⎦ 1
∼

⎡⎣ −2 −3 1
0 5

2
5
2

0 5 3

⎤⎦ 2
∼

⎡⎣ −2 −3 1
0 5

2
5
2

0 0 −2

⎤⎦ .

Therefore, the nonzero multipliers are m12 = − 1
2 and m23 = 2. Hence, setting

L =

⎡⎣ 1 0 0
− 1

2 1 0
0 2 1

⎤⎦ and U =

⎡⎣ −2 −3 1
0 5

2
5
2

0 0 −2

⎤⎦ ,

we have the LU factorization A = LU , which can be verified by direct multiplication.

46(a). Using the distributive laws of matrix multiplication, first note that

(A+2B)2 = (A+2B)(A+2B) = A(A+2B)+2B(A+2B) = A2+A(2B)+(2B)A+(2B)2 = A2+2AB+2BA+4B2.

Thus, we have

(A+ 2B)3 = (A+ 2B)(A+ 2B)2

= A(A+ 2B)2 + 2B(A+ 2B)2

= A(A2 + 2AB + 2BA+ 4B2) + 2B(A2 + 2AB + 2BA+ 4B2)

= A3 + 2A2B + 2ABA+ 4AB2 + 2BA2 + 4BAB + 4B2A+ 8B3,

as needed.

46(b). Each occurrence of B in the answer to part (a) must now be accompanied by a minus sign. Therefore,
all terms containing an odd number of Bs will experience a sign change. The answer is

(A− 2B)3 = A3 − 2A2B − 2ABA− 2BA2 + 4AB2 + 4BAB + 4B2A− 8B3.

47.The answer is 2k, because each term in the expansion of (A + B)k consists of a string of k matrices,
each of which is either A or B (2 possibilities for each matrix in the string). Multiplying the possibilities
for each position in the string of length k, we get 2k different strings, and hence 2k different terms in
the expansion of (A + B)k. So, for instance, if k = 4, we expect 16 terms, corresponding to the 16 strings
AAAA, AAAB, AABA, ABAA, BAAA, AABB, ABAB, ABBA, BAAB, BABA, BBAA, ABBB, BABB,
BBAB, BBBA, and BBBB. Indeed, one can verify that the expansion of (A+B)4 is precisely the sum of
the 16 terms we just wrote down.

48. We claim that (
A 0
0 B−1

)−1

=

(
A−1 0
0 B

)
.

To see this, simply note that(
A 0
0 B−1

)(
A−1 0
0 B

)
=

(
In 0
0 Im

)
= In+m

and (
A−1 0
0 B

)(
A 0
0 B−1

)
=

(
In 0
0 Im

)
= In+m.
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49. For a 2× 4 matrix, the leading ones can occur in 6 different positions:

[
1 ∗ ∗ ∗
0 1 ∗ ∗

]
,

[
1 ∗ ∗ ∗
0 0 1 ∗

]
,

[
1 ∗ ∗ ∗
0 0 0 1

]
,

[
0 1 ∗ ∗
0 0 1 ∗

]
,

[
0 1 ∗ ∗
0 0 0 1

]
,

[
0 0 1 ∗
0 0 0 1

]
For a 3× 4 matrix, the leading ones can occur in 4 different positions:⎡⎣ 1 ∗ ∗ ∗

0 1 ∗ ∗
0 0 1 ∗

⎤⎦ ,

⎡⎣ 1 ∗ ∗ ∗
0 1 ∗ ∗
0 0 0 1

⎤⎦ ,

⎡⎣ 1 ∗ ∗ ∗
0 0 1 ∗
0 0 0 1

⎤⎦ ,

⎡⎣ 0 1 ∗ ∗
0 0 1 ∗
0 0 0 1

⎤⎦
For a 4× 6 matrix, the leading ones can occur in 15 different positions:

⎡⎢⎢⎣
1 ∗ ∗ ∗ ∗ ∗
0 1 ∗ ∗ ∗ ∗
0 0 1 ∗ ∗ ∗
0 0 0 1 ∗ ∗

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
1 ∗ ∗ ∗ ∗ ∗
0 1 ∗ ∗ ∗ ∗
0 0 1 ∗ ∗ ∗
0 0 0 0 1 ∗

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
1 ∗ ∗ ∗ ∗ ∗
0 1 ∗ ∗ ∗ ∗
0 0 1 ∗ ∗ ∗
0 0 0 0 0 1

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
1 ∗ ∗ ∗ ∗ ∗
0 1 ∗ ∗ ∗ ∗
0 0 0 1 ∗ ∗
0 0 0 0 1 ∗

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
1 ∗ ∗ ∗ ∗ ∗
0 1 ∗ ∗ ∗ ∗
0 0 0 1 ∗ ∗
0 0 0 0 0 1

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
1 ∗ ∗ ∗ ∗ ∗
0 1 ∗ ∗ ∗ ∗
0 0 0 0 1 ∗
0 0 0 0 0 1

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
1 ∗ ∗ ∗ ∗ ∗
0 0 1 ∗ ∗ ∗
0 0 0 1 ∗ ∗
0 0 0 0 1 ∗

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
1 ∗ ∗ ∗ ∗ ∗
0 0 1 ∗ ∗ ∗
0 0 0 1 ∗ ∗
0 0 0 0 0 1

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
1 ∗ ∗ ∗ ∗ ∗
0 0 1 ∗ ∗ ∗
0 0 0 0 1 ∗
0 0 0 0 0 1

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
1 ∗ ∗ ∗ ∗ ∗
0 0 0 1 ∗ ∗
0 0 0 0 1 ∗
0 0 0 0 0 1

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
0 1 ∗ ∗ ∗ ∗
0 0 1 ∗ ∗ ∗
0 0 0 1 ∗ ∗
0 0 0 0 1 ∗

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
0 1 ∗ ∗ ∗ ∗
0 0 1 ∗ ∗ ∗
0 0 0 1 ∗ ∗
0 0 0 0 0 1

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
0 1 ∗ ∗ ∗ ∗
0 0 1 ∗ ∗ ∗
0 0 0 0 1 ∗
0 0 0 0 0 1

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
0 1 ∗ ∗ ∗ ∗
0 0 0 1 ∗ ∗
0 0 0 0 1 ∗
0 0 0 0 0 1

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
0 0 1 ∗ ∗ ∗
0 0 0 1 ∗ ∗
0 0 0 0 1 ∗
0 0 0 0 0 1

⎤⎥⎥⎦
For an m× n matrix with m ≤ n, the answer is the binomial coefficient

C(n,m) =

(
n
m

)
=

n!

m!(n−m)!
.

This represents n “choose” m, which is the number of ways to choose m columns from the n columns of the
matrix in which to put the leading ones. This choice then determines the structure of the matrix.

50. We claim that the inverse of A10 is B5. To prove this, use the fact that A2B = I to observe that

A10B5 = A2A2A2A2(A2B)BBBB = A2A2A2A2IBBBB = A2A2A2(A2B)BBB

= A2A2A2IBBB = A2A2(A2B)BB = A2A2IBB = A2(A2B)B = A2IB = A2B = I,

as required.

51. We claim that the inverse of A9 is B6. To prove this, use the fact that A3B2 = I to observe that

A9B6 = A3A3(A3B2)B2B2 = A3A3IB2B2 = A3(A3B2)B2 = A3IB2 = A3B2 = I,

as required.
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