
INSTRUCTOR’S MANUAL
TO ACCOMPANY

DatabaseSystem Concepts

Seventh Edition

Abraham Silberschatz
Yale University

Henry F. Korth
Lehigh University

S. Sudarshan
Indian Institute of Technology, Bombay

April 1, 2019

Copyright C⋇ 2019 A. Silberschatz, H. Korth, and S. Sudarshan

Preface

This volume is an instructor’s manual for the Seventh Edition of Database System Con-
cepts by Abraham Silberschatz, Hank Korth, and S. Sudarshan. It consists of answers
to the Exercises in the parent text.

Although we have tried to produce an instructor’s manual that will aid all of the
users of our book as much as possible, there can always be improvements (improved
answers, additional questions, sample test questions, programming projects, alternative
orders of presentation of the material, additional references, and so on). We invite
you to help us in improving this manual. If you have better solutions to the exercises
or other items that would be of use with Database System Concepts, we invite you to
send them to us for consideration in later editions of this manual. All contributions
will, of course, be properly credited to their contributor. Email should be addressed to
db-book-authors@cs.yale.edu.

A. S.
H. F. K
S. S.

iii

db-book-authors@cs.yale.edu

Contents

Chapter 1 Introduction . 1

Chapter 2 Introduction to the Relational Model . 5

Chapter 3 Introduction to SQL . 11

Chapter 4 Intermediate SQL . 29

Chapter 5 Advanced SQL . 35

Chapter 6 Database Design using the E-R Model . 43

Chapter 7 Relational Database Design . 57

Chapter 8 Beyond Relational Data . 71

Chapter 9 Application Development . 77

Chapter 10 Big Data . 91

Chapter 11 Data Analysis . 95

Chapter 12 Physical Storage Systems . 97

Chapter 13 Data Storage Structures . 101

Chapter 14 Indexing . 105

Chapter 15 Query Processing . 111

Chapter 16 Query Optimization . 117

Chapter 17 Transactions . 123

Chapter 18 Concurrency Control . 131

Chapter 19 Recovery System . 139

Chapter 20 Database-System Architectures . 147

Chapter 21 Parallel and Distributed Storage . 151

Chapter 22 Parallel and Distributed Query Processing . 153

v

vi Contents

Chapter 23 Parallel and Distributed Transaction Processing 159

Chapter 24 Advanced Indexing Techniques . 163

Chapter 25 Advanced Application Development . 167

Chapter 26 Blockchain Databases . 173

CHAP T E R 1
Introduction

Exercises

1.6 List four applications you have used that most likely employed a database system
to store persistent data.

Answer:

• Banking: For account information, transfer of funds, banking transactions.

• Universities: For student information, online assignment submissions,
course registrations, and grades.

• Airlines: For reservation of tickets and schedule information.

• Online news sites: For updating news and maintaining archives.

• Online-trade: For product data, availability and pricing information, order-
tracking facilities, and generating recommendation lists.

1.7 List four significant differences between a file-processing system and a DBMS.

Answer:
Some main differences between a database management system and a file-
processing system are:

• Both systems contain a collection of data and a set of programs which ac-
cess the data. A database management system coordinates both the physical
and the logical access to the data, whereas a file-processing system coordi-
nates only the physical access.

• A database management system reduces the amount of data duplication by
ensuring that a physical piece of data is available to all programs authorized
to have access to it, whereas data written by one program in a file-processing
system may not be readable by another program.

1

2 Chapter 1 Introduction

• A database management system is designed to allow flexible access to data
(i.e., queries), whereas a file-processing system is designed to allow pre-
determined access to data (i.e., compiled programs).

• A database management system is designed to coordinate multiple users
accessing the same data at the same time. A file-processing system is usually
designed to allow one or more programs to access different data files at
the same time. In a file-processing system, a file can be accessed by two
programs concurrently only if both programs have read-only access to the
file.

1.8 Explain the concept of physical data independence and its importance in
database systems.

Answer:
Physical data independence is the ability to modify the physical scheme with-
out making it necessary to rewrite application programs. Such modifications
include changing from unblocked to blocked record storage, or from sequential
to random access files. Such a modification might be adding a field to a record;
an application program’s view hides this change from the program.

1.9 List five responsibilities of a database-management system. For each responsi-
bility, explain the problems that would arise if the responsibility were not dis-
charged.

Answer:
A general-purpose database-management system (DBMS) has five responsibili-
ties:

a. interaction with the file manager

b. integrity enforcement

c. security enforcement

d. backup and recovery

e. concurrency control

If these responsibilities were not met by a given DBMS (and the text points out
that sometimes a responsibility is omitted by design, such as concurrency con-
trol on a single-user DBMS for a microcomputer) the following problems can
occur, respectively:

a. No DBMS can do without this. If there is no file manager interaction then
nothing stored in the files can be retrieved.

b. Consistency constraints may not be satisfied. For example, an instructor
may belong to a nonexistent department, two students may have the same
ID, account balances could go below the minimum allowed, and so on.

Exercises 3

c. Unauthorized users may access the database, or users authorized to ac-
cess part of the database may be able to access parts of the database for
which they lack authority. For example, a low-level user could get access
to national defense secret codes, or employees could find out what their
supervisors earn (which is presumably a secret).

d. Data could be lost permanently, rather than at least being available in a
consistent state that existed prior to a failure.

e. Consistency constraints may be violated despite proper integrity enforce-
ment in each transaction. For example, incorrect bank balances might
be reflected due to simultaneous withdrawals and deposits on the same
account, and so on.

1.10 List at least two reasons why database systems support data manipulation using
a declarative query language such as SQL, instead of just providing a library of
C or C++ functions to carry out data manipulation.

Answer:

a. Declarative languages are easier for programmers to learn and use (and
even more so for nonprogrammers).

b. The programmer does not have to worry about how to write queries to
ensure that they will execute efficiently; the choice of an efficient execu-
tion technique is left to the database system. The declarative specification
makes it easier for the database system to make a proper choice of execu-
tion technique.

1.11 Assume that two students are trying to register for a course in which there is only
one open seat. What component of a database system prevents both students
from being given that last seat?

Answer:
The concurrency-control manager, which is part of the transaction manager,
ensures that at most one student will register successfully.

1.12 Explain the difference between two-tier and three-tier application architectures.
Which is better suited for web applications? Why?

Answer:
In a two-tier application architecture, the application runs on the client machine
and directly communicates with the database system running on the server. In
contrast, in a three-tier architecture, application code running on the client’s
machine communicates with an application server at the server, and it never di-
rectly communicates with the database. The three-tier archicture is better suited
for web applications.

4 Chapter 1 Introduction

1.13 List two features developed in the 2000s and that help database systems handle
data-analytics workloads.

Answer:
Traditional database systems store data row-by-row. Because data analytics often
focus on only a few columns of a table, column-stores were introduced to allow
faster retrieval of those columns actually being used.

Because of the high processing demands of data analytics combined with
the broader availability of parallel processing, the map-reduce framework was
introduced to facilitate coding parallel data-analytics applications.

1.14 Explain why NoSQL systems emerged in the 2000s, and briefly contrast their
features with traditional database systems.

Answer:
NoSQL systems relax the rigidity of storing data in tables by allowing a diverse
set of data types. They allow for faster initial application development. However,
NoSQL systems lack traditional systems’ support for strong data consistency,
instead relying on a weaker concept of eventual consistency.

1.15 Describe at least three tables that might be used to store information in a social-
networking system such as Facebook.

Answer:
Some possible tables are:

a. A users table containing users, with attributes such as account name, real
name, age, gender, location, and other profile information.

b. A content table containing user-provided content, such as text and images,
associated with the user who uploaded the content.

c. A friends table recording for each user which other users are connected
to that user. The kind of connection may also be recorded in this table.

d. A permissions table, recording which categories of friends are allowed to
view which content uploaded by a user. For example, a user may share
some photos with family but not with all friends.

CHAP T E R 2
Introduction to the Relational
Model

The relational model remains the primary data model for commercial data-processing
applications. It attained its primary position because of its simplicity, which eases the
job of the programmer, compared to earlier data models such as the network model
or the hierarchical model. It has retained this position by incorporating various new
features and capabilities over its half-century of existence. Among those additions are
object-relational features such as complex data types and stored procedures, support for
XML data, and various tools to support semi-structured data. The relational model’s
independence from any specific underlying low-level data structures has allowed it to
persist despite the advent of new approaches to data storage, including modern column-
stores that are designed for large-scale data mining.

In this chapter, we first study the fundamentals of the relational model. A substan-
tial theory exists for relational databases. In Chapter 6 and Chapter 7, we shall examine
aspects of database theory that help in the design of relational database schemas, while
in Chapter 15 and Chapter 16 we discuss aspects of the theory dealing with efficient
processing of queries. In Chapter 27, we study aspects of formal relational languages
beyond our basic coverage in this chapter (Section 2.6).

Exercises

2.10 Describe the differences in meaning between the terms relation and relation
schema.

Answer:
A relation schema is a type definition, and a relation is an instance of that
schema. For example, student (ss#, name) is a relation schema and

123-456-222 John
234-567-999 Mary

37

38 Chapter 2 Introduction to the Relational Model

is a relation based on that schema.

2.11 Consider the advisor relation shown in the schema diagram in Figure 2.9, with
s id as the primary key of advisor. Suppose a student can have more than one
advisor. Then, would s id still be a primary key of the advisor relation? If not,
what should the primary key of advisor be?

Answer:
No, s id would not be a primary key, since there may be two (or more) tuples
for a single student, corresponding to two (or more) advisors. The primary key
should then consist of the two attributes s id, i id.

2.12 Consider the bank database of Figure 2.18. Assume that branch names and cus-
tomer names uniquely identify branches and customers, but loans and accounts
can be associated with more than one customer.

a. What are the appropriate primary keys?

b. Given your choice of primary keys, identify appropriate foreign keys.

Answer:

a. The primary keys of the various schemas are underlined. We allow cus-
tomers to have more than one account, and more than one loan.

branch(branch name, branch city, assets)
customer (ID,customer name, customer street, customer city)
loan (loan number, branch name, amount)
borrower (ID, loan number)
account (account number, branch name, balance)
depositor (ID, account number)

b. The foreign keys are as follows:

i. For loan: branch name referencing branch.

ii. For borrower: Attribute ID referencing customer and loan number ref-
erencing loan

iii. For account: branch name referencing branch.

iv. For depositor: Attribute ID referencing customer and account number
referencing account

2.13 Construct a schema diagram for the bank database of Figure 2.18.

Exercises 39

Answer:

branch_name

branch_city

assets

branch

account_number

branch_name

balance

account

loan_number

branch_name

amount

loan

ID

customer_name

customer_street

customer_city

customer

ID

loan_number

borrower

ID

account_number

depositor

2.14 Consider the employee database of Figure 2.17. Give an expression in the rela-
tional algebra to express each of the following queries:

a. Find the ID and name of each employee who works for “BigBank”.

b. Find the ID, name, and city of residence of each employee who works for
“BigBank”.

c. Find the ID, name, street address, and city of residence of each employee
who works for “BigBank” and earns more than $10000.

d. Find the ID and name of each employee in this database who lives in the
same city as the company for which she or he works.

Answer:

a. ΠID, person name (σcompany name = “BigBank” (works))

b. ΠID, person name, city (employee ⋈employee.id=works.id
(σcompany name = “BigBank” (works)))

c. ΠID, person name, street, city
(σ(company name = “BigBank” ∧ salary > 10000)
(works ⋈employee.id=works.id employee))

d. ΠID,person name
(σemployee.city=company.city(employee ⋈employee.ID=works.ID works
⋈works.company name=company.company name company))

2.15 Consider the bank database of Figure 2.18. Give an expression in the relational
algebra for each of the following queries:

a. Find each loan number with a loan amount greater than $10000.

40 Chapter 2 Introduction to the Relational Model

b. Find the ID of each depositor who has an account with a balance greater
than $6000.

c. Find the ID of each depositor who has an account with a balance greater
than $6000 at the “Uptown” branch.

Answer:

a. Πloan number (σamount> 10000(loan))

b. ΠID (σbalance> 6000
(depositor ⋈depositor.account number=account.account number account))

c. ΠID (σbalance> 6000∧ branch name=“Uptown”
(depositor ⋈depositor.account number=account.account number account))

2.16 List two reasons why null values might be introduced into a database.

Answer:
Nulls may be introduced into the database because the actual value is either un-
known or does not exist. For example, an employee whose address has changed
and whose new address is not yet known should be retained with a null address.

2.17 Discuss the relative merits of imperative, functional, and declarative languages.

Answer:
Declarative languages greatly simplify the specification of queries (at least, the
types of queries they are designed to handle). They free the user from having
to worry about how the query is to be evaluated; not only does this reduce
programming effort, but in fact in most situations the query optimizer can do a
much better job of choosing the best way to evaluate a query than a programmer
working by trial and error.
Both functional and imperative languages require the programmer to specify a
specific set of actions. Functional languages have no side-effects, that is, there is
no program state to update. This avoids bugs that result from unantipated side
effects. Functional languages permit the use of algebraic equivalences in query
optimization. The step-by-step execution plan for actually running a database
query is usually expressed in an imperative style. Imperative programming is
the style most familiar to most programmers.

2.18 Write the following queries in relational algebra, using the university schema.

a. Find the ID and name of each instructor in the Physics department.

b. Find the ID and name of each instructor in a department located in the
building “Watson”.

c. Find the ID and name of each student who has taken at least one course
in the “Comp. Sci.” department.

Exercises 41

d. Find the ID and name of each student who has taken at least one course
section in the year 2018.

e. Find the ID and name of each student who has not taken any course
section in the year 2018.

Answer:

a. ΠID,name(σdept name=}}Physics′′(instructor))

b. ΠID,name(instructor ⋈instructor.dept name=department.dept name
(σbuilding=}}Watson′′(department)))

c. ΠID,name(student ⋈student.ID=takes.ID takes ⋈takes.course id=course.course id
σdept name=}}Comp. Sci.′′(course))

d. ΠID,name(student ⋈student.ID=takes.ID σyear=2018(takes))

e. ΠID,name(student)−
ΠID,name(student ⋈student.ID=takes.ID (σyear=2018(takes)))

