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EXERCISES FOR SECTION 1.1

1. Note that dy/dt = 0 if and only if y = −3. Therefore, the constant function y(t) = −3 for all t is
the only equilibrium solution.

2. Note that dy/dt = 0 for all t only if y2 − 2 = 0. Therefore, the only equilibrium solutions are
y(t) = −√

2 for all t and y(t) = +√
2 for all t .

3. (a) The equilibrium solutions correspond to the values of P for which dP/dt = 0 for all t . For this
equation, dP/dt = 0 for all t if P = 0 or P = 230.

(b) The population is increasing if dP/dt > 0. That is, P(1− P/230) > 0. Hence, 0 < P < 230.
(c) The population is decreasing if dP/dt < 0. That is, P(1 − P/230) < 0. Hence, P > 230 or

P < 0. Since this is a population model, P < 0 might be considered “nonphysical.”

4. (a) The equilibrium solutions correspond to the values of P for which dP/dt = 0 for all t . For this
equation, dP/dt = 0 for all t if P = 0, P = 50, or P = 200.

(b) The population is increasing if dP/dt > 0. That is, P < 0 or 50 < P < 200. Note, P < 0
might be considered “nonphysical” for a population model.

(c) The population is decreasing if dP/dt < 0. That is, 0 < P < 50 or P > 200.

5. In order to answer the question, we first need to analyze the sign of the polynomial y3 − y2 − 12y.
Factoring, we obtain

y3 − y2 − 12y = y(y2 − y − 12) = y(y − 4)(y + 3).

(a) The equilibrium solutions correspond to the values of y for which dy/dt = 0 for all t . For this
equation, dy/dt = 0 for all t if y = −3, y = 0, or y = 4.

(b) The solution y(t) is increasing if dy/dt > 0. That is, −3 < y < 0 or y > 4.
(c) The solution y(t) is decreasing if dy/dt < 0. That is, y < −3 or 0 < y < 4.

6. (a) The rate of change of the amount of radioactive material is dr/dt . This rate is proportional to
the amount r of material present at time t . With −λ as the proportionality constant, we obtain
the differential equation

dr

dt
= −λr.

Note that the minus sign (along with the assumption that λ is positive) means that the material
decays.

(b) The only additional assumption is the initial condition r(0) = r0. Consequently, the corre-
sponding initial-value problem is

dr

dt
= −λr, r(0) = r0.

7. The general solution of the differential equation dr/dt = −λr is r(t) = r0e−λt where r(0) = r0 is
the initial amount.

(a) We have r(t) = r0e−λt and r(5230) = r0/2. Thus

r0
2

= r0e
−λ·5230
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1

2
= e−λ·5230

ln
1

2
= −λ · 5230

− ln 2 = −λ · 5230
because ln 1/2 = − ln 2. Thus,

λ = ln 2

5230
≈ 0.000132533.

(b) We have r(t) = r0e−λt and r(8) = r0/2. By a computation similar to the one in part (a), we
have

λ = ln 2

8
≈ 0.0866434.

(c) If r(t) is the number of atoms of C-14, then the units for dr/dt is number of atoms per year.
Since dr/dt = −λr , λ is “per year.” Similarly, for I-131, λ is “per day.” The unit of measure-
ment of r does not matter.

(d) We get the same answer because the original quantity, r0, cancels from each side of the equa-
tion. We are only concerned with the proportion remaining (one-half of the original amount).

8. We will solve for k percent. In other words, we want to find t such that r(t) = (k/100)r0, and we
know that r(t) = r0e−λt , where λ = (ln 2)/5230 from Exercise 7. Thus we have

r0e
−λt = k

100
r0

e−λt = k

100

−λt = ln

(
k

100

)

t = − ln ( k
100

)
λ

t = ln 100− ln k

λ

t = 5230(ln 100− ln k)

ln 2
.

Thus, there is 88% left when t ≈ 964.54 years; there is 12% left when t ≈ 15,998 years; 2% left
when t ≈ 29,517 years; and 98% left when t ≈ 152.44 years.

9. (a) The general solution of the exponential decay model dr/dt = −λr is r(t) = r0e−λt , where
r(0) = r0 is the initial amount. Since r(τ ) = r0/e, we have

r0
e

= r0e
−λτ
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e−1 = e−λτ

−1 = −λτ

τ = 1/λ.

(b) Let h be the half-life, that is, the amount of time it takes for a quantity to decay to one-half of
its original amount. Since λ = 1/τ , we get

1
2r0 = r0e

−λh

1
2r0 = r0e

−h/τ

1
2 = e−h/τ

− ln 2 = −h/τ.
Thus,

τ = h

ln 2

(c) In Exercise 7, we stated that the half-life of Carbon 14 is 5230 years and that of Iodine 131 is
8 days. Therefore, the time constant for Carbon 14 is 5230/(ln 2) ≈ 7545 years, and the time
constant for Iodine 14 is 8/(ln 2) ≈ 11.5 days.

(d) To determine the equation of the line passing through (0, 1) and tangent to the curve r(t)/r0,
we need to determine the slope of r(t)/r0 at t = 0. Since

d

dt

r(t)

r0
= d

dt
e−λt = −λe−λt

the slope at t = 0 is −λe0 = −λ. Thus, the equation of the tangent line is

y = −λt + 1.

The line crosses the t-axis when−λt+1 = 0. We obtain t = 1/λ, which is the time constant τ .
(e) An exponentially decaying function approaches zero asymptotically but is never actually equal
to zero. Therefore, to say that an exponentially decaying function reaches its steady state in any
amount of time is false. However, after five time constants, the original amount r0 has decayed
by a factor of e−5 ≈ 0.0067. Therefore, less than one percent of the original quantity remains.

10. We use λ ≈ 0.0866434 from part (b) of Exercise 7.

(a) Since 72 hours is 3 days, we have r(3) = r0e−λ·3 = r0e−.2598 ≈ 0.77r0. Approximately 77%
of the original amount arrives at the hospital.

(b) Similarly, r(5) = r0e−λ·5 = r0e−.4330 ≈ 0.65r0. Approximately 65% of the original amount is
left when it is used.

(c) It will never completely decay since e−λt is never zero. However, after one year, the proportion
of the original amount left will be e−λ·365 ≈ 1.85 × 10−14. Unless you start with a very large
amount I-131, the amount left after one year should be safe to throw away. In practice, samples
are stored for ten half-lives (80 days for I-131) and then disposed.
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11. The solution of dR/dt = kR with R(0) = 4,000 is

R(t) = 4,000 ekt .

Setting t = 6, we have R(6) = 4,000 e(k)(6) = 130,000. Solving for k, we obtain

k = 1
6 ln

(
130,000
4,000

)
≈ 0.58.

Therefore, the rabbit population in the year 2010 would be R(10) = 4,000 e(0.58·10) ≈ 1,321,198
rabbits.

12. (a) In this analysis, we consider only the case where v is positive. The right-hand side of the dif-
ferential equation is a quadratic in v, and it is zero if v = √

mg/k. Consequently, the solution
v(t) = √

mg/k for all t is an equilibrium solution. If 0 ≤ v <
√
mg/k, then dv/dt > 0, and

consequently, v(t) is an increasing function. If v >
√
mg/k, then dv/dt < 0, and v(t) is a

decreasing function. In either case, v(t) → √
mg/k as t → ∞.

(b) See part (a).

13. The rate of learning is dL/dt . Thus, we want to know the values of L between 0 and 1 for which
dL/dt is a maximum. As k > 0 and dL/dt = k(1− L), dL/dt attains it maximum value at L = 0.

14. (a) Let L1(t) be the solution of the model with L1(0) = 1/2 (the student who starts out knowing
one-half of the list) and L2(t) be the solution of the model with L2(0) = 0 (the student who
starts out knowing none of the list). At time t = 0,

dL1
dt

= 2 (1− L1(0)) = 2
(
1− 1

2

)
= 1,

and
dL2
dt

= 2 (1− L2(0)) = 2.

Hence, the student who starts out knowing none of the list learns faster at time t = 0.
(b) The solution L2(t) with L2(0) = 0 will learn one-half the list in some amount of time t∗ > 0.

For t > t∗, L2(t) will increase at exactly the same rate that L1(t) increases for t > 0. In other
words, L2(t) increases at the same rate as L1(t) at t∗ time units later. Hence, L2(t) will never
catch up to L1(t) (although they both approach 1 as t increases). In other words, after a very
long time L2(t) ≈ L1(t), but L2(t) < L1(t).

15. (a) We have LB(0) = LA(0) = 0. So Aly’s rate of learning at t = 0 is dL A/dt evaluated at t = 0.
At t = 0, we have

dL A
dt

= 2(1− LA) = 2.

Beth’s rate of learning at t = 0 is

dLB
dt

= 3(1− LB)2 = 3.

Hence Beth’s rate is larger.
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(b) In this case, LB(0) = LA(0) = 1/2. So Aly’s rate of learning at t = 0 is

dL A
dt

= 2(1− LA) = 1

because LA = 1/2 at t = 0. Beth’s rate of learning at t = 0 is

dLB
dt

= 3(1− LB)2 = 3

4

because LB = 1/2 at t = 0. Hence Aly’s rate is larger.
(c) In this case, LB(0) = LA(0) = 1/3. So Aly’s rate of learning at t = 0 is

dL A
dt

= 2(1− LA) = 4

3
.

Beth’s rate of learning at t = 0 is

dLB
dt

= 3(1− LB)2 = 4

3
.

They are both learning at the same rate when t = 0.

16. (a) Taking the logarithm of s(t), we get

ln s(t) = ln(s0e
kt )

= ln s0 + ln(ekt )

= kt + ln s0.

The equation ln s(t) = kt + ln s0 is the equation of a line where k is the slope and ln s0 is the
vertical intercept.

(b) If we let t = 0 correspond to the year 1900, then s(0) = s0 = 5669. By plotting the function
ln s(t) = kt+ln 5669, we observe that the points roughly form a straight line, indicating that the
expenditure is indeed growing at an exponential rate (see part (a)). The growth-rate coefficient
k = 0.05 is the slope of the best fit line to the data.

1920 1940 1960 1980 2000

5

10

15

�

ln s(t) = 0.05t + ln 5669

t

ln s(t)
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17. Let P(t) be the population at time t , k be the growth-rate parameter, and N be the carrying capacity.
The modified models are

(a) dP/dt = k(1− P/N )P − 100
(b) dP/dt = k(1− P/N )P − P/3
(c) dP/dt = k(1− P/N )P − a

√
P , where a is a positive parameter.

18. (a) The differential equation is dP/dt = 0.3P(1 − P/2500) − 100. The equilibrium solutions of
this equation correspond to the values of P for which dP/dt = 0 for all t . Using the quadratic
formula, we obtain two such values, P1 ≈ 396 and P2 ≈ 2104. If P > P2, dP/dt < 0, so
P(t) is decreasing. If P1 < P < P2, dP/dt > 0, so P(t) is increasing. Hence the solution that
satisfies the initial condition P(0) = 2500 decreases toward the equilibrium P2 ≈ 2104.

(b) The differential equation is dP/dt = 0.3P(1− P/2500) − P/3. The equilibrium solutions of
this equation are P1 ≈ −277 and P2 = 0. If P > 0, dP/dt < 0, so P(t) is decreasing. Hence,
for P(0) = 2500, the population decreases toward P = 0 (extinction).

19. Several different models are possible. Let R(t) denote the rhinoceros population at time t . The basic
assumption is that there is a minimum threshold that the population must exceed if it is to survive. In
terms of the differential equation, this assumption means that dR/dt must be negative if R is close
to zero. Three models that satisfy this assumption are:

• If k is a growth-rate parameter and M is a parameter measuring when the population is “too
small”, then

dR

dt
= kR

(
R

M
− 1

)
.

• If k is a growth-rate parameter and b is a parameter that determines the level the population will
start to decrease (R < b/k), then

dR

dt
= kR − b.

• If k is a growth-rate parameter and b is a parameter that determines the extinction threshold,
then

dR

dt
= kR − b

R
.

In each case, if R is below a certain threshold, dR/dt is negative. Thus, the rhinos will eventually
die out. The choice of which model to use depends on other assumptions. There are other equations
that are also consistent with the basic assumption.

20. (a) The relative growth rate for the year 1990 is

1

s(t)

ds

dt
= 1

5.3

(
7.6− 3.5

1991− 1989

)
≈ 0.387.

Hence, the relative growth rate for the year 1990 is 38.7%.
(b) If the quantity s(t) grows exponentially, then we can model it as s(t) = s0ekt , where s0 and k

are constants. Calculating the relative growth rate, we have

1

s(t)

ds

dt
= 1

s0ekt

(
ks0e

kt
)

= k.

Therefore, if a quantity grows exponentially, its relative growth rate is constant for all t .
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(c)
Year Rel. Growth Rate Year Rel. Growth Rate Year Rel. Growth Rate

1991 0.38 1997 0.23 2003 0.13

1992 0.38 1998 0.22 2004 0.13

1993 0.41 1999 0.24 2005 0.12

1994 0.38 2000 0.19 2006 0.09

1995 0.29 2001 0.12 2007 0.06

1996 0.24 2002 0.11

(d) As shown in part (b), the number of subscriptions will grow exponentially if the relative growth
rates are constant over time. The relative growth rates are (roughly) constant from 1991 to 1994,
after which they drop off significantly.

(e) If a quantity s(t) grows according to a logistic model, then

ds

dt
= ks

(
1− s

N

)
,

so the relative growth rate
1

s

ds

dt
= k

(
1− s

N

)
.

The right-hand side is linear in s. In other words, if s is plotted on the horizontal axis and the
relative growth rate is plotted on the vertical axis, we obtain a line. This line goes through the
points (0, k) and (N , 0).

(f) From the data, we see that the line of best fit is

1

s

ds

dt
= 0.351972− 0.001288s,

where k = 0.351972 and −k/N = −0.001288. Solving for N , we obtain N ≈ 273.27 as the
carrying capacity for the model.

100 200 N 300

k
0.5

s(t)

���

Rel. Growth Rate = 0.351972− 0.001288s

1

s

ds

dt

21. (a) The term governing the effect of the interaction of x and y on the rate of change of x is +βxy.
Since this term is positive, the presence of y’s helps the x population grow. Hence, x is the
predator. Similarly, the term −δxy in the dy/dt equation implies that when x > 0, y’s grow
more slowly, so y is the prey. If y = 0, then dx/dt < 0, so the predators will die out; thus, they
must have insufficient alternative food sources. The prey has no limits on its growth other than
the predator since, if x = 0, then dy/dt > 0 and the population increases exponentially.

(b) Since −βxy is negative and +δxy is positive, x suffers due to its interaction with y and y ben-
efits from its interaction with x . Hence, x is the prey and y is the predator. The predator has
other sources of food than the prey since dy/dt > 0 even if x = 0. Also, the prey has a limit
on its growth due to the −αx2/N term.
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22. (a) We consider dx/dt in each system. Setting y = 0 yields dx/dt = 5x in system (i) and
dx/dt = x in system (ii). If the number x of prey is equal for both systems, dx/dt is larger in
system (i). Therefore, the prey in system (i) reproduce faster if there are no predators.

(b) We must see what effect the predators (represented by the y-terms) have on dx/dt in each sys-
tem. Since the magnitude of the coefficient of the xy-term is larger in system (ii) than in sys-
tem (i), y has a greater effect on dx/dt in system (ii). Hence the predators have a greater effect
on the rate of change of the prey in system (ii).

(c) We must see what effect the prey (represented by the x-terms) have on dy/dt in each system.
Since x and y are both nonnegative, it follows that

−2y + 1
2 xy < −2y + 6xy,

and therefore, if the number of predators is equal for both systems, dy/dt is smaller in sys-
tem (i). Hence more prey are required in system (i) than in system (ii) to achieve a certain
growth rate.

23. (a) The independent variable is t , and x and y are dependent variables. Since each xy-term is
positive, the presence of either species increases the rate of change of the other. Hence, these
species cooperate. The parameter α is the growth-rate parameter for x , and γ is the growth-rate
parameter for y. The parameter N represents the carrying capacity for x , but y has no carrying
capacity. The parameter β measures the benefit to x of the interaction of the two species, and δ

measures the benefit to y of the interaction.
(b) The independent variable is t , and x and y are the dependent variables. Since both xy-terms are

negative, these species compete. The parameter γ is the growth-rate coefficient for x , and α is
the growth-rate parameter for y. Neither population has a carrying capacity. The parameter δ

measures the harm to x caused by the interaction of the two species, and β measures the harm
to y caused by the interaction.

EXERCISES FOR SECTION 1.2

1. (a) Let’s check Bob’s solution first. Since dy/dt = 1 and

y(t) + 1

t + 1
= t + 1

t + 1
= 1,

Bob’s answer is correct.
Now let’s check Glen’s solution. Since dy/dt = 2 and

y(t) + 1

t + 1
= 2t + 2

t + 1
= 2,

Glen’s solution is also correct.
Finally let’s check Paul’s solution. We have dy/dt = 2t on one hand and

y(t) + 1

t + 1
= t2 − 1

t + 1
= t − 1

on the other. Paul is wrong.
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(b) At first glance, they should have seen the equilibrium solution y(t) = −1 for all t because
dy/dt = 0 for any constant function and y = −1 implies that

y + 1

t + 1
= 0

independent of t .
Strictly speaking the differential equation is not defined for t = −1, and hence the solutions are not
defined for t = −1.

2. We note that dy/dt = 2e2t for y(t) = e2t . If y(t) = e2t is a solution to the differential equation,
then we must have

2e2t = 2y(t) − t + g(y(t))

= 2e2t − t + g(e2t ).

Hence, we need
g(e2t ) = t.

This equation is satisfied if we let g(y) = (ln y)/2. In other words, y(t) = e2t is a solution of the
differential equation

dy

dt
= 2y − t + ln y

2
.

3. In order to find one such f (t, y), we compute the derivative of y(t). We obtain

dy

dt
= det

3

dt
= 3t2et

3
.

Now we replace et
3
in the last expression by y and get the differential equation

dy

dt
= 3t2y.

4. Starting with dP/dt = kP , we divide both sides by P to obtain

1

P

dP

dt
= k.

Then integrating both sides with respect to t , we have∫
1

P

dP

dt
dt =

∫
k dt,

and changing variables on the left-hand side, we obtain∫
1

P
dP =

∫
k dt.

(Typically, we jump to the equation above by “informally” multiplying both sides by dt .) Integrating,
we get

ln |P| = kt + c,
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where c is an arbitrary constant. Exponentiating both sides gives

|P| = ekt+c = ecekt .

For population models we consider only P ≥ 0, and the absolute value sign is unnecessary.
Letting P0 = ec, we have

P(t) = P0e
kt .

In general, it is possible for P(0) to be negative. In that case, ec = −P0, and |P| = −P . Once
again we obtain

P(t) = P0e
kt .

5. (a) This equation is separable. (It is nonlinear and nonautonomous as well.)
(b) We separate variables and integrate to obtain∫

1

y2
dy =

∫
t2 dt

− 1
y

= t3

3
+ c

y(t) = −1
(t3/3) + c

,

where c is any real number. This function can also be written in the form

y(t) = −3
t3 + k

where k is any constant. The constant function y(t) = 0 for all t is also a solution of this
equation. It is the equilibrium solution at y = 0.

6. Separating variables and integrating, we obtain∫
1

y
dy =

∫
t4 dt

ln |y| = t5

5
+ c

|y| = c1e
t5/5,

where c1 = ec. As in Exercise 22, we can eliminate the absolute values by replacing the positive
constant c1 with k = ±c1. Hence, the general solution is

y(t) = ket
5/5,

where k is any real number. Note that k = 0 gives the equilibrium solution.

7. We separate variables and integrate to obtain∫
dy

2y + 1
=
∫

dt.

We get

1

2
ln |2y + 1| = t + c

|2y + 1| = c1e
2t ,

where c1 = e2c. As in Exercise 22, we can drop the absolute value signs by replacing ±c1 with a
new constant k1. Hence, we have

2y + 1 = k1e
2t

1 (
k 2t 1

)
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8. Separating variables and integrating, we obtain∫
1

2− y
dy =

∫
dt

− ln |2− y| = t + c

ln |2− y| = −t + c1,

where we have replaced −c with c1. Then
|2− y| = k1e

−t ,

where k1 = ec1. We can drop the absolute value signs if we replace ±k1 with k2, that is, if we allow
k2 to be either positive or negative. Then we have

2− y = k2e
−t

y = 2− k2e
−t .

This could also be written as y(t) = ke−t + 2, where we replace −k2 with k. Note that k = 0 gives
the equilibrium solution.

9. We separate variables and integrate to obtain∫
ey dy =

∫
dt

ey = t + c,

where c is any constant. We obtain y(t) = ln(t + c).

10. We separate variables and obtain ∫
dx

1+ x2
=
∫
1 dt.

Integrating both sides, we get
arctan x = t + c,

where c is a constant. Hence, the general solution is

x(t) = tan(t + c).

11. (a) This equation is separable.
(b) We separate variables and integrate to obtain∫

1

y2
dy =

∫
(2t + 3) dt

− 1
y

= t2 + 3t + k

y(t) = −1
t2 + 3t + k

,

where k is any constant. The constant function y(t) = 0 for all t is also a solution of this
equation. It is the equilibrium solution at y = 0.
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12. Separating variables and integrating, we obtain∫
y dy =

∫
t dt

y2

2
= t2

2
+ k

y2 = t2 + c,

where c = 2k. Hence,
y(t) = ±

√
t2 + c,

where the initial condition determines the choice of sign.

13. First note that the differential equation is not defined if y = 0.
In order to separate the variables, we write the equation as

dy

dt
= t

y(t2 + 1)

to obtain ∫
y dy =

∫
t

t2 + 1
dt

y2

2
= 1

2
ln(t2 + 1) + c,

where c is any constant. So we get

y2 = ln
(
k(t2 + 1)

)
,

where k = e2c (hence any positive constant). We have

y(t) = ±
√
ln
(
k(t2 + 1)

)
,

where k is any positive constant and the sign is determined by the initial condition.

14. Separating variables and integrating, we obtain∫
y−1/3 dy =

∫
t dt

3

2
y2/3 = t2

2
+ k

y2/3 = t2

3
+ c,

where c = 2k/3. Hence,

y(t) = ±
(
t2

3
+ c

)3/2
.

Note that this form does not include the equilibrium solution y = 0.
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15. First note that the differential equation is not defined for y = −1/2. We separate variables and
integrate to obtain ∫

(2y + 1) dy =
∫

dt

y2 + y = t + k,

where k is any constant. So

y(t) = −1± √
4t + 4k + 1

2
= −1± √

4t + c

2
,

where c is any constant and the ± sign is determined by the initial condition.
We can rewrite the answer in the more simple form

y(t) = −1
2

± √
t + c1

where c1 = k + 1/4. If k can be any possible constant, then c1 can be as well.

16. Note that there is an equilibrium solution of the form y = −1/2.
Separating variables and integrating, we have∫

1

2y + 1
dy =

∫
1

t
dt

1

2
ln |2y + 1| = ln |t | + c

ln |2y + 1| = (ln t2) + c

|2y + 1| = c1t
2,

where c1 = ec. We can eliminate the absolute value signs by allowing the constant c1 to be either
positive or negative. In other words, 2y + 1 = k1t2, where k1 = ±c1. Hence,

y(t) = kt2 − 1
2 ,

where k = k1/2, or y(t) is the equilibrium solution with y = −1/2.
17. First of all, the equilibrium solutions are y = 0 and y = 1. Now suppose y 	= 0 and y 	= 1. We

separate variables to obtain ∫
1

y(1− y)
dy =

∫
dt = t + c,

where c is any constant. To integrate, we use partial fractions. Write

1

y(1− y)
= A

y
+ B

1− y
.

We must have A = 1 and −A + B = 0. Hence, A = B = 1 and

1

y(1− y)
= 1

y
+ 1

1− y
.
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Consequently, ∫
1

y(1− y)
dy = ln |y| − ln |1− y| = ln

∣∣∣∣ y

1− y

∣∣∣∣ .
After integration, we have

ln

∣∣∣∣ y

1− y

∣∣∣∣ = t + c

∣∣∣∣ y

1− y

∣∣∣∣ = c1e
t ,

where c1 = ec is any positive constant. To remove the absolute value signs, we replace the positive
constant c1 with a constant k that can be any real number and get

y(t) = ket

1+ ket
,

where k = ±c1. If k = 0, we get the first equilibrium solution. The formula y(t) = ket/(1+ ket )
yields all the solutions to the differential equation except for the equilibrium solution y(t) = 1.

18. Separating variables and integrating, we have∫
(1+ 3y2) dy =

∫
4t dt

y + y3 = 2t2 + c.

To express y as a function of t , we must solve a cubic. The equation for the roots of a cubic can be
found in old algebra books or by asking a computer algebra program. But we do not learn a lot from
the result.

19. The equation can be written in the form

dv

dt
= (v + 1)(t2 − 2),

and we note that v(t) = −1 for all t is an equilibrium solution. Separating variables and integrating,
we obtain ∫

dv

v + 1
=
∫
t2 − 2 dt

ln |v + 1| = t3

3
− 2t + c,

where c is any constant. Thus,

|v + 1| = c1e
−2t+t3/3,

where c1 = ec. We can dispose of the absolute value signs by allowing the constant c1 to be any real
number. In other words,

v(t) = −1+ ke−2t+t3/3,
where k = ±c1. Note that, if k = 0, we get the equilibrium solution.
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20. Rewriting the equation as
dy

dt
= 1

(t + 1)(y + 1)

we separate variables and obtain ∫
(y + 1) dy =

∫
1

t + 1
dt.

Hence,
y2

2
+ y = ln |t + 1| + k.

We can solve using the quadratic formula. We have

y(t) = −1±√
1+ 2 ln |t + 1| + 2k

= −1±√
2 ln |t + 1| + c,

where c = 1+ 2k is any constant and the choice of sign is determined by the initial condition.

21. The function y(t) = 0 for all t is an equilibrium solution.
Suppose y 	= 0 and separate variables. We get∫

y + 1

y
dy =

∫
et dt

y2

2
+ ln |y| = et + c,

where c is any real constant. We cannot solve this equation for y, so we leave the expression for y
in this implicit form. Note that the equilibrium solution y = 0 cannot be obtained from this implicit
equation.

22. Since y2−4 = (y+2)(y−2), there are two equilibrium solutions, y1(t) = −2 for all t and y2(t) = 2
for all t . If y 	= ±2, we separate variables and obtain∫

dy

y2 − 4
=
∫

dt.

To integrate the left-hand side, we use partial fractions. If

1

y2 − 4
= A

y + 2
+ B

y − 2
,

then A + B = 0 and 2(B − A) = 1. Hence, A = −1/4 and B = 1/4, and

1

(y + 2)(y − 2)
= −1/4

y + 2
+ 1/4

y − 2
.

Consequently, ∫
dy

y2 − 4
= −1

4
ln |y + 2| + 1

4
ln |y − 2|.
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Using this integral on the separated equation above, we get

1

4
ln

∣∣∣∣ y − 2

y + 2

∣∣∣∣ = t + c,

which yields ∣∣∣∣ y − 2

y + 2

∣∣∣∣ = c1e
4t ,

where c1 = e4c. As in Exercise 22, we can drop the absolute value signs by replacing ±c1 with a
new constant k. Hence, we have

y − 2

y + 2
= ke4t .

Solving for y, we obtain

y(t) = 2(1+ ke4t )

1− ke4t
.

Note that, if k = 0, we get the equilibrium solution y2(t). The formula y(t) = 2(1+ ke4t )/(1− ke4t )
provides all of the solutions to the differential equation except the equilibrium solution y1(t).

23. The constant function w(t) = 0 is an equilibrium solution. Suppose w 	= 0 and separate variables.
We get ∫

dw

w
=
∫

dt

t

ln |w| = ln |t | + c

= ln c1|t |,
where c is any constant and c1 = ec. Therefore,

|w| = c1|t |.
We can eliminate the absolute value signs by allowing the constant to assume positive or negative
values. We have

w = kt,

where k = ±c1. Moreover, if k = 0 we get the equilibrium solution.

24. Separating variables and integrating, we have∫
cos y dy =

∫
dx

sin y = x + c

y(x) = arcsin(x + c),

where c is any real number. The branch of the inverse sine function that we use depends on the initial
condition.
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25. Separating variables and integrating, we have∫
1

x
dx =

∫
−t dt

ln |x | = − t2

2
+ c

|x | = k1e
−t2/2,

where k1 = ec. We can eliminate the absolute value signs by allowing the constant k1 to be either
positive or negative. Thus, the general solution is

x(t) = ke−t2/2

where k = ±k1. Using the initial condition to solve for k, we have
1√
π

= x(0) = ke0 = k.

Therefore,

x(t) = e−t2/2√
π

.

26. Separating variables and integrating, we have∫
1

y
dy =

∫
t dt

ln |y| = t2

2
+ c

|y| = k1e
t2/2,

where k1 = ec. We can eliminate the absolute value signs by allowing the constant k1 to be either
positive or negative. Thus, the general solution can be written as

y(t) = ket
2/2.

Using the initial condition to solve for k, we have

3 = y(0) = ke0 = k.

Therefore, y(t) = 3et
2/2.

27. Separating variables and integrating, we obtain∫
dy

y2
= −

∫
dt

− 1
y

= −t + c.
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So we get

y = 1

t − c
.

Now we need to find the constant c so that y(0) = 1/2. To do this we solve

1

2
= 1

0− c

and get c = −2. The solution of the initial-value problem is

y(t) = 1

t + 2
.

28. First we separate variables and integrate to obtain∫
y−3 dy =

∫
t2 dt,

which yields

− y−2

2
= t3

3
+ c.

Solving for y gives

y2 = 1

c1 − 2t3/3
,

where c1 = −2c. So
y(t) = ± 1√

c1 − 2t3/3
.

The initial value y(0) is negative, so we choose the negative square root and obtain

y(t) = − 1√
c1 − 2t3/3

.

Using −1 = y(0) = −1/√c1, we see that c1 = 1 and the solution of the initial-value problem is

y(t) = − 1√
1− 2t3/3

.

29. We do not need to do any computations to solve this initial-value problem. We know that the constant
function y(t) = 0 for all t is an equilibrium solution, and it satisfies the initial condition.

30. Rewriting the equation as
dy

dt
= t

(1− t2)y
,
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we separate variables and integrate obtaining∫
y dy =

∫
t

1− t2
dt

y2

2
= −1

2
ln |1− t2| + c

y = ±
√

− ln |1− t2| + k.

Since y(0) = 4 is positive, we use the positive square root and solve

4 = y(0) = √− ln |1| + k = √
k

for k. We obtain k = 16. Hence,

y(t) =
√
16− ln(1− t2).

We may replace |1− t2| with (1− t2) because the solution is only defined for −1 < t < 1.

31. From Exercise 7, we already know that the general solution is

y(t) = ke2t − 1
2 ,

so we need only find the constant k for which y(0) = 3. We solve

3 = ke0 − 1
2

for k and obtain k = 7/2. The solution of the initial-value problem is

y(t) = 7
2e
2t − 1

2 .

32. First we find the general solution by writing the differential equation as

dy

dt
= (t + 2)y2,

separating variables, and integrating. We have∫
1

y2
dy =

∫
(t + 2) dt

− 1
y

= t2

2
+ 2t + c

= t2 + 4t + c1
2

,

where c1 = 2c. Inverting and multiplying by −1 produces

y(t) = −2
t2 + 4t + c1

.
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Setting

1 = y(0) = −2
c1

and solving for c1, we obtain c1 = −2. So

y(t) = −2
t2 + 4t − 2

.

33. We write the equation in the form
dx

dt
= t2

x(t3 + 1)

and separate variables to obtain ∫
x dx =

∫
t2

t3 + 1
dt

x2

2
= 1

3
ln |t3 + 1| + c,

where c is a constant. Hence,

x2 = 2

3
ln |t3 + 1| + 2c.

The initial condition x(0) = −2 implies

4 = (−2)2 = 2

3
ln |1| + 2c.

Thus, c = 2. Solving for x(t), we choose the negative square root because x(0) is negative, and we
drop the absolute value sign because t3 + 1 > 0 for t near 0. The result is

x(t) = −
√
2
3 ln(t

3 + 1) + 4.

34. Separating variables, we have ∫
y dy

1− y2
=
∫

dt

= t + c,

where c is any constant. To integrate the left-hand side, we substitute u = 1 − y2. Then du =
−2y dy. We get ∫

y dy

1− y2
= −1

2

∫
du

u
= −1

2
ln |u| = −1

2
ln |1− y2|.

Using this integral, we have

−1
2
ln |1− y2| = t + c

|1− y2| = c1e
−2t ,
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where c1 = e−2c. As in Exercise 22, we can drop the absolute value signs by replacing ±c1 with a
new constant k. Hence, we have

y(t) = ±
√
1− ke−2t

Because y(0) is negative, we use the negative square root and solve

−2 = y(0) = −
√
1− ke0 = −√

1− k

for k. We obtain k = −3. Hence, y(t) = −√
1+ 3e−2t .

35. We separate variables to obtain ∫
dy

1+ y2
=
∫
t dt

arctan y = t2

2
+ c,

where c is a constant. Hence the general solution is

y(t) = tan

(
t2

2
+ c

)
.

Next we find c so that y(0) = 1. Solving

1 = tan

(
02

2
+ c

)

yields c = π/4, and the solution to the initial-value problem is

y(t) = tan

(
t2

2
+ π

4

)
.

36. Separating variables and integrating, we obtain∫
(2y + 3) dy =

∫
dt

y2 + 3y = t + c

y2 + 3y − (t + c) = 0.

We can use the quadratic formula to obtain

y = − 3
2 ± √

t + c1,

where c1 = c + 9/4. Since y(0) = 1 > −3/2 we take the positive square root and solve
1 = y(0) = − 3

2 + √
c1,

so c1 = 25/4. The solution to the initial-value problem is

y(t) = − 3
2 +

√
t + 25

4 .
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37. Separating variables and integrating, we have∫
1

y2
dy =

∫
2t + 3t2 dt

− 1
y

= t2 + t3 + c

y = −1
t2 + t3 + c

.

Using y(1) = −1 we have
−1 = y(1) = −1

1+ 1+ c
= −1
2+ c

,

so c = −1. The solution to the initial-value problem is

y(t) = −1
t2 + t3 − 1

.

38. Separating variables and integrating, we have∫
y

y2 + 5
dy =

∫
dt

= t + c,

where c is any constant. To integrate the left-hand side, we substitute u = y2+5. Then du = 2y dy.
We have ∫

y

y2 + 5
dy = 1

2

∫
du

u
= 1

2 ln |u| = 1
2 ln |y2 + 5|.

Using this integral, we have

1
2 ln |y2 + 5| = t + c

|y2 + 5| = c1e
2t ,

where c1 = e2c. As in Exercise 26, we can drop the absolute value signs by replacing ±c1 with a
new constant k. Hence, we have

y(t) = ±
√
ke2t − 5

Because y(0) is negative, we use the negative square root and solve

−2 = y(0) = −
√
ke0 − 5 = −√

k − 5

for k. We obtain k = 9. Hence, y(t) = −√
9e2t − 5.

39. Let S(t) denote the amount of salt (in pounds) in the bucket at time t (in minutes). We derive a
differential equation for S by considering the difference between the rate that salt is entering the
bucket and the rate that salt is leaving the bucket. Salt is entering the bucket at the rate of 1/4 pounds
per minute. The rate that salt is leaving the bucket is the product of the concentration of salt in the



24 CHAPTER 1 FIRST-ORDER DIFFERENTIAL EQUATIONS

mixture and the rate that the mixture is leaving the bucket. The concentration is S/5, and the mixture
is leaving the bucket at the rate of 1/2 gallons per minute. We obtain the differential equation

dS

dt
= 1

4
− S

5
· 1
2
,

which can be rewritten as
dS

dt
= 5− 2S

20
.

This differential equation is separable, and we can find the general solution by integrating∫
1

5− 2S
dS =

∫
1

20
dt.

We have

− ln |5− 2S|
2

= t

20
+ c

ln |5− 2S| = − t

10
+ c1

|5− 2S| = c2e
−t/10.

We can eliminate the absolute value signs and determine c2 using the initial condition S(0) = 0 (the
water is initially free of salt). We have c2 = 5, and the solution is

S(t) = 2.5− 2.5e−t/10 = 2.5(1− e−t/10).

(a) When t = 1, we have S(1) = 2.5(1− e−0.1) ≈ 0.238 lbs.
(b) When t = 10, we have S(10) = 2.5(1− e−1) ≈ 1.58 lbs.
(c) When t = 60, we have S(60) = 2.5(1− e−6) ≈ 2.49 lbs.
(d) When t = 1000, we have S(1000) = 2.5(1− e−100) ≈ 2.50 lbs.
(e) When t is very large, the e−t/10 term is close to zero, so S(t) is very close to 2.5 lbs. In this
case, we can also reach the same conclusion by doing a qualitative analysis of the solutions
of the equation. The constant solution S(t) = 2.5 is the only equilibrium solution for this
equation, and by examining the sign of dS/dt , we see that all solutions approach S = 2.5 as
t increases.

40. Rewrite the equation as
dC

dt
= −k1C + (k1N + k2E),

separate variables, and integrate to obtain∫
1

−k1C + (k1N + k2E)
dC =

∫
dt

− 1

k1
ln | − k1C + k1N + k2E | = t + c

−k1C + k1N + k2E = c1e
−k1t ,
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where c1 is a constant determined by the initial condition. Hence,

C(t) = N + k2
k1
E − c2e

−k1t ,

where c2 is a constant.

(a) Substituting the given values for the parameters, we obtain

C(t) = 600− c2e
−0.1t ,

and the initial condition C(0) = 150 gives c2 = 450, which implies that

C(t) = 600− 450e−0.1t .

Hence, C(2) ≈ 232.
(b) Using part (a), C(5) ≈ 328.
(c) When t is very large, e−0.1t is very close to zero, so C(t) ≈ 600. (We could also obtain this
conclusion by doing a qualitative analysis of the solutions.)

(d) Using the new parameter values and C(0) = 600 yields

C(t) = 300+ 300e−0.1t ,

so C(1) ≈ 571, C(5) ≈ 482, and C(t) → 300 as t → ∞.
(e) Again changing the parameter values and using C(0) = 600, we have

C(t) = 500+ 100e−0.1t ,

so C(1) ≈ 590, C(5) ≈ 560, and C(t) → 500 as t → ∞.

41. (a) If we let k denote the proportionality constant in Newton’s law of cooling, the differential equa-
tion satisfied by the temperature T of the chocolate is

dT

dt
= k(T − 70).

We also know that T (0) = 170 and that dT/dt = −20 at t = 0. Therefore, we obtain k by
evaluating the differential equation at t = 0. We have

−20 = k(170− 70),

so k = −0.2. The initial-value problem is
dT

dt
= −0.2(T − 70), T (0) = 170.

(b) We can solve the initial-value problem in part (a) by separating variables. We have∫
dT

T − 70
=
∫

−0.2 dt

ln |T − 70| = −0.2t + k

|T − 70| = ce−0.2t .
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Since the temperature of the chocolate cannot become lower than the temperature of the room,
we can ignore the absolute value and conclude

T (t) = 70+ ce−0.2t .

Now we use the initial condition T (0) = 170 to find the constant c because

170 = T (0) = 70+ ce−0.2(0),

which implies that c = 100. The solution is

T = 70+ 100e−0.2t .

In order to find t so that the temperature is 110◦ F, we solve

110 = 70+ 100e−0.2t

for t obtaining

2
5 = e−0.2t

ln 25 = −0.2t

so that

t = ln(2/5)

−0.2 ≈ 4.6.

42. Let t be time measured in minutes and let H(t) represent the hot sauce in the chili measured in tea-
spoons at time t . Then H(0) = 12.

The pot contains 32 cups of chili, and chili is removed from the pot at the rate of 1 cup per
minute. Since each cup of chili contains H/32 teaspoons of hot sauce, the differential equation is

dH

dt
= − H

32
.

The general solution of this equation is

H(t) = ke−t/32.

(We could solve this differential equation by separation of variables, but this is also the equation for
which we guessed solutions in Section 1.1.) Since H(0) = 12, we get the solution

H(t) = 12e−t/32.

We wish to find t such that H(t) = 4 (two teaspoons per gallon in two gallons). We have

12e−t/32 = 4

− t

32
= ln

1

3

t = 32 ln 3.

So, t ≈ 35.16 minutes. A reasonable approximation is 35 minutes and in that time 35 cups will have
been eaten.
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43. (a) We rewrite the differential equation as

dv

dt
= g

(
1− k

mg
v2
)

.

Letting α = √
k/(mg) and separating variables, we have∫

dv

1− α2v2
=
∫
g dt.

Now we use the partial fractions decomposition

1

1− α2v2
= 1/2

1+ αv
+ 1/2

1− αv

to obtain ∫
dv

1+ αv
+
∫

dv

1− αv
= 2gt + c,

where c is an arbitrary constant. Integrating the left-hand side, we get

1

α

(
ln |1+ αv| − ln |1− αv|

)
= 2gt + c.

Multiplying through by α and using the properties of logarithms, we have

ln

∣∣∣∣1+ αv

1− αv

∣∣∣∣ = 2αgt + c.

Exponentiating and eliminating the absolute value signs yields

1+ αv

1− αv
= Ce2αgt .

Solving for v, we have

v = 1

α

Ce2αgt − 1

Ce2αgt + 1
.

Recalling that α = √
k/(mg), we see that αg = √

kg/m, and we get

v(t) =
√
mg

k

(
Ce2

√
(kg/m) t − 1

Ce2
√

(kg/m) t + 1

)
.

Note: If we assume that v(0) = 0, then C = 1. The solution to this initial-value problem
is often expressed in terms of the hyperbolic tangent function as

v =
√
mg

k
tanh

(√
kg

m
t

)
.

(b) The fraction in the parentheses of the general solution

v(t) =
√
mg

k

(
Ce2

√
(kg/m) t − 1

Ce2
√

(kg/m) t + 1

)
,

tends to 1 as t → ∞, so the limit of v(t) as t → ∞ is
√
mg/k.
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EXERCISES FOR SECTION 1.3
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7. (a)

−2 −1 1 2

−2

−1

1

2

t

y

(b) The solution with y(0) = 1/2 ap-
proaches the equilibrium value y = 1
from below as t increases. It decreases
toward y = 0 as t decreases.

8. (a)

−2 −1 1 2

−2

−1

1

2

t

y

(b) The solution y(t) with y(0) = 1/2 in-
creases with y(t) → ∞ as t increases.
As t decreases, y(t) → −∞.

9. (a)

−2 −1 1 2

−2

−1

1

2

t

y

(b) The solution y(t) with y(0) = 1/2 has
y(t) → ∞ both as t increases and as
t decreases.

10. (a)

−2 −1 1 2

−2

−1

1

2

t

y

(b) The solution y(t) with y(0) = 1/2 has
y(t) → ∞ both as t increases and as
t decreases.

11. (a) On the line y = 3 in the t y-plane, all of the slope marks have slope −1.
(b) Because f is continuous, if y is close to 3, then f (t, y) < 0. So any solution close to y = 3

must be decreasing. Therefore, solutions y(t) that satisfy y(0) < 3 can never be larger than 3
for t > 0, and consequently y(t) < 3 for all t .

12. (a) Since y(t) = 2 for all t is a solution and dy/dt = 0 for all t , f (t, y(t)) = f (t, 2) = 0 for all t .
(b) Therefore, the slope marks all have zero slope along the horizontal line y = 2.
(c) If the graphs of solutions cannot cross in the t y-plane, then the graph of a solution must stay on
the same side of the line y = 2 as it is at time t = 0. In Section 1.5, we discuss conditions that
guarantee that graphs of solutions do not cross.

13. The slope field in the t y-plane is constant along vertical lines.
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t

y

14. Because f depends only on y (the equation is autonomous), the slope field is constant along hori-
zontal lines in the t y-plane. The roots of f correspond to equilibrium solutions. If f (y) > 0, the
corresponding lines in the slope field have positive slope. If f (y) < 0, the corresponding lines in the
slope field have negative slope.

t

y

15.

−2 −1 1 2
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1

2

t

S

−2 −1 1 2

−1

1

2

t

S

16. (a) This slope field is constant along horizontal lines, so it corresponds to an autonomous equation.
The autonomous equations are (i), (ii), and (iii). This field does not correspond to equation (ii)
because it has the equilibrium solution y = −1. The slopes are negative for y < −1. Conse-
quently, this field corresponds to equation (iii).
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(b) Note that the slopes are constant along vertical lines—lines along which t is constant, so the
right-hand side of the corresponding equation depends only on t . The only choices are equa-
tions (iv) and (viii). Since the slopes are negative for −√

2 < t <
√
2, this slope field corre-

sponds to equation (viii).
(c) This slope field depends both on y and on t , so it can only correspond to equations (v), (vi),
or (vii). Since this field has the equilibrium solution y = 0, this slope field corresponds to
equation (v).

(d) This slope field also depends on both y and on t , so it can only correspond to equations (v),
(vi), or (vii). This field does not correspond to equation (v) because y = 0 is not an equilib-
rium solution. Since the slopes are nonnegative for y > −1, this slope field corresponds to
equation (vi).

17. (a) Because the slope field is constant on vertical lines, the given information is enough to draw the
entire slope field.

(b) The solution with initial condition y(0) = 2 is a vertical translation of the given solution. We
only need change the “constant of integration” so that y(0) = 2.

y(0) = 2

t

y

18. (a) Because the equation is autonomous, the slope field is constant on horizontal lines, so this solu-
tion provides enough information to sketch the slope field on the entire upper half plane. Also,
if we assume that f is continuous, then the slope field on the line y = 0 must be horizontal.

(b) The solution with initial condition y(0) = 2 is a translate to the left of the given solution.

y(0) = 2

t

y

19. (a) Even though the question only asks for slope fields in this part, we superimpose the graphs of
the equilibrium solutions on the fields to illustrate the equilibrium solutions (see part (b)).
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I1 = −0.1

−5 5

π

2π

t

θ

I2 = 0.0

−5 5

π

2π

t

θ

I3 = 0.1

−5 5

π

2π

t

θ

(b) For I1 = −0.1, the equilibrium values satisfy the equation
1− cos θ + (1+ cos θ)(−0.1) = 0.

We have

0.9− 1.1 cos θ = 0

cos θ = 0.9
1.1

θ ≈ ±0.613.
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Therefore, the equilibrium values are θ ≈ 2πn ± 0.613 radians, where n is any integer. There
are two equilibrium solutions with values θ ≈ 0.613 and θ ≈ 5.670 between 0 and 2π .

For I2 = 0.0, similar calculations yield equilibrium values at even multiples of 2π , and for
I3 = 0.1, there are no equilibrium values.

(c) For I1 = −0.1, the graphs of the equilibrium solutions divide the tθ -plane into horizontal strips
in which the signs of the slopes do not change. For example, if 0.613 < θ < 5.670 (approx-
imately), then the slopes are positive. If 5.670 < θ < 6.896 (approximately), then the slopes
are negative. Therefore, any solution θ(t) with an initial condition θ0 that is between 0.613 and
6.896 (approximately) satisfies the limit θ(t) → 5.670 (approximately) as t → ∞. Moreover,
any solution θ(t) with an initial condition θ0 that is between−0.613 and 5.670 (approximately)
satisfies the limit θ(t) → 0.613 (approximately) as t → −∞.

For I2 = 0.0, the graphs of the equilibrium solutions also divide the tθ -plane into horizon-
tal strips in which the signs of the slopes do not change. However, in this case, the slopes are
always positive (or zero in the case of the equilibrium solutions). Therefore, for example, any
solution θ(t) with an initial condition θ0 that is between 0 and 2π satisfies the limits θ(t) → 2π
as t → ∞ and θ(t) → 0 as t → −∞.

Lastly, if I3 = 0.1, all of the slopes are positive, so all solutions are increasing for all t .
The fact that θ(t) → ∞ as t → ∞ requires an analytic estimate in addition to a qualitative
analysis.

20. Separating variables, we have ∫
dvc

vc
=
∫

− 1

RC
dt

ln |vc| = − t

RC
+ c1

|vc| = c2e
−t/RC

where c2 = ec1 . We can eliminate the absolute value signs by allowing c2 to be positive or negative.
If we let vc(0) = c2e0 = v0, then we obtain c2 = v0. Therefore vc(t) = v0e−t/RC where v0 = vc(0).

To check that this function is a solution, we calculate the left-hand side of the equation

dvc

dt
= d

dt
v0e

−t/RC = − v0

RC
e−t/RC .

The result agrees with the right-hand side because

− vc

RC
= −v0e−t/RC

RC
= − v0

RC
e−t/RC .

21. Separating variables, we obtain ∫
dvc

K − vc
=
∫

dt

RC
.

Integrating both sides, we have

− ln |K − vc| = t

RC
+ c1,
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where c1 is a constant. Thus,

|K − vc| = c2e
−t/RC

where c2 = e−c1 . We can eliminate the absolute values by allowing c2 to assume either positive or
negative values. Therefore, we obtain the general solution

vc(t) = K + ce−t/RC

where c can be any constant.
To check that vc(t) is a solution, we calculate the left-hand side of the equation

dvc

dt
= − c

RC
e−t/RC ,

and the right-hand side of the equation

K − vc

RC
= K − (

K + ce−t/RC
)

RC
= − c

RC
e−t/RC .

Since they agree, vc(t) is a solution.

22. For t < 3, the differential equation is

dvc

dt
= 3− vc

(0.5)(1.0)
= 6− 2vc, vc(0) = 6.

Using the general solution from Exercise 21, where K = 3, R = 0.5, C = 1.0, and vc(0) = v0 = 6,
we have

vc(t) = K + (v0 − K )e−t/RC

= 3+ 3e−2t

for t < 3. To check that vc(t) is a solution, we calculate

dvc

dt
= −6e−2t

as well as

6− 2vc = 6− 2(3+ 3e−2t ) = −6e−2t .
Since they agree, vc(t) is a solution.

To determine the solution for t > 3, we need to calculate vc(3). We get

vc(3) = 3+ 3e(−2)(3) = 3+ 3e−6.

Therefore, the differential equation corresponding to t > 3 is

dvc

dt
= −vc

(0.5)(1.0)
= −2vc, vc(3) = 3+ 3e−6.
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The solution for t > 3 is vc(t) = ke−2t . Evaluating at t = 3, we get

ke−6 = 3+ 3e−6

k = 3e6 + 3.

So vc(t) = (3e6 + 3)e−2t . To check that vc(t) is a solution, we calculate

dvc

dt
= d

dt
(3e6 + 3)e−2t = −2(3e6 + 3)e−2t

as well as

−2vc = −2(3e6 + 3)e−2t .

Since they agree, vc(t) is a solution.

EXERCISES FOR SECTION 1.4

1.
Table 1.1
Results of Euler’s method

k tk yk mk

0 0 3 7

1 0.5 6.5 14

2 1.0 13.5 28

3 1.5 27.5 56

4 2.0 55.5 0.5 1 1.5 2

10

20

30

40

50

60

t

y

2.
Table 1.2
Results of Euler’s method (yk
rounded to two decimal places)

k tk yk mk

0 0 1 -1

1 0.25 0.75 -0.3125

2 0.5 0.67 0.0485

3 0.75 0.68 0.282

4 1.0 0.75
0.25 0.5 0.75 1

0.25

0.5

0.75

1

t

y
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3.
Table 1.3
Results of Euler’s method (shown
rounded to two decimal places)

k tk yk mk

0 0 0.5 0.25

1 0.25 0.56 −0.68
2 0.50 0.39 −1.85
3 0.75 −0.07 −2.99
4 1.00 −0.82 −3.33
5 1.25 −1.65 −2.27
6 1.50 −2.22 −1.07
7 1.75 −2.49 −0.81
8 2.00 −2.69

0.5 1 1.5 2

−3
−2
−1

1

t

y

4.
Table 1.4
Results of Euler’s method (to two
decimal places)

k tk yk mk

0 0 1 0.84

1 0.5 1.42 0.99

2 1.0 1.91 0.94

3 1.5 2.38 0.68

4 2.0 2.73 0.40

5 2.5 2.93 0.21

6 3.0 3.03

0.5 1 1.5 2 2.5 3

1

2

3

t

y

5.
Table 1.5
Results of Euler’s method

k tk wk mk

0 0 4 −5
1 1 −1 0

2 2 −1 0

3 3 −1 0

4 4 −1 0

5 5 −1

1 2 3 4 5−1

1

2

3

4

t

w
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6.
Table 1.6
Results of Euler’s method (shown
rounded to two decimal places)

k tk wk mk

0 0 0 3

1 0.5 1.5 3.75

2 1.0 3.38 −1.64
3 1.5 2.55 1.58

4 2.0 3.35 −1.50
5 2.5 2.59 1.46

6 3.0 3.32 −1.40
7 3.5 2.62 1.36

8 4.0 3.31 −1.31
9 4.5 2.65 1.28

10 5.0 3.29

1 2 3 4 5

1

2

3

4

t

w

7.
Table 1.7
Results of Euler’s method (shown
rounded to two decimal places)

k tk yk mk

0 0 2 2.72

1 0.5 3.36 1.81

2 1.0 4.27 1.60

3 1.5 5.06 1.48

4 2.0 5.81
0.5 1 1.5 2

1

2

3

4

5

6

t

y

8.
Table 1.8
Results of Euler’s method (shown
rounded to two decimal places)

k tk yk mk

0 1.0 2 2.72

1 1.5 3.36 1.81

2 2.0 4.27 1.60

3 2.5 5.06 1.48

4 3.0 5.81
0.5 1 1.5 2 2.5 3

1

2

3

4

5

6

t

y
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9.
Table 1.9
Results of Euler’s method (shown
rounded to three decimal places)

k tk yk mk

0 0.0 0.2 0.032

1 0.1 0.203 0.033

2 0.2 0.206 0.034

3 0.3 0.210 0.035
...

...
...

...

99 9.9 0.990 0.010

100 10.0 0.991

2 4 6 8 10

1

t

y

10.
Table 1.10
Results of Euler’s method with 
t negative
(shown rounded to three decimal places)

k tk yk mk

0 0 −0.5 −0.25
1 −0.1 −0.475 −0.204
2 −0.2 −0.455 −0.147
3 −0.3 −0.440 −0.080
...

...
...

...

19 −1.9 −1.160 0.488

20 −2.0 −1.209 0.467

Table 1.11
Results of Euler’s method with 
t positive
(shown rounded to three decimal places)

k tk yk mk

0 0 −0.5 −0.25
1 0.1 −0.525 −0.279
2 0.2 −0.553 −0.298
3 0.3 −0.583 −0.306
...

...
...

...

19 1.9 0.898 5.058

20 2.0 1.404 9.532

−2 −1 1 2

−1.5

1.5

t

y

11. As the solution approaches the equilibrium solution corresponding to w = 3, its slope decreases. We
do not expect the solution to “jump over” an equilibrium solution (see the Existence and Uniqueness
Theorem in Section 1.5).
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12. According to the formula derived in part (b) of Exercise 12 of Section 1.1, the terminal velocity (vt )
of the freefalling skydiver is

vt =
√
mg

k
=
√

(54)(9.8)

0.18
= √

2940 ≈ 54.22 m/s.

Therefore, 95% of her terminal velocity is 0.95vt = 0.95
√
2940 ≈ 51.51m/s. At the moment she

jumps from the plane, v(0) = 0. We choose 
t = 0.01 to obtain a good approximation of when the
skydiver reaches 95% of her terminal velocity. Using Euler’s method with 
t = 0.01, we see that
the skydiver reaches 95% of her terminal velocity when t ≈ 10.12 seconds.

Table 1.12
Results of Euler’s method (shown rounded
to three decimal places)

k tk vk mk

0 0.0 0.0 9.8

1 0.01 0.098 9.800

2 0.02 0.196 9.800
...

...
...

...

1011 10.11 51.498 0.960

1012 10.12 51.508 0.956
...

...
...

...

2 4 6 8 10 12

0.95 vt

t

v

13. Because the differential equation is autonomous, the computation that determines yk+1 from yk de-
pends only on yk and 
t and not on the actual value of tk . Hence the approximate y-values that are
obtained in both exercises are the same. It is useful to think about this fact in terms of the slope field
of an autonomous equation.

14. Euler’s method is not accurate in either case because the step size is too large. In Exercise 5, the
approximate solution “jumps onto” an equilibrium solution. In Exercise 6, the approximate solution
“crisscrosses” a different equilibrium solution. Approximate solutions generated with smaller values
of
t indicate that the actual solutions do not exhibit this behavior (see the Existence and Uniqueness
Theorem of Section 1.5).

15.
Table 1.13
Results of Euler’s method with

t = 1.0 (shown to two
decimal places)

k tk yk mk

0 0 1 1

1 1 2 1.41

2 2 3.41 1.85

3 3 5.26 2.29

4 4 7.56
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Table 1.14
Results of Euler’s method with 
t = 0.5 (shown to two decimal places)

k tk yk mk k tk yk mk

0 0 1 1 5 2.5 4.64 2.15

1 0.5 1.5 1.22 6 3.0 5.72 2.39

2 1.0 2.11 1.45 7 3.5 6.91 2.63

3 1.5 2.84 1.68 8 4.0 8.23

4 2.0 3.68 1.92

Table 1.15
Results of Euler’s method with 
t = 0.25 (shown to two decimal places)

k tk yk mk k tk yk mk

0 0 1 1 9 2.25 4.32 2.08

1 0.25 1.25 1.12 10 2.50 4.84 2.20

2 0.50 1.53 1.24 11 2.75 5.39 2.32

3 0.75 1.84 1.36 12 3.0 5.97 2.44

4 1.0 2.18 1.48 13 3.25 6.58 2.56

5 1.25 2.55 1.60 14 3.50 7.23 2.69

6 1.50 2.94 1.72 15 3.75 7.90 2.81

7 1.75 3.37 1.84 16 4.0 8.60

8 2.0 3.83 1.96

The slopes in the slope field are positive and increasing. Hence, the graphs of all solutions are
concave up. Since Euler’s method uses line segments to approximate the graph of the actual solution,
the approximate solutions will always be less than the actual solution. This error decreases as the step
size decreases.

1 2 3 4

2

4

6

8

t

y



1.4 Numerical Technique: Euler’s Method 41

16.
Table 1.16
Results of Euler’s method
with 
t = 1.0 (shown to two
decimal places)

k tk yk mk

0 0 1 1

1 1 2 0

2 2 2 0

3 3 2 0

4 4 2

Table 1.17
Results of Euler’s method with

t = 0.5 (shown to two decimal
places)

k tk yk mk

0 0 1 1

1 0.5 1.5 0.5

2 1.0 1.75 0.26

3 1.5 1.88 0.12

4 2.0 1.94 0.06

5 2.5 1.97 0.02

6 3.0 1.98 0.02

7 3.5 1.99 0.02

8 4.0 2.0

Table 1.18
Results of Euler’s method with 
t = 0.25 (shown to two decimal places)

k tk yk mk k tk yk mk

0 0 1 1 9 2.25 1.92 0.08

1 0.25 1.25 0.76 10 2.50 1.94 0.06

2 0.50 1.44 0.56 11 2.75 1.96 0.04

3 0.75 1.58 0.40 12 3.0 1.97 0.03

4 1.0 1.68 0.32 13 3.25 1.98 0.02

5 1.25 1.76 0.24 14 3.50 1.98 0.02

6 1.50 1.82 0.18 15 3.75 1.99 0.01

7 1.75 1.87 0.13 16 4.0 1.99

8 2.0 1.90 0.10

From the differential equation, we see that dy/dt is positive and decreasing as long as y(0) = 1
and y(t) < 2 for t > 0. Therefore, y(t) is increasing, and its graph is concave down. Since Euler’s
method uses line segments to approximate the graph of the actual solution, the approximate solutions
will always be greater than the actual solution. This error decreases as the step size decreases.

1 2 3 4

1

2

t

y
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17. Assuming that I (t) = 0.1, the differential equation simplifies to

dθ

dt
= 0.9− 1.1 cos θ.

Using Euler’s method with 
t = 0.1, we obtain the results in the following table.

Table 1.19
Results of Euler’s method (shown rounded to three decimal places)

k tk yk mk k tk yk mk

0 0.0 1.0 0.306 23 2.3 3.376 1.970

1 0.1 1.031 0.334 24 2.4 3.573 1.899

2 0.2 1.064 0.366 25 2.5 3.763 1.794
...

...
...

...
...

...
...

...

21 2.1 2.978 1.985 49 4.9 5.452 0.159

22 2.2 3.176 1.999 50 5.0 5.467

1 2 3 4 5

π

2π

t

θ

The graph of the results of Euler’s method.

A neuron spikes when θ is equal to an odd multiple of π . Therefore, we need to determine when
θ(t) = π . From the results of Euler’s method, we see that the neuron spikes when t ≈ 2.15.

18.

2 4 6 8 10

−1

1

2

t

vc

Graph of approximate solution obtained using
Euler’s method with 
t = 0.1.

19.

2 4 6 8 10

−1

1

t

vc

Graph of approximate solution obtained using
Euler’s method with 
t = 0.1.
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20.

2 4 6 8 10

−1

1

t

vc

Graph of approximate solution obtained using
Euler’s method with 
t = 0.1.

21.

2 4 6 8 10

−1

1

−2

t

vc

Graph of approximate solution obtained using
Euler’s method with 
t = 0.1.

EXERCISES FOR SECTION 1.5

1. Since the constant function y1(t) = 3 for all t is a solution, then the graph of any other solution y(t)
with y(0) < 3 cannot cross the line y = 3 by the Uniqueness Theorem. So y(t) < 3 for all t in the
domain of y(t).

2. Since y(0) = 1 is between the equilibrium solutions y2(t) = 0 and y3(t) = 2, we must have
0 < y(t) < 2 for all t because the Uniqueness Theorem implies that graphs of solutions cannot
cross (or even touch in this case).

3. Because y2(0) < y(0) < y1(0), we know that

−t2 = y2(t) < y(t) < y1(t) = t + 2

for all t . This restricts how large positive or negative y(t) can be for a given value of t (that is,
between −t2 and t + 2). As t → −∞, y(t) → −∞ between −t2 and t + 2 (y(t) → −∞ as
t → −∞ at least linearly, but no faster than quadratically).

4. Because y1(0) < y(0) < y2(0), the solution y(t) must satisfy y1(t) < y(t) < y2(t) for all t by the
Uniqueness Theorem. Hence −1 < y(t) < 1+ t2 for all t .

5. The Existence Theorem implies that a solution with this initial condition exists, at least for a small
t-interval about t = 0. This differential equation has equilibrium solutions y1(t) = 0, y2(t) = 1,
and y3(t) = 3 for all t . Since y(0) = 4, the Uniqueness Theorem implies that y(t) > 3 for all t in
the domain of y(t). Also, dy/dt > 0 for all y > 3, so the solution y(t) is increasing for all t in its
domain. Finally, y(t) → 3 as t → −∞.

6. Note that dy/dt = 0 if y = 0. Hence, y1(t) = 0 for all t is an equilibrium solution. By the
Uniqueness Theorem, this is the only solution that is 0 at t = 0. Therefore, y(t) = 0 for all t .

7. The Existence Theorem implies that a solution with this initial condition exists, at least for a small
t-interval about t = 0. Because 1 < y(0) < 3 and y1(t) = 1 and y2(t) = 3 are equilibrium solutions
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of the differential equation, we know that the solution exists for all t and that 1 < y(t) < 3 for all t
by the Uniqueness Theorem. Also, dy/dt < 0 for 1 < y < 3, so dy/dt is always negative for this
solution. Hence, y(t) → 1 as t → ∞, and y(t) → 3 as t → −∞.

8. The Existence Theorem implies that a solution with this initial condition exists, at least for a small t-
interval about t = 0. Note that y(0) < 0. Since y1(t) = 0 is an equilibrium solution, the Uniqueness
Theorem implies that y(t) < 0 for all t . Also, dy/dt < 0 if y < 0, so y(t) is decreasing for all t , and
y(t) → −∞ as t increases. As t → −∞, y(t) → 0.

9. (a) To check that y1(t) = t2 is a solution, we compute

dy1
dt

= 2t

and

−y21 + y1 + 2y1t
2 + 2t − t2 − t4 = −(t2)2 + (t2) + 2(t2)t2 + 2t − t2 − t4

= 2t.

To check that y2(t) = t2 + 1 is a solution, we compute

dy2
dt

= 2t

and

−y22 + y2 + 2y2t
2 + 2t − t2 − t4 = −(t2 + 1)2 + (t2 + 1) + 2(t2 + 1)t2

+ 2t − t2 − t4

= 2t.

(b) The initial values of the two solutions are y1(0) = 0 and y2(0) = 1. Thus if y(t) is a solution
and y1(0) = 0 < y(0) < 1 = y2(0), then we can apply the Uniqueness Theorem to obtain

y1(t) = t2 < y(t) < t2 + 1 = y2(t)

for all t . Note that since the differential equation satisfies the hypothesis of the Existence and
Uniqueness Theorem over the entire t y-plane, we can continue to extend the solution as long as
it does not escape to ±∞ in finite time. Since it is bounded above and below by solutions that
exist for all time, y(t) is defined for all time also.

(c)

−1 1

1

2

t

y

�y1(t)

�y2(t)
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10. (a) If y(t) = 0 for all t , then dy/dt = 0 and 2
√|y(t)| = 0 for all t . Hence, the function that is

constantly zero satisfies the differential equation.
(b) First, consider the case where y > 0. The differential equation reduces to dy/dt = 2

√
y. If we

separate variables and integrate, we obtain

√
y = t − c,

where c is any constant. The graph of this equation is the half of the parabola y = (t − c)2

where t ≥ c.
Next, consider the case where y < 0. The differential equation reduces to dy/dt = 2

√−y.
If we separate variables and integrate, we obtain

√−y = d − t,

where d is any constant. The graph of this equation is the half of the parabola y = −(d − t)2

where t ≤ d.
To obtain all solutions, we observe that any choice of constants c and d where c ≥ d leads

to a solution of the form

y(t) =

⎧⎪⎨
⎪⎩

−(d − t)2, if t ≤ d;

0, if d ≤ t ≤ c;

(t − c)2, if t ≥ c.

(See the following figure for the case where d = −2 and c = 1.)

−4 −2 2 4

−4

−2

2

4

t

y

(c) The partial derivative ∂ f/∂y of f (t, y) = √|y| does not exist along the t-axis.
(d) If y0 = 0, HPGSolver plots the equilibrium solution that is constantly zero. If y0 	= 0, it plots

a solution whose graph crosses the t-axis. This is a solution where c = d in the formula given
above.

11. The key observation is that the differential equation is not defined when t = 0.

(a) Note that dy1/dt = 0 and y1/t2 = 0, so y1(t) is a solution.
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(b) Separating variables, we have ∫
dy

y
=
∫

dt

t2
.

Solving for y we obtain y(t) = ce−1/t , where c is any constant. Thus, for any real number c,
define the function yc(t) by

yc(t) =
⎧⎨
⎩
0 for t ≤ 0;
ce−1/t for t > 0.

For each c, yc(t) satisfies the differential equation for all t 	= 0.

−4 −2 2 4

−4

−2

2

4

t

y

There are infinitely many solutions of the
form yc(t) that agree with y1(t) for t < 0.

(c) Note that f (t, y) = y/t2 is not defined at t = 0. Therefore, we cannot apply the Uniqueness
Theorem for the initial condition y(0) = 0. The “solution” yc(t) given in part (b) actually
represents two solutions, one for t < 0 and one for t > 0.

12. (a) Note that
dy1
dt

= d

dt

(
1

t − 1

)
= − 1

(t − 1)2
= −(y1(t))

2

and
dy2
dt

= d

dt

(
1

t − 2

)
= − 1

(t − 2)2
= −(y2(t))

2,

so both y1(t) and y2(t) are solutions.
(b) Note that y1(0) = −1 and y2(0) = −1/2. If y(t) is another solution whose initial condition

satisfies −1 < y(0) < −1/2, then y1(t) < y(t) < y2(t) for all t by the Uniqueness Theorem.
Also, since dy/dt < 0, y(t) is decreasing for all t in its domain. Therefore, y(t) → 0 as
t → −∞, and the graph of y(t) has a vertical asymptote between t = 1 and t = 2.
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13. (a) The equation is separable. We separate the variables and compute∫
y−3 dy =

∫
dt.

Solving for y, we obtain

y(t) = 1√
c − 2t

for any constant c. To find the desired solution, we use the initial condition y(0) = 1 and obtain
c = 1. So the solution to the initial-value problem is

y(t) = 1√
1− 2t

.

(b) This solution is defined when −2t + 1 > 0, which is equivalent to t < 1/2.
(c) As t → 1/2−, the denominator of y(t) becomes a small positive number, so y(t) → ∞. We
only consider t → 1/2− because the solution is defined only for t < 1/2. (The other “branch”
of the function is also a solution, but the solution that includes t = 0 in its domain is not defined
for t ≥ 1/2.) As t → −∞, y(t) → 0.

14. (a) The equation is separable, so we obtain∫
(y + 1) dy =

∫
dt

t − 2
.

Solving for y with help from the quadratic formula yields the general solution

y(t) = −1±
√
1+ ln(c(t − 2)2)

where c is a constant. Substituting the initial condition y(0) = 0 and solving for c, we have

0 = −1±√
1+ ln(4c),

and thus c = 1/4. The desired solution is therefore

y(t) = −1+
√
1+ ln((1− t/2)2)

(b) The solution is defined only when 1 + ln((1 − t/2)2) ≥ 0, that is, when |t − 2| ≥ 2/
√
e.

Therefore, the domain of the solution is

t ≤ 2(1− 1/
√
e ).

(c) As t → 2(1− 1/
√
e ), then 1+ ln((1− t/2)2) → 0. Thus

lim
t→2(1−1/√e )

y(t) = −1.

Note that the differential equation is not defined at y = −1. Also, note that
lim

t→−∞ y(t) = ∞.
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15. (a) The equation is separable. We separate, integrate∫
(y + 2)2 dy =

∫
dt,

and solve for y to obtain the general solution

y(t) = (3t + c)1/3 − 2,

where c is any constant. To obtain the desired solution, we use the initial condition y(0) = 1
and solve

1 = (3 · 0+ c)1/3 − 2

for c to obtain c = 27. So the solution to the given initial-value problem is

y(t) = (3t + 27)1/3 − 2.

(b) This function is defined for all t . However, y(−9) = −2, and the differential equation is not
defined at y = −2. Strictly speaking, the solution exists only for t > −9.

(c) As t → ∞, y(t) → ∞. As t → −9+, y(t) → −2.
16. (a) The equation is separable. Separating variables we obtain∫

(y − 2) dy =
∫
t dt.

Solving for y with help from the quadratic formula yields the general solution

y(t) = 2±
√
t2 + c .

To find c, we let t = −1 and y = 0, and we obtain c = 3. The desired solution is therefore
y(t) = 2− √

t2 + 3
(b) Since t2 + 2 is always positive and y(t) < 2 for all t , the solution y(t) is defined for all real

numbers.
(c) As t → ±∞, t2 + 3 → ∞. Therefore,

lim
t→±∞ y(t) = −∞.

17. This exercise shows that solutions of autonomous equations cannot have local maximums or mini-
mums. Hence they must be either constant or monotonically increasing or monotonically decreasing.
A useful corollary is that a function y(t) that oscillates cannot be the solution of an autonomous dif-
ferential equation.

(a) Note dy1/dt = 0 at t = t0 because y1(t) has a local maximum. Because y1(t) is a solution, we
know that dy1/dt = f (y1(t)) for all t in the domain of y1(t). In particular,

0 = dy1
dt

∣∣∣∣
t=t0

= f (y1(t0)) = f (y0),

so f (y0) = 0.



1.5 Existence and Uniqueness of Solutions 49

(b) This differential equation is autonomous, so the slope marks along any given horizontal line are
parallel. Hence, the slope marks along the line y = y0 must all have zero slope.

(c) For all t ,
dy2
dt

= d(y0)

dt
= 0

because the derivative of a constant function is zero, and for all t

f (y2(t)) = f (y0) = 0.

So y2(t) is a solution.
(d) By the Uniqueness Theorem, we know that two solutions that are in the same place at the same

time are the same solution. We have y1(t0) = y0 = y2(t0). Moreover, y1(t) is assumed to
be a solution, and we showed that y2(t) is a solution in parts (a) and (b) of this exercise. So
y1(t) = y2(t) for all t . In other words, y1(t) = y0 for all t .

(e) Follow the same four steps as before. We still have dy1/dt = 0 at t = t0 because y1 has a local
minimum at t = t0.

18. (a) Solving for r , we get

r =
(
3v

4π

)1/3
.

Consequently,

s(t) = 4π

(
3v

4π

)2/3

= cv(t)2/3,

where c is a constant. Since we are assuming that the rate of growth of v(t) is proportional to
its surface area s(t), we have

dv

dt
= kv2/3,

where k is a constant.
(b) The partial derivative with respect to v of dv/dt does not exist at v = 0. Hence the Uniqueness

Theorem tells us nothing about the uniqueness of solutions that involve v = 0. In fact, if we use
the techniques described in the section related to the uniqueness of solutions for dy/dt = 3y2/3,
we can find infinitely many solutions with this initial condition.

(c) Since it does not make sense to talk about rain drops with negative volume, we always have
v ≥ 0. Once v > 0, the evolution of the drop is completely determined by the differential
equation.

What is the physical significance of a drop with v = 0? It is tempting to interpret the fact
that solutions can have v = 0 for an arbitrary amount of time before beginning to grow as a
statement that the rain drops can spontaneously begin to grow at any time. Since the model
gives no information about when a solution with v = 0 starts to grow, it is not very useful for
the understanding the initial formation of rain drops. The safest assertion is to say is the model
breaks down if v = 0.
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EXERCISES FOR SECTION 1.6

1. The equilibrium points of dy/dt = f (y) are
the numbers y where f (y) = 0. For f (y) =
3y(y − 2), the equilibrium points are y = 0
and y = 2. Since f (y) is positive for y < 0,
negative for 0 < y < 2, and positive for y > 2,
the equilibrium point y = 0 is a sink and the
equilibrium point y = 2 is a source.

sinky = 0

sourcey = 2

2. The equilibrium points of dy/dt = f (y) are
the numbers y where f (y) = 0. For f (y) =
y2−4y−12 = (y−6)(y+2), the equilibrium
points are y = −2 and y = 6. Since f (y) is
positive for y < −2, negative for −2 < y < 6,
and positive for y > 6, the equilibrium point
y = −2 is a sink and the equilibrium point y =
6 is a source.

sinky = −2

sourcey = 6

3. The equilibrium points of dy/dt = f (y) are
the numbers y where f (y) = 0. For f (y) =
cos y, the equilibrium points are y = π/2 +
nπ , where n = 0, ±1, ±2, . . . . Since cos y >

0 for −π/2 < y < π/2 and cos y < 0 for
π/2 < y < 3π/2, we see that the equilib-
rium point at y = π/2 is a sink. Since the sign
of cos y alternates between positive and nega-
tive in a period fashion, we see that the equi-
librium points at y = π/2+ 2nπ are sinks and
the equilibrium points at y = 3π/2+ 2nπ are
sources.

y = −π/2

y = π/2

y = 3π/2

source

sink

source

4. The equilibrium points of dw/dt = f (w)

are the numbers w where f (w) = 0. For
f (w) = w cosw, the equilibrium points are
w = 0 and w = π/2 + nπ , where n = 0,
±1, ±2, . . . . The sign of w cosw alternates
positive and negative at successive zeros. It is
negative for −π/2 < w < 0 and positive for
0 < w < π/2. Therefore, w = 0 is a source,
and the equilibrium points alternate back and
forth between sources and sinks.

w = −π/2

w = 0

w = π/2

sink

source

sink
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5. The equilibrium points of dw/dt = f (w) are
the numbers w where f (w) = 0. For f (w) =
(1 − w) sinw, the equilibrium points are w =
1 and w = nπ , where n = 0, ±1, ±2, . . . .
The sign of (1 − w) sinw alternates between
positive and negative at successive zeros. It is
negative for −π < w < 0 and positive for 0 <

w < 1. Therefore, w = 0 is a source, and the
equilibrium points alternate between sinks and
sources.

w = 0 source

w = 1 sink

w = π source

6. This equation has no equilibrium points, but
the equation is not defined at y = 2. For
y > 2, dy/dt > 0, so solutions increase. If
y < 2, dy/dt < 0, so solutions decrease. The
solutions approach the point y = 2 as time de-
creases and actually arrive there in finite time.

y = 2

7. The derivative dv/dt is always negative, so
there are no equilibrium points, and all solu-
tions are decreasing.

8. The equilibrium points of dw/dt = f (w) are
the numbers w where f (w) = 0. For f (w) =
3w3 − 12w2, the equilibrium points are w = 0
and w = 4. Since f (w) < 0 for w < 0 and
0 < w < 4, and f (w) > 0 for w > 4, the
equilibrium point at w = 0 is a node and the
equilibrium point at w = 4 is a source.

nodew = 0

sourcew = 4
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9. The equilibrium points of dy/dt = f (y) are
the numbers y where f (y) = 0. For f (y) =
1 + cos y, the equilibrium points are y = nπ ,
where n = ±1, ±3, . . . . Since f (y) is non-
negative for all values of y, all of the equilib-
rium points are nodes.

nodey = −π

nodey = π

nodey = −3π

10. The equilibrium points of dy/dt = f (y) are
the numbers y where f (y) = 0. For f (y) =
tan y, the equilibrium points are y = nπ for
n = 0, ±1, ±2, . . . . Since tan y changes from
negative to positive at each of its zeros, all of
these equilibria are sources.
The differential equation is not defined at y =
π/2 + nπ for n = 0, ±1, ±2, . . . . Solutions
increase or decrease toward one of these points
as t increases and reach it in finite time.

y = 0

y = π/2

y = π

source

source

11. The equilibrium points of dy/dt = f (y) are
the numbers y where f (y) = 0. For f (y) =
y ln |y|, there are equilibrium points at y =
±1. In addition, although the function f (y)
is technically undefined at y = 0, the limit of
f (y) as y → 0 is 0. Thus we can treat y = 0
as another equilibrium point. Since f (y) < 0
for y < −1 and 0 < y < 1, and f (y) > 0 for
y > 1 and −1 < y < 0, y = −1 is a source,
y = 0 is a sink, and y = 1 is a source.

source

source

y = 0

y = 1

y = −1

12. The equilibrium points of dw/dt = f (w) are
the numbers w where f (w) = 0. For f (w) =
(w2 − 2) arctanw, there are equilibrium points
at w = ±√

2 and w = 0. Since f (w) > 0 for
w >

√
2 and −√

2 < w < 0, and f (w) < 0
for w < −√

2 and 0 < w <
√
2, the equilib-

rium points at w = ±√
2 are sources, and the

equilibrium point at w = 0 is a sink.

sinkw = 0

sourcew = √
2

sourcew = −√
2
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13.

−2 −1 1 2−1

1

2

3

t

y 14.

1

−4

4

8

t

y

15.

−4 −2 2 4
−π/2

π/2

π

3π/2

t

y 16.

−3 3
−π/2

π/2

π

3π/2

t

w

17.

−3 3

−π

π

1

t

w 18.

−2 2

2

4

t

y

The equation is undefined at y = 2.

19.

−1 1

−5

5

t

v 20.

−1 1 2

−2

2

4

t

w
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21.

−4 −2 2 4
−π

π

2π

t

y

22. Because y(0) = −1 < 2− √
2, this solution increases toward 2− √

2 as t increases and decreases as
t decreases.

23. The initial value y(0) = 2 is between the equilibrium points y = 2 − √
2 and y = 2 + √

2. Also,
dy/dt < 0 for 2−√

2 < y < 2+√
2. Hence the solution is decreasing and tends toward y = 2−√

2
as t → ∞. It tends toward y = 2+ √

2 as t → −∞.

24. The initial value y(0) = −2 is below both equilibrium points. Since dy/dt > 0 for y < 2 − √
2,

the solution is increasing for all t and tends to the equilibrium point y = 2 − √
2 as t → ∞. As

t decreases, y(t) → −∞ in finite time. In fact, because y(0) = −2 < −1, this solution is always
below the solution in Exercise 22.

25. The initial value y(0) = −4 is below both equilibrium points. Since dy/dt > 0 for y < 2 − √
2,

the solution is increasing for all t and tends to the equilibrium point y = 2 − √
2 as t → ∞. As t

decreases, y(t) → −∞ in finite time.

26. The initial value y(0) = 4 is greater than the largest equilibrium point 2 + √
2, and dy/dt > 0 if

y > 2 + √
2. Hence, this solution increases without bound as t increases. (In fact, it blows up in

finite time). As t → −∞, y(t) → 2+ √
2.

27. The initial value y(3) = 1 is between the equilibrium points y = 2 − √
2 and y = 2 + √

2. Also,
dy/dt < 0 for 2−√

2 < y < 2+√
2. Hence the solution is decreasing and tends toward the smaller

equilibrium point y = 2 − √
2 as t → ∞. It tends toward the larger equilibrium point y = 2 + √

2
as t → −∞.

28. (a) Any solution that has an initial value between the equilibrium points at y = −1 and y = 2 must
remain between these values for all t , so −1 < y(t) < 2 for all t .

(b) The extra assumption implies that the solution is increasing for all t such that −1 < y(t) < 2.
Again assuming that the Uniqueness Theorem applies, we conclude that y(t) → 2 as t → ∞
and y(t) → −1 as t → −∞.

29. The function f (y) has two zeros±y0, where y0 is some positive number.
So the differential equation dy/dt = f (y) has two equilibrium solu-
tions, one for each zero. Also, f (y) < 0 if −y0 < y < y0 and f (y) > 0
if y < −y0 or if y > y0. Hence y0 is a source and −y0 is a sink.
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30. The function f (y) has two zeros, one positive and one negative. We
denote them as y1 and y2, where y1 < y2. So the differential equation
dy/dt = f (y) has two equilibrium solutions, one for each zero. Also,
f (y) > 0 if y1 < y < y2 and f (y) < 0 if y < y1 or if y > y2. Hence
y1 is a source and y2 is a sink.

31. The function f (y) has three zeros. We denote them as y1, y2, and y3,
where y1 < 0 < y2 < y3. So the differential equation dy/dt = f (y)
has three equilibrium solutions, one for each zero. Also, f (y) > 0 if
y < y1, f (y) < 0 if y1 < y < y2, and f (y) > 0 if y2 < y < y3 or if
y > y3. Hence y1 is a sink, y2 is a source, and y3 is a node.

32. The function f (y) has four zeros, which we denote y1, . . . , y4 where
y1 < 0 < y2 < y3 < y4. So the differential equation dy/dt = f (y) has
four equilibrium solutions, one for each zero. Also, f (y) > 0 if y < y1,
if y2 < y < y3, or if y3 < y < y4; and f (y) < 0 if y1 < y < y2 or if
y > y4. Hence y1 is a sink, y2 is a source, y3 is a node, and y4 is a sink.

33. Since there are two equilibrium points, the graph of f (y) must touch the y-axis at two distinct num-
bers y1 and y2. Assume that y1 < y2. Since the arrows point up if y < y1 and if y > y2, we must
have f (y) > 0 for y < y1 and for y > y2. Similarly, f (y) < 0 for y1 < y < y2.

The precise location of the equilibrium points is not given, and the direction of the arrows on the
phase line is determined only by the sign (and not the magnitude) of f (y). So the following graph is
one of many possible answers.

y

f (y)

34. Since there are four equilibrium points, the graph of f (y) must touch the y-axis at four distinct num-
bers y1, y2, y3, and y4. We assume that y1 < y2 < y3 < y4. Since the arrows point up only if
y1 < y < y2 or if y2 < y < y3, we must have f (y) > 0 for y1 < y < y2 and for y2 < y < y3.
Moreover, f (y) < 0 if y < y1, if y3 < y < y4, or if y > y4. Therefore, the graph of f crosses the
y-axis at y1 and y3, but it is tangent to the y-axis at y2 and y4.
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The precise location of the equilibrium points is not given, and the direction of the arrows on the
phase line is determined only by the sign (and not the magnitude) of f (y). So the following graph is
one of many possible answers.

y

f (y)

35. Since there are three equilibrium points (one appearing to be at y = 0), the graph of f (y) must touch
the y-axis at three numbers y1, y2, and y3. We assume that y1 < y2 = 0 < y3. Since the arrows
point down for y < y1 and y2 < y < y3, f (y) < 0 for y < y1 and for y2 < y < y3. Similarly,
f (y) > 0 if y1 < y < y2 and if y > y3.

The precise location of the equilibrium points is not given, and the direction of the arrows on the
phase line is determined only by the sign (and not the magnitude) of f (y). So the following graph is
one of many possible answers.

y

f (y)

36. Since there are three equilibrium points (one appearing to be at y = 0), the graph of f (y) must touch
the y-axis at three numbers y1, y2, and y3. We assume that y1 < y2 = 0 < y3. Since the arrows
point up only for y < y1, f (y) > 0 only if y < y1. Otherwise, f (y) ≤ 0.

The precise location of the equilibrium points is not given, and the direction of the arrows on the
phase line is determined only by the sign (and not the magnitude) of f (y). So the following graph is
one of many possible answers.

y

f (y)
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37. (a) This phase line has two equilibrium points, y = 0 and y = 1. Equations (ii), (iv), (vi), and (viii)
have exactly these equilibria. There exists a node at y = 0. Only equations (iv) and (viii) have
a node at y = 0. Moreover, for this phase line, dy/dt < 0 for y > 1. Only equation (viii)
satisfies this property. Consequently, the phase line corresponds to equation (viii).

(b) This phase line has two equilibrium points, y = 0 and y = 1. Equations (ii), (iv), (vi) and (viii)
have exactly these equilibria. Moreover, for this phase line, dy/dt > 0 for y > 1. Only
equations (iv) and (vi) satisfy this property. Lastly, dy/dt > 0 for y < 0. Only equation (vi)
satisfies this property. Consequently, the phase line corresponds to equation (vi).

(c) This phase line has an equilibrium point at y = 3. Only equations (i) and (v) have this equilib-
rium point. Moreover, this phase line has another equilibrium point at y = 0. Only equation (i)
satisfies this property. Consequently, the phase line corresponds to equation (i).

(d) This phase line has an equilibrium point at y = 2. Only equations (iii) and (vii) have this
equilibrium point. Moreover, there exists a node at y = 0. Only equation (vii) satisfies this
property. Consequently, the phase line corresponds to equation (vii).

38. (a) Because f (y) is continuous we can use the Intermediate Value Theorem to say that there must
be a zero of f (y) between−10 and 10. This value of y is an equilibrium point of the differential
equation. In fact, f (y) must cross from positive to negative, so if there is a single equilibrium
point, it must be a sink (see part (b)).

(b) We know that f (y) must cross the y-axis between −10 and 10. Moreover, it must cross from
positive to negative because f (−10) is positive and f (10) is negative. Where f (y) crosses the
y-axis from positive to negative, we have a sink. If y = 1 is a source, then crosses the y-axis
from negative to positive at y = 1. Hence, f (y) must cross the y-axis from positive to negative
at least once between y = −10 and y = 1 and at least once between y = 1 and y = 10. There
must be at least one sink in each of these intervals. (We need the assumption that the number of
equilibrium points is finite to prevent cases where f (y) = 0 along an entire interval.)

39. (a) In terms of the phase line with P ≥ 0, there are three equilibrium points.
If we assume that f (P) is differentiable, then a decreasing population at
P = 100 implies that f (P) < 0 for P > 50. An increasing population
at P = 25 implies that f (P) > 0 for 10 < P < 50. These assumptions
leave two possible phase lines since the arrow between P = 0 and P =
10 is undetermined.

P = 0

P = 10

P = 50

(b) Given the observations in part (a), we see that there are two basic types of graphs that go with
the assumptions. However, there are many graphs that correspond to each possibility. The fol-
lowing two graphs are representative.

10 50
0 P

f (P)

10 50
0 P

f (P)
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(c) The functions f (P) = P(P − 10)(50− P) and f (P) = P(P − 10)2(50− P) respectively are
two examples but there are many others.

40. (a) The equilibrium points of dθ/dt = f (θ) are the numbers θ where f (θ) = 0. For

f (θ) = 1− cos θ + (1+ cos θ)
(
− 1
3

)
= 2

3 (1− 2 cos θ) ,

the equilibrium points are θ = 2πn ± π/3, where n = 0, ±1, ±2, . . . .
(b) The sign of dθ/dt alternates between positive and negative at successive equilibrium points. It

is negative for −π/3 < θ < π/3 and positive for π/3 < θ < 5π/3. Therefore, π/3 = 0 is a
source, and the equilibrium points alternate back and forth between sources and sinks.

sinky = −π/3

sourcey = π/3

sourcey = −5π/3

41. The equilibrium points occur at solutions of dy/dt = y2+a = 0. For a > 0, there are no equilibrium
points. For a = 0, there is one equilibrium point, y = 0. For a < 0, there are two equilibrium points,
y = ±√−a.

To draw the phase lines, note that:

• If a > 0, dy/dt = y2 + a > 0, so the solutions are always increasing.
• If a = 0, dy/dt > 0 unless y = 0. Thus, y = 0 is a node.
• For a < 0, dy/dt < 0 for −√−a < y <

√−a, and dy/dt > 0 for y < −√−a and for
y >

√−a.

−√−a

√−a
0

a < 0 a = 0 a > 0

(a) The phase lines for a < 0 are qualitatively the same, and the phase lines for a > 0 are qualita-
tively the same.

(b) The phase line undergoes a qualitative change at a = 0.
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42. The equilibrium points occur at solutions of dy/dt = ay − y3 = 0. For a ≤ 0, there is one equilib-
rium point, y = 0. For a > 0, there are three equilibrium points, y = 0 and y = ±√

a.
To draw the phase lines, note that:

• For a ≤ 0, dy/dt > 0 if y < 0, and dy/dt < 0 if y > 0. Consequently, the equilibrium point
y = 0 is a sink.

• For a > 0, dy/dt > 0 if y < −√
a or 0 < y <

√
a. Similarly, dy/dt < 0 if −√

a < y < 0 or
y >

√
a. Consequently, the equilibrium point y = 0 is a source, and the equilibria y = ±√

a
are sinks.

a < 0 a = 0 a > 0

(a) The phase lines for a ≤ 0 are qualitatively the same, and the phase lines for a > 0 are qualita-
tively the same.

(b) The phase line undergoes a qualitative change at a = 0.

43. (a) Because the first and second derivative are zero at y0 and the third derivative is positive, Taylor’s
Theorem implies that the function f (y) is approximately equal to

f ′′′(y0)
3! (y − y0)

3

for y near y0. Since f ′′′(y0) > 0, f (y) is increasing near y0. Hence, y0 is a source.
(b) Just as in part (a), we see that f (y) is decreasing near y0, so y0 is a sink.
(c) In this case, we can approximate f (y) near y0 by

f ′′(y0)
2! (y − y0)

2.

Since the second derivative of f (y) at y0 is assumed to be positive, f (y) is positive on both
sides of y0 for y near y0. Hence y0 is a node.

44. (a) The differential equation is not defined for y = −1 and y = 2 and has no
equilibria. So the phase line has holes at y = −1 and y = 2. The function
f (y) = 1/((y − 2)(y + 1)) is positive for y > 2 and for y < −1. It is
negative for −1 < y < 2. Thus, the phase line to the right corresponds to this
differential equation.

Since the value, 1/2, of the initial condition y(0) = 1/2 is in the interval
where the function f (y) is negative, the solution is decreasing. It reaches y =
−1 in finite time. As t decreases, the solution reaches y = 2 in finite time.
Strictly speaking, the solution does not continue beyond the values y = −1
and y = 2 because the differential equation is not defined for y = −1 and
y = 2.

y = −1

y = 2
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(b) We can solve the differential equation analytically. We separate variables and integrate. We get∫
(y − 2)(y + 1) dy =

∫
dt

y3

3
− y2

2
− 2y = t + c,

where c is a constant. Using y(0) = 1/2, we get c = 13/12. Therefore the solution to the
initial-value problem is the unique solution y(t) that satisfies the equation

4y3 − 6y2 − 24y − 24t + 13 = 0

with −1 < y(t) < 2. It is not easy to solve this equation explicitly. However, in order to obtain
the domain of this solution, we substitute y = −1 and y = 2 into the equation, and we get
t = −9/8 and t = 9/8 respectively.

45. One assumption of the model is that, if no people are present, then the time between trains decreases
at a constant rate. Hence the term −α represents this assumption. The parameter α should be posi-
tive, so that −α makes a negative contribution to dx/dt .

The term βx represents the effect of the passengers. The parameter β should be positive so that
βx contributes positively to dx/dt .

46. (a) Solving βx − α = 0, we see that the equilibrium point is x = α/β.
(b) Since f (x) = βx − α is positive for x > α/β and negative for x < α/β, the equilibrium point

is a source.
(c) and (d)

x = α/β

t

x

(e) We separate the variables and integrate to obtain∫
dx

βx − α
=
∫
dt

1
β
ln |βx − α| = t + c,

which yields the general solution x(t) = α/β + keβt , where k is any constant.

47. Note that the only equilibrium point is a source. If the initial gap between trains is too large, then x
will increase without bound. If it is too small, x will decrease to zero. When x = 0, the two trains are
next to each other, and they will stay together since x < 0 is not physically possible in this problem.



1.7 Bifurcations 61

If the time between trains is exactly the equilibrium value (x = α/β), then theoretically x(t) is
constant. However, any disruption to x causes the solution to tend away from the source. Since it is
very likely that some stops will have fewer than the expected number of passengers and some stops
will have more, it is unlikely that the time between trains will remain constant for long.

48. If the trains are spaced too close together, then each train will catch up with the one in front of it.
This phenomenon will continue until there is a very large time gap between two successive trains.
When this happens, the time between these two trains will grow, and a second cluster of trains will
form.

For the “B branch of the Green Line,” the clusters seem to contain three or four trains during
rush hour. For the “D branch of the Green Line,” clusters seem to contain only two trains or three
trains.

It is tempting to say that the trains should be spaced at time intervals of exactly α/β, and nothing
else needs to be changed. In theory, this choice will result in equal spacing between trains, but we
must remember that the equilibrium point, x = α/β, is a source. Hence, anything that perturbs x
will cause x to increase or decrease in an exponential fashion.

The only solution that is consistent with this model is to have the trains run to a schedule that
allows for sufficient time for the loading of passengers. The trains will occasionally have to wait if
they get ahead of schedule, but this plan avoids the phenomenon of one tremendously crowded train
followed by two or three relatively empty ones.

EXERCISES FOR SECTION 1.7

1. The equilibrium points occur at solutions of dy/dt = y2+a = 0. For a > 0, there are no equilibrium
points. For a = 0, there is one equilibrium point, y = 0. For a < 0, there are two equilibrium points,
y = ±√−a. Thus, a = 0 is a bifurcation value.

To draw the phase lines, note that:

• If a > 0, dy/dt = y2 + a > 0, so the solutions are always increasing.
• If a = 0, dy/dt > 0 unless y = 0. Thus, y = 0 is a node.
• For a < 0, dy/dt < 0 for −√−a < y <

√−a, and dy/dt > 0 for y < −√−a and for
y >

√−a.

−√−a

√−a
0

a < 0 a = 0 a > 0

Phase lines for a < 0, a = 0, and a > 0.
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2. The equilibrium points occur at solutions of dy/dt = y2 + 3y + a = 0. From the quadratic formula,
we have

y = −3± √
9− 4a

2
.

Hence, the bifurcation value of a is 9/4. For a < 9/4, there are two equilibria, one source and one
sink. For a = 9/4, there is one equilibrium which is a node, and for a > 9/4, there are no equilibria.

−3− √
9− 4a

2

−3+ √
9− 4a

2
−3/2

a < 9/4 a = 9/4 a > 9/4

Phase lines for a < 9/4, a = 9/4, and a > 9/4.

3. The equilibrium points occur at solutions of dy/dt = y2 − ay + 1 = 0. From the quadratic formula,
we have

y = a ± √
a2 − 4

2
.

If −2 < a < 2, then a2 − 4 < 0, and there are no equilibrium points. If a > 2 or a < −2, there
are two equilibrium points. For a = ±2, there is one equilibrium point at y = a/2. The bifurcations
occur at a = ±2.

To draw the phase lines, note that:

• For −2 < a < 2, dy/dt = y2 − ay + 1 > 0, so the solutions are always increasing.
• For a = 2, dy/dt = (y − 1)2 ≥ 0, and y = 1 is a node.
• For a = −2, dy/dt = (y + 1)2 ≥ 0, and y = −1 is a node.
• For a < −2 or a > 2, let

y1 = a − √
a2 − 4

2
and y2 = a + √

a2 − 4

2
.

Then dy/dt < 0 if y1 < y < y2, and dy/dt > 0 if y < y1 or y > y2.

a +
√
a2 − 4

2

a −
√
a2 − 4

2

−1

1

a +
√
a2 − 4

2

a −
√
a2 − 4

2

a < −2 a = −2 −2 < a < 2 a = 2 a > 2

The five possible phase lines.
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4. The equilibrium points occur at solutions of dy/dt = y3 + αy2 = 0. For α = 0, there is one
equilibrium point, y = 0. For α 	= 0, there are two equilibrium points, y = 0 and y = −α. Thus,
α = 0 is a bifurcation value.

To draw the phase lines, note that:

• If α < 0, dy/dt > 0 only if y > −α.
• If α = 0, dy/dt > 0 if y > 0, and dy/dt < 0 if y < 0.
• If α > 0, dy/dt < 0 only if y < −α.

Hence, as α increases from negative to positive, the source at y = −α moves from positive to
negative as it “passes through” the node at y = 0.

0

−α

0

−α

0

α < 0 α = 0 α > 0

5. To find the equilibria we solve
(y2 − α)(y2 − 4) = 0,

obtaining y = ±2 and y = ±√
α if α ≥ 0. Hence, there are two bifurcation values of α, α = 0 and

α = 4.
For α < 0, there are only two equilibria. The point y = −2 is a sink and y = 2 is a source. At

α = 0, there are three equilibria. There is a sink at y = −2, a source at y = 2, and a node at y = 0.
For 0 < α < 4, there are four equilibria. The point y = −2 is still a sink, y = −√

α is a source,
y = √

α is a sink, and y = 2 is still a source.
For α = 4, there are only two equilibria, y = ±2. Both are nodes. For α > 4, there are four

equilibria again. The point y = −√
α is a sink, y = −2 is now a source, y = 2 is now a sink, and

y = √
α is a source.

−2

2

0

−2

2

−√
α

√
α

−2

2

−2

2

−2

2

−√
α

√
α

α < 0 α = 0 0 < α < 4 α = 4 α > 4
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6. The equilibrium points occur at solutions of dy/dt = α − |y| = 0. For α < 0, there are no equilib-
rium points. For α = 0, there is one equilibrium point, y = 0. For α > 0, there are two equilibrium
points, y = ±α. Therefore, α = 0 is a bifurcation value.

To draw the phase lines, note that:

• If α < 0, dy/dt = α − |y| < 0, so the solutions are always decreasing.
• If α = 0, dy/dt < 0 unless y = 0. Thus, y = 0 is a node.
• For α > 0, dy/dt > 0 for −α < y < α, and dy/dt < 0 for y < −α and for y > α.

0

−α

α

α < 0 α = 0 α > 0

7. We have
dy

dt
= y4 + αy2 = y2(y2 + α).

If α > 0, there is one equilibrium point at y = 0, and dy/dt > 0 otherwise. Hence, y = 0 is a node.
If α < 0, there are equilibria at y = 0 and y = ±√−α. From the sign of y4 + αy2, we know

that y = 0 is a node, y = −√−α is a sink, and y = √−α is a source.
The bifurcation value of α is α = 0. As α increases through 0, a sink and a source come together

with the node at y = 0, leaving only the node. For α < 0, there are three equilibria, and for α ≥ 0,
there is only one equilibrium.

8. The equilibrium points occur at solutions of

dy

dt
= y6 − 2y3 + α = (y3)2 − 2(y3) + α = 0.

Using the quadratic formula to solve for y3, we obtain

y3 = 2± √
4− 4α

2
.

Thus the equilibrium points are at

y =
(
1± √

1− α
)1/3

.

If α > 1, there are no equilibrium points because this equation has no real solutions. If α < 1, the
differential equation has two equilibrium points. A bifurcation occurs at α = 1 where the differential
equation has one equilibrium point at y = 1.

9. The bifurcations occur at values of α for which the graph of sin y + α is tangent to the y-axis. That
is, α = −1 and α = 1.
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For α < −1, there are no equilibria, and all solutions become unbounded in the negative direc-
tion as t increases.

If α = −1, there are equilibrium points at y = π/2± 2nπ for every integer n. All equilibria are
nodes, and as t → ∞, all other solutions decrease toward the nearest equilibrium solution below the
given initial condition.

For −1 < α < 1, there are infinitely many sinks and infinitely many sources, and they alternate
along the phase line. Successive sinks differ by 2π . Similarly, successive sources are separated by
2π .

As α increases from −1 to +1, nearby sink and source pairs move apart. This separation contin-
ues until α is close to 1 where each source is close to the next sink with larger value of y.

At α = 1, there are infinitely many nodes, and they are located at y = 3π/2 ± 2nπ for every
integer n. For α > 1, there are no equilibria, and all solutions become unbounded in the positive
direction as t increases.

10. Note that 0 < e−y2 ≤ 1 for all y, and its maximum value occurs at y = 0. Therefore, for α < −1,
dy/dt is always negative, and the solutions are always decreasing.

If α = −1, dy/dt = 0 if and only if y = 0. For y 	= 0, dy/dt < 0, and the equilibrium point at
y = 0 is a node.

If −1 < α < 0, then there are two equilibrium points which we compute by solving

e−y2 + α = 0.

We get −y2 = ln(−α). Consequently, y = ±√
ln(−1/α). As α → 0 from below, ln(−1/α) → ∞,

and the two equilibria tend to ±∞.
If α ≥ 0, dy/dt is always positive, and the solutions are always increasing.

11. For α = 0, there are three equilibria. There is a sink to the left of y = 0, a source at y = 0, and a
sink to the right of y = 0.

As α decreases, the source and sink on the right move together. A bifurcation occurs at α ≈ −2.
At this bifurcation value, there is a sink to the left of y = 0 and a node to the right of y = 0. For α

below this bifurcation value, there is only the sink to the left of y = 0.
As α increases from zero, the sink to the left of y = 0 and the source move together. There is a

bifurcation at α ≈ 2 with a node to the left of y = 0 and a sink to the right of y = 0. For α above
this bifurcation value, there is only the sink to the right of y = 0.

12. Note that if α is very negative, then the equation g(y) = −αy has only one solution. It is y = 0.
Furthermore, dy/dt > 0 for y < 0, and dy/dt < 0 for y > 0. Consequently, the equilibrium point
at y = 0 is a sink.

In the figure, it appears that the tangent line to the graph of g at the origin has slope 1 and does
not intersect the graph of g other than at the origin. If so, α = −1 is a bifurcation value. For α ≤ −1,
the differential equation has one equilibrium, which is a sink. For α > −1, the equation has three
equilibria, y = 0 and two others, one on each side of y = 0. The equilibrium point at the origin is a
source, and the other two equilibria are sinks.

13. (a) Each phase line has an equilibrium point at y = 0. This corresponds to equations (i), (iii),
and (vi). Since y = 0 is the only equilibrium point for A < 0, this only corresponds to equa-
tion (iii).

(b) The phase line corresponding to A = 0 is the only phase line with y = 0 as an equilibrium
point, which corresponds to equations (ii), (iv), and (v). For the phase lines corresponding to
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A < 0, there are no equilibrium points. Only equations (iv) and (v) satisfy this property. For the
phase lines corresponding to A > 0, note that dy/dt < 0 for −√

A < y <
√
A. Consequently,

the bifurcation diagram corresponds to equation (v).
(c) The phase line corresponding to A = 0 is the only phase line with y = 0 as an equilibrium
point, which corresponds to equations (ii), (iv), and (v). For the phase lines corresponding to
A < 0, there are no equilibrium points. Only equations (iv) and (v) satisfy this property. For the
phase lines corresponding to A > 0, note that dy/dt > 0 for −√

A < y <
√
A. Consequently,

the bifurcation diagram corresponds to equation (iv).
(d) Each phase line has an equilibrium point at y = 0. This corresponds to equations (i), (iii),

and (vi). The phase lines corresponding to A > 0 only have two nonnegative equilibrium
points. Consequently, the bifurcation diagram corresponds to equation (i).

14. To find the equilibria we solve

1− cos θ + (1+ cos θ)(I ) = 0

1+ I − (1− I ) cos θ = 0

cos θ = 1+ I

1− I
.

For I > 0, the fraction on the right-hand side is greater than 1. Therefore, there are no equilibria.
For I = 0, the equilbria correspond to the solutions of cos θ = 1, that is, θ = 2πn for integer values
of n. For I < 0, the fraction on the right-hand side is between −1 and 1. As I → −∞, the fraction
on the right-hand side approaches −1. Therefore the equilibria approach ±π .

I << 0 I < 0 I = 0 I > 0 I >> 0

15. The graph of f needs to cross the y-axis exactly four times so that there are exactly four equilibria
if α = 0. The function must be greater than −3 everywhere so that there are no equilibria if α ≥ 3.
Finally, the graph of f must cross horizontal lines three or more units above the y-axis exactly twice
so that there are exactly two equilibria for α ≤ −3. The following graph is an example of the graph
of such a function.
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−3

3

y

f (y)

16. The graph of g can only intersect horizontal lines above 4 once, and it must go from above to below
as y increases. Then there is exactly one sink for α ≤ −4.

Similarly, the graph of g can only intersect horizontal lines below −4 once, and it must go from
above to below as y increases. Then there is exactly one sink for α ≥ 4.

Finally, the graph of g must touch the y-axis at exactly six points so that there are exactly six
equilibria for α = 0.

The following graph is the graph of one such function.

−4

4

y

g(y)

17. No such f (y) exists. To see why, suppose that there is exactly one sink y0 for α = 0. Then, f (y) > 0
for y < y0, and f (y) < 0 for y > y0. Now consider the system dy/dt = f (y)+ 1. Then dy/dt ≥ 1
for y < y0. If this system has an equilibrium point y1 that is a source, then y1 > y0 and dy/dt < 0
for y slightly less than y1. Since f (y) is continuous and dy/dt ≥ 1 for y ≤ y0, then dy/dt must
have another zero between y0 and y1.

18. (a) For all C ≥ 0, the equation has a source at P = C/k, and this is the only equilibrium point.
Hence all of the phase lines are qualitatively the same, and there are no bifurcation values for C .

(b) If P(0) > C/k, the corresponding solution P(t) → ∞ at an exponential rate as t → ∞, and if
P(0) < C/k, P(t) → −∞, passing through “extinction” (P = 0) after a finite time.

19. (a) A model of the fish population that includes fishing is

dP

dt
= 2P − P2

50
− 3L ,

where L is the number of licenses issued. The coefficient of 3 represents the average catch of 3
fish per year. As L is increased, the two equilibrium points for L = 0 (at P = 0 and P = 100)
will move together. If L is sufficiently large, there are no equilibrium points. Hence we wish to
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pick L as large as possible so that there is still an equilibrium point present. In other words, we
want the bifurcation value of L . The bifurcation value of L occurs if the equation

dP

dt
= 2P − P2

50
− 3L = 0

has just one solution for P in terms of L . Using the quadratic formula, we see that there is
exactly one equilibrium point if L = 50/3. Since this value of L is not an integer, the largest
number of licenses that should be allowed is 16.

(b) If we allow the fish population to come to equilibrium then the population will be at the carrying
capacity, which is P = 100 if L = 0. If we then allow 16 licenses to be issued, we expect that
the population is a solution to the new model with L = 16 and initial population P = 100. The
model becomes

dP

dt
= 2P − P2

50
− 48,

which has a source at P = 40 and a sink at P = 60.
Thus, any initial population greater than 40 when fishing begins tends to the equilibrium

level P = 60. If the initial population of fish was less than 40 when fishing begins, then the
model predicts that the population will decrease to zero in a finite amount of time.

(c) The maximum “number” of licenses is 1623 . With L = 1623 , there is an equilibrium at P = 50.
This equilibrium is a node, and if P(0) > 50, the population will approach 50 as t increases.
However, it is dangerous to allow this many licenses since an unforeseen event might cause the
death of a few extra fish. That event would push the number of fish below the equilibrium value
of P = 50. In this case, dP/dt < 0, and the population decreases to extinction.

If, however, we restrict to L = 16 licenses, then there are two equilibria, a sink at P = 60
and source at P = 40. As long as P(0) > 40, the population will tend to 60 as t increases. In
this case, we have a small margin of safety. If P ≈ 60, then it would have to drop to less than
40 before the fish are in danger of extinction.

20. (a)

M
S

f (S)

(b) The bifurcation occurs at N = M . The sink at S = N coincides with the source at S = M and
becomes a node.

(c) Assuming that the population S(t) is approximately N , the population adjusts to stay near the
sink at S = N as N slowly decreases. If N < M , the model is no longer consistent with the
underlying assumptions.

21. If C < kN/4, the differential equation has two equilibria

P1 = N

2
−
√
N 2

4
− CN

k
and P2 = N

2
+
√
N 2

4
− CN

k
.
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The smaller one, P1, is a source, and the larger one, P2, is a sink. Note that they are equidistant from
N/2. Also, note that any population below P1 tends to extinction.

If C is near kN/4, then P1 and P2 are near N/2. Consequently, if the population is near zero, it
will tend to extinction. As C is decreased, P1 and P2 move apart until they reach P1 = 0 and P2 = N
for C = 0.

Once P is near zero, the parameter C must be reset essentially to zero so that P will be greater
than P1. Simply reducing C slightly below kN/4 leaves P in the range where dP/dt < 0 and the
population will still die out.

22. (a) If a = 0, there is a single equilibrium point at y = 0. For a 	= 0, the equilibrium points occur
at y = 0 and y = a. If a < 0, the equilibrium point at y = 0 is a sink and the equilibrium point
at y = a is a source. If a > 0, the equilibrium point at y = 0 is a source and the equilibrium
point at y = a is a sink.

a < 0 a = 0 a > 0

Phase lines for dy/dt = ay − y2.

(b) Given the results in part (a), there is one bifurcation value, a = 0.
(c) The equilibrium points satisfy the equation

r + ay − y2 = 0.

Solving it, we obtain

y = a ± √
a2 + 4r

2
.

Hence, there are no equilibrium points if a2 + 4r < 0, one equilibrium point if a2 + 4r = 0,
and two equilibrium points if a2 + 4r > 0.

If r > 0, we always have two equilibrium points.

y

a

The bifurcation diagram for r > 0.
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(d) If r < 0, there are no equilibrium points if a2+4r < 0. In other words, there are no equilibrium
points if −2√−r < a < 2

√−r . If a = ±2√−r , there is a single equilibrium point, and if
|a| > 2

√−r , there are two equilibrium points.

y

a

The bifurcation diagram for r < 0.

23. (a) If a ≤ 0, there is a single equilibrium point at y = 0, and it is a sink. For a > 0, there are
equilibrium points at y = 0 and y = ±√

a. The equilibrium point at y = 0 is a source, and the
other two are sinks.

a ≤ 0 a > 0

y = √
a

y = 0

y = −√
a

Phase lines for dy/dt = ay − y3.

(b) Given the results in part (a), there is one bifurcation value, a = 0.
(c) The equilibrium points satisfy the cubic equation

r + ay − y3 = 0.

Rather than solving it explicitly, we rely on PhaseLines.
If r > 0, there is a positive bifurcation value a = a0. For a < a0, the phase line has one

equilibrium point, a positive sink. If a > a0, there are two negative equilibria in addition to the
positive sink. The larger of the two negative equilibria is a source and the smaller is a sink.
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−4 4

−3

3

a

y

The bifurcation diagram for r = 0.8.

(d) If r < 0, there is a positive bifurcation value a = a0. For a < a0, the phase line has one
equilibrium point, a negative sink. If a > a0, there are two positive equilibria in addition to the
negative sink. The larger of the two positive equilibria is a sink and the smaller is a source.

−4 4

−3

3

a

y

The bifurcation diagram for r = −0.8.

EXERCISES FOR SECTION 1.8

1. The general solution to the associated homogeneous equation is yh(t) = ke−4t . For a particular
solution of the nonhomogeneous equation, we guess a solution of the form yp(t) = αe−t . Then

dyp
dt

+ 4yp = −αe−t + 4αe−t

= 3αe−t .

Consequently, we must have 3α = 9 for yp(t) to be a solution. Hence, α = 3, and the general
solution to the nonhomogeneous equation is

y(t) = ke−4t + 3e−t .
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2. The general solution to the associated homogeneous equation is yh(t) = ke−4t . For a particular
solution of the nonhomogeneous equation, we guess a solution of the form yp(t) = αe−t . Then

dyp
dt

+ 4yp = −αe−t + 4αe−t

= 3αe−t .

Consequently, we must have 3α = 3 for yp(t) to be a solution. Hence, α = 1, and the general
solution to the nonhomogeneous equation is

y(t) = ke−4t + e−t .

3. The general solution to the associated homogeneous equation is yh(t) = ke−3t . For a particular so-
lution of the nonhomogeneous equation, we guess a solution of the form yp(t) = α cos 2t + β sin 2t .
Then

dyp
dt

+ 3yp = −2α sin 2t + 2β cos 2t + (3α cos 2t + 3β sin 2t)

= (3α + 2β) cos 2t + (3β − 2α) sin 2t

Consequently, we must have

(3α + 2β) cos 2t + (3β − 2α) sin 2t = 4 cos 2t

for yp(t) to be a solution. We must solve⎧⎨
⎩
3α + 2β = 4

3β − 2α = 0.

Hence, α = 12/13 and β = 8/13. The general solution is

y(t) = ke−3t + 12
13 cos 2t + 8

13 sin 2t.

4. The general solution to the associated homogeneous equation is yh(t) = ke2t . For a particular solu-
tion of the nonhomogeneous equation, we guess yp(t) = α cos 2t + β sin 2t . Then

dyp
dt

− 2yp = −2α sin 2t + 2β cos 2t − 2(α cos 2t + β sin 2t)

= (2β − 2α) cos 2t + (−2α − 2β) sin 2t.

Consequently, we must have

(2β − 2α) cos 2t + (−2α − 2β) sin 2t = sin 2t

for yp(t) to be a solution, that is, we must solve⎧⎨
⎩

−2α − 2β = 1

−2α + 2β = 0.
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Hence, α = −1/4 and β = −1/4. The general solution of the nonhomogeneous equation is
y(t) = ke2t − 1

4 cos 2t − 1
4 sin 2t.

5. The general solution to the associated homogeneous equation is yh(t) = ke3t . For a particular so-
lution of the nonhomogeneous equation, we guess yp(t) = αte3t rather than αe3t because αe3t is a
solution of the homogeneous equation. Then

dyp
dt

− 3yp = αe3t + 3αte3t − 3αte3t

= αe3t .

Consequently, we must have α = −4 for yp(t) to be a solution. Hence, the general solution to the
nonhomogeneous equation is

y(t) = ke3t − 4te3t .

6. The general solution of the associated homogeneous equation is yh(t) = ket/2. For a particular
solution of the nonhomogeneous equation, we guess yp(t) = αtet/2 rather than αet/2 because αet/2

is a solution of the homogeneous equation. Then

dyp
dt

− yp
2

= αet/2 + α

2
tet/2 − αtet/2

2
= αet/2.

Consequently, we must have α = 4 for yp(t) to be a solution. Hence, the general solution to the
nonhomogeneous equation is

y(t) = ket/2 + 4tet/2.

7. The general solution to the associated homogeneous equation is yh(t) = ke−2t . For a particular
solution of the nonhomogeneous equation, we guess a solution of the form yp(t) = αet/3. Then

dyp
dt

+ 2yp = 1
3αe

t/3 + 2αet/3

= 7
3αe

t/3.

Consequently, we must have 7
3α = 1 for yp(t) to be a solution. Hence, α = 3/7, and the general

solution to the nonhomogeneous equation is

y(t) = ke−2t + 3
7e

t/3.

Since y(0) = 1, we have
1 = k + 3

7 ,

so k = 4/7. The function y(t) = 4
7e

−2t + 3
7e

t/3 is the solution of the initial-value problem.
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8. The general solution to the associated homogeneous equation is yh(t) = ke2t . For a particular solu-
tion of the nonhomogeneous equation, we guess a solution of the form yp(t) = αe−2t . Then

dyp
dt

− 2yp = −2αe−2t − 2αe−2t

= −4αe−2t .
Consequently, we must have −4α = 3 for yp(t) to be a solution. Hence, α = −3/4, and the general
solution to the nonhomogeneous equation is

y(t) = ke2t − 3
4e

−2t .

Since y(0) = 10, we have
10 = k − 3

4 ,

so k = 43/4. The function
y(t) = 43

4 e
2t − 3

4e
−2t

is the solution of the initial-value problem.

9. The general solution of the associated homogeneous equation is yh(t) = ke−t . For a particular solu-
tion of the nonhomogeneous equation, we guess a solution of the form yp(t) = α cos 2t + β sin 2t .
Then

dyp
dt

+ yp = −2α sin 2t + 2β cos 2t + α cos 2t + β sin 2t

= (α + 2β) cos 2t + (−2α + β) sin 2t.

Consequently, we must have

(α + 2β) cos 2t + (−2α + β) sin 2t = cos 2t

for yp(t) to be a solution. We must solve⎧⎨
⎩

α + 2β = 1

−2α + β = 0.

Hence, α = 1/5 and β = 2/5. The general solution to the differential equation is

y(t) = ke−t + 1
5 cos 2t + 2

5 sin 2t.

To find the solution of the given initial-value problem, we evaluate the general solution at t = 0
and obtain

y(0) = k + 1
5 .

Since the initial condition is y(0) = 5, we see that k = 24/5. The desired solution is

y(t) = 24
5 e

−t + 1
5 cos 2t + 2

5 sin 2t.
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10. The general solution of the associated homogeneous equation is yh(t) = ke−3t . For a particular so-
lution of the nonhomogeneous equation, we guess a solution of the form yp(t) = α cos 2t + β sin 2t .
Then

dyp
dt

+ 3yp = −2α sin 2t + 2β cos 2t + 3α cos 2t + 3β sin 2t

= (3α + 2β) cos 2t + (−2α + 3β) sin 2t.

Consequently, we must have

(3α + 2β) cos 2t + (−2α + 3β) sin 2t = cos 2t

for yp(t) to be a solution. We must solve⎧⎨
⎩

3α + 2β = 1

−2α + 3β = 0.

Hence, α = 3/13 and β = 2/13. The general solution to the differential equation is

y(t) = ke−3t + 3
13 cos 2t + 2

13 sin 2t.

To find the solution of the given initial-value problem, we evaluate the general solution at t = 0
and obtain

y(0) = k + 3
13 .

Since the initial condition is y(0) = −1, we see that k = −16/13. The desired solution is

y(t) = − 16
13e

−3t + 3
13 cos 2t + 2

13 sin 2t.

11. The general solution to the associated homogeneous equation is yh(t) = ke2t . For a particular so-
lution of the nonhomogeneous equation, we guess yp(t) = αte2t rather than αe2t because αe2t is a
solution of the homogeneous equation. Then

dyp
dt

− 2yp = αe2t + 2αte2t − 2αte2t

= αe2t .

Consequently, we must have α = 7 for yp(t) to be a solution. Hence, the general solution to the
nonhomogeneous equation is

y(t) = ke2t + 7te2t .

Note that y(0) = k = 3, so the solution to the initial-value problem is

y(t) = 3e2t + 7te2t = (3+ 7t)e2t .
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12. The general solution to the associated homogeneous equation is yh(t) = ke2t . For a particular so-
lution of the nonhomogeneous equation, we guess yp(t) = αte2t rather than αe2t because αe2t is a
solution of the homogeneous equation. Then

dyp
dt

− 2yp = αe2t + 2αte2t − 2αte2t

= αe2t .

Consequently, we must have α = 7 for yp(t) to be a solution. Hence, the general solution to the
nonhomogeneous equation is

y(t) = ke2t + 7te2t .

Note that y(0) = k, so the solution to the initial-value problem is

y(t) = 3e2t + 7te2t = (7t + 3)e2t .

13. (a) For the guess yp(t) = α cos 3t , we have dyp/dt = −3α sin 3t , and substituting this guess into
the differential equation, we get

−3α sin 3t + 2α cos 3t = cos 3t.

If we evaluate this equation at t = π/6, we get −3α = 0. Therefore, α = 0. However, α = 0
does not produce a solution to the differential equation. Consequently, there is no value of α for
which yp(t) = α cos 3t is a solution.

(b) If we guess yp(t) = α cos 3t + β sin 3t , then the derivative

dyp
dt

= −3α sin 3t + 3β cos 3t

is also a simple combination of terms involving cos 3t and sin 3t . Substitution of this guess
into the equation leads to two linear algebraic equations in two unknowns, and such systems of
equations usually have a unique solution.

14. Consider two different solutions y1(t) and y2(t) of the nonhomogeneous equation. We have

dy1
dt

= λy1 + cos 2t and
dy2
dt

= λy2 + cos 2t.

By subtracting the first equation from the second, we see that

dy2
dt

− dy1
dt

= λy2 + cos 2t − λy1 − cos 2t

= λy2 − λy1.

In other words,
d(y2 − y1)

dt
= λ(y2 − y1),

and consequently, the difference y2 − y1 is a solution to the associated homogeneous equation.
Whether we write the general solution of the nonhomogeneous equation as

y(t) = y1(t) + k1e
λt or as y(t) = y2(t) + k2e

λt ,

we get the same set of solutions because y1(t) − y2(t) = k3eλt for some k3. In other words, both
representations of the solutions produce the same collection of functions.



1.8 Linear Equations 77

15. The Linearity Principle says that all nonzero solutions of a homogeneous linear equation are constant
multiples of each other.

−3
−2
−1

1

2

3

t

y

16. The Extended Linearity Principle says that any two solutions of a nonhomogeneous linear equation
differ by a solution of the associated homogeneous equation.

−2
−1

1

2

3

4

t

y

17. (a) We compute
dy1
dt

= 1

(1− t)2
= (y1(t))

2

to see that y1(t) is a solution.
(b) We compute

dy2
dt

= 2
1

(1− t)2
	= (y2(t))

2

to see that y2(t) is not a solution.
(c) The equation dy/dt = y2 is not linear. It contains y2.

18. (a) The constant function y(t) = 2 for all t is an equilibrium solution.
(b) If y(t) = 2− e−t , then dy/dt = e−t . Also, −y(t) + 2 = e−t . Consequently, y(t) = 2− e−t is

a solution.
(c) Note that the solution y(t) = 2 − e−t has initial condition y(0) = 1. If the Linearity Principle
held for this equation, then we could multiply the equilibrium solution y(t) = 2 by 1/2 and
obtain another solution that satisfies the initial condition y(0) = 1. Two solutions that satisfy
the same initial condition would violate the Uniqueness Theorem.
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19. Let y(t) = yh(t) + y1(t) + y2(t). Then

dy

dt
+ a(t)y = dyh

dt
+ dy1

dt
+ dy2

dt
+ a(t)yh + a(t)y1 + a(t)y2

= dyh
dt

+ a(t)yh + dy1
dt

+ a(t)y1 + dy2
dt

+ a(t)y2

= 0+ b1(t) + b2(t).

This computation shows that yh(t) + y1(t) + y2(t) is a solution of the original differential equation.

20. If yp(t) = at2 + bt + c, then

dyp
dt

+ 2yp = 2at + b + 2at2 + 2bt + 2c

= 2at2 + (2a + 2b)t + (b + 2c).

Then yp(t) is a solution if this quadratic is equal to 3t2 + 2t − 1. In other words, yp(t) is a solution
if ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
2a = 3

2a + 2b = 2

b + 2c = −1.
From the first equation, we have a = 3/2. Then from the second equation, we have b = −1/2.
Finally, from the third equation, we have c = −1/4. The function

yp(t) = 3
2 t
2 − 1

2 t − 1
4

is a solution of the differential equation.

21. To find the general solution, we use the technique suggested in Exercise 19. We calculate two partic-
ular solutions—one for the right-hand side t2 + 2t + 1 and one for the right-hand side e4t .

With the right-hand side t2 + 2t + 1, we guess a solution of the form

yp1(t) = at2 + bt + c.

Then

dyp1
dt

+ 2yp1 = 2at + b + 2(at2 + bt + c)

= 2at2 + (2a + 2b)t + (b + 2c).

Then yp1 is a solution if ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2a = 1

2a + 2b = 2

b + 2c = 1.
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We get a = 1/2, b = 1/2, and c = 1/4.
With the right-hand side e4t , we guess a solution of the form

yp2(t) = αe4t .

Then
dyp2
dt

+ 2yp2 = 4αe4t + 2αe4t = 6αe4t ,

and yp2 is a solution if α = 1/6.
The general solution of the associated homogeneous equation is yh(t) = ke−2t , so the general

solution of the original equation is

ke−2t + 1
2 t
2 + 1

2 t + 1
4 + 1

6e
4t .

To find the solution that satisfies the initial condition y(0) = 0, we evaluate the general solution
at t = 0 and obtain

k + 1
4 + 1

6 = 0.

Hence, k = −5/12.
22. To find the general solution, we use the technique suggested in Exercise 19. We calculate two partic-

ular solutions—one for the right-hand side t3 and one for the right-hand side sin 3t .
With the right-hand side t3, we are tempted to guess that there is a solution of the form at3, but

there isn’t. Instead we guess a solution of the form

yp1(t) = at3 + bt2 + ct + d.

Then

dyp1
dt

+ yp1 = 3at2 + 2bt + c + at3 + bt2 + ct + d

= at3 + (3a + b)t2 + (2b + c)t + (c + d)

Then yp1 is a solution if ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

a = 1

3a + b = 0

2b + c = 0

c + d = 0.

We get a = 1, b = −3, c = 6, and d = −6.
With the right-hand side sin 3t , we guess a solution of the form

yp2(t) = α cos 3t + β sin 3t.

Then

dyp2
dt

+ yp1 = −3α sin 3t + 3β cos 3t + α cos 3t + β sin 3t

= (α + 3β) cos 3t + (−3α + β) sin 3t.
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Then yp2 is a solution if ⎧⎨
⎩

α + 3β = 0

−3α + β = 1.

We get α = −3/10 and β = 1/10.
The general solution of the associated homogeneous equation is yh(t) = ke−t , so the general

solution of the original equation is

ke−t + t3 − 3t2 + 6t − 6− 3
10 cos 3t + 1

10 sin 3t.

To find the solution that satisfies the initial condition y(0) = 0, we evaluate the general solution
at t = 0 and obtain

k − 6− 3
10 = 0.

Hence, k = 63/10.

23. To find the general solution, we use the technique suggested in Exercise 19. We calculate two partic-
ular solutions—one for the right-hand side 2t and one for the right-hand side −e4t .

With the right-hand side 2t , we guess a solution of the form

yp1(t) = at + b.

Then

dyp1
dt

− 3yp1 = a − 3(at + b)

= −3at + (a − 3b).

Then yp1 is a solution if ⎧⎨
⎩

−3a = 2

a − 3b = 0.

We get a = −2/3, and b = −2/9.
With the right-hand side −e4t , we guess a solution of the form

yp2(t) = αe4t .

Then
dyp2
dt

− 3yp2 = 4αe4t − 3αe4t = αe4t ,

and yp2 is a solution if α = −1.
The general solution of the associated homogeneous equation is yh(t) = ke3t , so the general

solution of the original equation is

y(t) = ke3t − 2
3 t − 2

9 − e4t .

To find the solution that satisfies the initial condition y(0) = 0, we evaluate the general solution
at t = 0 and obtain

y(0) = k − 2
9 − 1.

Hence, k = 11/9 if y(0) = 0.
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24. To find the general solution, we use the technique suggested in Exercise 19. We calculate two partic-
ular solutions—one for the right-hand side cos 2t + 3 sin 2t and one for the right-hand side e−t .

With the right-hand side cos 2t + 3 sin 2t , we guess a solution of the form

yp1(t) = α cos 2t + β sin 2t.

Then

dyp1
dt

+ yp1 = −2α sin 2t + 2β cos 2t + α cos 2t + β sin 2t

= (α + 2β) cos 2t + (−2α + β) sin 2t.

Then yp1 is a solution if ⎧⎨
⎩

α + 2β = 1

−2α + β = 3.

We get α = −1 and β = 1.
With the right-hand side e−t , making a guess of the form yp2(t) = ae−t does not lead to a so-

lution of the nonhomogeneous equation because the general solution of the associated homogeneous
equation is yh(t) = ke−t .

Consequently, we guess
yp2(t) = ate−t .

Then
dyp2
dt

+ yp2 = a(1− t)e−t + ate−t = ae−t ,

and yp2 is a solution if a = 1.
The general solution of the original equation is

ke−t − cos 2t + sin 2t + te−t .

To find the solution that satisfies the initial condition y(0) = 0, we evaluate the general solution
at t = 0 and obtain

k − 1 = 0.

Hence, k = 1.

25. Since the general solution of the associated homogeneous equation is yh(t) = ke−2t and since these
yh(t) → 0 as t → ∞, we only have to determine the long-term behavior of one solution to the
nonhomogeneous equation. However, that is easier said than done.

Consider the slopes in the slope field for the equation. We rewrite the equation as

dy

dt
= −2y + b(t).

Using the fact that b(t) < 2 for all t , we observe that dy/dt < 0 if y > 1 and, as y increases beyond
y = 1, the slopes become more negative. Similarly, using the fact that b(t) > −1 for all t , we
observe that dy/dt > 0 if y < −1/2 and, as y decreases below y = −1/2, the slopes become more
positive. Thus, the graphs of all solutions must approach the strip −1/2 ≤ y ≤ 1 in the t y-plane as
t increases. More precise information about the long-term behavior of solutions is difficult to obtain
without specific knowledge of b(t).



82 CHAPTER 1 FIRST-ORDER DIFFERENTIAL EQUATIONS

26. Since the general solution of the associated homogeneous equation is yh(t) = ke2t and since these
yh(t) → ±∞ as t → ∞ if k 	= 0, the long-term behavior of one solution says a lot about the
long-term behavior of all solutions.

Consider the slopes in the slope field for the equation. We rewrite the equation as

dy

dt
= 2y + b(t).

Using the fact that b(t) > −1 for all t , we observe that dy/dt > 0 if y > 1/2, and as y increases
beyond y = 1/2, the slopes increase. Similarly, using the fact that b(t) < 2 for all t , we observe that
dy/dt < 0 if y < −1. and as y decreases below y = −1, the slopes decrease.

Thus, if a value of a solution y(t) is larger than 1/2, then y(t) → ∞ as t → ∞, and if a value
of a solution y(t) is less than −1, then y(t) → −∞ as t → ∞. If one solution yp(t) satisfies
−1 ≤ yp(t) ≤ 1/2, then all other solutions become unbounded as t → ∞. (In fact, there is exactly
one solution that satisfies −1 ≤ y(t) ≤ 1/2 for all t , but demonstrating its existence is somewhat
difficult.)

27. Since the general solution of the associated homogeneous equation is yh(t) = ke−t and since these
yh(t) → 0 as t → ∞, we only have to determine the long-term behavior of one solution to the
nonhomogeneous equation. However, that is easier said than done.

Consider the slopes in the slope field for the equation. We rewrite the equation as

dy

dt
= −y + b(t).

For any number T > 3, let ε be a positive number less than T − 3, and fix t0 such that b(t) < T − ε

if t > t0. If t > t0 and y(t) > T , then

dy

dt
< −T + T − ε = −ε.

Hence, no solution remains greater than T for all time. Since T > 3 is arbitrary, no solution remains
greater than 3 (by a fixed amount) for all time.

The same idea works to show that no solution can remain less than 3 (by a fixed amount) for all
time. Hence, every solution tends to 3 as t → ∞.

28. Since the equation is linear, we can consider the two separate differential equations

dy1
dt

+ ay1 = cos 3t and
dy2
dt

+ ay2 = b

(see Exercise 19 of Appendix A). One particular solution of the equation for y1 is of the form

y1(t) = α cos 3t + β sin 3t,

and one particular solution of the equation for y2 is the equilibrium solution y2(t) = b/a. The solu-
tion y1(t) oscillates in a periodic fashion. In fact, we can use the techniques introduced in Section 4.4
to show that the amplitude of the oscillations is no larger than 1/3.

The general solution of the associated homogeneous equation is yh(t) = ke−at , so the general
solution of the original differential equation can be written as

y(t) = yh(t) + y1(t) + y2(t).

As t → ∞, yh(t) → 0, and therefore all solutions behave like the sum y1(t) + y2(t) over the long
term. In other words, they oscillate about y = b/a with periodic oscillations of amplitude at most
1/3.
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29. (a) The differential equation modeling the problem is

dP

dt
= .011P + 1,040,

where $1,040 is the amount of money added to the account per year (assuming a “continuous
deposit”).

(b) To find the general solution, we first compute the general solution of the associated homoge-
neous equation. It is Ph(t) = ke0.011t .

To find a particular solution of the nonhomogeneous equation, we observe that the equa-
tion is autonomous, and we calculate its equilibrium solution. It is P(t) = −1,040/.011 ≈
−94,545.46 for all t . (This equilibrium solution is what we would have calculated if we had
guessed a constant.)

Hence, the general solution is

P(t) = −94,545.46+ ke0.011t .

Since the account initially has $1,000 in it, the initial condition is P(0) = 1,000. Solving

1000 = −94,545.46+ ke0.011(0)

yields k = 95,545.46. Therefore, our model is

P(t) = −94,545.46+ 95,545.46e0.011t .

To find the amount on deposit after 5 years, we evaluate P(5) and obtain

−94,545.46+ 95,545.46e0.011(5) ≈ 6,402.20.

30. Let M(t) be the amount of money left at time t . Then, we have the initial condition M(0) = $70,000.
Money is being added to the account at a rate of 1.5% and removed from the account at a rate of
$30,000 per year, so

dM

dt
= 0.015M − 30,000.

To find the general solution, we first compute the general solution of the associated homoge-
neous equation. It is Mh(t) = ke0.015t .

To find a particular solution of the nonhomogeneous equation, we observe that the equation is
autonomous, and we calculate its equilibrium solution. It is M(t) = 30,000/.015 = $2,000,000 for
all t . (This equilibrium solution is what we would have calculated if we had guessed a constant.)

Therefore we have
M(t) = 2,000,000+ ke0.015t .

Using the initial condition M(0) = 70,000, we have

2,000,000+ k = 70,000,

so k = −1,930,000 and
M(t) = 2,000,000− 1,930,000e0.015t .

Solving for the value of t when M(t) = 0, we have

2,000,000− 1,930,000e0.015t = 0,
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which is equivalent to

e0.015t = 2,000,000

1,930,000
.

In other words,
0.015t = ln(1.03627),

which yields t ≈ 2.375 years.

31. Step 1: Before retirement
First we calculate how much money will be in her retirement fund after 30 years. The differential
equation modeling the situation is

dy

dt
= .07y + 5,000,

where y(t) represents the fund’s balance at time t .
The general solution of the homogeneous equation is yh(t) = ke0.07t .
To find a particular solution, we observe that the nonhomogeneous equation is autonomous and

that it has an equilibrium solution at y = −5,000/0.07 ≈ −71,428.57. We can use this equilibrium
solution as the particular solution. (It is the solution we would have computed if we had guessed a
constant solution). We obtain

y(t) = ke0.07t − 71,428.57.

From the initial condition, we see that k = 71,428.57, and

y(t) = 71,428.57(e0.07t − 1).

Letting t = 30, we compute that the fund contains ≈ $511,869.27 after 30 years.

Step 2: After retirement
We need a new model for the remaining years since the professor is withdrawing rather than deposit-
ing. Since she withdraws at a rate of $3,000 per month ($36,000 per year), we write

dy

dt
= .07y − 36,000,

where we continue to measure time t in years.
Again, the solution of the homogeneous equation is yh(t) = ke0.07t .
To find a particular solution of the nonhomogeneous equation, we note that the equation is au-

tonomous and that it has an equilibrium at y = 36,000/0.07 ≈ 514,285.71. Hence, we may take
the particular solution to be this equilibrium solution. (Again, this solution is what we would have
computed if we had guessed a constant function for yp.)

The general solution is
y(t) = ke0.07t + 514,285.71.

In this case, we have the initial condition y(0) = 511,869.27 since now y(t) is the amount in the
fund t years after she retires. Solving 511,869.27 = k + 514,285.71, we get k = −2,416.44. The
solution in this case is

y(t) = −2,416.44e0.07t + 514,285.71.

Finally, we wish to know when her money runs out. That is, at what time t is y(t) = 0? Solving

y(t) = −2,416.44e0.07t + 514,285.71 = 0

yields t ≈ 76.58 years (approximately 919 months).
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32. Note that dy/dt = 1/5 for this function. Substituting y(t) = t/5 in the right-hand side of the
differential equation yields

(cos t)

(
t

5

)
+ 1

5
(1− t cos t),

which also equals 1/5. Hence, y(t) = t/5 is a solution.

33. (a) We know that
dyh
dt

= a(t)yh and
dyp
dt

= a(t)yp + b(t).

Then

d(yh + yp)

dt
= a(t)yh + a(t)yp + b(t)

= a(t)(yh + yp) + b(t).

(b) We know that
dyp
dt

= a(t)yp + b(t) and
dyq
dt

= a(t)yq + b(t).

Then

d(yp − yq)

dt
= (a(t)yp + b(t)) − (a(t)yq + b(t))

= a(t)(yp − yq).

34. Suppose k is a constant and y1(t) is a solution. Then we know that ky1(t) is also a solution. Hence,

d(ky1)

dt
= f (t, ky1)

for all t . Also,
d(ky1)

dt
= k

dy1
dt

= k f (t, y1)

because y1(t) is a solution. Therefore, we have

f (t, ky1) = k f (t, y1)

for all t . In particular, if y1(t) 	= 0, we can pick k = 1/y1(t), and we get

f (t, 1) = 1

y1(t)
f (t, y1(t)).

In other words,
y1(t) f (t, 1) = f (t, y1(t))

for all t for which y1(t) 	= 0. If we ignore the dependence on t , we have

y f (t, 1) = f (t, y)

for all y 	= 0 because we know that there is a solution y1(t) that solves the initial-value problem
y1(t) = y. By continuity, we know that the equality

y f (t, 1) = f (t, y)



86 CHAPTER 1 FIRST-ORDER DIFFERENTIAL EQUATIONS

holds even as y tends to zero.
If we define a(t) = f (t, 1), we have

f (t, y) = a(t)y.

The differential equation is linear and homogeneous.

EXERCISES FOR SECTION 1.9

1. We rewrite the equation in the form
dy

dt
+ y

t
= 2

and note that the integrating factor is

μ(t) = e
∫
(1/t) dt = eln t = t.

Multiplying both sides by μ(t), we obtain

t
dy

dt
+ y = 2t.

Applying the Product Rule to the left-hand side, we see that this equation is the same as

d(t y)

dt
= 2t,

and integrating both sides with respect to t , we obtain

t y = t2 + c,

where c is an arbitrary constant. The general solution is

y(t) = 1

t
(t2 + c) = t + c

t
.

2. We rewrite the equation in the form
dy

dt
− 3

t
y = t5

and note that the integrating factor is

μ(t) = e
∫
(−3/t) dt = e−3 ln t = eln(t

−3) = t−3.

Multiplying both sides by μ(t), we obtain

t−3 dy
dt

− 3t−4y = t2.
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Applying the Product Rule to the left-hand side, we see that this equation is the same as

d(t−3y)
dt

= t2

and integrating both sides with respect to t , we obtain

t−3y = t3

3
+ c,

where c is an arbitrary constant. The general solution is

y(t) = t6

3
+ ct3.

3. We rewrite the equation in the form
dy

dt
+ y

1+ t
= t2

and note that the integrating factor is

μ(t) = e
∫
(1/(1+t)) dt = eln(1+t) = 1+ t.

Multiplying both sides by μ(t), we obtain

(1+ t)
dy

dt
+ y = (1+ t)t2.

Applying the Product Rule to the left-hand side, we see that this equation is the same as

d((1+ t)y)

dt
= t3 + t2,

and integrating both sides with respect to t , we obtain

(1+ t)y = t4

4
+ t3

3
+ c,

where c is an arbitrary constant. The general solution is

y(t) = 3t4 + 4t3 + 12c

12(t + 1)
.

4. We rewrite the equation in the form
dy

dt
+ 2t y = 4e−t2

and note that the integrating factor is

μ(t) = e
∫
2t dt = et

2
.
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Multiplying both sides by μ(t), we obtain

et
2 dy

dt
+ 2tet

2
y = 4.

Applying the Product Rule to the left-hand side, we see that this equation is the same as

d(et
2
y)

dt
= 4,

and integrating both sides with respect to t , we obtain

et
2
y = 4t + c,

where c is an arbitrary constant. The general solution is

y(t) = 4te−t2 + ce−t2 .

5. Note that the integrating factor is

μ(t) = e
∫
(−2t/(1+t2)) dt = e− ln(1+t2) =

(
eln(1+t2)

)−1 = 1

1+ t2
.

Multiplying both sides by μ(t), we obtain

1

1+ t2
dy

dt
− 2t

(1+ t2)2
y = 3

1+ t2
.

Applying the Product Rule to the left-hand side, we see that this equation is the same as

d

dt

(
y

1+ t2

)
= 3

1+ t2
.

Integrating both sides with respect to t , we obtain

y

1+ t2
= 3 arctan(t) + c,

where c is an arbitrary constant. The general solution is

y(t) = (1+ t2)(3 arctan(t) + c).

6. Note that the integrating factor is

μ(t) = e
∫
(−2/t) dt = e−2 ln t = eln(t

−2) = t−2.

Multiplying both sides by μ(t), we obtain

t−2 dy
dt

− 2t−3y = tet .
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Applying the Product Rule to the left-hand side, we see that this equation is the same as

d(t−2y)
dt

= tet ,

and integrating both sides with respect to t , we obtain

t−2y = (t − 1)et + c,

where c is an arbitrary constant. The general solution is

y(t) = t2(t − 1)et + ct2.

7. We rewrite the equation in the form
dy

dt
+ y

1+ t
= 2

and note that the integrating factor is

μ(t) = e
∫
(1/(1+t)) dt = eln(1+t) = 1+ t.

Multiplying both sides by μ(t), we obtain

(1+ t)
dy

dt
+ y = 2(1+ t).

Applying the Product Rule to the left-hand side, we see that this equation is the same as

d((1+ t)y)

dt
= 2(1+ t),

and integrating both sides with respect to t , we obtain

(1+ t)y = 2t + t2 + c,

where c is an arbitrary constant. The general solution is

y(t) = t2 + 2t + c

1+ t
.

To find the solution that satisfies the initial condition y(0) = 3, we evaluate the general solution
at t = 0 and obtain

c = 3.

The desired solution is

y(t) = t2 + 2t + 3

1+ t
.
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8. We rewrite the equation in the form

dy

dt
− 1

t + 1
y = 4t2 + 4t

and note that the integrating factor is

μ(t) = e
∫
(−1/(t+1)) dt = e− ln(t+1) =

(
eln((t+1)−1)

)
= 1

t + 1
.

Multiplying both sides by μ(t), we obtain

1

t + 1

dy

dt
− 1

(t + 1)2
y = 4t2 + 4t

t + 1
.

Applying the Product Rule to the left-hand side, we see that this equation is the same as

d

dt

(
y

t + 1

)
= 4t.

Integrating both sides with respect to t , we obtain

y

t + 1
= 2t2 + c,

where c is an arbitrary constant. The general solution is

y(t) = (2t2 + c)(t + 1) = 2t3 + 2t2 + ct + c.

To find the solution that satisfies the initial condition y(1) = 10, we evaluate the general solution
at t = 1 and obtain c = 3. The desired solution is

y(t) = 2t3 + 2t2 + 3t + 3.

9. In Exercise 1, we derived the general solution

y(t) = t + c

t
.

To find the solution that satisfies the initial condition y(1) = 3, we evaluate the general solution at
t = 1 and obtain c = 2. The desired solution is

y(t) = t + 2

t
.

10. In Exercise 4, we derived the general solution

y(t) = 4te−t2 + ce−t2 .

To find the solution that satisfies the initial condition y(0) = 3, we evaluate the general solution at
t = 0 and obtain c = 3. The desired solution is

y(t) = 4te−t2 + 3e−t2 .
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11. Note that the integrating factor is

μ(t) = e
∫ −(2/t) dt = e−2

∫
(1/t) dt = e−2 ln t = eln(t

−2) = 1

t2
.

Multiplying both sides by μ(t), we obtain

1

t2
dy

dt
− 2y

t3
= 2.

Applying the Product Rule to the left-hand side, we see that this equation is the same as

d

dt

( y
t2

)
= 2,

and integrating both sides with respect to t , we obtain
y

t2
= 2t + c,

where c is an arbitrary constant. The general solution is

y(t) = 2t3 + ct2.

To find the solution that satisfies the initial condition y(−2) = 4, we evaluate the general solu-
tion at t = −2 and obtain

−16+ 4c = 4.

Hence, c = 5, and the desired solution is

y(t) = 2t3 + 5t2.

12. Note that the integrating factor is

μ(t) = e
∫
(−3/t) dt = e−3 ln t = eln(t

−3) = t−3.

Multiplying both sides by μ(t), we obtain

t−3 dy
dt

− 3t−4y = 2e2t .

Applying the Product Rule to the left-hand side, we see that this equation is the same as

d(t−3y)
dt

= 2e2t ,

and integrating both sides with respect to t , we obtain

t−3y = e2t + c,

where c is an arbitrary constant. The general solution is

y(t) = t3(e2t + c).

To find the solution that satisfies the initial condition y(1) = 0, we evaluate the general solution
at t = 1 and obtain c = −e2. The desired solution is

y(t) = t3(e2t − e2).
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13. We rewrite the equation in the form
dy

dt
− (sin t)y = 4

and note that the integrating factor is

μ(t) = e
∫
(− sin t) dt = ecos t .

Multiplying both sides by μ(t), we obtain

ecos t
dy

dt
− ecos t (sin t)y = 4ecos t .

Applying the Product Rule to the left-hand side, we see that this equation is the same as

d(ecos t y)

dt
= 4ecos t ,

and integrating both sides with respect to t , we obtain

ecos t y =
∫
4ecos t dt.

Since the integral on the right-hand side is impossible to express using elementary functions, we
write the general solution as

y(t) = 4e− cos t
∫
ecos t dt.

14. We rewrite the equation in the form
dy

dt
− t2y = 4

and note that the integrating factor is

μ(t) = e
∫
(−t2) dt = e−t3/3.

Multiplying both sides of the equation by μ(t), we obtain

e−t3/3 dy
dt

− t2e−t3/3y = 4e−t3/3.

Applying the Product Rule to the left-hand side, we see that this equation is the same as

d(e−t3/3y)
dt

= 4e−t3/3,

and integrating both sides with respect to t , we obtain

e−t3/3y =
∫
4e−t3/3 dt.

Since the integral on the right-hand side is impossible to express using elementary functions, we
write the general solution as

y(t) = 4et
3/3
∫
e−t3/3 dt.
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15. We rewrite the equation in the form
dy

dt
− y

t2
= 4 cos t

and note that the integrating factor is

μ(t) = e
∫
(−1/t2) dt = e1/t .

Multiplying both sides by μ(t), we obtain

e1/t
dy

dt
− e1/t

t2
y = 4e1/t cos t.

Applying the Product Rule to the left-hand side, we see that this equation is the same as

d(e1/t y)

dt
= 4e1/t cos t,

and integrating both sides with respect to t , we obtain

e1/t y =
∫
4e1/t cos t dt.

Since the integral on the right-hand side is impossible to express using elementary functions, we
write the general solution as

y(t) = 4e−1/t
∫
e1/t cos t dt.

16. We rewrite the equation in the form
dy

dt
− y = 4 cos t2

and note that the integrating factor is

μ(t) = e
∫ −1 dt = e−t .

Multiplying both sides of the equation by μ(t), we obtain

e−t dy
dt

− e−t y = 4e−t cos t2.

Applying the Product Rule to the left-hand side, we see that this equation is the same as

d(e−t y)
dt

= 4e−t cos t2,

and integrating both sides with respect to t , we obtain

e−t y =
∫
4e−t cos t2 dt.

Since the integral on the right-hand side is impossible to express using elementary functions, we
write the general solution as

y(t) = 4et
∫
e−t cos t2 dt.
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17. We rewrite the equation in the form

dy

dt
+ e−t2 y = cos t

and note that the integrating factor is

μ(t) = e
∫
e−t2 dt .

This integral is impossible to express in terms of elementary functions. Multiplying both sides by
μ(t), we obtain (

e
∫
e−t2 dt

)
dy

dt
+
(
e
∫
e−t2 dt

)
e−t2 y =

(
e
∫
e−t2 dt

)
cos t.

Applying the Product Rule to the left-hand side, we see that this equation is the same as

d

((
e
∫
e−t2 dt

)
y

)
dt

=
(
e
∫
e−t2 dt

)
cos t,

and integrating both sides with respect to t , we obtain(
e
∫
e−t2 dt

)
y =

∫ (
e
∫
e−t2 dt

)
cos t dt.

These integrals are also impossible to express in terms of elementary functions, so we write the gen-
eral solution in the form

y(t) =
(
e−

∫
e−t2 dt

)∫ (
e
∫
e−t2 dt

)
cos t dt.

18. We rewrite the equation in the form

dy

dt
− y√

t3 − 3
= t

and note that the integrating factor is

μ(t) = e
− ∫ 1√

t3−3
dt

.

This integral is impossible to express in terms of elementary functions. Multiplying both sides by
μ(t), we obtain(

e
− ∫ 1√

t3−3
dt
)
dy

dt
−
(
e
− ∫ 1√

t3−3
dt
)

y√
t3 − 3

= t

(
e
− ∫ 1√

t3−3
dt
)

.

Applying the Product Rule to the left-hand side, we see that this equation is the same as

d

((
e
− ∫ 1√

t3−3
dt
)
y

)
dt

= t

(
e
− ∫ 1√

t3−3
dt
)

,
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and integrating both sides with respect to t , we obtain(
e
− ∫ 1√

t3−3
dt
)
y =

∫
t

(
e
− ∫ 1√

t3−3
dt
)
dt.

These integrals are also impossible to express in terms of elementary functions, so we write the gen-
eral solution in the form

y(t) =
(
e

∫ 1√
t3−3

dt
)∫

t

(
e
− ∫ 1√

t3−3
dt
)
dt.

19. We rewrite the equation in the form
dy

dt
− aty = 4e−t2

and note that the integrating factor is

μ(t) = e
∫
(−at) dt = e−at2/2.

Multiplying both sides by μ(t), we obtain

e−at2/2 dy
dt

− ate−at2/2y = 4e−t2e−at2/2.

Applying the Product Rule to the left-hand side and simplifying the right-hand side, we see that this
equation is the same as

d(e−at2/2y)
dt

= 4e−(1+a/2)t2 .

Integrating both sides with respect to t , we obtain

e−at2/2y =
∫
4e−(1+a/2)t2 dt.

The integral on the right-hand side can be expressed in terms of elementary functions only if
1 + a/2 = 0 (that is, if the factor involving et

2
really isn’t there). Hence, the only value of a that

yields an integral we can express in terms of elementary functions form is a = −2 (see Exercise 4).

20. We rewrite the equation in the form
dy

dt
− tr y = 4

and note that the integrating factor is
μ(t) = e−

∫
tr dt .

There are two cases to consider.

(a) If r 	= −1, then
μ(t) = e−tr+1/(r+1).

Multiplying both sides of the differential equation by μ(t), we obtain(
e−tr+1/(r+1)

) dy

dt
− tr

(
e−tr+1/(r+1)

)
y = 4

(
e−tr+1/(r+1)

)
.
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Applying the Product Rule to the left-hand side, we see that this equation is the same as

d
((
e−tr+1/(r+1)

)
y
)

dt
= 4

(
e−tr+1/(r+1)

)
.

The next step is to integrate both sides with respect to t . The integral∫
4
(
e−tr+1/(r+1)

)
dt

on the right-hand side can only be expressed in terms of elementary functions if r = 0.
(b) If r = −1, then the integrating factor is

μ(t) = e−
∫
t−1 dt = e− ln t = 1

t
.

Multiplying both sides by μ(t) yields the equation

d
(
t−1 y

)
dt

= 4

t
,

and since
∫
(4/t) dt = 4 ln t , we can express the solution without integrals in this case.

Hence, the values of r that give solutions in terms of elementary functions are r = 0 and r = −1.
21. (a) The integrating factor is

μ(t) = e0.4t .

Multiplying both sides of the differential equation by μ(t) and collecting terms, we obtain

d(e0.4tv)

dt
= 3e0.4t cos 2t.

Integrating both sides with respect to t yields

e0.4tv =
∫
3e0.4t cos 2t dt.

To calculate the integral on the right-hand side, we must integrate by parts twice.
For the first integration, we pick u1(t) = cos 2t and v1(t) = e0.4t . Using the fact that

0.4 = 2/5, we get ∫
e0.4t cos 2t dt = 5

2 e
0.4t cos 2t + 5

∫
e0.4t sin 2t dt.

For the second integration, we pick u2(t) = sin 2t and v2(t) = e0.4t . We get∫
e0.4t sin 2t dt = 5

2e
0.4t sin 2t − 5

∫
e0.4t cos 2t dt.

Combining these results yields∫
e0.4t cos 2t dt = 5

2 e
0.4t cos 2t + 25

2 e
0.4t sin 2t − 25

∫
e0.4t cos 2t dt.
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Solving for
∫
e0.4t cos 2t dt , we have∫

e0.4t cos 2t dt = 5 e0.4t cos 2t + 25 e0.4t sin 2t

52
.

To obtain the general solution, we multiply this integral by 3, add the constant of integra-
tion, and solve for v. We obtain the general solution

v(t) = ke−0.4t + 15
52 cos 2t + 75

52 sin 2t.

(b) The solution of the associated homogeneous equation is

vh(t) = e−0.4t .

We guess
vp(t) = α cos 2t + β sin 2t

for the a solution to the nonhomogeneous equation and solve for α and β. Substituting this
guess into the differential equation, we obtain

−2α sin 2t + 2β cos 2t + 0.4α cos 2t + 0.4β sin 2t = 3 cos 2t.

Collecting sine and cosine terms, we get the system of equations⎧⎨
⎩

−2α + 0.4β = 0

0.4α + 2β = 3.

Using the fact that 0.4 = 2/5, we solve this system of equations and obtain

α = 15
52 and β = 75

52 .

The general solution of the original nonhomogeneous equation is

v(t) = ke−0.4t + 15
52 cos 2t + 75

52 sin 2t.

Both methods require quite a bit of computation. If we use an integrating factor, we must do a
complicated integral, and if we use the guessing technique, we have to be careful with our algebra.

22. (a) Note that
dμ

dt
= μ(t)(−a(t))

by the Fundamental Theorem of Calculus. Therefore, if we rewrite the differential equation as

dy

dt
− a(t)y = b(t)

and multiply the left-hand side of this equation by μ(t), the left-hand side becomes

μ(t)
dy

dt
− μ(t)a(t)y = μ(t)

dy

dt
+ dμ

dt
y

= d(μ y)

dt
.

Consequently, the function μ(t) satisfies the requirements of an integrating factor.
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(b) To see that 1/μ(t) is a solution of the associated homogeneous equation, we calculate

d
(

1
μ(t)

)
dt

= −1
μ(t)2

dμ

dt

= −1
μ(t)2

μ(t)(−a(t))

= a(t)
1

μ(t)
.

Thus, y(t) = 1/μ(t) satisfies the equation dy/dt = a(t)y.
(c) To see that yp(t) is a solution to the nonhomogeneous equation, we compute

dyp
dt

=
d
(

1
μ(t)

)
dt

(∫ t

0
μ(τ) b(τ ) dτ

)
+ 1

μ(t)
μ(t)b(t)

= a(t)
1

μ(t)

(∫ t

0
μ(τ) b(τ ) dτ

)
+ b(t)

= a(t)yp(t) + b(t).

(d) Let k be an arbitrary constant. Since k/μ(t) is the general solution of the associated homoge-
neous equation and

1

μ(t)

∫ t

0
μ(τ) b(τ ) dτ

is a solution to the nonhomogeneous equation, the general solution of the nonhomogeneous
equation is

y(t) = k

μ(t)
+ 1

μ(t)

∫ t

0
μ(τ) b(τ ) dτ

= 1

μ(t)

(
k +

∫ t

0
μ(τ) b(τ ) dτ

)
.

(e) Since ∫
μ(t) b(t) dt =

∫ t

0
μ(τ) b(τ ) dτ + k

by the Fundamental Theorem of Calculus, the two formulas agree.

(f) In this equation, a(t) = −2t and b(t) = 4e−t2 . Therefore,

μ(t) = e
∫ t
0 2τ dτ = et

2
.

Consequently, 1/μ(t) = e−t2 . Note that,

d
(

1
μ(t)

)
dt

= (−2t)e−t2 = a(t)
1

μ(t)
.
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Also,

yp(t) = e−t2
∫ t

0
eτ

2
(
4e−τ 2

)
dτ = e−t2

∫ t

0
4 dτ = 4te−t2 .

It is easy to see that 4te−t2 satisfies the nonhomogeneous equation.
Therefore, the general solution to the nonhomogeneous equation is

ke−t2 + 4te−t2 ,

which can also be written as (4t + k)e−t2 . Finally, note that

1

μ(t)

∫
μ(t) b(t) dt = e−t2

∫
et
2
(
4e−t2

)
dt = (4t + k)e−t2 .

23. The integrating factor is
μ(t) = e

∫
2 dt = e2t .

Multiplying both sides by μ(t), we obtain

e2t
dy

dt
+ 2e2t y = 3e2t e−2t

= 3.

Applying the Product Rule to the left-hand side, we see that this equation is the same as

d(e2t y)

dt
= 3,

and integrating both sides with respect to t , we obtain

e2t y = 3t + k,

where k is an arbitrary constant. The general solution is

y(t) = (3t + k)e−2t .

We know that ke−2t is the general solution of the associated homogeneous equation, so yp(t) =
3te−2t is a particular solution of the nonhomogeneous equation. Note that the factor of t arose after
we multiplied the right-hand side of the equation by the integrating factor and ended up with the
constant 3. After integrating, the constant produces a factor of t .

24. Let S(t) be the amount of salt (in pounds) in the tank at time t . Then noting the amounts of salt that
enter and leave the tank per minute, we have

dS

dt
= 2− S

V (t)
,

where V (t) is the volume of the tank at time t . We have V (t) = 15 + t since the tank starts with
15 gallons and one gallon per minute more is pumped into the tank than leaves the tank. So

dS

dt
= 2− S

15+ t
.
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This equation is linear, and we can rewrite it as

dS

dt
+ S

15+ t
= 2.

The integrating factor is

μ(t) = e
∫
1/(15+t) dt = eln(15+t) = 15+ t.

Multiplying both sides of the equation by μ(t), we obtain

(15+ t)
dS

dt
+ S = 2(15+ t),

which via the Product Rule is equivalent to

d((15+ t)S)

dt
= 30+ 2t.

Integration and simplification yields

S(t) = t2 + 30t + c

15+ t
.

Using the initial condition S(0) = 6, we have c/15 = 6, which implies that c = 90 and

S(t) = t2 + 30t + 90

15+ t
.

The tank is full when t = 15, and the amount of salt at that time is S(15) = 51/2 pounds.

25. We will use the term “parts” as shorthand for the product of parts per billion of dioxin and the volume
of water in the tank. Basically this product represents the total amount of dioxin in the tank. The tank
initially contains 200 gallons at a concentration of 2 parts per billion, which results in 400 parts of
dioxin.

Let y(t) be the amount of dioxin in the tank at time t . Since water with 4 parts per billion of
dioxin flows in at the rate of 5 gallons per minute, 20 parts of dioxin enter the tank each minute.
Also, the volume of water in the tank at time t is 200 + 2t , so the concentration of dioxin in the
tank is y/(200+ 2t). Since well-mixed water leaves the tank at the rate of 2 gallons per minute, the
differential equation that represents the change in the amount of dioxin in the tank is

dy

dt
= 20− 2

(
y

200+ 2t

)
,

which can be simplified and rewritten as

dy

dt
+
(

1

100+ t

)
y = 20.

The integrating factor is

μ(t) = e
∫
(1/(100+t)) dt = eln(100+t) = 100+ t.
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Multiplying both sides by μ(t), we obtain

(100+ t)
dy

dt
+ y = 20(100+ t),

which is equivalent to
d((100+ t)y)

dt
= 20(100+ t)

by the Product Rule. Integrating both sides with respect to t , we obtain

(100+ t)y = 2000t + 10t2 + c.

Since y(0) = 400, we see that c = 40, 000. Therefore,

y(t) = 10t2 + 2000t + 40, 000

t + 100
.

The tank fills up at t = 100, and y(100) = 1, 700. To express our answer in terms of concentra-
tion, we calculate y(100)/400 = 4.25 parts per billion.

26. Let S(t) denote the amount of sugar in the tank at time t . Sugar is added to the tank at the rate of
p pounds per minute. The amount of sugar that leaves the tank is the product of the concentration of
the sugar in the water and the rate that the water leaves the tank. At time t , there are 100− t gallons
of sugar water in the tank, so the concentration of sugar is S(t)/(100 − t). Since sugar water leaves
the tank at the rate of 1 gallon per minute, the differential equation for S is

dS

dt
= p − S

100− t
.

Since this equation is linear, we rewrite it as

dS

dt
+ S

100− t
= p,

and the integrating factor is

μ(t) = e
∫
(1/(100−t)) dt = e− ln(100−t) = 1

100− t
.

Multiplying both sides of the differential equation by μ(t) yields(
1

100− t

)
dS

dt
+ S

(100− t)2
= p

100− t
,

which is equivalent to
d

dt

(
S

100− t

)
= p

100− t

by the Product Rule. We integrate both sides and obtain

S

100− t
= −p ln(100− t) + c,
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where c is some constant. Note that the left-hand side of this formula is the concentration of sugar in
the tank at time t .

At t = 0, the concentration of sugar is 0.25 pounds per gallon, so we can determine c by evalu-
ating at t = 0. We obtain

0.25 = −p ln(100) + c,

so

S

100− t
= −p ln(100− t) + 0.25+ p ln(100)

= 0.25+ p ln

(
100

100− t

)
.

(a) To determine the value of p such that the concentration is 0.5 when there are 5 gallons left in
the tank, we note that t = 95. We get

0.5 = 0.25+ p ln 20,

so p = 0.25/(ln 20) ≈ 0.08345.
(b) We can rephrase the question: Can we find p such that

lim
t→100−

S

100− t
= 0.75?

Using the formula for the concentration S/(100− t), we have

lim
t→100−

S

100− t
= 0.25+ p lim

t→100−
ln

(
100

100− t

)
.

As t → 100−, 100− t → 0+, so

lim
t→100−

ln

(
100

100− t

)
= ∞.

If p 	= 0, then the concentration is unbounded as t → 100−. If p = 0, then the concentration
is constant at 0.25. Hence it is impossible to choose p so that the “last” drop out of the bucket
has a concentration of 0.75 pounds per gallon.

27. (a) Let y(t) be the amount of salt in the tank at time t . Since the tank is being filled at a total rate
of 1 gallon per minute, the volume at time t is V0 + t and the concentration of salt in the tank is

y

V0 + t
.

The amount of salt entering the tank is the product of 2 gallons per minute and 0.25 pounds of
salt per minute. The amount of salt leaving the tank is the product of the concentration of salt
in the tank and the rate that brine is leaving. In this case, the rate is 1 gallon per minute, so the
amount of salt leaving the tank is y/(V0 + t). The differential equation for y(t) is

dy

dt
= 1

2
− y

V0 + t
.

Since the water is initially clean, the initial condition is y(0) = 0.
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(b) If V0 = 0, the differential equation above becomes

dy

dt
= 1

2
− y

t
.

Note that this differential equation is undefined at t = 0. Thus, we cannot apply the Existence
and Uniqueness Theorem to guarantee a unique solution at time t = 0. However, we can still
solve the equation using our standard techniques assuming that t 	= 0.

Rewriting the equation as
dy

dt
+ y

t
= 1

2
,

we see that the integrating factor is

μ(t) = e
∫
(1/t) dt = eln t = t.

Multiplying both sides of the differential equation by μ(t), we obtain

t
dy

dt
+ y = t

2
,

which is equivalent to
d(t y)

dt
= t

2
.

Integrating both sides with respect to t , we get

t y = t2

4
+ c,

so that the general solution is

y(t) = t

4
+ c

t
.

Since the above expression is undefined at t = 0, we cannot make use of the initial condition
y(0) = 0 to find the desired solution.

However, if the tank is initially empty, the concentration of salt in the tank remains constant
over time at 0.25 pounds of salt per gallon. Therefore, we reconsider the equation

y

t
= 1

4
+ c

t2
.

If c = 0, we have y/t = 1/4. Hence, c = 0 yields the solution y(t) = t/4 which is a valid
model for this situation.

It is useful to note that, if V0 = 0, then we do not really need a differential equation to
model the amount of the salt in the tank as a function of time. Clearly the concentration is
constant as a function of time, and therefore the amount of salt in the tank is the product of the
concentration and the volume of brine in the tank.

REVIEW EXERCISES FOR CHAPTER 1

1. The simplest differential equation with y(t) = 2t as a solution is dy/dt = 2. The initial condition
y(0) = 3 specifies the desired solution.
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2. By guessing or separating variables, we know that the general solution is y(t) = y0e3t , where y(0) =
y0 is the initial condition.

3. There are no values of y for which dy/dt is zero for all t . Hence, there are no equilibrium solutions.

4. Since the question only asks for one solution, look for the simplest first. Note that y(t) = 0 for all t
is an equilibrium solution. There are other equilibrium solutions as well.

5. The right-hand side is zero for all t only if y = −1. Consequently, the function y(t) = −1 for all t
is the only equilibrium solution.

6. The equilibria occur at y = ±nπ for n = 0, 1, 2, . . . , and dy/dt is positive otherwise. So all of the
arrows between the equilibrium points point up.

y = π node

y = 0 node

y = −π node

7. The equations dy/dt = y and dy/dt = 0 are first-order, autonomous, separable, linear, and homo-
geneous.

8. The equation dy/dt = y − 2 is autonomous, linear, and nonhomogeneous. Moreover, if y = 2, then
dy/dt = 0 for all t .

9. The graph of f (y) must cross the y-axis from negative to positive at y = 0. For example, the graph
of the function f (y) = y produces this phase line.

y

f (y)

10. For a > −4, all solutions increase at a constant rate, and for a < −4, all solutions decrease at a
constant rate. Consequently, a bifurcation occurs at a = −4, and all solutions are equilibria.

11. True. We have dy/dt = e−t , which agrees with |y(t)|.
12. False. A separable equation has the form dy/dt = g(t)h(y). So if g(t) is not constant, then the

equation is not separable. For example, dy/dt = t y is separable but not autonomous.
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13. True. Autonomous equations have the form dy/dt = f (y). Therefore, we can separate variables by
dividing by f (y). That is,

1

f (y)

dy

dt
= 1.

14. False. For example, dy/dt = y + t is linear but not separable.

15. False. For example, dy/dt = t y2 is separable but not linear.

16. True. A homogeneous linear equation has the form dy/dt = a(t)y. We can separate variables by
dividing by y. That is,

1

y

dy

dt
= a(t).

17. True. Note that the function y(t) = 3 for all t is an equilibrium solution for the equation. The
Uniqueness Theorem says that graphs of different solutions cannot touch. Hence, a solution with
y(0) > 3 must have y(t) > 3 for all t .

18. False. For example, dy/dt = y has one source (y = 0) and no sinks.

19. False. By the Uniqueness Theorem, graphs of different solutions cannot touch. Hence, if one solution
y1(t) → ∞ as t increases, any solution y2(t) with y2(0) > y1(0) satisfies y2(t) > y1(t) for all t .
Therefore, y2(t) → ∞ as t increases.

20. False. The general solution of this differential equation has the form y(t) = ket + αe−t , where k is
any constant and α is a particular constant (in fact, α = −1/2). Choosing k = 0, we obtain a solution
that tends to 0 as t → ∞.

21. (a) The equation is autonomous, separable, and linear and nonhomogeneous.
(b) The general solution to the associated homogeneous equation is yh(t) = ke−2t . For a particular

solution of the nonhomogeneous equation, we guess a solution of the form yp(t) = α. Then

dyp
dt

+ 2yp = 2α.

Consequently, we must have 2α = 3 for yp(t) to be a solution. Hence, α = 3/2, and the general
solution to the nonhomogeneous equation is

y(t) = 3
2 + ke−2t .

22. The constant function y(t) = 0 is an equilibrium solution.
For y 	= 0 we separate the variables and integrate∫

dy

y
=
∫
t dt

ln |y| = t2

2
+ c

|y| = c1e
t2/2

where c1 = ec is an arbitrary positive constant.
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If y > 0, then |y| = y and we can just drop the absolute value signs in this calculation. If y < 0,
then |y| = −y, so −y = c1et

2/2. Hence, y = −c1et2/2. Therefore,
y = ket

2/2

where k = ±c1. Moreover, if k = 0, we get the equilibrium solution. Thus, y = ket
2/2 yields all

solutions to the differential equation if we let k be any real number. (Strickly speaking we need a
theorem from Section 1.5 to justify the assertion that this formula provides all solutions.)

23. (a) The equation is linear and nonhomogeneous. (It is nonautonomous as well.)
(b) The general solution of the associated homogeneous equation is yh(t) = ke3t . For a particular

solution of the nonhomogeneous equation, we guess a solution of the form yp(t) = αe7t . Then

dyp
dt

− 3yp = 7αe7t − 3αe7t = 4αe7t .

Consequently, we must have 4α = 1 for yp(t) to be a solution. Hence, α = 1/4, and the general
solution to the nonhomogeneous equation is

y(t) = ke3t + 1
4e
7t .

24. (a) This equation is linear and homogeneous as well as separable.
(b) The Linearity Principle implies that

y(t) = ke
∫
t/(1+t2) dt

= ke
1
2 ln(1+t2)

= k
√
1+ t2,

where k can be any real number (see page 113 in Section 1.8).

25. (a) This equation is linear and nonhomogeneous.
(b) To find the general solution, we first note that yh(t) = ke−5t is the general solution of the

associated homogeneous equation.
To get a particular solution of the nonhomogeneous equation, we guess

yp(t) = α cos 3t + β sin 3t.

Substituting this guess into the nonhomogeneous equation gives

dyp
dt

+ 5yp = −3α sin 3t + 3β cos 3t + 5α cos 3t + 5β sin 3t

= (5α + 3β) cos 3t + (5β − 3α) sin 3t.

In order for yp(t) to be a solution, we must solve the simultaneous equations⎧⎨
⎩
5α + 3β = 0

5β − 3α = 1.

From these equations, we get α = −3/34 and β = 5/34. Hence, the general solution is

y(t) = ke−5t − 3
34 cos 3t + 5

34 sin 3t.
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26. (a) This equation is linear and nonhomogeneous.
(b) We rewrite the equation in the form

dy

dt
− 2y

1+ t
= t

and note that the integrating factor is

μ(t) = e
∫ −2/(1+t) dt = e−2 ln(1+t) = 1

(1+ t)2
.

Multiplying both sides of the differential equation by μ(t), we obtain

1

(1+ t)2
dy

dt
− 2y

(1+ t)3
= t

(1+ t)2
.

Applying the Product Rule to the left-hand side, we see that this equation is the same as

d

dt

(
y

(1+ t)2

)
= t

(1+ t)2
.

Integrating both sides with respect to t and using the substitution u = 1 + t on the right-hand
side, we obtain

y

(1+ t)2
= 1

1+ t
+ ln |1+ t | + k,

where k can be any real number. The general solution is

y(t) = (1+ t) + (1+ t)2 ln |1+ t | + k(1+ t)2.

27. (a) The equation is autonomous and separable.
(b) When we separate variables, we obtain∫

1

3+ y2
dy =

∫
dt.

Integrating, we get
1√
3
arctan

(
y√
3

)
= t + c,

and solving for y(t) produces

y(t) = √
3 tan

(√
3 t + k

)
.

28. (a) This equation is separable and autonomous.
(b) First, note that y = 0 and y = 2 are the equilibrium points. Assuming that y 	= 0 and y 	= 2,

we separate variables to obtain ∫
1

2y − y2
dy =

∫
dt.
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To integrate the left-hand side, we use partial fractions. We write

1

y(2− y)
= A

y
+ B

2− y
,

which gives 2A = 1 and −A + B = 0. So A = B = 1/2, and∫
1

2y − y2
dy = 1

2

(∫
1

y
+ 1

2− y
dy

)
= 1

2
ln

∣∣∣∣ y

y − 2

∣∣∣∣ .
After integrating, we have

ln

∣∣∣∣ y

y − 2

∣∣∣∣ = 2t + c

∣∣∣∣ y

y − 2

∣∣∣∣ = c1e
2t ,

where c1 = ec is any positive constant. To remove the absolute value signs, we replace the
positive constant c1 by a constant k that can be any real number and get

y

y − 2
= ke2t .

After solving for y, we obtain

y(t) = 2ke2t

ke2t − 1
.

Note that k = 0 corresponds to the equilibrium solution y = 0. However, no value of k
yields the equilibrium solution y = 2.

29. (a) This equation is linear and nonhomogeneous.
(b) First we note that the general solution of the associated homogeneous equation is ke−3t .

Next we use the technique suggested in Exercise 19 of Section 1.8. We could find particular
solutions of the two nonhomogeneous equations

dy

dt
= −3y + e−2t and

dy

dt
= −3y + t2

separately and add the results to obtain a particular solution for the original equation. How-
ever, these two steps can be combined by making a more complicated guess for the particular
solution.

We guess yp(t) = ae−2t + bt2 + ct + d, and we have

dyp
dt

+ 3yp = −2ae−2t + 2bt + c + 3ae−2t + 3bt2 + 3ct + d

= ae−2t + 3bt2 + (2b + 3c)t + (c + 3d).

Hence, for yp(t) to be a solution we must have a = 1, b = 1
3 , c = − 2

9 , and d = 2
27 . Therefore,

a particular solution is yp(t) = e−2t + 1
3 t
2 − 2

9 t + 2
27 . and the general solution is

y(t) = ke−3t + e−2t + 1
3 t
2 − 2

9 t + 2
27 .
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30. (a) The equation is separable, linear and homogeneous.
(b) We know that the general solution of this equation has the form

x(t) = ke
∫ −2t dt ,

where k is an arbitrary constant. We get x(t) = ke−t2 .
To satisfy the initial condition x(0) = e, we note that x(0) = k, so k = e. The solution of

the initial-value problem is

x(t) = ee−t2 = e1−t2 .

31. (a) This equation is linear and nonhomogeneous. (It is nonautonomous as well.)
(b) The general solution of the associated homogeneous equaion is yh(t) = ke2t . To find a partic-

ular solution of the nonhomogeneous equation, we guess yp(t) = α cos 4t + β sin 4t . Then

dyp
dt

− 2yp = −4α sin 4t + 4β cos 4t − 2(α cos 4t + β sin 4t)

= (−2α + 4β) cos 4t + (−4α − 2β) sin 4t.

Consequently, we must have

(−2α + 4β) cos 4t + (−4α − 2β) sin 4t = cos 4t

for yp(t) to be a solution. We must solve⎧⎨
⎩

−2α + 4β = 1

−4α − 2β = 0.

Hence, α = −1/10 and β = 1/5, and the general solution of the nonhomogeneous equation is

y(t) = ke2t − 1
10 cos 4t + 1

5 sin 4t.

To find the solution of the given initial-value problem, we evaluate the general solution at
t = 0 and obtain

y(0) = k − 1
10 .

Since the initial condition is y(0) = 1, we see that k = 11/10. The desired solution is

y(t) = 11
10e

2t − 1
10 cos 4t + 1

5 sin 4t.

32. (a) This equation is linear and nonhomogeneous.
(b) We first find the general solution. The general solution of the associated homogeneous equation

is yh(t) = ke3t . For a particular solution of the nonhomogeneous equation, we guess yp(t) =
αte3t rather than αe3t because αe3t is a solution of the homogeneous equation. Then

dyp
dt

− 3yp = αe3t + 3αte3t − 3αte3t

= αe3t .
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Consequently, we must have α = 2 for yp(t) to be a solution. Hence, the general solution to
the nonhomogeneous equation is

y(t) = ke3t + 2te3t .

Note that y(0) = k, so the solution to the initial-value problem is

y(t) = −e3t + 2te3t = (2t − 1)e3t .

33. (a) The equation is separable because

dy

dt
= (t2 + 1)y3.

(b) Separating variables and integrating, we have∫
y−3 dy =

∫
(t2 + 1) dt

y−2

−2 = t3

3
+ t + c

y−2 = −2
3
t3 − 2t + k.

Using the initial condition y(0) = −1/2, we get that k = 4. Therefore,

y2 = 1

4− 2t − 2
3 t
3
.

Taking the square root of both sides yields

y = ±1√
4− 2t − 2

3 t
3
.

In this case, we take the negative square root because y(0) = −1/2. The solution to the initial-
value problem is

y(t) = −1√
4− 2t − 2

3 t
3
.

34. The general solution to the associated homogeneous equation is yh(t) = ke−5t . For a particular
solution of the nonhomogeneous equation, we guess yp(t) = αte−5t rather than αe−5t because αe−5t
is a solution of the homogeneous equation. Then

dyp
dt

+ 5yp = αe−5t − 5αte−5t + 5αte−5t

= αe−5t .

Consequently, we must have α = 3 for yp(t) to be a solution. Hence, the general solution to the
nonhomogeneous equation is

y(t) = ke−5t + 3te−5t .
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Note that y(0) = k, so the solution to the initial-value problem is

y(t) = −2e−5t + 3te−5t = (3t − 2)e−5t .

35. (a) This equation is linear and nonhomogeneous. (It is nonautonomous as well.)
(b) We rewrite the equation as

dy

dt
− 2t y = 3tet

2

and note that the integrating factor is

μ(t) = e
∫ −2t dt = e−t2 .

Multiplying both sides by μ(t), we obtain

e−t2 dy
dt

− 2te−t2 y = 3t.

Applying the Product Rule to the left-hand side, we see that this equation is the same as

d

dt

(
e−t2 y

)
= 3t,

and integrating both sides with respect to t , we obtain e−t2 y = 3
2 t
2 + k, where k is an arbitrary

constant. The general solution is

y(t) =
(
3
2 t
2 + k

)
et
2
.

To find the solution that satisfies the initial condition y(0) = 1, we evaluate the general
solution at t = 0 and obtain k = 1. The desired solution is

y(t) =
(
3
2 t
2 + 1

)
et
2
.

36. (a) This equation is separable.
(b) We separate variables and integrate to obtain∫

(y + 1)2 dy =
∫

(t + 1)2 dt

1
3 (y + 1)3 = 1

3 (t + 1)3 + k,

where k is a constant.
We could solve for y(t) now, but it is much easier to find k first. Using the initial condition

y(0) = 0, we see that k = 0. Hence, the solution of the initial-value problem satisfies the
equality

1
3 (y + 1)3 = 1

3 (t + 1)3,

and therefore, y(t) = t .
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37. (a) This equation is separable.
(b) We separate variables and integrate to obtain∫

1

y2
dy =

∫
(2t + 3t2) dt

− 1
y

= t2 + t3 + k

y = −1
t2 + t3 + k

.

To find the solution of the initial-value problem, we evaluate the general solution at t = 1
and obtain

y(1) = −1
2+ k

.

Since the initial condition is y(1) = −1, we see that k = −1. The solution to the initial-value
problem is

y(t) = 1

1− t2 − t3
.

38. (a) This equation is autonomous and separable.
(b) Note that the equilibrium points are y = ±1. Since the initial condition is y(0) = 1, we know

that the solution to the initial-value problem is the equilibrium solution y(t) = 1 for all t .

39. (a) The differential equation is separable.
(b) We can write the equation in the form

dy

dt
= t2

y(t3 + 1)

and separate variables to get ∫
y dy =

∫
t2

t3 + 1
dt

y2

2
= 1

3
ln |t3 + 1| + c,

where c is a constant. Hence,

y2 = 2

3
ln |t3 + 1| + 2c.

The initial condition y(0) = −2 implies

(−2)2 = 2

3
ln |1| + 2c.

Thus, c = 2, and

y(t) = −
√
2
3 ln |t3 + 1| + 4.

We choose the negative square root because y(0) is negative.
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40. (a)

0.5 1 1.5 2

10

20

30

t

y
(b)

0.5 1 1.5

10

20

30

t

y

(c) Note that
dy

dt
= (y − 1)2.

Separating variables and integrating, we get∫
1

(y − 1)2
dy =

∫
1 dt

1

1− y
= t + k.

From the intial condition, we see that k = −1, and we have
1

1− y
= t − 1.

Solving for y yields

y(t) = t − 2

t − 1
,

which blows up as t → 1 from below.

41. (a)

−2
−1

1

t

y (b)

−1

1

t

y

42. (a)

y = 4 sink

y = 1 node

y = −2 source

y = −4 sink

(b)

−4
−2

1

4

t

y
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(c)

−4
−2

2

4

t

y

43. The constant function y(t) = 2 for all t is an equilibrium solution. If y > 2, then dy/dt > 0.
Moreover, solutions with initial conditions above y = 2 satisfy y(t) → ∞ as t increases and y(t) →
2 as t → −∞.

If y < −2, then dy/dt > 0, so solutions with initial conditions below y = −2 increase until
they cross the line y = −2. If 0 < y < 2, then dy/dt < 0, and solutions in this strip decrease until
they cross the t-axis.

For all initial conditions on the y-axis below y = 2, the solutions tend toward a periodic solution
of period 2π as t increases. This periodic solution crosses the y-axis at y0 ≈ −0.1471. If y(0) < y0,
then the solution satisfies y(t) → −∞ as t decreases. If y0 < y(0) < 2, the y(t) → 2 as t → −∞.

44. From the equation, we can see that the functions y1(t) = 1 for all t and y2(t) = 2 for all t are
equilibrium solutions. The Uniqueness Theorem tells us that solutions with initial conditions that
satisfy 1 < y(0) < 2 must also satisfy 1 < y(t) < 2 for all t . An analysis of the sign of dy/dt
within this strip indicates that y(t) → 2 as t → ±∞ if 1 < y(0) < 2. All such solutions decrease
until they intersect the curve y = et/2 and then they increase thereafter.

Solutions with y(0) slightly greater than 2 increase until they intersect the curve y = et/2 and
then they decrease and approach y = 2 as t → ∞.

Solutions with y(0) somewhat larger (approximately y(0) > 2.1285) increase quickly. It is
difficult to determine if they eventually decrease, if they blow up in finite time, or if they increase for
all time. In all cases where y(0) > 2, y(t) → 2 as t → −∞.

Solutions with y(0) < 1 satisfy y(t) → −∞ as t increases, perhaps in finite time. As t → −∞,
y(t) → 0 for these solutions.

45. Note that
dy

dt
= (1+ t2)y + 1+ t2 = (1+ t2)(y + 1).

(a) Separating variables and integrating, we obtain∫
1

y + 1
dy =

∫
(1+ t2) dt

ln |y + 1| = t + t3

3
+ c,

where c is any constant. Thus, |y + 1| = c1et+t
3/3, where c1 = ec. We can dispose of the

absolute value signs by allowing the constant c1 to be any real number. In other words,

y(t) = −1+ ket+t3/3,

where k = ±c1. Note that, if k = 0, we have the equilibrium solution y(t) = −1 for all t .
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(b) The associated homogeneous equation is dy/dt = (1+t2)y, and the Linearity Principle implies
that

y(t) = ke
∫
(1+t2) dt

= ket+t3/3.

where k can be any real number (see page 113 in Section 1.8).
(c) When we write the differential equation as dy/dt = (1 + t2)(y + 1), we can immediately see
that y = −1 corresponds to the equilibrium solution y(t) = −1 for all t .

(d) This equilibrium solution is a particular solution of the nonhomogeneous equation. Therefore,
using the result of part (b), we get the general solution

y(t) = −1+ ket+t3/3

of the nonhomogeneous equation using the Extended Linearity Principle. Note that this result
agrees with the result of part (a).

46. (a) Note that there is an equilibrium solution of the form y = −1/2.
Separating variables and integrating, we obtain

∫
1

2y + 1
dy =

∫
1

t
dt

1
2 ln |2y + 1| = ln |t | + c

ln |2y + 1| = (ln t2) + c

|2y + 1| = c1t
2,

where c1 = ec. We can eliminate the absolute value signs by allowing the constant to be either
positive or negative. In other words, 2y + 1 = k1t2, where k1 = ±c1. Hence

y(t) = kt2 − 1
2 ,

where k = k1/2.
(b) As t approaches zero all the solutions approach −1/2. In fact, y(0) = −1/2 for every value

of k.
(c) This example does not violate the Uniqueness Theorem because the differential equation is not
defined at t = 0. So functions y(t) can only be said to be solutions for t 	= 0.
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47. (a) Using Euler’s method, we obtain the
values y0 = 0, y1 = 1.5, y2 =
1.875, y3 = 1.617, and y4 = 1.810
(rounded to three decimal places).

0.5 1 1.5 2

1

2

t

y

(b)

y = −√
3 source

y = √
3 sink

(c) The phase line tells us that the solution with initial condition y(0) = 0 must be increasing.
Moreover, its graph is below and asymptotic to the line y = √

3 as t → ∞. The oscillations
obtained using Euler’s method come from numerical error.

48. (a) If we let k denote the proportionality constant in Newton’s law of cooling, the initial-value prob-
lem satisfied by the temperature T of the soup is

dT

dt
= k(T − 70), T (0) = 150.

(b) We can solve the initial-value problem in part (a) using the fact that this equation is a nonho-
mogeneous linear equation. The function T (t) = 70 for all t is clearly an equilibrium solution
to the equation. Therefore, the Extended Linearity Principle tells us that the general solution is

T (t) = 70+ cekt ,

where c is a constant determined by the initial condition. Since T (0) = 150, we have c = 80.
To determine k, we use the fact that T (1) = 140. We get

140 = 70+ 80ek

70 = 80ek

7
8 = ek .

We conclude that k = ln(7/8).
In order to find t so that the temperature is 100◦, we solve

100 = 70+ 80eln(7/8)t

for t . We get ln(3/8) = ln(7/8)t , which yields t = ln(3/8)/ ln(7/8) ≈ 7.3 minutes.

49. (a) Note that the slopes are constant along vertical lines—lines along which t is constant, so the
right-hand side of the corresponding equation depends only on t . The only choices are equa-
tions (i) and (iv). Because the slopes are negative for t > 1 and positive for t < 1, this slope
field corresponds to equation (iv).



Review Exercises for Chapter 1 117

(b) This slope field has an equilibrium solution corresponding to the line y = 1, as does equations
(ii), (v), (vii), and (viii). Equations (ii), (v), and (viii) are autonomous, and this slope field is not
constant along horizontal lines. Consequently, it corresponds to equation (vii).

(c) This slope field is constant along horizontal lines, so it corresponds to an autonomous equation.
The autonomous equations are (ii), (v), and (viii). This field does not correspond to equation (v)
because it has the equilibrium solution y = −1. The slopes are negative between y = −1 and
y = 1. Consequently, this field corresponds to equation (viii).

(d) This slope field depends both on y and on t , so it can only correspond to equations (iii), (vi),
or (vii). It does not correspond to (vii) because it does not have an equilibrium solution at
y = 1. Also, the slopes are positive if y > 0. Therefore, it must correspond to equation (vi).

50. (a) Let t be time measured in years with t = 0 corresponding to the time of the first deposit, and let
M(t) be Beth’s balance at time t . The 52 weekly deposits of $20 are approximately the same as
a continuous yearly rate of $1,040. Therefore, the initial-value problem that models the growth
in savings is

dM

dt
= 0.011M + 1,040, M(0) = 400.

(b) The differential equation is both linear and separable, so we can solve the initial-value problem
by separating variables, using an integrating factor, or using the Extended Linearity Principle.
We use the Extended Linearity Principle.

The general solution of the associated homogeneous equation is ke0.011t . We obtain one
particular solution of the nonhomogeneous equation by determining its equilibrium solution.
The equilibrium point is M = −1,040/0.011 ≈ −94,545. Therefore, the general solution of
the nonhomogeneous equation is

M(t) = ke0.011t − 94, 545.

Since M(0) = 400, we have k = 94,945, and after four years, Beth balance is M(4) ≈
94,945e0.044 − 94,545 ≈ $4,671.

51. (a)

y = b sink

(b) As t → ∞, y(t) → b for every solution y(t).

(c) The equation is separable and linear. Hence, you can find the general
solution by separating variables or by either of the methods for solving
linear equations (undetermined coefficients or integrating factors).

(d) The associated homogeneous equation is dy/dt = −(1/a)y, and its
general solution is ke−t/a . One particular solution of the nonhomoge-
neous equation is the equilibrium solution y(t) = b for all t . Therefore,
the general solution of the nonhomogeneous equation is

y(t) = ke−t/a + b.

(e) The authors love all the methods, just in different ways and for different reasons.
(f) Since a > 0, e−t/a → 0 as t → ∞. Hence, y(t) → b as t → ∞ independent of k.
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52. (a) The equation is separable. Separating variables and integrating, we obtain∫
y−2 dy =

∫
−2t dt

−y−1 = −t2 + c,

where c is a constant of integration. Multiplying both sides by −1 and inverting yields

y(t) = 1

t2 + k
,

where k can be any constant. In addition, the equilibrium solution y(t) = 0 for all t is a solu-
tion.

(b) If y(−1) = y0, we have

y0 = y(−1) = 1

1+ k
so

k = 1

y0
− 1.

As long as k > 0, the denominator is positive for all t , and the solution is bounded for all t .
Hence, for 0 ≤ y0 < 1, the solution is bounded for all t . (Note that y0 = 0 corresponds to the
equilibrium solution.) All other solutions escape to ±∞ in finite time.

53. (a) Let C(t) be the volume of carbon monoxide at time t where t is measured in hours. Initially, the
amount of the carbon monoxide is 3% by volume. Since the volume of the room is 1000 cubic
feet, there are 30 cubic feet of carbon monoxide in the room at time t = 0. Carbon monoxide
is being blown into the room at the rate of one cubic foot per hour. The concentration of carbon
monoxide is C/1000, so carbon monoxide leaves the room at the rate of

100

(
C

1000

)
.

The initial-value problem that models this situation is

dC

dt
= 1− C

10
, C(0) = 30.

(b) There is one equilibrium point, C = 10, and it is a sink. As t increases,
C(t) approaches 10, so the concentration approaches 1% carbon monox-
ide, the concentration of the air being blown into the room.

C = 10 sink

(c) The differential equation is linear. It is also autonomous and, therefore, separable. We can solve
the initial-value problem by separating variables, using integrating factors, or by the Extended
Linearity Principle. Since we already know one solution to the equation, that is, the equilibrium
solution, we use the Extended Linearity Principle.
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The associated homogeneous equation is dC/dt = −C/10, and its general solution is
ke−0.1t . Therefore, the general solution of the nonhomogeneous equation is

C(t) = 10+ ke−0.1t .

given C(0) = 30, k = 20.
To find the value of t for which C(t) = 20, we solve

10+ 20e−t/10 = 20

We get

20e−t/10 = 10

e−t/10 = 1
2

−t/10 = ln( 12 )

t = 10 ln 2.

The air in the room is 2% carbon monoxide in approximately 6.93 hours.

54. Let s(t) be the amount (measured in gallons) of cherry syrup in the vat at time t (measured in min-
utes). Then ds/dt is the difference between the rates at which syrup is added and syrup is withdrawn.
Syrup is added at the rate of 2 gallons per minute. Syrup is withdrawn at the rate of

5

(
s

500+ 5t

)

gallons per minute because the well mixed solution is withdrawn at the rate of 5 gallons per minute
and the concentration of syrup is the total amount of syrup, s, divided by the total volume, 500+ 5t .
The differential equation is

ds

dt
= 2− s

100+ t
.

We solve this equation using integrating factors. Rewriting the equation as

ds

dt
+ s

100+ t
= 2,

we see that the integrating factor is

μ(t) = e
∫
1/(100+t) dt = eln(100+t) = 100+ t.

Multiplying both sides of the differential equation by the integrating factor gives

(100+ t)
ds

dt
+ s = 2(100+ t).

Using the Product Rule on the left-hand side, we observe that this equation can be rewritten as

d((100+ t)s)

dt
= 2t + 200,
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and we integrate both sides to obtain

(100+ t)s = t2 + 200t + c,

where c is a constant that is determined by the initial condition s(0) = 50. Since

s(t) = t2 + 200t + c

t + 100
,

we see that c = 5000. Therefore, the solution of the initial-value problem is

s(t) = t2 + 200t + 5000

t + 100
.

The vat is full when 500 + 5t = 1000, that is, when t = 100 minutes. The amount of cherry
syrup in the vat at that time is s(100) = 175 gallons, so the concentration is 175/1000 = 17.5%.



First-Order
Systems
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EXERCISES FOR SECTION 2.1

1. In the case where it takes many predators to eat one prey, the constant in the negative effect term
of predators on the prey is small. Therefore, (ii) corresponds the system of large prey and small
predators. On the other hand, one predator eats many prey for the system of large predators and
small prey, and, therefore, the coefficient of negative effect term on predator-prey interaction on the
prey is large. Hence, (i) corresponds to the system of small prey and large predators.

2. For (i), the equilibrium points are x = y = 0 and x = 10, y = 0. For the latter equilibrium
point prey alone exist; there are no predators. For (ii), the equilibrium points are (0, 0), (0, 15), and
(3/5, 30). For the latter equilibrium point, both species coexist. For (0, 15), the prey are extinct but
the predators survive.

3. Substitution of y = 0 into the equation for dy/dt yields dy/dt = 0 for all t . Therefore, y(t) is
constant, and since y(0) = 0, y(t) = 0 for all t .

Note that to verify this assertion rigorously, we need a uniqueness theorem (see Section 2.5).

4. For (i), the prey obey a logistic model. The population tends to the equilibrium point at x = 10. For
(ii), the prey obey an exponential growth model, so the population grows unchecked.

x = 10

x = 0 t

x

Phase line and graph for (i).

x = 0 t

x

Phase line and graph for (ii).

5. Substitution of x = 0 into the equation for dx/dt yields dx/dt = 0 for all t . Therefore, x(t) is
constant, and since x(0) = 0, x(t) = 0 for all t .

Note that to verify this assertion rigorously, we need a uniqueness theorem (see Section 2.5).

6. For (i), the predators obey an exponential decay model, so the population tends to 0. For (ii), the
predators obey a logistic model. The population tends to the equilibrium point at y = 15.

y = 0 t

y

Phase line and graph for (i).

y = 15

y = 0 t

y

Phase line and graph for (ii).
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7. The population starts with a relatively large rabbit (R) and a relatively small fox (F) population.
The rabbit population grows, then the fox population grows while the rabbit population decreases.
Next the fox population decreases until both populations are close to zero. Then the rabbit popula-
tion grows again and the cycle starts over. Each repeat of the cycle is less dramatic (smaller total
oscillation) and both populations oscillate toward an equilibrium which is approximately (R, F) =
(1/2, 3/2).

8. (a)

4 8 12

1

2

�

F(t)

�

R(t)

t

R, F

4 8 12

1

2

�

F(t)

�

R(t)

t

R, F

4 8 12

1

2
���

R(t)

���

F(t)

t

R, F

4 8 12

1

2

�

F(t)

�

R(t)

t

R, F

(b) Each of the solutions tends to the equilibrium point at (R, F) = (5/4, 2/3). The populations
of both species tend to a limit and the species coexist. For curve B, note that the F-population
initially decreases while R increases. Eventually F bottoms out and begins to rise. Then R
peaks and begins to fall. Then both populations tend to the limit.

9. By hunting, the number of prey decreases α units per unit of time. Therefore, the rate of change
dR/dt of the number of prey has the term −α. Only the equation for dR/dt needs modification.

(i) dR/dt = 2R − 1.2RF − α

(ii) dR/dt = R(2− R) − 1.2RF − α

10. Hunting decreases the number of predators by an amount proportional to the number of predators
alive (that is, by a term of the form −kF), so we have dF/dt = −F + 0.9RF − kF in each case.

11. Since the second food source is unlimited, if R = 0 and k is the growth parameter for the predator
population, F obeys an exponential growth model, dF/dt = kF . The only change we have to make
is in the rate of F , dF/dt . For both (i) and (ii), dF/dt = kF + 0.9RF .

12. In the absence of prey, the predators would obey a logistic growth law. So we could modify both
systems by adding a term of the form −kF/N , where k is the growth-rate parameter and N is the
carrying capacity of predators. That is, we have dF/dt = kF(1− F/N ) + 0.9RF .



124 CHAPTER 2 FIRST-ORDER SYSTEMS

13. If R − 5F > 0, the number of predators increases and, if R − 5F < 0, the number of predators
decreases. Since the condition on prey is same, we modify only the predator part of the system. the
modified rate of change of the predator population is

dF

dt
= −F + 0.9RF + k(R − 5F)

where k > 0 is the immigration parameter for the predator population.

14. In both cases the rate of change of population of prey decreases by a factor of kF . Hence we have

(i) dR/dt = 2R − 1.2RF − kF

(ii) dR/dt = 2R − R2 − 1.2RF − kF

15. Suppose y = 1. If we can find a value of x such that dy/dt = 0, then for this x and y = 1 the
predator population is constant. (This point may not be an equilibrium point because we do not know
if dx/dt = 0.) The required value of x is x = 0.05 in system (i) and x = 20 in system (ii). Survival
for one unit of predators requires 0.05 units of prey in (i) and 20 units of prey in (ii). Therefore, (i) is
a system of inefficient predators and (ii) is a system of efficient predators.

16. At first, the number of rabbits decreases while the number of foxes increases. Then the foxes have
too little food, so their numbers begin to decrease. Eventually there are so few foxes that the rabbits
begin to multiply. Finally, the foxes become extinct and the rabbit population tends to the constant
population R = 3.

17. (a) For the initial condition close to zero, the pest population increases much more rapidly than
the predator. After a sufficient increase in the predator population, the pest population starts to
decrease while the predator population keeps increasing. After a sufficient decrease in the pest
population, the predator population starts to decrease. Then, the population comes back to the
initial point.

(b) After applying the pest control, you may see the increase of the pest population due to the ab-
sence of the predator. So in the short run, this sort of pesticide can cause an explosion in the
pest population.

18. One way to consider this type of predator-prey interaction is to raise the growth rate of the prey
population. If only weak or sick prey are removed, the remaining population may be assumed to be
able to reproduce at a higher rate.

19. (a) Substituting y(t) = sin t into the left-
hand side of the differential equation
gives

d2y

dt2
+ y = d2(sin t)

dt2
+ sin t

= − sin t + sin t

= 0,

so the left-hand side equals the right-
hand side for all t .

(b)

−1 1

−1

1

y

v

(c) These two solutions trace the same curve in the yv-plane—the unit circle.
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(d) The difference in the two solution curves is in how they are parameterized. The solution in this
problem is at (0, 1) at time t = 0 and hence it lags behind the solution in the section by π/2.
This information cannot be observed solely by looking at the solution curve in the phase plane.

20. (a) If we substitute y(t) = cosβt into the left-hand side of the equation, we obtain

d2y

dt2
+ k

m
y = d2(cosβt)

dt2
+ k

m
cosβt

= −β2 cosβt + k

m
cosβt

=
(
k

m
− β2

)
cosβt

Hence, in order for y(t) = cosβt to be a solution we must have k/m − β2 = 0. Thus,

β =
√
k

m
.

(b) Substituting t = 0 into y(t) = cosβt and v(t) = y′(t) = −β sinβt we obtain the initial
conditions y(0) = 1, v(0) = 0.

(c) The solution is y(t) = cos((
√
k/m)t) and the period of this function is 2π/(

√
k/m), which

simplifies to 2π
√
m/

√
k.

(d)

−1 1

−√
k/m

√
k/m

y

v

21. Hooke’s law tells us that the restoring force exerted by a spring is linearly proportional to the spring’s
displacement from its rest position. In this case, the displacement is 3 in. while the restoring force is
12 lbs. Therefore, 12 lbs. = k · 3 in. or k = 4 lbs. per in. = 48 lbs. per ft.

22. (a) First, we need to determine the spring constant k. Using Hooke’s law, we have 4 lbs = k · 4 in.
Thus, k = 1 lbs/in = 12 lbs/ft. We will measure distance in feet since the mass is extended
1 foot.

To determine the mass of a 4 lb object, we use the fact that the force due to gravity is mg
where g = 32 ft/sec2. Thus, m = 4/32 = 1/8.

Using the model
d2y

dt2
+ k

m
y = 0,

for the undamped harmonic oscillator, we obtain

d2y

dt2
+ 96y = 0, y(0) = 1, y′(0) = 0

as our initial-value problem.
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(b) From Exercise 20 we know that y(t) = cosβt is a solution to the differential equation for
the simple harmonic oscillator, where β = √

k/m. Since y(t) = cos
√
96 t satisfies both our

differential equation and our initial conditions, it is the solution to the initial-value problem.

23. An extra firm mattress does not deform when you lay on it. This means that it takes a great deal of
force to compress the springs so the spring constant must be large.

24. (a) Let m be the mass of the object, k be the spring constant, and d be the distance the spring
is stretched when the mass is attached. Since the force mg stretches the spring a distance d,
Hooke’s law implies mg = kd. Thus, d = mg/k. Note that the position y1 = 0 in the first
system corresponds to the position y2 = −d in the second system.

For the first system, the force acting on the mass from the spring is Fs1 = −ky1, while in
the second system, the force is Fs2 = −k(y2 + d). The reason for the difference is that in the
first system the force from the spring is zero when y1 = 0 (the spring has yet to be stretched),
while in the second system the force from the spring is zero when y2 = −d. The force due to
gravity in either system is mg.

Using Newton’s second law of motion, the first system is

m
d2y1
dt2

= −ky1 + mg,

which can be rewritten as
d2y1
dt2

+ k

m
y1 − g = 0.

For the second system, we have

m
d2y2
dt2

= −k
(
y2 + mg

k

)
+ mg.

This equation can be written as
d2y2
dt2

+ k

m
y2 = 0.

(b) Letting dy1/dt = v1, we have

dv1

dt
= d2y1

dt2
= − k

m
y1 + g,

and the system is
dy1
dt

= v1

dv1

dt
= − k

m
y1 + g.

Letting dy2/dt = v2, we have
dv2

dt
= d2y2

dt2
= − k

m
y2.

Therefore, the second system is
dy2
dt

= v2

dv2

dt
= − k

m
y2.
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The first system has a unique equilibrium point at (y1, v1) = (mg/k, 0) while the second has a
unique equilibrium point at (y2, v2) = (0, 0). The first system is at rest when y1 = d = mg/k
and v1 = 0. The second system is at rest when both y2 = 0 and v2 = 0. The second system is
just the standard model of the simple harmonic oscillator while the first system is a translate of
this model in the y-coordinate.

(c) Since the first system is just a translation in the y-coordinate of the second system, we can
perform a simple change of variables to transform one to the other. (Note that y2 = y1 − d.)
Thus, if y1(t) is a solution to the first system, then y2(t) = y1(t) − d is a solution to the second
system.

(d) The second system is easy to work with because it has fewer terms and is the more familiar
simple harmonic oscillator.

25. Suppose α > 0 is the reaction rate constant for A+B → C. The reaction rate is αab at time t , and
after the reaction, a and b decrease by αab. We therefore obtain the system

da

dt
= −αab

db

dt
= −αab.

26. Measure the amount of C produced during the short time interval from t = 0 to t = �t . The amount
is given by a(0) − a(�t) since one molecule of A yields one molecule of C. Now

a(0) − a(�t)

�t
≈ −a′(0) = αa(0)b(0).

Since we know a(0), a(�t), b(0), and �t , we can therefore solve for α.

27. Suppose k1 and k2 are the rates of increase of A and B respectively. Since A and B are added to the
solution at constant rates, k1 and k2 are added to da/dt and db/dt respectively. The system becomes

da

dt
= k1 − αab

db

dt
= k2 − αab.

28. The chance that two A molecules are close is proportional to a2. Hence, the new system is

da

dt
= k1 − αab − γ a2

db

dt
= k2 − αab,

where γ is a parameter that measures the rate at which A combines to make D.
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29. Suppose γ is the reaction-rate coefficient for the reaction B + B → A. By the reaction, two B’s
react with each other to create one A. In other words, B decreases at the rate γ b2 and A increases at
the rate γ b2/2. The resulting system of the differential equations is

da

dt
= k1 − αab + γ b2

2
db

dt
= k2 − αab − γ b2.

30. The chance that two B’s and an A molecule are close is proportional to ab2, so

da

dt
= k1 − αab − γ ab2

db

dt
= k2 − αab − 2γ ab2,

where γ is the reaction-rate parameter for the reaction that produces D from two B’s and an A.

EXERCISES FOR SECTION 2.2

1. (a) V(x, y) = (1, 0) (b) See part (c).
(c)

−3 3

−3

3

x

y (d)

−3 3

−3

3

x

y

(e) As t increases, solutions move along horizontal lines toward the right.
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2. (a) V(x, y) = (x, 1) (b) See part (c).
(c)

−3 3

−3

3

x

y (d)

−3 3

−3

3

x

y

(e) As t increases, solutions move up and right if x(0) > 0, up and left if x(0) < 0.

3. (a) V(y, v) = (−v, y) (b) See part (c).
(c)

−3 3

−3

3

y

v (d)

−3 3

−3

3

y

v

(e) As t increases, solutions move on circles around (0, 0) in the counter-clockwise direction.

4. (a) V(u, v) = (u − 1, v − 1) (b) See part (c).
(c)

−3 3

−3

3

u

v (d)

−3 3

−3

3

u

v

(e) As t increases, solutions move away from the equilibrium point at (1, 1).
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5. (a) V(x, y) = (x, −y) (b) See part (c).
(c)

−3 3

−3

3

x

y (d)

−3 3

−3

3

x

y

(e) As t increases, solutions move toward the x-axis in the y-direction and away from the y-axis
in the x-direction.

6. (a) V(x, y) = (x, 2y) (b) See part (c).
(c)

−3 3

−3

3

x

y (d)

−3 3

−3

3

x

y

(e) As t increases, solutions move away from the equilibrium point at the origin.

7. (a) Let v = dy/dt . Then

dv

dt
= d2y

dt2
= y.

Thus the associated vector field is
V(y, v) = (v, y).

(b) See part (c).

(c)

−3 3

−3

3

y

v (d)

−3 3

−3

3

y

v
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(e) As t increases, solutions in the 2nd and 4th quadrants move toward the origin and away from
the line y = −v. Solutions in the 1st and 3rd quadrants move away from the origin and
toward the line y = v.

8. (a) Let v = dy/dt . Then

dv

dt
= d2y

dt2
= −2y.

Thus the associated vector field is
V(y, v) = (v, −2y).

(b) See part (c).

(c)
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y

v (d)

−3 3

−3

3

y

v

(e) As t increases, solutions move around the origin on ovals in the clockwise direction.

9. (a)

−2 2

−2

2

x

y
(b) The solution tends to the origin along

the line y = −x in the xy-phase plane.
Therefore both x(t) and y(t) tend to
zero as t → ∞.

10. (a)

−2 2

−2

2

x

y
(b) The solution enters the first quadrant

and tends to the origin tangent to the
positive x-axis. Therefore x(t) initially
increases, reaches a maximum value,
and then tends to zero as t → ∞. It re-
mains positive for all positive values of
t . The function y(t) decreases toward
zero as t → ∞.
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11. (a) There are equilibrium points at (±1, 0), so only systems (ii) and (vii) are possible. Since the
direction field points toward the x-axis if y �= 0, the equation dy/dt = y does not match this
field. Therefore, system (vii) is the system that generated this direction field.

(b) The origin is the only equilibrium point, so the possible systems are (iii), (iv), (v), and (viii).
The direction field is not tangent to the y-axis, so it does not match either system (iv) or (v).
Vectors point toward the origin on the line y = x , so dy/dt = dx/dt if y = x . This condition
is not satisfied by system (iii). Consequently, this direction field corresponds to system (viii).

(c) The origin is the only equilibrium point, so the possible systems are (iii), (iv), (v), and (viii).
Vectors point directly away from the origin on the y-axis, so this direction field does not cor-
respond to systems (iii) and (viii). Along the line y = x , the vectors are more vertical than
horizontal. Therefore, this direction field corresponds to system (v) rather than system (iv).

(d) The only equilibrium point is (1, 0), so the direction field must correspond to system (vi).

12. The equilibrium solutions are those solutions for which dR/dt = 0 and dF/dt = 0 simultaneously.
To find the equilibrium points, we must solve the system of equations

⎧⎨
⎩ 2R

(
1− R

2

)
− 1.2RF = 0

−F + 0.9RF = 0.

The second equation is satisfied if F = 0 or if R = 10/9, and we consider each case inde-
pendently. If F = 0, then the first equation is satisfied if and only if R = 0 or R = 2. Thus two
equilibrium solutions are (R, F) = (0, 0) and (R, F) = (2, 0).

If R = 10/9, we substitute this value into the first equation and obtain F = 20/27.

13. (a) To find the equilibrium points, we solve the system of equations⎧⎨
⎩
4x − 7y + 2= 0

3x + 6y − 1= 0.

These simultaneous equations have one solution, (x, y) = (−1/9, 2/9).
(b)

−3 3

−3

3

x

y

−3 3

−3

3

x

y

(c) As t increases, typical solutions spiral away from the origin in the counter-clockwise direction.
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14. (a) To find the equilibrium points, we solve the system of equations⎧⎨
⎩

4R − 7F − 1= 0

3R + 6F − 12= 0.

These simultaneous equations have one solution, (R, F) = (2, 1).

−4 4

−4

4

R

F

−4 4

−4

4

R

F

(b) As t increases, typical solutions spiral away from the equilibrium point at (2, 1)

15. (a) To find the equilibrium points, we solve the system of equations⎧⎨
⎩

cosw = 0

−z + w = 0.

The first equation implies that w = π/2 + kπ where k is any integer, and the second equation
implies that z = w. The equilibrium points are (π/2+ kπ, π/2+ kπ) for any integer k.

(b)

−3 3

−3

3

z

w

−3 3

−3

3

z

w

(c) As t increases, typical solutions move away from the line z = w, which contains the equilib-
rium points. The value of w is either increasing or decreasing without bound depending on the
initial condition.
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16. (a) To find the equilibrium points, we solve the system of equations⎧⎨
⎩

x − x3 − y = 0

y = 0.

Since y = 0, we have x3 − x = 0. If we factor x − x3 into x(x − 1)(x + 1), we see that there
are three equilibrium points, (0, 0), (1, 0), and (−1, 0).

(b)

−2 2

−2

2

x

y

−2 2

−2

2

x

y

(c) As t increases, typical solutions spiral toward either (1, 0) or (−1, 0) depending on the initial
condition.

17. (a) To find the equilibrium points, we solve the system of equations⎧⎨
⎩

y = 0

− cos x − y = 0.

We see that y = 0, and thus cos x = 0. The equilibrium points are (π/2 + kπ, 0) for any
integer k.

(b)

−3 3

−3

3

x

y

−3 3

−3

3

x

y

(c) As t increases, typical solutions spiral toward one of the equilibria on the x-axis. Which equi-
librium point the solution approaches depends on the initial condition.
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18. (a) To find the equilibrium points, we solve the system of equations⎧⎨
⎩

y(x2 + y2 − 1) = 0

−x(x2 + y2 − 1) = 0.

If x2 + y2 = 1, then both equations are satisfied. Hence, any point on the unit circle centered
at the origin is an equilibrium point. If x2 + y2 �= 1, then the first equations implies y = 0 and
the second equation implies x = 0. Hence, the origin is the only other equilibrium point.

(b)

−2 2

−2

2

x

y

−2 2

−2

2

x

y

(c) As t increases, typical solutions move on a circle around the origin, either counter-clockwise
inside the unit circle, which consists entirely of equilibrium points, or clockwise outside the
unit circle.

19. (a) Let v = dx/dt . Then

dv

dt
= d2x

dt2
= 3x − x3 − 2v.

Thus the associated vector field
is V(x, v) = (v, 3x − x3 − 2v).

(b) Setting V(x, v) = (0, 0) and solv-
ing for (x, v), we get v = 0 and
3x − x3 = 0. Hence, the equilib-
ria are (x, v) = (0, 0) and (x, v) =
(±√

3, 0).

(c)

−3 3

−5

5

x

v (d)

−3 3

−5

5

x

v

(e) As t increases, almost all solutions spiral to one of the two equilibria (±√
3, 0). There is a

curve of initial conditions that divides these two phenomena. It consists of those initial condi-
tions for which the corresponding solutions tend to the equilibrium point at (0, 0).
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20. Consider a point (y, v) on the circle y2+ v2 = r2. We can consider this point to be a radius vector—
one that starts at the origin and ends at the point (y, v). If we compute the dot product of this vector
with the vector field F(y, v), we obtain

(y, v) · F(y, v) = (y, v) · (v, −y) = yv − vy = 0.

Since the dot product of these two vectors is 0, the two vectors are perpendicular. Moreover, we know
that any vector that is perpendicular to the radius vector of a circle must be tangent to that circle.

21. (a) The x(t)- and y(t)-graphs are periodic, so
they correspond to a solution curve that re-
turns to its initial condition in the phase
plane. In other words, its solution curve
is a closed curve. Since the amplitude of
the oscillation of x(t) is relatively large,
these graphs must correspond to the outer-
most closed solution curve.

−1 1

−1

1

x

y

(b) The graphs are not periodic, so they cannot
correspond to the two closed solution curves
in the phase portrait. Both graphs cross the t-
axis. The value of x(t) is initially negative,
then becomes positive and reaches a max-
imum, and finally becomes negative again.
Therefore, the corresponding solution curve
is the one that starts in the second quadrant,
then travels through the first and fourth quad-
rants, and finally enters the third quadrant.

−1 1

−1

1

x

y

(c) The graphs are not periodic, so they cannot
correspond to the two closed solution curves
in the phase portrait. Only one graph crosses
the t-axis. The other graph remains negative
for all time. Note that the two graphs cross.

The corresponding solution curve is the
one that starts in the second quadrant and
crosses the x-axis and the line y = x as it
moves through the third quadrant.

−1 1

−1

1

x

y

(d) The x(t)- and y(t)-graphs are periodic, so
they correspond to a solution curve that re-
turns to its initial condition in the phase
plane. In other words, its solution curve
is a closed curve. Since the amplitude of
the oscillation of x(t) is relatively small,
these graphs must correspond to the inter-
most closed solution curve.
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1

x

y
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22. Often the solutions in the quiz are over a longer time interval than what is shown in the following
graphs.

(a)

−1

1

2

−2 y(t)

x(t)

t

x, y
(b)

−2

2

x(t) = y(t)

t

x, y

(c)

−1

1

3

y(t)

x(t)

t

x, y
(d)

−4

4

8
x(t)

y(t)

t

x, y

(e)

−5

5

x(t)

y(t)
t

x, y
(f)

−1

1 x(t)

y(t)

t

x, y

(g)

−1

1

y(t)

x(t)

t

x, y
(h)

−2

2

x(t)

y(t)

t

x, y

(i)

−5

5 x(t)

y(t)

t

x, y



138 CHAPTER 2 FIRST-ORDER SYSTEMS

23. Since the solution curve spirals into the origin, the corresponding x(t)- and y(t)-graphs must oscillate
about the t-axis with the decreasing amplitudes.

−1

1

���
x(t)

���

y(t)

t

x, y

24. Since the solution curve is an ellipse that is centered at (2, 1), the x(t)- and y(t)-graphs are periodic.
They oscillate about the lines x = 2 and y = 1.

1

2

3

4

���

x(t)

�

y(t)

t

x, y

25. The x(t)-graph satisfies −2 < x(0) < −1 and increases as t increases. The y(t)-graph satisfies
1 < y(0) < 2. Initially it decreases until it reaches its minimum value of y = 1 when x = 0. Then it
increases as t increases.

−1

1

x(t)

y(t)

t

x, y
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26. The x(t)-graph starts with a small positive value and increases as t increases. The y(t)-graph starts
at approximately 1.6 and decreases as t increases. However, y(t) remains positive for all t .

1

2

x(t)

y(t)

t

x, y

27. From the graphs, we see that y(0) = 0 and x(0) is slightly positive. Initially both graphs increase.
Then they cross, and slightly later x(t) attains its maximum value. Continuing along we see that y(t)
attains its maximum at the same time as x(t) crosses the t-axis.

In the xy-phase plane these graphs correspond to a solution curve that starts on the positive x-
axis, enters the first quadrant, crosses the line y = x , and eventually crosses the y-axis into the
second quadrant exactly when y(t) assumes its maximum value. For this portion of the curve, y(t) is
increasing while x(t) assumes a maximum and starts decreasing.

We see that once y(t) attains its maximum, it decreases for a prolonged period of time until it
assumes its minimum value. Throughout this interval, x(t) remains negative although it assumes
its minimum value twice and a local maximum value once. In the phase plane, the solution curve
enters the second quadrant and then crosses into the third quadrant when y(t) = 0. The x(t)- and
y(t)-graphs cross precisely when the solution curve crosses the line y = x in the third quadrant.

Finally the y(t)-graph is increasing again while the x(t)-graph becomes positive and assumes
its maximum value once more. The two graphs return to their initial values. In the phase plane
this behavior corresponds to the solution curve moving from the third quadrant through the fourth
quadrant and back to the original starting point.

−1 1

−1

1

x

y
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EXERCISES FOR SECTION 2.3

1. (a) See part (c).
(b) We guess that there are solutions of the form y(t) = est for some choice of the constant s. To

determine these values of s, we substitute y(t) = est into the left-hand side of the differential
equation, obtaining

d2y

dt2
+ 7

dy

dt
+ 10y = d2(est )

dt2
+ 7

d(est )

dt
+ 10(est )

= s2est + 7sest + 10est

= (s2 + 7s + 10)est

In order for y(t) = est to be a solution, this expression must be 0 for all t . In other words,

s2 + 7s + 10 = 0.

This equation is satisfied only if s = −2 or s = −5. We obtain two solutions, y1(t) = e−2t and
y2(t) = e−5t , of this equation.

(c)

−5 5

−5

5

y

v

0.5

−2

1 y1(t)

v1(t)

t

y1, v1

0.5

−5

1
y2(t)

v2(t)

t

y2, v2

2. (a) See part (c).
(b) We guess that there are solutions of the form y(t) = est for some choice of the constant s. To

determine these values of s, we substitute y(t) = est into the left-hand side of the differential
equation, obtaining

d2y

dt2
+ 5

dy

dt
+ 6y = d2(est )

dt2
+ 5

d(est )

dt
+ 6(est )

= s2est + 5sest + 6est

= (s2 + 5s + 6)est

In order for y(t) = est to be a solution, this expression must be 0 for all t . In other words,

s2 + 5s + 6 = 0.

This equation is satisfied only if s = −3 or s = −2. We obtain two solutions, y1(t) = e−3t and
y2(t) = e−2t , of this equation.
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(c)

−3 3

−3

3

y

v

1

−2

1 y1(t)

v1(t)

t

y1, v1

1

−3

1 y2(t)

v2(t)

t

y2, v2

3. (a) See part (c).
(b) We guess that there are solutions of the form y(t) = est for some choice of the constant s. To

determine these values of s, we substitute y(t) = est into the left-hand side of the differential
equation, obtaining

d2y

dt2
+ 4

dy

dt
+ y = d2(est )

dt2
+ 4

d(est )

dt
+ est

= s2est + 4sest + est

= (s2 + 4s + 1)est

In order for y(t) = est to be a solution, this expression must be 0 for all t . In other words,

s2 + 4s + 1 = 0.

Applying the quadratic formula, we obtain the roots s = −2 ± √
3 and the two solutions,

y1(t) = e(−2−
√
3)t and y2(t) = e(−2+

√
3)t , of this equation.

(c)

−4 4

−4

4

y

v

3 6

1 y1(t)

v1(t)
t

y1, v1

1

−3

1

v2(t)

y2(t)
t

y2, v2

4. (a) See part (c).
(b) We guess that there are solutions of the form y(t) = est for some choice of the constant s. To

determine these values of s, we substitute y(t) = est into the left-hand side of the differential
equation, obtaining

d2y

dt2
+ 6

dy

dt
+ 7y = d2(est )

dt2
+ 6

d(est )

dt
+ 7est

= s2est + 6sest + 7est

= (s2 + 6s + 7)est
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In order for y(t) = est to be a solution, this expression must be 0 for all t . In other words,

s2 + 6s + 7 = 0.

Applying the quadratic formula, we obtain the roots s = −3 ± √
2 and the two solutions,

y1(t) = e(−3−
√
2)t and y2(t) = e(−3+

√
2)t , of this equation.

(c)
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y2(t)

t

y2, v2

5. (a) See part (c).
(b) We guess that there are solutions of the form y(t) = est for some choice of the constant s. To

determine these values of s, we substitute y(t) = est into the left-hand side of the differential
equation, obtaining

d2y

dt2
+ 3

dy

dt
− 10y = d2(est )

dt2
+ 3

d(est )

dt
− 10(est )

= s2est + 3sest − 10est

= (s2 + 3s − 10)est

In order for y(t) = est to be a solution, this expression must be 0 for all t . In other words,

s2 + 3s − 10 = 0.

This equation is satisfied only if s = −5 or s = 2. We obtain two solutions, y1(t) = e−5t and
y2(t) = e2t , of this equation.

(c)
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6. (a) See part (c).
(b) We guess that there are solutions of the form y(t) = est for some choice of the constant s. To

determine these values of s, we substitute y(t) = est into the left-hand side of the differential
equation, obtaining

d2y

dt2
+ dy

dt
− 2y = d2(est )

dt2
+ d(est )

dt
− 2(est )

= s2est + sest − 2est

= (s2 + s − 2)est

In order for y(t) = est to be a solution, this expression must be 0 for all t . In other words,

s2 + s − 2 = 0.

This equation is satisfied only if s = −2 or s = 1. We obtain two solutions, y1(t) = e−2t and
y2(t) = et , of this equation.

(c)

−3 3

−3

3

y

v

1

−2
−1

1 y1(t)

v1(t)

t

y1, v1

1

1
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y2(t),v2(t)

t

y2, v2

7. (a) Let yp(t) be any solution of the damped harmonic oscillator equation and yg(t) = αyp(t)
where α is a constant. We substitute yg(t) into the left-hand side of the damped harmonic os-
cillator equation, obtaining

m
d2y

dt2
+ b

dy

dt
+ ky = m

d2yg
dt2

+ b
dyg
dt

+ kyg

= mα
d2yp
dt2

+ bα
dyp
dt

+ αkyp

= α

(
m
d2yp
dt2

+ b
dyp
dt

+ kyp

)

Since yp(t) is a solution, we know that the expression in the parentheses is zero. Therefore,
yg(t) = αyp(t) is a solution of the damped harmonic oscillator equation.

(b) Substituting y(t) = αe−t into the left-hand side of the damped harmonic oscillator equation,
we obtain

d2y

dt2
+ 3

dy

dt
+ 2y = d2(αe−t )

dt2
+ 3

d(αe−t )
dt

+ 2(αe−t )
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= αe−t − 3αe−t + 2αe−t

= (α − 3α + 2α)e−t

= 0.

We also get zero if we substitute y(t) = αe−2t into the equation.
(c) If we obtain one nonzero solution to the equation with the guess-and-test method, then we ob-
tain an infinite number of solutions because there are infinitely many constants α.

8. (a) Let y1(t) and y2(t) be any two solutions of the damped harmonic oscillator equation. We sub-
stitute y1(t) + y2(t) into the left-hand side of the equation, obtaining

m
d2y

dt2
+ b

dy

dt
+ ky = m

d2(y1 + y2)

dt2
+ b

d(y1 + y2)

dt
+ k(y1 + y2)

=
(
m
d2y1
dt2

+ b
dy1
dt

+ ky1

)
+
(
m
d2y2
dt2

+ b
dy2
dt

+ ky2

)

= 0+ 0 = 0

because y1(t) and y2(t) are solutions.
(b) In the section, we saw that y1(t) = e−t and y2(t) = e−2t are two solutions to this differential

equation. Note that the y1(0) + y2(0) = 2 and v1(0) + v2(0) = −3. Consequently, y(t) =
y1(t) + y2(t), that is, y(t) = e−t + e−2t , is the solution of the initial-value problem.

(c) If we combine the result of part (a) of Exercise 7 with the result in part (a) of this exercise, we
see that any function of the form

y(t) = αe−t + βe−2t

is a solution if α and β are constants. Evaluating y(t) and v(t) = y′(t) at t = 0 yields the two
equations

α + β = 3

−α − 2β = −5.
We obtain α = 1 and β = 2. The desired solution is y(t) = e−t + 2e−2t .

(d) Given that any constant multiple of a solution yields another solution and that the sum of any
two solutions yields another solution, we see that all functions of the form

y(t) = αe−t + βe−2t

where α and β are constants are solutions. Therefore, we obtain an infinite number of solutions
to this equation.

9. We choose the left wall to be the position x = 0 with x > 0 indicating positions to the right. Each
spring exerts a force on the mass. If the position of the mass is x , then the left spring is stretched by
the amount x − L1. Therefore, the force F1 exerted by this spring is

F1 = k1 (L1 − x) .
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Similarly, the right spring is stretched by the amount (1 − x) − L2. However, the restoring force F2
of the right spring acts in the direction of increasing values of x . Therefore, we have

F2 = k2 ((1− x) − L2) .

Using Newton’s second law, we have

m
d2x

dt2
= k1 (L1 − x) + k2 ((1− x) − L2) − b

dx

dt
,

where the term involving dx/dt represents the force due to damping. After a little algebra, we obtain

m
d2x

dt2
+ b

dx

dt
+ (k1 + k2)x = k1L1 − k2L2 + k2.

10. (a) Let v = dx/dt as usual. From Exercise 9, we have

dx

dt
= v

dv

dt
= −k1 + k2

m
x − b

m
v + C

m

where C is the constant k1L1 − k2L2 + k2.
(b) To find the equilibrium points, we set dx/dt = 0 and obtain v = 0. Setting dv/dt = 0 with

v = 0, we obtain
(k1 + k2)x = C.

Therefore, this system has one equilibrium point,

(x0, v0) =
(

C

k1 + k2
, 0

)
.

(c) We change coordinates so that the origin corresponds to this equilibrium point. In other words,
we reexpress the system in terms of the new variable y = x − x0. Since dy/dt = dx/dt = v,
we have

dv

dt
= −k1 + k2

m
x − b

m
v + C

m

= −k1 + k2
m

(y + x0) − b

m
v + C

m

= −k1 + k2
m

y − C

m
− b

m
v + C

m
,

since (k1 + k2)x0 = C . In terms of y and v, we have

dy

dt
= v

dv

dt
= −k1 + k2

m
y − b

m
v.

(d) In terms of y and v, this system is exactly the same as a damped harmonic oscillator with spring
constant k = k1 + k2 and damping coefficient b.
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EXERCISES FOR SECTION 2.4

1. To check that dx/dt = 2x + 2y, we compute both

dx

dt
= 2et

and
2x + 2y = 4et − 2et = 2et .

To check that dy/dt = x + 3y, we compute both

dy

dt
= −et ,

and
x + 3y = 2et − 3et = −et .

Both equations are satisfied for all t . Hence (x(t), y(t)) is a solution.

2. To check that dx/dt = 2x + 2y, we compute both

dx

dt
= 6e2t + et

and
2x + 2y = 6e2t + 2et − 2et + 2e4t = 6e2t + 2e4t .

Since the results of these two calculations do not agree, the first equation in the system is not satisfied,
and (x(t), y(t)) is not a solution.

3. To check that dx/dt = 2x + 2y, we compute both

dx

dt
= 2et − 4e4t

and
2x + 2y = 4et − 2e4t − 2et + 2e4t = 2et .

Since the results of these two calculations do not agree, the first equation in the system is not satisfied,
and (x(t), y(t)) is not a solution.

4. To check that dx/dt = 2x + 2y, we compute both

dx

dt
= 4et + 4e4t

and
2x + 2y = 8et + 2e4t − 4et + 2e4t = 4et + 4et .

To check that dy/dt = x + 3y, we compute both

dy

dt
= −2et + 4e4t ,

and
x + 3y = 4et + e4t − 6et + 3e4t = −2et + 4e4t .

Both equations are satisfied for all t . Hence (x(t), y(t)) is a solution.
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5. The second equation in the system is dy/dt = −y, and from Section 1.1, we know that y(t) must be
a function of the form y0e−t , where y0 is the initial value.

6. Yes. You can always show that a given function is a solution by verifying the equations directly (as
in Exercises 1–4).

To check that dx/dt = 2x + y, we compute both

dx

dt
= 8e2t + e−t

and
2x + y = 8e2t − 2e−t + 3e−t = 8e2t + et .

To check that dy/dt = −y, we compute both
dy

dt
= −3e−t ,

and
−y = −3e−t .

Both equations are satisfied for all t . Hence (x(t), y(t)) is a solution.

7. From the second equation, we know that y(t) = k1e−t for some constant k1. Using this observation,
the first equation in the system can be rewritten as

dx

dt
= 2x + k1e

−t .

This equation is a first-order linear equation, and we can derive the general solution using the Ex-
tended Linearity Principle from Section 1.8 or integrating factors from Section 1.9.

Using the Extended Linearity Principle, we note that the general solution of the associated ho-
mogeneous equation is xh(t) = k2e2t .

To find one solution to the nonhomogeneous equation, we guess xp(t) = αe−t . Then

dxp
dt

− 2xp = −αe−t − 2αe−t

= −3αe−t .
Therefore, xp(t) is a solution if α = −k1/3.

The general solution for x(t) is

x(t) = k2e
2t − k1

3
e−t .

8. (a) No. Given the general solution (
k2e

2t − k1
3
e−t , k1e−t

)
,

the function y(t) = 3e−t implies that k1 = 3. But this choice of k1 implies that the coefficient
of e−t in the formula for x(t) is −1 rather than +1.
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(b) To determine that Y(t) is not a solution without reference to the general solution, we check the
equation dx/dt = 2x + y. We compute both

dx

dt
= −e−t

and
2x + y = 2e−t + 3e−t .

Since these two functions are not equal, Y(t) is not a solution.

9. (a) Given the general solution (
k2e

2t − k1
3
e−t , k1e−t

)
,

we see that k1 = 0, and therefore k2 = 1. We obtain Y(t) = (x(t), y(t)) = (e2t , 0).

(b)

−3 3

−3

3

x

y (c)

1

1

x(t)

y(t)
t

x, y

10. (a) Given the general solution (
k2e

2t − k1
3
e−t , k1e−t

)
,

we see that k1 = 3, and therefore k2 = 0. We obtain Y(t) = (x(t), y(t)) = (−e−t , 3e−t ).
(b)

−3 3

−3

3

x

y (c)

1 2 3
−1

1

2

3

y(t)

x(t)

t

x, y
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11. (a) Given the general solution (
k2e

2t − k1
3
e−t , k1e−t

)
,

we see that k1 = 1, and therefore k2 = 1/3. We obtain

Y(t) = (x(t), y(t)) =
(
1
3e
2t − 1

3e
−t , e−t

)
.

(b)

−3 3

−3

3

x

y (c)

1

1

2 x(t)

y(t)

t

x, y

12. (a) Given the general solution (
k2e

2t − k1
3
e−t , k1e−t

)
,

we see that k1 = −1, and therefore k2 = 2/3. We obtain

Y(t) = (x(t), y(t)) =
(
2
3e
2t + 1

3e
−t , −e−t

)
.

(b)

−3 3

−3

3

x

y (c)

1 2
−1

1

2

3

x(t)

y(t)

t

x, y

13. (a) For this system, we note that the equation for dy/dt is a homogeneous linear equation. Its
general solution is

y(t) = k2e
−3t .
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Substituting y = k2e−3t into the equation for dx/dt , we have

dx

dt
= 2x − 8(k2e

−3t )2

= 2x − 8k22e
−6t

This equation is a linear and nonhomogeneous. The general solution of the associated homo-
geneous equation is xh(t) = k1e2t . To find one particular solution of the nonhomogeneous
equation, we guess

xp(t) = αe−6t .

With this guess, we have

dxp
dt

− 2xp = −6αe−6t − 2αe−6t

= −8αe−6t .

Therefore, xp(t) is a solution if α = k22. The general solution for x(t) is k1e
2t + k22e

−6t , and
the general solution for the system is

(x(t), y(t)) = (k1e
2t + k22e

−6t , k2e−3t ).

(b) Setting dy/dt = 0, we obtain y = 0. From dx/dt = 2x − 8y2 = 0, we see that x = 0 as well.
Therefore, this system has exactly one equilibrium point, (x, y) = (0, 0).

(c) If (x(0), y(0)) = (0, 1), then k2 = 1. We evaluate the expression for x(t) at t = 0 and obtain
k1 + 1 = 0. Consequently, k1 = −1, and the solution to the initial-value problem is

(x(t), y(t)) = (e−6t − e2t , e−3t ).

(d)

−1 1

−1

1

x

y
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EXERCISES FOR SECTION 2.5

1. (a) We compute

dx

dt
= d(cos t)

dt
= − sin t = −y and

dy

dt
= d(sin t)

dt
= cos t = x,

so (cos t, sin t) is a solution.
(b)

Table 2.1

t Euler’s approx. actual distance

0 (1, 0) (1, 0)

4 (−2.06, −1.31) (−0.65, −0.76) 1.51

6 (2.87, −2.51) (0.96, −0.28) 2.94

10 (−9.21, 1.41) (−0.84, −0.54) 8.59

(c)
Table 2.2

t Euler’s approx. actual distance

0 (1, 0) (1, 0)

4 (−.81, −.91) (−0.65,−0.76) 0.22

6 (1.29, −.40) (0.96, −0.28) 0.35

10 (−1.41, −.85) (−0.84, −.54) 0.65

(d) The solution curves for this system are all circles centered at the origin. Since Euler’s method
uses tangent lines to approximate the solution curve and the tangent line to any point on a circle
is entirely outside the circle (except at the point of tangency), each step of the Euler approxima-
tion takes the approximate solution farther from the origin. So the Euler approximations always
spiral away from the origin for this system.

2. (a) We compute

dx

dt
= d(e2t )

dt
= 2e2t = 2x and

dy

dt
= d(3et )

dt
= 3et = y,

so (e2t , 3et ) is a solution.
(b)

Table 2.3

t Euler’s approx. actual distance

0 (1, 3) (1, 3)

2 (16, 15.1875) (54.59, 22.17) 39.22

4 (256, 76.88) (2981, 164) 2726

6 (4096, 389) (162755, 1210) 158661
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(c)
Table 2.4

t Euler’s approx. actual distance

0 (1, 3) (1, 3)

2 (38.34, 20.18) (54.59, 22.17) 16.38

4 (1470, 136) (2981, 164) 1511.4

6 (56347, 913) (162755, 1210) 106408

(d) The solution curve starts at (1, 3) and tends to infinity in both the x- and y-directions. Because
the solution is an exponential, Euler’s method has a hard time keeping up with the growth of
the solutions.

3. (a) Euler approximation yields (x5, y5) ≈ (0.65, −0.59).
(b)

−2 −1 1 2

−2

−1

1

2

x

y (c)

−2 2

−2

2

x

y

4. (a) Euler approximation yields (x8, y8) ≈ (3.00, 0.76).

(b)

−4 −3 −2 −1 1 2 3 4
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−2
−1

1
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3
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x

y (c)

−4 −3 −2 −1 1 2 3 4
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1

2

3

4

x

y

5. (a) Euler approximation yields (x5, y5) ≈ (1.94, −0.72).
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(b)

−2 2

−2

2

x

y (c)

−2 2

−2

2

x

y

6. (a) Euler approximation yields (x7, y7) ≈ (0.15, 0.78).

(b)

−4 −3 −2 −1 1 2
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1

2

x

y (c)

−4 −3 −2 −1 1 2

−2

−1

1

2

x

y

7. In order to be able to apply Euler’s method to this second-order equation, we reduce the equation to
a first-order system using v = dy/dt . We obtain

dy

dt
= v

dv

dt
= −2y − v

2
.

The choice of �t has an important effect on the long-term behavior of the approximate solution
curve. The approximate solution curve for �t = 0.25 seems almost periodic. If (y0, v0) = (2, 0),
then we obtain (y5, v5) ≈ (−0.06, −2.81), (y10, v10) ≈ (−1.98, 1.15), (y15, v15) ≈ (0.87, 2.34), . . .

However, the approximate solution curve for �t = 0.1 spirals toward the origin. If (y0, v0) =
(2, 0), then we obtain (y5, v5) ≈ (1.62, −1.73), (y10, v10) ≈ (0.57, −2.44), (y15, v15) ≈
(−0.60, −1.94), . . .

The following figure illustrates the results of Euler’s method with �t = 0.1.
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−2 2

−2

2

y

v

8. In order to be able to apply Euler’s method to this second-order equation, we reduce the equation to
a first-order system using v = dy/dt . We obtain

dy

dt
= v

dv

dt
= −y − v

5
.

The choice of �t has an important effect on the long-term behavior of the approximate solution
curve. The curve for �t = 0.25 spirals away from the origin. If (y0, v0) = (0, 1), then we obtain
(y5, v5) ≈ (0.98, 0.23), (y10, v10) ≈ (0.64, −0.92), (y15, v15) ≈ (−0.63, −0.84), . . .

The behavior of this approximate solution curve is deceiving. Consider the approximation we
obtain if we halve that value of �t . In other words, let �t = 0.125. For (y0, v0) = (2, 0), then we
obtain (y5, v5) ≈ (0.58, 0.73), (y10, v10) ≈ (0.91, 0.21), (y15, v15) ≈ (0.89, −0.37), . . .

The following figure illustrates how this approximate solution curve spirals toward the origin.
(As we will see, this second approximation is much better than the first.)

−1 1

−1

1

y

v
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EXERCISES FOR SECTION 2.6

1. (a) If y = 0, the system is
dx

dt
= −x

dy

dt
= 0.

Therefore, any solution that lies on the x-axis tends toward the origin. Solutions on negative
half of the x-axis approach the origin from the left, and solutions on the positive half of the
x-axis approach from the right. The third solution curve is the equilibrium point at the origin.

(b)

−1 1

−1

1

x

y

Since dy/dt = −y, we know that y(t) = k2e−t where k2 can be any constant. Therefore,
all solution curves not on the x-axis approach the x-axis but never touch it. Using the general
solution for y(t), the equation for dx/dt becomes dx/dt = −x + k2e−t . This equation is a
nonhomogeneous, linear equation, and there are many ways that we can solve it. The solution
is x(t) = k1e−t + k2te−t . We see that (x(t), y(t)) → (0, 0) as t → ∞, but (x(t), y(t)) never
equals (0, 0) unless the initial condition is (0, 0).

2. (a) There are infinitely many initial conditions that yield a periodic solution. For example, the
initial condition (2.00, 0.00) lies on a periodic solution.

−3 3

−3

3

x

y
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(b) Any solution with an initial condiion that is inside the periodic curve is trapped for all time.
Namely, the period solution forms a “fence” that stops any solution with an initial condition
that is inside the closed curve from “escaping.” Since the system is autonomous, no nonperiodic
solution can touch the solution curve for this period solution.

3. With x(t) = e−t sin(3t) and y(t) = e−t cos(3t), we have
dx

dt
= −e−t sin(3t) + 3e−t cos(3t)

= −x + 3y
dy

dt
= −3e−t sin(3t) − e−t cos(3t)

= −3x − y

Therefore, Y1(t) is a solution.

4. With x(t) = e−(t−1) sin(3(t − 1)) and y(t) = e−(t−1) cos(3(t − 1)), we have

dx

dt
= −e−(t−1) sin(3(t − 1)) + 3e−(t−1) cos(3(t − 1))

= −x + 3y
dy

dt
= −3e−(t−1) sin(3(t − 1)) − e−(t−1) cos(3(t − 1))

= −3x − y

Therefore, Y2(t) is a solution.

5.

−1 1

−1

1

x

y

The solution curve swept out by Y2(t) is identical to the solution curve swept out by Y1(t) be-
cause Y2(t) has t − 1 wherever Y1(t) has a t . Whenever Y1(t) occupies a point in the phase plane,
Y2(t) occupies that same point exactly one unit of time later. Since these curves never occupy the
same point at the same time, they do not violate the Uniqueness Theorem.

Although the exercise does not ask for a verification that these curves spiral into the origin, we
can show that they do spiral by expressing the solution curve for Y1(t) in terms of polar coordinates
(r, θ). Since r2 = x2 + y2, we obtain r = e−t , and

x(t)

y(t)
= e−t sin 3t
e−t cos 3t

= tan 3t.
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Also,
x(t)

y(t)
= tanφ,

where φ = π/2 − θ . Therefore, tan 3t = tanφ, and 3t = π/2 − θ . In other words, the angle θ

changes according to the relationship θ = π/2− 3t .
These two computations imply that the solution curves for Y1(t) and Y2(t) spiral into the origin

in a clockwise direction.

6. We need to assume that the hypotheses of the Uniqueness Theorem apply to the vector field on the
parking lot. Then both Gib and Harry will follow the solution curve for their own starting point.

7. Assume the vector field satisfies the hypotheses of the Uniqueness Theorem. Since the vector field
does not change with time, Gib will follow the same path as Harry, only one time unit behind.

8. (a) Differentiation yields

dY2
dt

= d(Y1(t + t0))

dt
= F(Y1(t + t0)) = F(Y2(t))

where the second equality uses the Chain Rule and the other two equalities involve the defini-
tion of Y2(t).

(b) They describe the same curve, but differ by a constant shift in parameterization.

9. From Exercise 8 we know that Y1(t−1) is a solution of the system and Y1(1−1) = Y1(0) = Y2(1),
so both Y2(t) and Y1(t − 1) occupy the point Y1(0) at time t = 1. Hence, by the Uniqueness
Theorem, they are the same solution. So Y2(t) is a reparameterization by a constant time shift of
Y1(t).

10. (a) Since the system is completely decoupled, we can use separation of variables to obtain the gen-
eral solution

(x(t), y(t)) =
(
2t + c1,

−1
t + c2

)
,

where c1 and c2 are arbitrary constants.
(b) As t increases, any solution with y(0) > 0 tends to infinity. Any solution with y(0) ≤ 0 is

asymptotic to y = 0 as t → ∞.
(c) All solutions with y(0) > 0 blow up in finite time.

11. As long as y(t) is defined, we have y(t) ≥ 1 if t ≥ 0 because dy/dt is nonnegative. Using this
observation, we have

dx

dt
≥ x2 + 1

for all t ≥ 0 in the domain of x(t). Since x(t) = tan t satisfies the initial-value problem dx/dt =
x2 + 1, x(0) = 0, we see that the x(t)-function for the solution to our system must satisfy

x(t) ≥ tan t.

Therefore, since tan t → ∞ as t → π/2−, x(t) → ∞ as t → t∗, where 0 ≤ t∗ ≤ π/2.
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EXERCISES FOR SECTION 2.7

1. The system of differential equations is

dS

dt
= −αSI

d I

dt
= αSI − β I

d R

dt
= β I.

Note that
dS

dt
+ d I

dt
+ dR

dt
= −αSI + (αSI − β I ) + β I = 0.

Hence, the sum S(t) + I (t) + R(t) is constant for all t . Since the model assumes that the total
population is divided into these three groups at t = 0, S(0) + I (0) + R(0) = 1. Therefore, S(t) +
I (t) + R(t) = 1 for all t .

2. (a)

1

0.5

S

I

�

S(0) = 0.9

�

S(0) = 0.8

�

S(0) = 0.7

As S(0) decreases, the maximum of I (t) decreases, that is, the maximum number of infect-
eds decreases as the initial proportion of the susceptible population decreases. Furthermore, as
S(0) decreases, the limit of S(t) as t → ∞ increases. Consequently, the fraction of the pop-
ulation that contracts the disease during the epidemic decreases as the initial proportion of the
susceptible population decreases.

(b) If α = 0.25 and β = 0.1, the threshold value of the model is β/α = 0.1/0.25 = 0.4. If
S(0) < 0.4, then d I/dt < 0 for all t > 0. In other words, any influx of infecteds will decrease
toward zero, preventing an epidemic from getting started. Therefore, 60% of the population
must be vaccinated to prevent an epidemic from getting started.

3. (a) To guarantee that d I/dt < 0, we must have αSI − β I < 0. Factoring, we obtain

(αS − β)I < 0,

and since I is positive, we have αS − β < 0. In other words,

S <
β

α
.

Including initial conditions for which S(0) = β/α is debatable since S(0) = β/α implies that
I (t) is decreasing for t ≥ 0.

(b) If S(0) < β/α, then d I/dt < 0. In that case, any initial influx of infecteds will decrease toward
zero, and the epidemic will die out. The fraction vaccinated must be at least 1− β/α.
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4. (a) We have
d I

dS
= −1+ ρ

S
.

Then d I/dS = 0 if and only if S = ρ. Furthermore, d2 I/dt2 = −ρ/S2 is always negative.
By the Second Derivative Test, we conclude that the maximum value of I (S) occurs at S = ρ.
Evaluating I (S) at S = ρ, we obtain the maximum value

I (ρ) = 1− ρ + ρ ln ρ.

(b) For an epidemic to occur, S(0) > β/α (see Exercise 3). If β > α, then β/α > 1. Therefore,
for an epidemic to occur under these conditions, S(0) > 1, which is not possible since S(t) is
defined as a proportion of the total population.

5. (a)

1

1

S

I

�

ρ = 1/3

�

ρ = 1/2

�

ρ = 2/3

(b)

1

1

ρ

S

(c) As ρ increases, the limit of S(t) as t → ∞ approaches 1. Therefore, as ρ increases, the fraction
of the population that contract the disease approaches zero.

6. (a) Note that

dS

dt
+ d I

dt
+ dR

dt
= (−αSI + γ R) + (αSI − β I ) + (β I − γ R)

= 0

for all t .
(b) If we substitute R = 1− (S + I ) into dS/dt , we get

dS

dt
= −αSI + γ (1− (S + I ))

d I

dt
= αSI − β I.

(c) If d I/dt = 0, then either I = 0 or S = β/α.
If I = 0, then dS/dt = γ (1− S), which is zero if S = 1. We obtain the equilibrium point

(S, I ) = (1, 0).
If S = β/α, we set dS/dt = 0, and therefore,

−α

(
β

α

)
I + γ

(
1−

(
β

α
+ I

))
= 0

−β I + γ − γβ

α
− γ I = 0
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γ (α − β)

α
= (β + γ )I,

so

I = γ (α − β)

α(β + γ )
.

Therefore, there exists another equilibrium point (S, I ) =
(

β

α
,
γ (α − β)

α(β + γ )

)
.

(d)

1

1

S

I

Given α = 0.3, β = 0.15, and γ = 0.05, the equilibrium points are (S, I ) = (1, 0) and
(S, I ) = (0.5, 0.125) (see part (b)). For any solution with I (0) = 0, the solution tends toward
(1, 0), which corresponds to a population where no one ever becomes infected. For all other
initial conditions, the solutions tend toward (0.5, 1.25) as t approaches infinity.

(e) We fix α = 0.3 and β = 0.15. If γ is slightly greater than 0.05, the equilibrium point

(S, I ) =
(
0.5,

0.15γ

0.15+ γ

)

shifts vertically upward, corresponding to a larger proportion of the population being infected
as t → ∞. For γ slightly less than 0.05, the same equilibrium point shifts vertically downward,
corresponding to a smaller proportion of the population being infected as t → ∞.

7. (a) If I = 0, both equations are zero, so the S-axis consists entirely of equilibrium points. If
I �= 0, then S would have to be zero. However, in that case, the second equation reduces to
d I/dt = −β I , which cannot be zero by assumption. Therefore, all equilibrium points must lie
on the S-axis.

(b) We have d I/dt > 0 if and only if αS
√
I − β I > 0. Factoring out

√
I , we obtain

(αS − β
√
I )

√
I > 0.

Since
√
I ≥ 0, we have

αS − β
√
I > 0

−β
√
I > αS

√
I < −α

β
S

I <

(
α

β

)2
S2.
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The resulting region is bounded by the S-axis and the parabola

I =
(

αS

β

)2
,

and lies in the half-plane I > 0.
(c) The model predicts that the entire
population will become infected.
That is, R(t) → 1 as t → ∞.

1

0.5

S

I

8. (a) Factoring the right-hand side of the equation for d I/dt , we get

d I

dt
= (α I − γ )S.

Therefore, the line S = 0 (the I -axis) is a line of equilibrium points. If S �= 0, then d I/dt = 0
only if I = γ /α. However, if S �= 0 and I = γ /α, then dS/dt �= 0. So there are no other
equilibrium points.

(b) If S �= 0, then S is positive. Therefore, d I/dt > 0 if and only if α I − γ > 0 and S > 0. In
other words d I/dt > 0 if and only if I > γ/α and S > 0.

(c)

1

1

S

I

The model predicts that if I (0) > 0.5, then the infected (zombie) population will grow
until there are no more susceptibles. If I (0) = 0.5, then the infected population will remain
constant for all time. If I (0) < 0.5, then the entire infected population will die out over time.

9. (a) β = 0.44.
(b) As t → ∞, S(t) ≈ 19. Therefore, the total number of infected students is 744.
(c) Since β determines how quickly students move from being infected to recovered, a small value
of β relative to α indicates that it will take a long time for the infected students to recover.
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10. With 200 students vaccinated, there are only 563 students who can potentially contract the disease.
The total population of students is still 763 students, but the vaccinated students decrease the interac-
tion between infecteds and susceptibles. Starting with one infected student, we have (S(0), I (0)) ≈
(0.737, 0.001).

1

0.5

S

I

�
�

��

200 Vaccinated

�
�

��

None Vaccinated

Note that if 200 students are vaccinated, the maximum of I (t) is smaller. Consequently, the
maximum number of infecteds is smaller if 200 students are vaccinated. More specifically, if none of
the students are vaccinated, the maximum of I (t) is approximately 293 students. If 200 students are
vaccinated, the maximum of I (t) is approximately 155 students.

In addition, the total number of students who catch the disease decreases if 200 students are
initially vaccinated. More specifically, if none of the students are vaccinated, S(t) is approximately
19 as t → ∞. Thus, the total number of students infected is 763 − 19 = 744 students. If 200
students are initially vaccinated, S(t) ≈ 42 as t → ∞. Thus, the total number of students infected is
563− 42 = 521 students.

EXERCISES FOR SECTION 2.8

1. (a) Substitution of (0, 0, 0) into the given system of differential equations yields dx/dt = dy/dt =
dz/dt = 0. Similarly, for the case of (±6√2, ±6√2, 27), we obtain

dx

dt
= 10(±6√2− (±6√2))

dy

dt
= 28(±6√2) − (±6√2) − 27(±6√2)

dz

dt
= −8

3
(27) − (±6√2)2.

Therefore, dx/dt = dy/dt = dz/dt = 0, and these three points are equilibrium points.
(b) For equilibrium points, we must have dx/dt = dy/dt = dz/dt = 0. We therefore obtain the

three simultaneous equations ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

10(y − x) = 0

28x − y − xz = 0

− 8
3 z + xy = 0.



2.8 The Lorenz Equations 163

From the first equation, x = y. Eliminating y, we obtain⎧⎨
⎩

x(27− z) = 0

− 8
3 z + x2 = 0

Then, x = 0 or z = 27. With x = 0, z = 0. With z = 27, x2 = 72, hence y = x = ±6√2.
2. For equilibrium points, we must have dx/dt = dy/dt = dz/dt = 0. We obtain the three simultane-
ous equations ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
10(y − x) = 0

ρx − y − xz = 0

− 8
3 z + xy = 0.

The first equation implies x = y. Eliminating y, we obtain⎧⎨
⎩

x(ρ − 1− z) = 0

− 8
3 z + x2 = 0.

Thus, x = 0, or z = ρ − 1. If x = 0 and therefore y = 0, then z = 0 by the last equation. Hence the
origin (0, 0, 0) is an equilibrium point for any value of ρ.

If z = ρ − 1, the last equation implies that x2 = 8(ρ − 1)/3.

(a) If ρ < 1, the equation x2 = 8(ρ − 1)/3 has no solutions. If ρ = 1, its only solution is x = 0,
which corresponds to the equilibrium point at the origin.

(b) If ρ > 1, the equation x2 = 8(ρ − 1)/3 has two solutions, x = ±√
8(ρ − 1)/3. Hence there

are two more equilibrium points, at x = y = ±√
8(ρ − 1)/3 and z = ρ − 1.

(c) Since the number of equilibrium points jumps from 1 to 3 as ρ passes through the value ρ = 1,
ρ = 1 is a bifurcation value for this system.

3. (a) We have
dx

dt
= 10(y − x) = 0 and

dy

dt
= 28x − y = 0,

so x(t) = y(t) = 0 for all t if x(0) = y(0) = 0.
(b) We have

dz

dt
= −8

3
z,

so z(t) = ce−8t/3. Since z(0) = 1, it follows that c = 1, and the solution is x(t) = 0, y(t) = 0,
and z(t) = e−8t/3.

(c) If z(0) = z0, it follows that c = z0, so the solution is x(t) = 0, y(t) = 0, and z(t) = z0e−8t/3.

x

y

z
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4. Let the parameter r = 28. If you select any initial condition that is not an equilibrium point, the
solution winds around one of the two nonzero equilibrium points. A second solution whose initial
condition differs from the first in the third decimal place is also computed. After a short interval of
time, this second solution behaves in a manner that is quite different from the original solution. That
is, it winds about the equilibrium points in a completely different pattern. While the two solutions
ultimately seem to trace out the same figure, they do so in two very different ways.

No matter which two nearby initial conditions are selected, the result appears to be the same.
Within a very short interval of time (usually less than the amount of time it takes the solutions to
make twenty revolutions about the equilibrium points), the two solutions have separated and their
subsequent trajectories are quite distinct.

5. (a)

−2 2

−2

2

x

y (b) (c)

xy

z

REVIEW EXERCISES FOR CHAPTER 2

1. The simplest solution is an equilibrium solution, and the origin is an equilibrium point for this sys-
tem. Hence, the equilibrium solution (x(t), y(t)) = (0, 0) for all t is a solution.

2. Note that dy/dt > 0 for all (x, y). Hence, there are no equilibrium points for this system.

3. Let v = dy/dt . Then dv/dt = d2y/dt2, and we obtain the system

dy

dt
= v

dv

dt
= 1.

4. First we solve dv/dt = 1 and get v(t) = t + c1, where c1 is an arbitrary constant. Next we solve
dy/dt = v = t + c1 and obtain y(t) = 1

2 t
2 + c1t + c2, where c2 is an arbitrary constant. Therefore,

The general solution of the system is

y(t) = 1
2 t
2 + c1t + c2

v(t) = t + c1.

5. The equation for dx/dt gives y = 0. If y = 0, then sin(xy) = 0, so dy/dt = 0. Hence, every point
on the x-axis is an equilibrium point.
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6. Equilibrium solutions occur if both dx/dt = 0 and dy/dt = 0 for all t . We have dx/dt = 0 if
and only if x = 0 or x = y. We have dy/dt = 0 if and only if x2 = 4 or y2 = 9. There are six
equilibrium solutions:
(x(t), y(t)) = (0, 3) for all t ,
(x(t), y(t)) = (0, −3) for all t ,
(x(t), y(t)) = (2, 2) for all t ,
(x(t), y(t)) = (−2, −2) for all t ,
(x(t), y(t)) = (3, 3) for all t , and
(x(t), y(t)) = (−3, −3) for all t .

7. First, we check to see if dx/dt = 2x − 2y2 is satisfied. We compute

dx

dt
= −6e−6t and 2x − 2y2 = 2e−6t − 8e−6t = −6e−6t .

Second, we check to see if dy/dt = −3y. We compute
dy

dt
= −6e−3t and − 3y = −3(2e−3t ) = −6e−3t .

Since both equations are satisfied, (x(t), y(t)) is a solution.

8. The second-order equation for this harmonic oscillator is

β
d2y

dt2
+ γ

dy

dt
+ αy = 0.

The corresponding system is
dy

dt
= v

dv

dt
= −α

β
y − γ

β
v.

9. From the equation for dx/dt , we know that x(t) = k1e2t , where k1 is an arbitrary constant, and from
the equation for dy/dt , we have y(t) = k2e−3t , where k2 is another arbitrary constant. The general
solution is (x(t), y(t)) = (k1e2t , k2e−3t ).

10. Note that (0, 2) is an equilibrium point for this system. Hence, the solution with this initial condition
is an equilibrium solution.

1

2

x(t)

y(t)

t

x, y

11. There are many examples. One is

dx

dt
= (x2 − 1)(x2 − 4)(x2 − 9)(x2 − 16)(x2 − 25)

dy

dt
= y.

This system has equilibria at (±1, 0), (±2, 0), (±3, 0), (±4, 0), and (±5, 0).
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12. One step of Euler’s method is

(2, 1) + �t F(2, 1) = (2, 1) + 0.5 (3, 2)

= (3.5, 2).

13. The point (1, 1) is on the line y = x . Along this line, the vector field for the system points toward
the origin. Therefore, the solution curve consists of the half-line y = x in the first quadrant. Note
that the point (0, 0) is not on this curve.

1

1

x

y

14. Let F(x, y) = ( f (x, y), g(x, y)) be the vector field for the original system. The vector field for the
new system is

G(x, y) = (− f (x, y), −g(x, y))
= −( f (x, y), g(x, y))

= −F(x, y).

In other words, the directions of vectors in the new field are the opposite of the directions in the
original field. Consequently, the phase portrait of new system has the same solution curves as the
original phase portrait except that their directions are reversed. Hence, all solutions tend away from
the origin as t increases.

15. True. First, we check the equation for dx/dt . We have

dx

dt
= d(e−6t )

dt
= −6e−6t ,

and
2x − 2y2 = 2(e−6t ) − 2(2e−3t )2 = 2e−6t − 8e−6t = −6e−6t .

Since that equation holds, we check the equation for dy/dt . We have

dy

dt
= d(2e−3t )

dt
= −6e−3t ,

and
−3y = −3(2e−3t ) = −6e−3t .

Since the equations for both dx/dt and dy/dt hold, the function (x(t), y(t)) = (e−6t , 2e−3t ) is a
solution of this system.
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16. False. A solution to this system must consist of a pair (x(t), y(t)) of functions.

17. False. The components of the vector field are the right-hand sides of the equations of the system.

18. True. For example,
dx

dt
= y

dy

dt
= x

and dx

dt
= 2y

dy

dt
= 2x

have the same direction field. The vectors in their vector fields differ only in length.

19. False. Note that (x(0), y(0)) = (x(π), y(π)) = (0, 0). However, (dx/dt, dy/dt) = (1, 1) at t = 0,
and (dx/dt, dy/dt) = (−1, −1) at t = π . For an autonomous system, the vector in the vector field
at any given point does not vary as t varies. This function cannot be a solution of any autonomous
system. (This function parameterizes a line segment in the xy-plane from (1, 1) to (−1, −1). In fact,
it sweeps out the segment twice for 0 ≤ t ≤ 2π .)

20. True. For an autonomous system, the rates of change of solutions depend only on position, not on
time. Hence, if a function (x1(t), y1(t)) satisfies an autonomous system, then the function given by

(x2(t), y2(t)) = (x1(t + T ), y1(t + T )),

where T is some constant, satisfies the same system.

21. True. Note that cos(t + π/2) = − sin t and sin(t + π/2) = cos t . Consequently,

(− sin t, cos t) = (cos(t + π/2), sin(t + π/2)),

which is a time-translate of the solution (cos t, sin t). Since the system is autonomous, a time-translate
of a solution is another solution.

22. (a) To obtain an equilibrium point, dR/dt must equal zero at R = 4,000 and C = 160. Substitut-
ing these values into dR/dt = 0, we obtain

4,000

(
1− 4,000

130,000

)
− α(4,000)(160) = 0

4,000

(
126,000

130,000

)
= 640,000 α

α = (4,000)(126,000)

(640,000)(130,000)

≈ 0.006.

Therefore, α ≈ 0.006 yields an equilibrium solution at C = 160 and R = 4,000.
(b) For α = 0.006, C = 160, and R = 4,000, we obtain

−αRC = −(0.006)(4,000)(160) = 3,840.

Assuming that this value represents the total decrease in the rabbit population per year caused
by the cats, then the number of rabbits each cat eliminated per year is

Total number of rabbits eliminated

Total number of cats
= 3,840

160
= 24.



168 CHAPTER 2 FIRST-ORDER SYSTEMS

Therefore, each cat eliminated approximately 24 rabbits per year.
(c) After the “elimination” of the cats, C(t) = 0. If we introduce a constant harvesting factor β

into dR/dt , we obtain

dR

dt
= R

(
1− R

130,000

)
− β.

In order for the rabbit population to be controlled at R = 4,000, we need

dR

dt
= 4,000

(
1− 4,000

130,000

)
− β = 0

50,400

13
= β.

Therefore, if β = 50,400/13 ≈ 3,877 rabbits are harvested per year, then the rabbit population
could be controlled at R = 4,000.

23. False. The point (0, 0) is an equilibrium point, so the Uniqueness Theorem guarantees that it is not
on the solution curve corresponding to (1, 0).

24. False. From the Uniqueness Theorem, we know that the solution curve with initial condition (1/2, 0)
is trapped by other solution curves that it cannot cross (or even touch). Hence, x(t) and y(t) must
remain bounded for all t .

25. False. These solutions are different because they have different values at t = 0. However, they do
trace out the same curve in the phase plane.

26. True. The solution curve is in the second quadrant and tends toward the equilibrium point (0, 0) as
t → ∞. It never touches (0, 0) by the Uniqueness Theorem.

27. False. The function y(t) decreases monotonically, but x(t) increases until it reaches its maximum at
x = −1. It decreases monotonically after that.

28. False. The graph of x(t) for this solution has exactly one local maximum and no other critical points.
The graph of y(t) has four critical points, two local minimums and two local maximums.

29. (a) The equilibrium points satisfy the equations x = 2y and cos 2y = 0. From the second equation,
we conclude that

2y = π

2
+ kπ,

where k = 0, ±1, ±2, . . . . Since 2y = x , we see that the equilibria are

(x, y) = . . . , (−3π/2, −3π/4), (−π/2, −π/4), (π/2, π/4), (3π/2, 3π/4), (5π/2, 5π/4), . . .
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(b)

−5 5

−3

3

x

y

−5 5

−3

3

x

y

(c) Most solutions become unbounded in y as t increases. However, there appears to be a “curve”
of solutions that tend toward the equilibria . . . , (−π/2, −π/4), (3π/2, 3π/4), . . . as t increases.

30. If x1 is a root of f (x) (that is, f (x1) = 0), then the line x = x1 is invariant. In other words, given
an initial condition of the form (x1, y), the corresponding solution curve remains on the line for all t .
Along the line x = x1, y(t) obeys dy/dt = g(y), so the line x = x1 looks like the phase line of the
equation dy/dt = g(y).

Similarly, if g(y1) = 0, then the line y = y1 looks like the phase line for dx/dt = f (x) except
that it is horizontal rather than vertical.

Combining these two observations, we see that there will be vertical phase lines in the phase
portrait for each root of f (x) and horizontal phase lines in the phase portrait for each root of g(y).

31.

−1

1

2

3

4

y(t)

x(t)

t

x, y 32.
1

x(t)

y(t)

t

x, y

33.

−1

1
x(t)

y(t)

t

x, y 34.

1

2

y(t)

x(t)

t

x, y
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35. (a) First, we note that dy/dt depends only on y. In fact, the general solution of dy/dt = 3y is
y(t) = k2e3t , where k2 can be any constant.

Substituting this expression for y into the equation for dx/dt , we obtain

dx

dt
= x + 2k2e

3t + 1.

The general solution of the associated homogeneous equation is xh(t) = k1et . To find a partic-
ular solution of the nonhomogeneous equation, we guess xp(t) = ae3t + b. Substituting this
guess into the equation gives

3ae3t = ae3t + b + 2k2e
3t + 1,

so if xp(t) is a solution, we must have 3a = a+2k2 and b+1 = 0. Hence, a = k2 and b = −1,
and the function xp(t) = k2e3t − 1 is a solution of the nonhomogeneous equation.

Therefore, the general solution of the system is

x(t) = k1e
t + k2e

3t − 1

y(t) = k2e
3t .

(b) To find the equilibrium points, we solve the system of equations⎧⎨
⎩

x + 2y + 1= 0

3y = 0,

so (x, y) = (−1, 0) is the only equilibrium point.
(c) To find the solution with initial condition (−1, 3), we set

−1 = x(0) = k1 + k2 − 1

3 = y(0) = k2,

so k2 = 3 and k1 = −3. The solution with the desired initial condition is
(x(t), y(t)) = (−3et + 3e3t − 1, 3e3t ).

(d)

−6 6

−5

5

x

y
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36. (a) For this system, we note that the equation for dy/dt depends only on y. In fact, this equation
is separable and linear, so we have a choice of techniques for finding the general solution. The
general solution for y is y(t) = −1+ k1et , where k1 can be any constant.

Substituting y = −1+ k1et into the equation for dx/dt , we have

dx

dt
= (−1+ k1e

t )x .

This equation is a homogeneous linear equation, and its general solution is

x(t) = k2e
−t+k1et ,

where k2 is any constant. The general solution for the system is therefore

(x(t), y(t)) = (k2e
−t+k1et , −1+ k1e

t ),

where k1 and k2 are constants which we can adjust to satisfy any given initial condition.
(b) Setting dy/dt = 0, we obtain y = −1. From dx/dt = xy = 0, we see that x = 0. Therefore,

this system has exactly one equilibrium point, (x, y) = (0, −1).
(c) If (x(0), y(0)) = (1, 0), then we must solve the simultaneous equations⎧⎨

⎩
k2ek1 = 1

−1+ k1 = 0.

Hence, k1 = 1, and k2 = 1/e. The solution to the initial-value problem is

(x(t), y(t)) =
(
e−1e−t+et , −1+ et

)
=
(
ee

t−t−1, −1+ et
)

.

(d)

−3 3

−3

3

x

y

37. (a) Since θ represents an angle in this model, we restrict θ to the interval −π < θ < π .
The equilibria must satisfy the equations⎧⎨

⎩
cos θ = s2

sin θ = −Ds2.
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Therefore,

tan θ = sin θ

cos θ
= −Ds2

s2
= −D,

and consequently, θ = − arctan D.
To find s, we note that s2 = cos(− arctan D). From trigonometry, we know that

cos(− arctan D) = 1√
1+ D2

.

If −π < θ < π , there is a single equilibrium point for each value of the parameter D. It is

(θ, s) =
(

− arctan D,
1

4
√
1+ D2

)
.

(b) The equilibrium point represents motion along a line at a given angle from the horizon with a
constant speed.
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